Spatial and Temporal Patterns of Impervious Cover Relative to Watershed Stream Location
The influence of spatial pattern on ecological processes is a guiding principle of landscape ecology. The guiding principle of spatial pattern was used for a U.S. nationwide assessment of impervious cover (IC). Spatial pattern was measured by comparing IC concentration near strea...
Does livestock grazing influence spatial patterns of woody plant proliferation?
USDA-ARS?s Scientific Manuscript database
Patterns of woody plant proliferation in grasslands and savannas influence rates of erosion, spread of disturbance, and nutrient pools. Spatial pattern is the outcome of plant dispersal, recruitment, competition/facilitation, and disturbance. We quantified effects of livestock grazing, a widely cit...
Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun
2016-09-02
Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST.
Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun
2016-01-01
Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST. PMID:27598186
Garcia, A G; Godoy, W A C
2017-06-01
Studies of the influence of biological parameters on the spatial distribution of lepidopteran insects can provide useful information for managing agricultural pests, since the larvae of many species cause serious impacts on crops. Computational models to simulate the spatial dynamics of insect populations are increasingly used, because of their efficiency in representing insect movement. In this study, we used a cellular automata model to explore different patterns of population distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), when the values of two biological parameters that are able to influence the spatial pattern (larval viability and adult longevity) are varied. We mapped the spatial patterns observed as the parameters varied. Additionally, by using population data for S. frugiperda obtained in different hosts under laboratory conditions, we were able to describe the expected spatial patterns occurring in corn, cotton, millet, and soybean crops based on the parameters varied. The results are discussed from the perspective of insect ecology and pest management. We concluded that computational approaches can be important tools to study the relationship between the biological parameters and spatial distributions of lepidopteran insect pests.
Impact of scale on morphological spatial pattern of forest
Katarzyna Ostapowicz; Peter Vogt; Kurt H. Riitters; Jacek Kozak; Christine Estreguil
2008-01-01
Assessing and monitoring landscape pattern structure from multi-scale land-cover maps can utilize morphological spatial pattern analysis (MSPA), only if various influences of scale are known and taken into account. This paper lays part of the foundation for applying MSPA analysis in landscape monitoring by quantifying scale effects on six classes of spatial patterns...
Describing spatial pattern in stream networks: A practical approach
Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.
2005-01-01
The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.
A geostatistical approach for describing spatial pattern in stream networks
Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.
2005-01-01
The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.
Vergés, Adriana; Vanderklift, Mathew A.; Doropoulos, Christopher; Hyndes, Glenn A.
2011-01-01
Background Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems. PMID:21347254
Spatial Pattern of Attacks of the Invasive Woodwasp Sirex noctilio, at Landscape and Stand Scales.
Lantschner, M Victoria; Corley, Juan C
2015-01-01
Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems.
Liang, Jia Xin; Li, Xin Ju
2018-02-01
With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.
Higuchi, P; Silva, A C; Louzada, J N C; Machado, E L M
2010-05-01
The objectives of this study were to evaluate the influence of propagules source and the implication of tree size class on the spatial pattern of Xylopia brasiliensis Spreng. individuals growing under the canopy of an experimental plantation of eucalyptus. To this end, all individuals of Xylopia brasiliensis with diameter at soil height (dsh) > 1 cm were mapped in the understory of a 3.16 ha Eucalyptus spp. and Corymbia spp. plantation, located in the municipality of Lavras, SE Brazil. The largest nearby mature tree of X. brasiliensis was considered as the propagules source. Linear regressions were used to assess the influence of the distance of propagules source on the population parameters (density, basal area and height). The spatial pattern of trees was assessed through the Ripley K function. The overall pattern showed that the propagules source distance had strong influence over spatial distribution of trees, mainly the small ones, indicating that the closer the distance from the propagules source, the higher the tree density and the lower the mean tree height. The population showed different spatial distribution patterns according to the spatial scale and diameter class considered. While small trees tended to be aggregated up to around 80 m, the largest individuals were randomly distributed in the area. A plausible explanation for observed patterns might be limited seed rain and intra-population competition.
Rasic, Gordana; Keyghobadi, Nusha
2012-01-01
The spatial scale at which samples are collected and analysed influences the inferences that can be drawn from landscape genetic studies. We examined genetic structure and its landscape correlates in the pitcher plant midge, Metriocnemus knabi, an inhabitant of the purple pitcher plant, Sarracenia purpurea, across several spatial scales that are naturally delimited by the midge's habitat (leaf, plant, cluster of plants, bog and system of bogs). We analysed 11 microsatellite loci in 710 M. knabi larvae from two systems of bogs in Algonquin Provincial Park (Canada) and tested the hypotheses that variables related to habitat structure are associated with genetic differentiation in this midge. Up to 54% of variation in individual-based genetic distances at several scales was explained by broadscale landscape variables of bog size, pitcher plant density within bogs and connectivity of pitcher plant clusters. Our results indicate that oviposition behaviour of females at fine scales, as inferred from the spatial locations of full-sib larvae, and spatially limited gene flow at broad scales represent the important processes underlying observed genetic patterns in M. knabi. Broadscale landscape features (bog size and plant density) appear to influence oviposition behaviour of midges, which in turn influences the patterns of genetic differentiation observed at both fine and broad scales. Thus, we inferred linkages among genetic patterns, landscape patterns and ecological processes across spatial scales in M. knabi. Our results reinforce the value of exploring such links simultaneously across multiple spatial scales and landscapes when investigating genetic diversity within a species. © 2011 Blackwell Publishing Ltd.
Optimization of landscape pattern [Chapter 8
John Hof; Curtis Flather
2007-01-01
A fundamental assumption in landscape ecology is that spatial patterns have significant influences on the flows of materials, energy, and information while processes create, modify, and maintain spatial patterns. Thus, it is of paramount importance in both theory and practice to address the questions of landscape pattern optimization ... For example, can landscape...
Long-term consistency in spatial patterns of primate seed dispersal.
Heymann, Eckhard W; Culot, Laurence; Knogge, Christoph; Noriega Piña, Tony Enrique; Tirado Herrera, Emérita R; Klapproth, Matthias; Zinner, Dietmar
2017-03-01
Seed dispersal is a key ecological process in tropical forests, with effects on various levels ranging from plant reproductive success to the carbon storage potential of tropical rainforests. On a local and landscape scale, spatial patterns of seed dispersal create the template for the recruitment process and thus influence the population dynamics of plant species. The strength of this influence will depend on the long-term consistency of spatial patterns of seed dispersal. We examined the long-term consistency of spatial patterns of seed dispersal with spatially explicit data on seed dispersal by two neotropical primate species, Leontocebus nigrifrons and Saguinus mystax (Callitrichidae), collected during four independent studies between 1994 and 2013. Using distributions of dispersal probability over distances independent of plant species, cumulative dispersal distances, and kernel density estimates, we show that spatial patterns of seed dispersal are highly consistent over time. For a specific plant species, the legume Parkia panurensis , the convergence of cumulative distributions at a distance of 300 m, and the high probability of dispersal within 100 m from source trees coincide with the dimension of the spatial-genetic structure on the embryo/juvenile (300 m) and adult stage (100 m), respectively, of this plant species. Our results are the first demonstration of long-term consistency of spatial patterns of seed dispersal created by tropical frugivores. Such consistency may translate into idiosyncratic patterns of regeneration.
Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition.
Merchant, Sandra M; Nagata, Wayne
2011-12-01
We study the influence of nonlocal intraspecies prey competition on the spatiotemporal patterns arising behind predator invasions in two oscillatory reaction-diffusion integro-differential models. We use three common types of integral kernels as well as develop a caricature system, to describe the influence of the standard deviation and kurtosis of the kernel function on the patterns observed. We find that nonlocal competition can destabilize the spatially homogeneous state behind the invasion and lead to the formation of complex spatiotemporal patterns, including stationary spatially periodic patterns, wave trains and irregular spatiotemporal oscillations. In addition, the caricature system illustrates how large standard deviation and low kurtosis facilitate the formation of these spatiotemporal patterns. This suggests that nonlocal competition may be an important mechanism underlying spatial pattern formation, particularly in systems where the competition between individuals varies over space in a platykurtic manner. Copyright © 2011 Elsevier Inc. All rights reserved.
A field guide to pedoderm and pattern classes
USDA-ARS?s Scientific Manuscript database
Pedoderm and Pattern Classes (PPCs) describe the soil pedoderm (i.e., the air-soil interface), the spatial arrangement (pattern) of plants potentially influencing the soil pedoderm, and evidence of soil redistribution. PPCs provide a record of soil surface features and plant patterns that influence ...
Dong, Xiaoli; Grimm, Nancy B.
2017-01-01
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, “wetland”) system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995–2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns. PMID:28559326
Dong, Xiaoli; Ruhí, Albert; Grimm, Nancy B
2017-06-13
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, "wetland") system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995-2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns.
J. Rojas-Sandoval; E. J. Melendez-Ackerman; NO-VALUE
2013-01-01
Aims The spatial distribution of biotic and abiotic factors may play a dominant role in determining the distribution and abundance of plants in arid and semiarid environments. In this study, we evaluated how spatial patterns of microhabitat variables and the degree of spatial dependence of these variables influence the distribution and abundance of the endangered...
Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.
2015-01-01
Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations. PMID:26421726
NASA Astrophysics Data System (ADS)
Hong, Songbai; Liu, Yongwen; Piao, Shilong
2017-04-01
Climate and anthropogenic activities such as afforestation and nitrogen deposition all impact soil pH. Understanding the spatial pattern of soil pH and the factors that influence it can provide basic information for generating appropriate strategies for soil resource management and protection, especially in light of increasing anthropogenic influences and climate change. In this study, we investigated the spatial and vertical pattern of soil pH and evaluated the influence of climate and nitrogen deposition using 1647 soil profiles 1 meter in depth from 549 plots in plantation forests of northern China. We found that soil pH decreased from the southwest to the northeast in the study region and had a similar spatial pattern before and after afforestation. Furthermore, our results show that climate and nitrogen deposition fundamentally influence the pattern of soil pH. Specifically, increasing precipitation significantly decreased soil pH (with a mean rate of 0.3 for every 100 mm rainfall, p<0.001), whereas increasing temperature significantly increased soil pH (0.13 for every degree centigrade, p<0.001). Nitrogen deposition, especially nitrate nitrogen, significantly decreased soil pH (p<0.01). All these factors impact soil pH directly and indirectly through climate-plant-soil interactions. As the risks from both climate change and nitrogen deposition increase, there is an urgent need to further understanding of soil pH dynamics and to develop informed policies to protect soil resources.
Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders
2013-01-01
Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree competition studies, in which tree spatial patterning is typically not taken into account. Our findings highlight the importance of forest structure – particularly the spatial arrangement of trees – in regulating inter-tree competition and growth in structurally diverse forests, and they provide insight into the causes and consequences of heterogeneity in this old-growth system.
Spatial Patterns of Inshore Marine Soundscapes.
McWilliam, Jamie
2016-01-01
Passive acoustic monitoring was employed to investigate spatial patterns of soundscapes within a marine reserve. High energy level broadband snaps dominated nearly all habitat soundscapes. Snaps, the principal acoustic feature of soundscapes, were primarily responsible for the observed spatial patterns, and soundscapes appeared to retain a level of compositional and configurational stability. In the presence of high-level broadband snaps, soundscape composition was more influenced by geographic location than habitat type. Future research should focus on investigating the spatial patterns of soundscapes across a wider range of coastal and offshore seascapes containing a variety of distinct ecosystems and habitats.
Yao, Lei; Chen, Liding; Wei, Wei
2017-01-01
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521
Yao, Lei; Chen, Liding; Wei, Wei
2017-02-28
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area ( TIA ), Directly Connected Impervious Area ( DCIA ), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth ( Q t and Q p ) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Q t and Q p ; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Q p . These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.
Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...
Li, Shun; Wu, Zhi Wei; Liang, Yu; He, Hong Shi
2017-01-01
The Great Xing'an Mountains are an important boreal forest region in China with high frequency of fire occurrences. With climate change, this region may have a substantial change in fire frequency. Building the relationship between spatial pattern of human-caused fire occurrence and its influencing factors, and predicting the spatial patterns of human-caused fires under climate change scenarios are important for fire management and carbon balance in boreal forests. We employed a spatial point pattern model to explore the relationship between the spatial pattern of human-caused fire occurrence and its influencing factors based on a database of historical fire records (1967-2006) in the Great Xing'an Mountains. The fire occurrence time was used as dependent variable. Nine abiotic (annual temperature and precipitation, elevation, aspect, and slope), biotic (vegetation type), and human factors (distance to the nearest road, road density, and distance to the nearest settlement) were selected as explanatory variables. We substituted the climate scenario data (RCP 2.6 and RCP 8.5) for the current climate data to predict the future spatial patterns of human-caused fire occurrence in 2050. Our results showed that the point pattern progress (PPP) model was an effective tool to predict the future relationship between fire occurrence and its spatial covariates. The climatic variables might significantly affect human-caused fire occurrence, while vegetation type, elevation and human variables were important predictors of human-caused fire occurrence. The human-caused fire occurrence probability was expected to increase in the south of the area, and the north and the area along the main roads would also become areas with high human-caused fire occurrence. The human-caused fire occurrence would increase by 72.2% under the RCP 2.6 scenario and by 166.7% under the RCP 8.5 scenario in 2050. Under climate change scenarios, the spatial patterns of human-caused fires were mainly influenced by the climate and human factors.
Some influences of touch and pressure cues on human spatial orientation
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1978-01-01
In order to evaluate the influences of touch and pressure cues on human spatial orientation, blindfolded subjects were exposed to 30 rmp rotation about the Z-axis of their bodies while the axis was horizontal or near horizontal. It was found that the manipulation of pressure patterns to which the subjects are exposed significantly influences apparent orientation. When provided with visual information about actual orientation the subjects will eliminate the postural illusions created by pressure-cue patterns. The localization of sounds is dependent of the apparent orientation and the actual pattern of auditory stimulation. The study provides a basis for investigating: (1) the postural illusions experienced by astronauts in orbital flight and subjects in the free-fall phase of parabolic flight, and (2) the spatial-constancy mechanisms distinguishing changes in sensory afflux conditioned by a subject's movements in relation to the environment, and those conditioned by movements of the environment.
S.M. Moore; C.A. Manore; V.A. Bokil; E.T. Borer; P.R. Hosseini
2011-01-01
Many generalist pathogens are influenced by the spatial distributions and relative abundances of susceptible host species. The spatial structure of host populations can influence patterns of infection incidence (or disease outbreaks), and the effects of a generalist pathogen on host community dynamics in a spatially heterogeneous community may differ from predictions...
Reiter, Matthew E.; Andersen, David E.
2013-01-01
Quantifying spatial patterns of bird nests and nest fate provides insights into processes influencing a species’ distribution. At Cape Churchill, Manitoba, Canada, recent declines in breeding Eastern Prairie Population Canada geese (Branta canadensis interior) has coincided with increasing populations of nesting lesser snow geese (Chen caerulescens caerulescens) and Ross’s geese (Chen rossii). We conducted a spatial analysis of point patterns using Canada goose nest locations and nest fate, and lesser snow goose nest locations at two study areas in northern Manitoba with different densities and temporal durations of sympatric nesting Canada and lesser snow geese. Specifically, we assessed (1) whether Canada geese exhibited territoriality and at what scale and nest density; and (2) whether spatial patterns of Canada goose nest fate were associated with the density of nesting lesser snow geese as predicted by the protective-association hypothesis. Between 2001 and 2007, our data suggest that Canada geese were territorial at the scale of nearest neighbors, but were aggregated when considering overall density of conspecifics at slightly broader spatial scales. The spatial distribution of nest fates indicated that lesser snow goose nest proximity and density likely influence Canada goose nest fate. Our analyses of spatial point patterns suggested that continued changes in the distribution and abundance of breeding lesser snow geese on the Hudson Bay Lowlands may have impacts on the reproductive performance of Canada geese, and subsequently the spatial distribution of Canada goose nests.
Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises
Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately. PMID:22132143
Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.
Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.
Erin L. Landguth; Bradley C. Fedy; Sara J. Oyler-McCance; Andrew L. Garey; Sarah L. Emel; Matthew Mumma; Helene H. Wagner; Marie-Josee Fortin; Samuel A. Cushman
2012-01-01
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population...
Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.; Gilvear, David J.; Greenwood, Malcolm T.; Thoms, Martin C.; Wood, Paul J.
2016-01-01
Floodplains can be viewed as complex adaptive systems (Levin, 1998) because they are comprised of many different biophysical components, such as morphological features, soil groups and vegetation communities as well as being sites of key biogeochemical processing (Stanford et al., 2005). Interactions and feedbacks among the biophysical components often result in additional phenomena occuring over a range of scales, often in the absence of any controlling factors (sensu Hallet, 1990). This emergence of new biophysical features and rates of processing can lead to alternative stable states which feed back into floodplain adaptive cycles (cf. Hughes, 1997; Stanford et al., 2005). Interactions between different biophysical components, feedbacks, self emergence and scale are all key properties of complex adaptive systems (Levin, 1998; Phillips, 2003; Murray et al., 2014) and therefore will influence the manner in which we study and view spatial patterns. Measuring the spatial patterns of floodplain biophysical components is a prerequisite to examining and understanding these ecosystems as complex adaptive systems. Elucidating relationships between pattern and process, which are intrinsically linked within floodplains (Ward et al., 2002), is dependent upon an understanding of spatial pattern. This knowledge can help river scientists determine the major drivers, controllers and responses of floodplain structure and function, as well as the consequences of altering those drivers and controllers (Hughes and Cass, 1997; Whited et al., 2007). Interactions and feedbacks between physical, chemical and biological components of floodplain ecosystems create and maintain a structurally diverse and dynamic template (Stanford et al., 2005). This template influences subsequent interactions between components that consequently affect system trajectories within floodplains (sensu Bak et al., 1988). Constructing and evaluating models used to predict floodplain ecosystem responses to natural and anthropogenic disturbances therefore require quantification of spatial pattern (Asselman and Middelkoop, 1995; Walling and He, 1998). Quantifying these patterns also provides insights into the spatial and temporal domains of structuring processes as well as enabling the detection of self-emergent phenomena, environmental constraints or anthropogenic interference (Turner et al., 1990; Holling, 1992; De Jager and Rohweder, 2012). Thus, quantifying spatial pattern is an important building block on which to examine floodplains as complex adaptive systems (Levin, 1998). Approaches to measuring spatial pattern in floodplains must be cognisant of scale, self-emergent phenomena, spatial organisation, and location. Fundamental problems may arise when patterns observed at a site or transect scale are scaled-up to infer processes and patterns over entire floodplain surfaces (Wiens, 2002; Thorp et al., 2008). Likewise, patterns observed over the entire spatial extent of a landscape can mask important variation and detail at finer scales (Riitters et al., 2002). Indeed, different patterns often emerge at different scales (Turner et al., 1990) because of hierarchical structuring processes (O'Neill et al., 1991). Categorising data into discrete, homogeneous and predefined spatial units at a particular scale (e.g. polygons) creates issues and errors associated with scale and subjective classification (McGarigal et al., 2009; Cushman et al., 2010). These include, loss of information within classified ‘patches’, as well as the ability to detect the emergence of new features that do not fit the original classification scheme. Many of these issues arise because floodplains are highly heterogeneous and have complex spatial organizations (Carbonneau et al., 2012; Legleiter, 2013). As a result, the scale and location at which measurements are made can influence the observed spatial patterns; and patterns may not be scale independent or applicable in different geomorp
Changing the Spatial Scope of Attention Alters Patterns of Neural Gain in Human Cortex
Garcia, Javier O.; Rungratsameetaweemana, Nuttida; Sprague, Thomas C.
2014-01-01
Over the last several decades, spatial attention has been shown to influence the activity of neurons in visual cortex in various ways. These conflicting observations have inspired competing models to account for the influence of attention on perception and behavior. Here, we used electroencephalography (EEG) to assess steady-state visual evoked potentials (SSVEP) in human subjects and showed that highly focused spatial attention primarily enhanced neural responses to high-contrast stimuli (response gain), whereas distributed attention primarily enhanced responses to medium-contrast stimuli (contrast gain). Together, these data suggest that different patterns of neural modulation do not reflect fundamentally different neural mechanisms, but instead reflect changes in the spatial extent of attention. PMID:24381272
Cornell, K.L.; Donovan, T.M.
2010-01-01
Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales. ?? Springer Science+Business Media B.V. 2009.
Yitbarek, Senay; Vandermeer, John H; Allen, David
2011-10-01
Spatial patterns observed in ecosystems have traditionally been attributed to exogenous processes. Recently, ecologists have found that endogenous processes also have the potential to create spatial patterns. Yet, relatively few studies have attempted to examine the combined effects of exogenous and endogenous processes on the distribution of organisms across spatial and temporal scales. Here we aim to do this, by investigating whether spatial patterns of under-story tree species at a large spatial scale (18 ha) influences the spatial patterns of ground foraging ant species at a much smaller spatial scale (20 m by 20 m). At the regional scale, exogenous processes (under-story tree community) had a strong effect on the spatial patterns in the ground-foraging ant community. We found significantly more Camponotus noveboracensis, Formica subsericae, and Lasius alienus species in black cherry (Prunis serotine Ehrh.) habitats. In witch-hazel (Hamamelis virginiana L.) habitats, we similarly found significantly more Myrmica americana, Formica fusca, and Formica subsericae. At smaller spatial scales, we observed the emergence of mosaic ant patches changing rapidly in space and time. Our study reveals that spatial patterns are the result of both exogenous and endogenous forces, operating at distinct scales.
Lee, Soo-Rang; Jo, Yeong-Seok; Park, Chan-Ho; Friedman, Jonathan M.; Olson, Matthew S.
2018-01-01
Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.
Influence of tree spatial pattern and sample plot type and size on inventory
John-Pascall Berrill; Kevin L. O' Hara
2012-01-01
Sampling with different plot types and sizes was simulated using tree location maps and data collected in three even-aged coast redwood (Sequoia sempervirens) stands selected to represent uniform, random, and clumped spatial patterns of tree locations. Fixed-radius circular plots, belt transects, and variable-radius plots were installed by...
Mundo, Ignacio A; Wiegand, Thorsten; Kanagaraj, Rajapandian; Kitzberger, Thomas
2013-07-15
Fire management requires an understanding of the spatial characteristics of fire ignition patterns and how anthropogenic and natural factors influence ignition patterns across space. In this study we take advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km(2)), Argentina, for the 1992-2008 period. The objectives of our study were to better understand the spatial pattern and the environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We conducted our analyses on three different levels: statistical "habitat" modelling of fire ignition (natural, anthropogenic, and all causes) based on an information theoretic approach to test several competing hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition patterns; and quantification of potential spatial associations between fires of different causes relative to towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were best predicted by the most complex habitat model including all groups of variables, whereas natural ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly significant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat model that quantifies differences between ignition probabilities of natural and anthropogenic causes allows fire managers to delineate target areas for consideration of major preventive treatments, strategic placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental factors and intrinsic point interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spatial Variation in Development of Epibenthic Assemblages in a Coastal Lagoon
NASA Astrophysics Data System (ADS)
Benedetti-Cecchi, L.; Rindi, F.; Bertocci, I.; Bulleri, F.; Cinelli, F.
2001-05-01
Spatial and temporal patterns in colonization of epibenthic assemblages were measured in a coastal lagoon on the west coast of Italy using recruitment panels. It was proposed that if the ecological processes influencing development of assemblages were homogeneous within the lagoon, then there should be no differences in mean cover of colonists nor in spatial patterns of variance in abundance in different areas of the lagoon. In contrast, heterogeneity in ecological processes affecting development would be revealed by spatial variability in colonization. To test these hypotheses, two sticks each with five replicate panels were placed 3-5 m apart in each of two sites 30-100 m apart in each of three locations 500-100 m apart; the experiment was repeated three times between April and December 1999, using new sites at each location each time. The results revealed considerable spatial variation in the structure of developing assemblages across locations. There were significant Location or Time×Location effects in the mean abundance of common taxa, such as Enteromorpha intestinalis , Ulva rigida, Cladophora spp., bryozoans and serpulids. Patterns in spatial variation differed among locations for these organisms. Collectively, the results supported a model of spatial heterogeneity in intensity of processes influencing patterns of recruitment and development of epibenthic assemblages in the Lagoon of Orbetello. The implications of these results for management of environmental problems in complex, variable habitats such as coastal lagoons, are discussed.
Different Perspectives: Spatial Ability Influences Where Individuals Look on a Timed Spatial Test
ERIC Educational Resources Information Center
Roach, Victoria A.; Fraser, Graham M.; Kryklywy, James H.; Mitchell, Derek G. V.; Wilson, Timothy D.
2017-01-01
Learning in anatomy can be both spatially and visually complex. Pedagogical investigations have begun exploration as to how spatial ability may mitigate learning. Emerging hypotheses suggests individuals with higher spatial reasoning may attend to images differently than those who are lacking. To elucidate attentional patterns associated with…
R.A. Sponseller; E.F. Benfield
2001-01-01
Stream ecosystems can be strongly influenced by land use within watersheds. The extent of this influence may depend on the spatial distribution of developed land and the scale at which it is evaluated. Effects of land-cover patterns on leaf breakdown were studied in 8 Southern Appalachian headwater streams. Using a GIS, land cover was evaluated at several spatial...
NASA Astrophysics Data System (ADS)
Dong, Jingnuo; Ochsner, Tyson E.
2018-03-01
Soil moisture patterns are commonly thought to be dominated by land surface characteristics, such as soil texture, at small scales and by atmospheric processes, such as precipitation, at larger scales. However, a growing body of evidence challenges this conceptual model. We investigated the structural similarity and spatial correlations between mesoscale (˜1-100 km) soil moisture patterns and land surface and atmospheric factors along a 150 km transect using 4 km multisensor precipitation data and a cosmic-ray neutron rover, with a 400 m diameter footprint. The rover was used to measure soil moisture along the transect 18 times over 13 months. Spatial structures of soil moisture, soil texture (sand content), and antecedent precipitation index (API) were characterized using autocorrelation functions and fitted with exponential models. Relative importance of land surface characteristics and atmospheric processes were compared using correlation coefficients (r) between soil moisture and sand content or API. The correlation lengths of soil moisture, sand content, and API ranged from 12-32 km, 13-20 km, and 14-45 km, respectively. Soil moisture was more strongly correlated with sand content (r = -0.536 to -0.704) than with API for all but one date. Thus, land surface characteristics exhibit coherent spatial patterns at scales up to 20 km, and those patterns often exert a stronger influence than do precipitation patterns on mesoscale spatial patterns of soil moisture.
Postfire environmental conditions influence the spatial pattern of regeneration for Pinus ponderosa
V. H. Bonnet; Anna Schoettle; W. D. Shepperd
2005-01-01
Regeneration of ponderosa pine after fire depends on the patterns of seed availability and the environmental conditions that define safe sites for seedling establishment. A transect approach was applied in 2002 to determine the spatial distribution of regeneration from unburned to burned areas within the landscape impacted by the Jasper Fire of 2000 in the...
NASA Astrophysics Data System (ADS)
Verburg, Peter H.; Ellis, Erle C.; Letourneau, Aurelien
2011-07-01
Markets influence the global patterns of urbanization, deforestation, agriculture and other land use systems. Yet market influence is rarely incorporated into spatially explicit global studies of environmental change, largely because consistent global data are lacking below the national level. Here we present the first high spatial resolution gridded data depicting market influence globally. The data jointly represent variations in both market strength and accessibility based on three market influence indices derived from an index of accessibility to market locations and national level gross domestic product (purchasing power parity). These indices show strong correspondence with human population density while also revealing several distinct and useful relationships with other global environmental patterns. As market influence grows, the need for high resolution global data on market influence and its dynamics will become increasingly important to understanding and forecasting global environmental change.
R. Justin DeRose; James N. Long
2012-01-01
Host conditions are known to influence spruce beetle population levels, but whether they influence the spatial and temporal patterns of beetle-caused mortality during an outbreak is unknown. Using dendrochronological techniques, we quantified the spatiotemporal dynamics of a modern (late 1980s through the early 2000s) spruce beetle outbreak in Engelmann spruce on the...
[Life forms of organisms as patterns of organization and spatial ecological factors].
Kirpotin, S N
2005-01-01
Tectological and archaetectonical approaches which are conventionally used in morphology are discussed. The similarity of these approaches to some views on the structure and organization of nature systems was shown. These wiews were originated within the framework of the modern system-cybernetic conception. The morphology particularities of natural object of any rank (from organism to biosphere) allow determination of environment influence character. In some cases intensity of the influence can be determined. This, morphological-geometrical approach of nature investigation acquires high prognostic value. The aspects of "pattern organization" concept and its perspectives are discussed. The patterns of organization of organisms could be characterized only in the context of their interactions with environment. Therefore it is necessary to distinguish new group of ecological factors: spatial or chorological one. It was suggested that spatial ecological factors is predominant if all other physical factors have no extreme values.
[Spatial distribution pattern of Chilo suppressalis analyzed by classical method and geostatistics].
Yuan, Zheming; Fu, Wei; Li, Fangyi
2004-04-01
Two original samples of Chilo suppressalis and their grid, random and sequence samples were analyzed by classical method and geostatistics to characterize the spatial distribution pattern of C. suppressalis. The limitations of spatial distribution analysis with classical method, especially influenced by the original position of grid, were summarized rather completely. On the contrary, geostatistics characterized well the spatial distribution pattern, congregation intensity and spatial heterogeneity of C. suppressalis. According to geostatistics, the population was up to Poisson distribution in low density. As for higher density population, its distribution was up to aggregative, and the aggregation intensity and dependence range were 0.1056 and 193 cm, respectively. Spatial heterogeneity was also found in the higher density population. Its spatial correlativity in line direction was more closely than that in row direction, and the dependence ranges in line and row direction were 115 and 264 cm, respectively.
The Endpoint Hypothesis: A Topological-Cognitive Assessment of Geographic Scale Movement Patterns
NASA Astrophysics Data System (ADS)
Klippel, Alexander; Li, Rui
Movement patterns of individual entities at the geographic scale are becoming a prominent research focus in spatial sciences. One pertinent question is how cognitive and formal characterizations of movement patterns relate. In other words, are (mostly qualitative) formal characterizations cognitively adequate? This article experimentally evaluates movement patterns that can be characterized as paths through a conceptual neighborhood graph, that is, two extended spatial entities changing their topological relationship gradually. The central questions addressed are: (a) Do humans naturally use topology to create cognitive equivalent classes, that is, is topology the basis for categorizing movement patterns spatially? (b) Are ‘all’ topological relations equally salient, and (c) does language influence categorization. The first two questions are addressed using a modification of the endpoint hypothesis stating that: movement patterns are distinguished by the topological relation they end in. The third question addresses whether language has an influence on the classification of movement patterns, that is, whether there is a difference between linguistic and non-linguistic category construction. In contrast to our previous findings we were able to document the importance of topology for conceptualizing movement patterns but also reveal differences in the cognitive saliency of topological relations. The latter aspect calls for a weighted conceptual neighborhood graph to cognitively adequately model human conceptualization processes.
Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann
2014-01-01
Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...
Spatially and temporally variable fire regime on Rincon Peak, Arizona, USA
Jose M. Iniguez; Thomas W. Swetnam; Christopher H. Baisa
2009-01-01
Spatial and temporal patterns of fire history are affected by factors such as topography, vegetation, and climate. It is unclear, however, how these factors influenced fire history patterns in small isolated forests, such as that found on Rincon Peak, a "sky island" mountain range in southern Arizona, USA. We reconstructed the fire history of Rincon Peak to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrego, Rodrigo; Barra, Ricardo; Chiang, Gustavo
2008-03-01
Patterns of fish community composition in a south-central Chile river were investigated along the altitudinal-spatial and environmental gradient and as a function of anthropogenic factors. The spatial pattern of fish communities in different biocoenotic zones of the Chillan River is influenced by both natural factors such a hydrologic features, habitat, and feeding types, and also by water quality variables which can reduce the diversity and abundance of sensitive species. A principal component analysis incorporating both water quality parameters and biomarker responses of representative fish species was used to evaluate the status of fish communities along the spatial gradient of themore » stream. The abundance and diversity of the fish community changed from a low in the upper reaches where the low pollution-tolerant species such as salmonid dominated, to a reduced diversity in the lower reaches of the river where tolerant browser species such as cypriniformes dominated. Even though the spatial pattern of fish community structure is similar to that found for the Chilean Rivers, the structure of these communities is highly influenced by human disturbance, particularly along the lower reaches of the river.« less
Kittle, Andrew M; Bukombe, John K; Sinclair, Anthony R E; Mduma, Simon A R; Fryxell, John M
2016-01-01
Where apex predators move on the landscape influences ecosystem structure and function and is therefore key to effective landscape-level management and species-specific conservation. However the factors underlying predator distribution patterns within functional ecosystems are poorly understood. Predator movement should be sensitive to the spatial patterns of inter-specific competitors, spatial variation in prey density, and landscape attributes that increase individual prey vulnerability. We investigated the relative role of these fundamental factors on seasonal resource utilization by a globally endangered apex carnivore, the African lion (Panthera leo) in Tanzania's Serengeti National Park. Lion space use was represented by novel landscape-level, modified utilization distributions (termed "localized density distributions") created from telemetry relocations of individual lions from multiple neighbouring prides. Spatial patterns of inter-specific competitors were similarly determined from telemetry re-locations of spotted hyenas (Crocuta crocuta), this system's primary competitor for lions; prey distribution was derived from 18 months of detailed census data; and remote sensing data was used to represent relevant habitat attributes. Lion space use was consistently influenced by landscape attributes that increase individual prey vulnerability to predation. Wet season activity, when available prey were scarce, was concentrated near embankments, which provide ambush opportunities, and dry season activity, when available prey were abundant, near remaining water sources where prey occurrence is predictable. Lion space use patterns were positively associated with areas of high prey biomass, but only in the prey abundant dry season. Finally, at the broad scale of this analysis, lion and hyena space use was positively correlated in the comparatively prey-rich dry season and unrelated in the wet season, suggesting lion movement was unconstrained by the spatial patterns of their main inter-specific competitors. The availability of potential prey and vulnerability of that prey to predation both motivate lion movement decisions, with their relative importance apparently mediated by overall prey abundance. With practical and theoretical implications, these results suggest that while top carnivores are consistently cognizant of how landscape features influence individual prey vulnerability, they also adopt a flexible approach to range use by adjusting spatial behaviour according to fluctuations in local prey abundance.
Neville, Helen; Isaak, Daniel; Dunham, J.B.; Thurow, Russel; Rieman, B.
2006-01-01
Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.
NASA Astrophysics Data System (ADS)
Torgersen, C. E.; Fullerton, A.; Lawler, J. J.; Ebersole, J. L.; Leibowitz, S. G.; Steel, E. A.; Beechie, T. J.; Faux, R.
2016-12-01
Understanding spatial patterns in water temperature will be essential for evaluating vulnerability of aquatic biota to future climate and for identifying and protecting diverse thermal habitats. We used high-resolution remotely sensed water temperature data for over 16,000 km of 2nd to 7th-order rivers throughout the Pacific Northwest and California to evaluate spatial patterns of summertime water temperature at multiple spatial scales. We found a diverse and geographically distributed suite of whole-river patterns. About half of rivers warmed asymptotically in a downstream direction, whereas the rest exhibited complex and unique spatial patterns. Patterns were associated with both broad-scale hydroclimatic variables as well as characteristics unique to each basin. Within-river thermal heterogeneity patterns were highly river-specific; across rivers, median size and spacing of cool patches <15 °C were around 250 m. Patches of this size are large enough for juvenile salmon rearing and for resting during migration, and the distance between patches is well within the movement capabilities of both juvenile and adult salmon. We found considerable thermal heterogeneity at fine spatial scales that may be important to fish that would be missed if data were analyzed at coarser scales. We estimated future thermal heterogeneity and concluded that climate change will cause warmer temperatures overall, but that thermal heterogeneity patterns may remain similar in the future for many rivers. We demonstrated considerable spatial complexity in both current and future water temperature, and resolved spatial patterns that could not have been perceived without spatially continuous data.
NASA Astrophysics Data System (ADS)
Zimmermann, A.
2007-05-01
The diverse tree species composition, irregular shaped tree crowns and a multi-layered forest structure affect the redistribution of rainfall in lower montane rain forests. In addition, abundant epiphyte biomass and associated canopy humus influence spatial patterns of throughfall. The spatial variability of throughfall amounts controls spatial patterns of solute concentrations and deposition. Moreover, the living and dead biomass interacts with the rainwater during the passage through the canopy and creates a chemical variability of its own. Since spatial and temporal patterns are intimately linked, the analysis of temporal solute concentration dynamics is an important step to understand the emerging spatial patterns. I hypothesized that: (1) the spatial variability of volumes and chemical composition of throughfall is particularly high compared with other forests because of the high biodiversity and epiphytism, (2) the temporal stability of the spatial pattern is high because of stable structures in the canopy (e.g. large epiphytes) that show only minor changes during the short term observation period, and (3) the element concentrations decrease with increasing rainfall because of exhausting element pools in the canopy. The study area at 1950 m above sea level is located in the south Ecuadorian Andes far away from anthropogenic emission sources and marine influences. Rain and throughfall were collected from August to October 2005 on an event and within-event basis for five precipitation periods and analyzed for pH, K, Na, Ca, Mg, NH4+, Cl-, NO3-, PO43-, TN, TP and TOC. Throughfall amounts and most of the solutes showed a high spatial variability, thereby the variability of H+, K, Ca, Mg, Cl- and NO3- exceeded those from a Brazilian tropical rain forest. The temporal persistence of the spatial patterns was high for throughfall amounts and varied depending on the solute. Highly persistent time stability patterns were detected for K, Mg and TOC concentrations. Time stability patterns of solute deposition were somewhat weaker than for concentrations for most of the solutes. Epiphytes strongly affected time stability patterns in that collectors situated below thick moss mats or arboreal bromeliads were in large part responsible for the extreme persistence with low throughfall amounts and high ion concentrations (H+ showed low concentrations). Rainfall solute concentrations were low compared with a variety of other tropical lowland and montane forest sites and showed a small temporal variability during the study period for both between and within-event dynamics, respectively. Throughfall solute concentrations were more within the range when compared with other sites and showed highly variable within-event dynamics. For most of the solutes, within-event concentrations did not reach low, constant concentrations in later event stages, rather concentrations fluctuated (e.g. Cl-) or increased (e.g. K and TOC). The within-event throughfall solute concentration dynamics in this lower montane rain forest contrast to recent observations from lowland tropical rain forests in Panama and Brazil. The observed within-event patterns are attributed (1) to the influence of epiphytes and associated canopy humus, and (2) to low rainfall intensities.
Range and variation in landscape patch dynamics: Implications for ecosystem management
Robert E. Keane; Janice L. Garner; Casey Teske; Cathy Stewart; Paul Hessburg
2001-01-01
Northern Rocky Mountain landscape patterns are shaped primarily by fire and succession, and conversely, these vegetation patterns influence burning patterns and plant colonization processes. Historical range and variability (HRV) of landscape pattern can be quantified from three sources: (1) historical chronosequences, (2) spatial series, and (3) simulated...
Dispersal responses override density effects on genetic diversity during post-disturbance succession
Landguth, Erin L.; Bull, C. Michael; Banks, Sam C.; Gardner, Michael G.; Driscoll, Don A.
2016-01-01
Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus. We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity in N. stellatus. Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. PMID:27009225
Liu, Xinchun; Zhang, Yuandong; Ren, Guangyao; Pan, Xiaoling; He, Qing
2004-07-01
The spatial pattern of ecological landscape during land utilization in Fukang is heavily influenced by natural difference and the scale of water and land resource development. Analyses on the spatial pattern based on different zones and indexes showed that from 1987 to 1998, the change of the spatial pattern of ecological landscape during land utilization in Fukang was mainly the increase of plantation area in pluvial fan and the decrease in alluvial plain. The case was on the contrary about badlands. The acreage of woodland decreased in lower mountains, uplands and alluvial plain, but no variety in alluvial plain. The acreage of grassland increased in lower mountains and uplands, while decreased in other fields. The acreage of town increased in each sample field, while that of water area remained uncharged. The landscape diversity and evenness was descending, the dominance was ascending in lower mountains and in pluvial fan, while it was reverse in alluvial plain. Accessorial fragmentation showed the increasing influence of human beings. The change of the spatial pattern of ecological landscape in Fukang focused on the acreage alteration of plantation and badlands in pluvial fan and alluvial plain. The key factor was the dynamic variation of water-salt in water and soil resource utilization. Terrain and land utilization were the key factors affecting water table, and the continuous changes of the water table worked on the spatial distribution of soil water-salt.
Jeffrey A. Falke; Jason B. Dunham; Christopher E. Jordan; Kristina M. McNyset; Gordon H. Reeves
2013-01-01
Processes that influence habitat selection in landscapes involve the interaction of habitat composition and configuration and are particularly important for species with complex life cycles. We assessed the relative influence of landscape spatial processes and local habitat characteristics on patterns in the distribution and abundance of spawning steelhead (...
Ecogeographic Genetic Epidemiology
Sloan, Chantel D.; Duell, Eric J.; Shi, Xun; Irwin, Rebecca; Andrew, Angeline S.; Williams, Scott M.; Moore, Jason H.
2009-01-01
Complex diseases such as cancer and heart disease result from interactions between an individual's genetics and environment, i.e. their human ecology. Rates of complex diseases have consistently demonstrated geographic patterns of incidence, or spatial “clusters” of increased incidence relative to the general population. Likewise, genetic subpopulations and environmental influences are not evenly distributed across space. Merging appropriate methods from genetic epidemiology, ecology and geography will provide a more complete understanding of the spatial interactions between genetics and environment that result in spatial patterning of disease rates. Geographic Information Systems (GIS), which are tools designed specifically for dealing with geographic data and performing spatial analyses to determine their relationship, are key to this kind of data integration. Here the authors introduce a new interdisciplinary paradigm, ecogeographic genetic epidemiology, which uses GIS and spatial statistical analyses to layer genetic subpopulation and environmental data with disease rates and thereby discern the complex gene-environment interactions which result in spatial patterns of incidence. PMID:19025788
Influences of indigenous language on spatial frames of reference in Aboriginal English
NASA Astrophysics Data System (ADS)
Edmonds-Wathen, Cris
2014-06-01
The Aboriginal English spoken by Indigenous children in remote communities in the Northern Territory of Australia is influenced by the home languages spoken by themselves and their families. This affects uses of spatial terms used in mathematics such as `in front' and `behind.' Speakers of the endangered Indigenous Australian language Iwaidja use the intrinsic frame of reference in contexts where speakers of Standard Australian English use the relative frame of reference. Children speaking Aboriginal English show patterns of use that parallel the Iwaidja contexts. This paper presents detailed examples of spatial descriptions in Iwaidja and Aboriginal English that demonstrate the parallel patterns of use. The data comes from a study that investigated how an understanding of spatial frame of reference in Iwaidja could assist teaching mathematics to Indigenous language-speaking students. Implications for teaching mathematics are explored for teachers without previous experience in a remote Indigenous community.
Habitat history improves prediction of biodiversity in rainforest fauna
Graham, Catherine H.; Moritz, Craig; Williams, Stephen E.
2006-01-01
Patterns of biological diversity should be interpreted in light of both contemporary and historical influences; however, to date, most attempts to explain diversity patterns have largely ignored history or have been unable to quantify the influence of historical processes. The historical effects on patterns of diversity have been hypothesized to be most important for taxonomic groups with poor dispersal abilities. We quantified the relative stability of rainforests over the late Quaternary period by modeling rainforest expansion and contraction in 21 biogeographic subregions in northeast Australia across four time periods. We demonstrate that historical habitat stability can be as important, and in endemic low-dispersal taxa even more important, than current habitat area in explaining spatial patterns of species richness. In contrast, patterns of endemic species richness for taxa with high dispersal capacity are best predicted by using current environmental parameters. We also show that contemporary patterns of species turnover across the region are best explained by historical patterns of habitat connectivity. These results clearly demonstrate that spatially explicit analyses of the historical processes of persistence and colonization are both effective and necessary for understanding observed patterns of biodiversity. PMID:16407139
Landscape-Level Spatial Patterns of West Nile Virus Risk in the Northern Great Plains
Chuang, Ting-Wu; Hockett, Christine W.; Kightlinger, Lon; Wimberly, Michael C.
2012-01-01
Understanding the landscape-level determinants of West Nile virus (WNV) can aid in mapping high-risk areas and enhance disease control and prevention efforts. This study analyzed the spatial patterns of human WNV cases in three areas in South Dakota during 2003–2007 and investigated the influences of land cover, hydrology, soils, irrigation, and elevation by using case–control models. Land cover, hydrology, soils, and elevation all influenced WNV risk, although the main drivers were different in each study area. Risk for WNV was generally higher in areas with rural land cover than in developed areas, and higher close to wetlands or soils with a high ponding frequency. In western South Dakota, WNV risk also decreased with increasing elevation and was higher in forested areas. Our results showed that the spatial patterns of human WNV risk were associated with landscape-level features that likely reflect variability in mosquito ecology, avian host communities, and human activity. PMID:22492161
Brown, Jason L; Cameron, Alison; Yoder, Anne D; Vences, Miguel
2014-10-09
Pattern and process are inextricably linked in biogeographic analyses, though we can observe pattern, we must infer process. Inferences of process are often based on ad hoc comparisons using a single spatial predictor. Here, we present an alternative approach that uses mixed-spatial models to measure the predictive potential of combinations of hypotheses. Biodiversity patterns are estimated from 8,362 occurrence records from 745 species of Malagasy amphibians and reptiles. By incorporating 18 spatially explicit predictions of 12 major biogeographic hypotheses, we show that mixed models greatly improve our ability to explain the observed biodiversity patterns. We conclude that patterns are influenced by a combination of diversification processes rather than by a single predominant mechanism. A 'one-size-fits-all' model does not exist. By developing a novel method for examining and synthesizing spatial parameters such as species richness, endemism and community similarity, we demonstrate the potential of these analyses for understanding the diversification history of Madagascar's biota.
Middleton, B.; Wu, X.B.
2008-01-01
Agricultural development on floodplains contributes to hydrologic alteration and forest fragmentation, which may alter landscape-level processes. These changes may be related to shifts in the seed bank composition of floodplain wetlands. We examined the patterns of seed bank composition across a floodplain watershed by looking at the number of seeds germinating per m2 by species in 60 farmed and intact forested wetlands along the Cache River watershed in Illinois. The seed bank composition was compared above and below a water diversion (position), which artificially subdivides the watershed. Position of these wetlands represented the most variability of Axis I in a Nonmetric Multidimensional Scaling (NMS) analysis of site environmental variables and their relationship to seed bank composition (coefficient of determination for Axis 1: r2 = 0.376; Pearson correlation of position to Axis 1: r = 0.223). The 3 primary axes were also represented by other site environmental variables, including farming status (farmed or unfarmed), distance from the mouth of the river, latitude, and longitude. Spatial analysis based on Mantel correlograms showed that both water-dispersed and wind/water-dispersed seed assemblages had strong spatial structure in the upper Cache (above the water diversion), bur the spatial structure of water-dispersed seed assemblage was diminished in the lower Cache (below the water diversion), which lost floodpulsing. Bearing analysis also Suggested that water-dispersal process had a stronger influence on the overall spatial pattern of seed assemblage in the upper Cache, while wind/water-dispersal process had a stronger influence in the lower Cache. An analysis of the landscapes along the river showed that the mid-lower Cache (below the water diversion) had undergone greater land cover changes associated with agriculture than did the upper Cache watershed. Thus, the combination of forest fragmentation and hydrologic changes in the surrounding landscape may have had an influence on the seed bank composition and spatial distribution of the seed banks of the Cache River watershed. Our study suggests that the spatial pattern of seed bank composition may be influenced by landscape-level factors and processes.
Modern Climate Analogues of Late-Quaternary Paleoclimates for the Western United States.
NASA Astrophysics Data System (ADS)
Mock, Cary Jeffrey
This study examined spatial variations of modern and late-Quaternary climates for the western United States. Synoptic climatological analyses of the modern record identified the predominate climatic controls that normally produce the principal modes of spatial climatic variability. They also provided a modern standard to assess past climates. Maps of the month-to-month changes in 500 mb heights, sea-level pressure, temperature, and precipitation illustrated how different climatic controls govern the annual cycle of climatic response. The patterns of precipitation ratios, precipitation bar graphs, and the seasonal precipitation maximum provided additional insight into how different climatic controls influence spatial climatic variations. Synoptic-scale patterns from general circulation model (GCM) simulations or from analyses of climatic indices were used as the basis for finding modern climate analogues for 18 ka and 9 ka. Composite anomaly maps of atmospheric circulation, precipitation, and temperature were compared with effective moisture maps compiled from proxy data to infer how the patterns, which were evident from the proxy data, were generated. The analyses of the modern synoptic climatology indicate that smaller-scale climatic controls must be considered along with larger-scale ones in order to explain patterns of spatial climate heterogeneity. Climatic extremes indicate that changes in the spatial patterns of precipitation seasonality are the exception rather than the rule, reflecting the strong influence of smaller-scale controls. Modern climate analogues for both 18 ka and 9 ka clearly depict the dry Northwest/wet Southwest contrast that is suggested by GCM simulations and paleoclimatic evidence. 18 ka analogues also show the importance of smaller-scale climatic controls in explaining spatial climatic variation in the Northwest and northern Great Plains. 9 ka analogues provide climatological explanations for patterns of spatial heterogeneity over several mountainous areas as suggested by paleoclimatic evidence. Modern analogues of past climates supplement modeling approaches by providing information below the resolution of model simulations. Analogues can be used to examine the controls of spatial paleoclimatic variation if sufficient instrumental data and paleoclimatic evidence are available, and if one carefully exercises uniformitarianism when extrapolating modern relationships to the past.
Xie, Li-Na; Guo, Hong-Yu; Gabler, Christopher A.; Li, Qing-Fang; Ma, Cheng-Cang
2015-01-01
Few studies have investigated the influence of water availability on plant population spatial patterns. We studied changes in the spatial patterns of Caragana stenophylla along a climatic drought gradient within the Inner Mongolian Plateau, China. We examined spatial patterns, seed density, “nurse effects” of shrubs on seedlings, transpiration rates and water use efficiency (WUE) of C. stenophylla across semi-arid, arid, and intensively arid zones. Our results showed that patches of C. stenophylla populations shifted from a random to a clumped spatial pattern towards drier environments. Seed density and seedling survival rate of C. stenophylla decreased from the semi-arid zone to the intensively arid zone. Across the three zones, there were more C. stenophylla seeds and seedlings underneath shrub canopies than outside shrub canopies; and in the intensively arid zone, there were almost no seeds or seedlings outside shrub canopies. Transpiration rates of outer-canopy leaves and WUE of both outer-canopy and inner-canopy leaves increased from the semi-arid zone to the intensively arid zone. In the intensively arid zone, transpiration rates and WUE of inner-canopy leaves were significantly lower and higher, respectively, than those of outer-canopy leaves. We conclude that, as drought stress increased, seed density decreased, seed proportions inside shrubs increased, and “nurse effects” of shrubs on seedlings became more important. These factors, combined with water-saving characteristics associated with clumped spatial patterns, are likely driving the changes in C. stenophylla spatial patterns. PMID:25785848
Nolen, Matthew S.; Magoulick, Daniel D.; DiStefano, Robert J.; Imhoff, Emily M.; Wagner, Brian K.
2014-01-01
We found that a range of environmental variables were important in predicting crayfish distribution and abundance at multiple spatial scales and their importance was species-, response variable- and scale dependent. We would encourage others to examine the influence of spatial scale on species distribution and abundance patterns.
The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale
NASA Astrophysics Data System (ADS)
Chen, L.
2016-12-01
Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.
Baldissera, Ronei; Rodrigues, Everton N L; Hartz, Sandra M
2012-01-01
The distribution of beta diversity is shaped by factors linked to environmental and spatial control. The relative importance of both processes in structuring spider metacommunities has not yet been investigated in the Atlantic Forest. The variance explained by purely environmental, spatially structured environmental, and purely spatial components was compared for a metacommunity of web spiders. The study was carried out in 16 patches of Atlantic Forest in southern Brazil. Field work was done in one landscape mosaic representing a slight gradient of urbanization. Environmental variables encompassed plot- and patch-level measurements and a climatic matrix, while principal coordinates of neighbor matrices (PCNMs) acted as spatial variables. A forward selection procedure was carried out to select environmental and spatial variables influencing web-spider beta diversity. Variation partitioning was used to estimate the contribution of pure environmental and pure spatial effects and their shared influence on beta-diversity patterns, and to estimate the relative importance of selected environmental variables. Three environmental variables (bush density, land use in the surroundings of patches, and shape of patches) and two spatial variables were selected by forward selection procedures. Variation partitioning revealed that 15% of the variation of beta diversity was explained by a combination of environmental and PCNM variables. Most of this variation (12%) corresponded to pure environmental and spatially environmental structure. The data indicated that (1) spatial legacy was not important in explaining the web-spider beta diversity; (2) environmental predictors explained a significant portion of the variation in web-spider composition; (3) one-third of environmental variation was due to a spatial structure that jointly explains variation in species distributions. We were able to detect important factors related to matrix management influencing the web-spider beta-diversity patterns, which are probably linked to historical deforestation events.
Scale-dependent associations of Band-tailed Pigeon counts at mineral sites
Overton, Cory T.; Casazza, Michael L.; Coates, Peter S.
2010-01-01
The abundance of Band-tailed Pigeons (Patagioenas fasciata monilis) has declined substantially from historic numbers along the Pacific Coast. Identification of patterns and causative factors of this decline are hampered because habitat use data are limited, and temporal and spatial variability patterns associated with population indices are not known. Furthermore, counts are influenced not only by pigeon abundance but also by rate of visitation to mineral sites, which may not be consistent. To address these issues, we conducted mineral site counts during 2001 and 2002 at 20 locations from 4 regions in the Pacific Northwest, including central Oregon and western Washington, USA, and British Columbia, Canada. We developed inference models that consisted of environmental factors and spatial characteristics at multiple spatial scales. Based on information theory, we compared models within a final set that included variables measured at 3 spatial scales (0.03 ha, 3.14 ha, and 7850 ha). Pigeon counts increased from central Oregon through northern Oregon and decreased into British Columbia. After accounting for this spatial pattern, we found that pigeon counts increased 12% ± 2.7 with a 10% increase in the amount of deciduous forested area within 100 m from a mineral site. Also, distance from the mineral site of interest to the nearest known mineral site was positively related to pigeon counts. These findings provide direction for future research focusing on understanding the relationships between indices of relative abundance and complete counts (censuses) of pigeon populations by identifying habitat characteristics that might influence visitation rates. Furthermore, our results suggest that spatial arrangement of mineral sites influences Band-tailed Pigeon counts and the populations which those counts represent.
Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi
2015-05-20
Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months.
Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi
2015-01-01
Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months. PMID:26006121
NASA Technical Reports Server (NTRS)
Tuominen, H. V. (Principal Investigator); Kuosmanen, V.
1975-01-01
The author has identified the following significant results. On the central Baltic Shield, the concept of drainage patterns can be extended to smaller scales in which case many cultural features become involved to the spatial patterns influenced by bedrock structure. Features resulting from agriculture activity and timbering often exaggerate the influence of the bedrock on the image texture.
NASA Astrophysics Data System (ADS)
Mairota, Paola; Cafarelli, Barbara; Labadessa, Rocco; Lovergine, Francesco P.; Tarantino, Cristina; Nagendra, Harini; Didham, Raphael K.
2015-02-01
Modelling the empirical relationships between habitat quality and species distribution patterns is the first step to understanding human impacts on biodiversity. It is important to build on this understanding to develop a broader conceptual appreciation of the influence of surrounding landscape structure on local habitat quality, across multiple spatial scales. Traditional models which report that 'habitat amount' in the landscape is sufficient to explain patterns of biodiversity, irrespective of habitat configuration or spatial variation in habitat quality at edges, implicitly treat each unit of habitat as interchangeable and ignore the high degree of interdependence between spatial components of land-use change. Here, we test the contrasting hypothesis, that local habitat units are not interchangeable in their habitat attributes, but are instead dependent on variation in surrounding habitat structure at both patch- and landscape levels. As the statistical approaches needed to implement such hierarchical causal models are observation-intensive, we utilise very high resolution (VHR) Earth Observation (EO) images to rapidly generate fine-grained measures of habitat patch internal heterogeneities over large spatial extents. We use linear mixed-effects models to test whether these remotely-sensed proxies for habitat quality were influenced by surrounding patch or landscape structure. The results demonstrate the significant influence of surrounding patch and landscape context on local habitat quality. They further indicate that such an influence can be direct, when a landscape variable alone influences the habitat structure variable, and/or indirect when the landscape and patch attributes have a conjoined effect on the response variable. We conclude that a substantial degree of interaction among spatial configuration effects is likely to be the norm in determining the ecological consequences of habitat fragmentation, thus corroborating the notion of the spatial context dependence of habitat quality.
Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.
Yang, Jian; He, Hong S; Shifley, Stephen R
2008-07-01
Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.
Liu, Jie; Gao, Meixiang; Liu, Jinwen; Guo, Yuxi; Liu, Dong; Zhu, Xinyu; Wu, Donghui
2018-01-01
Spatial distribution is an important topic in community ecology and a key to understanding the structure and dynamics of populations and communities. However, the available information related to the spatial patterns of soil mite communities in long-term tillage agroecosystems remains insufficient. In this study, we examined the spatial patterns of soil mite communities to explain the spatial relationships between soil mite communities and soil parameters. Soil fauna were sampled three times (August, September and October 2015) at 121 locations arranged regularly within a 400 m × 400 m monitoring plot. Additionally, we estimated the physical and chemical parameters of the same sampling locations. The distribution patterns of the soil mite community and the edaphic parameters were analyzed using a range of geostatistical tools. Moran's I coefficient showed that, during each sampling period, the total abundance of the soil mite communities and the abundance of the dominant mite populations were spatially autocorrelated. The soil mite communities demonstrated clear patchy distribution patterns within the study plot. These patterns were sampling period-specific. Cross-semivariograms showed both negative and positive cross-correlations between soil mite communities and environmental factors. Mantel tests showed a significant and positive relationship between soil mite community and soil organic matter and soil pH only in August. This study demonstrated that in the cornfield, the soil mite distribution exhibited strong or moderate spatial dependence, and the mites formed patches with sizes less than one hundred meters. In addition, in this long-term tillage agroecosystem, soil factors had less influence on the observed pattern of soil mite communities. Further experiments that take into account human activity and spatial factors should be performed to study the factors that drive the spatial distribution of soil microarthropods.
NASA Astrophysics Data System (ADS)
Yang, Xuhong; Jin, Xiaobin; Guo, Beibei; Long, Ying; Zhou, Yinkang
2015-05-01
Constructing a spatially explicit time series of historical cultivated land is of upmost importance for climatic and ecological studies that make use of Land Use and Cover Change (LUCC) data. Some scholars have made efforts to simulate and reconstruct the quantitative information on historical land use at the global or regional level based on "top-down" decision-making behaviors to match overall cropland area to land parcels using land arability and universal parameters. Considering the concentrated distribution of cultivated land and various factors influencing cropland distribution, including environmental and human factors, this study developed a "bottom-up" model of historical cropland based on constrained Cellular Automaton (CA). Our model takes a historical cropland area as an external variable and the cropland distribution in 1980 as the maximum potential scope of historical cropland. We selected elevation, slope, water availability, average annual precipitation, and distance to the nearest rural settlement as the main influencing factors of land use suitability. Then, an available labor force index is used as a proxy for the amount of cropland to inspect and calibrate these spatial patterns. This paper applies the model to a traditional cultivated region in China and reconstructs its spatial distribution of cropland during 6 periods. The results are shown as follows: (1) a constrained CA is well suited for simulating and reconstructing the spatial distribution of cropland in China's traditional cultivated region. (2) Taking the different factors affecting spatial pattern of cropland into consideration, the partitioning of the research area effectively reflected the spatial differences in cropland evolution rules and rates. (3) Compared with "HYDE datasets", this research has formed higher-resolution Boolean spatial distribution datasets of historical cropland with a more definitive concept of spatial pattern in terms of fractional format. We conclude that our reconstruction is closer to the actual change pattern of the traditional cultivated region in China.
