Science.gov

Sample records for influenza a virus

  1. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... this? Submit Button Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Español Recommend ... with Avian Influenza A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses ...

  2. Transmission of Influenza A Viruses

    PubMed Central

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  3. Transmission of influenza A viruses.

    PubMed

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-05-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages.

  4. Influenza A virus recycling revisited.

    PubMed Central

    Dowdle, W. R.

    1999-01-01

    Current textbooks link influenza pandemics to influenza A virus subtypes H2 (1889-91), H3 (1990), H1 (1918-20), H2 (1957-58) and H3 (1968), a pattern suggesting subtype recycling in humans. Since H1 reappeared in 1977, whatever its origin, some workers feel that H2 is the next pandemic candidate. This report reviews the publications on which the concept of influenza A virus subtype recycling is based and concludes that the data are inconsistent with the purported sequence of events. The three influenza pandemics prior to 1957-58 were linked with subtypes through retrospective studies of sera from the elderly, or through seroarchaeology. The pandemic seroarchaeological model for subtype H1 has been validated by the recent recovery of swine virus RNA fragments from persons who died from influenza in 1918. Application of the model to pre-existing H3 antibody among the elderly links the H3 subtype to the pandemic of 1889-91, not that of 1900 as popularly quoted. Application of the model to pre-existing H2 antibody among the elderly fails to confirm that this subtype caused a pandemic in the late 1800's, a finding which is consistent with age-related excess mortality patterns during the pandemics of 1957 (H2) and 1968 (H3). H2 variants should be included in pandemic planning for a number of reasons, but not because of evidence of recycling. It is not known when the next pandemic will occur or which of the 15 (or more) haemagglutinin subtypes will be involved. Effective global surveillance remains the key to influenza preparedness. PMID:10593030

  5. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    PubMed

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses.

  6. Evolution and ecology of influenza A viruses.

    PubMed Central

    Webster, R G; Bean, W J; Gorman, O T; Chambers, T M; Kawaoka, Y

    1992-01-01

    In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii

  7. Evolution and ecology of influenza A viruses.

    PubMed

    Webster, R G; Bean, W J; Gorman, O T; Chambers, T M; Kawaoka, Y

    1992-03-01

    In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii

  8. Unusual Influenza A Viruses in Bats

    PubMed Central

    Mehle, Andrew

    2014-01-01

    Influenza A viruses infect a remarkably diverse number of hosts. Two completely new influenza A virus subtypes were recently discovered in bats, dramatically expanding the host range of the virus. These bat viruses are extremely divergent from all other known strains and likely have unique replication cycles. Phylogenetic analysis indicates long-term, isolated evolution in bats. This is supported by a high seroprevalence in sampled bat populations. As bats represent ~20% of all classified mammals, these findings suggests the presence of a massive cryptic reservoir of poorly characterized influenza A viruses. Here, we review the exciting progress made on understanding these newly discovered viruses, and discuss their zoonotic potential. PMID:25256392

  9. Unusual influenza A viruses in bats.

    PubMed

    Mehle, Andrew

    2014-09-17

    Influenza A viruses infect a remarkably diverse number of hosts. Two completely new influenza A virus subtypes were recently discovered in bats, dramatically expanding the host range of the virus. These bat viruses are extremely divergent from all other known strains and likely have unique replication cycles. Phylogenetic analysis indicates long-term, isolated evolution in bats. This is supported by a high seroprevalence in sampled bat populations. As bats represent ~20% of all classified mammals, these findings suggests the presence of a massive cryptic reservoir of poorly characterized influenza A viruses. Here, we review the exciting progress made on understanding these newly discovered viruses, and discuss their zoonotic potential.

  10. Swine Influenza/Variant Influenza Viruses

    MedlinePlus

    ... Past Newsletters Information on Swine Influenza/Variant Influenza Virus Language: English Español Recommend on Facebook Tweet ... disease of pigs caused by type A influenza viruses that regularly cause outbreaks of influenza in pigs. ...

  11. A seven-segmented influenza A virus expressing the influenza C virus glycoprotein HEF.

    PubMed

    Gao, Qinshan; Brydon, Edward W A; Palese, Peter

    2008-07-01

    Influenza viruses are classified into three types: A, B, and C. The genomes of A- and B-type influenza viruses consist of eight RNA segments, whereas influenza C viruses only have seven RNAs. Both A and B influenza viruses contain two major surface glycoproteins: the hemagglutinin (HA) and the neuraminidase (NA). Influenza C viruses have only one major surface glycoprotein, HEF (hemagglutinin-esterase fusion). By using reverse genetics, we generated two seven-segmented chimeric influenza viruses. Each possesses six RNA segments from influenza virus A/Puerto Rico/8/34 (PB2, PB1, PA, NP, M, and NS); the seventh RNA segment encodes either the influenza virus C/Johannesburg/1/66 HEF full-length protein or a chimeric protein HEF-Ecto, which consists of the HEF ectodomain and the HA transmembrane and cytoplasmic regions. To facilitate packaging of the heterologous segment, both the HEF and HEF-Ecto coding regions are flanked by HA packaging sequences. When introduced as an eighth segment with the NA packaging sequences, both viruses are able to stably express a green fluorescent protein (GFP) gene, indicating a potential use for these viruses as vaccine vectors to carry foreign antigens. Finally, we show that incorporation of a GFP RNA segment enhances the growth of seven-segmented viruses, indicating that efficient influenza A viral RNA packaging requires the presence of eight RNA segments. These results support a selective mechanism of viral RNA recruitment to the budding site.

  12. Methamphetamine Reduces Human Influenza A Virus Replication

    PubMed Central

    Chen, Yun-Hsiang; Wu, Kuang-Lun; Chen, Chia-Hsiang

    2012-01-01

    Methamphetamine (meth) is a highly addictive psychostimulant that is among the most widely abused illicit drugs, with an estimated over 35 million users in the world. Several lines of evidence suggest that chronic meth abuse is a major factor for increased risk of infections with human immunodeficiency virus and possibly other pathogens, due to its immunosuppressive property. Influenza A virus infections frequently cause epidemics and pandemics of respiratory diseases among human populations. However, little is known about whether meth has the ability to enhance influenza A virus replication, thus increasing severity of influenza illness in meth abusers. Herein, we investigated the effects of meth on influenza A virus replication in human lung epithelial A549 cells. The cells were exposed to meth and infected with human influenza A/WSN/33 (H1N1) virus. The viral progenies were titrated by plaque assays, and the expression of viral proteins and cellular proteins involved in interferon responses was examined by Western blotting and immunofluorescence staining. We report the first evidence that meth significantly reduces, rather than increases, virus propagation and the susceptibility to influenza infection in the human lung epithelial cell line, consistent with a decrease in viral protein synthesis. These effects were apparently not caused by meth’s effects on enhancing virus-induced interferon responses in the host cells, reducing viral biological activities, or reducing cell viability. Our results suggest that meth might not be a great risk factor for influenza A virus infection among meth abusers. Although the underlying mechanism responsible for the action of meth on attenuating virus replication requires further investigation, these findings prompt the study to examine whether other structurally similar compounds could be used as anti-influenza agents. PMID:23139774

  13. A brief introduction to avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) causes a disease of high economic importance for poultry production worldwide. The earliest recorded cases of probable high pathogenicity AIV in poultry were reported in Italy in the 1870’s and avian influenza been recognized in domestic poultry through the modern era of ...

  14. Equine influenza virus.

    PubMed

    Landolt, Gabriele A

    2014-12-01

    For decades the horse has been viewed as an isolated or "dead-end" host for influenza A viruses, with equine influenza virus being considered as relatively stable genetically. Although equine influenza viruses are genetically more stable than those of human lineage, they are by no means in evolutionary stasis. Moreover, recent transmission of equine-lineage influenza viruses to dogs also challenges the horse's status as a dead-end host. This article reviews recent developments in the epidemiology and evolution of equine influenza virus. In addition, the clinical presentation of equine influenza infection, diagnostic techniques, and vaccine recommendations are briefly summarized.

  15. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  16. Avian influenza virus.

    PubMed

    Lee, Chang-Won; Saif, Yehia M

    2009-07-01

    Avian influenza viruses do not typically replicate efficiently in humans, indicating direct transmission of avian influenza virus to humans is unlikely. However, since 1997, several cases of human infections with different subtypes (H5N1, H7N7, and H9N2) of avian influenza viruses have been identified and raised the pandemic potential of avian influenza virus in humans. Although circumstantial evidence of human to human transmission exists, the novel avian-origin influenza viruses isolated from humans lack the ability to transmit efficiently from person-to-person. However, the on-going human infection with avian-origin H5N1 viruses increases the likelihood of the generation of human-adapted avian influenza virus with pandemic potential. Thus, a better understanding of the biological and genetic basis of host restriction of influenza viruses is a critical factor in determining whether the introduction of a novel influenza virus into the human population will result in a pandemic. In this article, we review current knowledge of type A influenza virus in which all avian influenza viruses are categorized.

  17. The genome of an influenza virus from a pilot whale: relation to influenza viruses of gulls and marine mammals.

    PubMed

    Groth, Marco; Lange, Jeannette; Kanrai, Pumaree; Pleschka, Stephan; Scholtissek, Christoph; Krumbholz, Andi; Platzer, Matthias; Sauerbrei, Andreas; Zell, Roland

    2014-06-01

    Influenza virus A/whale/Maine/328B/1984 (H13N2) was isolated from a diseased pilot whale. Since only a partial sequence was available, its complete genome was sequenced and compared to the sequences of subtype H13 influenza viruses from shorebirds and various influenza viruses of marine mammals. The data reveal a rare genotype constellation with all gene segments derived of an influenza virus adapted to gulls, terns and waders. In contrast, the phylogenetic trees indicate that the majority of influenza viruses isolated from marine mammals derived from influenza viruses adapted to geese and ducks. We conclude that A/whale/Maine/328B/1984 is the first record of an infection of a marine mammal from a gull-origin influenza virus.

  18. Global migration of influenza A viruses in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of the 2009 A/H1N1 pandemic virus underscores the importance of understanding how influenza A viruses evolve in swine on a global scale. To reveal the frequency, patterns and drivers of the spread of swine influenza virus globally, we conducted the largest phylogenetic analysis of swin...

  19. [Influenza virus].

    PubMed

    Juozapaitis, Mindaugas; Antoniukas, Linas

    2007-01-01

    Every year, especially during the cold season, many people catch an acute respiratory disease, namely flu. It is easy to catch this disease; therefore, it spreads very rapidly and often becomes an epidemic or a global pandemic. Airway inflammation and other body ailments, which form in a very short period, torment the patient several weeks. After that, the symptoms of the disease usually disappear as quickly as they emerged. The great epidemics of flu have rather unique characteristics; therefore, it is possible to identify descriptions of such epidemics in historic sources. Already in the 4th century bc, Hippocrates himself wrote about one of them. It is known now that flu epidemics emerge rather frequently, but there are no regular intervals between those events. The epidemics can differ in their consequences, but usually they cause an increased mortality of elderly people. The great flu epidemics of the last century took millions of human lives. In 1918-19, during "The Spanish" pandemic of flu, there were around 40-50 millions of deaths all over the world; "Pandemic of Asia" in 1957 took up to one million lives, etc. Influenza virus can cause various disorders of the respiratory system: from mild inflammations of upper airways to acute pneumonia that finally results in the patient's death. Scientist Richard E. Shope, who investigated swine flu in 1920, had a suspicion that the cause of this disease might be a virus. Already in 1933, scientists from the National Institute for Medical Research in London - Wilson Smith, Sir Christopher Andrewes, and Sir Patrick Laidlaw - for the first time isolated the virus, which caused human flu. Then scientific community started the exhaustive research of influenza virus, and the great interest in this virus and its unique features is still active even today.

  20. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is caused by type A influenza virus, a member of the Orthomyxoviridae family. AI viruses are serologically categorized into 16 hemagglutinin (H1-H16) and 9 neuraminidase (N1-N9) subtypes. All subtypes have been identified in birds. Infections by AI viruses have been reported in ...

  1. Avian influenza A H5N1 virus.

    PubMed

    Loeffelholz, Michael J

    2010-03-01

    Although influenza A viruses of avian origin have long been responsible for influenza pandemics, including the "Spanish flu" pandemic of 1918, human infections caused by avian subtypes of influenza A virus, most notably H5N1, have emerged since the 1990s (H5N1 in 1997; H9N2 in 1999; and H7N7 in 2003). The wide geographic distribution of influenza A H5N1 in avian species, and the number and severity of human infections are unprecedented. Together with the ongoing genetic evolution of this virus, these features make influenza A H5N1 a likely candidate for a future influenza pandemic. This article discusses the epidemiology, pathogenesis, and diagnosis of human infections caused by influenza A H5N1 virus.

  2. Filamentous Influenza Viruses

    PubMed Central

    Badham, Matthew D.; Rossman, Jeremy S.

    2016-01-01

    Influenza A virus is a pathogen of global medical importance causing significant health and socio-economic costs every year. Influenza virus is an unusual pathogen in that it is pleomorphic, capable of forming virions ranging in shape from spherical to filamentous. Despite decades of research on the influenza virus, much remains unknown about the formation of filamentous influenza viruses and their role in the viral replication cycle. Here, we discuss what is known about influenza virus assembly and budding, focusing on the viral and host factors that are involved in the determination of viral morphology. Whilst the biological function of the filamentous morphology remains unknown, recent results suggest a role in facilitating viral spread in vivo. We discuss these results and speculate on the consequences of viral morphology during influenza virus infection of the human respiratory tract. PMID:28042529

  3. Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses.

    PubMed

    Hause, Ben M; Ducatez, Mariette; Collin, Emily A; Ran, Zhiguang; Liu, Runxia; Sheng, Zizhang; Armien, Anibal; Kaplan, Bryan; Chakravarty, Suvobrata; Hoppe, Adam D; Webby, Richard J; Simonson, Randy R; Li, Feng

    2013-02-01

    Of the Orthomyxoviridae family of viruses, only influenza A viruses are thought to exist as multiple subtypes and has non-human maintenance hosts. In April 2011, nasal swabs were collected for virus isolation from pigs exhibiting influenza-like illness. Subsequent electron microscopic, biochemical, and genetic studies identified an orthomyxovirus with seven RNA segments exhibiting approximately 50% overall amino acid identity to human influenza C virus. Based on its genetic organizational similarities to influenza C viruses this virus has been provisionally designated C/Oklahoma/1334/2011 (C/OK). Phylogenetic analysis of the predicted viral proteins found that the divergence between C/OK and human influenza C viruses was similar to that observed between influenza A and B viruses. No cross reactivity was observed between C/OK and human influenza C viruses using hemagglutination inhibition (HI) assays. Additionally, screening of pig and human serum samples found that 9.5% and 1.3%, respectively, of individuals had measurable HI antibody titers to C/OK virus. C/OK virus was able to infect both ferrets and pigs and transmit to naive animals by direct contact. Cell culture studies showed that C/OK virus displayed a broader cellular tropism than a human influenza C virus. The observed difference in cellular tropism was further supported by structural analysis showing that hemagglutinin esterase (HE) proteins between two viruses have conserved enzymatic but divergent receptor-binding sites. These results suggest that C/OK virus represents a new subtype of influenza C viruses that currently circulates in pigs that has not been recognized previously. The presence of multiple subtypes of co-circulating influenza C viruses raises the possibility of reassortment and antigenic shift as mechanisms of influenza C virus evolution.

  4. The global antigenic diversity of swine influenza A viruses.

    PubMed

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky; Anderson, Tavis K; Berger, Kathryn; Bielejec, Filip; Burke, David F; Dudas, Gytis; Fonville, Judith M; Fouchier, Ron Am; Kellam, Paul; Koel, Bjorn F; Lemey, Philippe; Nguyen, Tung; Nuansrichy, Bundit; Peiris, Js Malik; Saito, Takehiko; Simon, Gaelle; Skepner, Eugene; Takemae, Nobuhiro; Webby, Richard J; Van Reeth, Kristien; Brookes, Sharon M; Larsen, Lars; Watson, Simon J; Brown, Ian H; Vincent, Amy L

    2016-04-15

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential. Here, using the most comprehensive set of swine influenza virus antigenic data compiled to date, we quantify the antigenic diversity of swine influenza viruses on a multi-continental scale. The substantial antigenic diversity of recently circulating viruses in different parts of the world adds complexity to the risk profiles for the movement of swine and the potential for swine-derived infections in humans.

  5. [Features of interepidemic influenza A and B viruses].

    PubMed

    Litvinova, O M; Grinbaum, E B; Bannikov, A I; Konovalenko, I B; Konovalova, N I; Luzianina, T Ia; Kiselev, O I

    1995-01-01

    The comparison of interepidemic influenza viruses with the pathogens of resultant influenza epidemics has revealed that they belong to the same type (subtype) of influenza virus. A definite correlation has been found between the antigenic specificity of haemagglutinin of epidemic and interepidemic strains. The antigenic structure of the interepidemic viruses and the pathogens of further epidemics of influenza B viruses have been found to be completely identical. The interepidemic A(H1N1) isolates have been shown to be antigenic analogues of the causative agents of influenza A(H1N1) during the previous epidemics. Despite the time and place of their isolation, as well as the etiology of the previous and subsequent epidemics, the interepidemic influenza A(H3N2) viruses have been ascertained to be similar to the reference A/Bangkok/1/79.