Locomotor Experience: A Facilitator of Spatial Cognitive Development.
ERIC Educational Resources Information Center
Kermoian, Rosanne; Campos, Joseph J.
1988-01-01
Studies were designed to test the prediction that spatial search strategies in infants may be influenced by locomotor experience. The pattern of findings suggests that infants with efficient modes of locomotion are more likely than others to profit from the experiences generated by locomotion. (RJC)
NASA Astrophysics Data System (ADS)
Barron-Gafford, G.; Minor, R. L.; Heard, M. M.; Sutter, L. F.; Yang, J.; Potts, D. L.
2015-12-01
The southwestern U.S. is predicted to experience increasing temperatures and longer periods of inter-storm drought. High temperature and water deficit restrict plant productivity and ecosystem functioning, but the influence of future climate is predicted to be highly heterogeneous because of the complex terrain characteristic of much of the Critical Zone (CZ). Within our Critical Zone Observatory (CZO) in the Southwestern US, we monitor ecosystem-scale carbon and water fluxes using eddy covariance. This whole-ecosystem metric is a powerful integrating measure of ecosystem function over time, but details on spatial heterogeneity resulting from topographic features of the landscape are not captured, nor are interactions among below- and aboveground processes. We supplement eddy covariance monitoring with distributed measures of carbon flux from soil and vegetation across different aspects to quantify the causes and consequences of spatial heterogeneity through time. Given that (i) aspect influences how incoming energy drives evaporative water loss and (ii) seasonality drives temporal patterns of soil moisture recharge, we were able to examine the influence of these processes on CO2 efflux by investigating variation across aspect. We found that aspect was a significant source of spatial heterogeneity in soil CO2 efflux, but the influence varied across seasonal periods. Snow on South-facing aspects melted earlier and yielded higher efflux rates in the spring. However, during summer, North- and South-facing aspects had similar amounts of soil moisture, but soil temperatures were warmer on the North-facing aspect, yielding greater rates of CO2 efflux. Interestingly, aspect did not influence photosynthetic rates. Taken together, we found that physical features of the landscape yielded predictable patterns of levels and phenologies of soil moisture and temperature, but these drivers differentially influenced below- and aboveground sources of carbon exchange. Conducting these spatially distributed measurements are time consuming. Looking forward, we have begun using unmanned aerial vehicles outfitted with thermal and multi-spectral cameras to quantify patterns of water flux, NDVI, needle browning due to moisture stress, and overall phenology in the CZ.
A computational method for optimizing fuel treatment locations
Mark A. Finney
2006-01-01
Modeling and experiments have suggested that spatial fuel treatment patterns can influence the movement of large fires. On simple theoretical landscapes consisting of two fuel types (treated and untreated) optimal patterns can be analytically derived that disrupt fire growth efficiently (i.e. with less area treated than random patterns). Although conceptually simple,...
Exploring the relation between spatial configuration of buildings and remotely sensed temperatures
NASA Astrophysics Data System (ADS)
Myint, S. W.; Zheng, B.; Kaplan, S.; Huang, H.
2013-12-01
While the relationship between fractional cover of buildings and the UHI has been well studied, relationships of how spatial arrangements (e.g., clustered, dispersed) of buildings influence urban warming are not well understood. Since a diversity of spatial patterns can be observed under the same percentage of buildings cover, it is of great interest and importance to investigate the amount of variation in certain urban thermal feature such as surface temperature that is accounted for by the inclusion of spatial arrangement component. The various spatial arrangements of buildings cover can give rise to different urban thermal behaviors that may not be uncovered with the information of buildings fraction only, but can be captured to some extent using spatial analysis. The goal of this study is to examine how spatial arrangements of buildings influence and shape surface temperature in different urban settings. The study area selected is the Las-Vegas metropolitan area in Nevada, located in the Mojave Desert. An object-oriented approach was used to identify buildings using a Geoeye-1 image acquired on October 12, 2011. A spatial autocorrelation technique (i.e., Moran's I) that can measure spatial pattern (clustered, dispersed) was used to determine spatial configuration of buildings. A daytime temperature layer in degree Celsius, generated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image, was integrated with Moran's I values of building cover and building fractions to achieve the goals set in the study. To avoid uncertainty and properly evaluate if spatial pattern of buildings has an impact on urban warming, the relation between Moran's I values and surface temperatures was observed at different levels according to their fractions (e.g., 0-0.1, 0.5-0.6, 0.9-1). There is a negative correlation exists between spatial pattern of buildings and surface temperatures implying that dispersed building arrangements elevate surface temperatures more severely than clustered buildings. This suggests that more clustered buildings have less impact on the urban heat island (UHI) effect. We conclude that having buildings as clustered as possible can be expected to protect the settlements from increased heat island effects, reduce pollution, and preserve the hydrological systems.
NASA Astrophysics Data System (ADS)
Huntington, B. E.; Lirman, D.
2012-12-01
Landscape-scale attributes of patch size, spatial isolation, and topographic complexity are known to influence diversity and abundance in terrestrial and marine systems, but remain collectively untested for reef-building corals. To investigate the relationship between the coral assemblage and seascape variation in reef habitats, we took advantage of the distinct boundaries, spatial configurations, and topographic complexities among artificial reef patches to overcome the difficulties of manipulating natural reefs. Reef size (m2) was found to be the foremost predictor of coral richness in accordance with species-area relationship predictions. Larger reefs were also found to support significantly higher colony densities, enabling us to reject the null hypothesis of random placement (a sampling artifact) in favor of target area predictions that suggest greater rates of immigration on larger reefs. Unlike the pattern previously documented for reef fishes, topographic complexity was not a significant predictor of any coral assemblage response variable, despite the range of complexity values sampled. Lastly, coral colony density was best explained by both increasing reef size and decreasing reef spatial isolation, a pattern found exclusively among brooding species with shorter larval dispersal distances. We conclude that seascape attributes of reef size and spatial configuration within the seascape can influence the species richness and abundance of the coral community at relatively small spatial scales (<1 km). Specifically, we demonstrate how patterns in the coral communities that have naturally established on these manipulated reefs agree with the target area and island biogeography mechanisms to drive species-area relationships in reef-building corals. Based on the patterns documented in artificial reefs, habitat degradation that results in smaller, more isolated natural reefs may compromise coral diversity.
Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.
2008-01-01
Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.
Bassanezi, Renato B; Bergamin Filho, Armando; Amorim, Lilian; Gimenes-Fernandes, Nelson; Gottwald, Tim R; Bové, Joseph M
2003-04-01
ABSTRACT Citrus sudden death (CSD), a new disease of unknown etiology that affects sweet orange grafted on Rangpur lime, was visually monitored for 14 months in 41 groves in Brazil. Ordinary runs analysis of CSD-symptomatic trees indicated a departure from randomness of symptomatic trees status among immediately adjacent trees mainly within rows. The binomial index of dispersion (D) and the intraclass correlation (k) for various quadrat sizes suggested aggregation of CSD-symptomatic trees for almost all plots within the quadrat sizes tested. Estimated parameters of the binary form of Taylor's power law provided an overall measure of aggregation of CSD-symptomatic trees for all quadrat sizes tested. Aggregation in each plot was dependent on disease incidence. Spatial autocorrelation analysis of proximity patterns suggested that aggregation often existed among quadrats of various sizes up to three lag distances; however, significant lag positions discontinuous from main proximity patterns were rare, indicating a lack of spatial association among discrete foci. Some asymmetry was also detected for some spatial autocorrelation proximity patterns, indicating that within-row versus across-row distributions are not necessarily equivalent. These results were interpreted to mean that the cause of the disease was most likely biotic and its dissemination was common within a local area of influence that extended to approximately six trees in all directions, including adjacent trees. Where asymmetry was indicated, this area of influence was somewhat elliptical. Longer-distance patterns were not detected within the confines of the plot sizes tested. Annual rates of CSD progress based on the Gompertz model ranged from 0.37 to 2.02. Numerous similarities were found between the spatial patterns of CSD and Citrus tristeza virus (CTV) described in the literature, both in the presence of the aphid vector, Toxoptera citricida. CSD differs from CTV in that symptoms occur in sweet orange grafted on Rangpur lime. Based on the symptoms of CSD and on its spatial and temporal patterns, our hypothesis is that CSD may be caused by a similar but undescribed pathogen such as a virus and probably vectored by insects such as aphids by similar spatial processes to those affecting CTV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina, Richard M; Siebeneck, Laura K.; Hepner, George F.
2011-01-01
As terrorism on all scales continues, it is necessary to improve understanding of terrorist and insurgent activities. This article takes a Geographic Information Systems (GIS) approach to advance the understanding of spatial, social, political, and cultural triggers that influence terrorism incidents. Spatial, temporal, and spatiotemporal patterns of terrorist attacks are examined to improve knowledge about terrorist systems of training, planning, and actions. The results of this study aim to provide a foundation for understanding attack patterns and tactics in emerging havens as well as inform the creation and implementation of various counterterrorism measures.
NASA Astrophysics Data System (ADS)
Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.
2017-02-01
Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.
ElBasiouny, Sherif M.; Rymer, W. Zev; Heckman, C. J.
2012-01-01
Motoneuron discharge patterns reflect the interaction of synaptic inputs with intrinsic conductances. Recent work has focused on the contribution of conductances mediating persistent inward currents (PICs), which amplify and prolong the effects of synaptic inputs on motoneuron discharge. Certain features of human motor unit discharge are thought to reflect a relatively stereotyped activation of PICs by excitatory synaptic inputs; these features include rate saturation and de-recruitment at a lower level of net excitation than that required for recruitment. However, PIC activation is also influenced by the pattern and spatial distribution of inhibitory inputs that are activated concurrently with excitatory inputs. To estimate the potential contributions of PIC activation and synaptic input patterns to motor unit discharge patterns, we examined the responses of a set of cable motoneuron models to different patterns of excitatory and inhibitory inputs. The models were first tuned to approximate the current- and voltage-clamp responses of low- and medium-threshold spinal motoneurons studied in decerebrate cats and then driven with different patterns of excitatory and inhibitory inputs. The responses of the models to excitatory inputs reproduced a number of features of human motor unit discharge. However, the pattern of rate modulation was strongly influenced by the temporal and spatial pattern of concurrent inhibitory inputs. Thus, even though PIC activation is likely to exert a strong influence on firing rate modulation, PIC activation in combination with different patterns of excitatory and inhibitory synaptic inputs can produce a wide variety of motor unit discharge patterns. PMID:22031773
Do we really use rainfall observations consistent with reality in hydrological modelling?
NASA Astrophysics Data System (ADS)
Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves
2017-04-01
Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.
Implications of recurrent disturbance for genetic diversity.
Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C
2016-02-01
Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes.
Effects of ignition location models on the burn patterns of simulated wildfires
Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.
2011-01-01
Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.
Geographic variation in patterns of nestedness among local stream fish assemblages in Virginia
Cook, R.R.; Angermeier, P.L.; Finn, D.S.; Poff, N.L.; Krueger, K.L.
2004-01-01
Nestedness of faunal assemblages is a multiscale phenomenon, potentially influenced by a variety of factors. Prior small-scale studies have found freshwater fish species assemblages to be nested along stream courses as a result of either selective colonization or extinction. However, within-stream gradients in temperature and other factors are correlated with the distributions of many fish species and may also contribute to nestedness. At a regional level, strongly nested patterns would require a consistent set of structuring mechanisms across streams, and correlation among species' tolerances of the environmental factors that influence distribution. Thus, nestedness should be negatively associated with the spatial extent of the region analyzed and positively associated with elevational gradients (a correlate of temperature and other environmental factors). We examined these relationships for the freshwater fishes of Virginia. Regions were defined within a spatial hierarchy and included whole river drainages, portions of drainages within physiographic provinces, and smaller subdrainages. In most cases, nestedness was significantly stronger in regions of smaller spatial extent and in regions characterized by greater topographic relief. Analysis of hydrologic variability and patterns of faunal turnover provided no evidence that interannual colonization/extinction dynamics contributed to elevational differences in nestedness. These results suggest that, at regional scales, nestedness is influenced by interactions between biotic and abiotic factors, and that the strongest nestedness is likely to occur where a small number of organizational processes predominate, i.e., over small spatial extents and regions exhibiting strong environmental gradients. ?? Springer-Verlag 2004.
Methylmercury bioaccumulation in an urban estuary: Delaware River USA.
Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia
2017-09-01
Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.
Atuo, Fidelis Akunke; O'Connell, Timothy John
2017-07-01
The likelihood of encountering a predator influences prey behavior and spatial distribution such that non-consumptive effects can outweigh the influence of direct predation. Prey species are thought to filter information on perceived predator encounter rates in physical landscapes into a landscape of fear defined by spatially explicit heterogeneity in predation risk. The presence of multiple predators using different hunting strategies further complicates navigation through a landscape of fear and potentially exposes prey to greater risk of predation. The juxtaposition of land cover types likely influences overlap in occurrence of different predators, suggesting that attributes of a landscape of fear result from complexity in the physical landscape. Woody encroachment in grasslands furnishes an example of increasing complexity with the potential to influence predator distributions. We examined the role of vegetation structure on the distribution of two avian predators, Red-tailed Hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyaneus ), and the vulnerability of a frequent prey species of those predators, Northern Bobwhite ( Colinus virginianus ). We mapped occurrences of the raptors and kill locations of Northern Bobwhite to examine spatial vulnerability patterns in relation to landscape complexity. We use an offset model to examine spatially explicit habitat use patterns of these predators in the Southern Great Plains of the United States, and monitored vulnerability patterns of their prey species based on kill locations collected during radio telemetry monitoring. Both predator density and predation-specific mortality of Northern Bobwhite increased with vegetation complexity generated by fine-scale interspersion of grassland and woodland. Predation pressure was lower in more homogeneous landscapes where overlap of the two predators was less frequent. Predator overlap created areas of high risk for Northern Bobwhite amounting to 32% of the land area where landscape complexity was high and 7% where complexity was lower. Our study emphasizes the need to evaluate the role of landscape structure on predation dynamics and reveals another threat from woody encroachment in grasslands.
NASA Astrophysics Data System (ADS)
Saavedra, Francisco; Hensen, Isabell; Apaza Quevedo, Amira; Neuschulz, Eike Lena; Schleuning, Matthias
2017-11-01
Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.
Background/Question/Methods Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in some depth. Much less is known, however, about seasonal patterns and zone and ...
Background/Question/Methods Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in some depth. Much less is known, however, about seasonal patterns and controls ...
Topographic controls on soil nutrient variations in a Silvopasture system
USDA-ARS?s Scientific Manuscript database
Topography plays a crucial role in the spatial distribution of nutrients in soils because of its influence on the flow and (re)distribution of water and energy in a landscape. Information on the spatial pattern of soil nutrient distribution would benefit management decisions to maximize crop yield a...
The development of effective measures to stabilize atmospheric 22 CO2 concentration and mitigate negative impacts of climate change requires accurate quantification of the spatial variation and magnitude of the terrestrial carbon (C) flux. However, the spatial pattern and strengt...
Estuarine fish are a highly valued resources that are affected by several factors, including climate, trophic interactions, pollution, and fishing pressure. Here, we examine the spatial and temporal patterns in estuarine fish assemblage in Narragansett Bay, an estuary located in...
Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in depth. Much less is known, however, about seasonal patterns and controls of coastal DIN delivery across larg...
ERIC Educational Resources Information Center
Hutsinger, Carol S.; Jose, Paul E.
1995-01-01
Examined sociocultural influences on mathematics achievement. First generation Chinese American and Caucasian American mother-father-daughter triads were audiotaped as the fifth- and sixth-grade girls solved a spatial puzzle. Chinese American triads were quieter, more respectful, more serious, and more orderly, whereas Caucasian American triads…
Influence of Scale on the Management of Wildlife in California Oak Woodlands
William M. Block; Michael L. Morrison
1991-01-01
Distributions, abundances, and patterns of resource use of amphibians, reptiles, birds, and small mammals varied spatially and temporally in California oak woodlands. Spatial variations occurred within stands, between stands of a similar type (e.g., canyon live oak [Quercus chrysolepis], blue oak [Q. douglasii], or valley oak [
Temporal and nonlinear dispersal patterns of Ludwigia hexapetala in a regulated river
USDA-ARS?s Scientific Manuscript database
Rivers are vulnerable to biological invasion due to hydrologic connectivity, which facilitates post-entry movement of aquatic plant propagules by water currents. Ecological and watershed factors may influence spatial and temporal dispersal patterns. Field-based data on dispersal could improve risk...
Lawson, David A; Chittka, Lars; Whitney, Heather M; Rands, Sean A
2018-06-13
Flowers act as multisensory billboards to pollinators by using a range of sensory modalities such as visual patterns and scents. Different floral organs release differing compositions and quantities of the volatiles contributing to floral scent, suggesting that scent may be patterned within flowers. Early experiments suggested that pollinators can distinguish between the scents of differing floral regions, but little is known about how these potential scent patterns might influence pollinators. We show that bumblebees can learn different spatial patterns of the same scent, and that they are better at learning to distinguish between flowers when the scent pattern corresponds to a matching visual pattern. Surprisingly, once bees have learnt the spatial arrangement of a scent pattern, they subsequently prefer to visit novel unscented flowers that have an identical arrangement of visual marks, suggesting that multimodal floral signals may exploit the mechanisms by which learnt information is stored by the bee. © 2018 The Authors.
Breine, Bastiaan; Malcolm, Philippe; Segers, Veerle; Gerlo, Joeri; Derie, Rud; Pataky, Todd; Frederick, Edward C; De Clercq, Dirk
2017-12-01
In running, foot contact patterns (rear-, mid-, or forefoot contact) influence impact intensity and initial ankle and foot kinematics. The aim of the study was to compare impact intensity and its spatial distribution under the foot between different foot contact patterns. Forty-nine subjects ran at 3.2 m·s -1 over a level runway while ground reaction forces (GRF) and shoe-surface pressures were recorded and foot contact pattern was determined. A 4-zone footmask (forefoot, midfoot, medial and lateral rearfoot) assessed the spatial distribution of the vertical GRF under the foot. We calculated peak vertical instantaneous loading rate of the GRF (VILR) per foot zone as the impact intensity measure. Midfoot contact patterns were shown to have the lowest, and atypical rearfoot contact patterns the highest impact intensities, respectively. The greatest local impact intensity was mainly situated under the rear- and midfoot for the typical rearfoot contact patterns, under the midfoot for the atypical rearfoot contact patterns, and under the mid- and forefoot for the midfoot contact patterns. These findings indicate that different foot contact patterns could benefit from cushioning in different shoe zones.
Complex-ordered patterns in shaken convection.
Rogers, Jeffrey L; Pesch, Werner; Brausch, Oliver; Schatz, Michael F
2005-06-01
We report and analyze complex patterns observed in a combination of two standard pattern forming experiments. These exotic states are composed of two distinct spatial scales, each displaying a different temporal dependence. The system is a fluid layer experiencing forcing from both a vertical temperature difference and vertical time-periodic oscillations. Depending on the parameters these forcing mechanisms produce fluid motion with either a harmonic or a subharmonic temporal response. Over a parameter range where these mechanisms have comparable influence the spatial scales associated with both responses are found to coexist, resulting in complex, yet highly ordered patterns. Phase diagrams of this region are reported and criteria to define the patterns as quasiperiodic crystals or superlattices are presented. These complex patterns are found to satisfy four-mode (resonant tetrad) conditions. The qualitative difference between the present formation mechanism and the resonant triads ubiquitously used to explain complex-ordered patterns in other nonequilibrium systems is discussed. The only exception to quantitative agreement between our analysis based on Boussinesq equations and laboratory investigations is found to be the result of breaking spatial symmetry in a small parameter region near onset.
Lauren S. Urgenson; Charles B. Halpern; Paul D. Anderson
2013-01-01
Mortality of retained trees can compromise the ecological objectives of variable-retention harvest. We used a large-scale experiment replicated at six locations in western Washington and Oregon to examine the influences of retention level (40% vs. 15% of original basal area) and its spatial pattern (aggregated vs.dispersed) on the rate and form of tree mortality for 11...
Baker, Jannah; White, Nicole; Mengersen, Kerrie; Rolfe, Margaret; Morgan, Geoffrey G
2017-01-01
Three variant formulations of a spatiotemporal shared component model are proposed that allow examination of changes in shared underlying factors over time. Models are evaluated within the context of a case study examining hospitalisation rates for five chronic diseases for residents of a regional area in New South Wales: type II diabetes mellitus (DMII), chronic obstructive pulmonary disease (COPD), coronary arterial disease (CAD), hypertension (HT) and congestive heart failure (CHF) between 2001-2006. These represent ambulatory care sensitive (ACS) conditions, often used as a proxy for avoidable hospitalisations. Using a selected model, the effects of socio-economic status (SES) as a shared component are estimated and temporal patterns in the influence of the residual shared spatial component are examined. Choice of model depends upon the application. In the featured application, a model allowing for changing influence of the shared spatial component over time was found to have the best fit and was selected for further analyses. Hospitalisation rates were found to be increasing for COPD and DMII, decreasing for CHF and stable for CAD and HT. SES was substantively associated with hospitalisation rates, with differing degrees of influence for each disease. In general, most of the spatial variation in hospitalisation rates was explained by disease-specific spatial components, followed by the residual shared spatial component. Appropriate selection of a joint disease model allows for the examination of temporal patterns of disease outcomes and shared underlying spatial factors, and distinction between different shared spatial factors.
Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest
NASA Astrophysics Data System (ADS)
Dwomoh, F. K.; Wimberly, M. C.
2016-12-01
The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in response to intense human and climatic drivers.
Landscape characteristics influence pond occupancy by frogs after accounting for detectability
Mazerolle, M.J.; Desrochers, A.; Rochefort, L.
2005-01-01
Many investigators have hypothesized that landscape attributes such as the amount and proximity of habitat are important for amphibian spatial patterns. This has produced a number of studies focusing on the effects of landscape characteristics on amphibian patterns of occurrence in patches or ponds, most of which conclude that the landscape is important. We identified two concerns associated with these studies: one deals with their applicability to other landscape types, as most have been conducted in agricultural landscapes; the other highlights the need to account for the probability of detection. We tested the hypothesis that landscape characteristics influence spatial patterns of amphibian occurrence at ponds after accounting for the probability of detection in little-studied peatland landscapes undergoing peat mining. We also illustrated the costs of not accounting for the probability of detection by comparing our results to conventional logistic regression analyses. Results indicate that frog occurrence increased with the percent cover of ponds within 100, 250, and 1000 m, as well as the amount of forest cover within 1000 m. However, forest cover at 250 m had a negative influence on frog presence at ponds. Not accounting for the probability of detection resulted in underestimating the influence of most variables on frog occurrence, whereas a few were overestimated. Regardless, we show that conventional logistic regression can lead to different conclusions than analyses accounting for detectability. Our study is consistent with the hypothesis that landscape characteristics are important in determining the spatial patterns of frog occurrence at ponds. We strongly recommend estimating the probability of detection in field surveys, as this will increase the quality and conservation potential of models derived from such data. ?? 2005 by the Ecological Society of America.
Velázquez, Eduardo; Escudero, Adrián; de la Cruz, Marcelino
2018-01-01
We assessed the relative importance of dispersal limitation, environmental heterogeneity and their joint effects as determinants of the spatial patterns of 229 species in the moist tropical forest of Barro Colorado Island (Panama). We differentiated five types of species according to their dispersal syndrome; autochorous, anemochorous, and zoochorous species with small, medium-size and large fruits. We characterized the spatial patterns of each species and we checked whether they were best fitted by Inhomogeneous Poisson (IPP), Homogeneous Poisson cluster (HPCP) and Inhomogeneous Poisson cluster processes (IPCP) by means of the Akaike Information Criterion. We also assessed the influence of species’ dispersal mode in the average cluster size. We found that 63% of the species were best fitted by IPCP regardless of their dispersal syndrome, although anemochorous species were best described by HPCP. Our results indicate that spatial patterns of tree species in this forest cannot be explained only by dispersal limitation, but by the joint effects of dispersal limitation and environmental heterogeneity. The absence of relationships between dispersal mode and degree of clustering suggests that several processes modify the original spatial pattern generated by seed dispersal. These findings emphasize the importance of fitting point process models with a different biological meaning when studying the main determinants of spatial structure in plant communities. PMID:29451871
Peter M. Brown; Merrill R. Kaufmann; Wayne D. Shepperd
1999-01-01
Parameters of fire regimes, including fire frequency, spatial extent of burned areas, fire severity, and season of fire occurrence, influence vegetation patterns over multiple scales. In this study, centuries-long patterns of fire events in a montane ponderosa pine - Douglas-fir forest landscape surrounding Cheesman Lake in central Colorado were reconstructed from fire...
Malcolm North; Jiquan Chen; Brian Oakley; Bo Song; Mark Rudnicki; Andrew Gray; Jim Innes
2004-01-01
With fire suppression, many western forests are expected to have fewer gaps and higher stem density of shade-tolerant species as light competition becomes a more significant influence on stand pattern and composition. We compared species composition, structure, spatial pattern, and environmental factors such as light and soil moisture between two old-growth forests:...
NASA Astrophysics Data System (ADS)
Rasam, A. R. A.; Ghazali, R.; Noor, A. M. M.; Mohd, W. M. N. W.; Hamid, J. R. A.; Bazlan, M. J.; Ahmad, N.
2014-02-01
Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia.
E. Garcia; C.L. Tague; J. Choate
2013-01-01
Most spatially explicit hydrologic models require estimates of air temperature patterns. For these models, empirical relationships between elevation and air temperature are frequently used to upscale point measurements or downscale regional and global climate model estimates of air temperature. Mountainous environments are particularly sensitive to air temperature...
Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index
Taehee Hwang; Conghe Song; James Vose; Lawrence Band
2011-01-01
Forest canopy phenology is an important constraint on annual water and carbon budgets, and responds to regional interannual climate variation. In steep terrain, there are complex spatial variations in phenology due to topographic influences on microclimate, community composition, and available soil moisture. In this study, we investigate spatial patterns of phenology...
The Spatial Influence of Apartheid on the South African City
ERIC Educational Resources Information Center
Schoeman, Thea
2018-01-01
Maps and satellite images can be used effectively to identify and compare settlement patterns. Spatial cognition and interpretation are important to further map literacy (Larangeira and Van der Merwe 2016). Although Apartheid ended in 1994 in South Africa, the legacy of this "separate development" system is still very noticeable in South…
An investigation on thermal patterns in Iran based on spatial autocorrelation
NASA Astrophysics Data System (ADS)
Fallah Ghalhari, Gholamabbas; Dadashi Roudbari, Abbasali
2018-02-01
The present study aimed at investigating temporal-spatial patterns and monthly patterns of temperature in Iran using new spatial statistical methods such as cluster and outlier analysis, and hotspot analysis. To do so, climatic parameters, monthly average temperature of 122 synoptic stations, were assessed. Statistical analysis showed that January with 120.75% had the most fluctuation among the studied months. Global Moran's Index revealed that yearly changes of temperature in Iran followed a strong spatially clustered pattern. Findings showed that the biggest thermal cluster pattern in Iran, 0.975388, occurred in May. Cluster and outlier analyses showed that thermal homogeneity in Iran decreases in cold months, while it increases in warm months. This is due to the radiation angle and synoptic systems which strongly influence thermal order in Iran. The elevations, however, have the most notable part proved by Geographically weighted regression model. Iran's thermal analysis through hotspot showed that hot thermal patterns (very hot, hot, and semi-hot) were dominant in the South, covering an area of 33.5% (about 552,145.3 km2). Regions such as mountain foot and low lands lack any significant spatial autocorrelation, 25.2% covering about 415,345.1 km2. The last is the cold thermal area (very cold, cold, and semi-cold) with about 25.2% covering about 552,145.3 km2 of the whole area of Iran.
NASA Astrophysics Data System (ADS)
Yang, S. W.; Ma, J. J.; Wang, J. M.
2018-04-01
As representative vulnerable regions of the city, dense distribution areas of temporary color steel building are a major target for control of fire risks, illegal buildings, environmental supervision, urbanization quality and enhancement for city's image. In the domestic and foreign literature, the related research mainly focuses on fire risks and violation monitoring. However, due to temporary color steel building's special characteristics, the corresponding research about temporal and spatial distribution, and influence on urban spatial form etc. has not been reported. Therefore, firstly, the paper research aim plans to extract information of large-scale color steel building from high-resolution images. Secondly, the color steel plate buildings were classified, and the spatial and temporal distribution and aggregation characteristics of small (temporary buildings) and large (factory building, warehouse, etc.) buildings were studied respectively. Thirdly, the coupling relationship between the spatial distribution of color steel plate and the spatial pattern of urban space was analysed. The results show that there is a good coupling relationship between the color steel plate building and the urban spatial form. Different types of color steel plate building represent the pattern of regional differentiation of urban space and the phased pattern of urban development.
Shui, Wei; DU, Yong; Chen, Yi Ping; Jian, Xiao Mei; Fan, Bing Xiong
2017-04-18
Anxi County, specializing in tea cultivation, was taken as a case in this research. Pearson correlation analysis, ordinary least squares model (OLS) and geographically weighted regression model (GWR) were used to select four primary influence factors of specialization in tea cultivation (i.e., the average elevation, net income per capita, proportion of agricultural population, and the distance from roads) by analyzing the specialization degree of each town of Anxi County. Meanwhile, the spatial patterns of specialization in tea cultivation of Anxi County were evaluated. The results indicated that specialization in tea cultivation of Anxi County showed an obvious spatial auto-correlation, and a spatial pattern with "low-middle-high" circle structure, which was similar to Von Thünen's circle structure model, appeared from the county town to its surrounding region. Meanwhile, GWR (0.624) had a better fitting degree than OLS (0.595), and GWR could reasonably expound the spatial data. Contrary to the agricultural location theory of Von Thünen's model, which indicated that distance from market was a determination factor, the specialization degree of tea cultivation in Anxi was mainly decided by natural conditions of mountain area, instead of the social factors. Specialization degree of tea cultivation was positively correlated with the average elevation, net income per capita and the proportion of agricultural population, while a negative correlation was found between the distance from roads and specialization degree of tea cultivation. Coefficients of regression between the specialization degree of tea cultivation and two factors (i.e., the average elevation and net income per capita) showed a spatial pattern of higher level in the north direction and lower level in the south direction. On the contrary, the regression coefficients for the proportion of agricultural population increased from south to north of Anxi County. Furthermore, regression coefficient for the distance from roads showed a spatial pattern of higher level in the northeast direction and lower level in the southwest direction of Anxi County.
López-Bao, José V.; González-Varo, Juan P.
2011-01-01
Background Knowledge about how frugivory and seed deposition are spatially distributed is valuable to understand the role of dispersers on the structure and dynamics of plant populations. This may be particularly important within anthropogenic areas, where either the patchy distribution of wild plants or the presence of cultivated fleshy-fruits may influence plant-disperser interactions. Methodology/Principal Findings We investigated frugivory and spatial patterns of seed deposition by carnivorous mammals in anthropogenic landscapes considering two spatial scales: ‘landscape’ (∼10 km2) and ‘habitat type’ (∼1–2 km2). We sampled carnivore faeces and plant abundance at three contrasting habitats (chestnut woods, mosaics and scrublands), each replicated within three different landscapes. Sixty-five percent of faeces collected (n = 1077) contained seeds, among which wild and cultivated seeds appeared in similar proportions (58% and 53%) despite that cultivated fruiting plants were much less abundant. Seed deposition was spatially structured among both spatial scales being different between fruit types. Whereas the most important source of spatial variation in deposition of wild seeds was the landscape scale, it was the habitat scale for cultivated seeds. At the habitat scale, seeds of wild species were mostly deposited within mosaics while seeds of cultivated species were within chestnut woods and scrublands. Spatial concordance between seed deposition and plant abundance was found only for wild species. Conclusions/Significance Spatial patterns of seed deposition by carnivores differed between fruit types and seemed to be modulated by the fleshy-fruited plant assemblages and the behaviour of dispersers. Our results suggest that a strong preference for cultivated fruits by carnivores may influence their spatial foraging behaviour and lower their dispersal services to wild species. However, the high amount of seeds removed within and between habitats suggests that carnivores must play an important role – often overlooked – as ‘restorers’ and ‘habitat shapers’ in anthropogenic areas. PMID:21297861
The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation
Thompson, David W. J.; van den Broeke, Michiel R.
2017-01-01
Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. PMID:29398735
Kim, Jun-Hyun; Lee, Chanam; Olvara, Norma E; Ellis, Christopher D
2014-11-01
Childhood obesity and its comorbidities have become major public health challenges in the US. While previous studies have investigated the roles of land uses and transportation infrastructure on obesity, limited research has examined the influence of landscape spatial patterns. The purpose of this study was to examine the association between landscape spatial patterns and obesity in Hispanic children. Participants included 61 fourth- and fifth-grade Hispanic children from inner-city neighborhoods in Houston, TX. BMI z-scores were computed based on objectively-measured height and weight from each child. Parental and child surveys provided sociodemographic and physical activity data. Landscape indices were used to measure the quality of landscape spatial patterns surrounding each child's home by utilizing Geographic Information Systems and remote sensing analyses using aerial photo images. After controlling for sociodemographic factors, in the half-mile airline buffer, more tree patches and well-connected landscape patterns were negatively correlated with their BMI z-scores. Furthermore, larger sizes of urban forests and tree patches were negatively associated with children's BMI z-scores in the half-mile network buffer assessment. This study suggests that urban greenery requires further attention in studies aimed at identifying environmental features that reduce childhood obesity.
Ennen, Joshua R.; Agha, Mickey; Matamoros, Wilfredo A.; Hazzard, Sarah C.; Lovich, Jeffrey E.
2016-01-01
Our study investigates how factors, such as latitude, productivity, and several environmental variables, influence contemporary patterns of the species richness in North American turtles. In particular, we test several hypotheses explaining broad-scale species richness patterns on several species richness data sets: (i) total turtles, (ii) freshwater turtles only, (iii) aquatic turtles, (iv) terrestrial turtles only, (v) Emydidae, and (vi) Kinosternidae. In addition to spatial data, we used a combination of 25 abiotic variables in spatial regression models to predict species richness patterns. Our results provide support for multiple hypotheses related to broad-scale patterns of species richness, and in particular, hypotheses related to climate, productivity, water availability, topography, and latitude. In general, species richness patterns were positively associated with temperature, precipitation, diversity of streams, coefficient of variation of elevation, and net primary productivity. We also found that North America turtles follow the general latitudinal diversity gradient pattern (i.e., increasing species richness towards equator) by exhibiting a negative association with latitude. Because of the incongruent results among our six data sets, our study highlights the importance of considering phylogenetic constraints and guilds when interpreting species richness patterns, especially for taxonomic groups that occupy a myriad of habitats.
NASA Astrophysics Data System (ADS)
Rice, Joshua S.; Emanuel, Ryan E.; Vose, James M.; Nelson, Stacy A. C.
2015-08-01
Changes in streamflow are an important area of ongoing research in the hydrologic sciences. To better understand spatial patterns in past changes in streamflow, we examined relationships between watershed-scale spatial characteristics and trends in streamflow. Trends in streamflow were identified by analyzing mean daily flow observations between 1940 and 2009 from 967 U.S. Geological Survey stream gages. Results indicated that streamflow across the continental U.S., as a whole, increased while becoming less extreme between 1940 and 2009. However, substantial departures from the continental U.S. (CONUS) scale pattern occurred at the regional scale, including increased annual maxima, decreased annual minima, overall drying trends, and changes in streamflow variability. A subset of watersheds belonging to a reference data set exhibited significantly smaller trend magnitudes than those observed in nonreference watersheds. Boosted regression tree models were applied to examine the influence of watershed characteristics on streamflow trend magnitudes at both the CONUS and regional scale. Geographic location was found to be of particular importance at the CONUS scale while local variability in hydroclimate and topography tended to have a strong influence on regional-scale patterns in streamflow trends. This methodology facilitates detailed, data-driven analyses of how the characteristics of individual watersheds interact with large-scale hydroclimate forces to influence how changes in streamflow manifest.
Yang, Xiao-Ying; Luo, Xing-Zhang; Zheng, Zheng; Fang, Shu-Bo
2012-09-01
Two high-density snap-shot samplings were conducted along the Yincungang canal, one important tributary of the Lake Tai, in April (low flow period) and June (high flow period) of 2010. Geostatistical analysis based on the river network distance was used to analyze the spatial and temporal patterns of the pollutant concentrations along the canal with an emphasis on chemical oxygen demand (COD) and total nitrogen (TN). Study results have indicated: (1) COD and TN concentrations display distinctly different spatial and temporal patterns between the low and high flow periods. COD concentration in June is lower than that in April, while TN concentration has the contrary trend. (2) COD load is relatively constant during the period between the two monitoring periods. The spatial correlation structure of COD is exponential for both April and June, and the change of COD concentration is mainly influenced by hydrological conditions. (3) Nitrogen load from agriculture increased significantly during the period between the two monitoring periods. Large amount of chaotic fertilizing by individual farmers has led to the loss of the spatial correlation among the observed TN concentrations. Hence, changes of TN concentration in June are under the dual influence of agricultural fertilizing and hydrological conditions. In the view of the complex hydrological conditions and serious water pollution in the Lake Taihu region, geostatistical analysis is potentially a useful tool for studying the characteristics of pollutant distribution and making predictions in the region.
Estimation of Fractional Plant Lifeform Cover Using Landsat and Airborne LiDAR/hyperspectral Data
NASA Astrophysics Data System (ADS)
Parra, A. S.; Xu, Q.; Dilts, T.; Weisberg, P.; Greenberg, J. A.
2017-12-01
Land-cover change has generally been understood as the result of local, landscape or regional-scale processes with most studies focusing on case-study landscapes or smaller regions. However, as we observe similar types of land-cover change occurring across different biomes worldwide, it becomes clear that global-scale processes such as climate change and CO2 fertilization, in interaction with local influences, are underlying drivers in land-cover change patterns. Prior studies on global land-cover change may not have had a suitable spatial, temporal and thematic resolution for allowing the identification of such patterns. Furthermore, the lack of globally consistent spatial data products also constitutes a limiting factor in evaluating both proximate and ultimate causes of land-cover change. In this study, we derived a global model for broadleaf tree, needleleaf tree, shrub, herbaceous, and "other" fractional cover using Landsat imagery. Combined LiDAR/hyperspectral data sets were used for calibration and validation of the Landsat-derived products. Spatially explicit uncertainties were also created as part of the data products. Our results highlight the potential for large-scale studies that model local and global influences on land-cover transition types and rates at fine thematic, spatial, and temporal resolutions. These spatial data products are relevant for identifying patterns in land-cover change due to underlying global-scale processes and can provide valuable insights into climatic and land-use factors determining vegetation distributions.
NASA Astrophysics Data System (ADS)
Pepin, N. C.
2009-12-01
Predictions of current spatial patterns of climate are difficult in areas of complex relief in all parts of the world, because of the interweaving influences of topography, elevation and aspect. These influences vary temporally as a result of the seasonal and diurnal cycles in radiation balance. In periods of negative energy balance, surface decoupling can occur as cold air drainage develops low-level temperature inversions, and the surface temperature regime beneath the inversion becomes divorced from free atmospheric forcing. Both the spatial scale and temporal persistence of this decoupling vary according to latitude, and although the physical processes that influence inversion formation are similar in polar areas and mid-latitude mountains, the contrasting seasonal and diurnal forcings make the end results very different. Examples are contrasted from detailed field temperature measurements (~50 sites per field area) taken over several years in areas of complex relief in the eastern Pyrenees (~42.5 deg N), the Oregon Cascades (also ~42.5 deg N) and Finnish Lapland (70 deg N and above the Arctic circle). In the former two locations decoupling is mostly diurnally driven, and small-scale topography is important in mediating the effects. Summer decoupling is brief and spatially limited, whereas winter decoupling can be more spatially extensive. There are strong relationships between synoptic conditions, as measured by objective flow indices at the 700 mb level (derived from NCEP/NCAR reanalysis fields) and the patterns of decoupling, which allow us to assess the effects of past and potential future circulation change on spatial patterns of future climate warming. In Finnish Lapland the decoupling regime most clearly approaches the mid-latitude pattern around the equinoxes when there are clear day and night periods. In winter and summer however (the polar night and polar day) with the muting of the diurnal cycle, processes are more poorly understood. Winter cold pools can develop and strengthen over days until eventually they extend over and above the topography. Strangely, there are also indistinct relationships with circulation indices at this time. While build-up can take days, destruction is often immediate and is dynamically forced. In summer, localized decoupling occurs on clear nights even though the sun is above the horizon, but micro-scale patterns are different than in mid-latitudes. The above comparison shows that polar areas are very different in their micro-temperature regimes than mid-latitude mountains and in their relationships of these regimes with circulation. Thus we expect detailed spatial patterns of climate change may be very different in the two regions.
Wildfire patterns and landscape changes in Mediterranean oak woodlands.
Guiomar, N; Godinho, S; Fernandes, P M; Machado, R; Neves, N; Fernandes, J P
2015-12-01
Fire is infrequent in the oak woodlands of southern Portugal (montado) but large and severe fires affected these agro-forestry systems in 2003-2005. We hypothesised transition from forest to shrubland as a fire-driven process and investigated the links between fire incidence and montado change to other land cover types, particularly those related with the presence of pioneer communities (generically designed in this context as "transitions to early-successional communities"). We present a landscape-scale framework for assessing the probability of transition from montado to pioneer communities, considering three sets of explanatory variables: montado patterns in 1990 and prior changes from montado to early-successional communities (occurred between 1960 and 1990), fire patterns, and spatial factors. These three sets of factors captured 78.2% of the observed variability in the transitions from montado to pioneer vegetation. The contributions of fire patterns and spatial factors were high, respectively 60.6% and 43.4%, the influence of montado patterns and former changes in montado being lower (34.4%). The highest amount of explained variation in the occurrence of transitions from montado to early-successional communities was related to the pure effect of fire patterns (19.9%). Low spatial connectedness in montado landscape can increase vulnerability to changes, namely to pioneer vegetation, but the observed changes were mostly explained by fire characteristics and spatial factors. Among all metrics used to characterize fire patterns and extent, effective mesh size provided the best modelling results. Transitions from montado to pioneer communities are more likely in the presence of high values of the effective mesh size of total burned area. This cross-boundary metric is an indicator of the influence of large fires in the distribution of the identified transitions and, therefore, we conclude that the occurrence of large fires in montado increases its probability of transition to shrubland. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Y.
2017-12-01
Context Land surface temperatures (LSTs) spatio-temporal distribution pattern of urban forests are influenced by many ecological factors; the identification of interaction between these factors can improve simulations and predictions of spatial patterns of urban cold islands. This quantitative research requires an integrated method that combines multiple sources data with spatial statistical analysis. Objectives The purpose of this study was to clarify urban forest LST influence interaction between anthropogenic activities and multiple ecological factors using cluster analysis of hot and cold spots and Geogdetector model. We introduced the hypothesis that anthropogenic activity interacts with certain ecological factors, and their combination influences urban forests LST. We also assumed that spatio-temporal distributions of urban forest LST should be similar to those of ecological factors and can be represented quantitatively. Methods We used Jinjiang as a representative city in China as a case study. Population density was employed to represent anthropogenic activity. We built up a multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) on a unified urban scale to support urban forest LST influence interaction research. Through a combination of spatial statistical analysis results, multi-source spatial data, and Geogdetector model, the interaction mechanisms of urban forest LST were revealed. Results Although different ecological factors have different influences on forest LST, in two periods with different hot spots and cold spots, the patch area and dominant tree species were the main factors contributing to LST clustering in urban forests. The interaction between anthropogenic activity and multiple ecological factors increased LST in urban forest stands, linearly and nonlinearly. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. Conclusions In conclusion, a combination of spatial statistics and GeogDetector models should be effective for quantitatively evaluating interactive relationships among ecological factors, anthropogenic activity and LST.
Salvati, Luca; Zambon, Ilaria; Chelli, Francesco Maria; Serra, Pere
2018-06-01
Land-use changes and urban sprawl have transformed European cities, with a direct impact on both metropolitan structures and socioeconomic functions. However, these processes tend to be relatively different across countries, being influenced by place-specific factors associated to socioeconomic, historical, political and cultural factors that influence decisions on the use of land. Considering 155 metropolitan areas in 6 European macro-regions, the present study investigates spatial patterns of land consumption profiling cities according to a large set of territorial variables, with the final objective to identify relevant socioeconomic dimensions characteristic of recent processes of urban growth. Investigating the socioeconomic background underlying land-use changes in metropolitan regions allows identification of place-specific factors improving the design of effective strategies containing land consumption in different European urban typologies. An exhaustive analysis of land-use changes at regional and local spatial scales contributes to find alternative policies for land-use efficiency and long-term environmental sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.
Lin, Guojun; Stralberg, Diana; Gong, Guiquan; Huang, Zhongliang; Ye, Wanhui; Wu, Linfang
2013-01-01
Quantifying the relative contributions of environmental conditions and spatial factors to species distribution can help improve our understanding of the processes that drive diversity patterns. In this study, based on tree inventory, topography and soil data from a 20-ha stem-mapped permanent forest plot in Guangdong Province, China, we evaluated the influence of different ecological processes at different spatial scales using canonical redundancy analysis (RDA) at the community level and multiple linear regression at the species level. At the community level, the proportion of explained variation in species distribution increased with grid-cell sizes, primarily due to a monotonic increase in the explanatory power of environmental variables. At the species level, neither environmental nor spatial factors were important determinants of overstory species' distributions at small cell sizes. However, purely spatial variables explained most of the variation in the distributions of understory species at fine and intermediate cell sizes. Midstory species showed patterns that were intermediate between those of overstory and understory species. At the 20-m cell size, the influence of spatial factors was stronger for more dispersal-limited species, suggesting that much of the spatial structuring in this community can be explained by dispersal limitation. Comparing environmental factors, soil variables had higher explanatory power than did topography for species distribution. However, both topographic and edaphic variables were highly spatial structured. Our results suggested that dispersal limitation has an important influence on fine-intermediate scale (from several to tens of meters) species distribution, while environmental variability facilitates species distribution at intermediate (from ten to tens of meters) and broad (from tens to hundreds of meters) scales.
Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis.
Westerholt, Rene; Steiger, Enrico; Resch, Bernd; Zipf, Alexander
2016-01-01
Twitter and related social media feeds have become valuable data sources to many fields of research. Numerous researchers have thereby used social media posts for spatial analysis, since many of them contain explicit geographic locations. However, despite its widespread use within applied research, a thorough understanding of the underlying spatial characteristics of these data is still lacking. In this paper, we investigate how topological outliers influence the outcomes of spatial analyses of social media data. These outliers appear when different users contribute heterogeneous information about different phenomena simultaneously from similar locations. As a consequence, various messages representing different spatial phenomena are captured closely to each other, and are at risk to be falsely related in a spatial analysis. Our results reveal indications for corresponding spurious effects when analyzing Twitter data. Further, we show how the outliers distort the range of outcomes of spatial analysis methods. This has significant influence on the power of spatial inferential techniques, and, more generally, on the validity and interpretability of spatial analysis results. We further investigate how the issues caused by topological outliers are composed in detail. We unveil that multiple disturbing effects are acting simultaneously and that these are related to the geographic scales of the involved overlapping patterns. Our results show that at some scale configurations, the disturbances added through overlap are more severe than at others. Further, their behavior turns into a volatile and almost chaotic fluctuation when the scales of the involved patterns become too different. Overall, our results highlight the critical importance of thoroughly considering the specific characteristics of social media data when analyzing them spatially.
A Spatial Index for Identifying Opportunity Zones for Woody Cellulosic Conversion Facilities
Xia Huang; James H. Perdue; Timothy M. Young
2012-01-01
A challenge in the development of renewable energy is the ability to spatially assess the risk of feedstock supply to conversion facilities. Policy makers and investors need improved methods to identify the interactions associated with landscape features, socioeconomic conditions, and ownership patterns, and the influence these variables have on the geographic location...
Assessing Habitat Suitability at Multiple Scales: A Landscape-Level Approach
Kurt H. Riitters; R.V. O' Neill; K.B. Jones
1997-01-01
The distribution and abundance of many plants and animals are influenced by the spatial arrangement of suitable habitats across landscapes. We derived habitat maps from a digital land cover map of the ~178,000 km2 Chesapeake Bay Watershed by using a spatial filtering algorithm. The regional amounts and patterns of habitats were different for...
Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States
Liu, Zhihua; Wimberly, Michael C.
2015-01-01
An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959
Landscape ecology: what is the state of science?
Monica G. Turner
2005-01-01
Landscape ecology focuses on the reciprocal interactions between spatial pattern and ecological processes, and it is well integrated with ecology. The field has grown rapidly over the past 15 years. The persistent influence of land-use history and natural disturbance on contemporary ecosystems has become apparent Development of pattern metrics has largely stabilized,...
Nelson, Sarah J.; Webster, Katherine E.; Loftin, Cynthia S.; Weathers, Kathleen C.
2013-01-01
Major ion and mercury (Hg) inputs to terrestrial ecosystems include both wet and dry deposition (total deposition). Estimating total deposition to sensitive receptor sites is hampered by limited information regarding its spatial heterogeneity and seasonality. We used measurements of throughfall flux, which includes atmospheric inputs to forests and the net effects of canopy leaching or uptake, for ten major ions and Hg collected during 35 time periods in 1999–2005 at over 70 sites within Acadia National Park, Maine to (1) quantify coherence in temporal dynamics of seasonal throughfall deposition and (2) examine controls on these patterns at multiple scales. We quantified temporal coherence as the correlation between all possible site pairs for each solute on a seasonal basis. In the summer growing season and autumn, coherence among pairs of sites with similar vegetation was stronger than for site-pairs that differed in vegetation suggesting that interaction with the canopy and leaching of solutes differed in coniferous, deciduous, mixed, and shrub or open canopy sites. The spatial pattern in throughfall hydrologic inputs across Acadia National Park was more variable during the winter snow season, suggesting that snow re-distribution affects net hydrologic input, which consequently affects chemical flux. Sea-salt corrected calcium concentrations identified a shift in air mass sources from maritime in winter to the continental industrial corridor in summer. Our results suggest that the spatial pattern of throughfall hydrologic flux, dominant seasonal air mass source, and relationship with vegetation in winter differ from the spatial pattern of throughfall flux in these solutes in summer and autumn. The coherence approach applied here made clear the strong influence of spatial heterogeneity in throughfall hydrologic inputs and a maritime air mass source on winter patterns of throughfall flux. By contrast, vegetation type was the most important influence on throughfall chemical flux in summer and autumn.
Processing and statistical analysis of soil-root images
NASA Astrophysics Data System (ADS)
Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov
2016-04-01
Importance of the hotspots such as rhizosphere, the small soil volume that surrounds and is influenced by plant roots, calls for spatially explicit methods to visualize distribution of microbial activities in this active site (Kuzyakov and Blagodatskaya, 2015). Zymography technique has previously been adapted to visualize the spatial dynamics of enzyme activities in rhizosphere (Spohn and Kuzyakov, 2014). Following further developing of soil zymography -to obtain a higher resolution of enzyme activities - we aimed to 1) quantify the images, 2) determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). To this end, we incubated soil-filled rhizoboxes with maize Zea mays L. and without maize (control box) for two weeks. In situ soil zymography was applied to visualize enzymatic activity of β-glucosidase and phosphatase at soil-root interface. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. Furthermore, we applied "spatial point pattern analysis" to determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). Our results demonstrated that distribution of hotspots at rhizosphere is clumped (aggregated) compare to control box without plant which showed regular (dispersed) pattern. These patterns were similar in all three replicates and for both enzymes. We conclude that improved zymography is promising in situ technique to identify, analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere. Moreover, such different patterns should be considered in assessments and modeling of rhizosphere extension and the corresponding effects on soil properties and functions. Key words: rhizosphere, spatial point pattern, enzyme activity, zymography, maize.
Modelling spatial patterns of urban growth in Africa
Linard, Catherine; Tatem, Andrew J.; Gilbert, Marius
2013-01-01
The population of Africa is predicted to double over the next 40 years, driving exceptionally high urban expansion rates that will induce significant socio-economic, environmental and health changes. In order to prepare for these changes, it is important to better understand urban growth dynamics in Africa and better predict the spatial pattern of rural-urban conversions. Previous work on urban expansion has been carried out at the city level or at the global level with a relatively coarse 5–10 km resolution. The main objective of the present paper was to develop a modelling approach at an intermediate scale in order to identify factors that influence spatial patterns of urban expansion in Africa. Boosted Regression Tree models were developed to predict the spatial pattern of rural-urban conversions in every large African city. Urban change data between circa 1990 and circa 2000 available for 20 large cities across Africa were used as training data. Results showed that the urban land in a 1 km neighbourhood and the accessibility to the city centre were the most influential variables. Results obtained were generally more accurate than results obtained using a distance-based urban expansion model and showed that the spatial pattern of small, compact and fast growing cities were easier to simulate than cities with lower population densities and a lower growth rate. The simulation method developed here will allow the production of spatially detailed urban expansion forecasts for 2020 and 2025 for Africa, data that are increasingly required by global change modellers. PMID:25152552
Wang, Xiao-Li; Chang, Yu; Chen, Hong-Wei; Hu, Yuan-Man; Jiao, Lin-Lin; Feng, Yu-Ting; Wu, Wen; Wu, Hai-Feng
2014-04-01
Based on field inventory data and vegetation index EVI (enhanced vegetation index), the spatial pattern of the forest biomass in the Great Xing'an Mountains, Heilongjiang Province was quantitatively analyzed. Using the spatial analysis and statistics tools in ArcGIS software, the impacts of climatic zone, elevation, slope, aspect and vegetation type on the spatial pattern of forest biomass were explored. The results showed that the forest biomass in the Great Xing'an Mountains was 350 Tg and spatially aggregated with great increasing potentials. Forest biomass density in the cold temperate humid zone (64.02 t x hm(-2)) was higher than that in the temperate humid zone (60.26 t x hm(-2)). The biomass density of each vegetation type was in the order of mixed coniferous forest (65.13 t x hm(-2)) > spruce-fir forest (63.92 t x hm(-2)) > Pinus pumila-Larix gmelinii forest (63.79 t x hm(-2)) > Pinus sylvestris var. mongolica forest (61.97 t x hm(-2)) > Larix gmelinii forest (61.40 t x hm(-2)) > deciduous broadleaf forest (58.96 t x hm(-2)). With the increasing elevation and slope, the forest biomass density first decreased and then increased. The forest biomass density in the shady slopes was greater than that in the sunny slopes. The spatial pattern of forest biomass in the Great Xing' an Mountains exhibited a heterogeneous pattern due to the variation of climatic zone, vegetation type and topographical factor. This spatial heterogeneity needs to be accounted when evaluating forest biomass at regional scales.
Neves, Leonardo M; Teixeira-Neves, Tatiana P; Pereira-Filho, Guilherme H; Araújo, Francisco G
2016-01-01
The conservation and management of site-attached assemblages of coastal reefs are particularly challenging because of the tremendous environmental variation that exists at small spatial scales. In this sense, understanding the primary sources of variation in spatial patterns of the biota is fundamental for designing effective conservation policies. We investigated spatial variation in fish assemblages around the windward and leeward sides of coastal islands situated across a gradient of riverine influence (13 km in length). Specifically, relationships between rocky reef fish assemblages and benthic, topographic and physical predictors were assessed. We hypothesized that river induced disturbances may overcome local habitat features in modeling spatial patterns of fish distribution. Fish assemblages varied primarily due to the strong directional gradient of riverine influence (22.6% of the estimated components of variation), followed by topographic complexity (15%), wave exposure (9.9%), and benthic cover (8%). The trophic structure of fish assemblages changed from having a high abundance of invertebrate feeders in macroalgae-dominated reefs close to river mouths to a high proportion of herbivores, planktivores and invertebrate feeder species in reefs with large boulders covered by epilithic algal matrices, as the distance from rivers increased. This gradient led to an increase of 4.5-fold in fish richness and fish trophic group diversity, 11-fold in fish biomass and 10-fold in fish abundance. Our results have implications for the conservation and monitoring of assemblages patchily distributed at small spatial scales. The major role of distance from river influences on fish assemblages rather than benthic cover and topographic complexity suggest that managing land-based activities should be a conservation priority toward reef restoration.
Neves, Leonardo M.; Teixeira-Neves, Tatiana P.; Pereira-Filho, Guilherme H.; Araújo, Francisco G.
2016-01-01
The conservation and management of site-attached assemblages of coastal reefs are particularly challenging because of the tremendous environmental variation that exists at small spatial scales. In this sense, understanding the primary sources of variation in spatial patterns of the biota is fundamental for designing effective conservation policies. We investigated spatial variation in fish assemblages around the windward and leeward sides of coastal islands situated across a gradient of riverine influence (13 km in length). Specifically, relationships between rocky reef fish assemblages and benthic, topographic and physical predictors were assessed. We hypothesized that river induced disturbances may overcome local habitat features in modeling spatial patterns of fish distribution. Fish assemblages varied primarily due to the strong directional gradient of riverine influence (22.6% of the estimated components of variation), followed by topographic complexity (15%), wave exposure (9.9%), and benthic cover (8%). The trophic structure of fish assemblages changed from having a high abundance of invertebrate feeders in macroalgae-dominated reefs close to river mouths to a high proportion of herbivores, planktivores and invertebrate feeder species in reefs with large boulders covered by epilithic algal matrices, as the distance from rivers increased. This gradient led to an increase of 4.5-fold in fish richness and fish trophic group diversity, 11-fold in fish biomass and 10-fold in fish abundance. Our results have implications for the conservation and monitoring of assemblages patchily distributed at small spatial scales. The major role of distance from river influences on fish assemblages rather than benthic cover and topographic complexity suggest that managing land-based activities should be a conservation priority toward reef restoration. PMID:27907017
NASA Astrophysics Data System (ADS)
Wang, Jue
Understanding the influences of climate on productivity remains a major challenge in landscape ecology. Satellite remote sensing of normalized difference vegetation index (NDVI) provides a useful tool to study landscape patterns, based on generalization of local measurements, and to examine relations between climate and variation in productivity. This dissertation examines temporal and spatial relations between NDVI, productivity, and climatic factors over the course of nine years in the central Great Plains. Two general findings emerge: (1) integrated NDVI is a reliable measure of production, as validated with ground-based productivity measurements; and (2) precipitation is the primary factor that determines spatial and temporal patterns of NDVI. NDVI, integrated over appropriate time intervals, is strongly correlated with ground productivity measurements in forests, grasslands, and croplands. Most tree productivity measurements (tree ring size, tree diameter growth, and seed production) are strongly correlated with NDVI integrated for a period during the early growing season; foliage production is most strongly correlated with NDVI integrated over the entire growing season; and tree height growth corresponds with NDVI integrate during the previous growing season. Similarly, productivity measurements for herbaceous plants (grassland biomass and crop yield) are strongly correlated with NDVI. Within the growing season, the temporal pattern of grassland biomass production covaries with NDVI, with a four-week lag time. Across years, grassland biomass production covaries with NDVI integrated from part to all of the current growing season. Corn and wheat yield are most strongly related to NDVI integrated from late June to early August and from late April to mid-May, respectively. Precipitation strongly influences both temporal and spatial patterns of NDVI, while temperature influences NDVI only during the early and late growing season. In terms of temporal patterns, NDVI integrated over the growing season is strongly correlated with precipitation received during the current growing season plus the seven preceding months (fifteen month period); NDVI within the growing season responds to changes in precipitation with a four to eight week lag time; and major precipitation events lead to changes in NDVI with a two to four week lag time. Temperature has a positive correlation with NDVI during the early and late growing season, and a weak negative correlation during the middle of the growing season. In terms of spatial patterns, average precipitation is a strong predictor of the major east-west gradient of NDVI. Deviation from average precipitation explains most of the year-to-year variation in spatial patterns. NDVI and precipitation deviations from average covary (both positive or both negative) for 60--95% of the total land area in Kansas. Minimum and average temperatures are positively correlated with NDVI, but temperature deviation from average is generally not correlated with NDVI deviation from average. The strong relationships between NDVI and productivity, and between precipitation and NDVI, along with detailed analysis of the temporal and spatial patterns for our study region, provides the basis for prediction of productivity at landscape scales under different climate regimes.