  6. TMPRSS2 Independency for Haemagglutinin Cleavage In Vivo Differentiates Influenza B Virus from Influenza A Virus

    PubMed Central

    Sakai, Kouji; Ami, Yasushi; Nakajima, Noriko; Nakajima, Katsuhiro; Kitazawa, Minori; Anraku, Masaki; Takayama, Ikuyo; Sangsriratanakul, Natthanan; Komura, Miyuki; Sato, Yuko; Asanuma, Hideki; Takashita, Emi; Komase, Katsuhiro; Takehara, Kazuaki; Tashiro, Masato; Hasegawa, Hideki; Odagiri, Takato; Takeda, Makoto

    2016-01-01

    Influenza A and B viruses show clear differences in their host specificity and pandemic potential. Recent studies have revealed that the host protease TMPRSS2 plays an essential role for proteolytic activation of H1, H3, and H7 subtype strains of influenza A virus (IAV) in vivo. IAV possessing a monobasic cleavage site in the haemagglutinin (HA) protein replicates poorly in TMPRSS2 knockout mice owing to insufficient HA cleavage. In the present study, human isolates of influenza B virus (IBV) strains and a mouse-adapted IBV strain were analysed. The data showed that IBV successfully underwent HA cleavage in TMPRSS2 knockout mice, and that the mouse-adapted strain was fully pathogenic to these mice. The present data demonstrate a clear difference between IAV and IBV in their molecular mechanisms for spreading in vivo. PMID:27389476

  7. The Mutational Robustness of Influenza A Virus.

    PubMed

    Visher, Elisa; Whitefield, Shawn E; McCrone, John T; Fitzsimmons, William; Lauring, Adam S

    2016-08-01

    A virus' mutational robustness is described in terms of the strength and distribution of the mutational fitness effects, or MFE. The distribution of MFE is central to many questions in evolutionary theory and is a key parameter in models of molecular evolution. Here we define the mutational fitness effects in influenza A virus by generating 128 viruses, each with a single nucleotide mutation. In contrast to mutational scanning approaches, this strategy allowed us to unambiguously assign fitness values to individual mutations. The presence of each desired mutation and the absence of additional mutations were verified by next generation sequencing of each stock. A mutation was considered lethal only after we failed to rescue virus in three independent transfections. We measured the fitness of each viable mutant relative to the wild type by quantitative RT-PCR following direct competition on A549 cells. We found that 31.6% of the mutations in the genome-wide dataset were lethal and that the lethal fraction did not differ appreciably between the HA- and NA-encoding segments and the rest of the genome. Of the viable mutants, the fitness mean and standard deviation were 0.80 and 0.22 in the genome-wide dataset and best modeled as a beta distribution. The fitness impact of mutation was marginally lower in the segments coding for HA and NA (0.88 ± 0.16) than in the other 6 segments (0.78 ± 0.24), and their respective beta distributions had slightly different shape parameters. The results for influenza A virus are remarkably similar to our own analysis of CirSeq-derived fitness values from poliovirus and previously published data from other small, single stranded DNA and RNA viruses. These data suggest that genome size, and not nucleic acid type or mode of replication, is the main determinant of viral mutational fitness effects.

  8. Quantifying the global antigenic diversity of swine influenza A viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled wit...

  9. Nucleocytoplasmic shuttling of influenza A virus proteins.

    PubMed

    Li, Jing; Yu, Meng; Zheng, Weinan; Liu, Wenjun

    2015-05-22

    Influenza viruses transcribe and replicate their genomes in the nuclei of infected host cells. The viral ribonucleoprotein (vRNP) complex of influenza virus is the essential genetic unit of the virus. The viral proteins play important roles in multiple processes, including virus structural maintenance, mediating nucleocytoplasmic shuttling of the vRNP complex, virus particle assembly, and budding. Nucleocytoplasmic shuttling of viral proteins occurs throughout the entire virus life cycle. This review mainly focuses on matrix protein (M1), nucleoprotein (NP), nonstructural protein (NS1), and nuclear export protein (NEP), summarizing the mechanisms of their nucleocytoplasmic shuttling and the regulation of virus replication through their phosphorylation to further understand the regulation of nucleocytoplasmic shuttling in host adaptation of the viruses.

  10. A recombinant influenza virus vaccine expressing the F protein of respiratory syncytial virus

    PubMed Central

    Fonseca, Wendy; Ozawa, Makoto; Hatta, Masato; Orozco, Esther; Martínez, Máximo B; Kawaoka, Yoshihiro

    2014-01-01

    Infections with influenza and respiratory syncytial virus (RSV) rank high among the most common human respiratory diseases worldwide. Previously, we developed a replication-incompetent influenza virus by replacing the coding sequence of the PB2 gene, which encodes one of the viral RNA polymerase subunits, with that of a reporter gene. Here, we generated a PB2-knockout recombinant influenza virus expressing the F protein of RSV (PB2-RSVF virus) and tested its potential as a bivalent vaccine. In mice intranasally immunized with the PB2-RSVF virus, we detected high levels of antibodies against influenza virus, but not RSV. PB2-RSVF virus-immunized mice were protected from a lethal challenge with influenza virus but experienced severe body weight loss when challenged with RSV, indicating that PB2-RSVF vaccination enhanced RSV-associated disease. These results highlight one of the difficulties of developing an effective bivalent vaccine against influenza virus and RSV infections. PMID:24292020

  11. Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus

    PubMed Central

    Bawa, Bhupinder; Wang, Wei; Shabman, Reed S.; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B.; Richt, Juergen A.; Wentworth, David E.; Ma, Wenjun

    2014-01-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses. PMID:25275541

  12. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    PubMed

    Zhou, Bin; Ma, Jingjiao; Liu, Qinfang; Bawa, Bhupinder; Wang, Wei; Shabman, Reed S; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B; Richt, Juergen A; Wentworth, David E; Ma, Wenjun

    2014-10-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  13. Development of high-yield influenza A virus vaccine viruses

    PubMed Central

    Ping, Jihui; Lopes, Tiago J.S.; Nidom, Chairul A.; Ghedin, Elodie; Macken, Catherine A.; Fitch, Adam; Imai, Masaki; Maher, Eileen A.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Vaccination is one of the most cost-effective ways to prevent infection. Influenza vaccines propagated in cultured cells are approved for use in humans, but their yields are often suboptimal. Here, we screened A/Puerto Rico/8/34 (PR8) virus mutant libraries to develop vaccine backbones (defined here as the six viral RNA segments not encoding haemagglutinin and neuraminidase) that support high yield in cell culture. We also tested mutations in the coding and regulatory regions of the virus, and chimeric haemagglutinin and neuraminidase genes. A combination of high-yield mutations from these screens led to a PR8 backbone that improved the titres of H1N1, H3N2, H5N1 and H7N9 vaccine viruses in African green monkey kidney and Madin–Darby canine kidney cells. This PR8 backbone also improves titres in embryonated chicken eggs, a common propagation system for influenza viruses. This PR8 vaccine backbone thus represents an advance in seasonal and pandemic influenza vaccine development. PMID:26334134

  14. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  15. The Mutational Robustness of Influenza A Virus

    PubMed Central

    McCrone, John T.; Lauring, Adam S.

    2016-01-01

    A virus’ mutational robustness is described in terms of the strength and distribution of the mutational fitness effects, or MFE. The distribution of MFE is central to many questions in evolutionary theory and is a key parameter in models of molecular evolution. Here we define the mutational fitness effects in influenza A virus by generating 128 viruses, each with a single nucleotide mutation. In contrast to mutational scanning approaches, this strategy allowed us to unambiguously assign fitness values to individual mutations. The presence of each desired mutation and the absence of additional mutations were verified by next generation sequencing of each stock. A mutation was considered lethal only after we failed to rescue virus in three independent transfections. We measured the fitness of each viable mutant relative to the wild type by quantitative RT-PCR following direct competition on A549 cells. We found that 31.6% of the mutations in the genome-wide dataset were lethal and that the lethal fraction did not differ appreciably between the HA- and NA-encoding segments and the rest of the genome. Of the viable mutants, the fitness mean and standard deviation were 0.80 and 0.22 in the genome-wide dataset and best modeled as a beta distribution. The fitness impact of mutation was marginally lower in the segments coding for HA and NA (0.88 ± 0.16) than in the other 6 segments (0.78 ± 0.24), and their respective beta distributions had slightly different shape parameters. The results for influenza A virus are remarkably similar to our own analysis of CirSeq-derived fitness values from poliovirus and previously published data from other small, single stranded DNA and RNA viruses. These data suggest that genome size, and not nucleic acid type or mode of replication, is the main determinant of viral mutational fitness effects. PMID:27571422

  16. Modeling Influenza Virus Infection: A Roadmap for Influenza Research

    PubMed Central

    Boianelli, Alessandro; Nguyen, Van Kinh; Ebensen, Thomas; Schulze, Kai; Wilk, Esther; Sharma, Niharika; Stegemann-Koniszewski, Sabine; Bruder, Dunja; Toapanta, Franklin R.; Guzmán, Carlos A.; Meyer-Hermann, Michael; Hernandez-Vargas, Esteban A.

    2015-01-01

    Influenza A virus (IAV) infection represents a global threat causing seasonal outbreaks and pandemics. Additionally, secondary bacterial infections, caused mainly by Streptococcus pneumoniae, are one of the main complications and responsible for the enhanced morbidity and mortality associated with IAV infections. In spite of the significant advances in our knowledge of IAV infections, holistic comprehension of the interplay between IAV and the host immune response (IR) remains largely fragmented. During the last decade, mathematical modeling has been instrumental to explain and quantify IAV dynamics. In this paper, we review not only the state of the art of mathematical models of IAV infection but also the methodologies exploited for parameter estimation. We focus on the adaptive IR control of IAV infection and the possible mechanisms that could promote a secondary bacterial coinfection. To exemplify IAV dynamics and identifiability issues, a mathematical model to explain the interactions between adaptive IR and IAV infection is considered. Furthermore, in this paper we propose a roadmap for future influenza research. The development of a mathematical modeling framework with a secondary bacterial coinfection, immunosenescence, host genetic factors and responsiveness to vaccination will be pivotal to advance IAV infection understanding and treatment optimization. PMID:26473911

  17. Influenza A virus infection complicated by fatal myocarditis.

    PubMed

    Nolte, K B; Alakija, P; Oty, G; Shaw, M W; Subbarao, K; Guarner, J; Shieh, W J; Dawson, J E; Morken, T; Cox, N J; Zaki, S R

    2000-12-01

    Influenza virus typically causes a febrile respiratory illness, but it can present with a variety of other clinical manifestations. We report a fatal case of myocarditis associated with influenza A infection. A previously healthy 11-year-old girl had malaise and fever for approximately 1 week before a sudden, witnessed fatal collapse at home. Autopsy revealed a pericardial effusion, a mixed lymphocytic and neutrophilic myocarditis, a mild lymphocytic interstitial pneumonia, focal bronchial/bronchiolar mucosal necrosis, and histologic changes consistent with asthma. Infection with influenza A (H3N2) was confirmed by virus isolation from a postmortem nasopharyngeal swab. Attempts to isolate virus from heart and lung tissue were unsuccessful. Immunohistochemical tests directed against influenza A antigens and in situ hybridization for influenza A genetic material demonstrated positive staining in bronchial epithelial cells, whereas heart sections were negative. Sudden death is a rare complication of influenza and may be caused by myocarditis. Forensic pathologists should be aware that postmortem nasopharyngeal swabs for viral culture and immunohistochemical or in situ hybridization procedures on lung tissue might be necessary to achieve a diagnosis. Because neither culturable virus nor influenza viral antigen could be identified in heart tissue, the pathogenesis of influenza myocarditis in this case is unlikely to be the result of direct infection of myocardium by the virus. The risk factors for developing myocarditis during an influenza infection are unknown.

  18. Swine Influenza Viruses: a North American Perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza is a zoonotic viral disease that represents a health and economic threat to both humans and animals worldwide. Swine influenza was first recognized clinically in pigs in the Midwestern U.S. in 1918, coinciding with the human influenza pandemic known as the Spanish flu. Since that time swin...

  19. Pandemic threat posed by avian influenza A viruses.

    PubMed

    Horimoto, T; Kawaoka, Y

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans.

  20. Pandemic Threat Posed by Avian Influenza A Viruses

    PubMed Central

    Horimoto, Taisuke; Kawaoka, Yoshihiro

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans. PMID:11148006

  1. Pathogenicity of modified bat influenza virus with different M genes and its reassortment potential with swine influenza A virus.

    PubMed

    Yang, Jianmei; Lee, Jinhwa; Ma, Jingjiao; Lang, Yuekun; Nietfeld, Jerome; Li, Yuhao; Duff, Michael; Li, Yonghai; Yang, Yuju; Liu, Haixia; Zhou, Bin; Wentworth, David E; Richt, Juergen A; Li, Zejun; Ma, Wenjun

    2017-01-18

    In our previous studies the reassortant virus containing only the PR8 H1N1 matrix (M) gene in the background of the modified bat influenza Bat09:mH1mN1 virus could be generated. However, whether M genes from other origins can be rescued in the background of the Bat09:mH1mN1 virus and whether the resulting novel reassortant virus is virulent remain unknown. Herein, two reassortant viruses were generated in the background of the Bat09:mH1mN1 virus containing either a North American or a Eurasian swine influenza virus M gene. These two reassortant viruses and the reassortant virus with PR8 M as well as the control Bat09:mH1mN1 virus replicated efficiently in cultured cells, while the reassortant virus with PR8 M grew to a higher titer than the other three viruses in tested cells. Mouse studies showed that reassortant viruses with either North American or Eurasian swine influenza virus M genes did not enhance virulence, whereas the reassortant virus with PR8 M gene displayed higher pathogenicity when compared to the Bat09:mH1mN1 virus. This is most likely due to the fact that the PR8 H1N1 virus is a mouse-adapted virus. Furthermore, reassortment potential between the Bat09:mH1mN1 virus and an H3N2 swine influenza virus (A/swine/Texas/4199-2/1998) was investigated using co-infection of MDCK cells, but no reassortant viruses were detected. Taken together, our results indicate that the modified bat influenza virus is most likely incapable of reassortment with influenza A viruses with in vitro co-infection experiments, although reassortant viruses with different M genes can be generated by reverse genetics.

  2. Influenza A and B Virus Attachment to Respiratory Tract in Marine Mammals

    PubMed Central

    van Riel, Debby; van de Bildt, Marco W.G; Osterhaus, Albert; Kuiken, Thijs

    2012-01-01

    Patterns of virus attachment to the respiratory tract of 4 marine mammal species were determined for avian and human influenza viruses. Attachment of avian influenza A viruses (H4N5) and (H7N7) and human influenza B viruses to trachea and bronchi of harbor seals is consistent with reported influenza outbreaks in this species. PMID:22516350

  3. Influenza A virus infections in swine: pathogenesis and diagnosis.

    PubMed

    Janke, B H

    2014-03-01

    Influenza has been recognized as a respiratory disease in swine since its first appearance concurrent with the 1918 "Spanish flu" human pandemic. All influenza viruses of significance in swine are type A, subtype H1N1, H1N2, or H3N2 viruses. Influenza viruses infect epithelial cells lining the surface of the respiratory tract, inducing prominent necrotizing bronchitis and bronchiolitis and variable interstitial pneumonia. Cell death is due to direct virus infection and to insult directed by leukocytes and cytokines of the innate immune system. The most virulent viruses consistently express the following characteristics of infection: (1) higher or more prolonged virus replication, (2) excessive cytokine induction, and (3) replication in the lower respiratory tract. Nearly all the viral proteins contribute to virulence. Pigs are susceptible to infection with both human and avian viruses, which often results in gene reassortment between these viruses and endemic swine viruses. The receptors on the epithelial cells lining the respiratory tract are major determinants of infection by influenza viruses from other hosts. The polymerases, especially PB2, also influence cross-species infection. Methods of diagnosis and characterization of influenza viruses that infect swine have improved over the years, driven both by the availability of new technologies and by the necessity of keeping up with changes in the virus. Testing of oral fluids from pigs for virus and antibody is a recent development that allows efficient sampling of large numbers of animals.

  4. Comparative mutational analyses of influenza A viruses

    PubMed Central

    Cheung, Peter Pak-Hang; Rogozin, Igor B.; Choy, Ka-Tim; Ng, Hoi Yee

    2015-01-01

    The error-prone RNA-dependent RNA polymerase (RdRP) and external selective pressures are the driving forces for RNA viral diversity. When confounded by selective pressures, it is difficult to assess if influenza A viruses (IAV) that have a wide host range possess comparable or distinct spontaneous mutational frequency in their RdRPs. We used in-depth bioinformatics analyses to assess the spontaneous mutational frequencies of two RdRPs derived from human seasonal (A/Wuhan/359/95; Wuhan) and H5N1 (A/Vietnam/1203/04; VN1203) viruses using the mini-genome system with a common firefly luciferase reporter serving as the template. High-fidelity reverse transcriptase was applied to generate high-quality mutational spectra which allowed us to assess and compare the mutational frequencies and mutable motifs along a target sequence of the two RdRPs of two different subtypes. We observed correlated mutational spectra (τ correlation P < 0.0001), comparable mutational frequencies (H3N2:5.8 ± 0.9; H5N1:6.0 ± 0.5), and discovered a highly mutable motif “(A)AAG” for both Wuhan and VN1203 RdRPs. Results were then confirmed with two recombinant A/Puerto Rico/8/34 (PR8) viruses that possess RdRP derived from Wuhan or VN1203 (RG-PR8×WuhanPB2, PB1, PA, NP and RG-PR8×VN1203PB2, PB1, PA, NP). Applying novel bioinformatics analysis on influenza mutational spectra, we provide a platform for a comprehensive analysis of the spontaneous mutation spectra for an RNA virus. PMID:25404565

  5. A Closer Look at the NS1 of Influenza Virus

    PubMed Central

    Dundon, William G.; Capua, Ilaria

    2009-01-01

    The Non-Structural 1 (NS1) protein is a multifactorial protein of type A influenza viruses that plays an important role in the virulence of the virus. A large amount of what we know about this protein has been obtained from studies using human influenza isolates and, consequently, the human NS1 protein. The current global interest in avian influenza, however, has highlighted a number of sequence and functional differences between the human and avian NS1. This review discusses these differences in addition to describing potential uses of NS1 in the management and control of avian influenza outbreaks. PMID:21994582

  6. Diversity of influenza viruses in swine and the emergence of a novel human pandemic influenza A (H1N1).

    PubMed

    Brockwell-Staats, Christy; Webster, Robert G; Webby, Richard J

    2009-09-01

    The novel H1N1 influenza virus that emerged in humans in Mexico in early 2009 and transmitted efficiently in the human population with global spread has been declared a pandemic strain. Here we review influenza infections in swine since 1918 and the introduction of different avian and human influenza virus genes into swine influenza viruses of North America and Eurasia. These introductions often result in viruses of increased fitness for pigs that occasionally transmit to humans. The novel virus affecting humans is derived from a North American swine influenza virus that has acquired two gene segments [Neuraminidase (NA) and Matrix (M)] from the European swine lineages. This reassortant appears to have increased fitness in humans. The potential for increased virulence in humans and of further reassortment between the novel H1N1 influenza virus and oseltamivir resistant seasonal H1N1 or with highly pathogenic H5N1 influenza stresses the need for urgent pandemic planning.

  7. SnapShot: Evolution of human influenza A viruses.

    PubMed

    Wendel, Isabel; Matrosovich, Mikhail; Klenk, Hans Dieter

    2015-03-11

    The major natural hosts of influenza A viruses are wild aquatic birds. Occasionally, viruses are transmitted to mammalian and other avian species, including humans. Due to the high mutation rate and reassortment of the viral genome, the viruses may undergo adaptation to humans and then give rise to a pandemic.

  8. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.

  9. Influenza A virus pathogenesis and vaccination in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine influenza is an acute respiratory disease of pigs that is characterized by fever followed by lethargy, anorexia, and serous nasal discharge. The disease progresses rapidly and may be complicated when associated with other respiratory pathogens. Influenza A virus (IAV) is one of the most preval...

  10. Transfection-mediated recombination of influenza A virus.

    PubMed Central

    Bergmann, M; García-Sastre, A; Palese, P

    1992-01-01

    Several mechanisms, including a high mutation rate and reassortment of genes, have been found to be responsible for the variability of influenza A viruses. RNA recombination would be another mechanism leading to genetic variation; however, recombination has only rarely been reported to occur in influenza viruses. During ribonucleoprotein transfection experiments designed to generate viable influenza viruses from in vitro-synthesized RNA, we discovered several viruses which must have originated from recombination events. The ribonucleoprotein transfection system may enhance the formation of viruses which result from jumping of the viral polymerase between RNAs or from ligation of different viral RNAs. Five different recombinant viruses are described. Two of these, REC1 and REC2, contain a neuraminidase (NA) gene whose defective polyadenylation signal has been repaired via intergenic recombination; 124 and 95 nucleotides have been added, respectively. Another virus, REC5, must have originated by multiple recombination events since it contains a mosaic gene with sequences derived from the NA gene of influenza A/WSN/33 virus and the matrix, polymerase protein PB1, and NA genes of influenza A/PR/8/34 virus. Images PMID:1279208

  11. The quest of influenza A viruses for new hosts.

    PubMed

    Liu, M; Guan, Y; Peiris, M; He, S; Webby, R J; Perez, D; Webster, R G

    2003-01-01

    There is increasing evidence that stable lineages of influenza viruses are being established in chickens. H9N2 viruses are established in chickens in Eurasia, and there are increasing reports of H3N2, H6N1, and H6N2 influenza viruses in chickens both in Asia and North America. Surveillance in a live poultry market in Nanchang, South Central China, reveals that influenza viruses were isolated form 1% of fecal samples taken from healthy poultry over the course of 16 months. The highest isolation rates were from chickens (1.3%) and ducks (1.2%), followed by quail (0.8%), then pigeon (0.5%). H3N6, H9N2, H2N9, and H4N6 viruses were isolated from multiple samples, while single isolates of H1N1, H3N2, and H3N3 viruses were made. Representatives of each virus subtype were experimentally inoculated into both quail and chickens. All the viruses replicated in the trachea of quail, but efficient replication in chickens was confined to 25% of the tested isolates. In quail, these viruses were shed primarily by the aerosol route, raising the possibility that quail may be the "route modulator" that changes the route of transmission of influenza viruses from fecal-oral to aerosol transmission. Thus, quail may play an important role in the natural history of influenza viruses. The pros and cons of the use of inactivated and recombinant fowl pox-influenza vaccines to control the spread of avian influenza are also evaluated.

  12. Ecology of avian influenza viruses in a changing world

    PubMed Central

    Vandegrift, Kurt J.; Sokolow, Susanne H.; Daszak, Peter; Kilpatrick, A. Marm

    2010-01-01

    Influenza A virus infections result in ~500,000 human deaths per year and many more sub-lethal infections. Wild birds are recognized as the ancestral host of influenza A viruses, and avian viruses have contributed genetic material to most human viruses, including subtypes H5N1 and H1N1. Thus, influenza virus transmission in wild and domestic animals and humans is intimately connected. Here we review how anthropogenic change, including human population growth, land use, climate change, globalization of trade, agricultural intensification, and changes in vaccine technology may alter the evolution and transmission of influenza viruses. Evidence suggests that viral transmission in domestic poultry, spillover to other domestic animals, wild birds and humans, and the potential for subsequent pandemic spread, are all increasing. We highlight four areas in need of research: drivers of viral subtype dynamics; ecological and evolutionary determinants of transmissibility and virulence in birds and humans; the impact of changing land use and climate on hosts, viruses, and transmission; and the impact of influenza viruses on wild bird hosts, including their ability to migrate while shedding virus. PMID:20536820

  13. Influenza virus and endothelial cells: a species specific relationship

    PubMed Central

    Short, Kirsty R.; Veldhuis Kroeze, Edwin J. B.; Reperant, Leslie A.; Richard, Mathilde; Kuiken, Thijs

    2014-01-01

    Influenza A virus (IAV) infection is an important cause of respiratory disease in humans. The original reservoirs of IAV are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target of infection. However, influenza virus can spread from wild bird species to terrestrial poultry. Here, the virus can evolve into highly pathogenic avian influenza (HPAI). Part of this evolution involves increased viral tropism for endothelial cells. HPAI virus infections not only cause severe disease in chickens and other terrestrial poultry species but can also spread to humans and back to wild bird populations. Here, we review the role of the endothelium in the pathogenesis of influenza virus infection in wild birds, terrestrial poultry and humans with a particular focus on HPAI viruses. We demonstrate that whilst the endothelium is an important target of virus infection in terrestrial poultry and some wild bird species, in humans the endothelium is more important in controlling the local inflammatory milieu. Thus, the endothelium plays an important, but species-specific, role in the pathogenesis of influenza virus infection. PMID:25520707

  14. A brief introduction to influenza A virus in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza A viruses (IAV) of the Orthomyxoviridae virus family cause one of the most important respiratory diseases in pigs as well as humans. Repeated outbreaks and rapid spread of genetically and antigenically distinct IAVs represent a considerable challenge for animal production and public health...

  15. [Wild birds--a reservoir for influenza A virus].

    PubMed

    Griot, C; Hoop, R

    2007-11-01

    Influenza A viruses, in particular the H5 and H7 subtypes, have caused epizootic diseases in poultry for a long time. Wild aquatic birds and shorebirds form the natural virus reservoir. All influenza virus subtypes and almost all possible haemagglutinin/neuraminidase combinations have been detected in wild birds, whereas relatively few have been detected in humans and other mammals. In 1997, the emerging and spreading of the highly pathogenic strain H5N1 within Asia was supported by lack of hygiene in commercial poultry units and by the existence of live bird markets. During autumn 2005, migratory birds have been accused for spreading the infection along their flyways to Europe including Switzerland. For early detection of introduction to Europe, many countries have initiated surveillance programs for avian influenza in wild birds. Vaccines against influenza A viruses are existing for birds and are widely used to protect domestic fowl in endemic regions of Asia as well as valuable birds in zoos worldwide. Subtype H5N1 could be the progenitor virus of a new pandemic influenza virus. Therefore, the World Organisation for Animal Health (OIE, Paris) as well as the Food and Agriculture Organisation of the United Nations (FAO, Rome) will need to increase their efforts to assist countries to combat the disease in the field.

  16. Influenza virus isolation.

    PubMed

    Krauss, Scott; Walker, David; Webster, Robert G

    2012-01-01

    The isolation of influenza viruses is important for the diagnosis of respiratory diseases in lower animals and humans, for the detection of the infecting agent in surveillance programs, and is an essential element in the development and production of vaccine. Since influenza is caused by a zoonotic virus it is necessary to do surveillance in the reservoir species (aquatic waterfowls), intermediate hosts (quails, pigs), and in affected mammals including humans. Two of the hemagglutinin (HA) subtypes of influenza A viruses (H5 and H7) can evolve into highly pathogenic (HP) strains for gallinaceous poultry; some HP H5 and H7 strains cause lethal infection of humans. In waterfowls, low pathogenic avian influenza (LPAI) isolates are obtained primarily from the cloaca (or feces); in domestic poultry, the virus is more often recovered from the respiratory tract than from cloacal samples; in mammals, the virus is most often isolated from the respiratory tract, and in cases of high pathogenic avian influenza (HPAI) from the blood and internal organs of infected birds. Virus isolation procedures are performed by inoculation of clinical specimens into embryonated eggs (primarily chicken eggs) or onto a variety of primary or continuous tissue culture systems. Successful isolation of influenza virus depends on the quality of the sample and matching the appropriate culture method to the sample type.

  17. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral

    PubMed Central

    Smith, Claire M.; Scott, Paul D.; O’Callaghan, Christopher; Easton, Andrew J.; Dimmock, Nigel J.

    2016-01-01

    Defective interfering (DI) viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8) was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1); it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral. PMID:27556481

  18. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral.

    PubMed

    Smith, Claire M; Scott, Paul D; O'Callaghan, Christopher; Easton, Andrew J; Dimmock, Nigel J

    2016-08-22

    Defective interfering (DI) viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8) was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1); it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral.

  19. Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health.

    PubMed

    Kong, Weili; Wang, Feibing; Dong, Bin; Ou, Changbo; Meng, Demei; Liu, Jinhua; Fan, Zhen-Chuan

    2015-12-01

    Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens.

  20. Zanamivir-resistant influenza viruses with a novel neuraminidase mutation.

    PubMed

    Hurt, Aeron C; Holien, Jessica K; Parker, Michael; Kelso, Anne; Barr, Ian G

    2009-10-01

    The neuraminidase inhibitors zanamivir and oseltamivir are marketed for the treatment and prophylaxis of influenza and have been stockpiled by many countries for use in a pandemic. Although recent surveillance has identified a striking increase in the frequency of oseltamivir-resistant seasonal influenza A (H1N1) viruses in Europe, the United States, Oceania, and South Africa, to date there have been no reports of significant zanamivir resistance among influenza A (H1N1) viruses or any other human influenza viruses. We investigated the frequency of oseltamivir and zanamivir resistance in circulating seasonal influenza A (H1N1) viruses in Australasia and Southeast Asia. Analysis of 391 influenza A (H1N1) viruses isolated between 2006 and early 2008 from Australasia and Southeast Asia revealed nine viruses (2.3%) that demonstrated markedly reduced zanamivir susceptibility and contained a previously undescribed Gln136Lys (Q136K) neuraminidase mutation. The mutation had no effect on oseltamivir susceptibility but caused approximately a 300-fold and a 70-fold reduction in zanamivir and peramivir susceptibility, respectively. The role of the Q136K mutation in conferring zanamivir resistance was confirmed using reverse genetics. Interestingly, the mutation was not detected in the primary clinical specimens from which these mutant isolates were grown, suggesting that the resistant viruses either occurred in very low proportions in the primary clinical specimens or arose during MDCK cell culture passage. Compared to susceptible influenza A (H1N1) viruses, the Q136K mutant strains displayed greater viral fitness than the wild-type virus in MDCK cells but equivalent infectivity and transmissibility in a ferret model.

  1. Animal models for influenza virus transmission studies: A historical perspective

    PubMed Central

    Bouvier, Nicole M.

    2015-01-01

    Animal models are used to simulate, under experimental conditions, the complex interactions among host, virus, and environment that affect the person-to-person spread of influenza viruses. The three species that have been most frequently employed, both past and present, as influenza virus transmission models -- ferrets, mice, and guinea pigs -- have each provided unique insights into the factors governing the efficiency with which these viruses pass from an infected host to a susceptible one. This review will highlight a few of these noteworthy discoveries, with a particular focus on the historical contexts in which each model was developed and the advantages and disadvantages of each species with regard to the study of influenza virus transmission among mammals. PMID:26126082

  2. Evolutionary Dynamics of Influenza A Viruses in US Exhibition Swine.

    PubMed

    Nelson, Martha I; Wentworth, David E; Das, Suman R; Sreevatsan, Srinand; Killian, Mary L; Nolting, Jacqueline M; Slemons, Richard D; Bowman, Andrew S

    2016-01-15

    The role of exhibition swine in influenza A virus transmission was recently demonstrated by >300 infections with influenza A(H3N2) variant viruses among individuals who attended agricultural fairs. Through active influenza A virus surveillance in US exhibition swine and whole-genome sequencing of 380 isolates, we demonstrate that exhibition swine are actively involved in the evolution of influenza A viruses, including zoonotic strains. First, frequent introduction of influenza A viruses from commercial swine populations provides new genetic diversity in exhibition pigs each year locally. Second, genomic reassortment between viruses cocirculating in exhibition swine increases viral diversity. Third, viral migration between exhibition swine in neighboring states demonstrates that movements of exhibition pigs contributes to the spread of genetic diversity. The unexpected frequency of viral exchange between commercial and exhibition swine raises questions about the understudied interface between these populations. Overall, the complexity of viral evolution in exhibition swine indicates that novel viruses are likely to continually reemerge, presenting threats to humans.

  3. Construction of yellow fever-influenza A chimeric virus particles.

    PubMed

    Oliveira, B C E P D; Liberto, M I M; Barth, O M; Cabral, M C

    2002-12-01

    In order to obtain a better understanding of the functional mechanisms involved in the fusogenesis of enveloped viruses, the influenza A (X31) and the yellow fever (17DD) virus particles were used to construct a chimeric structure based on their distinct pH requirements for fusion, and the distinct malleability of their nucleocapsids. The malleable nucleocapsid of the influenza A virus particle is characterized by a pleomorphic configuration when observed by electron microscopy. A heat inactivated preparation of X31 virus was used as a lectin to interact with the sialic acid domains present in the 17DD virus envelope. The E spikes of 17DD virus were induced to promote fusion of both envelopes, creating a double genome enveloped structure, the chimeric yellow fever-influenza A virus particle. These chimeric viral particles, originally denominated 'partículas virais quiméricas' (PVQ), were characterized by their infectious capacity for different biological systems. Cell inoculation with PVQ resulted in viral products that showed similar characteristics to those obtained after 17DD virus infections. Our findings open new opportunities towards the understanding of both virus particles and aspects of cellular physiologic quality control. The yellow fever-influenza A chimeric particles, by means of their hybrid composition, should be a valuable tool in the study of cell biology and the function of viral components.

  4. The global antigenic diversity of swine influenza A viruses

    PubMed Central

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky; Anderson, Tavis K; Berger, Kathryn; Bielejec, Filip; Burke, David F; Dudas, Gytis; Fonville, Judith M; Fouchier, Ron AM; Kellam, Paul; Koel, Bjorn F; Lemey, Philippe; Nguyen, Tung; Nuansrichy, Bundit; Peiris, JS Malik; Saito, Takehiko; Simon, Gaelle; Skepner, Eugene; Takemae, Nobuhiro; Webby, Richard J; Van Reeth, Kristien; Brookes, Sharon M; Larsen, Lars; Watson, Simon J; Brown, Ian H; Vincent, Amy L

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential. Here, using the most comprehensive set of swine influenza virus antigenic data compiled to date, we quantify the antigenic diversity of swine influenza viruses on a multi-continental scale. The substantial antigenic diversity of recently circulating viruses in different parts of the world adds complexity to the risk profiles for the movement of swine and the potential for swine-derived infections in humans. DOI: http://dx.doi.org/10.7554/eLife.12217.001 PMID:27113719

  5. Detection of nonhemagglutinating influenza a(h3) viruses by enzyme-linked immunosorbent assay in quantitative influenza virus culture.

    PubMed

    van Baalen, C A; Els, C; Sprong, L; van Beek, R; van der Vries, E; Osterhaus, A D M E; Rimmelzwaan, G F

    2014-05-01

    To assess the efficacy of novel antiviral drugs against influenza virus in clinical trials, it is necessary to quantify infectious virus titers in respiratory tract samples from patients. Typically, this is achieved by inoculating virus-susceptible cells with serial dilutions of clinical specimens and detecting the production of progeny virus by hemagglutination, since influenza viruses generally have the capacity to bind and agglutinate erythrocytes of various species through their hemagglutinin (HA). This readout method is no longer adequate, since an increasing number of currently circulating influenza A virus H3 subtype (A[H3]) viruses display a reduced capacity to agglutinate erythrocytes. Here, we report the magnitude of this problem by analyzing the frequency of HA-deficient A(H3) viruses detected in The Netherlands from 1999 to 2012. Furthermore, we report the development and validation of an alternative method for monitoring the production of progeny influenza virus in quantitative virus cultures, which is independent of the capacity to agglutinate erythrocytes. This method is based on the detection of viral nucleoprotein (NP) in virus culture plates by enzyme-linked immunosorbent assay (ELISA), and it produced results similar to those of the hemagglutination assay using strains with good HA activity, including A/Brisbane/059/07 (H1N1), A/Victoria/210/09 (H3N2), other seasonal A(H1N1), A(H1N1)pdm09, and the majority of A(H3) virus strains isolated in 2009. In contrast, many A(H3) viruses that have circulated since 2010 failed to display HA activity, and infectious virus titers were determined only by detecting NP. The virus culture ELISA described here will enable efficacy testing of new antiviral compounds in clinical trials during seasons in which nonhemagglutinating influenza A viruses circulate.