Carretti, Barbara; Lanfranchi, Silvia; Mammarella, Irene C
2013-01-01
Earlier research showed that visuospatial working memory (VSWM) is better preserved in Down syndrome (DS) than verbal WM. Some differences emerged, however, when VSWM performance was broken down into its various components, and more recent studies revealed that the spatial-simultaneous component of VSWM is more impaired than the spatial-sequential one. The difficulty of managing more than one item at a time is also evident when the information to be recalled is structured. To further analyze this issue, we investigated the advantage of material being structured in spatial-simultaneous and spatial-sequential tasks by comparing the performance of a group of individuals with DS and a group of typically-developing children matched for mental age. Both groups were presented with VSWM tasks in which both the presentation format (simultaneous vs. sequential) and the type of configuration (pattern vs. random) were manipulated. Findings indicated that individuals with DS took less advantage of the pattern configuration in the spatial-simultaneous task than TD children; in contrast, the two groups' performance did not differ in the pattern configuration of the spatial-sequential task. Taken together, these results confirmed difficulties relating to the spatial-simultaneous component of VSWM in individuals with DS, supporting the importance of distinguishing between different components within this system. The findings are discussed in terms of factors influencing this specific deficit. Copyright © 2012 Elsevier Ltd. All rights reserved.
Characterization of spiraling patterns in spatial rock-paper-scissors games.
Szczesny, Bartosz; Mobilia, Mauro; Rucklidge, Alastair M
2014-09-01
The spatiotemporal arrangement of interacting populations often influences the maintenance of species diversity and is a subject of intense research. Here, we study the spatiotemporal patterns arising from the cyclic competition between three species in two dimensions. Inspired by recent experiments, we consider a generic metapopulation model comprising "rock-paper-scissors" interactions via dominance removal and replacement, reproduction, mutations, pair exchange, and hopping of individuals. By combining analytical and numerical methods, we obtain the model's phase diagram near its Hopf bifurcation and quantitatively characterize the properties of the spiraling patterns arising in each phase. The phases characterizing the cyclic competition away from the Hopf bifurcation (at low mutation rate) are also investigated. Our analytical approach relies on the careful analysis of the properties of the complex Ginzburg-Landau equation derived through a controlled (perturbative) multiscale expansion around the model's Hopf bifurcation. Our results allow us to clarify when spatial "rock-paper-scissors" competition leads to stable spiral waves and under which circumstances they are influenced by nonlinear mobility.
Kang, Jeon-Young; Aldstadt, Jared
2017-07-15
Dengue is a mosquito-borne infectious disease that is endemic in tropical and subtropical countries. Many individual-level simulation models have been developed to test hypotheses about dengue virus transmission. Often these efforts assume that human host and mosquito vector populations are randomly or uniformly distributed in the environment. Although, the movement of mosquitoes is affected by spatial configuration of buildings and mosquito populations are highly clustered in key buildings, little research has focused on the influence of the local built environment in dengue transmission models. We developed an agent-based model of dengue transmission in a village setting to test the importance of using realistic environments in individual-level models of dengue transmission. The results from one-way ANOVA analysis of simulations indicated that the differences between scenarios in terms of infection rates as well as serotype-specific dominance are statistically significant. Specifically, the infection rates in scenarios of a realistic environment are more variable than those of a synthetic spatial configuration. With respect to dengue serotype-specific cases, we found that a single dengue serotype is more often dominant in realistic environments than in synthetic environments. An agent-based approach allows a fine-scaled analysis of simulated dengue incidence patterns. The results provide a better understanding of the influence of spatial heterogeneity on dengue transmission at a local scale.
NASA Astrophysics Data System (ADS)
König, Sara; Worrich, Anja; Wick, Lukas Y.; Miltner, Anja; Kästner, Matthias; Thullner, Martin; Centler, Florian; Banitz, Thomas; Frank, Karin
2016-04-01
Biodegradation of organic compounds in soil is an important microbial ecosystem service. Soil ecosystems are constantly exposed to disturbances of different spatial configurations and frequencies, challenging their ability to recover the biodegradation function. Thus, the response to these disturbances is crucial for the soil systems' biodegradation performance. The influence of spatial aspects of the disturbance regimes on long-term biodegradation dynamics under periodic disturbances has not been examined, yet. We applied a numerical simulation model considering bacterial growth, degradation, and dispersal to analyze the spatiotemporal biodegradation dynamics under disturbances occuring with different frequencies and with different spatial configurations. We found biodegradation performance decreasing in response to periodic disturbances but on average approaching a new quasi steady state. This mean performance of the disturbed systems increases with both, the interval length between disturbance events and the fragmentation of the spatial disturbance patterns. A detailed spatiotemporal analysis of degradation activity reveals that under highly fragmented disturbance patterns, biodegradation still takes place in the entire disturbed area. For moderately fragmented disturbance patterns, parts of the disturbed area become completely inactive. However, areas with high degradation activity emerge at the interface between disturbed and undisturbed areas, allowing the systems to maintain a relatively high degradation performance. Further decreasing the disturbance patterns' fragmentation, fewer interfaces between disturbed and undisturbed area and, thus, fewer active habitats occur, which reduces biodegradation performances. In additional simulations, we found that bacterial dispersal networks, as for example provided by fungal hyphae, usually increase the areas of high degradation activity and, thus, the biodegradation performance in presence of periodic disturbances. However, for some specific regimes with highly fragmented disturbance patterns, dispersal networks can in turn decrease the biodegradation performance. Our results show that spatial aspects of the periodic disturbance regime influence the biodegradation dynamics, indicating the relevance of spatial processes for functional stability. The level of connectivity between disturbed and undisturbed areas is crucial for the local and global dynamics of the ecosystem service biodegradation. Networks enhancing bacterial dispersal may often, but not always, increase the functional stability.
Influence of orographically steered winds on Mutsu Bay surface currents
NASA Astrophysics Data System (ADS)
Yamaguchi, Satoshi; Kawamura, Hiroshi
2005-09-01
Effects of spatially dependent sea surface wind field on currents in Mutsu Bay, which is located at the northern end of Japanese Honshu Island, are investigated using winds derived from synthetic aperture radar (SAR) images and a numerical model. A characteristic wind pattern over the bay was evidenced from analysis of 118 SAR images and coincided with in situ observations. Wind is topographically steered with easterly winds entering the bay through the terrestrial gap and stronger wind blowing over the central water toward its mouth. Nearshore winds are weaker due to terrestrial blockages. Using the Princeton Ocean Model, we investigated currents forced by the observed spatially dependent wind field. The predicted current pattern agrees well with available observations. For a uniform wind field of equal magnitude and average direction, the circulation pattern departs from observations demonstrating that vorticity input due to spatially dependent wind stress is essential in generation of the wind-driven current in Mutsu Bay.
A Comparison of Weights Matrices on Computation of Dengue Spatial Autocorrelation
NASA Astrophysics Data System (ADS)
Suryowati, K.; Bekti, R. D.; Faradila, A.
2018-04-01
Spatial autocorrelation is one of spatial analysis to identify patterns of relationship or correlation between locations. This method is very important to get information on the dispersal patterns characteristic of a region and linkages between locations. In this study, it applied on the incidence of Dengue Hemorrhagic Fever (DHF) in 17 sub districts in Sleman, Daerah Istimewa Yogyakarta Province. The link among location indicated by a spatial weight matrix. It describe the structure of neighbouring and reflects the spatial influence. According to the spatial data, type of weighting matrix can be divided into two types: point type (distance) and the neighbourhood area (contiguity). Selection weighting function is one determinant of the results of the spatial analysis. This study use queen contiguity based on first order neighbour weights, queen contiguity based on second order neighbour weights, and inverse distance weights. Queen contiguity first order and inverse distance weights shows that there is the significance spatial autocorrelation in DHF, but not by queen contiguity second order. Queen contiguity first and second order compute 68 and 86 neighbour list
Violent crime in San Antonio, Texas: an application of spatial epidemiological methods.
Sparks, Corey S
2011-12-01
Violent crimes are rarely considered a public health problem or investigated using epidemiological methods. But patterns of violent crime and other health conditions are often affected by similar characteristics of the built environment. In this paper, methods and perspectives from spatial epidemiology are used in an analysis of violent crimes in San Antonio, TX. Bayesian statistical methods are used to examine the contextual influence of several aspects of the built environment. Additionally, spatial regression models using Bayesian model specifications are used to examine spatial patterns of violent crime risk. Results indicate that the determinants of violent crime depend on the model specification, but are primarily related to the built environment and neighborhood socioeconomic conditions. Results are discussed within the context of a rapidly growing urban area with a diverse population. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Mingxu; Peng, Changhui; Wang, Meng; Yang, Yanzheng; Zhang, Kerou; Li, Peng; Yang, Yan; Ni, Jian; Zhu, Qiuan
2017-07-01
The leaf carbon isotope ratio (δ13C) is a useful parameter for predicting a plant's water use efficiency, as an indicator for plant classification, and even in the reconstruction of paleoclimatic environments. In this study, we investigated the spatial pattern of leaf δ13C values and its relationship with plant functional groups and environmental factors throughout China. The high leaf δ13C in the database appeared in central and western China, and the averaged leaf δ13C was -27.15‰, with a range from -21.05‰ to -31.5‰. The order of the averaged δ13C for plant life forms from most positive to most negative was subshrubs > herbs = shrubs > trees > subtrees. Leaf δ13C is also influenced by some environmental factors, such as mean annual precipitation, relative humidity, mean annual temperature, solar hours, and altitude, although the overall influences are still relatively weak, in particular the influence of MAT and altitude. And we further found that plant functional types are dominant factors that regulate the magnitude of leaf δ13C for an individual site, whereas environmental conditions are key to understanding spatial patterns of leaf δ13C when we consider China as a whole. Ultimately, we conducted a multiple regression model of leaf δ13C with environmental factors and mapped the spatial distribution of leaf δ13C in China by using this model. However, this partial least squares model overestimated leaf δ13C for most life forms, especially for deciduous trees, evergreen shrubs, and subtrees, and thus need more improvement in the future.
The gradient concept of landscape structure [Chapter 12
Kevin McGarigal; Samuel Cushman
2005-01-01
The goal of landscape ecology is to determine where and when spatial and temporal heterogeneity matter, and how they influence processes (Turner, 1989). A fundamental issue in this effort revolves around the choices a researcher makes regarding how to depict and measure heterogeneity, specifically, how these choices influence the "patterns" that will...
Influence of environment, disturbance, and ownership on forest vegetation of coastal Oregon.
J.L. Ohmann; M.J. Gregory; T.A. Spies
2007-01-01
We used spatial predictions from gradient models to examine the influence of environment, disturbance, and ownership on patterns of forest vegetation biodiversity across a large forested region, the Oregon Coast Range (USA). Gradients in tree species composition were strongly associated with physical environment, especially climate, and insensitive to disturbance. In...
NASA Astrophysics Data System (ADS)
Wang, H.; Sun, F.
2017-12-01
Global Horizontal Irradiance (GHI) on Earth is a central element of climate systems. With changes in the climate and regional development, the patterns and influencing factors of GHI, in addition to presenting global consistency, are increasingly showing regional particularities. Based on data for GHI, Diffuse Horizontal Irradiance (DHI) and potential impact factors (geographical position, elevation, cloud cover, water vapor, and ground atmospheric transparency related variables) from 1960 to 2014 in China, we analyzed the pattern and major influencing factors of GHI and DHI. The results showed that the major influencing factors of the GHI spatial pattern were the total cloud cover (TCC) and relative humidity (RH) in China. Dividing all of China into two regions, the major factors were the water vapor pressure (WVP) in the northern region and TCC in the southern region. And we divided the GHI and DHI data into two periods (1960-1987 and 1988-2014) due to global dimming and brightening observed in China in the late 1980's. The temporal GHI showed that 31 of 58 decreased significantly with an average decreasing rate of 95 MJ.10yr-1 during the periods of 1960-2014 and 49 of 76 stations decreased significantly with an rate of 342 MJ.10yr-1 during 1960-1987, whereas 57 of 88 stations did not change and 24 stations increased significantly with an rate of 201 MJ.10yr-1 during the period of 1988-2014. The temporal DHI showed that 40 of 61sites did not change significantly from 1960 to 1987. The major influencing factors for temporal changes of GHI in nine typical cities from 1960 to 2013 were as follows: air quality-related variables in super cities, sandstorms and wind in desert oasis cities, clouds in cities with good air quality and a low cloud amount (LCA) and annual fog days (FD) in Chengdu. Overall, we identified characteristics of GHI and DHI based on global climate change and regional urban development and found that the spatial characteristics of GHI results for China are consistent with global trends, whereas the spatial characteristics of DHI and temporal characteristics of GHI and DHI have changed significantly.
Patrick A. Zollner; Eric J. Gustafson; Hong S. He; Volker C. Radeloff; David J. Mladenoff
2005-01-01
Dynamic zoning (systematic alteration in the spatial and temporal allocation of even-aged forest management practices) has been proposed as a means to change the spatial pattern of timber harvest across a landscape to maximize forest interior habitat while holding timber harvest levels constant. Simulation studies have established that dynamic zoning strategies...
Spatially random mortality in old-growth red pine forests of northern Minnesota
Tuomas Aakala; Shawn Fraver; Brian J. Palik; Anthony W. D' Amato
2012-01-01
Characterizing the spatial distribution of tree mortality is critical to understanding forest dynamics, but empirical studies on these patterns under old-growth conditions are rare. This rarity is due in part to low mortality rates in old-growth forests, the study of which necessitates long observation periods, and the confounding influence of tree in-growth during...
Opinion strength influences the spatial dynamics of opinion formation
Baumgaertner, Bert O.; Tyson, Rebecca T.; Krone, Stephen M.
2016-01-01
Opinions are rarely binary; they can be held with different degrees of conviction, and this expanded attitude spectrum can affect the influence one opinion has on others. Our goal is to understand how different aspects of influence lead to recognizable spatio-temporal patterns of opinions and their strengths. To do this, we introduce a stochastic spatial agent-based model of opinion dynamics that includes a spectrum of opinion strengths and various possible rules for how the opinion strength of one individual affects the influence that this individual has on others. Through simulations, we find that even a small amount of amplification of opinion strength through interaction with like-minded neighbors can tip the scales in favor of polarization and deadlock. PMID:28529381
Analysis of Spatial Pattern and Influencing Factors of E-Commerce
NASA Astrophysics Data System (ADS)
Zhang, Y.; Chen, J.; Zhang, S.
2017-09-01
This paper aims to study the relationship between e-commerce development and geographical characteristics using data of e-commerce, economy, Internet, express delivery and population from 2011 to 2015. Moran's I model and GWR model are applied to analyze the spatial pattern of E-commerce and its influencing factors. There is a growth trend of e-commerce from west to east, and it is obvious to see that e-commerce development has a space-time clustering, especially around the Yangtze River delta. The comprehensive factors caculated through PCA are described as fundamental social productivity, resident living standard and population sex structure. The first two factors have positive correlation with e-commerce, and the intensity of effect increases yearly. However, the influence of population sex structure on the E-commerce development is not significant. Our results suggest that the clustering of e-commerce has a downward trend and the impact of driving factors on e-commerce is observably distinct from year to year in space.
Calculating potential fields using microchannel spatial light modulators
NASA Technical Reports Server (NTRS)
Reid, Max B.
1993-01-01
We describe and present experimental results of the optical calculation of potential field maps suitable for mobile robot navigation. The optical computation employs two write modes of a microchannel spatial light modulator (MSLM). In one mode, written patterns expand spatially, and this characteristic is used to create an extended two dimensional function representing the influence of the goal in a robot's workspace. Distinct obstacle patterns are written in a second, non-expanding, mode. A model of the mechanisms determining MSLM write mode characteristics is developed and used to derive the optical calculation time for full potential field maps. Field calculations at a few hertz are possible with current technology, and calculation time vs. map size scales favorably in comparison to digital electronic computation.
Relative influence of the components of timber harvest strategies on landscape pattern
Eric J. Gustafson
2007-01-01
Forest managers seek to produce healthy landscape patterns by implementing harvest strategies that are composed of multiple management components such as cutblock size, rotation length, even-aged or uneven-aged residual stand structure, conversion to plantations, and the spatial dispersion of harvest units. With use of the HARVEST model and neutral landscapes, a...
Rachel A. Loehman; Robert E. Keane; Lisa M. Holsinger; Zhiwei Wu
2017-01-01
Context: Interactions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs. Objectives We used the mechanistic...
Patrick A. Zollner; L. Jay Roberts; Eric J. Gustafson; Hong S. He; Volker Radeloff
2008-01-01
Incorporating an ecosystem management perspective into forest planning requires consideration of the impacts of timber management on a suite of landscape characteristics at broad spatial and long temporal scales. We used the LANDIS forest landscape simulation model to predict forest composition and landscape pattern under seven alternative forest management plans...
Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica
Taylor, Philip; Asner, Gregory; Dahlin, Kyla; Anderson, Christopher; Knapp, David; Martin, Roberta; Mascaro, Joseph; Chazdon, Robin; Cole, Rebecca; Wanek, Wolfgang; Hofhansl, Florian; Malavassi, Edgar; Vilchez-Alvarado, Braulio; Townsend, Alan
2015-01-01
Tropical forests store large amounts of carbon in tree biomass, although the environmental controls on forest carbon stocks remain poorly resolved. Emerging airborne remote sensing techniques offer a powerful approach to understand how aboveground carbon density (ACD) varies across tropical landscapes. In this study, we evaluate the accuracy of the Carnegie Airborne Observatory (CAO) Light Detection and Ranging (LiDAR) system to detect top-of-canopy tree height (TCH) and ACD across the Osa Peninsula, Costa Rica. LiDAR and field-estimated TCH and ACD were highly correlated across a wide range of forest ages and types. Top-of-canopy height (TCH) reached 67 m, and ACD surpassed 225 Mg C ha-1, indicating both that airborne CAO LiDAR-based estimates of ACD are accurate in tall, high-biomass forests and that the Osa Peninsula harbors some of the most carbon-rich forests in the Neotropics. We also examined the relative influence of lithologic, topoedaphic and climatic factors on regional patterns in ACD, which are known to influence ACD by regulating forest productivity and turnover. Analyses revealed a spatially nested set of factors controlling ACD patterns, with geologic variation explaining up to 16% of the mapped ACD variation at the regional scale, while local variation in topographic slope explained an additional 18%. Lithologic and topoedaphic factors also explained more ACD variation at 30-m than at 100-m spatial resolution, suggesting that environmental filtering depends on the spatial scale of terrain variation. Our result indicate that patterns in ACD are partially controlled by spatial variation in geologic history and geomorphic processes underpinning topographic diversity across landscapes. ACD also exhibited spatial autocorrelation, which may reflect biological processes that influence ACD, such as the assembly of species or phenotypes across the landscape, but additional research is needed to resolve how abiotic and biotic factors contribute to ACD variation across high biomass, high diversity tropical landscapes. PMID:26061884
Influence of pedestrian age and gender on spatial and temporal distribution of pedestrian crashes.
Toran Pour, Alireza; Moridpour, Sara; Tay, Richard; Rajabifard, Abbas
2018-01-02
Every year, about 1.24 million people are killed in traffic crashes worldwide and more than 22% of these deaths are pedestrians. Therefore, pedestrian safety has become a significant traffic safety issue worldwide. In order to develop effective and targeted safety programs, the location- and time-specific influences on vehicle-pedestrian crashes must be assessed. The main purpose of this research is to explore the influence of pedestrian age and gender on the temporal and spatial distribution of vehicle-pedestrian crashes to identify the hotspots and hot times. Data for all vehicle-pedestrian crashes on public roadways in the Melbourne metropolitan area from 2004 to 2013 are used in this research. Spatial autocorrelation is applied in examining the vehicle-pedestrian crashes in geographic information systems (GIS) to identify any dependency between time and location of these crashes. Spider plots and kernel density estimation (KDE) are then used to determine the temporal and spatial patterns of vehicle-pedestrian crashes for different age groups and genders. Temporal analysis shows that pedestrian age has a significant influence on the temporal distribution of vehicle-pedestrian crashes. Furthermore, men and women have different crash patterns. In addition, results of the spatial analysis shows that areas with high risk of vehicle-pedestrian crashes can vary during different times of the day for different age groups and genders. For example, for those between ages 18 and 65, most vehicle-pedestrian crashes occur in the central business district (CBD) during the day, but between 7:00 p.m. and 6:00 a.m., crashes among this age group occur mostly around hotels, clubs, and bars. This research reveals that temporal and spatial distributions of vehicle-pedestrian crashes vary for different pedestrian age groups and genders. Therefore, specific safety measures should be in place during high crash times at different locations for different age groups and genders to increase the effectiveness of the countermeasures in preventing and reducing vehicle-pedestrian crashes.
Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis
Zipf, Alexander
2016-01-01
Twitter and related social media feeds have become valuable data sources to many fields of research. Numerous researchers have thereby used social media posts for spatial analysis, since many of them contain explicit geographic locations. However, despite its widespread use within applied research, a thorough understanding of the underlying spatial characteristics of these data is still lacking. In this paper, we investigate how topological outliers influence the outcomes of spatial analyses of social media data. These outliers appear when different users contribute heterogeneous information about different phenomena simultaneously from similar locations. As a consequence, various messages representing different spatial phenomena are captured closely to each other, and are at risk to be falsely related in a spatial analysis. Our results reveal indications for corresponding spurious effects when analyzing Twitter data. Further, we show how the outliers distort the range of outcomes of spatial analysis methods. This has significant influence on the power of spatial inferential techniques, and, more generally, on the validity and interpretability of spatial analysis results. We further investigate how the issues caused by topological outliers are composed in detail. We unveil that multiple disturbing effects are acting simultaneously and that these are related to the geographic scales of the involved overlapping patterns. Our results show that at some scale configurations, the disturbances added through overlap are more severe than at others. Further, their behavior turns into a volatile and almost chaotic fluctuation when the scales of the involved patterns become too different. Overall, our results highlight the critical importance of thoroughly considering the specific characteristics of social media data when analyzing them spatially. PMID:27611199
Stohlgren, Thomas J.
1993-01-01
Although Muir Grove and Castle Creek Grove are similar in area, elevation, and number of giant sequoias, various spatial pattern analysis techniques showed that they had dissimilar spatial patterns for similar-sized trees. Two-dimensional and transect two-term local quadrat variance techniques detected general trends in the spatial patterns of different-sized trees, detected multiple-scale patterns within individual size classes, and provided information on the scale and intensity of patches of individual size classes of trees in Muir and Castle Creek groves. In Muir Grove, midsized sequoias (1.5 to 2.4 m DBH classes) had major pattern scales 350–450 m in diameter, whereas the same-sized trees in Castle Creek Grove had pattern scales >1000 m in diameter. Many size classes of trees had minor patches superimposed on larger scale patterns in both groves. There may be different recruitment patterns in core (i.e., central) areas compared with peripheral areas of sequoia groves; core areas of both groves had more small live sequoias and dead sequoias than peripheral areas of the groves. Higher densities of sequoias and, perhaps, more rapid turnover of individuals in core areas may indicate (i) differences in disturbance histories and favorability of microsites in the core and peripheral areas of groves; (ii) different responses to disturbance due to shifts in the species composition of the stand and thus, the relative influences of intra- to inter-specific competition; or (iii) slower growth or lower survivorship rates in marginal habitat (i.e., peripheral areas).
Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping
2014-03-10
Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley's K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning.
Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B
2013-01-01
Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions.
Bourbonnais, Mathieu L.; Nelson, Trisalyn A.; Cattet, Marc R. L.; Darimont, Chris T.; Stenhouse, Gordon B.
2013-01-01
Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions. PMID:24386273
Hydrologic influences on soil properties along ephemeral rivers in the Namib Desert
Jacobson, P.J.; Jacobson, K.M.; Angermeier, P.L.; Cherry, D.S.
2000-01-01
Soils were examined along three ephemeral rivers in the Namib Desert to assess the influence of their hydrologic characteristics on soil properties. Soils consisted of layers of fluvially deposited, organic-rich silts, interstratified with fluvial and aeolian sands. The most significant influence of the ephemeral hydrologic regime upon soils was related to the downstream alluviation associated with hydrologic decay. This alluviation increased the silt proportion of soils in the lower reaches of the rivers. Organic carbon, nitrogen and phosphorous were correlated with silt content, and silt deposition patterns influenced patterns of moisture availability and plant rooting, creating and maintaining micro-habitats for various organisms. Localized salinization occurred in association with wetland sites and soluble salt content tended to increase downstream. Because of the covariance between silt and macronutrients, and the influence of silt upon moisture availability and habitat suitability, alluviation patterns associated with the hydrologic regime strongly influence the structure, productivity, and spatial distribution of biotic communities in ephemeral river ecosystems. (C) 2000 Academic Press.
Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi
2014-01-01
Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500–1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks. PMID:24824445
Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi
2014-01-01
Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500-1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks.
Prous, Xavier; Calux, Allan; Gastauer, Markus; Nicacio, Gilberto; Zampaulo, Robson; Souza-Filho, Pedro W.M.; Oliveira, Guilherme; Brandi, Iuri V.; Siqueira, José O.
2018-01-01
The degradation of subterranean habitats is believed to represent a serious threat for the conservation of obligate subterranean dwellers (troglobites), many of which are short-range endemics. However, while the factors influencing cave biodiversity remain largely unknown, the influence of the surrounding landscape and patterns of subterranean connectivity of terrestrial troglobitic communities have never been systematically assessed. Using spatial statistics to analyze the most comprehensive speleological database yet available for tropical caves, we first assess the influence of iron cave characteristics and the surrounding landscape on troglobitic communities from the Eastern Amazon. We then determine the spatial pattern of troglobitic community composition, species richness, phylogenetic diversity, and the occurrence of frequent troglobitic species, and finally quantify how different landscape features influence the connectivity between caves. Our results reveal the key importance of habitat amount, guano, water, lithology, geomorphology, and elevation in shaping iron cave troglobitic communities. While mining within 250 m from the caves influenced species composition, increasing agricultural land cover within 50 m from the caves reduced species richness and phylogenetic diversity. Troglobitic species composition, species richness, phylogenetic diversity, and the occurrence of frequent troglobites showed spatial autocorrelation for up to 40 km. Finally, our results suggest that the conservation of cave clusters should be prioritized, as geographic distance was the main factor determining connectivity between troglobitic communities. Overall, our work sheds important light onto one of the most overlooked terrestrial ecosystems, and highlights the need to shift conservation efforts from individual caves to subterranean habitats as a whole. PMID:29576987
Jaffé, Rodolfo; Prous, Xavier; Calux, Allan; Gastauer, Markus; Nicacio, Gilberto; Zampaulo, Robson; Souza-Filho, Pedro W M; Oliveira, Guilherme; Brandi, Iuri V; Siqueira, José O
2018-01-01
The degradation of subterranean habitats is believed to represent a serious threat for the conservation of obligate subterranean dwellers (troglobites), many of which are short-range endemics. However, while the factors influencing cave biodiversity remain largely unknown, the influence of the surrounding landscape and patterns of subterranean connectivity of terrestrial troglobitic communities have never been systematically assessed. Using spatial statistics to analyze the most comprehensive speleological database yet available for tropical caves, we first assess the influence of iron cave characteristics and the surrounding landscape on troglobitic communities from the Eastern Amazon. We then determine the spatial pattern of troglobitic community composition, species richness, phylogenetic diversity, and the occurrence of frequent troglobitic species, and finally quantify how different landscape features influence the connectivity between caves. Our results reveal the key importance of habitat amount, guano, water, lithology, geomorphology, and elevation in shaping iron cave troglobitic communities. While mining within 250 m from the caves influenced species composition, increasing agricultural land cover within 50 m from the caves reduced species richness and phylogenetic diversity. Troglobitic species composition, species richness, phylogenetic diversity, and the occurrence of frequent troglobites showed spatial autocorrelation for up to 40 km. Finally, our results suggest that the conservation of cave clusters should be prioritized, as geographic distance was the main factor determining connectivity between troglobitic communities. Overall, our work sheds important light onto one of the most overlooked terrestrial ecosystems, and highlights the need to shift conservation efforts from individual caves to subterranean habitats as a whole.
Spatial assessment of air quality patterns in Malaysia using multivariate analysis
NASA Astrophysics Data System (ADS)
Dominick, Doreena; Juahir, Hafizan; Latif, Mohd Talib; Zain, Sharifuddin M.; Aris, Ahmad Zaharin
2012-12-01
This study aims to investigate possible sources of air pollutants and the spatial patterns within the eight selected Malaysian air monitoring stations based on a two-year database (2008-2009). The multivariate analysis was applied on the dataset. It incorporated Hierarchical Agglomerative Cluster Analysis (HACA) to access the spatial patterns, Principal Component Analysis (PCA) to determine the major sources of the air pollution and Multiple Linear Regression (MLR) to assess the percentage contribution of each air pollutant. The HACA results grouped the eight monitoring stations into three different clusters, based on the characteristics of the air pollutants and meteorological parameters. The PCA analysis showed that the major sources of air pollution were emissions from motor vehicles, aircraft, industries and areas of high population density. The MLR analysis demonstrated that the main pollutant contributing to variability in the Air Pollutant Index (API) at all stations was particulate matter with a diameter of less than 10 μm (PM10). Further MLR analysis showed that the main air pollutant influencing the high concentration of PM10 was carbon monoxide (CO). This was due to combustion processes, particularly originating from motor vehicles. Meteorological factors such as ambient temperature, wind speed and humidity were also noted to influence the concentration of PM10.
Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M
2013-01-01
Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.
Plant hydraulics improves and topography mediates prediction of aspen mortality in southwestern USA.
Tai, Xiaonan; Mackay, D Scott; Anderegg, William R L; Sperry, John S; Brooks, Paul D
2017-01-01
Elevated forest mortality has been attributed to climate change-induced droughts, but prediction of spatial mortality patterns remains challenging. We evaluated whether introducing plant hydraulics and topographic convergence-induced soil moisture variation to land surface models (LSM) can help explain spatial patterns of mortality. A scheme predicting plant hydraulic safety loss from soil moisture was developed using field measurements and a plant physiology-hydraulics model, TREES. The scheme was upscaled to Populus tremuloides forests across Colorado, USA, using LSM-modeled and topography-mediated soil moisture, respectively. The spatial patterns of hydraulic safety loss were compared against aerial surveyed mortality. Incorporating hydraulic safety loss raised the explanatory power of mortality by 40% compared to LSM-modeled soil moisture. Topographic convergence was mostly influential in suppressing mortality in low and concave areas, explaining an additional 10% of the variations in mortality for those regions. Plant hydraulics integrated water stress along the soil-plant continuum and was more closely tied to plant physiological response to drought. In addition to the well-recognized topo-climate influence due to elevation and aspect, we found evidence that topographic convergence mediates tree mortality in certain parts of the landscape that are low and convergent, likely through influences on plant-available water. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Heat tracing to determine spatial patterns of hyporheic exchange across a river transect
NASA Astrophysics Data System (ADS)
Lu, Chengpeng; Chen, Shuai; Zhang, Ying; Su, Xiaoru; Chen, Guohao
2017-09-01
Significant spatial variability of water fluxes may exist at the water-sediment interface in river channels and has great influence on a variety of water issues. Understanding the complicated flow systems controlling the flux exchanges along an entire river is often limited due to averaging of parameters or the small number of discrete point measurements usually used. This study investigated the spatial pattern of the hyporheic flux exchange across a river transect in China, using the heat tracing approach. This was done with measurements of temperature at high spatial resolution during a 64-h monitoring period and using the data to identify the spatial pattern of the hyporheic exchange flux with the aid of a one-dimensional conduction-advection-dispersion model (VFLUX). The threshold of neutral exchange was considered as 126 L m-2 d-1 in this study and the heat tracing results showed that the change patterns of vertical hyporheic flux varied with buried depth along the river transect; however, the hyporheic flux was not simply controlled by the streambed hydraulic conductivity and water depth in the river transect. Also, lateral flow dominated the hyporheic process within the shallow high-permeability streambed, while the vertical flow was dominant in the deep low-permeability streambed. The spatial pattern of hyporheic exchange across the river transect was naturally controlled by the heterogeneity of the streambed and the bedform of the stream cross-section. Consequently, a two-dimensional conceptual illustration of the hyporheic process across the river transect is proposed, which could be applicable to river transects of similar conditions.
Roberts, Susan L.; Van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.; Lutz, James A.
2008-01-01
We evaluated the impact of fire severity and related spatial and vegetative parameters on small mammal populations in 2 yr- to 15 yr-old burns in Yosemite National Park, California, USA. We also developed habitat models that would predict small mammal responses to fires of differing severity. We hypothesized that fire severity would influence the abundances of small mammals through changes in vegetation composition, structure, and spatial habitat complexity. Deer mouse (Peromyscus maniculatus) abundance responded negatively to fire severity, and brush mouse (P. boylii) abundance increased with increasing oak tree (Quercus spp.) cover. Chipmunk (Neotamias spp.) abundance was best predicted through a combination of a negative response to oak tree cover and a positive response to spatial habitat complexity. California ground squirrel (Spermophilus beecheyi) abundance increased with increasing spatial habitat complexity. Our results suggest that fire severity, with subsequent changes in vegetation structure and habitat spatial complexity, can influence small mammal abundance patterns.
Novel phase-locked electronic speckle pattern interferometry
NASA Astrophysics Data System (ADS)
Yue, Kaiduan; Zhang, Feng; Wang, Chuangshe; Tan, Yushan
1997-03-01
The theory, design, and characteristics of a Phase-locked Electronic Speckle Pattern Interferometry (ESPI) are described. The main principle of the Phase-lock system is to use the characteristics of spatial frequency of the object light to get the information of the phase of the objects' vibration and the disturbance of air. By using the information, we eliminate not only the influence of the objects' vibration, but also the influence of the disturbance of the air. So we can get more stable image of ESPI, and more reliable measurement result.
Fjørtoft, Ingunn; Löfman, Owe; Halvorsen Thorén, Kine
2010-11-01
Environmental settings seem to influence the activity patterns of children in neighbourhoods and schoolyards, the latter being an important arena to promote physical activity (PA) in school children. New technology has made it possible to describe free-living PA in interaction with the environment. This study focused on how schoolyard environments influenced the activity patterns and intensity levels in 14-year-old children and whether PA levels in adolescents complied with official recommendations. Another objective was to introduce methodology of using a mobile global positioning system (GPS) device with synchronous heart rate (HR) recordings as a proxy for PA level and a geographical information system (GIS) for spatial analyses. The sample constituted of 81 children (aged 14 years) from two schools. Movement patterns and activity levels were recorded during lunch break applying a GPS Garmin Forerunner 305 with combined HR monitoring and analysed in a GIS by an overlaid grid and kriging interpolation. Spatial data from GPS recordings showed particular movement patterns in the schoolyards. Low activity levels (mean HR < 120 bpm) dominated in both schools with no gender differences. Activities located to a handball goal area showed the highest monitored HR (>160 bpm) with higher intensity in girls than in boys. Movement patterns and PA generated in GIS for visualisation and analysis enabled direct and realistic description of utilising of schoolyard facilities and activity levels. Linking GPS data and PA levels to spatial structures made it possible to visualise the environmental interaction with PA and which environments promoted low or high PA.
David P Turner; William D Ritts; Robert E Kennedy; Andrew N Gray; Zhiqiang Yang
2015-01-01
Background: Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains. Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at...
NASA Astrophysics Data System (ADS)
Gasmi, Sonia; Bernard, Ismaël; Pouvreau, Stéphane; Maurer, Danièle; Schaal, Gauthier; Ganthy, Florian; Cominassi, Louise; Allain, Gwenhael; Sautour, Benoit; David, Valérie
2017-01-01
In macrotidal coastal ecosystems, spatial heterogeneity of the water column properties is induced by both oceanic and continental influences. Hydrodynamic processes generate a land-sea gradient of environmental conditions, affecting the biological performances of sedentary organisms. The aim of the present study is to establish an extensive spatial assessment in the reproductive investment of the wild Pacific oyster Crassostrea gigas in Arcachon Bay. This is done by looking for a relationship between the Lawrence and Scott condition index (LSCI) and two tidal processes: the immersion level (IL) and the local oceanic flushing time (LoFt). The LSCI of C. gigas was assessed, just before gamete release, at 68 sampling stations in Arcachon Bay. Oyster performance was overall low and spatially variable. Significant differences in the LSCI were detected between the outer and inner bay. Oyster reefs located toward the mouth of the bay exhibited high LSCI (between 9 and 11), while oyster reefs located in inner bay, especially in south-eastern part around the Eyre River, had low LSCI (below 6). Linear modelling allowed to highlight significant effects of both tidal processes IL and LoFt on the obtained LSCI gradient. IL, LoFt explained 33% of the spatial variability observed on LSCI (IL = 3%; LoFt = 17%; LoFt + IL: 13%), 6% were attributed to the intra-station variation (ISv). Thus, high IL and rapid LoFt favor a better development of somatic-gonadal volume, probably because of longer feeding time and higher supply of food from the ocean by tide flows. Disentangling the effects of IL and LoFt on LSCI allowed to describe the spatial pattern in 61% of variability not explained by both tidal factors. A residual gradient directed southeast-northwest highlighted that others factors, independent from IL and LoFt seems to hamper inner bay oyster reproductive performance. Consequently, investigating on the ecological functioning (Eyre influences), trophic potential and anthropogenic pressures of this zone seem crucial on the understanding of C. gigas reproductive pattern in Arcachon Bay.
The flow patterning capability of localized natural convection.
Huang, Ling-Ting; Chao, Ling
2016-09-14
Controlling flow patterns to align materials can have various applications in optics, electronics, and biosciences. In this study, we developed a natural-convection-based method to create desirable spatial flow patterns by controlling the locations of heat sources. Fluid motion in natural convection is induced by the spatial fluid density gradient that is caused by the established spatial temperature gradient. To analyze the patterning resolution capability of this method, we used a mathematical model combined with nondimensionalization to correlate the flow patterning resolution with experimental operating conditions. The nondimensionalized model suggests that the flow pattern and resolution is only influenced by two dimensionless parameters, and , where Gr is the Grashof number, representing the ratio of buoyancy to the viscous force acting on a fluid, and Pr is the Prandtl number, representing the ratio of momentum diffusivity to thermal diffusivity. We used the model to examine all of the flow behaviors in a wide range of the two dimensionless parameter group and proposed a flow pattern state diagram which suggests a suitable range of operating conditions for flow patterning. In addition, we developed a heating wire with an angular configuration, which enabled us to efficiently examine the pattern resolution capability numerically and experimentally. Consistent resolutions were obtained between the experimental results and model predictions, suggesting that the state diagram and the identified operating range can be used for further application.
Collective behavior in the spatial spreading of obesity
Gallos, Lazaros K.; Barttfeld, Pablo; Havlin, Shlomo; Sigman, Mariano; Makse, Hernán A.
2012-01-01
Obesity prevalence is increasing in many countries at alarming levels. A difficulty in the conception of policies to reverse these trends is the identification of the drivers behind the obesity epidemics. Here, we implement a spatial spreading analysis to investigate whether obesity shows spatial correlations, revealing the effect of collective and global factors acting above individual choices. We find a regularity in the spatial fluctuations of their prevalence revealed by a pattern of scale-free long-range correlations. The fluctuations are anomalous, deviating in a fundamental way from the weaker correlations found in the underlying population distribution indicating the presence of collective behavior, i.e., individual habits may have negligible influence in shaping the patterns of spreading. Interestingly, we find the same scale-free correlations in economic activities associated with food production. These results motivate future interventions to investigate the causality of this relation providing guidance for the implementation of preventive health policies. PMID:22822425
Collective behavior in the spatial spreading of obesity
NASA Astrophysics Data System (ADS)
Gallos, Lazaros K.; Barttfeld, Pablo; Havlin, Shlomo; Sigman, Mariano; Makse, Hernán A.
2012-06-01
Obesity prevalence is increasing in many countries at alarming levels. A difficulty in the conception of policies to reverse these trends is the identification of the drivers behind the obesity epidemics. Here, we implement a spatial spreading analysis to investigate whether obesity shows spatial correlations, revealing the effect of collective and global factors acting above individual choices. We find a regularity in the spatial fluctuations of their prevalence revealed by a pattern of scale-free long-range correlations. The fluctuations are anomalous, deviating in a fundamental way from the weaker correlations found in the underlying population distribution indicating the presence of collective behavior, i.e., individual habits may have negligible influence in shaping the patterns of spreading. Interestingly, we find the same scale-free correlations in economic activities associated with food production. These results motivate future interventions to investigate the causality of this relation providing guidance for the implementation of preventive health policies.
Etherington, L.L.; Eggleston, D.B.
2003-01-01
We assessed determinants and consequences of multistage dispersal on spatial recruitment of the blue crab, Callinectes sapidus, within the Croatan, Albemarle, Pamlico Estuarine System (CAPES), North Carolina, U.S.A. Large-scale sampling of early juvenile crabs over 4 years indicated that spatial abundance patterns were size-dependent and resulted from primary post-larval dispersal (pre-settlement) and secondary juvenile dispersal (early post-settlement). In general, primary dispersal led to high abundances within more seaward habitats, whereas secondary dispersal (which was relatively consistent) expanded the distribution of juveniles, potentially increasing the estuarine nursery capacity. There were strong relationships between juvenile crab density and specific wind characteristics; however, these patterns were spatially explicit. Various physical processes (e.g., seasonal wind events, timing and magnitude of tropical cyclones) interacted to influence dispersal during multiple stages and determined crab recruitment patterns. Our results suggest that the nursery value of different habitats is highly dependent on the dispersal potential (primary and secondary dispersal) to and from these areas, which is largely determined by the relative position of habitats within the estuarine landscape.
Temporal and Spatial Diversity of Bacterial Communities in Coastal Waters of the South China Sea
Du, Jikun; Xiao, Kai; Li, Li; Ding, Xian; Liu, Helu; Lu, Yongjun; Zhou, Shining
2013-01-01
Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns. PMID:23785512
Attribution of the Regional Patterns of North American Climate Trends
NASA Astrophysics Data System (ADS)
Hoerling, M.; Kumar, A.; Karoly, D.; Rind, D.; Hegerl, G.; Eischeid, J.
2007-12-01
North American trends in surface temperature and precipitation during 1951-2006 exhibit large spatial and seasonal variations. We seek to explain these by synthesizing new information based on existing model simulations of climate and its forcing, and based on modern reanalyses that describe past and current conditions within the free atmosphere. The presentation focuses on current capabilities to explain the spatial variations and seasonal differences in North American climate trends. It will address whether various heterogeneities in space and time can be accounted for by the climate system's sensitivity to time evolving anthropogenic forcing, and examines the influences of non-anthropogenic processes. New findings are presented that indicate anthropogenic forcing alone was unlikely the cause for key regional and seasonal patterns of change, including the absence of summertime warming over the Great Plains of the United States, and the absence of warming during both winter and summer over the southern United States. Key regional features are instead attributed to trends in the principal patterns of atmospheric flow that affect North American climate. It is demonstrated that observed variations in global sea surface temperatures have significantly influenced these patterns of atmospheric flow.
Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.
2018-01-01
Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or loss of genetic diversity, they reduce population connectivity and may impact long‐term population persistence.The broad spatial scale of this study demonstrated the large spatial extent of some variegate darter populations and indicated that dispersal is more extensive than expected given the movement patterns typically observed for small‐bodied, benthic fish. Dam impacts depended on underlying population size and stability, with larger populations more resilient to genetic drift and allelic richness loss than smaller populations.Other darters that inhabit large river habitats may show similar patterns in landscape‐scale studies, and large river barriers may impact populations of small‐bodied fish more than previously expected. Estimation of dispersal rates and behaviours is critical to conservation of imperilled riverine species such as darters.
Snow Pattern Delineation, Scaling, Fidelity, and Landscape Factors
NASA Astrophysics Data System (ADS)
Hiemstra, C. A.; Wagner, A. M.; Deeb, E. J.; Morriss, B. F.; Sturm, M.
2014-12-01
In many snow-covered landscapes, snow tends to be shallow or deep in the same locations year after year. As snowmelt progresses in spring, areas of shallow snow become snow-free earlier than areas with deep snow. This pattern (Sturm and Wagner 2010) could likely be used to inform or improve modeled snow depth estimates where ground measurements are not collected; however, we must be certain of their utility before ingesting them into model calculations. Do patterns, as we detect them, have a relationship with earlier measured snow distributions? Second, are certain areas on the landscape likely to yield patterns that are influenced too highly by melting to be useful? Our Imnavait Creek Study Area (11 by 19 km) is on Alaska's North Slope, where we have examined a vast library of spring satellite imagery (ranging from mostly snow-covered to mostly snow-free). Landsat TM Imagery has been collected from the early 1980s-present, and the temporal and spatial resolution is roughly two weeks and 30 m, respectively. High resolution satellite imagery (WorldView 1, WorldView 2, IKONOS) has been obtained from 2010-2013 for the same area with almost daily- to monthly-temporal and at 2.5 m spatial resolutions, respectively. We found that there is a striking similarity among patterns from year to year across the span of decades and resolutions. However, the relationship of pattern with observed snow depths was strong in some areas and less clear in others. Overall, we suspect spatial scaling, spatial mismatch, sampling errors, and melt patterns explain most of the areas of pattern and depth disparity.
Bauder, Javan M.; Breininger, David R.; Bolt, M. Rebecca; Legare, Michael L.; Jenkins, Christopher L.; Rothermel, Betsie B.; McGarigal, Kevin
2016-01-01
Understanding the factors influencing the degree of spatial overlap among conspecifics is important for understanding multiple ecological processes. Compared to terrestrial carnivores, relatively little is known about the factors influencing conspecific spatial overlap in snakes, although across snake taxa there appears to be substantial variation in conspecific spatial overlap. In this study, we described conspecific spatial overlap of eastern indigo snakes (Drymarchon couperi) in peninsular Florida and examined how conspecific spatial overlap varied by sex and season (breeding season vs. non-breeding season). We calculated multiple indices of spatial overlap using 6- and 3-month utilization distributions (UD) of dyads of simultaneously adjacent telemetered snakes. We also measured conspecific UD density values at each telemetry fix and modeled the distribution of those values as a function of overlap type, sex, and season using generalized Pareto distributions. Home range overlap between males and females was significantly greater than overlap between individuals of the same sex and male home ranges often completely contained female home ranges. Male home ranges overlapped little during both seasons, whereas females had higher levels of overlap during the non-breeding season. The spatial patterns observed in our study are consistent with those seen in many mammalian carnivores, in which low male-male overlap and high inter-sexual overlap provides males with greater access to females. We encourage additional research on the influence of prey availability on conspecific spatial overlap in snakes as well as the behavioral mechanisms responsible for maintaining the low levels of overlap we observed. PMID:27490346
Winters, Anna M.; Eisen, Rebecca J.; Delorey, Mark J.; Fischer, Marc; Nasci, Roger S.; Zielinski-Gutierrez, Emily; Moore, Chester G.; Pape, W. John; Eisen, Lars
2010-01-01
We used epidemiologic data for human West Nile virus (WNV) disease in Colorado from 2003 and 2007 to determine 1) the degree to which estimates of vector-borne disease occurrence is influenced by spatial scale of data aggregation (county versus census tract), and 2) the extent of concordance between spatial risk patterns based on case counts versus incidence. Statistical analyses showed that county, compared with census tract, accounted for approximately 50% of the overall variance in WNV disease incidence, and approximately 33% for the subset of cases classified as West Nile neuroinvasive disease. These findings indicate that sub-county scale presentation provides valuable risk information for stakeholders. There was high concordance between spatial patterns of WNV disease incidence and case counts for census tract (83%) but not for county (50%) or zip code (31%). We discuss how these findings impact on practices to develop spatial epidemiologic data for vector-borne diseases and present data to stakeholders. PMID:20439980
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2013-08-01
Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.
Gosme, Marie; Lucas, Philippe
2009-07-01
Spatial patterns of both the host and the disease influence disease spread and crop losses. Therefore, the manipulation of these patterns might help improve control strategies. Considering disease spread across multiple scales in a spatial hierarchy allows one to capture important features of epidemics developing in space without using explicitly spatialized variables. Thus, if the system under study is composed of roots, plants, and planting hills, the effect of host spatial pattern can be studied by varying the number of plants per planting hill. A simulation model based on hierarchy theory was used to simulate the effects of large versus small planting hills, low versus high level of initial infections, and aggregated versus uniform distribution of initial infections. The results showed that aggregating the initially infected plants always resulted in slower epidemics than spreading out the initial infections uniformly. Simulation results also showed that, in most cases, disease epidemics were slower in the case of large host aggregates (100 plants/hill) than with smaller aggregates (25 plants/hill), except when the initially infected plants were both numerous and spread out uniformly. The optimal strategy for disease control depends on several factors, including initial conditions. More importantly, the model offers a framework to account for the interplay between the spatial characteristics of the system, rates of infection, and aggregation of the disease.
Zipper, Carl E; Donovan, Patricia F; Jones, Jess W; Li, Jing; Price, Jennifer E; Stewart, Roger E
2016-01-15
The Powell River of southwestern Virginia and northeastern Tennessee, USA, drains a watershed with extensive coal surface mining, and it hosts exceptional biological richness, including at-risk species of freshwater mussels, downstream of mining-disturbed watershed areas. We investigated spatial and temporal patterns of watershed mining disturbance; their relationship to water quality change in the section of the river that connects mining areas to mussel habitat; and relationships of mining-related water constituents to measures of recent and past mussel status. Freshwater mussels in the Powell River have experienced significant declines over the past 3.5 decades. Over that same period, surface coal mining has influenced the watershed. Water-monitoring data collected by state and federal agencies demonstrate that dissolved solids and associated constituents that are commonly influenced by Appalachian mining (specific conductance, pH, hardness and sulfates) have experienced increasing temporal trends from the 1960s through ~2008; but, of those constituents, only dissolved solids concentrations are available widely within the Powell River since ~2008. Dissolved solids concentrations have stabilized in recent years. Dissolved solids, specific conductance, pH, and sulfates also exhibited spatial patterns that are consistent with dilution of mining influence with increasing distance from mined areas. Freshwater mussel status indicators are correlated negatively with dissolved solids concentrations, spatially and temporally, but the direct causal mechanisms responsible for mussel declines remain unknown. Copyright © 2015 Elsevier B.V. All rights reserved.
Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance
Smithwick, Erica A. H.; Naithani, Kusum J.; Balser, Teri C.; Romme, William H.; Turner, Monica G.
2012-01-01
Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R2<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21st Century. PMID:23226324
Garavelli, Lysel; Colas, François; Verley, Philippe; Kaplan, David Michael; Yannicelli, Beatriz; Lett, Christophe
2016-01-01
In marine benthic ecosystems, larval connectivity is a major process influencing the maintenance and distribution of invertebrate populations. Larval connectivity is a complex process to study as it is determined by several interacting factors. Here we use an individual-based, biophysical model, to disentangle the effects of such factors, namely larval vertical migration, larval growth, larval mortality, adults fecundity, and habitat availability, for the marine gastropod Concholepas concholepas (loco) in Chile. Lower transport success and higher dispersal distances are observed including larval vertical migration in the model. We find an overall decrease in larval transport success to settlement areas from northern to southern Chile. This spatial gradient results from the combination of current direction and intensity, seawater temperature, and available habitat. From our simulated connectivity patterns we then identify subpopulations of loco along the Chilean coast, which could serve as a basis for spatial management of this resource in the future.
Influence of Biological Factors on Connectivity Patterns for Concholepas concholepas (loco) in Chile
Garavelli, Lysel; Colas, François; Verley, Philippe; Kaplan, David Michael; Yannicelli, Beatriz; Lett, Christophe
2016-01-01
In marine benthic ecosystems, larval connectivity is a major process influencing the maintenance and distribution of invertebrate populations. Larval connectivity is a complex process to study as it is determined by several interacting factors. Here we use an individual-based, biophysical model, to disentangle the effects of such factors, namely larval vertical migration, larval growth, larval mortality, adults fecundity, and habitat availability, for the marine gastropod Concholepas concholepas (loco) in Chile. Lower transport success and higher dispersal distances are observed including larval vertical migration in the model. We find an overall decrease in larval transport success to settlement areas from northern to southern Chile. This spatial gradient results from the combination of current direction and intensity, seawater temperature, and available habitat. From our simulated connectivity patterns we then identify subpopulations of loco along the Chilean coast, which could serve as a basis for spatial management of this resource in the future. PMID:26751574
Predicting spatial patterns of plant recruitment using animal-displacement kernels.
Santamaría, Luis; Rodríguez-Pérez, Javier; Larrinaga, Asier R; Pias, Beatriz
2007-10-10
For plants dispersed by frugivores, spatial patterns of recruitment are primarily influenced by the spatial arrangement and characteristics of parent plants, the digestive characteristics, feeding behaviour and movement patterns of animal dispersers, and the structure of the habitat matrix. We used an individual-based, spatially-explicit framework to characterize seed dispersal and seedling fate in an endangered, insular plant-disperser system: the endemic shrub Daphne rodriguezii and its exclusive disperser, the endemic lizard Podarcis lilfordi. Plant recruitment kernels were chiefly determined by the disperser's patterns of space utilization (i.e. the lizard's displacement kernels), the position of the various plant individuals in relation to them, and habitat structure (vegetation cover vs. bare soil). In contrast to our expectations, seed gut-passage rate and its effects on germination, and lizard speed-of-movement, habitat choice and activity rhythm were of minor importance. Predicted plant recruitment kernels were strongly anisotropic and fine-grained, preventing their description using one-dimensional, frequency-distance curves. We found a general trade-off between recruitment probability and dispersal distance; however, optimal recruitment sites were not necessarily associated to sites of maximal adult-plant density. Conservation efforts aimed at enhancing the regeneration of endangered plant-disperser systems may gain in efficacy by manipulating the spatial distribution of dispersers (e.g. through the creation of refuges and feeding sites) to create areas favourable to plant recruitment.
Bonnell, Tyler R; Clarke, Parry M; Henzi, S Peter; Barrett, Louise
2017-07-01
In mobile social groups, influence patterns driving group movement can vary between democratic and despotic. The arrival at any single pattern of influence is thought to be underpinned by both environmental factors and group composition. To identify the specific patterns of influence driving travel decision-making in a chacma baboon troop, we used spatially explicit data to extract patterns of individual movement bias. We scaled these estimates of individual-level bias to the level of the group by constructing an influence network and assessing its emergent structural properties. Our results indicate that there is heterogeneity in movement bias: individual animals respond consistently to particular group members, and higher-ranking animals are more likely to influence the movement of others. This heterogeneity resulted in a group-level network structure that consisted of a single core and two outer shells. Here, the presence of a core suggests that a set of highly interdependent animals drove routine group movements. These results suggest that heterogeneity at the individual level can lead to group-level influence structures, and that movement patterns in mobile social groups can add to the exploration of both how these structures develop (i.e. mechanistic aspects) and what consequences they have for individual- and group-level outcomes (i.e. functional aspects).
Clarke, Parry M.; Henzi, S. Peter; Barrett, Louise
2017-01-01
In mobile social groups, influence patterns driving group movement can vary between democratic and despotic. The arrival at any single pattern of influence is thought to be underpinned by both environmental factors and group composition. To identify the specific patterns of influence driving travel decision-making in a chacma baboon troop, we used spatially explicit data to extract patterns of individual movement bias. We scaled these estimates of individual-level bias to the level of the group by constructing an influence network and assessing its emergent structural properties. Our results indicate that there is heterogeneity in movement bias: individual animals respond consistently to particular group members, and higher-ranking animals are more likely to influence the movement of others. This heterogeneity resulted in a group-level network structure that consisted of a single core and two outer shells. Here, the presence of a core suggests that a set of highly interdependent animals drove routine group movements. These results suggest that heterogeneity at the individual level can lead to group-level influence structures, and that movement patterns in mobile social groups can add to the exploration of both how these structures develop (i.e. mechanistic aspects) and what consequences they have for individual- and group-level outcomes (i.e. functional aspects). PMID:28791140
Pilger, Tyler J; Gido, Keith B; Propst, David L; Whitney, James E; Turner, Thomas F
2017-05-01
Dendritic ecological network (DEN) architecture can be a strong predictor of spatial genetic patterns in theoretical and simulation studies. Yet, interspecific differences in dispersal capabilities and distribution within the network may equally affect species' genetic structuring. We characterized patterns of genetic variation from up to ten microsatellite loci for nine numerically dominant members of the upper Gila River fish community, New Mexico, USA. Using comparative landscape genetics, we evaluated the role of network architecture for structuring populations within species (pairwise F ST ) while explicitly accounting for intraspecific demographic influences on effective population size (N e ). Five species exhibited patterns of connectivity and/or genetic diversity gradients that were predicted by network structure. These species were generally considered to be small-bodied or habitat specialists. Spatial variation of N e was a strong predictor of pairwise F ST for two species, suggesting patterns of connectivity may also be influenced by genetic drift independent of network properties. Finally, two study species exhibited genetic patterns that were unexplained by network properties and appeared to be related to nonequilibrium processes. Properties of DENs shape community-wide genetic structure but effects are modified by intrinsic traits and nonequilibrium processes. Further theoretical development of the DEN framework should account for such cases. © 2017 John Wiley & Sons Ltd.
Millette, Katie L; Keyghobadi, Nusha
2015-01-01
Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water-filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (FST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent. PMID:25628865
Millette, Katie L; Keyghobadi, Nusha
2015-01-01
Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water-filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (F ST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent.
NASA Astrophysics Data System (ADS)
Trolliet, Franck; Forget, Pierre-Michel; Doucet, Jean-Louis; Gillet, Jean-François; Hambuckers, Alain
2017-11-01
Animal-mediated seed dispersal is recognized to influence the spatial organization of plant communities but little is known about how frugivores cause such patterns. Here, we explored the role of hornbills and primates in generating recruitment foci under two zoochoric trees, namely Staudtia kamerunensis (Myristicaceae) and Dialium spp. (Fabaceae - Caesalpiniodea) in a forest-savanna mosaic landscape in D.R. Congo. We also examined the influence of the availability of fruits in the neighborhood and the amount of forest cover in the landscape on such clumping patterns. The density and species richness of hornbill-dispersed and the density of primate-dispersed seedlings were significantly higher under Staudtia kamerunensis trees than at control locations. However, we did not find such patterns under Dialium spp. trees compared to control locations except for the density of hornbill-dispersed seedlings which was lower at control locations. Also, we found that an increasing amount of forest cover in the landscape was associated with an increase in the density of hornbill-dispersed seedlings, although the tendency was weak (R2 = 0.065). We concluded that S. kamerunensis acts as a recruitment foci and plays a structuring role in Afrotropical forests. Hornbills were probably the main frugivore taxon responsible for the clumping under that tree and appear as a key ecological component in fragmented and disturbed landscapes where the diversity of large frugivores such as primates is reduced. Our findings improve our understanding of the causal mechanisms responsible for the spatial organization of tropical forests.