  6. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  7. Influenza viruses: transmission between species.

    PubMed

    Webster, R G; Hinshaw, V S; Bean, W J; Sriram, G

    1980-02-25

    The only direct evidence for transmission of influenza viruses between species comes from studies on swine influenza viruses. Antigenically and genetically identical Hsw1N1 influenza viruses were isolated from pigs and man on the same farm in Wisconsin, U.S.A. The isolation of H3N2 influenza viruses from a wide range of lower animals and birds suggests that influenza viruses of man can spread to the lower orders. Under some conditions the H3N2 viruses can persist for a number of years in some species. The isolation, from aquatic birds, of a large number of influenza A viruses that possess surface proteins antigenically similar to the viruses isolated from man, pigs and horses provides indirect evidence for inter-species transmission. There is now a considerable body of evidence which suggests that influenza viruses of lower animals and birds may play a role in the origin of some of the pandemic strains of influenza A viruses. There is no direct evidence that the influenza viruses in aquatic birds are transmitted to man, but they may serve as a genetic pool from which some genes may be introduced into humans by recombination. Preliminary evidence suggests that the molecular basis of host range and virulence may be related to the RNA segments coding for one of the polymerase proteins (P3) and for the nucleoprotein (NP).

  8. Human Infections with Novel Reassortant Influenza A(H3N2)v Viruses, United States, 2011

    PubMed Central

    Lindstrom, Stephen; Garten, Rebecca; Balish, Amanda; Shu, Bo; Emery, Shannon; Berman, LaShondra; Barnes, Nathelia; Sleeman, Katrina; Gubareva, Larisa; Villanueva, Julie

    2012-01-01

    During July–December 2011, a variant virus, influenza A(H3N2)v, caused 12 human cases of influenza. The virus contained genes originating from swine, avian, and human viruses, including the M gene from influenza A(H1N1)pdm09 virus. Influenza A(H3N2)v viruses were antigenically distinct from seasonal influenza viruses and similar to proposed vaccine virus A/Minnesota/11/2010. PMID:22516540

  9. Antibody Recognition of a Highly Conserved Influenza Virus Epitope

    SciTech Connect

    Ekiert, Damian C.; Bhabha, Gira; Elsliger, Marc-André; Friesen, Robert H.E.; Jongeneelen, Mandy; Throsby, Mark; Goudsmit, Jaap; Wilson, Ian A.; Scripps; Crucell

    2009-05-21

    Influenza virus presents an important and persistent threat to public health worldwide, and current vaccines provide immunity to viral isolates similar to the vaccine strain. High-affinity antibodies against a conserved epitope could provide immunity to the diverse influenza subtypes and protection against future pandemic viruses. Cocrystal structures were determined at 2.2 and 2.7 angstrom resolutions for broadly neutralizing human antibody CR6261 Fab in complexes with the major surface antigen (hemagglutinin, HA) from viruses responsible for the 1918 H1N1 influenza pandemic and a recent lethal case of H5N1 avian influenza. In contrast to other structurally characterized influenza antibodies, CR6261 recognizes a highly conserved helical region in the membrane-proximal stem of HA1 and HA2. The antibody neutralizes the virus by blocking conformational rearrangements associated with membrane fusion. The CR6261 epitope identified here should accelerate the design and implementation of improved vaccines that can elicit CR6261-like antibodies, as well as antibody-based therapies for the treatment of influenza.

  10. Influenza A Viruses of Human Origin in Swine, Brazil.

    PubMed

    Nelson, Martha I; Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-08-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil's swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009-2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance.

  11. A comprehensive map of the influenza A virus replication cycle

    PubMed Central

    2013-01-01

    Background Influenza is a common infectious disease caused by influenza viruses. Annual epidemics cause severe illnesses, deaths, and economic loss around the world. To better defend against influenza viral infection, it is essential to understand its mechanisms and associated host responses. Many studies have been conducted to elucidate these mechanisms, however, the overall picture remains incompletely understood. A systematic understanding of influenza viral infection in host cells is needed to facilitate the identification of influential host response mechanisms and potential drug targets. Description We constructed a comprehensive map of the influenza A virus (‘IAV’) life cycle (‘FluMap’) by undertaking a literature-based, manual curation approach. Based on information obtained from publicly available pathway databases, updated with literature-based information and input from expert virologists and immunologists, FluMap is currently composed of 960 factors (i.e., proteins, mRNAs etc.) and 456 reactions, and is annotated with ~500 papers and curation comments. In addition to detailing the type of molecular interactions, isolate/strain specific data are also available. The FluMap was built with the pathway editor CellDesigner in standard SBML (Systems Biology Markup Language) format and visualized as an SBGN (Systems Biology Graphical Notation) diagram. It is also available as a web service (online map) based on the iPathways+ system to enable community discussion by influenza researchers. We also demonstrate computational network analyses to identify targets using the FluMap. Conclusion The FluMap is a comprehensive pathway map that can serve as a graphically presented knowledge-base and as a platform to analyze functional interactions between IAV and host factors. Publicly available webtools will allow continuous updating to ensure the most reliable representation of the host-virus interaction network. The FluMap is available at http://www.influenza

  12. Influenza A(H1N1)pdm09 Virus Infection in Giant Pandas, China

    PubMed Central

    Li, Desheng; Zhu, Ling; Cui, Hengmin; Ling, Shanshan; Fan, Shengtao; Yu, Zhijun; Zhou, Yuancheng; Wang, Tiecheng; Qian, Jun; Xia, Xianzhu; Xu, Zhiwen; Wang, Chengdong

    2014-01-01

    We confirmed infection with influenza A(H1N1)pdm09 in giant pandas in China during 2009 by using virus isolation and serologic analysis methods. This finding extends the host range of influenza viruses and indicates a need for increased surveillance for and control of influenza viruses among giant pandas. PMID:24565026

  13. Influenza A(H1N1)pdm09 virus infection in giant pandas, China.

    PubMed

    Li, Desheng; Zhu, Ling; Cui, Hengmin; Ling, Shanshan; Fan, Shengtao; Yu, Zhijun; Zhou, Yuancheng; Wang, Tiecheng; Qian, Jun; Xia, Xianzhu; Xu, Zhiwen; Gao, Yuwei; Wang, Chengdong

    2014-03-01

    We confirmed infection with influenza A(H1N1)pdm09 in giant pandas in China during 2009 by using virus isolation and serologic analysis methods. This finding extends the host range of influenza viruses and indicates a need for increased surveillance for and control of influenza viruses among giant pandas.

  14. Chiropteran influenza viruses: flu from bats or a relic from the past?

    PubMed

    Brunotte, Linda; Beer, Martin; Horie, Masayuki; Schwemmle, Martin

    2016-02-01

    The identification of influenza A-like genomic sequences in bats suggests the existence of distinct lineages of chiropteran influenza viruses in South and Central America. These viruses share similarities with conventional influenza A viruses but lack the canonical receptor-binding property and neuraminidase function. The inability to isolate infectious bat influenza viruses impeded further studies, however, reverse genetic analysis provided new insights into the molecular biology of these viruses. In this review, we highlight the recent developments in the field of the newly discovered bat-derived influenza A-like viruses. We also discuss whether bats are a neglected natural reservoir of influenza viruses, the risk associated with bat influenza viruses for humans and whether these viruses originate from the pool of avian IAV or vice versa.

  15. [Polymorphism of current human influenza A and B virus population].

    PubMed

    Grinbaum, E B; Litvinova, O M; Bannikov, A I; Konovalenko, I B; Chernookaia, N Iu; Iukhnova, L G; Kiselev, O I

    1994-01-01

    During the past years, the etiological situation has been significantly complicated. It is characterized by simultaneous circulation of A(H1N1), A(H3N2) and influenza B viruses and by the isolation of reassortant strains and viruses, which are atypical in relation to the process of their natural variability. The antigenic properties of epidemic strains and unusual isolates were investigated. The marked heterogeneity of the A(H3N2) influenza viruses was demonstrated. It was determined by the circulation of several antigenic variants during the epidemic. Two separate antigenic lineage of the influenza B viruses--b/Victoria/2/87 and B/Yamagata/16/88--cocirculated in our country in 1991. Since 1986, all the influenza A(H1N1) viruses have been considered to be varieties of the reference strain A/Taiwan/1/86. A direct correlation was found between some atypical viruses and the vaccine strains previously used.

  16. [Anti-influenza virus agent].

    PubMed

    Nakamura, Shigeki; Kohno, Shigeru

    2012-04-01

    The necessity of newly anti-influenza agents is increasing rapidly after the prevalence of pandemic influenza A (H1N1) 2009. In addition to the existing anti-influenza drugs, novel neuraminidase inhibitors such as peramivir (a first intravenous anti-influenza agent) and laninamivir (long acting inhaled anti-influenza agent) can be available. Moreover favipiravir, which shows a novel anti-influenza mechanism acting as RNA polymerase inhibitor, has been developing. These drugs are expected to improve the prognosis of severe cases caused by not only seasonal influenza but pandemic influenza A (H1N1) 2009 virus and H5N1 avian influenza, and also treat oseltamivir-resistant influenza effectively.

  17. Influenza a virus entry: implications in virulence and future therapeutics.

    PubMed

    Rumschlag-Booms, Emily; Rong, Lijun

    2013-01-01

    Influenza A viruses have broad host tropism, being able to infect a range of hosts from wild fowl to swine to humans. This broad tropism makes highly pathogenic influenza A strains, such as H5N1, potentially dangerous to humans if they gain the ability to jump from an animal reservoir to humans. How influenza A viruses are able to jump the species barrier is incompletely understood due to the complex genetic nature of the viral surface glycoprotein, hemagglutinin, which mediates entry, combined with the virus's ability to use various receptor linkages. Current therapeutics against influenza A include those that target the uncoating process after entry as well as those that prevent viral budding. While there are therapeutics in development that target entry, currently there are none clinically available. We review here the genetics of influenza A viruses that contribute to entry tropism, how these genetic alterations may contribute to receptor usage and species tropism, as well as how novel therapeutics can be developed that target the major surface glycoprotein, hemagglutinin.

  18. Efficacy of Inactivated Swine Influenza Virus Vaccines Against the 2009 A/H1N1 Influenza Virus in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene constellation of the 2009 pandemic A/H1N1 virus is a unique combination from swine influenza A viruses (SIV) of North American and Eurasian lineages, but prior to April 2009 had never before been identified in swine or other species. Although its hemagglutinin gene is related to North Ameri...

  19. Evidence of influenza a virus RNA in siberian lake ice.

    PubMed

    Zhang, Gang; Shoham, Dany; Gilichinsky, David; Davydov, Sergei; Castello, John D; Rogers, Scott O

    2006-12-01

    Influenza A virus infects a large proportion of the human population annually, sometimes leading to the deaths of millions. The biotic cycles of infection are well characterized in the literature, including in studies of populations of humans, poultry, swine, and migratory waterfowl. However, there are few studies of abiotic reservoirs for this virus. Here, we report the preservation of influenza A virus genes in ice and water from high-latitude lakes that are visited by large numbers of migratory birds. The lakes are along the migratory flight paths of birds flying into Asia, North America, Europe, and Africa. The data suggest that influenza A virus, deposited as the birds begin their autumn migration, can be preserved in lake ice. As birds return in the spring, the ice melts, releasing the viruses. Therefore, temporal gene flow is facilitated between the viruses shed during the previous year and the viruses newly acquired by birds during winter months spent in the south. Above the Arctic Circle, the cycles of entrapment in the ice and release by melting can be variable in length, because some ice persists for several years, decades, or longer. This type of temporal gene flow might be a feature common to viruses that can survive entrapment in environmental ice and snow.

  20. Prevention and Treatment of Avian Influenza A Viruses in People

    MedlinePlus

    ... or prolonged contact with sick or dead infected poultry. Infected birds shed avian influenza virus in their ... known to have occurred. People who work with poultry or who respond to avian influenza outbreaks are ...

  1. Serologic evidence of exposure of raptors to influenza A virus.

    PubMed

    Redig, Patrick T; Goyal, Sagar M

    2012-06-01

    Serum or plasma samples from raptors that prey or scavenge upon aquatic birds were tested by a commercially available blocking enzyme-linked immunosorbent assay for the evidence of antibodies to influenza A virus. Samples were taken from birds (n = 616) admitted to two rehabilitation centers in the United States. In addition, samples from 472 migrating peregrine falcons (Falco peregrinus) trapped on autumnal and vernal migrations for banding purposes were also tested. Only bald eagles were notably seropositive (22/406). One each of peregrine falcon, great horned owl (Bubo virginianus), and Cooper's hawk (Accipiter cooperi) from a total of 472, 81, and 100, respectively, were also positive. None of the turkey vultures (n = 21) or black vultures (n = 8) was positive. No clinical signs referable to avian influenza were seen in any bird at the time of capture. These data indicate that, among raptors, bald eagles do have exposure to influenza A viruses.

  2. Protective effect of dietary xylitol on influenza A virus infection.

    PubMed

    Yin, Sun Young; Kim, Hyoung Jin; Kim, Hong-Jin

    2014-01-01

    Xylitol has been used as a substitute for sugar to prevent cavity-causing bacteria, and most studies have focused on its benefits in dental care. Meanwhile, the constituents of red ginseng (RG) are known to be effective in ameliorating the symptoms of influenza virus infection when they are administered orally for 14 days. In this study, we investigated the effect of dietary xylitol on influenza A virus infection (H1N1). We designed regimens containing various fractions of RG (RGs: whole extract, water soluble fraction, saponin and polysaccharide) and xylitol, and combination of xylitol with the RG fractions. Mice received the various combinations orally for 5 days prior to lethal influenza A virus infection. Almost all the mice died post challenge when xylitol or RGs were administered separately. Survival was markedly enhanced when xylitol was administered along with RGs, pointing to a synergistic effect. The effect of xylitol plus RG fractions increased with increasing dose of xylitol. Moreover, dietary xylitol along with the RG water soluble fraction significantly reduced lung virus titers after infection. Therefore, we suggest that dietary xylitol is effective in ameliorating influenza-induced symptoms when it is administered with RG fractions, and this protective effect of xylitol should be considered in relation to other diseases.

  3. Protective Effect of Dietary Xylitol on Influenza A Virus Infection

    PubMed Central

    Yin, Sun Young; Kim, Hyoung Jin; Kim, Hong-Jin

    2014-01-01

    Xylitol has been used as a substitute for sugar to prevent cavity-causing bacteria, and most studies have focused on its benefits in dental care. Meanwhile, the constituents of red ginseng (RG) are known to be effective in ameliorating the symptoms of influenza virus infection when they are administered orally for 14 days. In this study, we investigated the effect of dietary xylitol on influenza A virus infection (H1N1). We designed regimens containing various fractions of RG (RGs: whole extract, water soluble fraction, saponin and polysaccharide) and xylitol, and combination of xylitol with the RG fractions. Mice received the various combinations orally for 5 days prior to lethal influenza A virus infection. Almost all the mice died post challenge when xylitol or RGs were administered separately. Survival was markedly enhanced when xylitol was administered along with RGs, pointing to a synergistic effect. The effect of xylitol plus RG fractions increased with increasing dose of xylitol. Moreover, dietary xylitol along with the RG water soluble fraction significantly reduced lung virus titers after infection. Therefore, we suggest that dietary xylitol is effective in ameliorating influenza-induced symptoms when it is administered with RG fractions, and this protective effect of xylitol should be considered in relation to other diseases. PMID:24392148

  4. Virulence and genetic compatibility of polymerase reassortant viruses derived from the pandemic (H1N1) 2009 influenza virus and circulating influenza A viruses.

    PubMed

    Song, Min-Suk; Pascua, Philippe Noriel Q; Lee, Jun Han; Baek, Yun Hee; Park, Kuk Jin; Kwon, Hyeok-il; Park, Su-Jin; Kim, Chul-Joong; Kim, Hyunggee; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2011-07-01

    Gene mutations and reassortment are key mechanisms by which influenza A virus acquires virulence factors. To evaluate the role of the viral polymerase replication machinery in producing virulent pandemic (H1N1) 2009 influenza viruses, we generated various polymerase point mutants (PB2, 627K/701N; PB1, expression of PB1-F2 protein; and PA, 97I) and reassortant viruses with various sources of influenza viruses by reverse genetics. Although the point mutations produced no significant change in pathogenicity, reassortment between the pandemic A/California/04/09 (CA04, H1N1) and current human and animal influenza viruses produced variants possessing a broad spectrum of pathogenicity in the mouse model. Although most polymerase reassortants had attenuated pathogenicity (including those containing seasonal human H3N2 and high-pathogenicity H5N1 virus segments) compared to that of the parental CA04 (H1N1) virus, some recombinants had significantly enhanced virulence. Unexpectedly, one of the five highly virulent reassortants contained a A/Swine/Korea/JNS06/04(H3N2)-like PB2 gene with no known virulence factors; the other four had mammalian-passaged avian-like genes encoding PB2 featuring 627K, PA featuring 97I, or both. Overall, the reassorted polymerase complexes were only moderately compatible for virus rescue, probably because of disrupted molecular interactions involving viral or host proteins. Although we observed close cooperation between PB2 and PB1 from similar virus origins, we found that PA appears to be crucial in maintaining viral gene functions in the context of the CA04 (H1N1) virus. These observations provide helpful insights into the pathogenic potential of reassortant influenza viruses composed of the pandemic (H1N1) 2009 influenza virus and prevailing human or animal influenza viruses that could emerge in the future.

  5. Interspecies transmission and reassortment of influenza A viruses in pigs and turkeys in the United States.

    PubMed

    Wright, S M; Kawaoka, Y; Sharp, G B; Senne, D A; Webster, R G

    1992-08-15

    Genetic reassortment between influenza A viruses in humans and in animals and birds has been implicated in the appearance of new pandemics of human influenza. To determine whether such reassortment has occurred in the United States, the authors compared the genetic origins of gene segments of 73 swine influenza virus isolates (1976-1990), representing 11 states, and 11 turkey virus isolates (1980-1989), representing eight states. The host origin of gene segments encoding the internal proteins of H1N1 swine and turkey influenza viruses was identified by developing a dot-blot assay. All gene segments of swine influenza viruses were characteristic of influenza virus genes from that species, indicating that pigs may not be frequent participants in interspecies genetic exchange and reassortment of influenza viruses in the United States. In contrast, 73% of the turkey influenza virus isolates contained genes of swine origin. One turkey isolate was a reassortant having three genes characteristic of avian influenza virus and three of swine origin. These findings document a high degree of genetic exchange and reassortment of influenza A viruses in domestic turkeys in the United States. The molecular biologic techniques used by the authors should aid future epidemiologic studies of influenza pandemics.

  6. 21 CFR 866.3332 - Reagents for detection of specific novel influenza A viruses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Reagents for detection of specific novel influenza... Reagents § 866.3332 Reagents for detection of specific novel influenza A viruses. (a) Identification. Reagents for detection of specific novel influenza A viruses are devices that are intended for use in...

  7. 21 CFR 866.3332 - Reagents for detection of specific novel influenza A viruses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Reagents for detection of specific novel influenza... Reagents § 866.3332 Reagents for detection of specific novel influenza A viruses. (a) Identification. Reagents for detection of specific novel influenza A viruses are devices that are intended for use in...

  8. 21 CFR 866.3332 - Reagents for detection of specific novel influenza A viruses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Reagents for detection of specific novel influenza... Reagents § 866.3332 Reagents for detection of specific novel influenza A viruses. (a) Identification. Reagents for detection of specific novel influenza A viruses are devices that are intended for use in...

  9. 21 CFR 866.3332 - Reagents for detection of specific novel influenza A viruses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Reagents for detection of specific novel influenza... Reagents § 866.3332 Reagents for detection of specific novel influenza A viruses. (a) Identification. Reagents for detection of specific novel influenza A viruses are devices that are intended for use in...

  10. Cloned Defective Interfering Influenza RNA and a Possible Pan-Specific Treatment of Respiratory Virus Diseases.

    PubMed

    Dimmock, Nigel J; Easton, Andrew J

    2015-07-08

    Defective interfering (DI) genomes are characterised by their ability to interfere with the replication of the virus from which they were derived, and other genetically compatible viruses. DI genomes are synthesized by nearly all known viruses and represent a vast natural reservoir of antivirals that can potentially be exploited for use in the clinic. This review describes the application of DI virus to protect from virus-associated diseases in vivo using as an example a highly active cloned influenza A DI genome and virus that protects broadly in preclinical trials against different subtypes of influenza A and against non-influenza A respiratory viruses. This influenza A-derived DI genome protects by two totally different mechanisms: molecular interference with influenza A replication and by stimulating innate immunity that acts against non-influenza A viruses. The review considers what is needed to develop DI genomes to the point of entry into clinical trials.

  11. Pathogenesis of avian influenza A (H5N1) viruses in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Genetic reassortment of avian influenza H5N1 viruses with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian influenza A viruses are o...

  12. Detection of evolutionarily distinct avian influenza a viruses in antarctica.

    PubMed

    Hurt, Aeron C; Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G; González-Acuña, Daniel

    2014-05-06

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. IMPORTANCE Avian influenza viruses (AIVs) are typically maintained and spread by migratory birds, resulting in the existence of distinctly different viruses around the world. However, AIVs have not previously been detected in Antarctica. In this study, we

  13. Analysis by single-gene reassortment demonstrates that the 1918 influenza virus is functionally compatible with a low-pathogenicity avian influenza virus in mice.

    PubMed

    Qi, Li; Davis, A Sally; Jagger, Brett W; Schwartzman, Louis M; Dunham, Eleca J; Kash, John C; Taubenberger, Jeffery K

    2012-09-01

    The 1918-1919 "Spanish" influenza pandemic is estimated to have caused 50 million deaths worldwide. Understanding the origin, virulence, and pathogenic properties of past pandemic influenza viruses, including the 1918 virus, is crucial for current public health preparedness and future pandemic planning. The origin of the 1918 pandemic virus has not been resolved, but its coding sequences are very like those of avian influenza virus. The proteins encoded by the 1918 virus differ from typical low-pathogenicity avian influenza viruses at only a small number of amino acids in each open reading frame. In this study, a series of chimeric 1918 influenza viruses were created in which each of the eight 1918 pandemic virus gene segments was replaced individually with the corresponding gene segment of a prototypical low-pathogenicity avian influenza (LPAI) H1N1 virus in order to investigate functional compatibility of the 1918 virus genome with gene segments from an LPAI virus and to identify gene segments and mutations important for mammalian adaptation. This set of eight "7:1" chimeric viruses was compared to the parental 1918 and LPAI H1N1 viruses in intranasally infected mice. Seven of the 1918 LPAI 7:1 chimeric viruses replicated and caused disease equivalent to the fully reconstructed 1918 virus. Only the chimeric 1918 virus containing the avian influenza PB2 gene segment was attenuated in mice. This attenuation could be corrected by the single E627K amino acid change, further confirming the importance of this change in mammalian adaptation and mouse pathogenicity. While the mechanisms of influenza virus host switch, and particularly mammalian host adaptation are still only partly understood, these data suggest that the 1918 virus, whatever its origin, is very similar to avian influenza virus.

  14. Inhibition of influenza A virus infection by ginsenosides

    PubMed Central

    Leon, Alberto J.; Kelvin, David J.

    2017-01-01

    Influenza viruses cause mild to severe respiratory infections in humans. Due to efficient means of transmission, the viruses infect human population on a large scale. Apart from vaccines, antiviral drugs are used to control infection; neuraminidase inhibitors are thought to be the first choice of treatment, particularly for severe cases. Rapidly evolving and emerging influenza viruses with increased frequency of viral resistance to these drugs stress the need to explore novel antiviral compounds. In this study, we investigated antiviral activity of ginseng extract and ginsenosides, the ginseng-derived triterpene and saponin compounds, against 2009 pandemic H1N1 virus in vitro and in vivo. Our data showed that treatment of mice with ginsenosides protected the animals from lethal 2009 pandemic H1N1 infection and lowered viral titers in animal lungs. Mechanistic studies revealed that ginsenosides interact with viral hemagglutinin protein and prevent the attachment of virus with α 2–3’ sialic acid receptors present on host cell surfaces. The interference in the viral attachment process subsequently minimizes viral entry into the cells and decreases the severity of the viral infection. We also describe that sugar moieties present in ginsenosides are indispensible for their attachment with viral HA protein. On the basis of our observations, we can say that ginsenosides are promising candidates for the development of antiviral drugs for influenza viruses. PMID:28187149

  15. A vaccine prepared from a non-pathogenic H5N1 influenza virus strain from the influenza virus library conferred protective immunity to chickens against the challenge with antigenically drifted highly pathogenic avian influenza virus.

    PubMed

    Samad, Rozanah Asmah Abdul; Nomura, Naoki; Tsuda, Yoshimi; Manzoor, Rashid; Kajihara, Masahiro; Tomabechi, Daisuke; Sasaki, Takashi; Kokumai, Norihide; Ohgitani, Toshiaki; Okamatsu, Masatoshi; Takada, Ayato; Sakoda, Yoshihiro; Kida, Hiroshi

    2011-02-01

    Inactivated influenza virus vaccine prepared from a non-pathogenic influenza virus strain A/duck/Hokkaido/Vac-1/2004 (H5N1) from the virus library conferred protective immunity to chickens against the challenge of antigenically drifted highly pathogenic avian influenza virus (HPAIV), A/whooper swan/Hokkaido/1/2008 (H5N1). The efficacy of the vaccine was comparable to that prepared from genetically modified HPAIV strain deltaRRRRK rg-A/ whooper swan/Mongolia/3/2005 (H5N1), which is more antigenically related to the challenge virus strain, in chickens.

  16. Influenza virus neuraminidase (NA): a target for antivirals and vaccines.

    PubMed

    Jagadesh, Anitha; Salam, Abdul Ajees Abdul; Mudgal, Piya Paul; Arunkumar, Govindakarnavar

    2016-08-01

    Influenza, the most common infectious disease, poses a great threat to human health because of its highly contagious nature and fast transmissibility, often leading to high morbidity and mortality. Effective vaccination strategies may aid in the prevention and control of recurring epidemics and pandemics associated with this infectious disease. However, antigenic shifts and drifts are major concerns with influenza virus, requiring effective global monitoring and updating of vaccines. Current vaccines are standardized primarily based on the amount of hemagglutinin, a major surface antigen, which chiefly constitutes these preparations along with the varying amounts of neuraminidase (NA). Anti-influenza drugs targeting the active site of NA have been in use for more than a decade now. However, NA has not been approved as an effective antigenic component of the influenza vaccine because of standardization issues. Although some studies have suggested that NA antibodies are able to reduce the severity of the disease and induce a long-term and cross-protective immunity, a few major scientific issues need to be addressed prior to launching NA-based vaccines. Interestingly, an increasing number of studies have shown NA to be a promising target for future influenza vaccines. This review is an attempt to consolidate studies that reflect the strength of NA as a suitable vaccine target. The studies discussed in this article highlight NA as a potential influenza vaccine candidate and support taking the process of developing NA vaccines to the next stage.

  17. Isolation of novel triple‐reassortant swine H3N2 influenza viruses possessing the hemagglutinin and neuraminidase genes of a seasonal influenza virus in Vietnam in 2010

    PubMed Central

    Ngo, Long Thanh; Hiromoto, Yasuaki; Pham, Vu Phong; Le, Ha Thi Hong; Nguyen, Ha Truc; Le, Vu Tri; Takemae, Nobuhiro; Saito, Takehiko

    2011-01-01

    Please cite this paper as: Ngo et al. (2012) Isolation of novel triple‐reassortant swine H3N2 influenza viruses possessing the hemagglutinin and neuraminidase genes of a seasonal influenza virus in Vietnam in 2010. Influenza and Other Respiratory Viruses 6(1), 6–10. Surveillance of swine influenza viruses (SIVs) in 31 pig farms in northern and southern parts of Vietnam was conducted. Six H3N2 influenza A viruses were isolated from a pig farm in southern Vietnam. They were novel genetic reassortants between a triple–reassortant SIV and a human seasonal H3N2 virus. Their hemagglutinin and neuraminidase genes were derived from a human virus circulating around 2004–2006 and the remaining genes from a triple‐reassortant SIV that originated in North America. This is the first report describing the isolation of a novel triple‐reassortant SIV in Vietnam. PMID:21668659

  18. Influenza Virus Infection of Marine Mammals.

    PubMed

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature.

  19. Generation of influenza A viruses as live but replication-incompetent virus vaccines.

    PubMed

    Si, Longlong; Xu, Huan; Zhou, Xueying; Zhang, Ziwei; Tian, Zhenyu; Wang, Yan; Wu, Yiming; Zhang, Bo; Niu, Zhenlan; Zhang, Chuanling; Fu, Ge; Xiao, Sulong; Xia, Qing; Zhang, Lihe; Zhou, Demin

    2016-12-02

    The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.

  20. [Favipiravir, a new concept of antiviral drug against influenza viruses].

    PubMed

    Reina, J; Reina, N

    2017-04-01

    Favipiravir (T-705) is a new antiviral drug with strong inhibitory activity on RNA-dependent RNA polymerase of most RNA virus genome. All the influenza viruses have been shown fully sensitive to this new antiviral, including genetic strains to neuraminidase inhibitors (oseltamivir) resistance. Its mechanism of action lies in blocking viral replication and induction of lethal mutagenesis which determines the loss of infective activity of influenza viruses. Its activity is particularly intense in the respiratory tract, decreasing the viral load to non-infectious levels. Clinical trials in humans have not yet completed but have very favourable results. It seems that the best therapy would be the combination of favipiravir with oseltamivir; both antivirals are synergistic and avoid the emergence of resistance.

  1. Oligonucleotide microarray for subtyping of influenza A viruses

    NASA Astrophysics Data System (ADS)

    Klotchenko, S. A.; Vasin, A. V.; Sandybaev, N. T.; Plotnikova, M. A.; Chervyakova, O. V.; Smirnova, E. A.; Kushnareva, E. V.; Strochkov, V. M.; Taylakova, E. T.; Egorov, V. V.; Koshemetov, J. K.; Kiselev, O. I.; Sansyzbay, A. R.

    2012-02-01

    Influenza is one of the most widespread respiratory viral diseases, infecting humans, horses, pigs, poultry and some other animal populations. Influenza A viruses (IAV) are classified into subtypes on the basis of the surface hemagglutinin (H1 to H16) and neuraminidase (N1 to N9) glycoproteins. The correct determination of IAV subtype is necessary for clinical and epidemiological studies. In this article we propose an oligonucleotide microarray for subtyping of IAV using universal one-step multisegment RT-PCR fluorescent labeling of viral gene segments. It showed to be an advanced approach for fast detection and identification of IAV.

  2. Guidelines for identifying homologous recombination events in influenza A virus.

    PubMed

    Boni, Maciej F; de Jong, Menno D; van Doorn, H Rogier; Holmes, Edward C

    2010-05-03

    The rapid evolution of influenza viruses occurs both clonally and non-clonally through a variety of genetic mechanisms and selection pressures. The non-clonal evolution of influenza viruses comprises relatively frequent reassortment among gene segments and a more rarely reported process of non-homologous RNA recombination. Homologous RNA recombination within segments has been proposed as a third such mechanism, but to date the evidence for the existence of this process among influenza viruses has been both weak and controversial. As homologous recombination has not yet been demonstrated in the laboratory, supporting evidence, if it exists, may come primarily from patterns of phylogenetic incongruence observed in gene sequence data. Here, we review the necessary criteria related to laboratory procedures and sample handling, bioinformatic analysis, and the known ecology and evolution of influenza viruses that need to be met in order to confirm that a homologous recombination event occurred in the history of a set of sequences. To determine if these criteria have an effect on recombination analysis, we gathered 8307 publicly available full-length sequences of influenza A segments and divided them into those that were sequenced via the National Institutes of Health Influenza Genome Sequencing Project (IGSP) and those that were not. As sample handling and sequencing are executed to a very high standard in the IGSP, these sequences should be less likely to be exposed to contamination by other samples or by laboratory strains, and thus should not exhibit laboratory-generated signals of homologous recombination. Our analysis shows that the IGSP data set contains only two phylogenetically-supported single recombinant sequences and no recombinant clades. In marked contrast, the non-IGSP data show a very large amount of potential recombination. We conclude that the presence of false positive signals in the non-IGSP data is more likely than false negatives in the IGSP data

  3. Influenza Virus-Host Interactomes as a Basis for Antiviral Drug Development

    PubMed Central

    Watanabe, Tokiko; Kawaoka, Yoshihiro

    2016-01-01

    Currently, antiviral drugs that target specific viral protein functions are available for the treatment of influenza; however, concern regarding the emergence of drug-resistant viruses is warranted, as is the urgent need for new antiviral targets, including non-viral targets, such as host cellular factors. Viruses rely on host cellular functions to replicate, and therefore a thorough understanding of the roles of virus-host interactions during influenza virus replication is essential to develop novel anti-influenza drugs that target the host factors involved in virus replication. Here, we review recent studies that used several approaches to identify host factors involved in influenza virus replication. These studies have permitted the construction of an interactome map of virus-host interactions in the influenza virus life cycle, clarifying the entire life cycle of this virus and accelerating the development of new antiviral drugs with a low propensity for the development of resistance. PMID:26364134

  4. Avian Influenza A (H7N9) Virus

    MedlinePlus

    ... Humans Diagnostics for Detecting H7N9 Using rRT-PCR Infection Control Within Healthcare Settings for Patients with Novel Influenza ... percent of people confirmed with Asian H7N9 virus infection died. Epidemiology Most human infections with avian influenza viruses, including ...

  5. A replication-incompetent influenza virus bearing the HN glycoprotein of human parainfluenza virus as a bivalent vaccine.

    PubMed

    Kobayashi, Hirofumi; Iwatsuki-Horimoto, Kiyoko; Kiso, Maki; Uraki, Ryuta; Ichiko, Yurie; Takimoto, Toru; Kawaoka, Yoshihiro

    2013-12-16

    Influenza virus and human parainfluenza virus (HPIV) are major etiologic agents of acute respiratory illness in young children. Inactivated and live attenuated influenza vaccines are approved in several countries, yet no vaccine is licensed for HPIV. We previously showed that a replication-incompetent PB2-knockout (PB2-KO) virus that possesses a reporter gene in the coding region of the PB2 segment can serve as a platform for a bivalent vaccine. To develop a bivalent vaccine against influenza and parainfluenza virus, here, we generated a PB2-KO virus possessing the hemagglutinin-neuraminidase (HN) glycoprotein of HPIV type 3 (HPIV3), a major surface antigen of HPIV, in its PB2 segment. We confirmed that this virus replicated only in PB2-expressing cells and expressed HN. We then examined the efficacy of this virus as a bivalent vaccine in a hamster model. High levels of virus-specific IgG antibodies in sera and IgA, IgG, and IgM antibodies in bronchoalveolar lavage fluids against both influenza virus and HPIV3 were detected from hamsters immunized with this virus. The neutralizing capability of these serum antibodies was also confirmed. Moreover, the immunized hamsters were completely protected from virus challenge with influenza virus or HPIV3. These results indicate that PB2-KO virus expressing the HN of HPIV3 has the potential to be a novel bivalent vaccine against influenza and human parainfluenza viruses.