Carbon storage in China's terrestrial ecosystems: A synthesis.
Xu, Li; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Gao, Yang; Wen, Ding; Li, Shenggong; Niu, Shuli; Ge, Jianping
2018-02-12
It is important to accurately estimate terrestrial ecosystem carbon (C) storage. However, the spatial patterns of C storage and the driving factors remain unclear, owing to lack of data. Here, we collected data from literature published between 2004 and 2014 on C storage in China's terrestrial ecosystems, to explore variation in C storage across different ecosystems and evaluate factors that influence them. We estimated that total C storage was 99.15 ± 8.71 PgC, with 14.60 ± 3.24 PgC in vegetation C (Veg-C) and 84.55 ± 8.09 PgC in soil organic C (SOC) storage. Furthermore, C storage in forest, grassland, wetland, shrub, and cropland ecosystems (excluding vegetation) was 34.08 ± 5.43, 25.69 ± 4.71, 3.62 ± 0.80, 7.42 ± 1.92, and 15.17 ± 2.20 PgC, respectively. In addition to soil nutrients and texture, climate was the main factor regulating the spatial patterns of C storage. Climate influenced the spatial patterns of Veg-C and SOC density via different approaches, Veg-C was mainly positively influenced by mean annual precipitation (MAP), whereas SOC was negatively dependent on mean annual temperature (MAT). This systematic estimate of C storage in China provides new insights about how climate constrains C sequestration, demonstrating the contrasting effects of MAP and MAT on Veg-C and SOC; thus, these parameters should be incorporated into future land management and C sequestration strategies.
Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping
2014-01-01
Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley’s K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning. PMID:24619117
Corte, Guilherme N; Gonçalves-Souza, Thiago; Checon, Helio H; Siegle, Eduardo; Coleman, Ross A; Amaral, A Cecília Z
2018-05-01
Community ecology has traditionally assumed that the distribution of species is mainly influenced by environmental processes. There is, however, growing evidence that environmental (habitat characteristics and biotic interactions) and spatial processes (factors that affect a local assemblage regardless of environmental conditions - typically related to dispersal and movement of species) interactively shape biological assemblages. A metacommunity, which is a set of local assemblages connected by dispersal of individuals, is spatial in nature and can be used as a straightforward approach for investigating the interactive and independent effects of both environmental and spatial processes. Here, we examined (i) how environmental and spatial processes affect the metacommunity organization of marine macroinvertebrates inhabiting the intertidal sediments of a biodiverse coastal ecosystem; (ii) whether the influence of these processes is constant through time or is affected by extreme weather events (storms); and (iii) whether the relative importance of these processes depends on the dispersal abilities of organisms. We found that macrobenthic assemblages are influenced by each of environmental and spatial variables; however, spatial processes exerted a stronger role. We also found that this influence changes through time and is modified by storms. Moreover, we observed that the influence of environmental and spatial processes varies according to the dispersal capabilities of organisms. More effective dispersers (i.e., species with planktonic larvae) are more affected by spatial processes whereas environmental variables had a stronger effect on weaker dispersers (i.e. species with low motility in larval and adult stages). These findings highlight that accounting for spatial processes and differences in species life histories is essential to improve our understanding of species distribution and coexistence patterns in intertidal soft-sediments. Furthermore, it shows that storms modify the structure of coastal assemblages. Given that the influence of spatial and environmental processes is not consistent through time, it is of utmost importance that future studies replicate sampling over different periods so the influence of temporal and stochastic factors on macrobenthic metacommunities can be better understood. Copyright © 2018 Elsevier Ltd. All rights reserved.
Boucek, Ross E; Heithaus, Michael R; Santos, Rolando; Stevens, Philip; Rehage, Jennifer S
2017-10-01
Global climate forecasts predict changes in the frequency and intensity of extreme climate events (ECEs). The capacity for specific habitat patches within a landscape to modulate stressors from extreme climate events, and animal distribution throughout habitat matrices during events, could influence the degree of population level effects following the passage of ECEs. Here, we ask (i) does the intensity of stressors of an ECE vary across a landscape? And (ii) Do habitat use patterns of a mobile species influence their vulnerability to ECEs? Specifically, we measured how extreme cold spells might interact with temporal variability in habitat use to affect populations of a tropical, estuarine-dependent large-bodied fish Common Snook, within Everglades National Park estuaries (FL US). We examined temperature variation across the estuary during cold disturbances with different degrees of severity, including an extreme cold spell. Second, we quantified Snook distribution patterns when the passage of ECEs is most likely to occur from 2012 to 2016 using passive acoustic tracking. Our results revealed spatial heterogeneity in the intensity of temperature declines during cold disturbances, with some habitats being consistently 3-5°C colder than others. Surprisingly, Snook distributions during periods of greatest risk to experience an extreme cold event varied among years. During the winters of 2013-2014 and 2014-2015 a greater proportion of Snook occurred in the colder habitats, while the winters of 2012-2013 and 2015-2016 featured more Snook observed in the warmest habitats. This study shows that Snook habitat use patterns could influence vulnerability to extreme cold events, however, whether Snook habitat use increases or decreases their vulnerability to disturbance depends on the year, creating temporally dynamic vulnerability. Faunal global change research should address the spatially explicit nature of extreme climate events and animal habitat use patterns to identify potential mechanisms that may influence population effects following these disturbances. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Crase, Beth; Vesk, Peter A; Liedloff, Adam; Wintle, Brendan A
2015-08-01
Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied ), the instability of suitable area (Einstability ) and the overlap between the current and future spatial distribution (Eoverlap ). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and complementary information in addition to that provided by forecasts of species occurrence. © 2015 John Wiley & Sons Ltd.
Modeling Effects of Local Extinctions on Culture Change and Diversity in the Paleolithic
Premo, L. S.; Kuhn, Steven L.
2010-01-01
The persistence of early stone tool technologies has puzzled archaeologists for decades. Cognitively based explanations, which presume either lack of ability to innovate or extreme conformism, do not account for the totality of the empirical patterns. Following recent research, this study explores the effects of demographic factors on rates of culture change and diversification. We investigate whether the appearance of stability in early Paleolithic technologies could result from frequent extinctions of local subpopulations within a persistent metapopulation. A spatially explicit agent-based model was constructed to test the influence of local extinction rate on three general cultural patterns that archaeologists might observe in the material record: total diversity, differentiation among spatially defined groups, and the rate of cumulative change. The model shows that diversity, differentiation, and the rate of cumulative cultural change would be strongly affected by local extinction rates, in some cases mimicking the results of conformist cultural transmission. The results have implications for understanding spatial and temporal patterning in ancient material culture. PMID:21179418
Sun, Caili; Chai, Zongzheng; Liu, Guobin; Xue, Sha
2017-01-01
Analyzing the dynamic patterns of species diversity and spatial heterogeneity of vegetation in grasslands during secondary succession could help with the maintenance and management of these ecosystems. Here, we evaluated the influence of secondary succession on grassland plant diversity and spatial heterogeneity of abandoned croplands on the Loess Plateau (China) during four phases of recovery: 1-5, 5-10, 10-20, and 20-30 years. The species composition and dominance of the grassland vegetation changed markedly during secondary succession and formed a clear successional series, with the species assemblage dominated by Artemisia capillaris → Heteropappus altaicus→ A. sacrorum . The diversity pattern was one of low-high-low, with diversity peaking in the 10-20 year phase, thus corresponding to a hump-backed model in which maximum diversity occurring at the intermediate stages. A spatially aggregated pattern prevailed throughout the entire period of grassland recovery; this was likely linked to the dispersal properties of herbaceous plants and to high habitat heterogeneity. We conclude that natural succession was conducive to the successful recovery of native vegetation. From a management perspective, native pioneer tree species should be introduced about 20 years after abandoning croplands to accelerate the natural succession of grassland vegetation.
Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae)
Ginsberg, Howard S.; Zhioua, Elyes; Mitra, Shaibal; Fischer, Jason L.; Buckley, P.A.; Verret, Frank; Underwood, H. Brian; Buckley, Francine G.
2004-01-01
Spatial distribution patterns of black-legged ticks, Ixodes scapularis, in deciduous and coniferous woodlands were studied by sampling ticks in different woodland types and at sites from which deer had been excluded and by quantifying movement patterns of tick host animals (mammals and birds) at the Lighthouse Tract, Fire Island, NY, from 1994 to 2000. Densities of nymphal ticks were greater in deciduous than coniferous woods in 3 of 7 yr. Only engorged ticks survived the winter, and overwintering survival of engorged larvae in experimental enclosures did not differ between deciduous and coniferous woods. Nymphs were not always most abundant in the same forest type as they had been as larvae, and the habitat shift between life stages differed in direction in different years. Therefore, forest type by itself did not account for tick distribution patterns. Nymphal densities were lower where deer had been excluded compared with areas with deer present for 3 yr after exclusion, suggesting that movement patterns of vertebrate hosts influenced tick distribution, but nymphal densities increased dramatically in one of the enclosures in the fourth year. Therefore, movements of ticks on animal hosts apparently contribute substantially to tick spatial distribution among woodland types, but the factor(s) that determine spatial distribution of nymphal I. scapularis shift from year to year.
Sun, Caili; Chai, Zongzheng; Liu, Guobin; Xue, Sha
2017-01-01
Analyzing the dynamic patterns of species diversity and spatial heterogeneity of vegetation in grasslands during secondary succession could help with the maintenance and management of these ecosystems. Here, we evaluated the influence of secondary succession on grassland plant diversity and spatial heterogeneity of abandoned croplands on the Loess Plateau (China) during four phases of recovery: 1–5, 5–10, 10–20, and 20–30 years. The species composition and dominance of the grassland vegetation changed markedly during secondary succession and formed a clear successional series, with the species assemblage dominated by Artemisia capillaris→ Heteropappus altaicus→ A. sacrorum. The diversity pattern was one of low–high–low, with diversity peaking in the 10–20 year phase, thus corresponding to a hump-backed model in which maximum diversity occurring at the intermediate stages. A spatially aggregated pattern prevailed throughout the entire period of grassland recovery; this was likely linked to the dispersal properties of herbaceous plants and to high habitat heterogeneity. We conclude that natural succession was conducive to the successful recovery of native vegetation. From a management perspective, native pioneer tree species should be introduced about 20 years after abandoning croplands to accelerate the natural succession of grassland vegetation. PMID:28900433
Jones, R Christian; Kelso, Donald P; Schaeffer, Elaine
2008-12-01
Spatial and temporal patterns in water quality were studied for seven years within an embayment-river mainstem area of the tidal freshwater Potomac River. The purpose of this paper is to determine the important components of spatial and temporal variation in water quality in this study area to facilitate an understanding of management impacts and allow the most effective use of future monitoring resources. The study area received treated sewage effluent and freshwater inflow from direct tributary inputs into the shallow embayment as well as upriver sources in the mainstem. Depth variations were determined to be detectable, but minimal due mainly to the influence of tidal mixing. Results of principal component analysis of two independent water quality datasets revealed clear spatial and seasonal patterns. Interannual variation was generally minimal despite substantial variations in tributary and mainstem discharge among years. Since both spatial and seasonal components were important, data were segmented by season to best determine the spatial pattern. A clear difference was found between a set of stations located within one embayment (Gunston Cove) and a second set in the nearby Potomac mainstem. Parameters most highly correlated with differences were those typically associated with higher densities of phytoplankton: chlorophyll a, photosynthetic rate, pH, dissolved oxygen, BOD, total phosphorus and Secchi depth. These differences and their consistency indicated two distinct water masses: one in the cove harboring higher algal density and activity and a second in the river with lower phytoplankton activity. A second embayment not receiving sewage effluent generally had an intermediate position. While this was the most consistent spatial pattern, there were two others of a secondary nature. Stations closer to the effluent inputs in the embayment sometimes grouped separately due to elevated ammonia and chloride. Stations closer to tributary inflows into the embayment sometimes grouped separately due to dilution with freshwater runoff. Segmenting the datasets by spatial region resulted in a clarification of seasonal patterns with similar factors relating to algal activity being the major correlates of the seasonal pattern. A basic seasonal pattern of lower scores in the spring increasing steadily to a peak in July and August followed by a steady decline through the fall was observed in the cove. In the river, the pattern of increases tended to be delayed slightly in the spring. Results indicate that the study area can be effectively monitored with fewer study sites provided that at least one is located in each of the spatial regions.
Global patterns and predictors of fish species richness in estuaries.
Vasconcelos, Rita P; Henriques, Sofia; França, Susana; Pasquaud, Stéphanie; Cardoso, Inês; Laborde, Marina; Cabral, Henrique N
2015-09-01
1. Knowledge of global patterns of biodiversity and regulating variables is indispensable to develop predictive models. 2. The present study used predictive modelling approaches to investigate hypotheses that explain the variation in fish species richness between estuaries over a worldwide spatial extent. Ultimately, such models will allow assessment of future changes in ecosystem structure and function as a result of environmental changes. 3. A comprehensive worldwide data base was compiled of the fish assemblage composition and environmental characteristics of estuaries. Generalized Linear Models were used to quantify how variation in species richness among estuaries is related to historical events, energy dynamics and ecosystem characteristics, while controlling for sampling effects. 4. At the global extent, species richness differed among marine biogeographic realms and continents and increased with mean sea surface temperature, terrestrial net primary productivity and the stability of connectivity with a marine ecosystem (open vs. temporarily open estuaries). At a smaller extent (within a marine biogeographic realm or continent), other characteristics were also important in predicting variation in species richness, with species richness increasing with estuary area and continental shelf width. 5. The results suggest that species richness in an estuary is defined by predictors that are spatially hierarchical. Over the largest spatial extents, species richness is influenced by the broader distributions and habitat use patterns of marine and freshwater species that can colonize estuaries, which are in turn governed by history contingency, energy dynamics and productivity variables. Species richness is also influenced by more regional and local parameters that can further affect the process of community colonization in an estuary including the connectivity of the estuary with the adjacent marine habitat, and, over smaller spatial extents, the size of these habitats. In summary, patterns of species richness in estuaries across large spatial extents seem to reflect from global to local processes acting on community colonization. The importance of considering spatial extent, sampling effects and of combining history and contemporary environmental characteristics when exploring biodiversity is highlighted. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons on behalf of the British Ecological Society.
Laura A. Giese; W. Michael Aust; Carl C. Trettin; Randall K. Kolka
2000-01-01
The distribution of organic matter within a floodplain is a controlling factor affecting water quality, habitat, and food webs. Accordingly, developn~ent of vegetation in the riparian zone can be expected to influence ecosystem functions, and organic matter storage patterns are believed to be indicators of functional recovery in disturbed riparian zones. Our objective...
Taehee Hwang; James M. Vose; Christina Tague
2012-01-01
Lateral water flow in catchments can produce important patterns in water and nutrient fluxes and stores and also influences the long-term spatial development of forest ecosystems. Specifically, patterns of vegetation type and density along hydrologic flow paths can represent a signal of the redistribution of water and nitrogen mediated by lateral hydrologic flow. This...
Justin P. Ziegler; Chad M. Hoffman; Paula J. Fornwalt; Carolyn H. Sieg; Michael A. Battaglia; Marin E. Chambers; Jose M. Iniguez
2017-01-01
Shifting fire regimes alter forest structure assembly in ponderosa pine forests and may produce structural heterogeneity following stand-replacing fire due, in part, to fine-scale variability in growing environments. We mapped tree regeneration in eighteen plots 11 to 15 years after stand-replacing fire in Colorado and South Dakota, USA. We used point pattern analyses...
NASA Astrophysics Data System (ADS)
Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Pitchford, M.; Frank, N. H.
2014-11-01
Monthly, seasonal, and annual mean estimates of urban influence on regional concentrations of major aerosol species were computed using speciated aerosol data from the rural IMPROVE network (Interagency Monitoring of Protected Visual Environments) and the United States Environmental Protection Agency's urban Chemical Speciation Network for the 2008 through 2011 period. Aggregated for sites across the continental United States, the annual mean and one standard error in urban excess (defined as the ratio of urban to nearby rural concentrations) was highest for elemental carbon (3.3 ± 0.2), followed by ammonium nitrate (2.5 ± 0.2), particulate organic matter (1.78 ± 0.08), and ammonium sulfate (1.23 ± 0.03). The seasonal variability in urban excess was significant for carbonaceous aerosols and ammonium nitrate in the West, in contrast to the low seasonal variability in the urban influence of ammonium sulfate. Generally for all species, higher excess values in the West were associated with localized urban sources while in the East excess was more regional in extent. In addition, higher excess values in the western United States in winter were likely influenced not only by differences in sources but also by combined meteorological and topographic effects. This work has implications for understanding the spatial heterogeneity of major aerosol species near the interface of urban and rural regions and therefore for designing appropriate air quality management strategies. In addition, the spatial patterns in speciated mass concentrations provide constraints for regional and global models.
Butler, D.R.; Malanson, G.P.; Walsh, S.J.; Fagre, D.B.
2007-01-01
The spatial distribution and pattern of alpine treeline in the American West reflect the overarching influences of geological history, lithology and structure, and geomorphic processes and landforms, and geologic and geomorphic factors—both forms and processes—can control the spatiotemporal response of the ecotone to climate change. These influences occur at spatial scales ranging from the continental scale to fine scale processes and landforms at the slope scale. Past geomorphic influences, particularly Pleistocene glaciation, have also left their impact on treeline, and treelines across the west are still adjusting to post-Pleistocene conditions within Pleistocene-created landforms. Current fine scale processes include solifluction and changes on relict solifluction and digging by animals. These processes should be examined in detail in future studies to facilitate a better understanding of where individual tree seedlings become established as a primary response of the ecotone to climate change.
Tashiro, Shota; Le, Minh Nguyen Tuyet; Kusama, Yuta; Nakatani, Eri; Suga, Mika; Furue, Miho K; Satoh, Taku; Sugiura, Shinji; Kanamori, Toshiyuki; Ohnuma, Kiyoshi
2018-04-19
Spatial pattern formation is a critical step in embryogenesis. Bone morphogenetic protein 4 (BMP4) and its inhibitors are major factors for the formation of spatial patterns during embryogenesis. However, spatial patterning of the human embryo is unclear because of ethical issues and isotropic culture environments resulting from conventional culture dishes. Here, we utilized human pluripotent stem cells (hiPSCs) and a simple anisotropic (unidirectional perfusion) culture chamber, which creates unidirectional conditions, to measure the cell community effect. The influence of cell density on BMP4-induced differentiation was explored during static culture using a conventional culture dish. Immunostaining of the early differentiation marker SSEA-1 and the mesendoderm marker BRACHYURY revealed that high cell density suppressed differentiation, with small clusters of differentiated and undifferentiated cells formed. Addition of five-fold higher concentration of BMP4 showed similar results, suggesting that suppression was not caused by depletion of BMP4 but rather by high cell density. Quantitative RT-PCR array analysis showed that BMP4 induced multi-lineage differentiation, which was also suppressed under high-density conditions. We fabricated an elongated perfusion culture chamber, in which proteins were transported unidirectionally, and hiPSCs were cultured with BMP4. At low density, the expression was the same throughout the chamber. However, at high density, SSEA-1 and BRACHYURY were expressed only in upstream cells, suggesting that some autocrine/paracrine factors inhibited the action of BMP4 in downstream cells to form the spatial pattern. Human iPSCs cultured in a perfusion culture chamber might be useful for studying in vitro macroscopic pattern formation in human embryogenesis. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Modelling effects on grid cells of sensory input during self‐motion
Raudies, Florian; Hinman, James R.
2016-01-01
Abstract The neural coding of spatial location for memory function may involve grid cells in the medial entorhinal cortex, but the mechanism of generating the spatial responses of grid cells remains unclear. This review describes some current theories and experimental data concerning the role of sensory input in generating the regular spatial firing patterns of grid cells, and changes in grid cell firing fields with movement of environmental barriers. As described here, the influence of visual features on spatial firing could involve either computations of self‐motion based on optic flow, or computations of absolute position based on the angle and distance of static visual cues. Due to anatomical selectivity of retinotopic processing, the sensory features on the walls of an environment may have a stronger effect on ventral grid cells that have wider spaced firing fields, whereas the sensory features on the ground plane may influence the firing of dorsal grid cells with narrower spacing between firing fields. These sensory influences could contribute to the potential functional role of grid cells in guiding goal‐directed navigation. PMID:27094096
Cresson, Pierre; Bouchoucha, Marc; Morat, Fabien; Miralles, Francoise; Chavanon, Fabienne; Loizeau, Veronique; Cossa, Daniel
2015-11-01
Chemical contamination levels and stable isotope ratios provide integrated information about contaminant exposure, trophic position and also biological and environmental influences on marine organisms. By combining these approaches with otolith shape analyses, the aim of the present study was to document the spatial variability of Hg and PCB contamination of the European hake (Merluccius merluccius) in the French Mediterranean, hypothesizing that local contaminant sources, environmental conditions and biological specificities lead to site-specific contamination patterns. High Hg concentrations discriminated Corsica (average: 1.36 ± 0.80 μg g(-1) dm) from the Gulf of Lions (average values<0.5 μg g(-1) dm), where Rhône River input caused high PCB burdens. CB 153 average concentrations ranged between 4.00 ± 0.64 and 18.39 ± 12.38 ng g(-1) dm in the Gulf of Lions, whatever the sex of the individuals, whereas the highest values in Corsica were 6.75 ± 4.22 ng g(-1) dm. Otolith shape discriminated juveniles and adults, due to their different habitats. The use of combined ecotracers was revealed as a powerful tool to discriminate between fish populations at large and small spatial scale, and to enable understanding of the environmental and biological influences on contamination patterns. Copyright © 2015 Elsevier B.V. All rights reserved.
Lapierre, Jean-Francois; Seekell, David A; Del Giorgio, Paul A
2015-12-01
Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals. © 2015 John Wiley & Sons Ltd.
MARINE AEROSOLS ALTER SOIL PROCESSES IN COASTAL FORESTS
Most models of watershed biogeochemistry include the movement of materials from land to rivers and eventually the ocean. Few conceptual views, however, acknowledge the influence of materials derived from the ocean on terrestrial ecosystems processes. Based on spatial patterns o...
USDA-ARS?s Scientific Manuscript database
Seasonal changes in aboveground primary production (i.e. phenology) are influenced by environmental conditions with implications for land-atmosphere interactions, carbon cycling, and agricultural production. Monitoring phenology and quantifying seasonal patterns across spatially extensive grasslands...
NASA Astrophysics Data System (ADS)
Ye, Ran; Cai, Yanhong; Wei, Yongjie; Li, Xiaoming
2017-04-01
The spatial pattern of phytoplankton community can indicate potential environmental variation in different water bodies. In this context, spatial pattern of phytoplankton community and its response to environmental and spatial factors were studied in the coastal waters of northern Zhejiang, East China Sea using multivariate statistical techniques. Results showed that 94 species belonging to 40 genera, 5 phyla were recorded (the remaining 9 were identified to genus level) with diatoms being the most dominant followed by dinoflagellates. Hierarchical clustering analysis (HCA), nonmetric multidimentional scaling (NMDS), and analysis of similarity (ANOSIM) all demomstrated that the whole study area could be divided into 3 subareas with significant differences. Indicator species analysis (ISA) further confirmed that the indicator species of each subarea correlated significantly with specific environmental factors. Distance-based linear model (Distlm) and Mantel test revealed that silicate (SiO32-), phosphate (PO43-), pH, and dissolved oxygen (DO) were the most important environmental factors influencing phytoplankton community. Variation portioning (VP) finally concluded that the shared fractions of environmental and spatial factors were higher than either the pure environmental effects or the pure spatial effects, suggesting phytoplankton biogeography were mainly affected by both the environmental variability and dispersal limitation. Additionally, other factors (eg., trace metals, biological grazing, climate change, and time-scale variation) may also be the sources of the unexplained variation which need further study.
Krüger, Julia; Bohrmann, Johannes
2015-01-16
Bioelectric phenomena have been found to exert influence on various developmental and regenerative processes. Little is known about their possible functions and the cellular mechanisms by which they might act during Drosophila oogenesis. In developing follicles, characteristic extracellular current patterns and membrane-potential changes in oocyte and nurse cells have been observed that partly depend on the exchange of protons, potassium ions and sodium ions. These bioelectric properties have been supposed to be related to various processes during oogenesis, e. g. pH-regulation, osmoregulation, cell communication, cell migration, cell proliferation, cell death, vitellogenesis and follicle growth. Analysing in detail the spatial distribution and activity of the relevant ion-transport mechanisms is expected to elucidate the roles that bioelectric phenomena play during oogenesis. To obtain an overview of bioelectric patterning along the longitudinal and transversal axes of the developing follicle, the spatial distributions of membrane potentials (Vmem), intracellular pH (pHi) and various membrane-channel proteins were studied systematically using fluorescent indicators, fluorescent inhibitors and antisera. During mid-vitellogenic stages 9 to 10B, characteristic, stage-specific Vmem-patterns in the follicle-cell epithelium as well as anteroposterior pHi-gradients in follicle cells and nurse cells were observed. Corresponding distribution patterns of proton pumps (V-ATPases), voltage-dependent L-type Ca(2+)-channels, amiloride-sensitive Na(+)-channels and Na(+),H(+)-exchangers (NHE) and gap-junction proteins (innexin 3) were detected. In particular, six morphologically distinguishable follicle-cell types are characterized on the bioelectric level by differences concerning Vmem and pHi as well as specific compositions of ion channels and carriers. Striking similarities between Vmem-patterns and activity patterns of voltage-dependent Ca(2+)-channels were found, suggesting a mechanism for transducing bioelectric signals into cellular responses. Moreover, gradients of electrical potential and pH were observed within single cells. Our data suggest that spatial patterning of Vmem, pHi and specific membrane-channel proteins results in bioelectric signals that are supposed to play important roles during oogenesis, e. g. by influencing spatial coordinates, regulating migration processes or modifying the cytoskeletal organization. Characteristic stage-specific changes of bioelectric activity in specialized cell types are correlated with various developmental processes.
Floodplain complexity and surface metrics: influences of scale and geomorphology
Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.
2015-01-01
Many studies of fluvial geomorphology and landscape ecology examine a single river or landscape, thus lack generality, making it difficult to develop a general understanding of the linkages between landscape patterns and larger-scale driving variables. We examined the spatial complexity of eight floodplain surfaces in widely different geographic settings and determined how patterns measured at different scales relate to different environmental drivers. Floodplain surface complexity is defined as having highly variable surface conditions that are also highly organised in space. These two components of floodplain surface complexity were measured across multiple sampling scales from LiDAR-derived DEMs. The surface character and variability of each floodplain were measured using four surface metrics; namely, standard deviation, skewness, coefficient of variation, and standard deviation of curvature from a series of moving window analyses ranging from 50 to 1000 m in radius. The spatial organisation of each floodplain surface was measured using spatial correlograms of the four surface metrics. Surface character, variability, and spatial organisation differed among the eight floodplains; and random, fragmented, highly patchy, and simple gradient spatial patterns were exhibited, depending upon the metric and window size. Differences in surface character and variability among the floodplains became statistically stronger with increasing sampling scale (window size), as did their associations with environmental variables. Sediment yield was consistently associated with differences in surface character and variability, as were flow discharge and variability at smaller sampling scales. Floodplain width was associated with differences in the spatial organization of surface conditions at smaller sampling scales, while valley slope was weakly associated with differences in spatial organisation at larger scales. A comparison of floodplain landscape patterns measured at different scales would improve our understanding of the role that different environmental variables play at different scales and in different geomorphic settings.
Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel
2015-01-01
Even though recent studies have clarified the influence and hierarchy of environmental filters on bacterial community structure, those constraining bacterial populations variations remain unclear. In consequence, our ability to understand to ecological attributes of soil bacteria and to predict microbial community response to environmental stress is therefore limited. Here, we characterized the bacterial community composition and the various bacterial taxonomic groups constituting the community across an agricultural landscape of 12 km2, by using a 215 × 215 m systematic grid representing 278 sites to precisely decipher their spatial distribution and drivers at this scale. The bacterial and Archaeal community composition was characterized by applying 16S rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics tools were used to reveal the heterogeneous distribution of bacterial composition at this scale. Soil physical parameters and land management explained a significant amount of variation, suggesting that environmental selection is the major process shaping bacterial composition. All taxa systematically displayed also a heterogeneous and particular distribution patterns. Different relative influences of soil characteristics, land use and space were observed, depending on the taxa, implying that selection and spatial processes might be differentially but not exclusively involved for each bacterial phylum. Soil pH was a major factor determining the distribution of most of the bacterial taxa and especially the most important factor explaining the spatial patterns of α-Proteobacteria and Planctomycetes. Soil texture, organic carbon content and quality were more specific to a few number of taxa (e.g., β-Proteobacteria and Chlorobi). Land management also influenced the distribution of bacterial taxa across the landscape and revealed different type of response to cropping intensity (positive, negative, neutral or hump-backed relationships) according to phyla. Altogether, this study provided valuable clues about the ecological behavior of soil bacterial and archaeal taxa at an agricultural landscape scale and could be useful for developing sustainable strategies of land management. PMID:25922908
Jaureguizar, A J; Solari, A; Cortés, F; Milessi, A C; Militelli, M I; Camiolo, M D; Luz Clara, M; García, M
2016-07-01
The fish diversity and the main environmental factors affecting the spatial distribution of species, life history stages and community structure in the Río de la Plata (RdP) and adjacent waters are reviewed and analysed, with emphasis on the functional guild classification. The functional guild classification indicated that most species in the RdP were marine stragglers, zoobenthivores and oviparous species, although the biomass was dominated by estuarine species. Salinity had a stronger influence than temperature on the spatial pattern for all life stages, shallower and fresher waters are the preferred habitats of neonates and juveniles. During the breeding season (spring-summer), adults showed an intrusion into the inner part of RdP or to its adjacent nearshore waters from the offshore waters for spawning or mating, respectively. Variations in river discharge and wind patterns greatly affected the spatial extent of estuarine water, which ultimately influenced the domain of the main life-history stages (juveniles or adults) for both marine and estuarine fishes, as well as species and fish assemblage composition. The strong environmental gradient restricts some species and life-history stages to a particular section and defines three main fish assemblage areas. The composition of the fish assemblage is indicative of the recruitment of freshwater and marine species to the estuary in opposite ways, determined by the vertical stratification. Seasonal changes in the species composition were related to migration as a result of salinity and temperature variations and reproductive migrations to spawning and mating areas. This overview reveals that the RdP is under environmental variations that are likely to produce modifications to fish distribution and abundance that affect its fisheries. This context plus fish stock declines and changes in exploitation patterns could amplify the magnitude of the variations in the fisheries resources availability and affect the sustainability of fishing communities. © 2016 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Brustolin, Marco C.; Thomas, Micheli C.; Mafra, Luiz L.; Lana, Paulo da Cunha
2014-08-01
Foraging macrofauna, such as the sand dollar Encope emarginata, can modify sediment properties and affect spatial distribution patterns of microphytobenthos and meiobenthos at different spatial scales. We adopted a spatial hierarchical approach composed of five spatial levels (km, 100 s m, 10 s m, 1 s m and cm) to describe variation patterns of microphytobenthos, meiobenthos and sediment variables in shallow subtidal regions in the subtropical Paranaguá Bay (Southern Brazil) with live E. emarginata (LE), dead E. emarginata (only skeletons - (DE), and no E. emarginata (WE). The overall structure of microphytobenthos and meiofauna was always less variable at WE and much of variation at the scale of 100 s m was related to variability within LE and DE, due to foraging activities or to the presence of shell hashes. Likewise, increased variability in chlorophyll-a and phaeopigment contents was observed among locations within LE, although textural parameters of sediment varied mainly at smaller scales. Variations within LE were related to changes on the amount and quality of food as a function of sediment heterogeneity induced by the foraging behavior of sand dollars. We provide strong evidence that top-down effects related to the occurrence of E. emarginata act in synergy with bottom-up structuring related to hydrodynamic processes in determining overall benthic spatial variability. Conversely, species richness is mainly influenced by environmental heterogeneity at small spatial scales (centimeters to meters), which creates a mosaic of microhabitats.
Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa
2010-01-01
Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546
Marston, Christopher G.; Danson, F. Mark; Armitage, Richard P.; Giraudoux, Patrick; Pleydell, David R.J.; Wang, Qian; Qui, Jiamin; Craig, Philip S.
2014-01-01
Understanding distribution patterns of hosts implicated in the transmission of zoonotic disease remains a key goal of parasitology. Here, random forests are employed to model spatial patterns of the presence of the plateau pika (Ochotona spp.) small mammal intermediate host for the parasitic tapeworm Echinococcus multilocularis which is responsible for a significant burden of human zoonoses in western China. Landsat ETM+ satellite imagery and digital elevation model data were utilized to generate quantified measures of environmental characteristics across a study area in Sichuan Province, China. Land cover maps were generated identifying the distribution of specific land cover types, with landscape metrics employed to describe the spatial organisation of land cover patches. Random forests were used to model spatial patterns of Ochotona spp. presence, enabling the relative importance of the environmental characteristics in relation to Ochotona spp. presence to be ranked. An index of habitat aggregation was identified as the most important variable in influencing Ochotona spp. presence, with area of degraded grassland the most important land cover class variable. 71% of the variance in Ochotona spp. presence was explained, with a 90.98% accuracy rate as determined by ‘out-of-bag’ error assessment. Identification of the environmental characteristics influencing Ochotona spp. presence enables us to better understand distribution patterns of hosts implicated in the transmission of Em. The predictive mapping of this Em host enables the identification of human populations at increased risk of infection, enabling preventative strategies to be adopted. PMID:25386042
Vegetation-induced spatial variability of soil redox properties in wetlands
NASA Astrophysics Data System (ADS)
Szalai, Zoltán; Jakab, Gergely; Kiss, Klaudia; Ringer, Marianna; Balázs, Réka; Zacháry, Dóra; Horváth Szabó, Kata; Perényi, Katalin
2016-04-01
Vegetation induced land patches may result spatial pattern of on soil Eh and pH. These spatial pattern are mainly emerged by differences of aeration and exudation of assimilates. Present paper focuses on vertical extent and temporal dynamics of these patterns in wetlands. Two study sites were selected: 1. a plain wetland on calcareous sandy parent material (Ceglédbercel, Danube-Tisza Interfluve, Hungary); 2. headwater wetland with calcareous loamy parent material (Bátaapáti, Hungary). Two vegetation patches were studied in site 1: sedgy (dominated by Carex riparia) and reedy (dominated by Phragmites australis). Three patches were studied in site2: sedgy1 (dominated by C vulpina), sedgy 2 (C. riparia); nettle-horsetail (Urtica dioica and Equisetum arvense). Boundaries between patches were studied separately. Soil redox, pH and temperature studied by automated remote controlled instruments. Three digital sensors (Ponsell) were installed in each locations: 20cm and 40cm sensors represent the solum and 100 cm sensor monitors the subsoil). Groundwater wells were installed near to triplets for soil water sampling. Soil Eh, pH and temperature values were recorded in each 10 minutes. Soil water sampling for iron and DOC were carried out during saturated periods. Spatial pattern of soil Eh is clearly caused by vegetation. We measured significant differences between Eh values of the studied patches in the solum. We did not find this kinds horizontal differences in the subsoil. Boundaries of the patches usually had more reductive soil environment than the core areas. We have found temporal dynamics of the spatial redox pattern. Differences were not so well expressed during wintertime. These spatial patterns had influence on the DOC and iron content of porewater, as well. Highest temporal dynamics of soil redox properties and porewater iron could be found in the boundaries. These observations refer to importance patchiness of vegetation on soil chemical properties in wetlands. Authors are grateful to Hungarian Scientific research Fund (K100180)
NASA Astrophysics Data System (ADS)
Pascual, M.; Cash, B.; Reiner, R.; King, A.; Emch, M.; Yunus, M.; Faruque, A. S.
2012-12-01
The influence of climate variability on the population dynamics of infectious diseases is considered a large scale, regional, phenomenon, and as such, has been previously addressed for cholera with temporal models that do not incorporate fine-scale spatial structure. In our previous work, evidence for a role of ENSO (El Niño Southern Oscillation) on cholera in Bangladesh was elucidated, and shown to influence the regional climate through precipitation. With a probabilistic spatial model for cholera dynamics in the megacity of Dhaka, we found that the action of climate variability (ENSO and flooding) is localized: there is a climate-sensitive urban core that acts to propagate risk to the rest of the city. Here, we consider long-term surveillance data for shigellosis, another diarrheal disease that coexists with cholera in Bangladesh. We compare the patterns of association with climate variables for these two diseases in a rural setting, as well as the spatial structure in their spatio-temporal dynamics in an urban one. Evidence for similar patterns is presented, and discussed in the context of the differences in the routes of transmission of the two diseases and the proposed role of an environmental reservoir in cholera. The similarities provide evidence for a more general influence of hydrology and of socio-economic factors underlying human susceptibility and sanitary conditions.
E. H. Helmer; Thomas J. Brandeis; Ariel E. Lugo; Todd Kennaway
2008-01-01
Little is known about the tropical forests that undergo clearing as urban/built-up and other developed lands spread. This study uses remote sensing-based maps of Puerto Rico, multinomial logit models and forest inventory data to explain patterns of forest age and the age of forests cleared for land development and assess their implications for forest carbon storage and...
Perchoux, Camille; Kestens, Yan; Thomas, Frédérique; Van Hulst, Andraea; Thierry, Benoit; Chaix, Basile
2014-10-01
Prior epidemiological studies have mainly focused on local residential neighborhoods to assess environmental exposures. However, individual spatial behavior may modify residential neighborhood influences, with weaker health effects expected for mobile populations. By examining individual patterns of daily mobility and associated socio-demographic profiles and transportation modes, this article seeks to develop innovative methods to account for daily mobility in health studies. We used data from the RECORD Cohort Study collected in 2011-2012 in the Paris metropolitan area, France. A sample of 2062 individuals was investigated. Participants' perceived residential neighborhood boundaries and regular activity locations were geocoded using the VERITAS application. Twenty-four indicators were created to qualify individual space-time patterns, using spatial analysis methods and a geographic information system. Three domains of indicators were considered: lifestyle indicators, indicators related to the geometry of the activity space, and indicators related to the importance of the residential neighborhood in the overall activity space. Principal component analysis was used to identify main dimensions of spatial behavior. Multilevel linear regression was used to determine which individual characteristics were associated with each spatial behavior dimension. The factor analysis generated five dimensions of spatial behavior: importance of the residential neighborhood in the activity space, volume of activities, and size, eccentricity, and specialization of the activity space. Age, socioeconomic status, and location of the household in the region were the main predictors of daily mobility patterns. Activity spaces of small sizes centered on the residential neighborhood and implying a large volume of activities were associated with walking and/or biking as a transportation mode. Examination of patterns of spatial behavior by individual socio-demographic characteristics and in relation to transportation modes is useful to identify populations with specific mobility/accessibility needs and has implications for investigating transportation-related physical activity and assessing environmental exposures and their effects on health. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bogunović, Igor; Trevisani, Sebastiano; Pereira, Paulo; Šeput, Miranda
2017-04-01
Climate change is expected to have an important influence on the crop production in agricultural regions. Soil carbon represents an important soil property that contributes to mitigate the negative influence of climate change on intensive cropped areas. Based on 5063 soil samples sampled from soil top layer (0-30 cm) we studied the spatial distribution of total carbon (TC) and soil organic carbon (SOC) content in various soil types (Anthrosols, Cambisols, Chernozems, Fluvisols, Gleysols, Luvisols) in Baranja region, Croatia. TC concentrations ranged from 2.10 to 66.15 mg/kg (with a mean of 16.31 mg/kg). SOC concentrations ranged from 1.86 to 58.00 mg/kg (with a mean of 13.35 mg/kg). TC and SOC showed moderate heterogeneity with coefficient of variation (CV) of 51.3% and 33.8%, respectively. Average concentrations of soil TC vary in function of soil types in the following decreasing order: Anthrosols (20.9 mg/kg) > Gleysols (19.3 mg/kg) > Fluvisols (15.6 mg/kg) > Chernozems (14.2 mg/kg) > Luvisols (12.6 mg/kg) > Cambisols (11.1 mg/kg), while SOC concentrations follow next order: Gleysols (15.4 mg/kg) > Fluvisols (13.2 mg/kg) = Anthrosols (13.2 mg/kg) > Chernozems (12.6 mg/kg) > Luvisols (11.4 mg/kg) > Cambisols (10.5 mg/kg). Performed geostatistical analysis of TC and SOC; both the experimental variograms as well as the interpolated maps reveal quite different spatial patterns of the two studied soil properties. The analysis of the spatial variability and of the spatial patterns of the produced maps show that SOC is likely influenced by antrophic processes. Spatial variability of SOC indicates soil health deterioration on an important significant portion of the studied area; this suggests the need for future adoption of environmentally friendly soil management in the Baranja region. Regional maps of TC and SOC provide quantitative information for regional planning and environmental monitoring and protection purposes.
On the influence of surface patterning on tissue self-assembly and mechanics.
Coppola, Valerio; Ventre, Maurizio; Natale, Carlo F; Rescigno, Francesca; Netti, Paolo A
2018-04-28
Extracellular matrix assembly and composition influence the biological and mechanical functions of tissues. Developing strategies to control the spatial arrangement of cells and matrix is of central importance for tissue engineering-related approaches relying on self-assembling and scaffoldless processes. Literature reports demonstrated that signals patterned on material surfaces are able to control cell positioning and matrix orientation. However, the mechanisms underlying the interactions between material signals and the structure of the de novo synthesized matrix are far from being thoroughly understood. In this work, we investigated the ordering effect provided by nanoscale topographic patterns on the assembly of tissue sheets grown in vitro. We stimulated MC3T3-E1 preosteoblasts to produce and assemble a collagen-rich matrix on substrates displaying patterns with long- or short-range order. Then, we investigated microstructural features and mechanical properties of the tissue in uniaxial tension. Our results demonstrate that patterned material surfaces are able to control the initial organization of cells in close contact to the surface; then cell-generated contractile forces profoundly remodel tissue structure towards mechanically stable spatial patterns. Such a remodelling effect acts both locally, as it affects cell and nuclear shape and globally, by affecting the gross mechanical response of the tissue. Such an aspect of dynamic interplay between cells and the surrounding matrix must be taken into account when designing material platform for the in vitro generation of tissue with specific microstructural assemblies. Copyright © 2018 John Wiley & Sons, Ltd.
van Strien, Maarten J; Slager, Cornelis T J; de Vries, Bauke; Grêt-Regamey, Adrienne
2016-06-01
Many studies have assessed the effect of landscape patterns on spatial ecological processes by simulating these processes in computer-generated landscapes with varying composition and configuration. To generate such landscapes, various neutral landscape models have been developed. However, the limited set of landscape-level pattern variables included in these models is often inadequate to generate landscapes that reflect real landscapes. In order to achieve more flexibility and variability in the generated landscapes patterns, a more complete set of class- and patch-level pattern variables should be implemented in these models. These enhancements have been implemented in Landscape Generator (LG), which is a software that uses optimization algorithms to generate landscapes that match user-defined target values. Developed for participatory spatial planning at small scale, we enhanced the usability of LG and demonstrated how it can be used for larger scale ecological studies. First, we used LG to recreate landscape patterns from a real landscape (i.e., a mountainous region in Switzerland). Second, we generated landscape series with incrementally changing pattern variables, which could be used in ecological simulation studies. We found that LG was able to recreate landscape patterns that approximate those of real landscapes. Furthermore, we successfully generated landscape series that would not have been possible with traditional neutral landscape models. LG is a promising novel approach for generating neutral landscapes and enables testing of new hypotheses regarding the influence of landscape patterns on ecological processes. LG is freely available online.
A gravity model for the spread of a pollinator-borne plant pathogen.
Ferrari, Matthew J; Bjørnstad, Ottar N; Partain, Jessica L; Antonovics, Janis
2006-09-01
Many pathogens of plants are transmitted by arthropod vectors whose movement between individual hosts is influenced by foraging behavior. Insect foraging has been shown to depend on both the quality of hosts and the distances between hosts. Given the spatial distribution of host plants and individual variation in quality, vector foraging patterns may therefore produce predictable variation in exposure to pathogens. We develop a "gravity" model to describe the spatial spread of a vector-borne plant pathogen from underlying models of insect foraging in response to host quality using the pollinator-borne smut fungus Microbotryum violaceum as a case study. We fit the model to spatially explicit time series of M. violaceum transmission in replicate experimental plots of the white campion Silene latifolia. The gravity model provides a better fit than a mean field model or a model with only distance-dependent transmission. The results highlight the importance of active vector foraging in generating spatial patterns of disease incidence and for pathogen-mediated selection for floral traits.
Li, Lianfa; Laurent, Olivier; Wu, Jun
2016-02-05
Epidemiological studies suggest that air pollution is adversely associated with pregnancy outcomes. Such associations may be modified by spatially-varying factors including socio-demographic characteristics, land-use patterns and unaccounted exposures. Yet, few studies have systematically investigated the impact of these factors on spatial variability of the air pollution's effects. This study aimed to examine spatial variability of the effects of air pollution on term birth weight across Census tracts and the influence of tract-level factors on such variability. We obtained over 900,000 birth records from 2001 to 2008 in Los Angeles County, California, USA. Air pollution exposure was modeled at individual level for nitrogen dioxide (NO2) and nitrogen oxides (NOx) using spatiotemporal models. Two-stage Bayesian hierarchical non-linear models were developed to (1) quantify the associations between air pollution exposure and term birth weight within each tract; and (2) examine the socio-demographic, land-use, and exposure-related factors contributing to the between-tract variability of the associations between air pollution and term birth weight. Higher air pollution exposure was associated with lower term birth weight (average posterior effects: -14.7 (95 % CI: -19.8, -9.7) g per 10 ppb increment in NO2 and -6.9 (95 % CI: -12.9, -0.9) g per 10 ppb increment in NOx). The variation of the association across Census tracts was significantly influenced by the tract-level socio-demographic, exposure-related and land-use factors. Our models captured the complex non-linear relationship between these factors and the associations between air pollution and term birth weight: we observed the thresholds from which the influence of the tract-level factors was markedly exacerbated or attenuated. Exacerbating factors might reflect additional exposure to environmental insults or lower socio-economic status with higher vulnerability, whereas attenuating factors might indicate reduced exposure or higher socioeconomic status with lower vulnerability. Our Bayesian models effectively combined a priori knowledge with training data to infer the posterior association of air pollution with term birth weight and to evaluate the influence of the tract-level factors on spatial variability of such association. This study contributes new findings about non-linear influences of socio-demographic factors, land-use patterns, and unaccounted exposures on spatial variability of the effects of air pollution.
Spatial patterns of plastic debris along Estuarine shorelines.
Browne, Mark A; Galloway, Tamara S; Thompson, Richard C
2010-05-01
The human population generates vast quantities of waste material. Macro (>1 mm) and microscopic (<1 mm) fragments of plastic debris represent a substantial contamination problem. Here, we test hypotheses about the influence of wind and depositional regime on spatial patterns of micro- and macro-plastic debris within the Tamar Estuary, UK. Debris was identified to the type of polymer using Fourier-transform infrared spectroscopy (FT-IR) and categorized according to density. In terms of abundance, microplastic accounted for 65% of debris recorded and mainly comprised polyvinylchloride, polyester, and polyamide. Generally, there were greater quantities of plastic at downwind sites. For macroplastic, there were clear patterns of distribution for less dense items, while for microplastic debris, clear patterns were for denser material. Small particles of sediment and plastic are both likely to settle slowly from the water-column and are likely to be transported by the flow of water and be deposited in areas where the movements of water are slower. There was, however, no relationship between the abundance of microplastic and the proportion of clay in sediments from the strandline. These results illustrate how FT-IR spectroscopy can be used to identify the different types of plastic and in this case was used to indicate spatial patterns, demonstrating habitats that are downwind acting as potential sinks for the accumulation of debris.
Spatial patterns and broad-scale weather cues of beech mast seeding in Europe.
Vacchiano, Giorgio; Hacket-Pain, Andrew; Turco, Marco; Motta, Renzo; Maringer, Janet; Conedera, Marco; Drobyshev, Igor; Ascoli, Davide
2017-07-01
Mast seeding is a crucial population process in many tree species, but its spatio-temporal patterns and drivers at the continental scale remain unknown . Using a large dataset (8000 masting observations across Europe for years 1950-2014) we analysed the spatial pattern of masting across the entire geographical range of European beech, how it is influenced by precipitation, temperature and drought, and the temporal and spatial stability of masting-weather correlations. Beech masting exhibited a general distance-dependent synchronicity and a pattern structured in three broad geographical groups consistent with continental climate regimes. Spearman's correlations and logistic regression revealed a general pattern of beech masting correlating negatively with temperature in the summer 2 yr before masting, and positively with summer temperature 1 yr before masting (i.e. 2T model). The temperature difference between the two previous summers (DeltaT model) was also a good predictor. Moving correlation analysis applied to the longest eight chronologies (74-114 yr) revealed stable correlations between temperature and masting, confirming consistency in weather cues across space and time. These results confirm widespread dependency of masting on temperature and lend robustness to the attempts to reconstruct and predict mast years using temperature data. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Rodríguez-Galiano, Víctor; Garcia-Soldado, Maria José; Chica-Olmo, Mario
The importance of accurate and timely information describing the nature and extent of land and natural resources is increasing especially in rapidly growing metropolitan areas. While metropolitan area decision makers are in constant need of current geospatial information on patterns and trends in land cover and land use, relatively little researchers has investigated the influence of the satellite data resolution for monitoring geo-enviromental information. In this research a suite of remote sensing and GIS techniques is applied in a land use mapping study. The main task is to asses the influence of the spatial and spectral resolution in the separability between classes and in the classificatiońs accuracy. This study has been focused in a very dynamical area with respect to land use, located in the province of Granada (SE of Spain). The classifications results of the Airborne Hyperspectral Scanner (AHS, Daedalus Enterprise Inc., WA, EEUU) at different spatial resolutions: 2, 4 and 6 m and Landsat 5 TM data have been compared.
Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery
NASA Astrophysics Data System (ADS)
Axelsson, C.; Hanan, N. P.
2016-12-01
High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.
Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore
Mikle, Nathaniel; Graves, Tabitha A.; Kovach, Ryan P.; Kendall, Katherine C.; Macleod, Amy C.
2016-01-01
Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral.
Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore
Kovach, Ryan; Kendall, Katherine C.; Macleod, Amy C.
2016-01-01
Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral. PMID:27655768
Speciation gradients and the distribution of biodiversity.
Schluter, Dolph; Pennell, Matthew W
2017-05-31
Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.
Point pattern analysis applied to flood and landslide damage events in Switzerland (1972-2009)
NASA Astrophysics Data System (ADS)
Barbería, Laura; Schulte, Lothar; Carvalho, Filipe; Peña, Juan Carlos
2017-04-01
Damage caused by meteorological and hydrological extreme events depends on many factors, not only on hazard, but also on exposure and vulnerability. In order to reach a better understanding of the relation of these complex factors, their spatial pattern and underlying processes, the spatial dependency between values of damage recorded at sites of different distances can be investigated by point pattern analysis. For the Swiss flood and landslide damage database (1972-2009) first steps of point pattern analysis have been carried out. The most severe events have been selected (severe, very severe and catastrophic, according to GEES classification, a total number of 784 damage points) and Ripley's K-test and L-test have been performed, amongst others. For this purpose, R's library spatstat has been used. The results confirm that the damage points present a statistically significant clustered pattern, which could be connected to prevalence of damages near watercourses and also to rainfall distribution of each event, together with other factors. On the other hand, bivariate analysis shows there is no segregated pattern depending on process type: flood/debris flow vs landslide. This close relation points to a coupling between slope and fluvial processes, connectivity between small-size and middle-size catchments and the influence of spatial distribution of precipitation, temperature (snow melt and snow line) and other predisposing factors such as soil moisture, land-cover and environmental conditions. Therefore, further studies will investigate the relationship between the spatial pattern and one or more covariates, such as elevation, distance from watercourse or land use. The final goal will be to perform a regression model to the data, so that the adjusted model predicts the intensity of the point process as a function of the above mentioned covariates.
Barbosa, Carlos Eduardo A.; Misiewicz, Tracy M.; Fine, Paul V. A.; Costa, Flávia R. C.
2013-01-01
The formation of spatial genetic structure (SGS) may originate from different patterns of seed deposition in the landscape, and is mostly determined by seed dispersal limitation. After dispersal, mechanisms such as filtering by environmental factors or attack by herbivores/pathogens throughout plant development stages, and potentially either disrupt or intensify SGS patterns. We investigated how the genotype of Protium subserratum (Burseraceae), a common tree species in the Ducke Reserve, Brazil, is distributed across the landscape. We used seven microsatellite markers to assess the SGS among plants at different life stages and in different environments. By quantifying the patterns of relatedness among plants of different sizes, we inferred the ontogenetic stage in which SGS changes occurred, and compared these effects across soil types. Relatedness among seedlings decreased when distance between seedlings increased, especially for the youngest seedlings. However, this trend was not continued by older plants, as relatedness values were higher among neighboring individuals of the juvenile and adult size class. Contrasting relatedness patterns between seedlings and larger individuals suggests a trade-off between the negative effects of being near closely-related adults (e.g. due to herbivore and pathogen attack) and the advantage of being in a site favorable to establishment. We also found that soil texture strongly influenced density-dependence patterns, as young seedlings in clay soils were more related to each other than were seedlings in bottomland sandy soils, suggesting that the mechanisms that create and maintain patterns of SGS within a population may interact with environmental heterogeneity. PMID:23667502
NASA Astrophysics Data System (ADS)
Suriano, Zachary J.
2018-02-01
Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow cover ablation in the mid-latitudes. Using a synoptic classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow ablation events from 1960 to 2009. This approach allows for the influence of each synoptic weather type on ablation to be examined independently and for the monthly and inter-annual frequencies of the weather types to be tracked over time. Because of the spatial heterogeneity of snow cover and the relatively large geographic extent of the Great Lakes basin, snow cover ablation events and the synoptic-scale patterns that cause them are examined for each of the Great Lakes watershed's five primary sub-basins to understand the regional complexities of snow cover ablation variability. Results indicate that while many synoptic weather patterns lead to ablation across the basins, they can be generally grouped into one of only a few primary patterns: southerly flow, high-pressure overhead, and rain-on-snow patterns. As expected, the patterns leading to ablation are not necessarily consistent between the five sub-basins due to the seasonality of snow cover and the spatial variability of temperature, moisture, wind, and incoming solar radiation associated with the particular synoptic weather types. Significant trends in the inter-annual frequency of ablation-inducing synoptic types do exist for some sub-basins, indicating a potential change in the hydrologic impact of these patterns over time.
Benson, Thomas J; Ward, Michael P; Lampman, Richard L; Raim, Arlo; Weatherhead, Patrick J
2012-10-01
The arrival of West Nile virus (WNV) in North America has led to interest in the interaction between birds, the amplification hosts of WNV, and Culex mosquitoes, the primary WNV vectors. American robins (Turdus migratorius) are particularly important amplification hosts of WNV, and because the vector Culex mosquitoes are primarily nocturnal and feed on roosting birds, robin communal roosting behavior may play an important role in the transmission ecology of WNV. Using data from 43 radio-tracked individuals, we determined spatial and temporal patterns of robin roosting behavior, and how these patterns related to the distribution of WNV-infected mosquitoes. Use of the communal roost and fidelity to foraging areas was highly variable both within and among individual robins, and differed markedly from patterns documented in a previous study of robin roosting. Although there were clear seasonal patterns to both robin roosting and WNV occurrence, there was no significant relationship between communal roosting by robins and temporal or spatial patterns of WNV-positive mosquitoes. Our results suggest that, although robins may be important as WNV hosts, communal roosts are not necessarily important for WNV amplification. Other factors, including the availability and distribution of high-quality mosquito habitat and favorable weather for mosquito reproduction, may influence the importance of robin roosts for local WNV amplification and transmission.
NASA Astrophysics Data System (ADS)
Peng, Chi; Wang, Meie; Chen, Weiping
2016-11-01
Spatial statistical methods including Cokriging interpolation, Morans I analysis, and geographically weighted regression (GWR) were used for studying the spatial characteristics of polycyclic aromatic hydrocarbon (PAH) accumulation in urban, suburban, and rural soils of Beijing. The concentrations of PAHs decreased spatially as the level of urbanization decreased. Generally, PAHs in soil showed two spatial patterns on the regional scale: (1) regional baseline depositions with a radius of 16.5 km related to the level of urbanization and (2) isolated pockets of soil contaminated with PAHs were found up to around 3.5 km from industrial point sources. In the urban areas, soil PAHs showed high spatial heterogeneity on the block scale, which was probably related to vegetation cover, land use, and physical soil disturbance. The distribution of total PAHs in urban blocks was unrelated to the indicators of the intensity of anthropogenic activity, namely population density, light intensity at night, and road density, but was significantly related to the same indicators in the suburban and rural areas. The moving averages of molecular ratios suggested that PAHs in the suburban and rural soils were a mix of local emissions and diffusion from urban areas.
Oxytocin receptor density is associated with male mating tactics and social monogamy
Ophir, Alexander G.; Gessel, Ana; Zheng, Da-Jiang; Phelps, Steven M.
2012-01-01
Despite its well-described role in female affiliation, the influence of oxytocin on male pairbonding is largely unknown. However, recent human studies indicate that this nonapeptide has a potent influence on male behaviors commonly associated with monogamy. Here we investigated the distribution of oxytocin receptors (OTR) throughout the forebrain of the socially monogamous male prairie vole (Microtus ochrogaster). Because males vary in both sexual and spatial fidelity, we explored the extent to which OTR predicted monogamous or non-monogamous patterns of space use, mating success and sexual fidelity in free-living males. We found that monogamous males expressed higher OTR density in the nucleus accumbens than non-monogamous males, a result that mirrors species differences in voles with different mating systems. OTR density in the posterior portion of the insula predicted mating success. Finally, OTR in the hippocampus and septohippocampal nucleus, which are nuclei associated with spatial memory, predicted patterns of space use and reproductive success within mating tactics. Our data highlight the importance of oxytocin receptor in neural structures associated with pairbonding and socio-spatial memory in male mating tactics. The role of memory in mating systems is often neglected, despite the fact that mating tactics impose an inherently spatial challenge for animals. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating pairbonding and mating tactics is crucial to fully appreciate the suite of factors driving mating systems. PMID:22285648
Guo, Qiang; Xu, Pengpeng; Pei, Xin; Wong, S C; Yao, Danya
2017-02-01
Pedestrian safety is increasingly recognized as a major public health concern. Extensive safety studies have been conducted to examine the influence of multiple variables on the occurrence of pedestrian-vehicle crashes. However, the explicit relationship between pedestrian safety and road network characteristics remains unknown. This study particularly focused on the role of different road network patterns on the occurrence of crashes involving pedestrians. A global integration index via space syntax was introduced to quantify the topological structures of road networks. The Bayesian Poisson-lognormal (PLN) models with conditional autoregressive (CAR) prior were then developed via three different proximity structures: contiguity, geometry-centroid distance, and road network connectivity. The models were also compared with the PLN counterpart without spatial correlation effects. The analysis was based on a comprehensive crash dataset from 131 selected traffic analysis zones in Hong Kong. The results indicated that higher global integration was associated with more pedestrian-vehicle crashes; the irregular pattern network was proved to be safest in terms of pedestrian crash occurrences, whereas the grid pattern was the least safe; the CAR model with a neighborhood structure based on road network connectivity was found to outperform in model goodness-of-fit, implying the importance of accurately accounting for spatial correlation when modeling spatially aggregated crash data. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Taguas, Encarnación; Vanderlinden, Karl; Pedrera-Parrilla, Aura; Giráldez, Juan V.; Gómez, Jose A.