  6. A highly sensitive europium nanoparticle-based immunoassay for detection of influenza A/B virus antigen in clinical specimens.

    PubMed

    Zhang, Panhe; Vemula, Sai Vikram; Zhao, Jiangqin; Du, Bingchen; Mohan, Haleyurgirisetty; Liu, Jikun; El Mubarak, Haja Sittana; Landry, Marie L; Hewlett, Indira

    2014-12-01

    We report the development of a novel europium nanoparticle-based immunoassay (ENIA) for rapid detection of influenza A and influenza B viruses. The ENIA demonstrated sensitivities of 90.7% (147/162) for influenza A viruses and 81.80% (9/11) for influenza B viruses compared to those for an in-house reverse transcription (RT)-PCR assay in testing of influenza-positive clinical samples.

  7. 21 CFR 866.3332 - Reagents for detection of specific novel influenza A viruses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... A viruses. 866.3332 Section 866.3332 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Reagents § 866.3332 Reagents for detection of specific novel influenza A viruses. (a) Identification. Reagents for detection of specific novel influenza A viruses are devices that are intended for use in...

  8. Vaccination of influenza a virus decreases transmission rates in pigs.

    PubMed

    Romagosa, Anna; Allerson, Matt; Gramer, Marie; Joo, Han Soo; Deen, John; Detmer, Susan; Torremorell, Montserrat

    2011-12-20

    Limited information is available on the transmission and spread of influenza virus in pig populations with differing immune statuses. In this study we assessed differences in transmission patterns and quantified the spread of a triple reassortant H1N1 influenza virus in naïve and vaccinated pig populations by estimating the reproduction ratio (R) of infection (i.e. the number of secondary infections caused by an infectious individual) using a deterministic Susceptible-Infectious-Recovered (SIR) model, fitted on experimental data. One hundred and ten pigs were distributed in ten isolated rooms as follows: (i) non-vaccinated (NV), (ii) vaccinated with a heterologous vaccine (HE), and (iii) vaccinated with a homologous inactivated vaccine (HO). The study was run with multiple replicates and for each replicate, an infected non-vaccinated pig was placed with 10 contact pigs for two weeks and transmission of influenza evaluated daily by analyzing individual nasal swabs by RT-PCR. A statistically significant difference between R estimates was observed between vaccinated and non-vaccinated pigs (p < 0.05). A statistically significant reduction in transmission was observed in the vaccinated groups where R (95%CI) was 1 (0.39-2.09) and 0 for the HE and the HO groups respectively, compared to an Ro value of 10.66 (6.57-16.46) in NV pigs (p < 0.05). Transmission in the HE group was delayed and variable when compared to the NV group and transmission could not be detected in the HO group. Results from this study indicate that influenza vaccines can be used to decrease susceptibility to influenza infection and decrease influenza transmission.

  9. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China

    PubMed Central

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are “mixing vessels,” and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses. PMID:27458456

  10. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

    PubMed

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

  11. Phylogenetic evidence against evolutionary stasis and natural abiotic reservoirs of influenza A virus.

    PubMed

    Worobey, Michael

    2008-04-01

    Zhang et al. (G. Zhang, D. Shoham, D. Gilichinsky, S. Davydov, J. D. Castello, and S. O. Rogers, J. Virol. 80:12229-12235, 2006) have claimed to have recovered influenza A virus RNA from Siberian lake ice, postulating that ice might represent an important abiotic reservoir for the persistence and reemergence of this medically important pathogen. A rigorous phylogenetic analysis of these influenza A virus hemagglutinin gene sequences, however, indicates that they originated from a laboratory reference strain derived from the earliest human influenza A virus isolate, WS/33. Contrary to Zhang et al.'s assertions that the Siberian "ice viruses" are most closely related either to avian influenza virus or to human influenza virus strains from Asia from the 1960s (Zhang et al., J. Virol. 81:2538 [erratum], 2007), they are clearly contaminants from the WS/33 positive control used in their laboratory. There is thus no credible evidence that environmental ice acts as a biologically relevant reservoir for influenza viruses. Several additional cases with findings that seem at odds with the biology of influenza virus, including modern-looking avian influenza virus RNA sequences from an archival goose specimen collected in 1917 (T. G. Fanning, R. D. Slemons, A. H. Reid, T. A. Janczewski, J. Dean, and J. K. Taubenberger, J. Virol. 76:7860-7862, 2002), can also be explained by laboratory contamination or other experimental errors. Many putative examples of evolutionary stasis in influenza A virus appear to be due to laboratory artifacts.

  12. Novel avian influenza A(H7N9) virus in tree sparrow, Shanghai, China, 2013.

    PubMed

    Zhao, Baihui; Zhang, Xi; Zhu, Wenfei; Teng, Zheng; Yu, Xuelian; Gao, Ye; Wu, Di; Pei, Enle; Yuan, Zhengan; Yang, Lei; Wang, Dayan; Shu, Yuelong; Wu, Fan

    2014-05-01

    In spring 2013, influenza A(H7N9) virus was isolated from an apparently healthy tree sparrow in Chongming Dongping National Forest Park, Shanghai City, China. The entire gene constellation of the virus is similar to that of isolates from humans, highlighting the need to monitor influenza A(H7N9) viruses in different species.

  13. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus.

    PubMed

    Hendricks, Gabriel L; Weirich, Kim L; Viswanathan, Karthik; Li, Jing; Shriver, Zachary H; Ashour, Joseph; Ploegh, Hidde L; Kurt-Jones, Evelyn A; Fygenson, Deborah K; Finberg, Robert W; Comolli, James C; Wang, Jennifer P

    2013-03-22

    Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains.

  14. Sialylneolacto-N-tetraose c (LSTc)-bearing Liposomal Decoys Capture Influenza A Virus*

    PubMed Central

    Hendricks, Gabriel L.; Weirich, Kim L.; Viswanathan, Karthik; Li, Jing; Shriver, Zachary H.; Ashour, Joseph; Ploegh, Hidde L.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Finberg, Robert W.; Comolli, James C.; Wang, Jennifer P.

    2013-01-01

    Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains. PMID:23362274

  15. New aspects of influenza viruses.

    PubMed Central

    Shaw, M W; Arden, N H; Maassab, H F

    1992-01-01

    Influenza virus infections continue to cause substantial morbidity and mortality with a worldwide social and economic impact. The past five years have seen dramatic advances in our understanding of viral replication, evolution, and antigenic variation. Genetic analyses have clarified relationships between human and animal influenza virus strains, demonstrating the potential for the appearance of new pandemic reassortants as hemagglutinin and neuraminidase genes are exchanged in an intermediate host. Clinical trials of candidate live attenuated influenza virus vaccines have shown the cold-adapted reassortants to be a promising alternative to the currently available inactivated virus preparations. Modern molecular techniques have allowed serious consideration of new approaches to the development of antiviral agents and vaccines as the functions of the viral genes and proteins are further elucidated. The development of techniques whereby the genes of influenza viruses can be specifically altered to investigate those functions will undoubtedly accelerate the pace at which our knowledge expands. PMID:1310439

  16. Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus

    DTIC Science & Technology

    2011-01-06

    Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus I-Chueh Huang1*, Charles C. Bailey1, Jessica...identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV) hemagglutinin (HA) protein. Here we show that IFITM...Becker MM, et al. (2011) Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus. PLoS Pathog 7(1

  17. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    SciTech Connect

    Hashem, Anwar M.; Van Domselaar, Gary; Li, Changgui; Wang, Junzhi; She, Yi-Min; Cyr, Terry D.; Sui, Jianhua; He, Runtao; Marasco, Wayne A.; Li, Xuguang

    2010-12-10

    Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  18. [A compact microarray for sub-typing of influenza A virus].

    PubMed

    Riabinin, V A; Kostina, E V; Siniakov, A N

    2013-01-01

    A universal oligonucleotide hybridazation microchip 6 x 5 spot (4 x 4 mm) for influenza A virus subtyping was suggested, functioning on a principle one spot--one subtype. This microchip with additional printing quality control is a prototype of a biosensor for detection of influenza A virus and typing of 15 subtypes of hemagglutinin and 9 subtypes of neuraminidase.

  19. Influenza A Virus in Backyard Pigs and Poultry in Rural Cambodia.

    PubMed

    Osbjer, K; Berg, M; Sokerya, S; Chheng, K; San, S; Davun, H; Magnusson, U; Olsen, B; Zohari, S

    2016-08-02

    Surveillance of influenza virus in humans and livestock is critical, given the worldwide public health threats and livestock production losses. Livestock farming involving close proximity between humans, pigs and poultry is often practised by smallholders in low-income countries and is considered an important driver of influenza virus evolution. This study determined the prevalence and genetic characteristics of influenza A virus (IAV) in backyard pigs and poultry in Cambodia. A total of 751 animals were tested by matrix gene-based rRT-PCR, and influenza virus was detected in 1.5% of sampled pigs, 1.4% of chickens and 1.0% of ducks, but not in pigeons. Full-length genome sequencing confirmed triple reassortant H3N2 in all IAV-positive pigs and various low pathogenic avian influenza subtypes in poultry. Phylogenetic analysis of the swine influenza viruses revealed that these had haemagglutinin and neuraminidase genes originating from human H3N2 viruses previously isolated in South-East Asia. Phylogenetic analysis also revealed that several of the avian influenza subtypes detected were closely related to internal viral genes from highly pathogenic H5N1 and H9N2 formerly sequenced in the region. High sequence homology was likewise found with influenza A viruses circulating in pigs, poultry and wild birds in China and Vietnam, suggesting transboundary introduction and cocirculation of the various influenza subtypes. In conclusion, highly pathogenic subtypes of influenza virus seem rare in backyard poultry, but virus reassortment, involving potentially zoonotic and pandemic subtypes, appears to occur frequently in smallholder pigs and poultry. Increased targeted surveillance and monitoring of influenza circulation on smallholdings would further improve understanding of the transmission dynamics and evolution of influenza viruses in humans, pigs and poultry in the Mekong subregion and could contribute to limit the influenza burden.

  20. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses

    PubMed Central

    Holm, Christian K.; Rahbek, Stine H.; Gad, Hans Henrik; Bak, Rasmus O.; Jakobsen, Martin R.; Jiang, Zhaozaho; Hansen, Anne Louise; Jensen, Simon K.; Sun, Chenglong; Thomsen, Martin K.; Laustsen, Anders; Nielsen, Camilla G.; Severinsen, Kasper; Xiong, Yingluo; Burdette, Dara L.; Hornung, Veit; Lebbink, Robert Jan; Duch, Mogens; Fitzgerald, Katherine A.; Bahrami, Shervin; Mikkelsen, Jakob Giehm; Hartmann, Rune; Paludan, Søren R.

    2016-01-01

    Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV. PMID:26893169

  1. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses.

    PubMed

    Holm, Christian K; Rahbek, Stine H; Gad, Hans Henrik; Bak, Rasmus O; Jakobsen, Martin R; Jiang, Zhaozaho; Hansen, Anne Louise; Jensen, Simon K; Sun, Chenglong; Thomsen, Martin K; Laustsen, Anders; Nielsen, Camilla G; Severinsen, Kasper; Xiong, Yingluo; Burdette, Dara L; Hornung, Veit; Lebbink, Robert Jan; Duch, Mogens; Fitzgerald, Katherine A; Bahrami, Shervin; Mikkelsen, Jakob Giehm; Hartmann, Rune; Paludan, Søren R

    2016-02-19

    Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.

  2. Modified live virus vaccine induces a distinct immune response profile compared to inactivated influenza A virus vaccines in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and antigenic diversity within H1 influenza A virus (IAV) subtypes circulating in swine is increasing. The need for cross-protective influenza vaccines in swine is necessary as the virus becomes more diverse. This study compared the humoral and cell-mediated immune response of modified live ...

  3. A live-attenuated influenza vaccine for H3N2 canine influenza virus.

    PubMed

    Rodriguez, Laura; Nogales, Aitor; Reilly, Emma C; Topham, David J; Murcia, Pablo R; Parrish, Colin R; Martinez Sobrido, Luis

    2017-04-01

    Canine influenza is a contagious respiratory disease in dogs caused by two subtypes (H3N2 and H3N8) of canine influenza virus (CIV). Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIVs. Historically, live-attenuated influenza vaccines (LAIVs) have been shown to produce better immunogenicity and protection efficacy than IIVs. Here, we have engineered a CIV H3N2 LAIV by using the internal genes of a previously described CIV H3N8 LAIV as a master donor virus (MDV) and the surface HA and NA genes of a circulating CIV H3N2 strain. Our findings show that CIV H3N2 LAIV replicates efficiently at low temperature but its replication is impaired at higher temperatures. The CIV H3N2 LAIV was attenuated in vivo but induced better protection efficacy in mice against challenge with wild-type CIV H3N2 than a commercial CIV H3N2 IIV. This is the first description of a LAIV for the prevention of CIV H3N2 in dogs.

  4. Influenza virus neuraminidase contributes to the dextran sulfate-dependent suppressive replication of some influenza A virus strains.

    PubMed

    Yamada, Hiroshi; Moriishi, Eiko; Haredy, Ahmad M; Takenaka, Nobuyuki; Mori, Yasuko; Yamanishi, Koichi; Okamoto, Shigefumi

    2012-12-01

    Dextran sulfate (DS), a negatively charged, sulfated polysaccharide, suppresses the replication of an influenza A virus strain, and this suppression is associated with inhibition of the hemagglutinin (HA)-dependent fusion activity. However, it remains unknown whether the replication of all or just some influenza A virus strains is suppressed by DS, or whether HA is the only target for the replication suppression. In the present study, we found that DS inhibited the replication of some, but not all influenza A virus strains. The suppression in the DS-sensitive strains was dose-dependent and neutralized by diethylaminoethyl-dextran (DD), which has a positive charge. The suppression by DS was observed not only at the initial stage of viral infection, which includes viral attachment and entry, but also at the late stage, which includes virus assembly and release from infected cells. Electron microscopy revealed that the DS induced viral aggregation at the cell surface. The neuraminidase (NA) activity of the strains whose viral replication was inhibited at the late stage was also more suppressed by DS than that of the strains whose replication was not inhibited, and this inhibition of NA activity was also neutralized by adding positively charged DD. Furthermore, we found that replacing the NA gene of a strain in which viral replication was inhibited by DS at the late stage with the NA gene from a strain in which viral replication was not inhibited, eliminated the DS-dependent suppression. These results suggest that the influenza virus NA contributes to the DS-suppressible virus release from infected cells at the late stage, and the suppression may involve the inhibition of NA activity by DS's negative charge.

  5. Influenza vaccine effectiveness in preventing inpatient and outpatient cases in a season dominated by vaccine-matched influenza B virus

    PubMed Central

    Martínez-Baz, Iván; Navascués, Ana; Pozo, Francisco; Chamorro, Judith; Albeniz, Esther; Casado, Itziar; Reina, Gabriel; Cenoz, Manuel García; Ezpeleta, Carmen; Castilla, Jesús

    2015-01-01

    Studies that have evaluated the influenza vaccine effectiveness (VE) to prevent laboratory-confirmed influenza B cases are uncommon, and few have analyzed the effect in preventing hospitalized cases. We have evaluated the influenza VE in preventing outpatient and hospitalized cases with laboratory-confirmed influenza in the 2012–2013 season, which was dominated by a vaccine-matched influenza B virus. In the population covered by the Navarra Health Service, all hospitalized patients with influenza-like illness (ILI) and all ILI patients attended by a sentinel network of general practitioners were swabbed for influenza testing, and all were included in a test-negative case-control analysis. VE was calculated as (1-odds ratio)×100. Among 744 patients tested, 382 (51%) were positive for influenza virus: 70% for influenza B, 24% for A(H1N1)pdm09, and 5% for A(H3N2). The overall estimate of VE in preventing laboratory-confirmed influenza was 63% (95% confidence interval (CI): 34 to 79), 55% (1 to 80) in outpatients and 74% (33 to 90) in hospitalized patients. The VE was 70% (41 to 85) against influenza B and 43% (−45 to 78) against influenza A. The VE against virus B was 87% (52 to 96) in hospitalized patients and 56% in outpatients (−5 to 81). Adjusted comparison of vaccination status between inpatient and outpatient cases with influenza B did not show statistically significant differences (odds ratio: 1.13; p = 0.878). These results suggest a high protective effect of the vaccine in the 2012–2013 season, with no differences found for the effect between outpatient and hospitalized cases. PMID:25996366

  6. Study of influenza A virus in wild boars living in a major duck wintering site.

    PubMed

    Vittecoq, Marion; Grandhomme, Viviane; Simon, Gaëlle; Herve, Séverine; Blanchon, Thomas; Renaud, François; Thomas, Frédéric; Gauthier-Clerc, Michel; van der Werf, Sylvie

    2012-03-01

    Wild birds, which are reservoirs of influenza viruses, are believed to be the original source of new influenza viruses-including highly pathogenic ones-that can be transmitted to domestic animals as well as humans and represent a potential epizootic and/or pandemic threat. Despite increasing knowledge on influenza A virus dynamics in wild birds, the viral circulation in wild boars remains largely unknown. This is of particular interest since pigs can be infected with both human and avian viruses; upon co-infection, they can act as a mixing vessel through reassortment, a mechanism that resulted in the emergence of the pandemic H1N1 virus in 2009. The Camargue (Southern France) appears as an ideal study area to investigate inter-species transmission of influenza A viruses from wild birds and possibly humans to wild boars. Indeed, the important local wild boar population shares wetland use with humans and the largest concentration of wintering ducks in France, that are both susceptible to infection by influenza A viruses. Additionally, wild boars occasionally prey on ducks. We conducted a virological and serological survey on wild boars in the Camargue (Southern France) between September 2009 and November 2010. No influenza A virus was detected in the collected nasal swabs (n=315) and no influenza specific antibodies were observed in the serological samples (n=20). As the study was mainly focused on viral excretion, which is limited in time, we cannot exclude that low or occasional influenza A virus circulation took place during the study period. Although, wild boars did not seem to be a key element in the dynamics of influenza A virus circulation in the Camargue, wild boar influenza A virus infections should be more widely studied to determine if the pattern observed here represents the normal situation or an exceptional one.

  7. Pandemic H1N1 influenza virus infection in a Canadian cat

    PubMed Central

    Knight, Cameron G.; Davies, Jennifer L.; Joseph, Tomy; Ondrich, Sarah; Rosa, Brielle V.

    2016-01-01

    A cat was presented for necropsy after being found dead at home. Histologic findings suggested viral pneumonia. Polymerase chain reaction and viral typing revealed influenza A(H1N1)pdm09. This is the first report of influenza in a Canadian cat and highlights the importance of considering influenza virus in the differential diagnosis for feline respiratory distress. PMID:27152036

  8. Recurrent plastic bronchitis in a child with 2009 influenza A (H1N1) and influenza B virus infection.

    PubMed

    Kim, Sun; Cho, Hwa Jin; Han, Dong Kyun; Choi, Yoo Duk; Yang, Eun Seok; Cho, Young Kuk; Ma, Jae Sook

    2012-09-01

    Plastic bronchitis is an uncommon disorder characterized by the formation of bronchial casts. It is associated with congenital heart disease or pulmonary disease. In children with underlying conditions such as allergy or asthma, influenza can cause severe plastic bronchitis resulting in respiratory failure. A review of the literature showed nine cases of plastic bronchitis with H1N1 including this case. We report a case of a child with recurrent plastic bronchitis with eosinophilic cast associated with influenza B infection, who had recovered from plastic bronchitis associated with an influenza A (H1N1) virus infection 5 months previously. To the best of our knowledge, this is the first case of recurrent plastic bronchitis related to influenza viral infection. If patients with influenza virus infection manifest acute respiratory distress with total lung atelectasis, clinicians should consider plastic bronchitis and early bronchoscopy should be intervened. In addition, management for underlying disease may prevent from recurrence of plastic bronchitis.

  9. One health, multiple challenges: The inter-species transmission of influenza A virus

    PubMed Central

    Short, Kirsty R.; Richard, Mathilde; Verhagen, Josanne H.; van Riel, Debby; Schrauwen, Eefje J. A.; van den Brand, Judith M. A.; Mänz, Benjamin; Bodewes, Rogier

    2015-01-01

    Influenza A viruses are amongst the most challenging viruses that threaten both human and animal health. Influenza A viruses are unique in many ways. Firstly, they are unique in the diversity of host species that they infect. This includes waterfowl (the original reservoir), terrestrial and aquatic poultry, swine, humans, horses, dog, cats, whales, seals and several other mammalian species. Secondly, they are unique in their capacity to evolve and adapt, following crossing the species barrier, in order to replicate and spread to other individuals within the new species. Finally, they are unique in the frequency of inter-species transmission events that occur. Indeed, the consequences of novel influenza virus strain in an immunologically naïve population can be devastating. The problems that influenza A viruses present for human and animal health are numerous. For example, influenza A viruses in humans represent a major economic and disease burden, whilst the poultry industry has suffered colossal damage due to repeated outbreaks of highly pathogenic avian influenza viruses. This review aims to provide a comprehensive overview of influenza A viruses by shedding light on interspecies virus transmission and summarising the current knowledge regarding how influenza viruses can adapt to a new host. PMID:26309905

  10. Recent progress in designing inhibitors that target the drug-resistant M2 proton channels from the influenza A viruses.

    PubMed

    Wang, Jun; Li, Fang; Ma, Chunlong

    2015-07-01

    Influenza viruses are the causative agents for seasonal influenza, which results in thousands of deaths and millions of hospitalizations each year. Moreover, sporadic transmission of avian or swan influenza viruses to humans often leads to an influenza pandemic, as there is no preimmunity in the human body to fight against such novel strains. The metastable genome of the influenza viruses, coupled with the reassortment of different strains from a wide range of host origins, leads to the continuous evolution of the influenza virus diversity. Such characteristics of influenza viruses present a grand challenge in devising therapeutic strategies to combat influenza virus infection. This review summarizes recent progress in designing small molecule inhibitors that target the drug-resistant influenza A virus M2 proton channels and highlights the contribution of mechanistic studies of proton conductance to drug discovery. The lessons learned throughout the course of M2 drug discovery might provide insights for designing inhibitors that target other therapeutically important ion channels.

  11. Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae

    SciTech Connect

    Smith, Amber M.; Adler, Frederick R.; Ribeiro, Ruy M.; Gutenkunst, Ryan N.; McAuley, Julie L.; McCullers, Jonathan A.; Perelson, Alan S.

    2013-03-21

    Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. In this paper, to address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determined that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Finally, our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.

  12. Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae

    DOE PAGES

    Smith, Amber M.; Adler, Frederick R.; Ribeiro, Ruy M.; ...

    2013-03-21

    Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. In this paper, to address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determinedmore » that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Finally, our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.« less

  13. Influenza A Virus Polymerase Is a Site for Adaptive Changes during Experimental Evolution in Bat Cells

    PubMed Central

    Poole, Daniel S.; Yú, Shuǐqìng; Caì, Yíngyún; Dinis, Jorge M.; Müller, Marcel A.; Jordan, Ingo; Friedrich, Thomas C.; Kuhn, Jens H.

    2014-01-01

    ABSTRACT The recent identification of highly divergent influenza A viruses in bats revealed a new, geographically dispersed viral reservoir. To investigate the molecular mechanisms of host-restricted viral tropism and the potential for transmission of viruses between humans and bats, we exposed a panel of cell lines from bats of diverse species to a prototypical human-origin influenza A virus. All of the tested bat cell lines were susceptible to influenza A virus infection. Experimental evolution of human and avian-like viruses in bat cells resulted in efficient replication and created highly cytopathic variants. Deep sequencing of adapted human influenza A virus revealed a mutation in the PA polymerase subunit not previously described, M285K. Recombinant virus with the PA M285K mutation completely phenocopied the adapted virus. Adaptation of an avian virus-like virus resulted in the canonical PB2 E627K mutation that is required for efficient replication in other mammals. None of the adaptive mutations occurred in the gene for viral hemagglutinin, a gene that frequently acquires changes to recognize host-specific variations in sialic acid receptors. We showed that human influenza A virus uses canonical sialic acid receptors to infect bat cells, even though bat influenza A viruses do not appear to use these receptors for virus entry. Our results demonstrate that bats are unique hosts that select for both a novel mutation and a well-known adaptive mutation in the viral polymerase to support replication. IMPORTANCE Bats constitute well-known reservoirs for viruses that may be transferred into human populations, sometimes with fatal consequences. Influenza A viruses have recently been identified in bats, dramatically expanding the known host range of this virus. Here we investigated the replication of human influenza A virus in bat cell lines and the barriers that the virus faces in this new host. Human influenza A and B viruses infected cells from geographically and

  14. Influenza A virus infection in zebrafish recapitulates mammalian infection and sensitivity to anti-influenza drug treatment.

    PubMed

    Gabor, Kristin A; Goody, Michelle F; Mowel, Walter K; Breitbach, Meghan E; Gratacap, Remi L; Witten, P Eckhard; Kim, Carol H

    2014-11-01

    Seasonal influenza virus infections cause annual epidemics and sporadic pandemics. These present a global health concern, resulting in substantial morbidity, mortality and economic burdens. Prevention and treatment of influenza illness is difficult due to the high mutation rate of the virus, the emergence of new virus strains and increasing antiviral resistance. Animal models of influenza infection are crucial to our gaining a better understanding of the pathogenesis of and host response to influenza infection, and for screening antiviral compounds. However, the current animal models used for influenza research are not amenable to visualization of host-pathogen interactions or high-throughput drug screening. The zebrafish is widely recognized as a valuable model system for infectious disease research and therapeutic drug testing. Here, we describe a zebrafish model for human influenza A virus (IAV) infection and show that zebrafish embryos are susceptible to challenge with both influenza A strains APR8 and X-31 (Aichi). Influenza-infected zebrafish show an increase in viral burden and mortality over time. The expression of innate antiviral genes, the gross pathology and the histopathology in infected zebrafish recapitulate clinical symptoms of influenza infections in humans. This is the first time that zebrafish embryos have been infected with a fluorescent IAV in order to visualize infection in a live vertebrate host, revealing a pattern of vascular endothelial infection. Treatment of infected zebrafish with a known anti-influenza compound, Zanamivir, reduced mortality and the expression of a fluorescent viral gene product, demonstrating the validity of this model to screen for potential antiviral drugs. The zebrafish model system has provided invaluable insights into host-pathogen interactions for a range of infectious diseases. Here, we demonstrate a novel use of this species for IAV research. This model has great potential to advance our understanding of

  15. Dynamical correlations in the escape strategy of Influenza A virus

    NASA Astrophysics Data System (ADS)

    Taggi, L.; Colaiori, F.; Loreto, V.; Tria, F.

    2013-03-01

    The evolutionary dynamics of human Influenza A virus presents a challenging theoretical problem. An extremely high mutation rate allows the virus to escape, at each epidemic season, the host immune protection elicited by previous infections. At the same time, at each given epidemic season a single quasi-species, that is a set of closely related strains, is observed. A non-trivial relation between the genetic (i.e., at the sequence level) and the antigenic (i.e., related to the host immune response) distances can shed light into this puzzle. In this paper we introduce a model in which, in accordance with experimental observations, a simple interaction rule based on spatial correlations among point mutations dynamically defines an immunity space in the space of sequences. We investigate the static and dynamic structure of this space and we discuss how it affects the dynamics of the virus-host interaction. Interestingly we observe a staggered time structure in the virus evolution as in the real Influenza evolutionary dynamics.

  16. Impacts of allergic airway inflammation on lung pathology in a mouse model of influenza A virus infection

    PubMed Central

    Kawaguchi, Akira; Ohara, Yuki; Takahashi, Kenta; Sato, Yuko; Ainai, Akira; Nagata, Noriyo; Tashiro, Masato; Hasegawa, Hideki

    2017-01-01

    Influenza A virus is the respiratory pathogen responsible for influenza. Infection by the 2009 pandemic influenza A (H1N1) virus caused severe lower airway inflammation and pneumonia. Asthma is a chronic inflammatory disorder of the airways that affects the entire brachial tree, and was one of the commonest underlying medical conditions among patients hospitalized with the 2009 pandemic influenza virus infection. Although respiratory virus infections are the major causes of asthma exacerbation, the mechanism by which influenza exacerbates asthma is poorly understood. Animal models of disease comorbidity are crucial to understanding host-pathogen interactions and elucidating complex pathologies. Existing murine models of influenza virus infection in asthmatics show that asthmatic mice are highly resistant to influenza virus infection, which contradicts clinical observations in humans. Here, we developed a murine model of influenza virus/asthma comorbidity using NC/Nga mice, which are highly sensitive to allergic reactions such as atopic dermatitis and allergic airway inflammation. This model was then used to examine the impact of allergic airway inflammation on lung pathology in the 2009 pandemic influenza virus infected mice. The results showed that induction of acute allergic airway inflammation in pre-existing influenza virus infection had additive effects on exacerbation of lung pathology, which mirrors findings in human epidemiological studies. In contrast, pre-existing allergic airway inflammation protected from subsequent influenza virus infection, which was compatible with those of previous murine models of influenza virus infection in asthmatic mice. These variable outcomes of this murine model indicate that the temporal relation between allergic airway inflammation and influenza virus infection might play a critical role in asthma and influenza comorbidity. Thus, this murine model will further our understanding of how influenza virus infection affects an

  17. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus.

    PubMed

    Kobasa, Darwyn; Takada, Ayato; Shinya, Kyoko; Hatta, Masato; Halfmann, Peter; Theriault, Steven; Suzuki, Hiroshi; Nishimura, Hidekazu; Mitamura, Keiko; Sugaya, Norio; Usui, Taichi; Murata, Takeomi; Maeda, Yasuko; Watanabe, Shinji; Suresh, M; Suzuki, Takashi; Suzuki, Yasuo; Feldmann, Heinz; Kawaoka, Yoshihiro

    2004-10-07

    The 'Spanish' influenza pandemic of 1918-19 was the most devastating outbreak of infectious disease in recorded history. At least 20 million people died from their illness, which was characterized by an unusually severe and rapid clinical course. The complete sequencing of several genes of the 1918 influenza virus has made it possible to study the functions of the proteins encoded by these genes in viruses generated by reverse genetics, a technique that permits the generation of infectious viruses entirely from cloned complementary DNA. Thus, to identify properties of the 1918 pandemic influenza A strain that might be related to its extraordinary virulence, viruses were produced containing the viral haemagglutinin (HA) and neuraminidase (NA) genes of the 1918 strain. The HA of this strain supports the pathogenicity of a mouse-adapted virus in this animal. Here we demonstrate that the HA of the 1918 virus confers enhanced pathogenicity in mice to recent human viruses that are otherwise non-pathogenic in this host. Moreover, these highly virulent recombinant viruses expressing the 1918 viral HA could infect the entire lung and induce high levels of macrophage-derived chemokines and cytokines, which resulted in infiltration of inflammatory cells and severe haemorrhage, hallmarks of the illness produced during the original pandemic.

  18. Surveillance of feral cats for influenza A virus in North Central Florida

    PubMed Central

    Gordy, James T.; Jones, Cheryl A.; Rue, Joanne; Crawford, Patti Cynda; Levy, Julie K.; Stallknecht, David E.; Tripp, Ralph A.; Tompkins, Stephen M.

    2011-01-01

    Please cite this paper as: Gordy JT et al. (2012) Surveillance of feral cats for influenza A virus in North Central Florida. Influenza and Other Respiratory Viruses 6(5), 341–347. Background  Transmission of highly pathogenic avian influenza and the recent pandemic H1N1 viruses to domestic cats and other felids creates concern because of the morbidity and mortality associated with human infections as well as disease in the infected animals. Experimental infections have demonstrated transmission of influenza viruses in cats. Objectives  An epidemiologic survey of feral cats was conducted to determine their exposure to influenza A virus. Methods  Feral cat sera and oropharyngeal and rectal swabs were collected from November 2008 through July 2010 in Alachua County, FL and were tested for evidence of influenza A virus infection by virus isolation, PCR, and serological assay. Results and conclusions  No virus was isolated from any of 927 cats examined using MDCK cell or embryonated chicken egg culture methods, nor was viral RNA detected by RT‐PCR in 200 samples tested. However, 0.43% of cats tested antibody positive for influenza A by commercial ELISA. These results suggest feral cats in this region are at minimal risk for influenza A virus infection. PMID:22212818

  19. A novel strategy for exploring the reassortment origins of newly emerging influenza virus.

    PubMed

    Tian, Deqiao; Wang, Yumin; Zheng, Tao

    2011-01-01

    In early 2009, new swine-origin influenza A (H1N1) virus emerged in Mexico and the United States. The emerging influenza virus had made global influenza pandemic for nearly one year. To every emerging pathogen, exploring the origin sources is vital for viral control and clearance. Influenza virus is different from other virus in that it has 8 segments, making the segment reassortment a main drive in virus evolution. In exploring reassortment evolution origins of a newly emerging influenza virus, integrated comparing of the origin sources of all the segments is necessary. If some segments have high homologous with one parental strain, lower homologous with another parental strain, while other segments are reverse, can we proposed that this emerging influenza virus may re-assort from the two parental strains. Here we try to explore the multilevel reassortment evolution origins of 2009 H1N1 influenza virus using this method. By further validating the fidelity of this strategy, this method might be useful in judging the reassortment origins of newly emerging influenza virus.

  20. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection.

    PubMed

    Driskell, Elizabeth A; Jones, Cheryl A; Stallknecht, David E; Howerth, Elizabeth W; Tompkins, S Mark

    2010-04-10

    The direct transmission of highly pathogenic avian influenza (HPAI) viruses to humans in Eurasia and subsequent disease has sparked research efforts leading to better understanding of HPAI virus transmission and pathogenicity in mammals. There has been minimal focus on examining the capacity of circulating low pathogenic wild bird avian influenza viruses to infect mammals. We have utilized a mouse model for influenza virus infection to examine 28 North American wild bird avian influenza virus isolates that include the hemagglutinin subtypes H2, H3, H4, H6, H7, and H11. We demonstrate that many wild bird avian influenza viruses of several different hemagglutinin types replicate in this mouse model without adaptation and induce histopathologic lesions similar to other influenza virus infections but cause minimal morbidity. These findings demonstrate the potential of wild avian influenza viruses to directly infect mice without prior adaptation and support their potential role in emergence of pandemic influenza.

  1. Household Transmission of Influenza Virus.

    PubMed

    Tsang, Tim K; Lau, Lincoln L H; Cauchemez, Simon; Cowling, Benjamin J

    2016-02-01

    Human influenza viruses cause regular epidemics and occasional pandemics with a substantial public health burden. Household transmission studies have provided valuable information on the dynamics of influenza transmission. We reviewed published studies and found that once one household member is infected with influenza, the risk of infection in a household contact can be up to 38%, and the delay between onset in index and secondary cases is around 3 days. Younger age was associated with higher susceptibility. In the future, household transmission studies will provide information on transmission dynamics, including the correlation of virus shedding and symptoms with transmission, and the correlation of new measures of immunity with protection against infection.