2016-04-01
Spatial and temporal patterns of vegetal communities control local biogeophysical processes.. The use of cover crops and spontaneous grass cover as a soil erosion control measure is quite common, particularly in hilly agricultural areas. Spontaneous covers show usually irregular spatial and temporal patterns, resulting in a questionable efficiency and and unresolved management requirements. However, due to its zero cost, it is a helpful alternative for soil erosion control in marginal farms (Taguas et al., 2015). The main aim of this work was to characterize the spatial and temporal patterns of spontaneous grass cover in an olive orchard microcatchment to interpret its dependences on other physical features as well as its influence on soil loss control. The specific objectives were: i) to evaluate the relationships between the mean cover and the variables: accumulated precipitation, accumulated evapotranspiration and average minimum temperature for the preceding 5, 15, 30 and 60 days to the sampling date; ii) study the spatial aggregation degree of the cover, its temporal stability and its correlation with different topographical properties, the richness of species and the apparent electrical conductivity as a measure of soil variability; and iii) describe the influence of the cover on runoff and soil loss in the catchments. Cover percentage corresponding to spontaneous grass was evaluated on a seaonsal basis during 3 years (2011-2013), resulting in 12 surveys. A permanent and regular grid of 36 points covering the entire catchment (5-6 samples/ha) was used in each survey. At each location cover percentage was determined through image analyses. In order to explore the relations between cover percentage and meteorological variables, multiple linear regression was applied whereas the SADIE approach (Spatial analysis by distance indices; Perry, 1998) was used to describe possible spatial aggregation patterns and the correlation with features such as aspect, slope, drainage area, height, richness and apparent electrical conductivity. The mean annual cover percentage varied from 23% to 36% with a coefficient of variation of 57% and 6%, respectively. On the seasonal scale, the cover varied between 0.2% and 50% . Significant effects of accumulated precipitation during the precedubg 15 days on the cover percentage were detected. In addition, a permanent aggregated pattern of spontaneous grass was observed for different seasonal surveys with abundant preceding rainfall. No clear correlations were found with physical attributes with the exception of electrical conductivity (50 cm-depth). Finally, the differences found in the hydrological responses for similar events with different degrees of soil cover highlighted the role that spontaneous vegetation plays in the sediment discharge control during humid periods. REFERENCES: Perry, J. N., 1998. Measures of spatial pattern for counts. Ecology 79: 1008-1017. E. V. Taguas, C. Arroyo, A. Lora, G. Guzmán, K. Vanderlinden. J. A. Gómez. 2015. Exploring the linkage between spontaneous grass cover biodiversity and soil degradation in two olive orchard microcatchments with contrasting environmental and management conditions. SOIL, 1, 651-664.
Modelling dendritic ecological networks in space: anintegrated network perspective
Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.
2013-01-01
the context of stream ecology. Within this context, we summarise the key innovations of a new family of spatial statistical models that describe spatial relationships in DENs. Finally, we discuss how different network analyses may be combined to address more complex and novel research questions. While our main focus is streams, the taxonomy of network analyses is also relevant anywhere spatial patterns in both network and 2-D space can be used to explore the influence of multi-scale processes on biota and their habitat (e.g. plant morphology and pest infestation, or preferential migration along stream or road corridors).
NASA Technical Reports Server (NTRS)
Browder, Joan A.; May, L. Nelson, Jr.; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.
1987-01-01
A stochastic spatial computer model addressing coastal resource problems in Lousiana is being refined and validated using thematic mapper (TM) imagery. The TM images of brackish marsh sites were processed and data were tabulated on spatial parameters from TM images of the salt marsh sites. The Fisheries Image Processing Systems (FIPS) was used to analyze the TM scene. Activities were concentrated on improving the structure of the model and developing a structure and methodology for calibrating the model with spatial-pattern data from the TM imagery.
Effect of spatial organisation behaviour on upscaling the overland flow formation in an arable land
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Blöschl, Günter
2014-05-01
Overland flow during rainfall events on arable land is important to investigate as it affects the land erosion process and water quality in the river. The formation of overland flow may happen through different ways (i.e. Hortonian overland flow, saturation excess overland flow) which is influenced by the surface and subsurface soil characteristics (i.e. land cover, soil infiltration rate). As the soil characteristics vary throughout the entire catchment, it will form distinct spatial patterns with organised or random behaviour. During the upscaling of hydrological processes from plot to catchment scale, this behaviour will become substantial since organised patterns will result in higher spatial connectivity and thus higher conductivity. However, very few of the existing studies explicitly address this effect of spatial organisations of the patterns in upscaling the hydrological processes to the catchment scale. This study will assess the upscaling of overland flow formation with concerns of spatial organisation behaviour of the patterns by application of direct field observations under natural conditions using video camera and soil moisture sensors and investigation of the underlying processes using a physical-based hydrology model. The study area is a Hydrological Open Air Laboratory (HOAL) located at Petzenkirchen, Lower Austria. It is a 64 ha catchment with land use consisting of arable land (87%), forest (6%), pasture (5%) and paved surfaces (2%). A video camera is installed 7m above the ground on a weather station mast in the middle of the arable land to monitor the overland flow patterns during rainfall events in a 2m x 6m plot scale. Soil moisture sensors with continuous measurement at different depth (5, 10, 20 and 50cm) are installed at points where the field is monitored by the camera. The patterns of overland flow formation and subsurface flow state at the plot scale will be generated using a coupled surface-subsurface flow physical-based hydrology model. The observation data will be assimilated into the model to verify the corresponding processes between surface and subsurface flow during the rainfall events. The patterns of conductivity then will be analyzed at catchment scale using the spatial stochastic analysis based on the classification of soil characteristics of the entire catchment. These patterns of conductivity then will be applied in the model at catchment scale to see how the organisational behaviour can affect the spatial connectivity of the hydrological processes and the results of the catchment response. A detailed modelling of the underlying processes in the physical-based model will allow us to see the direct effect of the spatial connectivity to the occurring surface and subsurface flow. This will improve the analysis of the effect of spatial organisations of the patterns in upscaling the hydrological processes from plot to catchment scale.
Spatial anxiety relates to spatial abilities as a function of working memory in children.
Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L
2012-01-01
Spatial ability is a strong predictor of students' pursuit of higher education in science and mathematics. However, very little is known about the affective factors that influence individual differences in spatial ability, particularly at a young age. We examine the role of spatial anxiety in young children's performance on a mental rotation task. We show that even at a young age, children report experiencing feelings of nervousness at the prospect of engaging in spatial activities. Moreover, we show that these feelings are associated with reduced mental rotation ability among students with high but not low working memory (WM). Interestingly, this WM × spatial anxiety interaction was only found among girls. We discuss these patterns of results in terms of the problem-solving strategies that boys versus girls use in solving mental rotation problems.
Hoos, A.B.; McMahon, G.
2009-01-01
Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States - higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.
Hoos, Anne B.; McMahon, Gerard
2009-01-01
Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States—higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.
Mapping spatial patterns of people's risk perception of landslides
NASA Astrophysics Data System (ADS)
Kofler, Christian; Pedoth, Lydia; Elzbieta Stawinoga, Agnieszka; Schneiderbauer, Stefan
2016-04-01
The resilience of communities against natural hazards is largely influenced by how the individuals perceive risk. A good understanding of people's risk perception, awareness and hazard knowledge is crucial for developing and improving risk management and communication strategies between authorities and the affected population. A lot of research has been done in investigating the social aspects of risks to natural hazards by means of interviews or questionnaires. However, there is still a lack of research in the investigation of the influence of the spatial distance to a hazard event on peoples risk perception. While the spatial dimension of a natural hazard event is always assessed in works with a natural science approach, it is often neglected in works on social aspects of natural hazards. In the present study, we aimed to overcome these gaps by combining methods from different disciplines and assessing and mapping the spatial pattern of risk perception through multivariate statistical approaches based on empirical data from questionnaires. We will present results from a case study carried out in Badia, located in the Province of South Tyrol- Italy, where in December 2012 a landslide destroyed four residential buildings and led to the evacuation of 36 people. By means of questionnaires distributed to all adults living in the case study area we assessed people's risk perception and asked respondents to allocate their place of residence on a map of the case study area subdivided in 7 zones. Based on the data of the questionnaire results we developed a risk perception factor in order to express various assessed aspects linked to risk perception with one metric. We analyzed and mapped this factor according to the different zones reflecting the spatial distance to the event. Furthermore, a cluster analysis identified various risk behavior profiles within the population. We also investigated the spatial patterns of these risk profiles. We revealed that the residential zone in the immediate proximity to the landslide event showed significantly different results than all other zones. Though we have been able to observe spatial patterns of our developed metrics that changed significantly with geographic distance, our results led to the assumption that risk perception cannot be expressed in units of length. The appropriate spatial unit rather seems to be "immediate proximity" to the event. The results of our study can support response forces and authorities in planning and adopting different communication and management strategies tailored to different groups of affected persons.
A unifying framework for quantifying the nature of animal interactions.
Potts, Jonathan R; Mokross, Karl; Lewis, Mark A
2014-07-06
Collective phenomena, whereby agent-agent interactions determine spatial patterns, are ubiquitous in the animal kingdom. On the other hand, movement and space use are also greatly influenced by the interactions between animals and their environment. Despite both types of interaction fundamentally influencing animal behaviour, there has hitherto been no unifying framework for the models proposed in both areas. Here, we construct a general method for inferring population-level spatial patterns from underlying individual movement and interaction processes, a key ingredient in building a statistical mechanics for ecological systems. We show that resource selection functions, as well as several examples of collective motion models, arise as special cases of our framework, thus bringing together resource selection analysis and collective animal behaviour into a single theory. In particular, we focus on combining the various mechanistic models of territorial interactions in the literature with step selection functions, by incorporating interactions into the step selection framework and demonstrating how to derive territorial patterns from the resulting models. We demonstrate the efficacy of our model by application to a population of insectivore birds in the Amazon rainforest. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Zhu, Yan; Getzin, Stephan; Wiegand, Thorsten; Ren, Haibao; Ma, Keping
2013-01-01
The Janzen-Connell hypothesis is among the most important theories put forward to explain species coexistence in species-rich communities. However, the relative importance of Janzen-Connell effects with respect to other prominent mechanisms of community assembly, such as dispersal limitation, self-thinning due to competition, or habitat association, is largely unresolved. Here we use data from a 24-ha Gutianshan subtropical forest to address it. First we tested for significant associations of adults, juveniles, and saplings with environmental variables. Second we evaluated if aggregation decreased with life stage. In a third analysis we approximately factored out the effect of habitat association and comprehensively analyzed the spatial associations of intraspecific adults and offspring (saplings, juveniles) of 46 common species at continuous neighborhood distances. We found i) that, except for one, all species were associated with at least one environmental variable during at least one of their life stages, but the frequency of significant habitat associations declined with increasing life stage; ii) a decline in aggregation with increasing life stage that was strongest from juveniles to adults; and iii) intraspecific adult-offspring associations were dominated by positive relationships at neighborhood distances up to 10 m. Our results suggest that Janzen-Connell effects were not the dominant mechanisms in structuring the spatial patterns of established trees in the subtropical Gutianshan forest. The spatial patterns may rather reflect the joint effects of size-dependent self-thinning, dispersal limitation and habitat associations. Our findings contribute to a more comprehensive understanding of the relative importance of Janzen-Connell effects in influencing plant community structure under strong topographic heterogeneity. PMID:24040283
NASA Astrophysics Data System (ADS)
Gou, Faxiang; Liu, Xinfeng; Ren, Xiaowei; Liu, Dongpeng; Liu, Haixia; Wei, Kongfu; Yang, Xiaoting; Cheng, Yao; Zheng, Yunhe; Jiang, Xiaojuan; Li, Juansheng; Meng, Lei; Hu, Wenbiao
2017-01-01
The influence of socio-ecological factors on hand, foot and mouth disease (HFMD) were explored in this study using Bayesian spatial modeling and spatial patterns identified in dry regions of Gansu, China. Notified HFMD cases and socio-ecological data were obtained from the China Information System for Disease Control and Prevention, Gansu Yearbook and Gansu Meteorological Bureau. A Bayesian spatial conditional autoregressive model was used to quantify the effects of socio-ecological factors on the HFMD and explore spatial patterns, with the consideration of its socio-ecological effects. Our non-spatial model suggests temperature (relative risk (RR) 1.15, 95 % CI 1.01-1.31), GDP per capita (RR 1.19, 95 % CI 1.01-1.39) and population density (RR 1.98, 95 % CI 1.19-3.17) to have a significant effect on HFMD transmission. However, after controlling for spatial random effects, only temperature (RR 1.25, 95 % CI 1.04-1.53) showed significant association with HFMD. The spatial model demonstrates temperature to play a major role in the transmission of HFMD in dry regions. Estimated residual variation after taking into account the socio-ecological variables indicated that high incidences of HFMD were mainly clustered in the northwest of Gansu. And, spatial structure showed a unique distribution after taking account of socio-ecological effects.
McGuire, Krista L; Allison, Steven D; Fierer, Noah; Treseder, Kathleen K
2013-01-01
Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.
Trájer, Attila; Rengei, Antal; Farkas-Iványi, Kinga; Bede-Fazekas, Ákos
2016-09-01
Dirofilariosis is an emerging mosquito-borne veterinary and medical problem in the Northern hemisphere. The ecological investigation of 56 canine dirofilariosis cases in new endemic locations was performed in Szeged, Hungary. The aim was to analyse the influence of the spatial patterns of dog abundance and the potential mosquito breeding habitats on the spatial occurrence patterns of dirofilariosis in the city of Szeged. The limnoecological characterisation was based on the fluvial habitat classification of Amoros of natural water bodies; the built environment was evaluated using the UrbanisationScore urbanisation intensity measuring software. Dirofilaria immitis accounted for 51% and D. repens for 34.3% of the dirofilariosis cases, and in 20% of the cases only the Knott's test was positive. It was concluded that most of the cases were related to locations with a medium to high urbanisation index, although the proximity of mosquito-bearing waters also played an important role in the observed spatial infection patterns. We found that the distance from potential mosquito habitats and the urbanisation intensity determine the abundance of dirofilariosis in urban environments.
Clay mineralogy in different geomorphic surfaces in sugarcane areas
NASA Astrophysics Data System (ADS)
Camargo, L.; Marques, J., Jr.
2012-04-01
The crystallization of the oxides and hydroxides of iron and aluminum and kaolinite of clay fraction is the result of pedogenetic processes controlled by the relief. These minerals have influence on the physical and chemical attributes of soil and exhibit spatial dependence. The pattern of spatial distribution is influenced by forms of relief as the geomorphic surfaces. In this sense, the studies aimed at understanding the relationship between relief and the distribution pattern of the clay fraction attributes contribute to the delineation of specific areas of management in the field. The objective of this study was to evaluate the spatial distribution of oxides and hydroxides of iron and aluminum and kaolinite of clay fraction and its relationship with the physical and chemical attributes in different geomorphic surfaces. Soil samples were collected in a transect each 25 m (100 samples) and in the sides of the same (200 samples) as well as an area of 500 ha (1 sample each six hectare). Geomorphic surfaces (GS) in the transect were mapped in detail to support mapping the entire area. The soil samples were taken to the laboratory for chemical, physical, and mineralogical analysis, and the pattern of spatial distribution of soil attributes was obtained by statistics and geostatistics. The GS I is considered the oldest surface of the study area, with depositional character, and a slope ranging from 0 to 4%. GS II and III are considered to be eroded, and the surface II plan a gentle slope that extends from the edge of the surface until the beginning of I and III. The crystallographic characteristics of the oxides and hydroxides of iron and aluminum and kaolinite showed spatial dependence and the distribution pattern corresponding to the limits present of the GS in the field. Surfaces I and II showed the best environments to the degree of crystallinity of hematite and the surface III to the greatest degree of crystallinity of goethite agreeing to the pedoenvironment conditions of each surface. The rate goethite/(goethite+hematite) decreases the surface I to III this result is the variation of the source material that has an increase of clay which is characteristic of sandstone rock (Adamantine Formation) in the surface III. The rate kaolinite/(kaolinite+gibbsite) also shows a decrease of the surface I to the surface III. The spatial distribution pattern of mineralogy influenced the pattern of physical and chemical properties. On the surface III (with higher iron and gibbsite) had the best physical condition (lower density, higher porosity and aggregates) and greater phosphorus sorption. In this sense, the identification and mapping of the GSs, allowed a better understanding of cause and effect of the distribution of soils in the area, and the recognition of areas of controlled variability of soil attributes. These areas can be considered specific areas of management, useful for planning and management practices in the culture of sugarcane. Besides, suggesting criteria for the recognition of map units that would be equivalent to the future series of soils of the Brazilian System of Soil Classification.
Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.
Loureiro, Adriana; Costa, Cláudia; Almendra, Ricardo; Freitas, Ângela; Santana, Paula
2015-11-01
This study's aims are: (i) identifying spatial patterns for the risk of hospitalization due to mental illness and for the potential risk resulting from contextual factors with influence on mental health; and (ii) analyzing the spatial association between risk of hospitalization due to mental illness and potential risk resulting from contextual factors in the metropolitan areas of Lisbon and Porto, Portugal. A cross-sectional ecological study was conducted by applying statistical methods for assessing spatial dependency and heterogeneity. Results reveal a spatial association between risk of hospitalization due to mental illness and potential risk resulting from contextual factors with a statistical relevance of moderate intensity. 20% of the population under study lives in areas with a simultaneously high potential risk resulting from contextual factors and risk of hospitalization due to mental illness. Porto Metropolitan Area show the highest percentage of population living in parishes with a significantly high risk of hospitalization due to mental health, which puts forward the need for interventions on territory-adjusted contextual factors influencing mental health.
NASA Astrophysics Data System (ADS)
Anchukaitis, Kevin J.; Wilson, Rob; Briffa, Keith R.; Büntgen, Ulf; Cook, Edward R.; D'Arrigo, Rosanne; Davi, Nicole; Esper, Jan; Frank, David; Gunnarson, Björn E.; Hegerl, Gabi; Helama, Samuli; Klesse, Stefan; Krusic, Paul J.; Linderholm, Hans W.; Myglan, Vladimir; Osborn, Timothy J.; Zhang, Peng; Rydval, Milos; Schneider, Lea; Schurer, Andrew; Wiles, Greg; Zorita, Eduardo
2017-05-01
Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regional-scale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (May-August) mean temperatures across the extratropical Northern Hemisphere (40-90°N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750-1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.
Pennington, Victoria E.; Palmquist, Kyle A.; Bradford, John B.; Lauenroth, William K.
2017-01-01
Article for outlet: Plant Ecology. Abstract: Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread non-forested drylands in western North American and similar to all shrub steppe ecosystems world-wide are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored the geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the small and large-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis and nonmetric multidimensional scaling to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, with important consequences for forb species richness and composition, which suggests climate-change induced modification of soil water availability may have important implications for plant species diversity in the future. Our paper is the first to our knowledge to examine forb biodiversity patterns in big sagebrush ecosystems in relation to environmental factors across the big sagebrush region.
Marsden, Clare D; Woodroffe, Rosie; Mills, Michael G L; McNutt, J Weldon; Creel, Scott; Groom, Rosemary; Emmanuel, Masenga; Cleaveland, Sarah; Kat, Pieter; Rasmussen, Gregory S A; Ginsberg, Joshua; Lines, Robin; André, Jean-Marc; Begg, Colleen; Wayne, Robert K; Mable, Barbara K
2012-03-01
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA-DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (N(e) < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift. © 2012 Blackwell Publishing Ltd.
Fenu, Giuseppe; Bernardo, Liliana
2017-01-01
Abstract Spatial shifts in insect fauna due to ecological heterogeneity can severely constrain plant reproduction. Nonetheless, data showing effects of insect visit patterns and intensity of mutualistic and/or antagonistic plant–insect interactions on plant reproduction over structured ecological gradients remain scarce. We investigated how changes in flower-visitor abundance, identity and behaviour over a forest-open habitat gradient affect plant biotic interactions, and quantitative and qualitative fitness in the edge-specialist Dianthus balbisii. Composition and behaviour of the insects visiting flowers of D. balbisii strongly varied over the study gradient, influencing strength and patterns of plant biotic interactions (i.e. herbivory and pollination likelihood). Seed set comparison in free- and manually pollinated flowers suggested spatial variations in the extent of quantitative pollen limitation, which appeared more pronounced at the gradient extremes. Such variations were congruent to patterns of flower visit and plant biotic interactions. The analyses on seed and seedling viability evidenced that spatial variation in amount and type of pollinators, and frequency of herbivory affected qualitative fitness of D. balbisii by influencing selfing and outcrossing rates. Our work emphasizes the role of plant biotic interactions as a fine-scale mediator of plant fitness in ecotones, highlighting that optimal plant reproduction can take place into a restricted interval of the ecological gradients occurring at forest edges. Reducing the habitat complexity typical of such transition contexts can threat edge-adapted plants. PMID:28775831
Grid cell spatial tuning reduced following systemic muscarinic receptor blockade
Newman, Ehren L.; Climer, Jason R.; Hasselmo, Michael E.
2014-01-01
Grid cells of the medial entorhinal cortex exhibit a periodic and stable pattern of spatial tuning that may reflect the output of a path integration system. This grid pattern has been hypothesized to serve as a spatial coordinate system for navigation and memory function. The mechanisms underlying the generation of this characteristic tuning pattern remain poorly understood. Systemic administration of the muscarinic antagonist scopolamine flattens the typically positive correlation between running speed and entorhinal theta frequency in rats. The loss of this neural correlate of velocity, an important signal for the calculation of path integration, raises the question of what influence scopolamine has on the grid cell tuning as a read out of the path integration system. To test this, the spatial tuning properties of grid cells were compared before and after systemic administration of scopolamine as rats completed laps on a circle track for food rewards. The results show that the spatial tuning of the grid cells was reduced following scopolamine administration. The tuning of head direction cells, in contrast, was not reduced by scopolamine. This is the first report to demonstrate a link between cholinergic function and grid cell tuning. This work suggests that the loss of tuning in the grid cell network may underlie the navigational disorientation observed in Alzheimer's patients and elderly individuals with reduced cholinergic tone. PMID:24493379
Ecosystem properties self-organize in response to a directional fog-vegetation interaction.
Stanton, Daniel E; Armesto, Juan J; Hedin, Lars O
2014-05-01
Feedbacks between vegetation and resource inputs can lead to the local, self-organization of ecosystem properties. In particular, feedbacks in response to directional resources (e.g., coastal fog, slope runoff) can create complex spatial patterns, such as vegetation banding. Although similar feedbacks are thought to be involved in the development of ecosystems, clear empirical examples are rare. We created a simple model of a fog-influenced, temperate rainforest in central Chile, which allows the comparison of natural banding patterns to simulations of various putative mechanisms. We show that only feedbacks between plants and fog were able to replicate the characteristic distributions of vegetation, soil water, and soil nutrients observed in field transects. Other processes, such as rainfall, were unable to match these diagnostic distributions. Furthermore, fog interception by windward trees leads to increased downwind mortality, leading to progressive extinction of the leeward edge. This pattern of ecosystem development and decay through self-organized processes illustrates, on a relatively small spatial and temporal scale, the patterns predicted for ecosystem evolution.
River-derived dissolved organic matter (DOM) influences metabolism, light attenuation, and bioavailability of metals and nutrients in coastal ecosystems. Recent work suggests that DOM concentrations in surface waters vary seasonally because different organic matter pools are mobi...
Dissolved Oxygen Data for Coos Estuary (Oregon)
The purpose of this product is the transmittal of dissolved oxygen data collected in the Coos Estuary, Oregon to Ms. Molly O'Neill (University of Oregon), for use in her studies on the factors influencing spatial and temporal patterns in dissolved oxygen in this estuary. These d...
Discerning fish - habitat associations at a variety of spatial scales is relevant to evaluating stressor responses and assessment protocols in Great Lakes coastal wetlands. NMDS ordination of electrofishing catch-per-effort data identified an overriding influence of geography an...
Kumar, S.; Simonson, S.E.; Stohlgren, T.J.
2009-01-01
We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Hasan, M. A.; Akanda, A. S.; Jutla, A.; Colwell, R. R.
2016-12-01
Rotavirus is the leading cause of severe dehydrating diarrhea among children under 5. Over 80% of the approximate half a million child deaths every year occur in South Asia and sub-Saharan Africa alone. Although less explored than cholera as a climate driven and influenced global health problem, recent studies have showed that the disease shown strong seasonality and spatio-temporal variability depending on regional hydroclimatic and local environmental conditions. Understanding the epidemiology of this disease, especially the spatio-temporal incidence patterns with respect to environmental factors is vitally important to allow for identification of "hotspots", preventative preparations, and vaccination strategies to improve wellbeing of the vulnerable populations. With climate change, spatio-temporal signatures and footprints of the disease are changing along with increasing burden. However, a robust understanding of the relationships between rotavirus epidemiology and hydroclimatic drivers is yet to be developed. In this study, we evaluate the seasonality and epidemiologic characteristics of rotavirous infection and its spatio-temporal incidence patterns with respect to regional hydroclimatic variables and their extremes in an endemic region in South Asia. Hospital-based surveillance data from different geographic locations allowed us to explore the detailed spatial and temporal characteristics of rotavirus propagation under the influence of climate variables in both coastal and inland areas. The rotavirus transmission patterns show two peaks in a year in the capital city of Dhaka, where winter season (highest in January) shows a high peak and the July-August monsoon season shows a smaller peak. Correlation with climate variables revealed that minimum temperature has strong influence on the winter season outbreak, while rainfall extremes show a strong positive association with the secondary monsoon peak. Spatial analysis also revealed that humidity and soil wetness may influence the timing as drier areas experience earlier outbreaks than wetter areas. Accurate understanding of rotavirus propagation with respect to hydroclimatic and environmental variability can be utilized to establish global surveillance and forecast imminent risk of diarrheal outbreaks in vulnerable regions.
NASA Astrophysics Data System (ADS)
Laubach, S. E.; Hundley, T. H.; Hooker, J. N.; Marrett, R. A.
2018-03-01
Fault arrays typically include a wide range of fault sizes and those faults may be randomly located, clustered together, or regularly or periodically located in a rock volume. Here, we investigate size distribution and spatial arrangement of normal faults using rigorous size-scaling methods and normalized correlation count (NCC). Outcrop data from Miocene sedimentary rocks in the immediate upper plate of the regional Buckskin detachment-low angle normal-fault, have differing patterns of spatial arrangement as a function of displacement (offset). Using lower size-thresholds of 1, 0.1, 0.01, and 0.001 m, displacements range over 5 orders of magnitude and have power-law frequency distributions spanning ∼ four orders of magnitude from less than 0.001 m to more than 100 m, with exponents of -0.6 and -0.9. The largest faults with >1 m displacement have a shallower size-distribution slope and regular spacing of about 20 m. In contrast, smaller faults have steep size-distribution slopes and irregular spacing, with NCC plateau patterns indicating imposed clustering. Cluster widths are 15 m for the 0.1-m threshold, 14 m for 0.01-m, and 1 m for 0.001-m displacement threshold faults. Results demonstrate normalized correlation count effectively characterizes the spatial arrangement patterns of these faults. Our example from a high-strain fault pattern above a detachment is compatible with size and spatial organization that was influenced primarily by boundary conditions such as fault shape, mechanical unit thickness and internal stratigraphy on a range of scales rather than purely by interaction among faults during their propagation.
Towards integrated assessment of the northern Adriatic Sea sediment budget using remote sensing
NASA Astrophysics Data System (ADS)
Taramelli, A.; Filipponi, F.; Valentini, E.; Zucca, F.; Gutierrez, O. Q.; Liberti, L.; Cordella, M.
2014-12-01
Understanding the factors influencing sediment fluxes is a key issue to interpret the evolution of coastal sedimentation under natural and human impact and relevant for the natural resources management. Despite river plumes represent one of the major gain in sedimentary budget of littoral cells, knowledge of factors influencing complex behavior of coastal plumes, like river discharge characteristics, wind stress and hydro-climatic variables, has not been yet fully investigated. Use of Earth Observation data allows the identification of spatial and temporal variations of suspended sediments related to river runoff, seafloor erosion, sediment transport and deposition processes. Objective of the study is to investigate sediment fluxes in northern Adriatic Sea by linking suspended sediment patterns of coastal plumes to hydrologic and climatic forcing regulating the sedimentary cell budget and geomorphological evolution in coastal systems and continental shelf waters. Analysis of Total Suspended Matter (TSM) product, derived from 2002-2012 MERIS time series, was done to map changes in spatial and temporal dimension of suspended sediments, focusing on turbid plume waters and intense wind stress conditions. From the generated multi temporal TSM maps, dispersal patterns of major freshwater runoff plumes in northern Adriatic Sea were evaluated through spatial variability of coastal plumes shape and extent. Additionally, sediment supply from river distributary mouths was estimated from TSM and correlated with river discharge rates, wind field and wave field through time. Spatial based methodology has been developed to identify events of wave-generated resuspension of sediments, which cause variation in water column turbidity, occurring during intense wind stress and extreme metocean conditions, especially in the winter period. The identified resuspension events were qualitatively described and compared with to hydro-climatic variables. The identification of spatial and temporal pattern variability highlighted the presence of seasonal sediment dynamics linked to the seasonal cycle in river discharge and wind stress. Results suggest that sediment fluxes generate geomorphological variations in northern Adriatic Sea, which are mainly controlled by river discharge rates and modulated by the winds.
NASA Astrophysics Data System (ADS)
Lillis, Ashlee; Mooney, T. Aran
2018-06-01
The rich acoustic environment of coral reefs, including the sounds of a variety of fish and invertebrates, is a reflection of the structural complexity and biological diversity of these habitats. Emerging interest in applying passive acoustic monitoring and soundscape analysis to measure coral reef habitat characteristics and track ecological patterns is hindered by a poor understanding of the most common and abundant sound producers on reefs—the snapping shrimp. Here, we sought to address several basic biophysical drivers of reef sound by investigating acoustic activity patterns of snapping shrimp populations on two adjacent coral reefs using a detailed snap detection analysis routine to a high-resolution 2.5-month acoustic dataset from the US Virgin Islands. The reefs exhibited strong diel and lunar periodicity in snap rates and clear spatial differences in snapping levels. Snap rates peaked at dawn and dusk and were higher overall during daytime versus nighttime, a seldom-reported pattern in earlier descriptions of diel snapping shrimp acoustic activity. Small differences between the sites in snap rate rhythms were detected and illustrate how analyses of specific soundscape elements might reveal subtle between-reef variation. Snap rates were highly correlated with environmental variables, including water temperature and light, and were found to be sensitive to changes in oceanographic forcing. This study further establishes snapping shrimp as key players in the coral reef chorus and provides evidence that their acoustic output reflects a combination of environmental conditions, celestial influences, and spatial habitat variation. Effective application of passive acoustic monitoring in coral reef habitats using snap rates or snapping-influenced acoustic metrics will require a mechanistic understanding of the underlying spatial and temporal variation in snapping shrimp sound production across multiple scales.
Leys, Marie; Petit, Eric J; El-Bahloul, Yasmina; Liso, Camille; Fournet, Sylvain; Arnaud, Jean-François
2014-05-01
Understanding the factors that contribute to population genetic divergence across a species' range is a long-standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present-day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco - the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic-Mediterranean refugia after the last glacial period, with leading-edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long-distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life-history and major geographic features interact to shape the distribution of genetic diversity.
Leys, Marie; Petit, Eric J; El-Bahloul, Yasmina; Liso, Camille; Fournet, Sylvain; Arnaud, Jean-François
2014-01-01
Understanding the factors that contribute to population genetic divergence across a species' range is a long-standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present-day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco – the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic-Mediterranean refugia after the last glacial period, with leading-edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long-distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life-history and major geographic features interact to shape the distribution of genetic diversity. PMID:24963380
Evidence for fish dispersal from spatial analysis of stream network topology
Hitt, N.P.; Angermeier, P.L.
2008-01-01
Developing spatially explicit conservation strategies for stream fishes requires an understanding of the spatial structure of dispersal within stream networks. We explored spatial patterns of stream fish dispersal by evaluating how the size and proximity of connected streams (i.e., stream network topology) explained variation in fish assemblage structure and how this relationship varied with local stream size. We used data from the US Environmental Protection Agency's Environmental Monitoring and Assessment Program in wadeable streams of the Mid-Atlantic Highlands region (n = 308 sites). We quantified stream network topology with a continuous analysis based on the rate of downstream flow accumulation from sites and with a discrete analysis based on the presence of mainstem river confluences (i.e., basin area >250 km2) within 20 fluvial km (fkm) from sites. Continuous variation in stream network topology was related to local species richness within a distance of ???10 fkm, suggesting an influence of fish dispersal within this spatial grain. This effect was explained largely by catostomid species, cyprinid species, and riverine species, but was not explained by zoogeographic regions, ecoregions, sampling period, or spatial autocorrelation. Sites near mainstem river confluences supported greater species richness and abundance of catostomid, cyprinid, and ictalurid fishes than did sites >20 fkm from such confluences. Assemblages at sites on the smallest streams were not related to stream network topology, consistent with the hypothesis that local stream size regulates the influence of regional dispersal. These results demonstrate that the size and proximity of connected streams influence the spatial distribution of fish and suggest that these influences can be incorporated into the designs of stream bioassessments and reserves to enhance management efficacy. ?? 2008 by The North American Benthological Society.
NASA Astrophysics Data System (ADS)
Hernandez, M.; Ummenhofer, C.; Anchukaitis, K. J.
2014-12-01
The Asian monsoon system influences the lives of over 60% of the planet's population, with widespread socioeconomic effects resulting from weakening or failure of monsoon rains. Spatially broad and temporally extended drought episodes have been known to dramatically influence human history, including the Strange Parallels Drought in the mid-18th century. Here, we explore the dynamics of sustained monsoon failure using the Monsoon Asia Drought Atlas - a high-resolution network of hydro-climatically sensitive tree-ring records - and a 1300-year pre-industrial control run of the Community Earth System Model (CESM). Spatial drought patterns in the instrumental and model-based Palmer Drought Severity Index (PDSI) during years with extremely weakened South Asian monsoon are similar to those reconstructed during the Strange Parallels Drought in the MADA. We further explore how the large-scale Indo-Pacific climate during weakened South Asian monsoon differs between interannual and decadal timescales. The Strange Parallels Drought pattern is observed during March-April-May primarily over Southeast Asia, with decreased precipitation and reduced moisture fluxes, while anomalies in June-July-August are confined to the Indian subcontinent during both individual and decadal events. Individual years with anomalous drying exhibit canonical El Niño conditions over the eastern equatorial Pacific and associated shifts in the Walker circulation, while decadal events appear to be related to anomalous warming around the dateline in the equatorial Pacific, typical of El Niño Modoki events. The results suggest different dynamical processes influence drought at different time scales through distinct remote ocean influences.
Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns.
Norred, S Elizabeth; Caveney, Patrick M; Chauhan, Gaurav; Collier, Lauren K; Collier, C Patrick; Abel, Steven M; Simpson, Michael L
2018-05-18
Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting-the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increase in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA ("spatial noise") that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. These results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.
Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients.
Golob, Edward J; Winston, Jenna; Mock, Jeffrey R
2017-01-01
Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.
Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients
Golob, Edward J.; Winston, Jenna; Mock, Jeffrey R.
2017-01-01
Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory. PMID:29218024
Controlling the influence of elastic eigenmodes on nanomagnet dynamics through pattern geometry
NASA Astrophysics Data System (ADS)
Berk, C.; Yahagi, Y.; Dhuey, S.; Cabrini, S.; Schmidt, H.
2017-03-01
The effect of the nanoscale array geometry on the interaction between optically generated surface acoustic waves (SAWs) and nanomagnet dynamics is investigated using Time-Resolved Magneto-Optical Kerr Effect Microscopy (TR-MOKE). It is demonstrated that altering the nanomagnet geometry from a periodic to a randomized aperiodic pattern effectively removes the magneto-elastic effect of SAWs on the magnetization dynamics. The efficiency of this method depends on the extent of any residual spatial correlations and is quantified by spatial Fourier analysis of the two structures. Randomization allows observation and extraction of intrinsic magnetic parameters such as spin wave frequencies and damping to be resolvable using all-optical methods, enabling the conclusion that the fabrication process does not affect the damping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keska, Jerry K.; Hincapie, Juan; Jones, Richard
In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena intomore » multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)« less
Spatial patterns of cyanobacterial mat growth on sand ripples
NASA Astrophysics Data System (ADS)
Mariotti, G.; Klepac-Ceraj, V.; Perron, J. T.; Bosak, T.
2016-02-01
Photosynthetic microbial mats produce organic matter, cycle nutrients, bind pollutants and stabilize sediment in sandy marine environments. Here, we investigate the influence of bedforms and wave motion on the growth rate, composition and spatial variability of microbial mats by growing cyanobacterial mats on a rippled bed of carbonate sand in a wave tank. The tank was forced with an oscillatory flow with velocities below the threshold for sediment motion yet able to induce a porewater flow within the sediment. Different spatial patterns developed in mats depending on the initial biochemistry of the water medium. When growing in a medium rich in nitrogen, phosphorous and micronutrients, mats grew faster on ripple troughs than on ripple crests. After two months, mats covered the bed surface uniformly, and the microbial communities on the crests and in the troughs had similar compositions. Differences in bed shear stress and nutrient availability between crests and troughs were not able to explain the faster growth in the troughs. We hypothesize that this growth pattern is due to a "strainer" effect, i.e. the suspended bacteria from the inoculum were preferentially delivered to troughs by the wave-induced porewater flow. In the experiments initiated in a medium previously used up by a microbial mat and thus depleted in nutrients, mats grew preferentially on the ripple crests. This spatial pattern persisted for nearly two years, and the microbial composition on troughs and crests was different. We attribute this pattern to the upwelling of porewater in the crests, which increased the delivery of nutrients from sediment to the cyanobacteria on the bed surface. Thus, the macroscopic patterns formed by photosynthetic microbial mats on sand ripples may be used to infer whether mats are nutrient-limited and whether they are recently colonized or older than a month.
Adaptive nest clustering and density-dependent nest survival in dabbling ducks
Ringelman, Kevin M.; Eadie, John M.; Ackerman, Joshua T.
2014-01-01
Density-dependent population regulation is observed in many taxa, and understanding the mechanisms that generate density dependence is especially important for the conservation of heavily-managed species. In one such system, North American waterfowl, density dependence is often observed at continental scales, and nest predation has long been implicated as a key factor driving this pattern. However, despite extensive research on this topic, it remains unclear if and how nest density influences predation rates. Part of this confusion may have arisen because previous studies have studied density-dependent predation at relatively large spatial and temporal scales. Because the spatial distribution of nests changes throughout the season, which potentially influences predator behavior, nest survival may vary through time at relatively small spatial scales. As such, density-dependent nest predation might be more detectable at a spatially- and temporally-refined scale and this may provide new insights into nest site selection and predator foraging behavior. Here, we used three years of data on nest survival of two species of waterfowl, mallards and gadwall, to more fully explore the relationship between local nest clustering and nest survival. Throughout the season, we found that the distribution of nests was consistently clustered at small spatial scales (˜50–400 m), especially for mallard nests, and that this pattern was robust to yearly variation in nest density and the intensity of predation. We demonstrated further that local nest clustering had positive fitness consequences – nests with closer nearest neighbors were more likely to be successful, a result that is counter to the general assumption that nest predation rates increase with nest density.
Robinson, Stacie J.; Samuel, Michael D.; Lopez, Davin L.; Shelton, Paul
2012-01-01
One of the pervasive challenges in landscape genetics is detecting gene flow patterns within continuous populations of highly mobile wildlife. Understanding population genetic structure within a continuous population can give insights into social structure, movement across the landscape and contact between populations, which influence ecological interactions, reproductive dynamics or pathogen transmission. We investigated the genetic structure of a large population of deer spanning the area of Wisconsin and Illinois, USA, affected by chronic wasting disease. We combined multiscale investigation, landscape genetic techniques and spatial statistical modelling to address the complex questions of landscape factors influencing population structure. We sampled over 2000 deer and used spatial autocorrelation and a spatial principal components analysis to describe the population genetic structure. We evaluated landscape effects on this pattern using a spatial autoregressive model within a model selection framework to test alternative hypotheses about gene flow. We found high levels of genetic connectivity, with gradients of variation across the large continuous population of white-tailed deer. At the fine scale, spatial clustering of related animals was correlated with the amount and arrangement of forested habitat. At the broader scale, impediments to dispersal were important to shaping genetic connectivity within the population. We found significant barrier effects of individual state and interstate highways and rivers. Our results offer an important understanding of deer biology and movement that will help inform the management of this species in an area where overabundance and disease spread are primary concerns.
Landscape genetics and the spatial distribution of chronic wasting disease
Blanchong, Julie A.; Samuel, M.D.; Scribner, K.T.; Weckworth, B.V.; Langenberg, J.A.; Filcek, K.B.
2008-01-01
Predicting the spread of wildlife disease is critical for identifying populations at risk, targeting surveillance and designing proactive management programmes. We used a landscape genetics approach to identify landscape features that influenced gene flow and the distribution of chronic wasting disease (CWD) in Wisconsin white-tailed deer. CWD prevalence was negatively correlated with genetic differentiation of study area deer from deer in the area of disease origin (core-area). Genetic differentiation was greatest, and CWD prevalence lowest, in areas separated from the core-area by the Wisconsin River, indicating that this river reduced deer gene flow and probably disease spread. Features of the landscape that influence host dispersal and spatial patterns of disease can be identified based on host spatial genetic structure. Landscape genetics may be used to predict high-risk populations based on their genetic connection to infected populations and to target disease surveillance, control and preventative activities. ?? 2007 The Royal Society.
Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Annaert, Wim; Munck, Sebastian
2016-01-01
The spatial distribution of proteins within the cell affects their capability to interact with other molecules and directly influences cellular processes and signaling. At the plasma membrane, multiple factors drive protein compartmentalization into specialized functional domains, leading to the formation of clusters in which intermolecule interactions are facilitated. Therefore, quantifying protein distributions is a necessity for understanding their regulation and function. The recent advent of super-resolution microscopy has opened up the possibility of imaging protein distributions at the nanometer scale. In parallel, new spatial analysis methods have been developed to quantify distribution patterns in super-resolution images. In this chapter, we provide an overview of super-resolution microscopy and summarize the factors influencing protein arrangements on the plasma membrane. Finally, we highlight methods for analyzing clusterization of plasma membrane proteins, including examples of their applications.
Mathematical study on robust tissue pattern formation in growing epididymal tubule.
Hirashima, Tsuyoshi
2016-10-21
Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rubin, D.M.
1992-01-01
Forecasting of one-dimensional time series previously has been used to help distinguish periodicity, chaos, and noise. This paper presents two-dimensional generalizations for making such distinctions for spatial patterns. The techniques are evaluated using synthetic spatial patterns and then are applied to a natural example: ripples formed in sand by blowing wind. Tests with the synthetic patterns demonstrate that the forecasting techniques can be applied to two-dimensional spatial patterns, with the same utility and limitations as when applied to one-dimensional time series. One limitation is that some combinations of periodicity and randomness exhibit forecasting signatures that mimic those of chaos. For example, sine waves distorted with correlated phase noise have forecasting errors that increase with forecasting distance, errors that, are minimized using nonlinear models at moderate embedding dimensions, and forecasting properties that differ significantly between the original and surrogates. Ripples formed in sand by flowing air or water typically vary in geometry from one to another, even when formed in a flow that is uniform on a large scale; each ripple modifies the local flow or sand-transport field, thereby influencing the geometry of the next ripple downcurrent. Spatial forecasting was used to evaluate the hypothesis that such a deterministic process - rather than randomness or quasiperiodicity - is responsible for the variation between successive ripples. This hypothesis is supported by a forecasting error that increases with forecasting distance, a greater accuracy of nonlinear relative to linear models, and significant differences between forecasts made with the original ripples and those made with surrogate patterns. Forecasting signatures cannot be used to distinguish ripple geometry from sine waves with correlated phase noise, but this kind of structure can be ruled out by two geometric properties of the ripples: Successive ripples are highly correlated in wavelength, and ripple crests display dislocations such as branchings and mergers. ?? 1992 American Institute of Physics.
Variation of ecosystem services and human activities: A case study in the Yanhe Watershed of China
NASA Astrophysics Data System (ADS)
Su, Chang-hong; Fu, Bo-Jie; He, Chan-Sheng; Lü, Yi-He
2012-10-01
The concept of 'ecosystem service' provides cohesive views on mechanisms by which nature contributes to human well-being. Fast social and economic development calls for research on interactions between human and natural systems. We took the Yanhe Watershed as our study area, and valued the variation of ecosystem services and human activities of 2000 and 2008. Five ecosystem services were selected i.e. net primary production (NPP), carbon sequestration and oxygen production (CSOP), water conservation, soil conservation, and grain production. Human activity was represented by a composite human activity index (HAI) that integrates human population density, farmland ratio, influence of residential sites and road network. Analysis results of the five ecosystem services and human activity (HAI) are as follows: (i) NPP, CSOP, water conservation, and soil conservation increased from 2000 to 2008, while grain production declined. HAI decreased from 2000 to 2008. Spatially, NPP, CSOP, and water conservation in 2000 and 2008 roughly demonstrated a pattern of decline from south to north, while grain production shows an endocentric increasing spatial pattern. Soil conservation showed a spatial pattern of high in the south and low in the north in 2000 and a different pattern of high in the west and low in the east in 2008 respectively. HAI is proportional to the administrative level and economic development. Variation of NPP/CSOP between 2000 and 2008 show an increasing spatial pattern from northwest to southeast. In contrast, the variation of soil conservation shows an increasing pattern from southeast to northwest. Variation of water conservation shows a fanning out decreasing pattern. Variation of grain production doesn't show conspicuous spatial pattern. (ii) Variation of water conservation and of soil conservation is significantly positively correlated at 0.01 level. Both variations of water conservation and soil conservation are negatively correlated with variation of HAI at 0.01 level. Variations of NPP/CSOP are negatively correlated with variations of soil conservation and grain production at 0.05 level. (iii) Strong tradeoffs exist between regulation services and provision service, while synergies exist within regulation services. Driving effect of human activities on ecosystem services and tradeoffs and synergies among ecosystem service are also discussed.
Meng, Yuting; Ding, Shiming; Gong, Mengdan; Chen, Musong; Wang, Yan; Fan, Xianfang; Shi, Lei; Zhang, Chaosheng
2018-03-01
Sediments have a heterogeneous distribution of labile redox-sensitive elements due to a drastic downward transition from oxic to anoxic condition as a result of organic matter degradation. Characterization of the heterogeneous nature of sediments is vital for understanding of small-scale biogeochemical processes. However, there are limited reports on the related specialized methodology. In this study, the monthly distributions of labile phosphorus (P), a redox-sensitive limiting nutrient, were measured in the eutrophic Lake Taihu by Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) on a two-dimensional (2D) submillimeter level. Geographical information system (GIS) techniques were used to visualize the labile P distribution at such a micro-scale, showing that the DGT-labile P was low in winter and high in summer. Spatial analysis methods, including semivariogram and Moran's I, were used to quantify the spatial variation of DGT-labile P. The distribution of DGT-labile P had clear submillimeter-scale spatial patterns with significant spatial autocorrelation during the whole year and displayed seasonal changes. High values of labile P with strong spatial variation were observed in summer, while low values of labile P with relatively uniform spatial patterns were detected in winter, demonstrating the strong influences of temperature on the mobility and spatial distribution of P in sediment profiles. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
It is important to predict which invasive species will benefit from future changes in climate, and thereby identify those invaders that need particular attention and prioritization of management efforts. Because establishment, persistence, and spread determine invasion success, this prediction requ...
Most models of watershed biogeochemistry include the movement of materials from land to rivers and eventually the ocean. Few conceptual views, however, acknowledge the influence of materials derived from the ocean on terrestrial ecosystem processes. Based on spatial patterns of...
We developed and applied a spatially-explicit, eco-hydrologic model to examine how a landscape disturbance affects hydrologic processes, ecosystem cycling of C and N, and ecosystem structure. We simulated how the pattern and magnitude of tree removal in a catchment influences fo...
Geospatial Video Monitoring of Benthic Habitats Using the Shallow-Water Positioning System (SWaPS)
2007-01-01
established from the video frames collected using SWaPS. C) Cover contours for the seagrass Thalassia testudinum. A B C surveyed using a spatial grid...distributions of seagrass species within this area are clearly influenced by their tolerance to salinity patterns. Thalassia testudinum, a species
Large old trees influence patterns of delta13C and delta15N in forests.
Weber, Pascale; Bol, Roland; Dixon, Liz; Bardgett, Richard D
2008-06-01
Large old trees are the dominant primary producers of native pine forest, but their influence on spatial patterns of soil properties and potential feedback to tree regeneration in their neighbourhood is poorly understood. We measured stable isotopes of carbon (delta(13)C) and nitrogen (delta(15)N) in soil and litter taken from three zones of influence (inner, middle and outer zone) around the trunk of freestanding old Scots pine (Pinus sylvestris L.) trees, to determine the trees' influence on below-ground properties. We also measured delta(15)N and delta(13)C in wood cores extracted from the old trees and from regenerating trees growing within their three zones of influence. We found a significant and positive gradient in soil delta(15)N from the inner zone, nearest to the tree centre, to the outer zone beyond the tree crown. This was probably caused by the higher input of (15)N-depleted litter below the tree crown. In contrast, the soil delta(13)C did not change along the gradient of tree influence. Distance-related trends, although weak, were visible in the wood delta(15)N and delta(13)C of regenerating trees. Moreover, the wood delta(15)N of small trees showed a weak negative relationship with soil N content in the relevant zone of influence. Our results indicate that large old trees control below-ground conditions in their immediate surroundings, and that stable isotopes might act as markers for the spatial and temporal extent of these below-ground effects. John Wiley & Sons, Ltd
Links between teleconnection patterns and mean temperature in Spain
NASA Astrophysics Data System (ADS)
Ríos-Cornejo, David; Penas, Ángel; Álvarez-Esteban, Ramón; del Río, Sara
2015-10-01
This work describes the relationships between Spanish temperature and four teleconnection patterns with influence on the Iberian Peninsula on monthly, seasonal and annual time scales, using data from 144 meteorological stations. Partial correlation analyses were carried out using Spearman test, and spatial distribution maps of the correlation coefficients were produced with geostatistical interpolation techniques. We regionalize the study area based on homogeneous areas containing weather stations with a similar response of temperatures to the same patterns. The links between the temperature and the patterns are mainly positive; only the correlations with Western Mediterranean Oscillation (WeMO) in the north and west are negative, indicating that WeMO plays an opposed role in temperature behaviour in Spain. In general terms, the four modes exert considerable influence on temperature in February, May and September. The East Atlantic (EA) is the pattern with the strongest influence on temperature in Spain—mainly in the north—except in June. Generally, on the seasonal and annual scales, large significant areas were only observed for the EA. EA and WeMO best account for the mean temperature on the Mediterranean fringe and in northern Spain, while EA and North Atlantic Oscillation largely explain the temperature in the rest of Spain.
NASA Astrophysics Data System (ADS)
Costa, Patrícia; Dórea, Antônio; Mariano-Neto, Eduardo; Barros, Francisco
2015-12-01
Species distribution and structural patterns of mangrove fringe forests along three tropical estuaries were evaluated in northeast of Brazil. Interstitial water salinity, percentage of fine sediments and organic matter content were investigated as explanatory variables. In all estuaries (Jaguaripe, Paraguaçu and Subaé estuaries), it was observed similar distribution patterns of four mangrove species and these patterns were mostly related with interstitial water salinity. Rhizophora mangle and Avicennia schaueriana tended to dominate sites under greater marine influence (lower estuary), while Avicennia germinans and Laguncularia racemosa dominated areas under greater freshwater influence (upper estuary), although the latter showed a wider distribution over these tropical estuarine gradients. Organic matter best explained canopy height and mean height. At higher salinities, there was practically no correlation between organic matter and density, but at lower salinity, organic matter was related to decreases in abundances. The described patterns can be related to interspecific differences in salt tolerance and competitive abilities and they are likely to be found at other tropical Atlantic estuaries. Future studies should investigate anthropic influences and causal processes in order to further improve the design of monitoring and restoration projects.
Ooi, Jillian L. S.; Van Niel, Kimberly P.; Kendrick, Gary A.; Holmes, Karen W.
2014-01-01
Background Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Methods and Results Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2–3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5–50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5–140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. Conclusion In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial models of seagrasses which have largely focused on monospecific temperate meadows. PMID:24497978
Ooi, Jillian L S; Van Niel, Kimberly P; Kendrick, Gary A; Holmes, Karen W
2014-01-01
Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2-3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5-50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5-140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial models of seagrasses which have largely focused on monospecific temperate meadows.
Venugopal, P. Dilip; Dively, Galen P.; Herbert, Ames; Malone, Sean; Whalen, Joanne; Lamp, William O.
2016-01-01
Objectives Assessment and identification of spatial structures in the distribution and abundance of invasive species is important for unraveling the underlying ecological processes. The invasive agricultural insect pest Halyomorpha halys that causes severe economic losses in the United States is currently expanding both within United States and across Europe. We examined the drivers of H. halys invasion by characterizing the distribution and abundance patterns of H. halys and native stink bugs (Chinavia hilaris and Euschistus servus) across eight different spatial scales. We then quantified the interactive and individual influences of temperature, and measures of resource availability and distance from source populations, and their relevant spatial scales. We used Moran’s Eigenvector Maps based on Gabriel graph framework to quantify spatial relationships among the soybean fields in mid-Atlantic Unites States surveyed for stink bugs. Findings Results from the multi-spatial scale, multivariate analyses showed that temperature and its interaction with resource availability and distance from source populations structures the patterns in H. halys at very broad spatial scale. H. halys abundance decreased with increasing average June temperature and distance from source population. H. halys were not recorded at fields with average June temperature higher than 23.5°C. In parts with suitable climate, high H. halys abundance was positively associated with percentage developed open area and percentage deciduous forests at 250m scale. Broad scale patterns in native stink bugs were positively associated with increasing forest cover and, in contrast to the invasive H. halys, increasing mean July temperature. Our results identify the contrasting role of temperature in structuring regional patterns in H. halys and native stink bugs, while demonstrating its interaction with resource availability and distance from source populations for structuring H. halys patterns. Conclusion These results help predicting the pest potential of H. halys and vulnerability of agricultural systems at various regions, given the climatic conditions, and its interaction with resource availability and distance from source populations. Monitoring and control efforts within parts of the United States and Europe with more suitable climate could focus in areas of peri-urban developments with deciduous forests and other host plants, along with efforts to reduce propagule pressure. PMID:26928562
Jones, B W; Maruyama, A; Ouverney, C C; Nishiguchi, M K
2007-08-01
Relatively little is known about large-scale spatial and temporal fluctuations in bacterioplankton, especially within the bacterial families. In general, however, a number of abiotic factors (namely, nutrients and temperature) appear to influence distribution. Community dynamics within the Vibrionaceae are of particular interest to biologists because this family contains a number of important pathogenic, commensal, and mutualist species. Of special interest to this study is the mutualism between sepiolid squids and Vibrio fischeri and Vibrio logei, where host squids seed surrounding waters daily with their bacterial partners. This study seeks to examine the spatial and temporal distribution of the Vibrionaceae with respect to V. fischeri and V. logei in Hawaii, southeastern Australia, and southern France sampling sites. In particular, we examine how the presence of sepiolid squid hosts influences community population structure within the Vibrionaceae. We found that abiotic (temperature) and biotic (host distribution) factors both influence population dynamics. In Hawaii, three sites within squid host habitat contained communities of Vibrionaceae with higher proportions of V. fischeri. In Australia, V. fischeri numbers at host collection sites were greater than other populations; however, there were no spatial or temporal patterns seen at other sample sites. In France, host presence did not appear to influence Vibrio communities, although sampled populations were significantly greater in the winter than summer sampling periods. Results of this study demonstrate the importance of understanding how both abiotic and biotic factors interact to influence bacterial community structure within the Vibrionaceae.
NASA Astrophysics Data System (ADS)
Chelsky, A.; Marton, J. M.; Bernhard, A. E.; Giblin, A. E.; Setta, S. P.; Hill, T. D.; Roberts, B. J.
2016-02-01
Louisiana salt marshes are important sites for carbon and nitrogen cycling because they can mitigate fluxes of nutrients and carbon to the Gulf of Mexico where a large hypoxic zone develops annually. The aim of this study was to investigate spatial and temporal patterns of biogeochemical processes in Louisiana coastal wetlands during peak growing season, and to investigate whether the Deepwater Horizon oil spill resulted in persistent changes to these rates. We measured nitrification potential and sediment characteristics at two pairs of oiled/unoiled marshes in three regions across the Louisiana coast (Terrebonne and east and west Barataria Bay) in July from 2012 to 2015, with plots along a gradient from the salt marsh edge to the interior. Rates of nitrification potential across the coast (overall mean of 901 ± 115 nmol gdw-1 d-1 from 2012-2014) were high compared to other published rates for salt marshes but displayed high variability at the plot level (4 orders of magnitude). Within each region interannual means varied by factors of 2-5. Nitrification potential did not differ with oiling history, but did display consistent spatial patterns within each region that corresponded to changes in relative elevation and inundation, which influence patterns of soil properties and microbial communities. In 2015, we also measured greenhouse gas (CO2, N2O and CH4) production and denitrification enzyme activity rates in addition to nitrification potential across the region to investigate spatial relationships between these processes.
Bauernfeind, Günther; Wriessnegger, Selina C; Haumann, Sabine; Lenarz, Thomas
2018-03-08
Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the assessment of functional activity of the cerebral cortex. Recently fNIRS was also envisaged as a novel neuroimaging approach for measuring the auditory cortex activity in the field of in auditory diagnostics. This study aimed to investigate differences in brain activity related to spatially presented sounds with different intensities in 10 subjects by means of functional near-infrared spectroscopy (fNIRS). We found pronounced cortical activation patterns in the temporal and frontal regions of both hemispheres. In contrast to these activation patterns, we found deactivation patterns in central and parietal regions of both hemispheres. Furthermore our results showed an influence of spatial presentation and intensity of the presented sounds on brain activity in related regions of interest. These findings are in line with previous fMRI studies which also reported systematic changes of activation in temporal and frontal areas with increasing sound intensity. Although clear evidence for contralaterality effects and hemispheric asymmetries were absent in the group data, these effects were partially visible on the single subject level. Concluding, fNIRS is sensitive enough to capture differences in brain responses during the spatial presentation of sounds with different intensities in several cortical regions. Our results may serve as a valuable contribution for further basic research and the future use of fNIRS in the area of central auditory diagnostics. © 2018 Wiley Periodicals, Inc.