  2. Development of high-yield influenza B virus vaccine viruses.

    PubMed

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  3. Surveillance of Influenza A Virus and Its Subtypes in Migratory Wild Birds of Nepal.

    PubMed

    Karmacharya, Dibesh; Manandhar, Sulochana; Sharma, Ajay; Bhatta, Tarka; Adhikari, Pratikshya; Sherchan, Adarsh Man; Shrestha, Bishwo; Bista, Manisha; Rajbhandari, Rajesh; Oberoi, Mohinder; Bisht, Khadak; Hero, Jean-Marc; Dissanayake, Ravi; Dhakal, Maheshwar; Hughes, Jane; Debnath, Nitish

    2015-01-01

    Nepal boarders India and China and all three countries lie within the Central Asian Flyway for migratory birds. Novel influenza A H7N9 caused human fatalities in China in 2013. Subclinical infections of influenza A H7N9 in birds and the potential for virus dispersal by migratory birds prompted this study to assess avian H7N9 viral intrusion into Nepal. Surveillance of influenza A virus in migratory birds was implemented in early 2014 with assistance from the Food and Agricultural Organization (FAO). Of 1811 environmental fecal samples collected from seven wetland migratory bird roosting areas, influenza A H9N2 was found in one sample from a ruddy shelduck in Koshi Tappu Wildlife Reserve located in southern Nepal. Avian H7N9 and other highly pathogenic avian influenza viruses were not detected. This study provides baseline data on the status of avian influenza virus in migratory bird populations in Nepal.

  4. Surveillance of Influenza A Virus and Its Subtypes in Migratory Wild Birds of Nepal

    PubMed Central

    Sharma, Ajay; Bhatta, Tarka; Adhikari, Pratikshya; Sherchan, Adarsh Man; Shrestha, Bishwo; Bista, Manisha; Rajbhandari, Rajesh; Oberoi, Mohinder; Bisht, Khadak; Hero, Jean-Marc; Dissanayake, Ravi; Dhakal, Maheshwar; Hughes, Jane; Debnath, Nitish

    2015-01-01

    Nepal boarders India and China and all three countries lie within the Central Asian Flyway for migratory birds. Novel influenza A H7N9 caused human fatalities in China in 2013. Subclinical infections of influenza A H7N9 in birds and the potential for virus dispersal by migratory birds prompted this study to assess avian H7N9 viral intrusion into Nepal. Surveillance of influenza A virus in migratory birds was implemented in early 2014 with assistance from the Food and Agricultural Organization (FAO). Of 1811 environmental fecal samples collected from seven wetland migratory bird roosting areas, influenza A H9N2 was found in one sample from a ruddy shelduck in Koshi Tappu Wildlife Reserve located in southern Nepal. Avian H7N9 and other highly pathogenic avian influenza viruses were not detected. This study provides baseline data on the status of avian influenza virus in migratory bird populations in Nepal. PMID:26176773

  5. Role for proteases and HLA-G in the pathogenicity of influenza A viruses.

    PubMed

    Foucault, Marie-Laure; Moules, Vincent; Rosa-Calatrava, Manuel; Riteau, Béatrice

    2011-07-01

    Influenza is one of the most common infectious diseases in humans occurring as seasonal epidemic and sporadic pandemic outbreaks. The ongoing infections of humans with avian H5N1 influenza A viruses (IAV) and the past 2009 pandemic caused by the quadruple human/avian/swine reassortant (H1N1) virus highlights the permanent threat caused by these viruses. This review aims to describe the interaction between the virus and the host, with a particular focus on the role of proteases and HLA-G in the pathogenicity of influenza viruses.

  6. Rapid production of a H₉ N₂ influenza vaccine from MDCK cells for protecting chicken against influenza virus infection.

    PubMed

    Ren, Zhenghua; Lu, Zhongzheng; Wang, Lei; Huo, Zeren; Cui, Jianhua; Zheng, Tingting; Dai, Qing; Chen, Cuiling; Qin, Mengying; Chen, Meihua; Yang, Rirong

    2015-04-01

    H9N2 subtype avian influenza viruses are widespread in domestic poultry, and vaccination remains the most effective way to protect the chicken population from avian influenza pandemics. Currently, egg-based H9N2 influenza vaccine production has several disadvantages and mammalian MDCK cells are being investigated as candidates for influenza vaccine production. However, little research has been conducted on low pathogenic avian influenza viruses (LPAIV) such as H9N2 replicating in mammalian cells using microcarrier beads in a bioreactor. In this study, we present a systematic analysis of a safe H9N2 influenza vaccine derived from MDCK cells for protecting chickens against influenza virus infection. In 2008, we isolated two novel H9N2 influenza viruses from chickens raised in southern China, and these H9N2 viruses were adapted to MDCK cells. The H9N2 virus was produced in MDCK cells in a scalable bioreactor, purified, inactivated, and investigated for use as a vaccine. The MDCK-derived H9N2 vaccine was able to induce high titers of neutralizing antibodies in chickens of different ages. Histopathological examination, direct immunofluorescence, HI assay, CD4(+)/CD8(+) ratio test, and cytokine evaluation indicated that the MDCK-derived H9N2 vaccine evoked a rapid and effective immune response to protect chickens from influenza infection. High titers of H9N2-specific antibodies were maintained in chickens for 5 months, and the MDCK-derived H9N2 vaccine had no effects on chicken growth. The use of MDCK cells in bioreactors for LPAIV vaccine production is an attractive option to prevent outbreaks of LPAIV in poultry.

  7. Replication-Competent Influenza A Viruses Expressing Reporter Genes

    PubMed Central

    Breen, Michael; Nogales, Aitor; Baker, Steven F.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo. PMID:27347991

  8. Human Infection with Avian Influenza A(H7N9) Virus - China

    MedlinePlus

    ... reduction Human infection with avian influenza A(H7N9) virus – China Disease outbreak news 18 January 2017 On ... confirmed human infection with avian influenza A(H7N9) virus and on 12 January 2017, the Health Bureau, ...

  9. Enhanced Pneumonia With Pandemic 2009 A/H1N1 Swine Influenza Virus in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. Swine influenza A viruses (SIV) in the major swine producing regions of North America consist of multiple subtypes of endemic H1N1, H1N2, and H3N2 derived from swine, avian and human influenza viruses with a triple reassortant internal gene (TRIG) constellation (1). Genetic drift and r...

  10. Human infections with influenza A(H3N2) variant virus in the United States, 2011-2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND. During August 2011-April 2012, 13 human infections with influenza A(H3N2) variant (H3N2v) virus were identified in the United States; 8 occurred in the prior 2 years. This virus differs from previous variant influenza viruses in that it contains the matrix (M) gene from the Influenza A(H...

  11. [Isolation of influenza A H1N2 virus from a returning traveller at Nagoya International Airport].

    PubMed

    Sato, Katsuhiko; Morishita, Takayuki; Sakae, Kenji

    2004-06-01

    A reassortant influenza A H1N2 virus was isolated from a returning traveller arriving at Nagoya International Airport, Japan from Indonesia in May, 2002. A Hemagglutination inhibition test revealed that the virus was similar to a vaccine strain of A/NewCaledonia/20/99. A phylogenetic analysis demonstrated that the virus forms a cluster with other influenza A H1N2 viruses isolated in other countries. The reassortment event was theoretically assumed to have occurred between the 1999/2000 and 2000/2001 influenza seasons. Neither A H1N2 nor A H3N1 virus was detected from 256 isolates of AH1 or 177 of AH3 influenza viruses isolated in Aichi Prefecture, Japan between the 1999/2000 and 2001/2002 influenza seasons. This finding suggests the importance of influenza surveillance at an airport quarantine office to detect promptly a novel influenza virus penetrating to Japan.

  12. Adaptation of pandemic H2N2 influenza A viruses in humans.

    PubMed

    Joseph, Udayan; Linster, Martin; Suzuki, Yuka; Krauss, Scott; Halpin, Rebecca A; Vijaykrishna, Dhanasekaran; Fabrizio, Thomas P; Bestebroer, Theo M; Maurer-Stroh, Sebastian; Webby, Richard J; Wentworth, David E; Fouchier, Ron A M; Bahl, Justin; Smith, Gavin J D

    2015-02-01

    The 1957 A/H2N2 influenza virus caused an estimated 2 million fatalities during the pandemic. Since viruses of the H2 subtype continue to infect avian species and pigs, the threat of reintroduction into humans remains. To determine factors involved in the zoonotic origin of the 1957 pandemic, we performed analyses on genetic sequences of 175 newly sequenced human and avian H2N2 virus isolates and all publicly available influenza virus genomes.

  13. Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein As A Hot Antiviral Drug Target.

    PubMed

    Hu, Yanmei; Sneyd, Hannah; Dekant, Raphael; Wang, Jun

    2017-02-24

    Prevention and treatment of influenza virus infection is an ongoing unmet medical need. Each year, thousands of deaths and millions of hospitalizations are attributed to influenza virus infection, which poses a tremendous health and economic burden to the society. Aside from the annual influenza season, influenza viruses also lead to occasional influenza pandemics as a result of emerging or re-emerging influenza strains. Influenza viruses are RNA viruses that exist in quasispecies, meaning that they have a very diverse genetic background. Such a feature creates a grand challenge in devising therapeutic intervention strategies to inhibit influenza virus replication, as a single agent might not be able to inhibit all influenza virus strains. Both classes of currently approved anti-influenza drugs have limitations: the M2 channel blockers amantadine and rimantadine are no longer recommended for use in the U.S. due to predominant drug resistance, and resistance to the neuraminidase inhibitor oseltamivir is continuously on the rise. In pursuing the next generation of antiviral drugs with broad-spectrum activity and higher genetic barrier of drug resistance, the influenza virus nucleoprotein (NP) stands out as a high-profile drug target. This review summarizes recent developments in designing inhibitors targeting influenza NP and their mechanisms of action.

  14. Influenza A virus infections in land birds, People's Republic of China

    USGS Publications Warehouse

    Peterson, A.T.; Bush, S.E.; Spackman, Erica; Swayne, D.E.; Ip, H.S.

    2008-01-01

    Water birds are considered the reservoir for avian influenza viruses. We examined this assumption by sampling and real-time reverse transcription-PCR testing of 939 Asian land birds of 153 species. Influenza A infection was found, particularly among migratory species. Surveillance programs for monitoring spread of these viruses need to be redesigned.

  15. Absence of Pandemic H1N1 Influenza A Virus in Fresh Pork

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pigs experimentally infected with pandemic 2009 H1N1 influenza A virus developed respiratory disease; however, there was no evidence for systemic disease to suggest that pork from pigs infected with H1N1 influenza would contain infectious virus. These findings support the WHO recommendation that po...

  16. Immune mechanisms associated with enhanced influenza A virus disease versus cross-protection in vaccinated pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccine associated enhanced respiratory disease (VAERD) has been described in pigs vaccinated with whole-inactivated influenza virus (WIV) following infection with heterologous influenza A virus (IAV). WIV vaccination elicits production of cross-reactive, non-neutralizing antibody to the challenge I...

  17. Lymphocyte responses in the lungs of vaccinated pigs following homologous and heterologous influenza A virus challenge.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccine associated enhanced respiratory disease (VAERD) has been described in pigs vaccinated with whole-inactivated influenza virus (WIV) following infection with heterologous influenza A virus (IAV). WIV vaccination elicits production of non-neutralizing antibody that is cross-reactive to the chal...

  18. [Influenza A/H1N1 virus--old and new].

    PubMed

    Bodas, Moran; Davidovich, Nadav; Balicer, Ran D

    2009-08-01

    Swine influenza is a disease known since 1918. Four decades Later, scientists were already isolating the disease-causing agent and learning more about its ability to infect humans. Generally, swine influenza viruses, similarly to avian influenza viruses, do not easily infect humans; however, the viruses' ability to undergo substantial genetic re-assortment enhances the emergence of novel influenza viruses, better capable of infecting and transmitting between humans. Pigs also form good "mixing vessels" for human and avian origin influenza viruses, enabling the emergence of highly virulent influenza strains. Human infection with swine influenza has been recorded in the past, both as sporadic infections and as outbreaks. The best known human swine influenza outbreak took place in Fort Dix (USA) in 1976, concluding in the immunization of almost 45 million U.S. citizens, in a highly controversial immunization program. The current H1N1 (S-OIV) Influenza outbreak was declared by the WHO as an influenza pandemic, setting to rest the lately popular question "when will the next pandemic occur?" and laying the foundations for the evaluation of preparedness plans. There is great importance in data collection and subsequent updating of current procedures and doctrines.

  19. Third Wave of Influenza A(H7N9) Virus from Poultry, Guangdong Province, China, 2014-2015.

    PubMed

    Xie, Shumin; Jia, Weixin; Lin, Yicun; Xing, Kaixiang; Ren, Xingxing; Qi, Wenbao; Liao, Ming

    2015-09-01

    Fourteen influenza A(H7N9) viruses were isolated from poultry or the environment in live poultry markets in Guangdong Province, China during 2014-2015. Phylogenetic analysis showed that all viruses were descended from viruses of the second wave of influenza A(H7N9) virus infections during 2013. These viruses can be divided into 2 branches.

  20. Third Wave of Influenza A(H7N9) Virus from Poultry, Guangdong Province, China, 2014–2015

    PubMed Central

    Xie, Shumin; Jia, Weixin; Lin, Yicun; Xing, Kaixiang; Ren, Xingxing; Qi, Wenbao

    2015-01-01

    Fourteen influenza A(H7N9) viruses were isolated from poultry or the environment in live poultry markets in Guangdong Province, China during 2014−2015. Phylogenetic analysis showed that all viruses were descended from viruses of the second wave of influenza A(H7N9) virus infections during 2013. These viruses can be divided into 2 branches. PMID:26291620

  1. Correlation between Virus Replication and Antibody Responses in Macaques following Infection with Pandemic Influenza A Virus

    PubMed Central

    Koopman, Gerrit; Dekking, Liesbeth; Mortier, Daniëlla; Nieuwenhuis, Ivonne G.; van Heteren, Melanie; Kuipers, Harmjan; Remarque, Edmond J.; Radošević, Katarina; Bogers, Willy M. J. M.

    2015-01-01

    ABSTRACT Influenza virus infection of nonhuman primates is a well-established animal model for studying pathogenesis and for evaluating prophylactic and therapeutic intervention strategies. However, usually a standard dose is used for the infection, and there is no information on the relation between challenge dose and virus replication or the induction of immune responses. Such information is also very scarce for humans and largely confined to evaluation of attenuated virus strains. Here, we have compared the effect of a commonly used dose (4 × 106 50% tissue culture infective doses) versus a 100-fold-higher dose, administered by intrabronchial installation, to two groups of 6 cynomolgus macaques. Animals infected with the high virus dose showed more fever and had higher peak levels of gamma interferon in the blood. However, virus replication in the trachea was not significantly different between the groups, although in 2 out of 6 animals from the high-dose group it was present at higher levels and for a longer duration. The virus-specific antibody response was not significantly different between the groups. However, antibody enzyme-linked immunosorbent assay, virus neutralization, and hemagglutination inhibition antibody titers correlated with cumulative virus production in the trachea. In conclusion, using influenza virus infection in cynomolgus macaques as a model, we demonstrated a relationship between the level of virus production upon infection and induction of functional antibody responses against the virus. IMPORTANCE There is only very limited information on the effect of virus inoculation dose on the level of virus production and the induction of adaptive immune responses in humans or nonhuman primates. We found only a marginal and variable effect of virus dose on virus production in the trachea but a significant effect on body temperature. The induction of functional antibody responses, including virus neutralization titer, hemagglutination inhibition

  2. Heightened adaptive immune responses following vaccination with a temperature-sensitive, live-attenuated influenza virus compared to adjuvanted, whole-inactivated virus in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States there are currently two influenza vaccine platforms approved for use in humans - conventional inactivated virus and live-attenuated influenza virus (LAIV). One of the major challenges for influenza A virus (IAV) vaccination is designing a platform that provides protection across...

  3. LINGUISTIC ANALYSIS OF THE NUCLEOPROTEIN GENE OF INFLUENZA A VIRUS

    SciTech Connect

    A. SKOURIKHINE; T. BURR

    2000-05-01

    We applied linguistic analysis approach, specifically N-grams, to classify nucleotide and amino acids sequences of nucleoprotein (NP) gene of the Influenza A virus isolated from a range of hosts and geographic regions. We considered letter frequency (1-grams), letter pairs frequency (2-grams) and triplets' frequency (3-grams). Classification trees based on 1,2,3-grams variables were constructed for the same NP nucleotide and amino acids strains and their classification efficiency were compared with the clustering obtained using phylogenetic analysis. The results have shown that disregarding positional information for a NP gene can provide the same level of recognition accuracy like alternative more complex classification techniques.

  4. Simultaneous detection of influenza viruses A and B using real-time quantitative PCR.

    PubMed

    van Elden, L J; Nijhuis, M; Schipper, P; Schuurman, R; van Loon, A M

    2001-01-01

    Since influenza viruses can cause severe illness, timely diagnosis is important for an adequate intervention. The available rapid detection methods either lack sensitivity or require complex laboratory manipulation. This study describes a rapid, sensitive detection method that can be easily applied to routine diagnosis. This method simultaneously detects influenza viruses A and B in specimens of patients with respiratory infections using a TaqMan-based real-time PCR assay. Primers and probes were selected from highly conserved regions of the matrix protein gene