Spatiotemporal dynamics of landscape pattern and hydrologic process in watershed systems
NASA Astrophysics Data System (ADS)
Randhir, Timothy O.; Tsvetkova, Olga
2011-06-01
SummaryLand use change is influenced by spatial and temporal factors that interact with watershed resources. Modeling these changes is critical to evaluate emerging land use patterns and to predict variation in water quantity and quality. The objective of this study is to model the nature and emergence of spatial patterns in land use and water resource impacts using a spatially explicit and dynamic landscape simulation. Temporal changes are predicted using a probabilistic Markovian process and spatial interaction through cellular automation. The MCMC (Monte Carlo Markov Chain) analysis with cellular automation is linked to hydrologic equations to simulate landscape patterns and processes. The spatiotemporal watershed dynamics (SWD) model is applied to a subwatershed in the Blackstone River watershed of Massachusetts to predict potential land use changes and expected runoff and sediment loading. Changes in watershed land use and water resources are evaluated over 100 years at a yearly time step. Results show high potential for rapid urbanization that could result in lowering of groundwater recharge and increased storm water peaks. The watershed faces potential decreases in agricultural and forest area that affect open space and pervious cover of the watershed system. Water quality deteriorated due to increased runoff which can also impact stream morphology. While overland erosion decreased, instream erosion increased from increased runoff from urban areas. Use of urban best management practices (BMPs) in sensitive locations, preventive strategies, and long-term conservation planning will be useful in sustaining the watershed system.
[Distribution of 137Cs and relative influencing factors on typical karst sloping land].
Zhang, Xiao-Nan; Wang, Ke-Lin; Zhang, Wei; Chen, Hong-Song; He, Xun-Yang; Zhang, Xin-Bao
2009-11-01
Based on the field survey and the analysis of a large number of soil samples, the distribution of 137 Cs and its influencing factors were studied using 137 Cs tracer technology on typical karst sloping land. The results indicate that the distribution of 137 Cs in soil profile in karst areas show the similar characteristics as that in non-karst areas, fitted an exponential pattern in forest soils and a uniform pattern in cultivated soils. In the sinkhole points in karst areas, 137 Cs exists in deep soil layers and its specific activity vary from 1.7 to 3.3 Bq/kg in soil layers above 45cm, suggesting the existing soil around karst sinkhole is mainly formed by the accumulation of erosion materials. The 137 Cs specific activity in the soil from two rock cracks are 16.8 Bq/kg and 37.6 Bq/kg respectively, which are much higher than that in the soil around the rock, this phenomenon indicates that bare rock is an important influencing factor for 137 Cs spatial movement. With the increment of altitude, the 137 Cs area activity exhibits an irregular fluctuation and evident spatial heterogeneity. On the forest land, the 137 Cs area activities which range from 299.4 to 1 592.6 Bq/m2 are highly positively correlated with the slope gradient and positively correlated with the altitude; while on the cultivated land, the 137 Cs area activities which range from 115.8 to 1478.6 Bq/m2 are negatively correlated with the slope gradient but negatively correlated with the altitude. Topography, geomorphology and human disturbance intensity are the key factors influencing 137 Cs spatial distribution.
Evidence of fuels management and fire weather influencing fire severity in an extreme fire event
Lydersen, Jamie M; Collins, Brandon M.; Brooks, Matthew L.; Matchett, John R.; Shive, Kristen L.; Povak, Nicholas A.; Kane, Van R.; Smith, Douglas F.
2017-01-01
Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation and water balance on fire severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate severity wildfire reduced the prevalence of high severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. Proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high fire severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience.
Spatially uniform but temporally variable bacterioplankton in a semi-enclosed coastal area.
Meziti, Alexandra; Kormas, Konstantinos A; Moustaka-Gouni, Maria; Karayanni, Hera
2015-07-01
Studies focusing on the temporal and spatial dynamics of bacterioplankton communities within littoral areas undergoing direct influences from the coast are quite limited. In addition, they are more complicated to resolve compared to communities in the open ocean. In order to elucidate the effects of spatial vs. temporal variability on bacterial communities in a highly land-influenced semi-enclosed gulf, surface bacterioplankton communities from five coastal sites in Igoumenitsa Gulf (Ionian Sea, Greece) were analyzed over a nine-month period using 16S rDNA 454-pyrosequencing. Temporal differences were more pronounced than spatial ones, with lower diversity indices observed during the summer months. During winter and early spring, bacterial communities were dominated by SAR11 representatives, while this pattern changed in May when they were abruptly replaced by members of Flavobacteriales, Pseudomonadales, and Alteromonadales. Additionally, correlation analysis showed high negative correlations between the presence of SAR11 OTUs in relation to temperature and sunlight that might have driven, directly or indirectly, the disappearance of these OTUs in the summer months. The dominance of SAR11 during the winter months further supported the global distribution of the clade, not only in the open-sea, but also in coastal systems. This study revealed that specific bacteria exhibited distinct succession patterns in an anthropogenic-impacted coastal system. The major bacterioplankton component was represented by commonly found marine bacteria exhibiting seasonal dynamics, while freshwater and terrestrial-related phylotypes were absent. Copyright © 2015 Elsevier GmbH. All rights reserved.
Oxytocin receptor density is associated with male mating tactics and social monogamy.
Ophir, Alexander G; Gessel, Ana; Zheng, Da-Jiang; Phelps, Steven M
2012-03-01
Despite its well-described role in female affiliation, the influence of oxytocin on male pairbonding is largely unknown. However, recent human studies indicate that this nonapeptide has a potent influence on male behaviors commonly associated with monogamy. Here we investigated the distribution of oxytocin receptors (OTR) throughout the forebrain of the socially monogamous male prairie vole (Microtus ochrogaster). Because males vary in both sexual and spatial fidelity, we explored the extent to which OTR predicted monogamous or non-monogamous patterns of space use, mating success and sexual fidelity in free-living males. We found that monogamous males expressed higher OTR density in the nucleus accumbens than non-monogamous males, a result that mirrors species differences in voles with different mating systems. OTR density in the posterior portion of the insula predicted mating success. Finally, OTR in the hippocampus and septohippocampal nucleus, which are nuclei associated with spatial memory, predicted patterns of space use and reproductive success within mating tactics. Our data highlight the importance of oxytocin receptor in neural structures associated with pairbonding and socio-spatial memory in male mating tactics. The role of memory in mating systems is often neglected, despite the fact that mating tactics impose an inherently spatial challenge for animals. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating pairbonding and mating tactics is crucial to fully appreciate the suite of factors driving mating systems. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. Published by Elsevier Inc.
Tree-based approach for exploring marine spatial patterns with raster datasets.
Liao, Xiaohan; Xue, Cunjin; Su, Fenzhen
2017-01-01
From multiple raster datasets to spatial association patterns, the data-mining technique is divided into three subtasks, i.e., raster dataset pretreatment, mining algorithm design, and spatial pattern exploration from the mining results. Comparison with the former two subtasks reveals that the latter remains unresolved. Confronted with the interrelated marine environmental parameters, we propose a Tree-based Approach for eXploring Marine Spatial Patterns with multiple raster datasets called TAXMarSP, which includes two models. One is the Tree-based Cascading Organization Model (TCOM), and the other is the Spatial Neighborhood-based CAlculation Model (SNCAM). TCOM designs the "Spatial node→Pattern node" from top to bottom layers to store the table-formatted frequent patterns. Together with TCOM, SNCAM considers the spatial neighborhood contributions to calculate the pattern-matching degree between the specified marine parameters and the table-formatted frequent patterns and then explores the marine spatial patterns. Using the prevalent quantification Apriori algorithm and a real remote sensing dataset from January 1998 to December 2014, a successful application of TAXMarSP to marine spatial patterns in the Pacific Ocean is described, and the obtained marine spatial patterns present not only the well-known but also new patterns to Earth scientists.
NASA Astrophysics Data System (ADS)
Betterle, A.; Schirmer, M.; Botter, G.
2017-12-01
Streamflow dynamics strongly influence anthropogenic activities and the ecological functions of riverine and riparian habitats. However, the widespread lack of direct discharge measurements often challenges the set-up of conscious and effective decision-making processes, including droughts and floods protection, water resources management and river restoration practices. By characterizing the spatial correlation of daily streamflow timeseries at two arbitrary locations, this study provides a method to evaluate how spatially variable catchment-scale hydrological process affects the resulting streamflow dynamics along and across river systems. In particular, streamflow spatial correlation is described analytically as a function of morphological, climatic and vegetation properties in the contributing catchments, building on a joint probabilistic description of flow dynamics at pairs of outlets. The approach enables an explicit linkage between similarities of flow dynamics and spatial patterns of hydrologically relevant features of climate and landscape. Therefore, the method is suited to explore spatial patterns of streamflow dynamics across geomorphoclimatic gradients. In particular, we show how the streamflow correlation can be used at the continental scale to individuate catchment pairs with similar hydrological dynamics, thereby providing a useful tool for the estimate of flow duration curves in poorly gauged areas.
The upper spatial limit for perception of displacement is affected by preceding motion.
Stefanova, Miroslava; Mateeff, Stefan; Hohnsbein, Joachim
2009-03-01
The upper spatial limit D(max) for perception of apparent motion of a random dot pattern may be strongly affected by another, collinear, motion that precedes it [Mateeff, S., Stefanova, M., &. Hohnsbein, J. (2007). Perceived global direction of a compound of real and apparent motion. Vision Research, 47, 1455-1463]. In the present study this phenomenon was studied with two-dimensional motion stimuli. A random dot pattern moved alternately in the vertical and oblique direction (zig-zag motion). The vertical motion was of 1.04 degrees length; it was produced by three discrete spatial steps of the dots. Thereafter the dots were displaced by a single spatial step in oblique direction. Each motion lasted for 57ms. The upper spatial limit for perception of the oblique motion was measured under two conditions: the vertical component of the oblique motion and the vertical motion were either in the same or in opposite directions. It was found that the perception of the oblique motion was strongly influenced by the relative direction of the vertical motion that preceded it; in the "same" condition the upper spatial limit was much shorter than in the "opposite" condition. Decreasing the speed of the vertical motion reversed this effect. Interpretations based on networks of motion detectors and on Gestalt theory are discussed.
Bayesian methods to estimate urban growth potential
Smith, Jordan W.; Smart, Lindsey S.; Dorning, Monica; Dupéy, Lauren Nicole; Méley, Andréanne; Meentemeyer, Ross K.
2017-01-01
Urban growth often influences the production of ecosystem services. The impacts of urbanization on landscapes can subsequently affect landowners’ perceptions, values and decisions regarding their land. Within land-use and land-change research, very few models of dynamic landscape-scale processes like urbanization incorporate empirically-grounded landowner decision-making processes. Very little attention has focused on the heterogeneous decision-making processes that aggregate to influence broader-scale patterns of urbanization. We examine the land-use tradeoffs faced by individual landowners in one of the United States’ most rapidly urbanizing regions − the urban area surrounding Charlotte, North Carolina. We focus on the land-use decisions of non-industrial private forest owners located across the region’s development gradient. A discrete choice experiment is used to determine the critical factors influencing individual forest owners’ intent to sell their undeveloped properties across a series of experimentally varied scenarios of urban growth. Data are analyzed using a hierarchical Bayesian approach. The estimates derived from the survey data are used to modify a spatially-explicit trend-based urban development potential model, derived from remotely-sensed imagery and observed changes in the region’s socioeconomic and infrastructural characteristics between 2000 and 2011. This modeling approach combines the theoretical underpinnings of behavioral economics with spatiotemporal data describing a region’s historical development patterns. By integrating empirical social preference data into spatially-explicit urban growth models, we begin to more realistically capture processes as well as patterns that drive the location, magnitude and rates of urban growth.
Investigation occurrences of turing pattern in Schnakenberg and Gierer-Meinhardt equation
NASA Astrophysics Data System (ADS)
Nurahmi, Annisa Fitri; Putra, Prama Setia; Nuraini, Nuning
2018-03-01
There are several types of animals with unusual, varied patterns on their skin. The skin pigmentation system influences this in the animal. On the other side, in 1950 Alan Turing formulated the mathematical theory of morphogenesis, where this model can bring up a spatial pattern or so-called Turing pattern. This research discusses the identification of Turing's model that can produce animal skin pattern. Investigations conducted on two types of equations: Schnakenberg (1979), and Gierer-Meinhardt (1972). In this research, parameters were explored to produce Turing's patter on that both equation. The numerical simulation in this research done using Neumann Homogeneous and Dirichlet Homogeneous boundary condition. The investigation of Schnakenberg equation yielded poison dart frog (Andinobates dorisswansonae) and ladybird (Coccinellidae septempunctata) pattern while skin fish pattern was showed by Gierer-Meinhardt equation.
NASA Astrophysics Data System (ADS)
Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan
2017-04-01
Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.
Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel
2015-06-01
Even though recent studies have clarified the influence and hierarchy of environmental filters on bacterial community structure, those constraining bacterial populations variations remain unclear. In consequence, our ability to understand to ecological attributes of soil bacteria and to predict microbial community response to environmental stress is therefore limited. Here, we characterized the bacterial community composition and the various bacterial taxonomic groups constituting the community across an agricultural landscape of 12 km(2) , by using a 215 × 215 m systematic grid representing 278 sites to precisely decipher their spatial distribution and drivers at this scale. The bacterial and Archaeal community composition was characterized by applying 16S rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics tools were used to reveal the heterogeneous distribution of bacterial composition at this scale. Soil physical parameters and land management explained a significant amount of variation, suggesting that environmental selection is the major process shaping bacterial composition. All taxa systematically displayed also a heterogeneous and particular distribution patterns. Different relative influences of soil characteristics, land use and space were observed, depending on the taxa, implying that selection and spatial processes might be differentially but not exclusively involved for each bacterial phylum. Soil pH was a major factor determining the distribution of most of the bacterial taxa and especially the most important factor explaining the spatial patterns of α-Proteobacteria and Planctomycetes. Soil texture, organic carbon content and quality were more specific to a few number of taxa (e.g., β-Proteobacteria and Chlorobi). Land management also influenced the distribution of bacterial taxa across the landscape and revealed different type of response to cropping intensity (positive, negative, neutral or hump-backed relationships) according to phyla. Altogether, this study provided valuable clues about the ecological behavior of soil bacterial and archaeal taxa at an agricultural landscape scale and could be useful for developing sustainable strategies of land management. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Kruse, Gordon H.; Dorn, Martin W.
2016-01-01
Catch quotas for walleye pollock Gadus chalcogrammus, the dominant species in the groundfish fishery off Alaska, are set by applying harvest control rules to annual estimates of spawning stock biomass (SSB) from age-structured stock assessments. Adult walleye pollock abundance and maturity status have been monitored in early spring in Shelikof Strait in the Gulf of Alaska for almost three decades. The sampling strategy for maturity status is largely characterized as targeted, albeit opportunistic, sampling of trawl tows made during hydroacoustic surveys. Trawl sampling during pre-spawning biomass surveys, which do not adequately account for spatial patterns in the distribution of immature and mature fish, can bias estimated maturity ogives from which SSB is calculated. Utilizing these maturity data, we developed mixed-effects generalized additive models to examine spatial and temporal patterns in walleye pollock maturity and the influence of these patterns on estimates of SSB. Current stock assessment practice is to estimate SSB as the product of annual estimates of numbers at age, weight at age, and mean maturity at age for 1983-present. In practice, we found this strategy to be conservative for a time period from 2003–2013 as, on average, it underestimates SSB by a 4.7 to 11.9% difference when compared to our estimates of SSB that account for spatial structure or both temporal and spatial structure. Inclusion of spatially explicit information for walleye pollock maturity has implications for understanding stock reproductive biology and thus the setting of sustainable harvest rates used to manage this valuable fishery. PMID:27736982
Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472
NASA Astrophysics Data System (ADS)
König, Sara; Firle, Anouk-Letizia; Koehnke, Merlin; Banitz, Thomas; Frank, Karin
2017-04-01
In general ecology, there is an ongoing debate about the influence of fragmentation on extinction thresholds. Whether this influence is positive or negative depends on the considered type of fragmentation: whereas habitat fragmentation often has a negative influence on population extinction thresholds, spatially fragmented disturbances are observed to have mostly positive effects on the extinction probability. Besides preventing population extinction, in soil systems ecology we are interested in analyzing how ecosystem functions are maintained despite disturbance events. Here, we analyzed the influence of disturbance size and fragmentation on the functional resilience of a microbial soil ecosystem. As soil is a highly heterogeneous environment exposed to disturbances of different spatial configurations, the identification of critical disturbance characteristics for maintaining its functions is crucial. We used the numerical simulation model eColony considering bacterial growth, degradation and dispersal for analyzing the dynamic response of biodegradation examplary for an important microbial ecosystem service to disturbance events of different spatial configurations. We systematically varied the size and the degree of fragmentation of the affected area (disturbance pattern). We found that the influence of the disturbance size on functional recovery and biodegradation performance highly depends on the spatial fragmentation of the disturbance. Generally, biodegradation performance decreases with increasing clumpedness and increasing size of the affected area. After spatially correlated disturbance events, biodegradation performance decreases linear with increasing disturbance size. After spatially fragmented disturbance events, on the other hand, an increase in disturbance size has no influence on the biodegradation performance until a critical disturbance size is reached. Is the affected area bigger than this critical size, the functional performance decreases dramatically. Under recurrent disturbance events, this threshold is shifted to lower disturbance sizes. The more frequent disturbances are recurring, the lower is the critical disturbance size. Our simulation results indicate the importance of spatial characteristics of disturbance events for the functional resilience of microbial ecosystems. Critical values for disturbance size and fragmentation emerge from an interplay between both characteristics. In consequence, a precise definition of the specific disturbance regime is necessary for analysing functional resilience. With this study, we show that we need to consider the influence of fragmentation in terrestrial environments not only on population extincions but also on the resilience of ecosystem functions. Moreover, spatial disturbance characteristics - which are widely discussed on landscape scale - are an important factor on smaller scales, too.
Boieiro, Mário; Carvalho, José C.; Cardoso, Pedro; Aguiar, Carlos A. S.; Rego, Carla; de Faria e Silva, Israel; Amorim, Isabel R.; Pereira, Fernando; Azevedo, Eduardo B.; Borges, Paulo A. V.; Serrano, Artur R. M.
2013-01-01
The development in recent years of new beta diversity analytical approaches highlighted valuable information on the different processes structuring ecological communities. A crucial development for the understanding of beta diversity patterns was also its differentiation in two components: species turnover and richness differences. In this study, we evaluate beta diversity patterns of ground beetles from 26 sites in Madeira Island distributed throughout Laurisilva – a relict forest restricted to the Macaronesian archipelagos. We assess how the two components of ground beetle beta diversity (βrepl – species turnover and βrich - species richness differences) relate with differences in climate, geography, landscape composition matrix, woody plant species richness and soil characteristics and the relative importance of the effects of these variables at different spatial scales. We sampled 1025 specimens from 31 species, most of which are endemic to Madeira Island. A spatially explicit analysis was used to evaluate the contribution of pure environmental, pure spatial and environmental spatially structured effects on variation in ground beetle species richness and composition. Variation partitioning showed that 31.9% of species turnover (βrepl) and 40.7% of species richness variation (βrich) could be explained by the environmental and spatial variables. However, different environmental variables controlled the two types of beta diversity: βrepl was influenced by climate, disturbance and soil organic matter content whilst βrich was controlled by altitude and slope. Furthermore, spatial variables, represented through Moran’s eigenvector maps, played a significant role in explaining both βrepl and βrich, suggesting that both dispersal ability and Madeira Island complex orography are crucial for the understanding of beta diversity patterns in this group of beetles. PMID:23724065
Spatial patterns of native freshwater mussels in the Upper Mississippi River
Ries, Patricia R.; DeJager, Nathan R.; Zigler, Steven J.; Newton, Teresa
2016-01-01
Multiple physical and biological factors structure freshwater mussel communities in large rivers, and their distributions have been described as clumped or patchy. However, few surveys of mussel populations have been conducted over areas large enough and at resolutions fine enough to quantify spatial patterns in their distribution. We used global and local indicators of spatial autocorrelation (i.e., Moran’s I) to quantify spatial patterns of adult and juvenile (≤5 y of age) freshwater mussels across multiple scales based on survey data from 4 reaches (navigation pools 3, 5, 6, and 18) of the Upper Mississippi River, USA. Native mussel densities were sampled at a resolution of ∼300 m and across distances ranging from 21 to 37 km, making these some of the most spatially extensive surveys conducted in a large river. Patch density and the degree and scale of patchiness varied by river reach, age group, and the scale of analysis. In all 4 pools, some patches of adults overlapped patches of juveniles, suggesting spatial and temporal persistence of adequate habitat. In pools 3 and 5, patches of juveniles were found where there were few adults, suggesting recent emergence of positive structuring mechanisms. Last, in pools 3, 5, and 6, some patches of adults were found where there were few juveniles, suggesting that negative structuring mechanisms may have replaced positive ones, leading to a lack of localized recruitment. Our results suggest that: 1) the detection of patches of freshwater mussels requires a multiscaled approach, 2) insights into the spatial and temporal dynamics of structuring mechanisms can be gained by conducting independent analyses of adults and juveniles, and 3) maps of patch distributions can be used to guide restoration and management actions and identify areas where mussels are most likely to influence ecosystem function.
Korb, Judith; Linsenmair, Karl Eduard
2001-05-01
Little is known about processes regulating population dynamics in termites. We investigated the distribution of mound-colonies of the fungus-cultivating termite Macrotermes bellicosus (Smeathman) in two habitats in the Comoé National Park (Côte d'Ivoire) with nearest-neighbour analysis differentiating between different age classes. These results were compared with ecological data on processes influencing population dynamics. High mound densities were recorded in shrub savannah while only a few mounds were found in gallery forest. Mounds were distributed randomly in both habitats when all mounds were considered together, and when inhabited and uninhabited mounds were treated separately. However, distinctive non-random patterns were revealed in the savannah when we distinguished between different age classes. Small, young colonies were aggregated when they coexisted with larger, older colonies, which were more regularly distributed. This indicates that the distribution of older colonies is influenced by intraspecific competition whereas that of younger colonies is influenced by opposing factors that lead to aggregation. This is in accordance with ecological data. Food is a limiting resource for large colonies, while patchily distributed appropriate microclimatic conditions seem to be more important for young colonies. Colonies that had formerly coexisted (i.e. living colonies and recently dead colonies) showed aggregated, random and regular distribution patterns, suggesting several causes of mortality. Colonies that had never had contact with each other were randomly distributed and no specific regulation mechanism was implicated. These results show that different age classes seem to be regulated by different processes and that separation between age classes is necessary to reveal indicative spatial patterns in nearest-neighbour analysis.
Spatial distribution of galls caused by Aculus tetanothrix (Acari: Eriophyoidea) on arctic willows.
Kuczyński, Lechosław; Skoracka, Anna
2005-01-01
The distribution of galls caused by Aculus tetanothrix (Acari: Eriophyoidea) on three Salix species was studied. The factors influencing this distribution were analysed, i.e. willow species, study area and shoot length. Spatial pattern of gall distribution within the shoot was also examined. The study was conducted in Russia, Kola Peninsula. Densities of galls caused by A. tetanothrix differed significantly among willow species. Considerably higher gall density was recorded in the White Sea coast than in the Khibiny Mountains. This may be explained by the influence of a milder maritime climate that favors mite occurrence compared to a harsh and variable mountain climate that limits mite abundance. There was no relationship between the gall density and the shoot length. The highest density of galls was recorded on the inner offshoots; within the offshoot, there was a maximum density on the fifth leaf. This pattern was repeatable for all shoots studied, independent of the study area, willow species and length of shoots, suggesting the optimal conditions for A. tetanothrix exist on leaves in the middle part of a shoot. This distribution pattern may be an effect of the trade-off between the costs and benefits resulting from leaf quality and mite movement along the shoot. This hypothesis, however, needs to be tested experimentally.
Fois, Mauro; Fenu, Giuseppe; Cañadas, Eva Maria; Bacchetta, Gianluigi
2017-01-01
Due to the impelling urgency of plant conservation and the increasing availability of high resolution spatially interpolated (e.g. climate variables) and categorical data (e.g. land cover and vegetation type), many recent studies have examined relationships among plant species distributions and a diversified set of explanatory factors; nevertheless, global and regional patterns of endemic plant richness remain in many cases unexplained. One such pattern is the 294 endemic vascular plant taxa recorded on a 1 km resolution grid on the environmentally heterogeneous island of Sardinia. Sixteen predictors, including topographic, geological, climatic and anthropogenic factors, were used to model local (number of taxa inside each 1 km grid cell) Endemic Vascular Plant Richness (EVPR). Generalized Linear Models were used to evaluate how each factor affected the distribution of local EVPR. Significant relationships with local EVPR and topographic, geological, climatic and anthropogenic factors were found. In particular, elevation explained the larger fraction of variation in endemic richness but other environmental factors (e.g. precipitation seasonality and slope) and human-related factors (e.g. the Human Influence Index (HII) and the proportion of anthropogenic land uses) were, respectively, positively and negatively correlated with local EVPR. Regional EVPR (number of endemic taxa inside each 100 m elevation interval) was also measured to compare local and regional EVPR patterns along the elevation gradient. In contrast to local, regional EVPR tended to decrease with altitude partly due to the decreasing area covered along altitude. The contrasting results between local and regional patterns suggest that local richness increases as a result of increased interspecific aggregation along altitude, whereas regional richness may depend on the interaction between area and altitude. This suggests that the shape and magnitude of the species-area relationship might vary with elevation. This work provides-for the first time in Sardinia-a comprehensive analysis of the influence of environmental factors on the pattern of EVPR in the entire territory, from sea level to the highest peaks. Elevation, as well as other environmental and human-related variables, were confirmed to be influencing factors. In addition, variations of EVPR patterns at regional-to-local spatial scales inspire next investigations on the possible interaction between elevation and area in explaining patterns of plant species richness.
Teurlai, Magali; Menkès, Christophe Eugène; Cavarero, Virgil; Degallier, Nicolas; Descloux, Elodie; Grangeon, Jean-Paul; Guillaumot, Laurent; Libourel, Thérèse; Lucio, Paulo Sergio; Mathieu-Daudé, Françoise; Mangeas, Morgan
2015-12-01
Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon. We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections. The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people's way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3 °C, mean incidence rates during epidemics could double. In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a step by step guide to model dengue spatial heterogeneity in other countries.
Teurlai, Magali; Menkès, Christophe Eugène; Cavarero, Virgil; Degallier, Nicolas; Descloux, Elodie; Grangeon, Jean-Paul; Guillaumot, Laurent; Libourel, Thérèse; Lucio, Paulo Sergio; Mathieu-Daudé, Françoise; Mangeas, Morgan
2015-01-01
Background/Objectives Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon. Methods We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections. Results The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people's way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3°C, mean incidence rates during epidemics could double. Conclusion In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a step by step guide to model dengue spatial heterogeneity in other countries. PMID:26624008
USDA-ARS?s Scientific Manuscript database
Crystals of calcium oxalate often form in cells adjacent to the vascular bundles in the tissues along the xylem stream. This spatial crystal pattern suggests a role for calcium oxalate formation in regulating calcium transport and partitioning to edible organs such as seeds. To investigate this pote...
Pedological memory in forest soil development
Jonathan D. Phillips; Daniel A. Marion
2004-01-01
Individual trees may have significant impacts on soil morphology. If these impacts are non-random such that some microsites are repeatedly preferentially affected by trees, complex local spatial variability of soils would result. A model of self-reinforcing pedologic influences of trees (SRPIT) is proposed to explain patterns of soil variability in the Ouachita...
Use of artificial landscapes to isolate controls on burn probability
Marc-Andre Parisien; Carol Miller; Alan A. Ager; Mark A. Finney
2010-01-01
Techniques for modeling burn probability (BP) combine the stochastic components of fire regimes (ignitions and weather) with sophisticated fire growth algorithms to produce high-resolution spatial estimates of the relative likelihood of burning. Despite the numerous investigations of fire patterns from either observed or simulated sources, the specific influence of...
Landscape dynamics of mountain pine beetles
John E. Lundquist; Robin M. Reich
2014-01-01
The magnitude and urgency of current mountain pine beetle outbreaks in the western United States and Canada have resulted in numerous studies of the dynamics and impacts of these insects in forested ecosystems. This paper reviews some of the aspects of the spatial dynamics and landscape ecology of this bark beetle. Landscape heterogeneity influences dispersal patterns...
Landscape connectivity influences the establishment of Phytophthora ramorum
Emiko T. Condeso; Ross K. Meentemeyer
2008-01-01
As the emergence of invasive pathogens and their impacts on ecological communities increases, so has the interest in understanding how landscape pattern (in other words the configuration and composition of suitable habitat) affects their establishment and spread. Plant pathogen invasions are inherently spatial, but few studies have demonstrated the role of landscape...
The Occurrence and Prevalence of Giraffe Skin Disease in Protected Areas of Northern Tanzania.
Lee, Derek E; Bond, Monica L
2016-07-01
Giraffe skin disease (GSD) is a disorder of undetermined etiology that causes lesions on the forelimbs of Masai giraffe ( Giraffa camelopardalis tippelskirchi). We estimated occurrence and prevalence of GSD in six wildlife conservation areas of Tanzania. The disjunct spatial pattern of occurrence implies that environmental factors may influence GSD.
Drop Out Patterns in the East Los Angeles Community College
ERIC Educational Resources Information Center
Waktola, Daniel K.
2014-01-01
This study attempted to analyze the drop out problem from spatial perspectives within the context of East Los Angeles Community College, California. Selected urban land-use types, which positively and negatively influence the propensity to drop out or persist-in colleges, were selected and captured during a global positioning system (GPS)-based…
Air quality climate in the Columbia River Basin.
Sue A. Ferguson
1998-01-01
Aspects of climate that influence air quality in the Columbia River basin of the Northwestern United States are described. A few, relatively simple, analytical tools were developed to show the spatial and temporal patterns of mean-monthly mixing heights, precipitation scavenging, upper level and surface trajectory winds, and drought that inhibit pollution uptake. Also...
Pattern analysis of eastern spruce budworm Choristoneura fumiferana dispersal
Dean P. Anderson; Brian R. Sturtevant
2011-01-01
Dispersal has been proposed as an important mechanism in the broad-scale synchronisation of insect outbreaks by linking spatially disjunct populations. Evidence suggests that dispersal is influenced by landscape structure, phenology, temperature, and air currents; however, the details remain unclear due to the difficulty of quantifying dispersal. In this study, we used...
Microstructured block copolymer surfaces for control of microbe capture and aggregation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Ryan R; Shubert, Katherine R; Morrell, Jennifer L.
2014-01-01
The capture and arrangement of surface-associated microbes is influenced by biochemical and physical properties of the substrate. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe capture. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line or square grid patterns with 5 m wide features and varied edge spacing. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates capturedmore » was dependent on the pattern dimensions. Line patterns with edge spacing of 5 m or less led to the capture of individual microbes with minimal formation of aggregates, while grid patterns with the same spacing also captured individual microbes with further reduction in aggregation. Both geometries allowed for increases in aggregate size distribution with increased in edge spacing. These engineered surfaces combine spatial confinement with affinity-based microbe capture based on exopolysaccharide content to control the degree of microbe aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.« less
Oliveira, Eliana Faria; Martinez, Pablo Ariel; São-Pedro, Vinícius Avelar; Gehara, Marcelo; Burbrink, Frank Thomas; Mesquita, Daniel Oliveira; Garda, Adrian Antonio; Colli, Guarino Rinaldi; Costa, Gabriel Correa
2018-03-01
Spatial patterns of genetic variation can help understand how environmental factors either permit or restrict gene flow and create opportunities for regional adaptations. Organisms from harsh environments such as the Brazilian semiarid Caatinga biome may reveal how severe climate conditions may affect patterns of genetic variation. Herein we combine information from mitochondrial DNA with physical and environmental features to study the association between different aspects of the Caatinga landscape and spatial genetic variation in the whiptail lizard Ameivula ocellifera. We investigated which of the climatic, environmental, geographical and/or historical components best predict: (1) the spatial distribution of genetic diversity, and (2) the genetic differentiation among populations. We found that genetic variation in A. ocellifera has been influenced mainly by temperature variability, which modulates connectivity among populations. Past climate conditions were important for shaping current genetic diversity, suggesting a time lag in genetic responses. Population structure in A. ocellifera was best explained by both isolation by distance and isolation by resistance (main rivers). Our findings indicate that both physical and climatic features are important for explaining the observed patterns of genetic variation across the xeric Caatinga biome.
Analysis of Alaskan burn severity patterns using remotely sensed data
Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.
2007-01-01
Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.
Influence of Different Factors on Relative Air Humidity in Zaragoza, Spain
NASA Astrophysics Data System (ADS)
Cuadrat, José M.
2015-03-01
In this study, the spatial patterns of relative air humidity and its relation to urban, geographical and meteorological factors in the city of Zaragoza (Spain) is discussed. We created a relative humidity database by means of 32 urban transects. Data were taken on different days and with different weather types. This data set was used to map the mean spatial distribution of urban dry island (UDI). Using stepwise multiple regression analysis and Landsat ETM+ images the relationships between mean UDI and the main geographic-urban factors: topography, land cover and surface reflectivity, have been analyzed. Different spatial patterns of UDI were determined using Principal Component Analysis (Varimax rotation). The three components extracted accounted for 91% of the total variance. PC1 accounted for the most general patterns (similar to mean UDI); PC2 showed a shift of dry areas to the SE and PC3 a shift to NW. Using data on wind direction in Zaragoza, we have found that the displacement of dry areas to the SE (PC 2) was greater during NW winds while the shift to the NW (PC 3) was produced mainly by SE winds.
Magnifying visual target information and the role of eye movements in motor sequence learning.
Massing, Matthias; Blandin, Yannick; Panzer, Stefan
2016-01-01
An experiment investigated the influence of eye movements on learning a simple motor sequence task when the visual display was magnified. The task was to reproduce a 1300 ms spatial-temporal pattern of elbow flexions and extensions. The spatial-temporal pattern was displayed in front of the participants. Participants were randomly assigned to four groups differing on eye movements (free to use their eyes/instructed to fixate) and the visual display (small/magnified). All participants had to perform a pre-test, an acquisition phase, a delayed retention test, and a transfer test. The results indicated that participants in each practice condition increased their performance during acquisition. The participants who were permitted to use their eyes in the magnified visual display outperformed those who were instructed to fixate on the magnified visual display. When a small visual display was used, the instruction to fixate induced no performance decrements compared to participants who were permitted to use their eyes during acquisition. The findings demonstrated that a spatial-temporal pattern can be learned without eye movements, but being permitting to use eye movements facilitates the response production when the visual angle is increased. Copyright © 2015 Elsevier B.V. All rights reserved.
Adaptation to implied tilt: extensive spatial extrapolation of orientation gradients
Roach, Neil W.; Webb, Ben S.
2013-01-01
To extract the global structure of an image, the visual system must integrate local orientation estimates across space. Progress is being made toward understanding this integration process, but very little is known about whether the presence of structure exerts a reciprocal influence on local orientation coding. We have previously shown that adaptation to patterns containing circular or radial structure induces tilt-aftereffects (TAEs), even in locations where the adapting pattern was occluded. These spatially “remote” TAEs have novel tuning properties and behave in a manner consistent with adaptation to the local orientation implied by the circular structure (but not physically present) at a given test location. Here, by manipulating the spatial distribution of local elements in noisy circular textures, we demonstrate that remote TAEs are driven by the extrapolation of orientation structure over remarkably large regions of visual space (more than 20°). We further show that these effects are not specific to adapting stimuli with polar orientation structure, but require a gradient of orientation change across space. Our results suggest that mechanisms of visual adaptation exploit orientation gradients to predict the local pattern content of unfilled regions of space. PMID:23882243
Marcar, Valentine L; Baselgia, Silvana; Lüthi-Eisenegger, Barbara; Jäncke, Lutz
2018-03-01
Retinal input processing in the human visual system involves a phasic and tonic neural response. We investigated the role of the magno- and parvocellular systems by comparing the influence of the active neural population size and its discharge activity on the amplitude and latency of four VEP components. We recorded the scalp electric potential of 20 human volunteers viewing a series of dartboard images presented as a pattern reversing and pattern on-/offset stimulus. These patterns were designed to vary both neural population size coding the temporal- and spatial luminance contrast property and the discharge activity of the population involved in a systematic manner. When the VEP amplitude reflected the size of the neural population coding the temporal luminance contrast property of the image, the influence of luminance contrast followed the contrast response function of the parvocellular system. When the VEP amplitude reflected the size of the neural population responding to the spatial luminance contrast property the image, the influence of luminance contrast followed the contrast response function of the magnocellular system. The latencies of the VEP components examined exhibited the same behavior across our stimulus series. This investigation demonstrates the complex interplay of the magno- and parvocellular systems on the neural response as captured by the VEP. It also demonstrates a linear relationship between stimulus property, neural response, and the VEP and reveals the importance of feedback projections in modulating the ongoing neural response. In doing so, it corroborates the conclusions of our previous study.
The consequences of land-cover changes on soil erosion distribution in Slovakia
NASA Astrophysics Data System (ADS)
Cebecauer, Tomáš; Hofierka, Jaroslav
2008-06-01
Soil erosion is a complex process determined by mutual interaction of numerous factors. The aim of erosion research at regional scales is a general evaluation of the landscape susceptibility to soil erosion by water, taking into account the main factors influencing this process. One of the key factors influencing the susceptibility of a region to soil erosion is land cover. Natural as well as human-induced changes of landscape may result in both the diminishment and acceleration of soil erosion. Recent studies of land-cover changes indicate that during the last decade more than 4.11% of Slovak territory has changed. The objective of this study is to assess the influence of land-cover and crop rotation changes over the 1990-2000 period on the intensity and spatial pattern of soil erosion in Slovakia. The assessment is based on principles defined in the Universal Soil Loss Equation (USLE) modified for application at regional scale and the use of the CORINE land cover (CLC) databases for 1990 and 2000. The C factor for arable land has been refined using statistical data on the mean crop rotation and the acreage of particular agricultural crops in the districts of Slovakia. The L factor has been calculated using sample areas with parcels identified by LANDSAT TM data. The results indicate that the land-cover and crop rotation changes had a significant influence on soil erosion pattern predominately in the hilly and mountainous parts of Slovakia. The pattern of soil erosion changes exhibits high spatial variation with overall slightly decreased soil erosion risks. These changes are associated with ongoing land ownership changes, changing structure of crops, deforestation and afforestation.
Ren, Yin; Deng, Lu-Ying; Zuo, Shu-Di; Song, Xiao-Dong; Liao, Yi-Lan; Xu, Cheng-Dong; Chen, Qi; Hua, Li-Zhong; Li, Zheng-Wei
2016-09-01
Identifying factors that influence the land surface temperature (LST) of urban forests can help improve simulations and predictions of spatial patterns of urban cool islands. This requires a quantitative analytical method that combines spatial statistical analysis with multi-source observational data. The purpose of this study was to reveal how human activities and ecological factors jointly influence LST in clustering regions (hot or cool spots) of urban forests. Using Xiamen City, China from 1996 to 2006 as a case study, we explored the interactions between human activities and ecological factors, as well as their influences on urban forest LST. Population density was selected as a proxy for human activity. We integrated multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) to develop a database on a unified urban scale. The driving mechanism of urban forest LST was revealed through a combination of multi-source spatial data and spatial statistical analysis of clustering regions. The results showed that the main factors contributing to urban forest LST were dominant tree species and elevation. The interactions between human activity and specific ecological factors linearly or nonlinearly increased LST in urban forests. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. In conclusion, quantitative studies based on spatial statistics and GeogDetector models should be conducted in urban areas to reveal interactions between human activities, ecological factors, and LST. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cordeiro, Erick M G; Campbell, James F; Phillips, Thomas W
2016-04-01
Grain stored in bins is initially a relatively homogenous resource patch for stored-product insects, but over time, spatial pattern in insect distribution can form, due in part to insect movement patterns. However, the factors that influence stored-product insect movement patterns in grain are not well-understood. This research focused on the movement of the lesser grain borer, Rhyzopertha dominica (F.), within a simulated wheat grain mass (vertical monolayer of wheat) and the identification of factors that contribute to overall and upward movement (age since adult emergence from an infested kernel [1, 7, and 14 d], sex, strain, and different levels of environment quality). We also used the model selection approach to select the most relevant factors and determine the relationships among them. Three-week-old adults tended to stay closer to the surface compared with 1- or 2-wk-old insects. Also, females tended to be more active and to explore a larger area compared with males. Explored area and daily displacement were also significantly strain-dependent, and increasing grain infestation level decreased daily displacement and explored area. Variation in movement pattern is likely to influence the formation of spatial pattern and affect probability to disperse. Understanding movement behavior within a grain bin is crucial to designing better strategies to implement and interpret monitoring programs and to target control tactics. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.
Ornelas, Juan Francisco; Sosa, Victoria; Soltis, Douglas E.; Daza, Juan M.; González, Clementina; Soltis, Pamela S.; Gutiérrez-Rodríguez, Carla; de los Monteros, Alejandro Espinosa; Castoe, Todd A.; Bell, Charles; Ruiz-Sanchez, Eduardo
2013-01-01
Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy. PMID:23409165
Timsuksai, Pijika; Rambo, A Terry
2016-01-01
Different ethnic groups have evolved distinctive cultural models which guide their interactions with the environment, including their agroecosystems. Although it is probable that variations in the structures of homegardens among separate ethnic groups reflect differences in the cultural models of the farmers, empirical support for this assumption is limited. In this paper the modal horizontal structural patterns of the homegardens of 8 ethnic groups in Northeast Thailand and Vietnam are described. Six of these groups (5 speaking Tai languages and 1 speaking Vietnamese) live in close proximity to each other in separate villages in Northeast Thailand, and 2 of the groups (one Tai-speaking and one Vietnamese-speaking) live in different parts of Vietnam. Detailed information on the horizontal structure of homegardens was collected from samples of households belonging to each group. Although each ethnic group has a somewhat distinctive modal structure, the groups cluster into 2 different types. The Tai speaking Cao Lan, Kalaeng, Lao, Nyaw, and Yoy make up Type I while both of the Vietnamese groups, along with the Tai speaking Phu Thai, belong to Type II. Type I gardens have predominantly organic shapes, indeterminate boundaries, polycentric planting patterns, and multi-species composition within planting areas. Type II homegardens have geometric shapes, sharp boundaries, lineal planting patterns, and mono-species composition of planting areas. That the homegardens of most of the Tai ethnic groups share a relatively similar horizontal structural pattern that is quite different from the pattern shared by both of the Vietnamese groups suggests that the spatial layout of homegardens is strongly influenced by their different cultural models.
2016-01-01
Different ethnic groups have evolved distinctive cultural models which guide their interactions with the environment, including their agroecosystems. Although it is probable that variations in the structures of homegardens among separate ethnic groups reflect differences in the cultural models of the farmers, empirical support for this assumption is limited. In this paper the modal horizontal structural patterns of the homegardens of 8 ethnic groups in Northeast Thailand and Vietnam are described. Six of these groups (5 speaking Tai languages and 1 speaking Vietnamese) live in close proximity to each other in separate villages in Northeast Thailand, and 2 of the groups (one Tai-speaking and one Vietnamese-speaking) live in different parts of Vietnam. Detailed information on the horizontal structure of homegardens was collected from samples of households belonging to each group. Although each ethnic group has a somewhat distinctive modal structure, the groups cluster into 2 different types. The Tai speaking Cao Lan, Kalaeng, Lao, Nyaw, and Yoy make up Type I while both of the Vietnamese groups, along with the Tai speaking Phu Thai, belong to Type II. Type I gardens have predominantly organic shapes, indeterminate boundaries, polycentric planting patterns, and multi-species composition within planting areas. Type II homegardens have geometric shapes, sharp boundaries, lineal planting patterns, and mono-species composition of planting areas. That the homegardens of most of the Tai ethnic groups share a relatively similar horizontal structural pattern that is quite different from the pattern shared by both of the Vietnamese groups suggests that the spatial layout of homegardens is strongly influenced by their different cultural models. PMID:26752564
NASA Astrophysics Data System (ADS)
Ai, L.; Shi, Z. H.; Yin, W.; Huang, X.
2015-04-01
Landscape characteristics are widely accepted as strongly influencing stream water quality in heterogeneous watersheds. Understanding the relationships between landscape and specific water contaminant can greatly improve the predictability of potential contamination and the assessment of contaminant export. In this work, we examined the combined effects of watershed complexity, in terms of land use and physiography, on specific water contaminant across watersheds close to the Danjiangkou Reservoir. The land use composition, land use pattern, morphometric variables and soil properties were calculated at the watershed scale and considered potential factors of influence. Due to high co-dependence of these watershed characteristics, partial least squares regression was used to elucidate the linkages between some specific water contaminants and the 16 selected watershed characteristic variables. Water contaminant maps revealed spatial and seasonal heterogeneity. The dissolved oxygen values in the dry season were higher than those in the wet season, whereas the other contaminant concentrations displayed the opposite trend. The studied watersheds which are influenced strongly by urbanization, showed higher levels of ammonia nitrogen, total phosphorus, potassium permanganate index and petroleum, and lower levels of dissolved oxygen. The urban land use, largest patch index and the hypsometric integral were the dominant factors affecting specific water contaminant.
Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns
Norred, Sarah Elizabeth; Caveney, Patrick M.; Chauhan, Gaurav; ...
2018-04-24
Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting—the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increasemore » in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA (“spatial noise”) that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. Furthermore, these results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.« less
Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norred, Sarah Elizabeth; Caveney, Patrick M.; Chauhan, Gaurav
Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting—the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increasemore » in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA (“spatial noise”) that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. Furthermore, these results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.« less
Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.
Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel
2017-12-01
Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Cavalheri, Hamanda; Both, Camila; Martins, Marcio
2015-01-01
Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities. PMID:26061038
Effects of habitat fragmentation on passerine birds breeding in Intermountain shrubsteppe
Knick, S.T.; Rotenberry, J.T.
2002-01-01
Habitat fragmentation and loss strongly influence the distribution and abundance of passerine birds breeding in Intermountain shrubsteppe. Wildfires, human activities, and change in vegetation communities often are synergistic in these systems and can result in radical conversion from shrubland to grasslands dominated by exotic annuals at large temporal and spatial scales from which recovery to native conditions is unlikely. As a result, populations of 5 of the 12 species in our review of Intermountain shrubsteppe birds are undergoing significant declines; 5 species are listed as at-risk or as candidates for protection in at least one state. The process by which fragmentation affects bird distributions in these habitats remains unknown because most research has emphasized the detection of population trends and patterns of habitat associations at relatively large spatial scales. Our research indicates that the distribution of shrubland-obligate species, such as Brewer's Sparrows (Spizella breweri), Sage Sparrows (Amphispiza belli), and Sage Thrashers (Oreoscoptes montanus), was highly sensitive to fragmentation of shrublands at spatial scales larger than individual home ranges. In contrast, the underlying mechanisms for both habitat change and bird population dynamics may operate independently of habitat boundaries. We propose alternative, but not necessarily exclusive, mechanisms to explain the relationship between habitat fragmentation and bird distribution and abundance. Fragmentation might influence productivity through differences in breeding density, nesting success, or predation. However, local and landscape variables were not significant determinants either of success, number fledged, or probability of predation or parasitism (although our tests had relatively low statistical power). Alternatively, relative absence of natal philopatry and redistribution by individuals among habitats following fledging or post-migration could account for the pattern of distribution and abundance. Thus, boundary dynamics may be important in determining the distribution of shrubland-obligate species but insignificant relative to the mechanisms causing the pattern of habitat and bird distribution. Because of the dichotomy in responses, Intermountain shrubsteppe systems present a unique challenge in understanding how landscape composition, configuration, and change influence bird population dynamics.
Cavalheri, Hamanda; Both, Camila; Martins, Marcio
2015-01-01
Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities.
Assessment of prey vulnerability through analysis of wolf movements and kill sites.
Bergman, Eric J; Garrott, Robert A; Creel, Scott; Borkowski, John J; Jaffe, Rosemary; Watson, E G R
2006-02-01
Within predator-prey systems behavior can heavily influence spatial dynamics, and accordingly, the theoretical study of how spatial dynamics relate to stability within these systems has a rich history. However, our understanding of these behaviors in large mammalian systems is poorly developed. To address the relationship between predator selection patterns, prey density, and prey vulnerability, we quantified selection patterns for two fine-scale behaviors of a recovering wolf (Canis lupus) population in Yellowstone National Park, Wyoming, USA. Wolf spatial data were collected between November and May from 1998-1999 until 2001-2002. Over four winters, 244 aerial locations, 522 ground-based telemetry locations, 1287 km of movement data from snow tracking, and the locations of 279 wolf kill sites were recorded. There was evidence that elk (Cervus elaphus) and bison (Bison bison) densities had a weak effect on the sites where wolves traveled and made kills. Wolf movements showed a strong selection for geothermal areas, meadows, and areas near various types of habitat edges. Proximity to edge and habitat class also had a strong influence on the locations where elk were most vulnerable to predation. There was little evidence that wolf kill sites differed from the places where wolves traveled, indicating that elk vulnerability influenced where wolves selected to travel. Our results indicate that elk are more vulnerable to wolves under certain conditions and that wolves are capable of selecting for these conditions. As such, vulnerability plays a central role in predator-prey behavioral games and can potentially impact the systems to which they relate.
NASA Astrophysics Data System (ADS)
Zainora, A. M.; Norzailawati, M. N.; Tuminah, P.
2016-06-01
Presently, it is noticeable that there is a significant influence of public open space about house price, especially in many developed nations. Literature suggests the relationship between the two aspects give impact on the housing market, however not many studies undertaken in Malaysia. Thus, this research was initiated to analyse the relationship of open space and house price via the techniques of GIS-Hedonic Pricing Model. In this regards, the GIS tool indicates the pattern of the relationship between open space and house price spatially. Meanwhile, Hedonic Pricing Model demonstrates the index of the selected criteria in determining the housing price. This research is a perceptual study of 200 respondents who were the house owners of double-storey terrace houses in four townships, namely Bandar Baru Bangi, Taman Melawati, Subang Jaya and Shah Alam, in Klang Valley. The key research question is whether the relationship between open space and house price exists and the nature of its pattern and intensity. The findings indicate that there is a positive correlation between open space and house price. Correlation analysis reveals that a weak relationship (rs < 0.1) established between the variable of open space and house price (rs = 0.91, N = 200, p = 0.2). Consequently, the rate of house price change is rather small. In overall, this research has achieved its research aims and thus, offers the value added in applying the GIS-Hedonic pricing model in analysing the influence of open space to the house price in the form of spatially and textually.
NASA Astrophysics Data System (ADS)
Walsh, J. P.; Corbett, D. R.; Kiker, J. M.; Orpin, A. R.; Hale, R. P.; Ogston, A. S.
2014-09-01
The stratigraphic record is the manifestation of a wide range of processes, interactions and responses to environmental drivers. Understanding the functioning of river sediment dispersal systems is necessary to determine the fate of sediment and associated material in the marine environment and differentiate key influences in the development of the stratigraphic record. To that end, this study uses sediment cores collected on four successive cruises (January, May and September 2010 and February 2011) on the Waipaoa River margin, New Zealand, to provide insight into spatial and temporal variability in sediment deposition and seabed character. The Waipaoa River discharges a large sediment load into an energetic coast that has a complex margin morphology. Several flood and wave events occurred during the study, and sedimentation varied spatially and temporally. X-radiographs and short-lived radioisotopes indicate emplacement of new event layers prior to all cruises. Notable variation in surficial seabed character (grain-size composition, loss-on-ignition percentage) was apparent on the inner shelf (water depths <40 m), but mid-shelf areas and seaward had more homogeneous sediment properties. 7Be inventories indicate variable patterns of deposition related to fluvial and oceanographic conditions prior to cruises. Ephemeral sediment storage occurs on the inner-shelf of Poverty Bay, into which the Waipaoa River discharges directly, and subsequent export and dispersal patterns are linked to the relative timing and size of flood and wave events. Surficial deposits with characteristics of fluid muds and wave-enhanced sediment gravity flows were noted at some (<25 sites total) mid-shelf and shallower sites from all cruises. During the last cruise considerable inter- and intra-site seabed variability occurred in the interbedded river-proximal inner-shelf deposits over spatial scales of less than a few kilometers. Evidence from earlier sidescan data infer that this could be related to variation in bedform development or influence. Contrasts in the observed event layering recorded over the experiment with the longer pattern of accumulation suggests stochastic dispersal behavior and reworking over time must shape the seabed to produce the time-averaged pattern of shelf sediment accumulation. This research highlights our improved ability to comprehend strata development and sheds light on the challenge of interpreting historical and ancient strata across spatial and temporal scales.
Spatio-Temporal Characteristics of Resident Trip Based on Poi and OD Data of Float CAR in Beijing
NASA Astrophysics Data System (ADS)
Mou, N.; Li, J.; Zhang, L.; Liu, W.; Xu, Y.
2017-09-01
Due to the influence of the urban inherent regional functional distribution, the daily activities of the residents presented some spatio-temporal patterns (periodic patterns, gathering patterns, etc.). In order to further understand the spatial and temporal characteristics of urban residents, this paper research takes the taxi trajectory data of Beijing as a sample data and studies the spatio-temporal characteristics of the residents' activities on the weekdays. At first, according to the characteristics of the taxi trajectory data distributed along the road network, it takes the Voronoi generated by the road nodes as the research unit. This paper proposes a hybrid clustering method - based on grid density, which is used to cluster the OD (origin and destination) data of taxi at different times. Then combining with the POI data of Beijing, this research calculated the density of the POI data in the clustering results, and analyzed the relationship between the activities of residents in different periods and the functional types of the region. The final results showed that the residents were mainly commuting on weekdays. And it found that the distribution of travel density showed a concentric circle of the characteristics, focusing on residential areas and work areas. The results of cluster analysis and POI analysis showed that the residents' travel had experienced the process of "spatial relative dispersion - spatial aggregation - spatial relative dispersion" in one day.
Andrus, J Malia; Porter, Matthew D; Rodríguez, Luis F; Kuehlhorn, Timothy; Cooke, Richard A C; Zhang, Yuanhui; Kent, Angela D; Zilles, Julie L
2014-02-01
Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples.In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria.Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect,while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics.Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically in undated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.
NASA Astrophysics Data System (ADS)
Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon
2018-02-01
Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.
A biologically relevant method for considering patterns of oceanic retention in the Southern Ocean
NASA Astrophysics Data System (ADS)
Mori, Mao; Corney, Stuart P.; Melbourne-Thomas, Jessica; Klocker, Andreas; Sumner, Michael; Constable, Andrew
2017-12-01
Many marine species have planktonic forms - either during a larval stage or throughout their lifecycle - that move passively or are strongly influenced by ocean currents. Understanding these patterns of movement is important for informing marine ecosystem management and for understanding ecological processes generally. Retention of biological particles in a particular area due to ocean currents has received less attention than transport pathways, particularly for the Southern Ocean. We present a method for modelling retention time, based on the half-life for particles in a particular region, that is relevant for biological processes. This method uses geostrophic velocities at the ocean surface, derived from 23 years of satellite altimetry data (1993-2016), to simulate the advection of passive particles during the Southern Hemisphere summer season (from December to March). We assess spatial patterns in the retention time of passive particles and evaluate the processes affecting these patterns for the Indian sector of the Southern Ocean. Our results indicate that the distribution of retention time is related to bathymetric features and the resulting ocean dynamics. Our analysis also reveals a moderate level of consistency between spatial patterns of retention time and observations of Antarctic krill (Euphausia superba) distribution.
Mosaics of Change: Cross-Scale Forest Cover Dynamics and Drivers in Tibetan Yunnan, China
NASA Astrophysics Data System (ADS)
Van Den Hoek, Jamon
In reaction to devastating floods on the Yangtze River in the summer of 1998, the Chinese Central Government introduced a logging ban as part of the Natural Forest Protection Program (NFPP) with the goal of dramatically increasing national forest cover. Since then, over 11 billion USD has been allocated to the program, but the NFPP's success at promoting reforestation is unclear as neither the extent of forest cover change, nor the potential factors influencing the spatial variability of change have been examined. This research employs a case study in northwest Yunnan Province, southwest China, to evaluate the spatial variability of forest cover change under the NFPP and investigate drivers that have influenced recent patterns of change. I employ a mixed methods, cross-scale research framework that includes the analysis of areal trajectories and spatial variability of Landsat-5 imagery-derived forest cover change at three administrative levels before and after the NFPP's introduction; landscape ecology-based metrics to measure the shifting patterns of forest cover change at the patch level; and household interview data on village-level forest resource use patterns and processes in three neighboring villages. Prefecture- and county-level analyses suggest rather stable forest cover across the three-county study area since the introduction of the ban, though township-level measures of forest cover change show a degree of spatial variability as well as a temporal delay in policy implementation effectiveness. Village-level remote sensing analysis shows comparable amounts of forest cover change between study villages but disparate forest resource use patterns in terms of location and amount. Though all research villages continue to exploit local forests for firewood and timber relatively unfettered by policy restrictions, villagers with tourism-derived income are able to buy forest products collected in outside forests much more often; this redistributes local-scale deforestation to the benefit of local and detriment of distant forests. Tourism is often heralded as the solution to rural development challenges in China's southwest, but this research shows the unintended consequences that may result from inconsistent participation at the village-level, consequences which merely redirect, not reduce, forest use pressures, and that are contrary to the goals of state policy.
Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore.
Searle, Kate R; Rice, Mindy B; Anderson, Charles R; Bishop, Chad; Hobbs, N T
2015-10-01
Understanding how spatial and temporal heterogeneity influence ecological processes forms a central challenge in ecology. Individual responses to heterogeneity shape population dynamics, therefore understanding these responses is central to sustainable population management. Emerging evidence has shown that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants. We quantified the benefits mule deer (Odocoileus hemionus) accrue from accessing habitats with asynchronous plant phenology in northwest Colorado over 3 years. Our analysis examined both the direct physiological and indirect environmental effects of weather and vegetation phenology on mule deer winter body condition. We identified several important effects of annual weather patterns and topographical variables on vegetation phenology in the home ranges of mule deer. Crucially, temporal patterns of vegetation phenology were linked with differences in body condition, with deer tending to show poorer body condition in areas with less asynchronous vegetation green-up and later vegetation onset. The direct physiological effect of previous winter precipitation on mule deer body condition was much less important than the indirect effect mediated by vegetation phenology. Additionally, the influence of vegetation phenology on body fat was much stronger than that of overall vegetation productivity. In summary, changing annual weather patterns, particularly in relation to seasonal precipitation, have the potential to alter body condition of this important ungulate species during the critical winter period. This finding highlights the importance of maintaining large contiguous areas of spatially and temporally variable resources to allow animals to compensate behaviourally for changing climate-driven resource patterns.
Spatial interactions between sympatric carnivores: asymmetric avoidance of an intraguild predator.
Grassel, Shaun M; Rachlow, Janet L; Williams, Christopher J
2015-07-01
Interactions between intraguild species that act as both competitors and predator-prey can be especially complex. We studied patterns of space use by the black-footed ferret (Mustela nigripes), a prairie dog (Cynomys spp.) specialist, and the American badger (Taxidea taxus), a larger generalist carnivore that competes for prairie dogs and is known to kill ferrets. We expected that ferrets would spatially avoid badgers because of the risk of predation, that these patterns of avoidance might differ between sexes and age classes, and that the availability of food and space might influence these relationships. We used location data from 60 ferrets and 15 badgers to model the influence of extrinsic factors (prairie dog density and colony size) and intrinsic factors (sex, age) on patterns of space use by ferrets in relation to space use by different sex and age categories of badgers. We documented asymmetric patterns of avoidance of badgers by ferrets based on the sex of both species. Female ferrets avoided adult female badgers, but not male badgers, and male ferrets exhibited less avoidance than female ferrets. Additionally, avoidance decreased with increasing densities of prairie dogs. We suggest that intersexual differences in space use by badgers create varying distributions of predation risk that are perceived by the smaller carnivore (ferrets) and that females respond more sensitively than males to that risk. This work advances understanding about how competing species coexist and suggests that including information on both intrinsic and extrinsic factors might improve our understanding of behavioral interactions between sympatric species.
NASA Astrophysics Data System (ADS)
Papadimitriou, Constantinos; Donner, Reik V.; Stolbova, Veronika; Balasis, Georgios; Kurths, Jürgen
2015-04-01
Indian Summer monsoon is one of the most anticipated and important weather events with vast environmental, economical and social effects. Predictability of the Indian Summer Monsoon strength is crucial question for life and prosperity of the Indian population. In this study, we are attempting to uncover the relationship between the spatial complexity of Indian Summer Monsoon rainfall patterns, and the monsoon strength, in an effort to qualitatively determine how spatial organization of the rainfall patterns differs between strong and weak instances of the Indian Summer Monsoon. Here, we use observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). In order to capture different aspects of the system's dynamics, first, we convert rainfall time series to binary symbolic sequences, exploring various thresholding criteria. Second, we apply the Shannon entropy formulation (in a block-entropy sense) using different measures of normalization of the resulting entropy values. Finally, we examine the effect of various large-scale climate modes such as El-Niño-Southern Oscillation, North Atlantic Oscillation, and Indian Ocean Dipole, on the emerging complexity patterns, and discuss the possibility for the utilization of such pattern maps in the forecasting of the spatial variability and strength of the Indian Summer Monsoon.
NASA Astrophysics Data System (ADS)
Michaelis, D.; Schreiber, P.; Li, C.; Bräuer, A.; Gross, H.
2015-09-01
The concept of multichannel array projection is generalized in order to realize an ultraslim, highly efficient optical system for structured illumination with high lumen output, where additionally the Köhler illumination principle is utilized and source light homogenization occurs. The optical system consists of a multitude of neighboring optical channels. In each channel two optical freeforms generate a real or a virtual spatial light pattern and furthermore, the ray directions are modified to enable Köhler illumination of a subsequent projection lens. The internal light pattern may be additionally influenced by absorbing apertures or slides. The projection lens transfers the resulting light pattern to a target, where the total target distribution is produced by superposition of all individual channel output pattern. The optical system without absorbing apertures can be regarded as a generalization of a fly's eye condenser for structured illumination. In this case light pattern is exclusively generated by freeform light redistribution. The commonly occurring blurring effect for freeform beamshaping is reduced due to the creation of a virtual object light structure by means of the two freeform surfaces and its imaging towards the target. But, the remaining blurring inhibits very high spatial frequencies at the target. In order to create target features with very high spatial resolution the absorbing apertures can be utilized. In this case the freeform beamshaping can be used for an enhanced light transmission through the absorbing apertures. The freeform surfaces are designed by a generalized approach of Cartesian oval representation.
'It was not just a walking experience': reflections on the role of care in dog-walking.
Degeling, Chris; Rock, Melanie
2013-09-01
Research into physical activity and human health has recently begun to attend to dog-walking. This study extends the literature on dog-walking as a health behaviour by conceptualizing dog-walking as a caring practice. It centres on qualitative interviews with 11 Canadian dog-owners. All participants resided in urban neighbourhoods identified through previous quantitative research as conducive to dog-walking. Canine characteristics, including breed and age, were found to influence people's physical activity. The health of the dog and its position in the life-course influenced patterns of dog-walking. Frequency, duration and spatial patterns of dog-walking all depended on relationships and people's capacity to tap into resources. In foregrounding networks of care, inclusive of pets and public spaces, a relational conceptualization of dog-walking as a practice of caring helps to make sense of heterogeneity in patterns of physical activity among dog-owners.
Microstencils to generate defined, multi-species patterns of bacteria
Timm, Collin M.; Hansen, Ryan R.; Doktycz, Mitchel J.; ...
2015-11-12
Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniquesmore » with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Furthermore, quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.« less
Microstencils to generate defined, multi-species patterns of bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timm, Collin M.; Hansen, Ryan R.; Doktycz, Mitchel J.
Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniquesmore » with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Furthermore, quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.« less
Razafindratsima, Onja H; Dunham, Amy E
2016-08-01
Frugivores are the main seed dispersers in many ecosystems, such that behaviorally driven, nonrandom patterns of seed dispersal are a common process; but patterns are poorly understood. Characterizing these patterns may be essential for understanding spatial organization of fruiting trees and drivers of seed-dispersal limitation in biodiverse forests. To address this, we studied resulting spatial associations between dispersed seeds and adult tree neighbors in a diverse rainforest in Madagascar, using a temporal and phylogenetic approach. Data show that by using fruiting trees as seed-dispersal foci, frugivores bias seed dispersal under conspecific adults and under heterospecific trees that share dispersers and fruiting time with the dispersed species. Frugivore-mediated seed dispersal also resulted in nonrandom phylogenetic associations of dispersed seeds with their nearest adult neighbors, in nine out of the 16 months of our study. However, these nonrandom phylogenetic associations fluctuated unpredictably over time, ranging from clustered to overdispersed. The spatial and phylogenetic template of seed dispersal did not translate to similar patterns of association in adult tree neighborhoods, suggesting the importance of post-dispersal processes in structuring plant communities. Results suggest that frugivore-mediated seed dispersal is important for structuring early stages of plant-plant associations, setting the template for post-dispersal processes that influence ultimate patterns of plant recruitment. Importantly, if biased patterns of dispersal are common in other systems, frugivores may promote tree coexistence in biodiverse forests by limiting the frequency and diversity of heterospecific interactions of seeds they disperse. © 2016 by the Ecological Society of America.
Multiscale thermal refugia and stream habitat associations of chinook salmon in northwestern Oregon
Torgersen, Christian E.; Price, David M.; Li, Hiram W.; McIntosh, B.A.
1999-01-01
We quantified distribution and behavior of adult spring chinook salmon (Oncorhynchus tshawytscha) related to patterns of stream temperature and physical habitat at channel-unit, reach-, and section-level spatial scales in a wilderness stream and a disturbed stream in the John Day River basin in northeastern Oregon. We investigated the effectiveness of thermal remote sensing for analyzing spatial patterns of stream temperature and assessed habitat selection by spring chinook salmon, evaluating whether thermal refugia might be responsible for the persistence of these stocks in rivers where water temperatures frequently exceed their upper tolerance levels (25A?C) during spawning migration. By presenting stream temperature and the ecology of chinook salmon in a historical context, we could evaluate how changes in riverine habitat and thermal spatial structure, which can be caused by land-use practices, may influence distributional patterns of chinook salmon. Thermal remote sensing provided spatially continuous maps of stream temperature for reaches used by chinook salmon in the upper subbasins of the Middle Fork and North Fork John Day River. Electivity analysis and logistic regression were used to test for associations between the longitudinal distribution of salmon and cool-water areas and stream habitat characteristics. Chinook salmon were distributed nonuniformly in reaches throughout each stream. Salmon distribution and cool water temperature patterns were most strongly related at reach-level spatial scales in the warm stream, the Middle Fork (maximum likelihood ratio: P 0.30). Pools were preferred by adult chinook salmon in both subbasins (Bonferroni confidence interval: P a?? 0.05); however, riffles were used proportionately more frequently in the North Fork than in the Middle Fork. Our observations of thermal refugia and their use by chinook salmon at multiple spatial scales reveal that, although heterogeneity in the longitudinal stream temperature profile may be viewed as an ecological warning sign, thermal patchiness in streams also should be recognized for its biological potential to provide habitat for species existing at the margin of their environmental tolerances.
NASA Astrophysics Data System (ADS)
Llorens, Pilar; Garcia-Estringana, Pablo; Cayuela, Carles; Latron, Jérôme; Molina, Antonio; Gallart, Francesc
2015-04-01
Temporal and spatial variability of throughfall and stemflow patterns, due to differences in forest structure and seasonality of Mediterranean climate, may lead to significant changes in the volume of water that locally reaches the soil, with a potential effect on groundwater recharge and on hydrological response of forested hillslopes. Two forest stands in Mediterranean climatic conditions were studied to explore the role of vegetation on the temporal and spatial redistribution of rainfall. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of 20 automatic rain recorders to measuring throughfall, 7 stemflow rings connected to tipping-buckets and 40 automatic soil moisture probes. All data were recorded each 5 min. Bulk rainfall and meteorological conditions above both forest covers were also recorded, and canopy cover and biometric characteristics of the plots were measured. Results indicate a marked temporal stability of throughfall in both stands, and a lower persistence of spatial patterns in the leafless period than in the leafed one in the oaks stand. Moreover, in the oaks plot the ranks of gauges in the leafed and leafless periods were not significantly correlated, indicating different wet and dry hotspots in each season. The spatial distribution of throughfall varied significantly depending on rainfall volume, with small events having larger variability, whereas large events tended to homogenize the relative differences in point throughfall. Soil water content spatial variability increased with increasing soil water content, but direct dependence of soil water content variability on throughfall patterns is difficult to establish.
NASA Astrophysics Data System (ADS)
Xu, C.; Zhao, S.; Zhao, B.
2017-12-01
Spatial heterogeneity is scale-dependent, that is, the quantification and representation of spatial pattern vary with the resolution and extent. Overwhelming practices focused on scale effect of landscape metrics, and predicable scaling relationships found among some of them are thought to be the most effective and precise way to quantify multi-scale characteristics. However, previous studies tended to consider a narrow range of scales, and few focused on the critical threshold of scaling function. Here we examine the scalograms of 38 widely-used landscape-level metrics in a more integral spectrum of grain size among 96 landscapes with various extent (i.e. from 25km2 up towards to 221 km2), which sampled randomly from NLCD product. Our goal is to explore the existence of scaling domain and whether the response of metrics to changing resolution would be influenced by spatial extent. Results clearly show the existence of scaling domain for 13 of them (Type II), while the behaviors of other 13 (Type I) exhibit simple scaling functions and the rest (Type III) demonstrate various forms like no obvious change or fluctuation across the integral spectrum of grain size. In addition, an invariant power law scaling relationship was found between critical resolution and spatial extent for metrics falling into Type II, as the critical resolution is proportional to Eρ (ρ is a constant, and E is the extent). All the scaling exponents (ρ) are positive, suggesting that the critical resolutions for these characteristics of landscape structure can be relaxed as the spatial extent expands. This agrees well with empirical perception that coarser grain size might be allowed for spatial data with larger extent. Furthermore, the parameters of scaling functions for metrics falling into Type I and Type II vary with spatial extent, and power law or logarithmic relationships could be identified between them for some metrics. Our finding support the existence of self-organized criticality for a hierarchically-structured landscape. Although the underlying mechanism driving the scaling relationship remains unclear, it could provide guidance toward general principles in spatial pattern analysis and on selecting the proper resolution to avoid the misrepresentation of spatial pattern and profound biases in further ecological progress research.
Jácome, Gabriel; Valarezo, Carla; Yoo, Changkyoo
2018-03-30
Pollution and the eutrophication process are increasing in lake Yahuarcocha and constant water quality monitoring is essential for a better understanding of the patterns occurring in this ecosystem. In this study, key sensor locations were determined using spatial and temporal analyses combined with geographical information systems (GIS) to assess the influence of weather features, anthropogenic activities, and other non-point pollution sources. A water quality monitoring network was established to obtain data on 14 physicochemical and microbiological parameters at each of seven sample sites over a period of 13 months. A spatial and temporal statistical approach using pattern recognition techniques, such as cluster analysis (CA) and discriminant analysis (DA), was employed to classify and identify the most important water quality parameters in the lake. The original monitoring network was reduced to four optimal sensor locations based on a fuzzy overlay of the interpolations of concentration variations of the most important parameters.
Is the relationship between pattern recall and decision-making influenced by anticipatory recall?
Gorman, Adam D; Abernethy, Bruce; Farrow, Damian
2013-01-01
The present study compared traditional measures of pattern recall to measures of anticipatory recall and decision-making to examine the underlying mechanisms of expert pattern perception and to address methodological limitations in previous studies where anticipatory recall has generally been overlooked. Recall performance in expert and novice basketball players was measured by examining the spatial error in recalling player positions both for a target image (traditional recall) and at 40-ms increments following the target image (anticipatory recall). Decision-making performance was measured by comparing the participant's response to those identified by a panel of expert coaches. Anticipatory recall was observed in the recall task and was significantly more pronounced for the experts, suggesting that traditional methods of spatial recall analysis may not have provided a completely accurate determination of the full magnitude of the experts' superiority. Accounting for anticipatory recall also increased the relative contribution of recall skill to decision-making accuracy although the gains in explained variance were modest and of debatable functional significance.
NASA Astrophysics Data System (ADS)
Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana
2017-04-01
Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N export in catchments under managed land use. Furthermore, the changes in diurnal patterns in the forest catchment and absence of similar patterns in the other catchments are an indication that biogeochemical processes such as nitrification and denitrification in areas under different land use are affected as well. This could have implications for regional N-cycling.
Temple, Andrew J; Tregenza, Nick; Amir, Omar A; Jiddawi, Narriman; Berggren, Per
2016-01-01
Understanding temporal patterns in distribution, occurrence and behaviour is vital for the effective conservation of cetaceans. This study used cetacean click detectors (C-PODs) to investigate spatial and temporal variation in occurrence and foraging activity of the Indo-Pacific bottlenose (Tursiops aduncus) and Indian Ocean humpback (Sousa plumbea) dolphins resident in the Menai Bay Conservation Area (MBCA), Zanzibar, Tanzania. Occurrence was measured using detection positive minutes. Inter-click intervals were used to identify terminal buzz vocalisations, allowing for analysis of foraging activity. Data were analysed in relation to spatial (location) and temporal (monsoon season, diel phase and tidal phase) variables. Results showed significantly increased occurrence and foraging activity of dolphins in southern areas and during hours of darkness. Higher occurrence at night was not explained by diel variation in echolocation rate and so were considered representative of occurrence patterns. Both tidal phase and monsoon season influenced occurrence but results varied among sites, with no general patterns found. Foraging activity was greatest during hours of darkness, High water and Flood tidal phases. Comparisons of echolocation data among sites suggested differences in the broadband click spectra of MBCA dolphins, possibly indicative of species differences. These dolphin populations are threatened by unsustainable fisheries bycatch and tourism activities. The spatial and temporal patterns identified in this study have implications for future conservation and management actions with regards to these two threats. Further, the results indicate future potential for using passive acoustics to identify and monitor the occurrence of these two species in areas where they co-exist.
Piccardi, Laura; De Luca, Maria; Nori, Raffaella; Palermo, Liana; Iachini, Fabiana; Guariglia, Cecilia
2016-01-01
During navigation people may adopt three different spatial styles (i.e., Landmark, Route, and Survey). Landmark style (LS) people are able to recall familiar landmarks but cannot combine them with directional information; Route style (RS) people connect landmarks to each other using egocentric information about direction; Survey style (SS) people use a map-like representation of the environment. SS individuals generally navigate better than LS and RS people. Fifty-one college students (20 LS; 17 RS, and 14 SS) took part in the experiment. The spatial cognitive style (SCS) was assessed by means of the SCS test; participants then had to learn a schematic map of a city, and after 5 min had to recall the path depicted on it. During the learning and delayed recall phases, eye-movements were recorded. Our intent was to investigate whether there is a peculiar way to explore an environmental map related to the individual’s spatial style. Results support the presence of differences in the strategy used by the three spatial styles for learning the path and its delayed recall. Specifically, LS individuals produced a greater number of fixations of short duration, while the opposite eye movement pattern characterized SS individuals. Moreover, SS individuals showed a more spread and comprehensive explorative pattern of the map, while LS individuals focused their exploration on the path and related targets. RS individuals showed a pattern of exploration at a level of proficiency between LS and SS individuals. We discuss the clinical and anatomical implications of our data. PMID:27445735
Dynamic Changes of Landscape Pattern and Vulnerability Analysis in Qingyi River Basin
NASA Astrophysics Data System (ADS)
Li, Ziwei; Xie, Chaoying; He, Xiaohui; Guo, Hengliang; Wang, Li
2017-11-01
Environmental vulnerability research is one of the core areas of global environmental change research. Over the past 10 years, ecologically fragile zones or transition zones had been significantly affected by environmental degradation and climate change and human activities. In this paper, we analyzed the spatial and temporal changes of landscape pattern and landscape vulnerability degree in Qingyi River Basin by calculating the landscape sensitivity index and landscape restoration degree index based on Landsat images of 2005, 2010 and 2015. The results showed that: (1) The top conversion area was farmland, woodland and grassland area decreased, city land and rural residential land increased fastest. (2) The fragility of the landscape pattern along the Qingyi River gradually increased between 2005 and 2015, the downstream area was influenced by the influence of human activities. (3) Landscape pattern changes and fragility are mainly affected by urbanization. These findings are helpful for understanding the evolution of landscape pattern as well as urban ecology, which both have significant implications for urban planning and minimize the potential environmental impacts of urbanization in Qingyi River Basin.
D'Antonio, Ashley; Monz, Christopher
2016-04-01
A variety of social and ecological factors influence the level and extent of ecological change that occurs in a park or protected area. Understanding these factors and how they are interrelated can help managers prevent undesirable ecological impacts, especially in areas without formal trails and visitor sites. This study examines the relationship between levels of visitor use and spatial patterns of visitor behavior at a variety of backcountry recreation destinations. Current assumptions in both the literature and simulation modeling efforts assume that visitor behavior either does not change with use level or that visitors are more likely to disperse at high levels of visitor use. Using visitor counts and GPS tracks of visitor behavior in locations where visitors could disperse off-trail, we found that visitors' spatial behavior does vary with visitor use level in some recreation settings, however the patterns of visitor behavior observed in this study are sometimes contrary to current generalizations. When visitor behavior does vary with use level, visitors are dispersing more at low levels of visitor use not when use level is high. Overall, these findings suggest that in certain situations the amount of visitor use at a recreation destination may be a less important driver of ecological change than visitor behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior
NASA Astrophysics Data System (ADS)
Meco, Edi; Lampe, Kyle J.
2018-02-01
Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) extracellular matrix (ECM) and have been extensively utilized to influence neural cell (NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and 3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.
Chemical morphogenesis: recent experimental advances in reaction–diffusion system design and control
Szalai, István; Cuiñas, Daniel; Takács, Nándor; Horváth, Judit; De Kepper, Patrick
2012-01-01
In his seminal 1952 paper, Alan Turing predicted that diffusion could spontaneously drive an initially uniform solution of reacting chemicals to develop stable spatially periodic concentration patterns. It took nearly 40 years before the first two unquestionable experimental demonstrations of such reaction–diffusion patterns could be made in isothermal single phase reaction systems. The number of these examples stagnated for nearly 20 years. We recently proposed a design method that made their number increase to six in less than 3 years. In this report, we formally justify our original semi-empirical method and support the approach with numerical simulations based on a simple but realistic kinetic model. To retain a number of basic properties of real spatial reactors but keep calculations to a minimal complexity, we introduce a new way to collapse the confined spatial direction of these reactors. Contrary to similar reduced descriptions, we take into account the effect of the geometric size in the confinement direction and the influence of the differences in the diffusion coefficient on exchange rates of species with their feed environment. We experimentally support the method by the observation of stationary patterns in red-ox reactions not based on oxihalogen chemistry. Emphasis is also brought on how one of these new systems can process different initial conditions and memorize them in the form of localized patterns of different geometries. PMID:23919126
Relationship Between Landcover Pattern and Surface Net Radiation in AN Coastal City
NASA Astrophysics Data System (ADS)
Zhao, X.; Liu, L.; Liu, X.; Zhao, Y.
2016-06-01
Taking Xiamen city as the study area this research first retrieved surface net radiation using meteorological data and Landsat 5 TM images of the four seasons in the year 2009. Meanwhile the 65 different landscape metrics of each analysis unit were acquired using landscape analysis method. Then the most effective landscape metrics affecting surface net radiation were determined by correlation analysis, partial correlation analysis, stepwise regression method, etc. At both class and landscape levels, this paper comprehensively analyzed the temporal and spatial variations of the surface net radiation as well as the effects of land cover pattern on it in Xiamen from a multi-seasonal perspective. The results showed that the spatial composition of land cover pattern shows significant influence on surface net radiation while the spatial allocation of land cover pattern does not. The proportions of bare land and forest land are effective and important factors which affect the changes of surface net radiation all the year round. Moreover, the proportion of forest land is more capable for explaining surface net radiation than the proportion of bare land. So the proportion of forest land is the most important and continuously effective factor which affects and explains the cross-seasonal differences of surface net radiation. This study is helpful in exploring the formation and evolution mechanism of urban heat island. It also gave theoretical hints and realistic guidance for urban planning and sustainable development.
Infant mortality in Brazil, 1980-2000: A spatial panel data analysis
2012-01-01
Background Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e.g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country. PMID:22410079
Patterns of Precipitation and Streamflow Responses to Moisture Fluxes during Atmospheric Rivers
NASA Astrophysics Data System (ADS)
Henn, B. M.; Wilson, A. M.; Asgari Lamjiri, M.; Ralph, M.
2017-12-01
Precipitation from landfalling atmospheric rivers (ARs) have been shown to dominate the hydroclimate of many parts of the world. ARs are associated with saturated, neutrally-stable profiles in the lower atmosphere, in which forced ascent by topography induces precipitation. Understanding the spatial and temporal variability of precipitation over complex terrain during AR-driven precipitation is critical for accurate forcing of distributed hydrologic models and streamflow forecasts. Past studies using radar wind profilers and radiosondes have demonstrated predictability of precipitation rates based on upslope water vapor flux over coastal terrain, with certain levels of moisture flux exhibiting the greatest influence on precipitation. Additionally, these relationships have been extended to show that streamflow in turn responds predictably to upslope vapor flux. However, past studies have focused on individual pairs of profilers and precipitation gauges; the question of how orographic precipitation in ARs is distributed spatially over complex terrain, at different topographic scales, is less well known. Here, we examine profiles of atmospheric moisture transport from radiosondes and wind profilers, against a relatively dense network of precipitation gauges, as well as stream gauges, to assess relationships between upslope moisture flux and the spatial response of precipitation and streamflow. We focus on California's Russian River watershed in the 2016-2017 cool season, when regular radiosonde launches were made at two locations during an active sequence of landfalling ARs. We examine how atmospheric water vapor flux results in precipitation patterns across gauges with different topographic relationships to the prevailing moisture-bearing winds, and conduct a similar comparison of runoff volume response from several unimpaired watersheds in the upper Russian watershed, taking into account antecedent soil moisture conditions that influence runoff generation. Finally, we compare observed spatial patterns of precipitation accumulations to those in a topographically-aided gridded precipitation dataset to understand how atmospheric moisture transport may inform methods to downscale precipitation to high resolution for use in hydrologic modeling.
NASA Astrophysics Data System (ADS)
Belica, L.; Mitasova, H.; Caldwell, P.; McCarter, J. B.; Nelson, S. A. C.
2017-12-01
Thermal regimes of forested headwater streams continue to be an area of active research as climatic, hydrologic, and land cover changes can influence water temperature, a key aspect of aquatic ecosystems. Widespread monitoring of stream temperatures have provided an important data source, yielding insights on the temporal and spatial patterns and the underlying processes that influence stream temperature. However, small forested streams remain challenging to model due to the high spatial and temporal variability of stream temperatures and the climatic and hydrologic conditions that drive them. Technological advances and increased computational power continue to provide new tools and measurement methods and have allowed spatially explicit analyses of dynamic natural systems at greater temporal resolutions than previously possible. With the goal of understanding how current stream temperature patterns and processes may respond to changing landcover and hydroclimatoligical conditions, we combined high-resolution, spatially explicit geospatial modeling with deterministic heat flux modeling approaches using data sources that ranged from traditional hydrological and climatological measurements to emerging remote sensing techniques. Initial analyses of stream temperature monitoring data revealed that high temporal resolution (5 minutes) and measurement resolutions (<0.1°C) were needed to adequately describe diel stream temperature patterns and capture the differences between paired 1st order and 4th order forest streams draining north and south facing slopes. This finding along with geospatial models of subcanopy solar radiation and channel morphology were used to develop hypotheses and guide field data collection for further heat flux modeling. By integrating multiple approaches and optimizing data resolution for the processes being investigated, small, but ecologically significant differences in stream thermal regimes were revealed. In this case, multi-approach research contributed to the identification of the dominant mechanisms driving stream temperature in the study area and advanced our understanding of the current thermal fluxes and how they may change as environmental conditions change in the future.
Spatial Analysis of Rice Blast in China at Three Different Scales.
Guo, Fangfang; Chen, Xinglong; Lu, Minghong; Yang, Li; Wang, Shi Wei; Wu, Bo Ming
2018-05-22
In this study, spatial analyses were conducted at three different scales to better understand the epidemiology of rice blast, a major rice disease caused by Magnaporthe oryzae. At regional scale, across the major rice production regions in China, rice blast incidence was monitored on 101 dates at 193 stations from June 10 th to Sep. 10 th during 2009-2014, and surveyed in 143 fields in September, 2016; at county scale, 3 surveys were done covering 1-5 counties in 2015-2016; and at field scale, blast was evaluated in 6 fields in 2015-2016. Spatial cluster and hot spot analyses were conducted in GIS on the geographical pattern of the disease at regional scale, and geostatistical analysis performed at all the three scales. Cluster and hot spot analyses revealed that high-disease areas were clustered in mountainous areas in China. Geostatistical analyses detected spatial dependence of blast incidence with influence ranges of 399 to 1080 km at regional scale, and 5 to 10 m at field scale, but not at county scale. The spatial patterns at different scales might be determined by inherent properties of rice blast and environmental driving forces, and findings from this study provide helpful information to sampling and management of rice blast.
Spatial analysis of lettuce downy mildew using geostatistics and geographic information systems.
Wu, B M; van Bruggen, A H; Subbarao, K V; Pennings, G G
2001-02-01
ABSTRACT The epidemiology of lettuce downy mildew has been investigated extensively in coastal California. However, the spatial patterns of the disease and the distance that Bremia lactucae spores can be transported have not been determined. During 1995 to 1998, we conducted several field- and valley-scale surveys to determine spatial patterns of this disease in the Salinas valley. Geostatistical analyses of the survey data at both scales showed that the influence range of downy mildew incidence at one location on incidence at other locations was between 80 and 3,000 m. A linear relationship was detected between semivariance and lag distance at the field scale, although no single statistical model could fit the semi-variograms at the valley scale. Spatial interpolation by the inverse distance weighting method with a power of 2 resulted in plausible estimates of incidence throughout the valley. Cluster analysis in geographic information systems on the interpolated disease incidence from different dates demonstrated that the Salinas valley could be divided into two areas, north and south of Salinas City, with high and low disease pressure, respectively. Seasonal and spatial trends along the valley suggested that the distinction between the downy mildew conducive and nonconducive areas might be determined by environmental factors.
Stanley, Ryan; Snelgrove, Paul V R; Deyoung, Brad; Gregory, Robert S
2012-01-01
During the pelagic larval phase, fish dispersal may be influenced passively by surface currents or actively determined by swimming behaviour. In situ observations of larval swimming are few given the constraints of field sampling. Active behaviour is therefore often inferred from spatial patterns in the field, laboratory studies, or hydrodynamic theory, but rarely are these approaches considered in concert. Ichthyoplankton survey data collected during 2004 and 2006 from coastal Newfoundland show that changes in spatial heterogeneity for multiple species do not conform to predictions based on passive transport. We evaluated the interaction of individual larvae with their environment by calculating Reynolds number as a function of ontogeny. Typically, larvae hatch into a viscous environment in which swimming is inefficient, and later grow into more efficient intermediate and inertial swimming environments. Swimming is therefore closely related to length, not only because of swimming capacity but also in how larvae experience viscosity. Six of eight species sampled demonstrated consistent changes in spatial patchiness and concomitant increases in spatial heterogeneity as they transitioned into more favourable hydrodynamic swimming environments, suggesting an active behavioural element to dispersal. We propose the tandem assessment of spatial heterogeneity and hydrodynamic environment as a potential approach to understand and predict the onset of ecologically significant swimming behaviour of larval fishes in the field.
Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.
2015-01-01
Local adaptation influences plant species’ responses to climate change and their performance in ecological restoration. Fine-scale physiological or phenological adaptations that direct demographic processes may drive intraspecific variability when baseline environmental conditions change. Landscape genomics characterize adaptive differentiation by identifying environmental drivers of adaptive genetic variability and mapping the associated landscape patterns. We applied such an approach to Sphaeralcea ambigua, an important restoration plant in the arid southwestern United States, by analyzing variation at 153 amplified fragment length polymorphism loci in the context of environmental gradients separating 47 Mojave Desert populations. We identified 37 potentially adaptive loci through a combination of genome scan approaches. We then used a generalized dissimilarity model (GDM) to relate variability in potentially adaptive loci with spatial gradients in temperature, precipitation, and topography. We identified non-linear thresholds in loci frequencies driven by summer maximum temperature and water stress, along with continuous variation corresponding to temperature seasonality. Two GDM-based approaches for mapping predicted patterns of local adaptation are compared. Additionally, we assess uncertainty in spatial interpolations through a novel spatial bootstrapping approach. Our study presents robust, accessible methods for deriving spatially-explicit models of adaptive genetic variability in non-model species that will inform climate change modelling and ecological restoration.
Hu, Rui Bin; Fang, Xi; Xiang, Wen Hua; Jiang, Fang; Lei, Pi Feng; Zhao, Li Juan; Zhu, Wen Juan; Deng, Xiang Wen
2016-03-01
In order to investigate spatial variations in soil phosphorus (P) concentration and the influencing factors, one permanent plot of 1 hm 2 was established and stand structure was surveyed in Choerospondias axillaries deciduous broadleaved forest in Dashanchong Forest Park in Changsha County, Hunan Province, China. Soil samples were collected with equidistant grid point sampling method and soil P concentration and its spatial variation were analyzed by using geo-statistics and geographical information system (GIS) techniques. The results showed that the variations of total P and available P concentrations in humus layer and in the soil profile at depth of 0-10, 10-20 and 20-30 cm were moderate and the available P showed higher variability in a specific soil layer compared with total P. Concentrations of total P and available P in soil decreased, while the variations increased with the increase in soil depth. The total P and available P showed high spatial autocorrelation, primarily resulted from the structural factors. The spatial heterogeneity of available P was stronger than that of total P, and the spatial autocorrelation ranges of total P and available P varied from 92.80 to 168.90 m and from 79.43 to 106.20 m in different soil layers, respectively. At the same soil depth, fractal dimensions of total P were higher than that of available P, with more complex spatial pattern, while available P showed stronger spatial correlation with stronger spatial structure. In humus layer and soil depths of 0-10, 10-20 and 20-30 cm, the spatial variation pattern of total P and available P concentrations showed an apparent belt-shaped and spot massive gradient change. The high value appeared at low elevation and valley position, and the low value appeared in the high elevation and ridge area. The total P and available P concentrations showed significantly negative correlation with elevation and litter, but the relationship with convexity, species, numbers and soil pH was not significant. The total P and available P exhibited significant positive correlations with soil organic carbon (SOC), total nitrogen concentration, indicating the leaching characteristics of soil P. Its spatial variability was affected by many interactive factors.
Kim, Steve M; Ganguli, Surya; Frank, Loren M
2012-08-22
Hippocampal place cells convey spatial information through a combination of spatially selective firing and theta phase precession. The way in which this information influences regions like the subiculum that receive input from the hippocampus remains unclear. The subiculum receives direct inputs from area CA1 of the hippocampus and sends divergent output projections to many other parts of the brain, so we examined the firing patterns of rat subicular neurons. We found a substantial transformation in the subicular code for space from sparse to dense firing rate representations along a proximal-distal anatomical gradient: neurons in the proximal subiculum are more similar to canonical, sparsely firing hippocampal place cells, whereas neurons in the distal subiculum have higher firing rates and more distributed spatial firing patterns. Using information theory, we found that the more distributed spatial representation in the subiculum carries, on average, more information about spatial location and context than the sparse spatial representation in CA1. Remarkably, despite the disparate firing rate properties of subicular neurons, we found that neurons at all proximal-distal locations exhibit robust theta phase precession, with similar spiking oscillation frequencies as neurons in area CA1. Our findings suggest that the subiculum is specialized to compress sparse hippocampal spatial codes into highly informative distributed codes suitable for efficient communication to other brain regions. Moreover, despite this substantial compression, the subiculum maintains finer scale temporal properties that may allow it to participate in oscillatory phase coding and spike timing-dependent plasticity in coordination with other regions of the hippocampal circuit.
The stability of working memory: do previous tasks influence complex span?
Healey, M Karl; Hasher, Lynn; Danilova, Elena
2011-11-01
Schmeichel (2007) reported that performing an initial task before completing a working memory span task can lower span scores and suggested that the effect was due to depleted cognitive resources. We showed that the detrimental effect of prior tasks depends on a match between the stimuli used in the span task and the preceding task. A task requiring participants to ignore words reduced performance on a subsequent word-based verbal span task but not on an arrow-based spatial span task. Ignoring arrows had the opposite pattern of effects: reducing performance on the spatial span task but not on the word-based span task. Finally, we showed that antisaccade, a nonverbal task that taxes domain-general processes implicated in working memory, did not influence subsequent performance of either a verbal or a spatial span task. Together these results suggest that while span is sensitive to prior tasks, that sensitivity does not stem from depleted resources. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
Managed forest landscape structure and avian species richness in the southeastern US
Craig Loehle; T. Bently Wigley; Scott Rutzmoser; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Christopher J. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood
2005-01-01
Forest structural features at the stand scale (e.g., snags, stem density, species composition) and habitat attributes at larger spatial scales (e.g., landscape pattern, road density) can influence biological diversity and have been proposed as indicators in sustainable forestry programs. This study investigated relationships between such factors and total richness of...
E. L. Landguth; B. K. Hand; J. M. Glassy; S. A. Cushman; M. Jacobi; T. J. Julian
2011-01-01
The goal of this user manual is to explain the technical aspects of the current release of the CDPOP program. CDPOP v1.0 is a major extension of the CDPOP program (Landguth and Cushman 2010). CDPOP is an individual-based program that simulates the influences of landscape structure on emergence of spatial patterns in population genetic data as functions of individual-...
Todd A. Schroeder; Robbie Hember; Nicholas C. Coops; Shunlin Liang
2009-01-01
The magnitude and distribution of incoming shortwave solar radiation (SW) has significant influence on the productive capacity of forest vegetation. Models that estimate forest productivity require accurate and spatially explicit radiation surfaces that resolve both long- and short-term temporal climatic patterns and that account for topographic variability of the land...
William T. Peterjohn; Margaret A. Harlacher; Martin J. Christ; Mary Beth Adams
2015-01-01
In forest ecosystems there are numerous factors that influence nitrate (NO3) availability and retention in ways that can significantly affect receiving waters. Unfortunately these factors often co-exist and interact making it difficult to establish the importance of each individually. Three reference watersheds at the Fernow Experimental Forest (...
When to slow down: elk residency rates on a heterogeneous landscape
Dean P. Anderson; James D. Forester; Monica G. Turner
2008-01-01
It remains unclear if patterns of habitat use are driven by animals moving to and increasing residency time in selected areas, or by animals simply returning frequently to selected areas. We studied a population of North American elk (Cervus elaphus) in the Chequamegon National Forest, Wisconsin, to examine how spatial and temporal factors influence...
Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds
Matthew P. Miller; Elizabeth W. Boyer; Diane M. McKnight; Michael G. Brown; Rachel S. Gabor; Carolyn Hunsaker; Lidiia Iavorivska; Shreeram Inamdar; Dale W. Johnson; Louis A. Kaplan; Henry Lin; William H. McDowell; Julia N. Perdrial
2016-01-01
The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in...
Philip A. Tappe; Robert C. Weih; Ronald E. Thill; M. Anthony Melchiors; T. Bently Wigley
2004-01-01
Abstract - Recent changes in philosophy concerning forest management have focused attention on managing ecosystems at scales beyond the stand level. Properties of forested landscapes, such as patch size and shape, edge density, and interspersion have direct influences on flora and fauna. However, there is little information regarding spatial patterns...
Spatial and temporal structure of a mesocarnivore guild in midwestern north America
Damon B. Lesmeister; Clayton K. Nielsen; Eric M. Schauber; Eric C. Hellgren
2015-01-01
Carnivore guilds play a vital role in ecological communities by cascading trophic effects, energy and nutrient transfer, and stabilizing or destabilizing food webs. Consequently, the structure of carnivore guilds can be critical to ecosystem patterns. Body size is a crucial influence on intraguild interactions, because it affects access to prey resources, effectiveness...
Mechanisms of value-learning in the guidance of spatial attention.
Anderson, Brian A; Kim, Haena
2018-05-11
The role of associative reward learning in the guidance of feature-based attention is well established. The extent to which reward learning can modulate spatial attention has been much more controversial. At least one demonstration of a persistent spatial attention bias following space-based associative reward learning has been reported. At the same time, multiple other experiments have been published failing to demonstrate enduring attentional biases towards locations at which a target, if found, yields high reward. This is in spite of evidence that participants use reward structures to inform their decisions where to search, leading some to suggest that, unlike feature-based attention, spatial attention may be impervious to the influence of learning from reward structures. Here, we demonstrate a robust bias towards regions of a scene that participants were previously rewarded for selecting. This spatial bias relies on representations that are anchored to the configuration of objects within a scene. The observed bias appears to be driven specifically by reinforcement learning, and can be observed with equal strength following non-reward corrective feedback. The time course of the bias is consistent with a transient shift of attention, rather than a strategic search pattern, and is evident in eye movement patterns during free viewing. Taken together, our findings reconcile previously conflicting reports and offer an integrative account of how learning from feedback shapes the spatial attention system. Copyright © 2018 Elsevier B.V. All rights reserved.
Grains of connectivity: analysis at multiple spatial scales in landscape genetics.
Galpern, Paul; Manseau, Micheline; Wilson, Paul
2012-08-01
Landscape genetic analyses are typically conducted at one spatial scale. Considering multiple scales may be essential for identifying landscape features influencing gene flow. We examined landscape connectivity for woodland caribou (Rangifer tarandus caribou) at multiple spatial scales using a new approach based on landscape graphs that creates a Voronoi tessellation of the landscape. To illustrate the potential of the method, we generated five resistance surfaces to explain how landscape pattern may influence gene flow across the range of this population. We tested each resistance surface using a raster at the spatial grain of available landscape data (200 m grid squares). We then used our method to produce up to 127 additional grains for each resistance surface. We applied a causal modelling framework with partial Mantel tests, where evidence of landscape resistance is tested against an alternative hypothesis of isolation-by-distance, and found statistically significant support for landscape resistance to gene flow in 89 of the 507 spatial grains examined. We found evidence that major roads as well as the cumulative effects of natural and anthropogenic disturbance may be contributing to the genetic structure. Using only the original grid surface yielded no evidence for landscape resistance to gene flow. Our results show that using multiple spatial grains can reveal landscape influences on genetic structure that may be overlooked with a single grain, and suggest that coarsening the grain of landcover data may be appropriate for highly mobile species. We discuss how grains of connectivity and related analyses have potential landscape genetic applications in a broad range of systems. © 2012 Blackwell Publishing Ltd.
Zhou, Min; Tan, Shukui; Zhang, Lu
2015-01-01
Land use planning is always officially implemented as an effective tool to control urban development and protect farmland. However, its impact on land use change remains untested in China. Using a case study of Hang-Jia-Hu region, the main objective of this paper was to investigate the influence of different land use spatial control schemes on farmland conversion and urban development. Comparisons of farmland conversion and urban development patterns between the urban planning area and the non-urban planning area were characterized by using remote sensing, geographical information systems, and landscape metrics. Results indicated that farmland conversion in the non-urban planning area was more intensive than that in the urban planning area, and that farmland patterns was more fragmented in the non-urban planning area. Built-up land patterns in the non-urban planning area showed a trend of aggregation, while those in the urban planning area had a dual trend of fragmentation and aggregation. Existing built-up areas had less influence on built-up land sprawl in the non-urban planning area than that in the urban planning area. Built-up land sprawl in the form of continuous development in the urban planning area led to farmland conversion; and in the non-urban planning area, built-up land sprawl in the form of leapfrogging development resulted in farmland areal declines and fragmentation. We argued that it is a basic requirement to integrate land use plans in urban and non-urban planning areas for land use planning and management.
Zhou, Min; Tan, Shukui; Zhang, Lu
2015-01-01
Land use planning is always officially implemented as an effective tool to control urban development and protect farmland. However, its impact on land use change remains untested in China. Using a case study of Hang-Jia-Hu region, the main objective of this paper was to investigate the influence of different land use spatial control schemes on farmland conversion and urban development. Comparisons of farmland conversion and urban development patterns between the urban planning area and the non-urban planning area were characterized by using remote sensing, geographical information systems, and landscape metrics. Results indicated that farmland conversion in the non-urban planning area was more intensive than that in the urban planning area, and that farmland patterns was more fragmented in the non-urban planning area. Built-up land patterns in the non-urban planning area showed a trend of aggregation, while those in the urban planning area had a dual trend of fragmentation and aggregation. Existing built-up areas had less influence on built-up land sprawl in the non-urban planning area than that in the urban planning area. Built-up land sprawl in the form of continuous development in the urban planning area led to farmland conversion; and in the non-urban planning area, built-up land sprawl in the form of leapfrogging development resulted in farmland areal declines and fragmentation. We argued that it is a basic requirement to integrate land use plans in urban and non-urban planning areas for land use planning and management. PMID:25915897
Krushelnycky, P.D.; Joe, S.M.; Medeiros, A.C.; Daehler, C.C.; Loope, L.L.
2005-01-01
Analysis of long-term patterns of invasion can reveal the importance of abiotic factors in influencing invasion dynamics, and can help predict future patterns of spread. In the case of the invasive Argentine ant (Linepithema humile), most prior studies have investigated this species' limitations in hot and dry climates. However, spatial and temporal patterns of spread involving two ant populations over the course of 30 years at a high elevation site in Hawaii suggest that cold and wet conditions have influenced both the ant's distribution and its rate of invasion. In Haleakala National Park on Maui, we found that a population invading at lower elevation is limited by increasing rainfall and presumably by associated decreasing temperatures. A second, higher elevation population has spread outward in all directions, but rates of spread in different directions appear to have been strongly influenced by differences in elevation and temperature. Patterns of foraging activity were strongly tied to soil temperatures, supporting the hypothesis that variation in temperature can influence rates of spread. Based on past patterns of spread, we predicted a total potential range that covers nearly 50% of the park and 75% of the park's subalpine habitats. We compared this rough estimate with point predictions derived from a degree-day model for Argentine ant colony reproduction, and found that the two independent predictions match closely when soil temperatures are used in the model. The cold, wet conditions that have influenced Argentine ant invasion at this site are likely to be influential at other locations in this species' current and future worldwide distribution. ?? 2005 Blackwell Publishing Ltd.
Brown, B.L.; Swan, C.M.; Auerbach, D.A.; Campbell, Grant E.H.; Hitt, N.P.; Maloney, K.O.; Patrick, C.
2011-01-01
Explaining the mechanisms underlying patterns of species diversity and composition in riverine networks is challenging. Historically, community ecologists have conceived of communities as largely isolated entities and have focused on local environmental factors and interspecific interactions as the major forces determining species composition. However, stream ecologists have long embraced a multiscale approach to studying riverine ecosystems and have studied both local factors and larger-scale regional factors, such as dispersal and disturbance. River networks exhibit a dendritic spatial structure that can constrain aquatic organisms when their dispersal is influenced by or confined to the river network. We contend that the principles of metacommunity theory would help stream ecologists to understand how the complex spatial structure of river networks mediates the relative influences of local and regional control on species composition. From a basic ecological perspective, the concept is attractive because new evidence suggests that the importance of regional processes (dispersal) depends on spatial structure of habitat and on connection to the regional species pool. The role of local factors relative to regional factors will vary with spatial position in a river network. From an applied perspective, the long-standing view in ecology that local community composition is an indicator of habitat quality may not be uniformly applicable across a river network, but the strength of such bioassessment approaches probably will depend on spatial position in the network. The principles of metacommunity theory are broadly applicable across taxa and systems but seem of particular consequence to stream ecology given the unique spatial structure of riverine systems. By explicitly embracing processes at multiple spatial scales, metacommunity theory provides a foundation on which to build a richer understanding of stream communities.
Yu, Ke; Wang, Yue; Shen, Kaiquan; Li, Xiaoping
2013-01-01
The common spatial pattern analysis (CSP), a frequently utilized feature extraction method in brain-computer-interface applications, is believed to be time-invariant and sensitive to noises, mainly due to an inherent shortcoming of purely relying on spatial filtering. Therefore, temporal/spectral filtering which can be very effective to counteract the unfavorable influence of noises is usually used as a supplement. This work integrates the CSP spatial filters with complex channel-specific finite impulse response (FIR) filters in a natural and intuitive manner. Each hybrid spatial-FIR filter is of high-order, data-driven and is unique to its corresponding channel. They are derived by introducing multiple time delays and regularization into conventional CSP. The general framework of the method follows that of CSP but performs better, as proven in single-trial classification tasks like event-related potential detection and motor imagery.
COMPARISON OF SPATIAL PATTERNS OF POLLUTANT DISTRIBUTION WITH CMAQ PREDICTIONS
One indication of model performance is the comparison of spatial patterns of pollutants, either as concentration or deposition, predicted by the model with spatial patterns derived from measurements. If the spatial patterns produced by the model are similar to the observations i...
NASA Astrophysics Data System (ADS)
Tian, S.; Wang, J.; Gui, Z.; Wu, H.; Wang, Y.
2017-09-01
There has wide academic and policy attention on the issue of scale economy and industrial agglomeration, with most of the attention paid to industrial geography concentration. This paper adopted a scale-independent and distance-based measurement method, K-density function or known as Duranton and Overman (DO) index, to study the manufacturing industries localization in Shanghai, which is the most representative economic development zone in China and East Asia. The result indicates the industry has a growing tendency of localization, and various spatial distribution patterns in different distances. Furthermore, the class of industry also show significant influence on the concentration pattern. Besides, the method has been coded and published on GeoCommerce, a visualization and analysis portal for industrial big data, to provide geoprocessing and spatial decision support.
Environmental factors explaining the vegetation patterns in a temperate peatland.
Pellerin, Stéphanie; Lagneau, Louis-Adrien; Lavoie, Martin; Larocque, Marie
2009-08-01
Although ombrotrophic temperate peatlands are important ecosystems for maintaining biodiversity in eastern North America, the environmental factors influencing their flora are only partly understood. The relationships between plant species distribution and environmental factors were thus studied within the oldest temperate peatland of Québec. Plant assemblages were identified by cluster analysis while CCA was used to related vegetation gradients to environmental factors. Five assemblages were identified; three typical of open bog and two characterized by more minerotrophic vegetation. Thicker peat deposit was encounter underlying the bog assemblages while higher water table level and percentage of free surface water distinguished the minerotrophic assemblages. Overall, the floristic patterns observed were spatially structured along the margins and the expanse. The most important environmental factors explaining this spatial gradient were the percentage of free surface water and the highest water-table level.
Rhodes, Matthew K; Fant, Jeremie B; Skogen, Krissa A
2014-01-01
Identifying factors that shape the spatial distribution of genetic variation is crucial to understanding many population- and landscape-level processes. In this study, we explore fine-scale spatial genetic structure in Oenothera harringtonii (Onagraceae), an insect-pollinated, gravity-dispersed herb endemic to the grasslands of south-central and southeastern Colorado, USA. We genotyped 315 individuals with 11 microsatellite markers and utilized a combination of spatial autocorrelation analyses and landscape genetic models to relate life history traits and landscape features to dispersal processes. Spatial genetic structure was consistent with theoretical expectations of isolation by distance, but this pattern was weak (Sp = 0.00374). Anisotropic analyses indicated that spatial genetic structure was markedly directional, in this case consistent with increased dispersal along prominent slopes. Landscape genetic models subsequently confirmed that spatial genetic variation was significantly influenced by local topographic heterogeneity, specifically that geographic distance, elevation and aspect were important predictors of spatial genetic structure. Among these variables, geographic distance was ~68% more important than elevation in describing spatial genetic variation, and elevation was ~42% more important than aspect after removing the effect of geographic distance. From these results, we infer a mechanism of hydrochorous seed dispersal along major drainages aided by seasonal monsoon rains. Our findings suggest that landscape features may shape microevolutionary processes at much finer spatial scales than typically considered, and stress the importance of considering how particular dispersal vectors are influenced by their environmental context. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mining Co-Location Patterns with Clustering Items from Spatial Data Sets
NASA Astrophysics Data System (ADS)
Zhou, G.; Li, Q.; Deng, G.; Yue, T.; Zhou, X.
2018-05-01
The explosive growth of spatial data and widespread use of spatial databases emphasize the need for the spatial data mining. Co-location patterns discovery is an important branch in spatial data mining. Spatial co-locations represent the subsets of features which are frequently located together in geographic space. However, the appearance of a spatial feature C is often not determined by a single spatial feature A or B but by the two spatial features A and B, that is to say where A and B appear together, C often appears. We note that this co-location pattern is different from the traditional co-location pattern. Thus, this paper presents a new concept called clustering terms, and this co-location pattern is called co-location patterns with clustering items. And the traditional algorithm cannot mine this co-location pattern, so we introduce the related concept in detail and propose a novel algorithm. This algorithm is extended by join-based approach proposed by Huang. Finally, we evaluate the performance of this algorithm.
NASA Astrophysics Data System (ADS)
Birrell, Paul J.; Zhang, Xu-Sheng; Pebody, Richard G.; Gay, Nigel J.; de Angelis, Daniela
2016-07-01
Understanding how the geographic distribution of and movements within a population influence the spatial spread of infections is crucial for the design of interventions to curb transmission. Existing knowledge is typically based on results from simulation studies whereas analyses of real data remain sparse. The main difficulty in quantifying the spatial pattern of disease spread is the paucity of available data together with the challenge of incorporating optimally the limited information into models of disease transmission. To address this challenge the role of routine migration on the spatial pattern of infection during the epidemic of 2009 pandemic influenza in England is investigated here through two modelling approaches: parallel-region models, where epidemics in different regions are assumed to occur in isolation with shared characteristics; and meta-region models where inter-region transmission is expressed as a function of the commuter flux between regions. Results highlight that the significantly less computationally demanding parallel-region approach is sufficiently flexible to capture the underlying dynamics. This suggests that inter-region movement is either inaccurately characterized by the available commuting data or insignificant once its initial impact on transmission has subsided.
NASA Technical Reports Server (NTRS)
Danford, S.; Meindl, J.; Hunt, R.
1985-01-01
Issues of crew productivity during design work on space station are discussed. The crew productivity is defined almost exclusively in terms of human factors engineering and habitability design concerns. While such spatial environmental conditions are necessary to support crew performance and productivity, they are not sufficient to ensure high levels of crew performance and productivity on the post-Initial Operational Configurations (IOC) space station. The role of the organizational environment as a complement to the spatial environment for influencing crew performance in such isolated and confined work settings is examined. Three possible models of operation for post-IOC space station's organizational environment are identified and it is explained how they and space station's spatial environment will combine and interact to occasion patterns of crew behavior is suggested. A three phase program of research design: (1) identify patterns of crew behavior likely to be occasioned on post-IOC space station for each of the three models of operation; and (2) to determine proactive/preventative management strategies which could be adopted to maximize the emergence of preferred outcomes in crew behavior under each of the several spatial and organizational environment combinations.
Tracing Mississippi River influences in estuarine food webs of coastal Louisiana.
Wissel, Björn; Fry, Brian
2005-08-01
The Breton Sound estuary in southern Louisiana receives large amounts of Mississippi River water via a controlled diversion structure at the upstream end of the estuary. We used stable isotopes to trace spatial and seasonal responses of the downstream food web to winter and spring introductions of river water. Analysis of delta13C, delta15N, and delta34S in the common local consumers such as grass shrimp (Palaemonetes sp.), barnacles (Balanus sp.), and small plankton-feeding fish (bay anchovies, Anchoa mitchilli) showed that the diversion was associated with two of the five major source regimes that were supporting food webs: a river regime near the diversion and a river-influenced productive marsh regime farther away from the diversion. Mixing models identified a third river-influenced source regime at the marine end of the estuary where major natural discharge from the Bird's Foot Delta wraps around into estuarine waters. The remaining two source regimes represented typical estuarine conditions: local freshwater sources especially from precipitation and a brackish source regime representing higher salinity marine influences. Overall, the Mississippi River diversion accounted for 75% of food web support in the upper estuary and 25% in the middle estuary, with influence strongest along known flow pathways and closest to the diversion. Isotopes also traced seasonal changes in river contributions, and indicated increased plant community productivity along the major flow path of diversion water. In the Breton Sound estuary, bottom-up forcing of food webs is strongly linked to river introductions and discharge, occurring in spatial and temporal patterns predictable from known river input regimes and known hydrologic circulation patterns.
Arizpe, Joseph; Kravitz, Dwight J; Walsh, Vincent; Yovel, Galit; Baker, Chris I
2016-01-01
The Other-Race Effect (ORE) is the robust and well-established finding that people are generally poorer at facial recognition of individuals of another race than of their own race. Over the past four decades, much research has focused on the ORE because understanding this phenomenon is expected to elucidate fundamental face processing mechanisms and the influence of experience on such mechanisms. Several recent studies of the ORE in which the eye-movements of participants viewing own- and other-race faces were tracked have, however, reported highly conflicting results regarding the presence or absence of differential patterns of eye-movements to own- versus other-race faces. This discrepancy, of course, leads to conflicting theoretical interpretations of the perceptual basis for the ORE. Here we investigate fixation patterns to own- versus other-race (African and Chinese) faces for Caucasian participants using different analysis methods. While we detect statistically significant, though subtle, differences in fixation pattern using an Area of Interest (AOI) approach, we fail to detect significant differences when applying a spatial density map approach. Though there were no significant differences in the spatial density maps, the qualitative patterns matched the results from the AOI analyses reflecting how, in certain contexts, Area of Interest (AOI) analyses can be more sensitive in detecting the differential fixation patterns than spatial density analyses, due to spatial pooling of data with AOIs. AOI analyses, however, also come with the limitation of requiring a priori specification. These findings provide evidence that the conflicting reports in the prior literature may be at least partially accounted for by the differences in the statistical sensitivity associated with the different analysis methods employed across studies. Overall, our results suggest that detection of differences in eye-movement patterns can be analysis-dependent and rests on the assumptions inherent in the given analysis.
Arizpe, Joseph; Kravitz, Dwight J.; Walsh, Vincent; Yovel, Galit; Baker, Chris I.
2016-01-01
The Other-Race Effect (ORE) is the robust and well-established finding that people are generally poorer at facial recognition of individuals of another race than of their own race. Over the past four decades, much research has focused on the ORE because understanding this phenomenon is expected to elucidate fundamental face processing mechanisms and the influence of experience on such mechanisms. Several recent studies of the ORE in which the eye-movements of participants viewing own- and other-race faces were tracked have, however, reported highly conflicting results regarding the presence or absence of differential patterns of eye-movements to own- versus other-race faces. This discrepancy, of course, leads to conflicting theoretical interpretations of the perceptual basis for the ORE. Here we investigate fixation patterns to own- versus other-race (African and Chinese) faces for Caucasian participants using different analysis methods. While we detect statistically significant, though subtle, differences in fixation pattern using an Area of Interest (AOI) approach, we fail to detect significant differences when applying a spatial density map approach. Though there were no significant differences in the spatial density maps, the qualitative patterns matched the results from the AOI analyses reflecting how, in certain contexts, Area of Interest (AOI) analyses can be more sensitive in detecting the differential fixation patterns than spatial density analyses, due to spatial pooling of data with AOIs. AOI analyses, however, also come with the limitation of requiring a priori specification. These findings provide evidence that the conflicting reports in the prior literature may be at least partially accounted for by the differences in the statistical sensitivity associated with the different analysis methods employed across studies. Overall, our results suggest that detection of differences in eye-movement patterns can be analysis-dependent and rests on the assumptions inherent in the given analysis. PMID:26849447
Lottig, Noah R.; Tan, Pang-Ning; Wagner, Tyler; Cheruvelil, Kendra Spence; Soranno, Patricia A.; Stanley, Emily H.; Scott, Caren E.; Stow, Craig A.; Yuan, Shuai
2017-01-01
Ecology has a rich history of studying ecosystem dynamics across time and space that has been motivated by both practical management needs and the need to develop basic ideas about pattern and process in nature. In situations in which both spatial and temporal observations are available, similarities in temporal behavior among sites (i.e., synchrony) provide a means of understanding underlying processes that create patterns over space and time. We used pattern analysis algorithms and data spanning 22–25 yr from 601 lakes to ask three questions: What are the temporal patterns of lake water clarity at sub‐continental scales? What are the spatial patterns (i.e., geography) of synchrony for lake water clarity? And, what are the drivers of spatial and temporal patterns in lake water clarity? We found that the synchrony of water clarity among lakes is not spatially structured at sub‐continental scales. Our results also provide strong evidence that the drivers related to spatial patterns in water clarity are not related to the temporal patterns of water clarity. This analysis of long‐term patterns of water clarity and possible drivers contributes to understanding of broad‐scale spatial patterns in the geography of synchrony and complex relationships between spatial and temporal patterns across ecosystems.
Szoke, Andrei; Pignon, Baptiste; Baudin, Grégoire; Tortelli, Andrea; Richard, Jean-Romain; Leboyer, Marion; Schürhoff, Franck
2016-07-01
We sought to determine whether significant variation in the incidence of clinically relevant psychoses existed at an ecological level in an urban French setting, and to examine possible factors associated with this variation. We aimed to advance the literature by testing this hypothesis in a novel population setting and by comparing a variety of spatial models. We sought to identify all first episode cases of non-affective and affective psychotic disorders presenting in a defined urban catchment area over a 4 years period, over more than half a million person-years at-risk. Because data from geographic close neighbourhoods usually show spatial autocorrelation, we used for our analyses Bayesian modelling. We included small area neighbourhood measures of deprivation, migrants' density and social fragmentation as putative explanatory variables in the models. Incidence of broad psychotic disorders shows spatial patterning with the best fit for models that included both strong autocorrelation between neighbouring areas and weak autocorrelation between areas further apart. Affective psychotic disorders showed similar spatial patterning and were associated with the proportion of migrants/foreigners in the area (inverse correlation). In contrast, non-affective psychoses did not show spatial patterning. At ecological level, the variation in the number of cases and the factors that influence this variation are different for non-affective and affective psychotic disorders. Important differences in results-compared with previous studies in different settings-point to the importance of the context and the necessity of further studies to understand these differences.
Wardrop, Nicola A; Kuo, Chi-Chien; Wang, Hsi-Chieh; Clements, Archie C A; Lee, Pei-Fen; Atkinson, Peter M
2013-11-01
Scrub typhus is transmitted by the larval stage of trombiculid mites. Environmental factors, including land cover and land use, are known to influence breeding and survival of trombiculid mites and, thus, also the spatial heterogeneity of scrub typhus risk. Here, a spatially autoregressive modelling framework was applied to scrub typhus incidence data from Taiwan, covering the period 2003 to 2011, to provide increased understanding of the spatial pattern of scrub typhus risk and the environmental and socioeconomic factors contributing to this pattern. A clear spatial pattern in scrub typhus incidence was observed within Taiwan, and incidence was found to be significantly correlated with several land cover classes, temperature, elevation, normalized difference vegetation index, rainfall, population density, average income and the proportion of the population that work in agriculture. The final multivariate regression model included statistically significant correlations between scrub typhus incidence and average income (negatively correlated), the proportion of land that contained mosaics of cropland and vegetation (positively correlated) and elevation (positively correlated). These results highlight the importance of land cover on scrub typhus incidence: mosaics of cropland and vegetation represent a transitional land cover type which can provide favourable habitats for rodents and, therefore, trombiculid mites. In Taiwan, these transitional land cover areas tend to occur in less populated and mountainous areas, following the frontier establishment and subsequent partial abandonment of agricultural cultivation, due to demographic and socioeconomic changes. Future land use policy decision-making should ensure that potential public health outcomes, such as modified risk of scrub typhus, are considered.
Schetter, Timothy A; Walters, Timothy L; Root, Karen V
2013-09-01
Impacts of human land use pose an increasing threat to global biodiversity. Resource managers must respond rapidly to this threat by assessing existing natural areas and prioritizing conservation actions across multiple spatial scales. Plant species richness is a useful measure of biodiversity but typically can only be evaluated on small portions of a given landscape. Modeling relationships between spatial heterogeneity and species richness may allow conservation planners to make predictions of species richness patterns within unsampled areas. We utilized a combination of field data, remotely sensed data, and landscape pattern metrics to develop models of native and exotic plant species richness at two spatial extents (60- and 120-m windows) and at four ecological levels for northwestern Ohio's Oak Openings region. Multiple regression models explained 37-77 % of the variation in plant species richness. These models consistently explained more variation in exotic richness than in native richness. Exotic richness was better explained at the 120-m extent while native richness was better explained at the 60-m extent. Land cover composition of the surrounding landscape was an important component of all models. We found that percentage of human-modified land cover (negatively correlated with native richness and positively correlated with exotic richness) was a particularly useful predictor of plant species richness and that human-caused disturbances exert a strong influence on species richness patterns within a mixed-disturbance oak savanna landscape. Our results emphasize the importance of using a multi-scale approach to examine the complex relationships between spatial heterogeneity and plant species richness.
Leyk, Stefan; Binder, Claudia R; Nuckols, John R
2009-03-30
Pesticide poisoning is a global health issue with the largest impacts in the developing countries where residential and small-scale agricultural areas are often integrated and pesticides sprayed manually. To reduce health risks from pesticide exposure approaches for personalized exposure assessment (PEA) are needed. We present a conceptual framework to develop a spatial individual-based model (IBM) prototype for assessing potential exposure of farm-workers conducting small-scale agricultural production, which accounts for a considerable portion of global food crop production. Our approach accounts for dynamics in the contaminant distributions in the environment, as well as patterns of movement and activities performed on an individual level under different safety scenarios. We demonstrate a first prototype using data from a study area in a rural part of Colombia, South America. Different safety scenarios of PEA were run by including weighting schemes for activities performed under different safety conditions. We examined the sensitivity of individual exposure estimates to varying patterns of pesticide application and varying individual patterns of movement. This resulted in a considerable variation in estimates of magnitude, frequency and duration of exposure over the model runs for each individual as well as between individuals. These findings indicate the influence of patterns of pesticide application, individual spatial patterns of movement as well as safety conditions on personalized exposure in the agricultural production landscape that is the focus of our research. This approach represents a conceptual framework for developing individual based models to carry out PEA in small-scale agricultural settings in the developing world based on individual patterns of movement, safety conditions, and dynamic contaminant distributions. The results of our analysis indicate our prototype model is sufficiently sensitive to differentiate and quantify the influence of individual patterns of movement and decision-based pesticide management activities on potential exposure. This approach represents a framework for further understanding the contribution of agricultural pesticide use to exposure in the small-scale agricultural production landscape of many developing countries, and could be useful to evaluate public health intervention strategies to reduce risks to farm-workers and their families. Further research is needed to fully develop an operational version of the model.
The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis.
Kwak, Su-Hwan; Schiefelbein, John
2007-02-01
Cell-type patterning in the Arabidopsis root epidermis is achieved by a network of transcription factors and influenced by a position-dependent mechanism. The SCRAMBLED receptor-like kinase is required for the normal pattern to arise, but its precise role is not understood. Here we describe genetic and molecular studies to define the spatial and temporal role of SCM in epidermal patterning and its relationship to the transcriptional network. Our results suggest that SCM helps unspecified epidermal cells interpret their position in relation to the underlying cortical cells and establish distinct cell identities. Furthermore, SCM loss-of-function and overexpression analyses suggest that SCM influences cell fate through its negative transcriptional regulation of the WEREWOLF MYB gene in epidermal cells at the H position. We also find that SCM function is specifically required for patterning the post-embryonic root epidermis and not for the analogous epidermal cell-type patterning during embryogenesis or hypocotyl development. In addition, we show that two closely related SCM-like genes in Arabidopsis (SRF1 and SRF3) are not required alone or together with SCM for proper epidermal patterning. These findings help define the developmental and mechanistic role of SCM and suggest a new model for its action in root epidermal cell patterning.
Yniguez, A.T.; McManus, J.W.; DeAngelis, D.L.
2008-01-01
The growth patterns of macroalgae in three-dimensional space can provide important information regarding the environments in which they live, and insights into changes that may occur when those environments change due to anthropogenic and/or natural causes. To decipher these patterns and their attendant mechanisms and influencing factors, a spatially explicit model has been developed. The model SPREAD (SPatially-explicit Reef Algae Dynamics), which incorporates the key morphogenetic characteristics of clonality and morphological plasticity, is used to investigate the influences of light, temperature, nutrients and disturbance on the growth and spatial occupancy of dominant macroalgae in the Florida Reef Tract. The model species, Halimeda and Dictyota spp., are modular organisms, with an 'individual' being made up of repeating structures. These species can also propagate asexually through clonal fragmentation. These traits lead to potentially indefinite growth and plastic morphology that can respond to environmental conditions in various ways. The growth of an individual is modeled as the iteration of discrete macroalgal modules whose dynamics are affected by the light, temperature, and nutrient regimes. Fragmentation is included as a source of asexual reproduction and/or mortality. Model outputs are the same metrics that are obtained in the field, thus allowing for easy comparison. The performance of SPREAD was tested through sensitivity analysis and comparison with independent field data from four study sites in the Florida Reef Tract. Halimeda tuna was selected for initial model comparisons because the relatively untangled growth form permits detailed characterization in the field. Differences in the growth patterns of H. tuna were observed among these reefs. SPREAD was able to closely reproduce these variations, and indicate the potential importance of light and nutrient variations in producing these patterns. ?? 2008 Elsevier B.V.
Feeding habitats of nesting wading birds: Spatial use and social influences
Erwin, R. Michael
1983-01-01
In an effort to relate social interactions to feeding-habitat use, I observed six species of wading birds near a major colony site in coastal North Carolina. Three spatial scales of habitat use were considered: the general orientation to and from the colony (coarsest level), the habitat "patch," and (at the finest level) the microhabitat. Departure-arrival directions of Great Egrets (Casmerodius albus), Snowy Egrets (Egretta thula), Cattle Egrets (Bubulcus ibis), Little Blue Herons (Egretta caerulea), Tricolored Herons (Egretta tricolor), and Glossy Ibises (Plegadis falcinellus) were monitored at the colony site to document coarse patterns of feeding-habitat use. Added to these data were observations made at five different wetland sites to monitor between-habitat and within-habitat patterns for the five aquatic-feeding species. The results indicated a broad and variable use of feeding habitat over time. At the coarsest scale (i.e. orientation at the colony), diffuse patterns, influenced little by either inter- or intraspecific social interaction, were found for all species. At the next level (habitat "patch"), only one of five wetland sites was relatively consistent in attracting feeding birds, and its use increased from May to June. Few groups were seen at four of the five sites. At the one "attractive" site, the within-habitat patterns again were spatially variable over time, except for those of the abundant Snowy Egret, whose microhabitat preference was fairly consistent. Glossy Ibises and Snowy Egrets frequently formed mixed-species groups, Little Blue Herons were the least social, and Great Egrets and Tricolored Herons generally occurred in groups of less than 10 birds but rarely in groups larger than 30. The close association between Snowy Egrets and Glossy Ibises appeared to be based on a "beater-follower" relationship, wherein the probing, nonvisually feeding ibises make prey more available to the followers. In the study area, local enhancement appeared to play a more important role than did any "information-sharing" at the colony.
Lee, Inah; Park, Seong-Beom
2013-01-01
Objects and their locations can associatively define an event and a conjoint representation of object-place can form an event memory. Remembering how to respond to a certain object in a spatial context is dependent on both hippocampus and perirhinal cortex (PER). However, the relative functional contributions of the two regions are largely unknown in object-place associative memory. We investigated the PER influence on hippocampal firing in a goal-directed object-place memory task by comparing the firing patterns of CA1 and CA3 of the dorsal hippocampus between conditions of PER muscimol inactivation and vehicle control infusions. Rats were required to choose one of the two objects in a specific spatial context (regardless of the object positions in the context), which was shown to be dependent on both hippocampus and PER. Inactivation of PER with muscimol (MUS) severely disrupted performance of well-trained rats, resulting in response bias (i.e., choosing any object on a particular side). MUS did not significantly alter the baseline firing rates of hippocampal neurons. We measured the similarity in firing patterns between two trial conditions in which the same target objects were chosen on opposite sides within the same arm [object-in-place (O-P) strategy] and compared the results with the similarity in firing between two trial conditions in which the rat chose any object encountered on a particular side [response-in-place (R-P) strategy]. We found that the similarity in firing patterns for O-P trials was significantly reduced with MUS compared to control conditions (CTs). Importantly, this was largely because MUS injections affected the O-P firing patterns in CA1 neurons, but not in CA3. The results suggest that PER is critical for goal-directed organization of object-place associative memory in the hippocampus presumably by influencing how object information is associated with spatial information in CA1 according to task demand.
Strategies Influencing Spatial Heterogeneity of Microbial Life in a Soil Lysimeter
NASA Astrophysics Data System (ADS)
Sengupta, A.; Neilson, J. W.; Meira, A.; Wang, Y.; Meza, M.; Chorover, J.; Maier, R. M.; Troch, P. A. A.
2016-12-01
Soil microorganisms are critical drivers of biogeochemical processes. These microbes, in conjunction with their physical and chemical environment, contribute to ecosystem functioning and services of the landscape, have a profound impact on soil formation, and are of particular importance in oligotrophic environments; ecosystems that are characterized by low biotic diversity due to extremely low nutrient levels. Here, we present a study of microbial heterogeneity in a soil lysimeter under incipient conditions. The key questions asked were: 1) what is the spatial heterogeneity of microbes over a new and evolving landscape with inherent oligotrophic conditions, and 2) can patterns in diversity translate to patterns in microbe-mediated weathering processes and soil formation? We hypothesized that stratification of environmental conditions, brought about by varying water potential, flow paths, and redox conditions, will drive the heterogeneity of microbial life in a sub-meter scale. A suite of traditional and current microbiological tools were employed to study community characteristics. These included isolation on R2A media, quantitative polymerase chain reactions targeted at 16S rRNA bacterial and archaeal genes, and 18S fungal genes, and iTAG phylogenetic gene amplification. Illumina Mi-Seq platform generated sequences were analyzed using various bioinformatics pipelines to identify community patterns, classify microbial metabolic functions, and identify variables affecting the community dynamics. Numerous phyla (Verrucomicrobia, Actinobacteria, Planctomycetes, Proteobacteria, and Euryarchaeota) were identified. The surface layer had distinctly different distribution of communities compared to the other layers. Metabolically heterogeneous groups were found with respect to depth, with metabolic functions further confirmed by predictive functional profiling of the microbial communities. Therefore, despite being highly oligotrophic, the system was rich in species and functional diversity. Alongside physical and chemical data, the patterns observed in spatial and functional heterogeneity of microbes under incipient conditions is unique, and allows us to predict strategies undertaken by these microbes to survive in, and influence their oligotrophic environments.
Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta.
Boulanger, John; Nielsen, Scott E; Stenhouse, Gordon B
2018-03-26
One of the challenges in conservation is determining patterns and responses in population density and distribution as it relates to habitat and changes in anthropogenic activities. We applied spatially explicit capture recapture (SECR) methods, combined with density surface modelling from five grizzly bear (Ursus arctos) management areas (BMAs) in Alberta, Canada, to assess SECR methods and to explore factors influencing bear distribution. Here we used models of grizzly bear habitat and mortality risk to test local density associations using density surface modelling. Results demonstrated BMA-specific factors influenced density, as well as the effects of habitat and topography on detections and movements of bears. Estimates from SECR were similar to those from closed population models and telemetry data, but with similar or higher levels of precision. Habitat was most associated with areas of higher bear density in the north, whereas mortality risk was most associated (negatively) with density of bears in the south. Comparisons of the distribution of mortality risk and habitat revealed differences by BMA that in turn influenced local abundance of bears. Combining SECR methods with density surface modelling increases the resolution of mark-recapture methods by directly inferring the effect of spatial factors on regulating local densities of animals.
Spatial, temporal, and interspecies patterns in fine particulate matter in Texas.
Gebhart, Kristi A; Malm, William C; Ashbaugh, Lowell L
2005-11-01
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 microm) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a "high-sensitivity" version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbón I and II plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years.
Spatial variation in the climatic predictors of species compositional turnover and endemism.
Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C; Chapple, David G
2014-08-01
Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species-environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile-climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r (2) = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r (2) = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses.
Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.
Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish
2013-10-15
A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bond, B. J.; Peterson, K.; McKane, R.; Lajtha, K.; Quandt, D. J.; Allen, S. T.; Sell, S.; Daly, C.; Harmon, M. E.; Johnson, S. L.; Spies, T.; Sollins, P.; Abdelnour, A. G.; Stieglitz, M.
2010-12-01
We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site situated in Oregon’s central-western Cascade Range. Decades of long-term measurements and intensive research have revealed influences of topography on vegetation patterns, disturbance history, and hydrology. More recent research has shown surprising interactions between microclimates and synoptic weather patterns due to cold air drainage and pooling in mountain valleys. Using these data and insights, in addition to a recent LiDAR (Light Detection and Ranging) reconnaissance and a small sensor network, we are employing process-based models, including “SPA” (Soil-Plant-Atmosphere, developed by Mathew Williams of the University of Edinburgh), and “VELMA” (Visualizing Ecosystems for Land Management Alternatives, developed by Marc Stieglitz and colleagues of the Georgia Institute of Technology) to focus on two important features of mountainous landscapes: heterogeneity (both spatial and temporal) and connectivity (atmosphere-canopy-hillslope-stream). Our research questions include: 1) Do fine-scale spatial and temporal heterogeneity result in emergent properties at the basin scale, and if so, what are they? 2) How does connectivity across ecosystem components affect system responses to climate variability and change? Initial results show that for environmental drivers that elicit non-linear ecosystem responses on the plot scale, such as solar radiation, soil depth and soil water content, fine-scale spatial heterogeneity may produce unexpected emergent properties at larger scales. The results from such modeling experiments are necessarily a function of the supporting algorithms. However, comparisons based on models such as SPA and VELMA that operate at much different spatial scales (plots vs. hillslopes) and levels of biophysical organization (individual plants vs. aggregate plant biomass) can help us to understand how and why mountainous ecosystems may have distinctive responses to climate variability and climate change.
Naranjo, Ramon C.; Niswonger, Richard G.; Clinton Davis,
2015-01-01
Flow paths and residence times in the hyporheic zone are known to influence biogeochemical processes such as nitrification and denitrification. The exchange across the sediment-water interface may involve mixing of surface water and groundwater through complex hyporheic flow paths that contribute to highly variable biogeochemically active zones. Despite the recognition of these patterns in the literature, conceptualization and analysis of flow paths and nitrogen transformations beneath riffle-pool sequences often neglect to consider bed form driven exchange along the entire reach. In this study, the spatial and temporal distribution of dissolved oxygen (DO), nitrate (NO3-) and ammonium (NH4+) were monitored in the hyporheic zone beneath a riffle-pool sequence on a losing section of the Truckee River, NV. Spatially-varying hyporheic exchange and the occurrence of multi-scale hyporheic mixing cells are shown to influence concentrations of DO and NO3- and the mean residence time (MRT) of riffle and pool areas. Distinct patterns observed in piezometers are shown to be influenced by the first large flow event following a steady 8 month period of low flow conditions. Increases in surface water discharge resulted in reversed hydraulic gradients and production of nitrate through nitrification at small vertical spatial scales (0.10 to 0.25 m) beneath the sediment-water interface. In areas with high downward flow rates and low MRT, denitrification may be limited. The use of a longitudinal two-dimensional flow model helped identify important mechanisms such as multi-scale hyporheic mixing cells and spatially varying MRT, an important driver for nitrogen transformation in the riverbed. Our observations of DO and NO3- concentrations and model simulations highlight the role of multi-scale hyporheic mixing cells on MRT and nitrogen transformations in the hyporheic zone of riffle-pool sequences. This article is protected by copyright. All rights reserved.
Olsen, J B; Beacham, T D; Wetklo, M; Seeb, L W; Smith, C T; Flannery, B G; Wenburg, J K
2010-04-01
Adult Chinook salmon Oncorhynchus tshawytscha navigate in river systems using olfactory cues that may be influenced by hydrologic factors such as flow and the number, size and spatial distribution of tributaries. Thus, river hydrology may influence both homing success and the level of straying (gene flow), which in turn influences population structure. In this study, two methods of multivariate analysis were used to examine the extent to which four indicators of hydrology and waterway distance explained population structure of O. tshawytscha in the Yukon River. A partial Mantel test showed that the indicators of hydrology were positively associated with broad-scale (Yukon basin) population structure, when controlling for the influence of waterway distance. Multivariate multiple regression showed that waterway distance, supplemented with the number and flow of major drainage basins, explained more variation in broad-scale population structure than any single indicator. At an intermediate spatial scale, indicators of hydrology did not appear to influence population structure after accounting for waterway distance. These results suggest that habitat changes in the Yukon River, which alter hydrology, may influence the basin-wide pattern of population structure in O. tshawytscha. Further research is warranted on the role of hydrology in concert with waterway distance in influencing population structure in Pacific salmon.
Krieber, Magdalena; Bartl-Pokorny, Katrin D.; Pokorny, Florian B.; Zhang, Dajie; Landerl, Karin; Körner, Christof; Pernkopf, Franz; Pock, Thomas; Einspieler, Christa; Marschik, Peter B.
2017-01-01
The present study aimed to define differences between silent and oral reading with respect to spatial and temporal eye movement parameters. Eye movements of 22 German-speaking adolescents (14 females; mean age = 13;6 years;months) were recorded while reading an age-appropriate text silently and orally. Preschool cognitive abilities were assessed at the participants’ age of 5;7 (years;months) using the Kaufman Assessment Battery for Children. The participants’ reading speed and reading comprehension at the age of 13;6 (years;months) were determined using a standardized inventory to evaluate silent reading skills in German readers (Lesegeschwindigkeits- und -verständnistest für Klassen 6–12). The results show that (i) reading mode significantly influenced both spatial and temporal characteristics of eye movement patterns; (ii) articulation decreased the consistency of intraindividual reading performances with regard to a significant number of eye movement parameters; (iii) reading skills predicted the majority of eye movement parameters during silent reading, but influenced only a restricted number of eye movement parameters when reading orally; (iv) differences with respect to a subset of eye movement parameters increased with reading skills; (v) an overall preschool cognitive performance score predicted reading skills at the age of 13;6 (years;months), but not eye movement patterns during either silent or oral reading. However, we found a few significant correlations between preschool performances on subscales of sequential and simultaneous processing and eye movement parameters for both reading modes. Overall, the findings suggest that eye movement patterns depend on the reading mode. Preschool cognitive abilities were more closely related to eye movement patterns of oral than silent reading, while reading skills predicted eye movement patterns during silent reading, but less so during oral reading. PMID:28151950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Qian, Yun; Zhang, Yaocun
This paper presents a comprehensive analysis of interannual and interdecadal variations of summer precipitation and precipitation-related extreme events in China associated with variations of the East Asian summer monsoon (EASM) from 1979-2012. A high-quality daily precipitation dataset covering 2287 weather stations in China is analyzed. Based on the precipitation pattern analysis using empirical orthogonal functions, three sub-periods of 1979-1992 (period I), 1993-1999 (period II) and 2000-2012 (period III) are identified to be representative of the precipitation variability. Similar significant variability of the extreme precipitation indices is found across four sub-regions in eastern China. The spatial patterns of summer mean precipitation,more » the number of days with daily rainfall exceeding 95th percentile precipitation (R95p) and the maximum number of consecutive wet days (CWD) anomalies are consistent, but opposite to that of maximum consecutive dry days (CDD) anomalies during the three sub-periods. However, the spatial patterns of hydroclimatic intensity (HY-INT) are notably different from that of the other three extreme indices, but highly correlated to the dry events. The changes of precipitation anomaly patterns are accompanied by the change of the EASM regime and the abrupt shift of the position of the west Pacific subtropical high around 1992/1993 and 1999/2000, respectively, which influence the moisture transport that contributes most to the precipitation anomalies. Lastly, the EASM intensity is linked to sea surface temperature anomaly over the tropical Indian and Pacific Ocean that influences deep convection over the oceans.« less
Dispersal leads to spatial autocorrelation in species distributions: A simulation model
Bahn, V.; Krohn, W.B.; O'Connor, R.J.
2008-01-01
Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.
Zhang, Ling Yu; Liu, Zhao Gang
2017-12-01
Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.
NASA Astrophysics Data System (ADS)
Luo, Jieqiong; Zhou, Tinggang; Du, Peijun; Xu, Zhigang
2018-01-01
With rapid environmental degeneration and socio-economic development, the human settlement environment (HSE) has experienced dramatic changes and attracted attention from different communities. Consequently, the spatial-temporal evaluation of natural suitability of the human settlement environment (NSHSE) has become essential for understanding the patterns and dynamics of HSE, and for coordinating sustainable development among regional populations, resources, and environments. This study aims to explore the spatialtemporal evolution of NSHSE patterns in 1997, 2005, and 2009 in Fengjie County near the Three Gorges Reservoir Area (TGRA). A spatially weighted NSHSE model was established by integrating multi-source data (e.g., census data, meteorological data, remote sensing images, DEM data, and GIS data) into one framework, where the Ordinary Least Squares (OLS) linear regression model was applied to calculate the weights of indices in the NSHSE model. Results show that the trend of natural suitability has been first downward and then upward, which is evidenced by the disparity of NSHSE existing in the south, north, and central areas of Fengjie County. Results also reveal clustered NSHSE patterns for all 30 townships. Meanwhile, NSHSE has significant influence on population distribution, and 71.49% of the total population is living in moderate and high suitable districts.
Goldwyn, Joshua H.; Bierer, Steven M.; Bierer, Julie A.
2010-01-01
The partial tripolar electrode configuration is a relatively novel stimulation strategies that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. PMID:20580801
Spatial patterns of mixing in the Solomon Sea
NASA Astrophysics Data System (ADS)
Alberty, M. S.; Sprintall, J.; MacKinnon, J.; Ganachaud, A.; Cravatte, S.; Eldin, G.; Germineaud, C.; Melet, A.
2017-05-01
The Solomon Sea is a marginal sea in the southwest Pacific that connects subtropical and equatorial circulation, constricting transport of South Pacific Subtropical Mode Water and Antarctic Intermediate Water through its deep, narrow channels. Marginal sea topography inhibits internal waves from propagating out and into the open ocean, making these regions hot spots for energy dissipation and mixing. Data from two hydrographic cruises and from Argo profiles are employed to indirectly infer mixing from observations for the first time in the Solomon Sea. Thorpe and finescale methods indirectly estimate the rate of dissipation of kinetic energy (ɛ) and indicate that it is maximum in the surface and thermocline layers and decreases by 2-3 orders of magnitude by 2000 m depth. Estimates of diapycnal diffusivity from the observations and a simple diffusive model agree in magnitude but have different depth structures, likely reflecting the combined influence of both diapycnal mixing and isopycnal stirring. Spatial variability of ɛ is large, spanning at least 2 orders of magnitude within isopycnal layers. Seasonal variability of ɛ reflects regional monsoonal changes in large-scale oceanic and atmospheric conditions with ɛ increased in July and decreased in March. Finally, tide power input and topographic roughness are well correlated with mean spatial patterns of mixing within intermediate and deep isopycnals but are not clearly correlated with thermocline mixing patterns.
Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices
Sprague, Thomas C.; Serences, John T.
2014-01-01
Computational theories propose that attention modulates the topographical landscape of spatial ‘priority’ maps in regions of visual cortex so that the location of an important object is associated with higher activation levels. While single-unit recording studies have demonstrated attention-related increases in the gain of neural responses and changes in the size of spatial receptive fields, the net effect of these modulations on the topography of region-level priority maps has not been investigated. Here, we used fMRI and a multivariate encoding model to reconstruct spatial representations of attended and ignored stimuli using activation patterns across entire visual areas. These reconstructed spatial representations reveal the influence of attention on the amplitude and size of stimulus representations within putative priority maps across the visual hierarchy. Our results suggest that attention increases the amplitude of stimulus representations in these spatial maps, particularly in higher visual areas, but does not substantively change their size. PMID:24212672
Nielsen, Scott E; Cattet, Marc R L; Boulanger, John; Cranston, Jerome; McDermid, Greg J; Shafer, Aaron B A; Stenhouse, Gordon B
2013-09-08
Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. We found sex and age explained the most variance in body mass, condition and length (R(2) from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R(2) from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R(2) from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R(2) of 0.03). Human footprint and population density had no observed effect on body size. These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver spoon effects was on par with the influence of contemporary regional habitat productivity, which showed that both temporal and spatial influences explain in part body size patterns in grizzly bears. Because smaller bears were found in colder and less-productive environments, we hypothesize that warming global temperatures may positively affect body mass of interior bears.
Power, Jonathan D; Plitt, Mark; Gotts, Stephen J; Kundu, Prantik; Voon, Valerie; Bandettini, Peter A; Martin, Alex
2018-02-27
"Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO 2 ) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.
Haiganoush K. Preisler; Jeffrey A. Hicke; Alan A. Ager; Jane L. Hayes
2012-01-01
Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process...
John M. Buffington; David R. Montgomery; Harvey M. Greenberg
2004-01-01
A general framework is presented for examining the effects of channel type and associated hydraulic roughness on salmonid spawning-gravel availability in mountain catchments. Digital elevation models are coupled with grain-size predictions to provide basin-scale assessments of the potential extent and spatial pattern of spawning gravels. To demonstrate both the model...
A simple method for estimating potential relative radiation (PRR) for landscape-vegetation analysis.
Kenneth B. Jr. Pierce; Todd Lookingbill; Dean Urban
2005-01-01
Radiation is one of the primary influences on vegetation composition and spatial pattern. Topographic orientation is often used as a proxy for relative radiation load due to its effects on evaporative demand and local temperature. Common methods for incorporating this information (i.e., site measures of slope and aspect) fail to include daily or annual changes in solar...
Effects of Spatial Structure on Movement Patterns of the Hispid Cotton Rat
David R. Bowne; John D. Peles; Gary W. Barrett
1999-01-01
A large-scale experimental landscape study was conducted to examine the use of corridors and the forest matrix habitat by the hispid cotton rat (Sigmodon hispidus). The role of micro-habitat selection by S. hispidus in influencing routes of movement was also investigated. The experimental landscape consisted of ten 1.64-ha patches (each 128 x...
Is lodgepole pine mortality due to mountain pine beetle linked to the North American Monsoon?
Sara A. Goeking; Greg C. Liknes
2012-01-01
Regional precipitation patterns may have influenced the spatial variability of tree mortality during the recent mountain pine beetle (Dendroctonus ponderosa) (MPB) outbreak in the western United States. Data from the Forest Inventory and Analysis (FIA) Program show that the outbreak was especially severe in the state of Colorado where over 10 million lodgepole pines (...
Maria C. Mateo Sanchez; Samuel A. Cushman; Santiago Saura
2013-01-01
Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species-habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as...
Becky L. Estes; Eric E. Knapp; Carl N. Skinner; Jay D. Miller; Haiganoush K. Preisler
2017-01-01
Topography, weather, and fuels are known factors driving fire behavior, but the degree to which each contributes to the spatial pattern of fire severity under different conditions remains poorly understood. The variability in severity within the boundaries of the 2006 wildfires that burned in the Klamath Mountains, northern California, along with data on burn...
Generalized reproduction numbers and the prediction of patterns in waterborne disease
Gatto, Marino; Mari, Lorenzo; Bertuzzo, Enrico; Casagrandi, Renato; Righetto, Lorenzo; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea
2012-01-01
Understanding, predicting, and controlling outbreaks of waterborne diseases are crucial goals of public health policies, but pose challenging problems because infection patterns are influenced by spatial structure and temporal asynchrony. Although explicit spatial modeling is made possible by widespread data mapping of hydrology, transportation infrastructure, population distribution, and sanitation, the precise condition under which a waterborne disease epidemic can start in a spatially explicit setting is still lacking. Here we show that the requirement that all the local reproduction numbers be larger than unity is neither necessary nor sufficient for outbreaks to occur when local settlements are connected by networks of primary and secondary infection mechanisms. To determine onset conditions, we derive general analytical expressions for a reproduction matrix , explicitly accounting for spatial distributions of human settlements and pathogen transmission via hydrological and human mobility networks. At disease onset, a generalized reproduction number (the dominant eigenvalue of ) must be larger than unity. We also show that geographical outbreak patterns in complex environments are linked to the dominant eigenvector and to spectral properties of . Tests against data and computations for the 2010 Haiti and 2000 KwaZulu-Natal cholera outbreaks, as well as against computations for metapopulation networks, demonstrate that eigenvectors of provide a synthetic and effective tool for predicting the disease course in space and time. Networked connectivity models, describing the interplay between hydrology, epidemiology, and social behavior sustaining human mobility, thus prove to be key tools for emergency management of waterborne infections. PMID:23150538
SPECIAL - The Savanna Patterns of Energy and Carbon Integrated Across the Landscape campaign
NASA Astrophysics Data System (ADS)
Beringer, J.; Hacker, J.; Hutley, L. B.; Leuning, R.; Arndt, S. K.; Amiri, R.; Bannehr, L.; Cernusak, L. A.; Grover, S.; Hensley, C.; Hocking, D. J.; Isaac, P. R.; Jamali, H.; Kanniah, K.; Livesley, S.; Neininger, B.; Paw U, K.; Sea, W. B.; Straten, D.; Tapper, N. J.; Weinmann, R. A.; Wood, S.; Zegelin, S. J.
2010-12-01
We undertook a significant field campaign (SPECIAL) to examine spatial patterns and processes of land surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas. Such savanna ecosystems occur in over 20 countries and cover approximately 15% of the world’s land surface. They consist of a mix of trees and grasses that coexist, but are spatially highly varied in their physical structure, species composition and physiological function. This spatial variation is driven by climate factors (rainfall gradients and seasonality) and disturbances (fire, grazing, herbivory, cyclones). Variations in savanna structure, composition and function (i.e. leaf area and function, stem density, albedo, roughness) interact with the overlying atmosphere directly through exchanges of heat and moisture, which alter the overlying boundary layer. Variability in ecosystem types across the landscape can alter regional to global circulation patterns. Equally, savannas are an important part of the global carbon cycle and can influence the climate through net uptake or release of CO2. We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux and regional budget measurements, and satellite remotely sensed quantities to quantify the spatial variability utilizing a continental scale rainfall gradient that resulted in a variety of savanna types. The ultimate goal of our research is to be able to produce robust estimates of regional carbon and water cycles to inform land management policy about how they may respond to future environmental changes.
García-Fernández, Alfredo; Iriondo, Jose M; Escudero, Adrián; Aguilar, Javier Fuertes; Feliner, Gonzalo Nieto
2013-08-01
Mountain plants are among the species most vulnerable to global warming, because of their isolation, narrow geographic distribution, and limited geographic range shifts. Stochastic and selective processes can act on the genome, modulating genetic structure and diversity. Fragmentation and historical processes also have a great influence on current genetic patterns, but the spatial and temporal contexts of these processes are poorly known. We aimed to evaluate the microevolutionary processes that may have taken place in Mediterranean high-mountain plants in response to changing historical environmental conditions. Genetic structure, diversity, and loci under selection were analyzed using AFLP markers in 17 populations distributed over the whole geographic range of Armeria caespitosa, an endemic plant that inhabits isolated mountains (Sierra de Guadarrama, Spain). Differences in altitude, geographic location, and climate conditions were considered in the analyses, because they may play an important role in selective and stochastic processes. Bayesian clustering approaches identified nine genetic groups, although some discrepancies in assignment were found between alternative analyses. Spatially explicit analyses showed a weak relationship between genetic parameters and spatial or environmental distances. However, a large proportion of outlier loci were detected, and some outliers were related to environmental variables. A. caespitosa populations exhibit spatial patterns of genetic structure that cannot be explained by the isolation-by-distance model. Shifts along the altitude gradient in response to Pleistocene climatic oscillations and environmentally mediated selective forces might explain the resulting structure and genetic diversity values found.
Death by Segregation: Does the Dimension of Racial Segregation Matter?
Yang, Tse-Chuan; Matthews, Stephen A
2015-01-01
The county-level geographic mortality differentials have persisted in the past four decades in the United States (US). Though several socioeconomic factors (e.g., inequality) partially explain this phenomenon, the role of race/ethnic segregation, in general, and the different dimensions of segregation, more specifically, has been underexplored. Focusing on all-cause age-sex standardized US county-level mortality (2004-2008), this study has two substantive goals: (1) to understand whether segregation is a determinant of mortality and if yes, how the relationship between segregation and mortality varies by racial/ethnic dyads (e.g., white/black), and (2) to explore whether different dimensions of segregation (i.e., evenness, exposure, concentration, centralization, and clustering) are associated with mortality. A third goal is methodological: to assess whether spatial autocorrelation influences our understanding of the associations between the dimensions of segregation and mortality. Race/ethnic segregation was found to contribute to the geographic mortality disparities. Moreover, the relationship with mortality differed by both race/ethnic group and the dimension of segregation. Specifically, white/black segregation is positively related to mortality, whereas the segregation between whites and non-black minorities is negatively associated with mortality. Among the five dimensions of segregation, evenness and exposure are more strongly related to mortality than other dimensions. Spatial filtering approaches also identified six unique spatial patterns that significantly affect the spatial distribution of mortality. These patterns offer possible insights that help identify omitted variables related to the persistent patterning of mortality in the US.
Localised hydrodynamics influence vulnerability of coral communities to environmental disturbances
NASA Astrophysics Data System (ADS)
Shedrawi, George; Falter, James L.; Friedman, Kim J.; Lowe, Ryan J.; Pratchett, Morgan S.; Simpson, Christopher J.; Speed, Conrad W.; Wilson, Shaun K.; Zhang, Zhenlin
2017-09-01
The movement of water can have a significant influence on the vulnerability of hermatypic corals to environmental disturbances such as cyclone damage, heat stress and anoxia. Here, we explore the relationship between small reef-scale water circulation patterns and measured differences in the abundance, composition and vulnerability of coral assemblages over decades. Changes in coral cover and community structure within Bill's Bay (Ningaloo Reef, Western Australia) over a 22-yr period, during which multiple disturbance events (including mass bleaching, anoxia, and tropical cyclones) have impacted the area, were compared with spatial variation in water residence times (WRT). We found that reef sites associated with longer water residence times (WRT >15 h) experienced higher rates of coral mortality during acute environmental disturbances compared to reef sites with shorter WRT. Shifts in coral community composition from acroporid to faviid-dominated assemblages were also more prominent at sites with long WRT compared to reef sites with shorter WRT, although shifts in community composition were also observed at sites close to shore. Interestingly, these same long-WRT sites also tended to have the fastest recovery rates so that coral cover was returned to original levels of approximately 20% over two decades. This study provides empirical evidence that spatial patterns in water circulation and flushing can influence the resilience of coral communities, thus identifying areas sensitive to emerging threats associated with global climate change.
How do dispersal costs and habitat selection influence realized population connectivity?
Burgess, Scott C; Treml, Eric A; Marshall, Dustin J
2012-06-01
Despite the importance of dispersal for population connectivity, dispersal is often costly to the individual. A major impediment to understanding connectivity has been a lack of data combining the movement of individuals and their survival to reproduction in the new habitat (realized connectivity). Although mortality often occurs during dispersal (an immediate cost), in many organisms costs are paid after dispersal (deferred costs). It is unclear how such deferred costs influence the mismatch between dispersal and realized connectivity. Through a series of experiments in the field and laboratory, we estimated both direct and indirect deferred costs in a marine bryozoan (Bugula neritina). We then used the empirical data to parameterize a theoretical model in order to formalize predictions about how dispersal costs influence realized connectivity. Individuals were more likely to colonize poor-quality habitat after prolonged dispersal durations. Individuals that colonized poor-quality habitat performed poorly after colonization because of some property of the habitat (an indirect deferred cost) rather than from prolonged dispersal per se (a direct deferred cost). Our theoretical model predicted that indirect deferred costs could result in nonlinear mismatches between spatial patterns of potential and realized connectivity. The deferred costs of dispersal are likely to be crucial for determining how well patterns of dispersal reflect realized connectivity. Ignoring these deferred costs could lead to inaccurate predictions of spatial population dynamics.
Brian R Miranda; Brian R Sturtevant; Susan I Stewart; Roger B. Hammer
2012-01-01
Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression...
NASA Astrophysics Data System (ADS)
Keizer, Floris; Schot, Paul; Wassen, Martin; Kardel, Ignacy; Okruszko, Tomasz
2017-04-01
We studied spatial patterns in inundation water quality, sediment and vegetation distribution in a floodplain fen in Poland to map interacting peatland hydrological processes. Using PCA and K-means cluster analysis, we identified four water types, related to river water inundation, discharge of clean and polluted groundwater, and precipitation and snowmelt dilution. Spatially, these hydrochemical water types are related to known water sources in the floodplain and occupy distinctive zones. River water is found along the river, clean and polluted groundwater at the valley margins and groundwater diluted with precipitation and snowmelt water in the central part of the floodplain. This implies that, despite the floodplain being completely inundated, nutrient input from river flooding occurs only in a relatively narrow zone next to the river. Our findings question the relevance of the edge of inundation, as presented in the Flood Pulse Concept, as delineating the zone of input and turnover of nutrients. Secondly, we studied rich-fen and freshwater vegetation community distributions in relation to the presented inundation water quality types. We successfully determined inundation water quality preference for 14 out of 17 studied rich-fen and freshwater communities in the floodplain. Spatial patterns in preference show vegetation with attributed river water preference to occur close to the river channel, with increasing distance to the river followed by communities with no preference, diluted groundwater preference in the central part, and clean and polluted groundwater preference at the valley margins. In inundation water, nutrients are known to be transported mainly as attached to sediment, besides in dissolved state. This means that in the zone where sediment deposition occurs, nutrient input can be a relevant contribution to the nutrient input of the floodplain. We found a significant decrease in sediment-attached nutrient deposition with distance from the river. Sediment-attached nutrients correlated better to aboveground standing biomass than dissolved nutrients. These findings further reduce the spatial zone where significant nutrient input is influenced by transport from the river, compared to the zone influenced by dissolved nutrients. Our findings indicate the need for a revision of the Flood Pulse Concept for temperate river with multiple water sources, as peatland hydrological processes significantly influence spatial floodplain vegetation distribution.
NASA Astrophysics Data System (ADS)
Zhang, Chaosheng
2017-04-01
The identification of pollution hotspots is an important approach for a better understanding of spatial distribution patterns and the exploration for their influencing factors in environmental studies. One of the most often asked questions in an environmental investigation is: Where are the pollution hotspots? This presentation explains one of the popularly used methodologies called local index of spatial association (LISA) and its applications in urban geochemical studies in Galway, Ireland and London of the UK. The LISA is a useful tool for identifying pollution hotspots and classifying them into spatial clusters and spatial outliers. The results were affected by the definition of weight function, data transformation and existence of extreme values, and it is suggested that all these influencing factors should be considered until reasonable and reliable results are obtained. This method has been applied to identify Pb pollution in Galway, polluted areas in bonfires sites, elevated P and REE concentrations in London. Hotspots in identified in urban soils are related to locations of high road density, traditional festival bonfires, industries and other human activities. The results of hotspots analysis provide useful information for the management of urban soils.
Spatial interactions between sympatric carnivores: asymmetric avoidance of an intraguild predator
Grassel, Shaun M; Rachlow, Janet L; Williams, Christopher J
2015-01-01
Interactions between intraguild species that act as both competitors and predator–prey can be especially complex. We studied patterns of space use by the black-footed ferret (Mustela nigripes), a prairie dog (Cynomys spp.) specialist, and the American badger (Taxidea taxus), a larger generalist carnivore that competes for prairie dogs and is known to kill ferrets. We expected that ferrets would spatially avoid badgers because of the risk of predation, that these patterns of avoidance might differ between sexes and age classes, and that the availability of food and space might influence these relationships. We used location data from 60 ferrets and 15 badgers to model the influence of extrinsic factors (prairie dog density and colony size) and intrinsic factors (sex, age) on patterns of space use by ferrets in relation to space use by different sex and age categories of badgers. We documented asymmetric patterns of avoidance of badgers by ferrets based on the sex of both species. Female ferrets avoided adult female badgers, but not male badgers, and male ferrets exhibited less avoidance than female ferrets. Additionally, avoidance decreased with increasing densities of prairie dogs. We suggest that intersexual differences in space use by badgers create varying distributions of predation risk that are perceived by the smaller carnivore (ferrets) and that females respond more sensitively than males to that risk. This work advances understanding about how competing species coexist and suggests that including information on both intrinsic and extrinsic factors might improve our understanding of behavioral interactions between sympatric species. PMID:26306165
Clifford, Michael J; Royer, Patrick D; Cobb, Neil S; Breshears, David D; Ford, Paulette L
2013-10-01
Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed. Here, we explore precipitation relationships with a die-off event of pinyon pine (Pinus edulis Engelm.) in southwestern North America during the 2002-2003 global-change-type drought. Pinyon die-off and its relationship with precipitation was quantified spatially along a precipitation gradient in north-central New Mexico with standard field plot measurements of die-off combined with canopy cover derived from normalized burn ratio (NBR) from Landsat imagery. Pinyon die-off patterns revealed threshold responses to precipitation (cumulative 2002-2003) and vapor pressure deficit (VPD), with little to no mortality (< 10%) above 600 mm and below warm season VPD of c. 1.7 kPa. [Correction added after online publication 17 June 2013; in the preceding sentence, the word 'below' has been inserted.] Our results refine how precipitation patterns within a region influence pinyon die-off, revealing a precipitation and VPD threshold for tree mortality and its uncertainty band where other factors probably come into play - a response type that influences stand demography and landscape heterogeneity and is of general interest, yet has not been documented. © 2013 No claim to US Government works. New Phytologist © 2013 New Phytologist Trust.
Determinants of Mammal and Bird Species Richness in China Based on Habitat Groups
Xu, Haigen; Cao, Mingchang; Wu, Jun; Cai, Lei; Ding, Hui; Lei, Juncheng; Wu, Yi; Cui, Peng; Chen, Lian; Le, Zhifang; Cao, Yun
2015-01-01
Understanding the spatial patterns in species richness is a central issue in macroecology and biogeography. Analyses that have traditionally focused on overall species richness limit the generality and depth of inference. Spatial patterns of species richness and the mechanisms that underpin them in China remain poorly documented. We created a database of the distribution of 580 mammal species and 849 resident bird species from 2376 counties in China and established spatial linear models to identify the determinants of species richness and test the roles of five hypotheses for overall mammals and resident birds and the 11 habitat groups among the two taxa. Our result showed that elevation variability was the most important determinant of species richness of overall mammal and bird species. It is indicated that the most prominent predictors of species richness varied among different habitat groups: elevation variability for forest and shrub mammals and birds, temperature annual range for grassland and desert mammals and wetland birds, net primary productivity for farmland mammals, maximum temperature of the warmest month for cave mammals, and precipitation of the driest quarter for grassland and desert birds. Noteworthily, main land cover type was also found to obviously influence mammal and bird species richness in forests, shrubs and wetlands under the disturbance of intensified human activities. Our findings revealed a substantial divergence in the species richness patterns among different habitat groups and highlighted the group-specific and disparate environmental associations that underpin them. As we demonstrate, a focus on overall species richness alone might lead to incomplete or misguided understanding of spatial patterns. Conservation priorities that consider a broad spectrum of habitat groups will be more successful in safeguarding the multiple services of biodiversity. PMID:26629903
NASA Astrophysics Data System (ADS)
Moore, J. K.
2016-02-01
The efficiency of the biological pump is influenced by complex interactions between chemical, biological, and physical processes. The efficiency of export out of surface waters and down through the water column to the deep ocean has been linked to a number of factors including biota community composition, production of mineral ballast components, physical aggregation and disaggregation processes, and ocean oxygen concentrations. I will examine spatial patterns in the export ratio and the efficiency of the biological pump at the global scale using the Community Earth System Model (CESM). There are strong spatial variations in the export efficiency as simulated by the CESM, which are strongly correlated with new nutrient inputs to the euphotic zone and their impacts on phytoplankton community structure. I will compare CESM simulations that include dynamic, variable export ratios driven by the phytoplankton community structure, with simulations that impose a near-constant export ratio to examine the effects of export efficiency on nutrient and surface chlorophyll distributions. The model predicted export ratios will also be compared with recent satellite-based estimates.
Living in the branches: population dynamics and ecological processes in dendritic networks
Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.
2007-01-01
Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.
Geographic patterns of fishes and jellyfish in Puget Sound surface waters
Rice, Casimir A.; Duda, Jeffrey J.; Greene, Correigh M.; Karr, James R.
2012-01-01
We explored patterns of small pelagic fish assemblages and biomass of gelatinous zooplankton (jellyfish) in surface waters across four oceanographic subbasins of greater Puget Sound. Our study is the first to collect data documenting biomass of small pelagic fishes and jellyfish throughout Puget Sound; sampling was conducted opportunistically as part of a juvenile salmon survey of daytime monthly surface trawls at 52 sites during May–August 2003. Biomass composition differed spatially and temporally, but spatial differences were more distinct. Fish dominated in the two northern basins of Puget Sound, whereas jellyfish dominated in the two southern basins. Absolute and relative abundance of jellyfish, hatchery Chinook salmon Oncorhynchus tshawytscha, and chum salmon O. keta decreased with increasing latitude, whereas the absolute and relative abundance of most fish species and the average fish species richness increased with latitude. The abiotic factors with the strongest relationship to biomass composition were latitude, water clarity, and sampling date. Further study is needed to understand the spatial and temporal heterogeneity in the taxonomic composition we observed in Puget Sound surface waters, especially as they relate to natural and anthropogenic influences.
Variation in the Mississippi River Plume from Data Synthesis of Model Outputs and MODIS Imagery
NASA Astrophysics Data System (ADS)
Fitzpatrick, C.; Kolker, A.; Chu, P. Y.
2017-12-01
Understanding the Mississippi River (MR) plume's interaction with the open ocean is crucial for understanding many processes in the Gulf of Mexico. Though the Mississippi River and its delta and plume have been studied extensively, recent archives of model products and satellite imagery have allowed us to highlight patterns in plume behavior over the last two decades through large scale data synthesis. Using 8 years of USGS discharge data and Landsat imagery, we identified the spatial extent, geographic patterns, depth, and freshwater concentration of the MR plume across seasons and years. Using 20 years of HYCOM (HYbrid Coordinate Ocean Model) analysis and reanalysis model output, and several years of NGOFS FVCOM model outputs, we mapped the minimum and maximum spatial area of the MR plume, and its varied extent east and west. From the synthesis and analysis of these data, the statistical probability of the MR plume's spatial area and geographical extent were computed. Measurements of the MR plume and its response to river discharge may predict future behavior and provide a path forward to understanding MR plume influence on nearby ecosystems.
Hoffman, Kate; Aschengrau, Ann; Webster, Thomas F; Bartell, Scott M; Vieira, Verónica M
2015-07-21
Mental health disorders impact approximately one in four US adults. While their causes are likely multifactorial, prior research has linked the risk of certain mental health disorders to prenatal and early childhood environmental exposures, motivating a spatial analysis to determine whether risk varies by birth location. We investigated the spatial associations between residence at birth and odds of depression, bipolar disorder, and post-traumatic stress disorder (PTSD) in a retrospective cohort (Cape Cod, Massachusetts, 1969-1983) using generalized additive models to simultaneously smooth location and adjust for confounders. Birth location served as a surrogate for prenatal exposure to the combination of social and environmental factors related to the development of mental illness. We predicted crude and adjusted odds ratios (aOR) for each outcome across the study area. The results were mapped to identify areas of increased risk. We observed spatial variation in the crude odds ratios of depression that was still present even after accounting for spatial confounding due to geographic differences in the distribution of known risk factors (aOR range: 0.61-3.07, P = 0.03). Similar geographic patterns were seen for the crude odds of PTSD; however, these patterns were no longer present in the adjusted analysis (aOR range: 0.49-1.36, P = 0.79), with family history of mental illness most notably influencing the geographic patterns. Analyses of the odds of bipolar disorder did not show any meaningful spatial variation (aOR range: 0.58-1.17, P = 0.82). Spatial associations exist between residence at birth and odds of PTSD and depression, but much of this variation can be explained by the geographic distributions of available risk factors. However, these risk factors did not account for all the variation observed with depression, suggesting that other social and environmental factors within our study area need further investigation.
North Atlantic SST Patterns and NAO Flavors
NASA Astrophysics Data System (ADS)
Rousi, E.; Rahmstorf, S.; Coumou, D.
2017-12-01
North Atlantic SST variability results from the interaction of atmospheric and oceanic processes. The North Atlantic Oscillation (NAO) drives changes in SST patterns but is also driven by them on certain time-scales. These interactions are not very well understood and might be affected by anthropogenic climate change. Paleo reconstructions indicate a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in recent decades leading to a pronounced cold anomaly ("cold blob") in the North Atlantic (Rahmstorf et al., 2015). The latter may favor NAO to be in its negative mode. In this work, sea surface temperature (SST) patterns are studied in relation to NAO variations, with the aim of discovering preferred states and understanding their interactions. SST patterns are analyzed with Self-Organizing Maps (SOM), a clustering technique that helps identify different spatial patterns and their temporal evolution. NAO flavors refer to different longitudinal positions and tilts of the NAO action centers, also defined with SOMs. This way the limitations of the basic, index-based, NAO-definition are overcome, and the method handles different spatially shapes associated with NAO. Preliminary results show the existence of preferred combinations of SSTs and NAO flavors, which in turn affect weather and climate of Europe and North America. The possible influence of the cold blob on European weather is discussed.
Spatial and temporal patterns in preterm birth in the United States.
Byrnes, John; Mahoney, Richard; Quaintance, Cele; Gould, Jeffrey B; Carmichael, Suzan; Shaw, Gary M; Showen, Amy; Phibbs, Ciaran; Stevenson, David K; Wise, Paul H
2015-06-01
Despite years of research, the etiologies of preterm birth remain unclear. In order to help generate new research hypotheses, this study explored spatial and temporal patterns of preterm birth in a large, total-population dataset. Data on 145 million US births in 3,000 counties from the Natality Files of the National Center for Health Statistics for 1971-2011 were examined. State trends in early (<34 wk) and late (34-36 wk) preterm birth rates were compared. K-means cluster analyses were conducted to identify gestational age distribution patterns for all US counties over time. A weak association was observed between state trends in <34 wk birth rates and the initial absolute <34 wk birth rate. Significant associations were observed between trends in <34 wk and 34-36 wk birth rates and between white and African American <34 wk births. Periodicity was observed in county-level trends in <34 wk birth rates. Cluster analyses identified periods of significant heterogeneity and homogeneity in gestational age distributional trends for US counties. The observed geographic and temporal patterns suggest periodicity and complex, shared influences among preterm birth rates in the United States. These patterns could provide insight into promising hypotheses for further research.
The impact of spatial and temporal patterns on multi-cellular behavior
NASA Astrophysics Data System (ADS)
Nikolic, Djordje L.
What makes a fruit fly a fruit fly? Essentially this question stems from one of the most fascinating problems in biology: how a single cell (fertilized egg) can give rise to a fully grown animal. To be able to answer this question, the importance to how spatial and temporal patterns of gene and protein expression influence the development of an organism must be understood. After all, fruit fly larvae are segmented, while fertilized eggs are not. Pattern formation is fundamental to establishing this organization of the developing embryo with the ultimate goal being the precise arrangements of specialized cells and tissues within each organ in an adult organism. The research presented here showcases the examples of studies that assess the impact spatial and temporal protein patterns have on the behavior of a collection of cells. By introducing new experimental, non-traditional techniques we developed model systems that allowed us to examine the dependence of the strength of adhesion of cells on the protein organization on sub-cellular, micron length scales, and to investigate how epithelial cell sheets coordinate their migration incorporating individual cell locomotion, molecular signal propagation and different boundary conditions. The first part of this dissertation presents a photolithography-based silanization patterning technique that allowed us to homogeneously pattern large areas with high precision. This method is then applied to organizing cell adhesion-promoting proteins on surfaces for the purposes of studying and manipulating cell behavior. We show how the strength of adhesion is dependent on high local density of an adhesive extracellular matrix protein fibronectin. The varied appeal of this technique is exhibited by showing its applicability to pattern stretched DNA, too. The second part of this dissertation focuses on the impact of spatial and temporal propagation of a molecular signal (ERK 1/2 MAPK) in migrating epithelial sheets during wound healing. By tracking the motion of individual cells within the sheet under the three constructed conditions, we show how the dynamics of the individual cells' motion is responsible for the coordinated migration of the sheet in accordance with the activation of ERK 1/2 MAPK.
Spatial pattern of Baccharis platypoda shrub as determined by sex and life stages
NASA Astrophysics Data System (ADS)
Fonseca, Darliana da Costa; de Oliveira, Marcio Leles Romarco; Pereira, Israel Marinho; Gonzaga, Anne Priscila Dias; de Moura, Cristiane Coelho; Machado, Evandro Luiz Mendonça
2017-11-01
Spatial patterns of dioecious species can be determined by their nutritional requirements and intraspecific competition, apart from being a response to environmental heterogeneity. The aim of the study was to evaluate the spatial pattern of populations of a dioecious shrub reporting to sex and reproductive stage patterns of individuals. Sampling was carried out in three areas located in the meridional portion of Serra do Espinhaço, where in individuals of the studied species were mapped. The spatial pattern was determined through O-ring analysis and Ripley's K-function and the distribution of individuals' frequencies was verified through x2 test. Populations in two areas showed an aggregate spatial pattern tending towards random or uniform according to the observed scale. Male and female adults presented an aggregate pattern at smaller scales, while random and uniform patterns were verified above 20 m for individuals of both sexes of the areas A2 and A3. Young individuals presented an aggregate pattern in all areas and spatial independence in relation to adult individuals, especially female plants. The interactions between individuals of both genders presented spatial independence with respect to spatial distribution. Baccharis platypoda showed characteristics in accordance with the spatial distribution of savannic and dioecious species, whereas the population was aggregated tending towards random at greater spatial scales. Young individuals showed an aggregated pattern at different scales compared to adults, without positive association between them. Female and male adult individuals presented similar characteristics, confirming that adult individuals at greater scales are randomly distributed despite their distinct preferences for environments with moisture variation.
Das Gupta, Sanatan; Mackenzie, M. Derek
2016-01-01
Fire in boreal ecosystems is known to affect CO2 efflux from forest soils, which is commonly termed soil respiration (Rs). However, there is limited information on how fire and recovery from this disturbance affects spatial variation in Rs. The main objective of this study was to quantify the spatial variability of Rs over the growing season in a boreal aspen (Populus tremuloides Michx.) fire chronosequence. The chronosequence included three stands in northern Alberta; a post fire stand (1 year old, PF), a stand at canopy closure (9 years old, CC), and a mature stand (72 years old, MA). Soil respiration, temperature and moisture were measured monthly from May to August using an intensive spatial sampling protocol (n = 42, minimum lag = 2 m). Key aboveground and belowground properties were measured one time at each sampling point. No spatial structure was detected in Rs of the PF stand during the peak growing season (June and July), whereas Rs was auto-correlated at a scale of < 6 m in the CC and MA stands. The PF stand had the lowest mean Rs (4.60 μmol C m-2 s-1) followed by the CC (5.41 μmol C m-2 s-1), and the MA (7.32 μmol C m-2 s-1) stand. Forest floor depth was the only aboveground factor that influenced the spatial pattern of Rs in all three stands and was strongest in the PF stand. Enzyme activity and fine root biomass, on the other hand, were the significant belowground factors driving the spatial pattern of Rs in the CC and MA stands. Persistent joint aboveground and belowground control on Rs in the CC and MA stands indicates a tight spatial coupling, which was not observed in the PF stand. Overall, the current study suggests that fire in the boreal aspen ecosystem alters the spatial structure of Rs and that fine scale heterogeneity develops quickly as stands reach the canopy closure phase (<10 years). PMID:27832089
Das Gupta, Sanatan; Mackenzie, M Derek
2016-01-01
Fire in boreal ecosystems is known to affect CO2 efflux from forest soils, which is commonly termed soil respiration (Rs). However, there is limited information on how fire and recovery from this disturbance affects spatial variation in Rs. The main objective of this study was to quantify the spatial variability of Rs over the growing season in a boreal aspen (Populus tremuloides Michx.) fire chronosequence. The chronosequence included three stands in northern Alberta; a post fire stand (1 year old, PF), a stand at canopy closure (9 years old, CC), and a mature stand (72 years old, MA). Soil respiration, temperature and moisture were measured monthly from May to August using an intensive spatial sampling protocol (n = 42, minimum lag = 2 m). Key aboveground and belowground properties were measured one time at each sampling point. No spatial structure was detected in Rs of the PF stand during the peak growing season (June and July), whereas Rs was auto-correlated at a scale of < 6 m in the CC and MA stands. The PF stand had the lowest mean Rs (4.60 μmol C m-2 s-1) followed by the CC (5.41 μmol C m-2 s-1), and the MA (7.32 μmol C m-2 s-1) stand. Forest floor depth was the only aboveground factor that influenced the spatial pattern of Rs in all three stands and was strongest in the PF stand. Enzyme activity and fine root biomass, on the other hand, were the significant belowground factors driving the spatial pattern of Rs in the CC and MA stands. Persistent joint aboveground and belowground control on Rs in the CC and MA stands indicates a tight spatial coupling, which was not observed in the PF stand. Overall, the current study suggests that fire in the boreal aspen ecosystem alters the spatial structure of Rs and that fine scale heterogeneity develops quickly as stands reach the canopy closure phase (<10 years).
Analysis of Spatial Point Patterns in Nuclear Biology
Weston, David J.; Adams, Niall M.; Russell, Richard A.; Stephens, David A.; Freemont, Paul S.
2012-01-01
There is considerable interest in cell biology in determining whether, and to what extent, the spatial arrangement of nuclear objects affects nuclear function. A common approach to address this issue involves analyzing a collection of images produced using some form of fluorescence microscopy. We assume that these images have been successfully pre-processed and a spatial point pattern representation of the objects of interest within the nuclear boundary is available. Typically in these scenarios, the number of objects per nucleus is low, which has consequences on the ability of standard analysis procedures to demonstrate the existence of spatial preference in the pattern. There are broadly two common approaches to look for structure in these spatial point patterns. First a spatial point pattern for each image is analyzed individually, or second a simple normalization is performed and the patterns are aggregated. In this paper we demonstrate using synthetic spatial point patterns drawn from predefined point processes how difficult it is to distinguish a pattern from complete spatial randomness using these techniques and hence how easy it is to miss interesting spatial preferences in the arrangement of nuclear objects. The impact of this problem is also illustrated on data related to the configuration of PML nuclear bodies in mammalian fibroblast cells. PMID:22615822
Pressey, Robert L.; Weeks, Rebecca; Andréfouët, Serge; Moloney, James
2016-01-01
Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors—planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs—on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs. PMID:27829042
Cheok, Jessica; Pressey, Robert L; Weeks, Rebecca; Andréfouët, Serge; Moloney, James
2016-01-01
Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors-planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs-on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs.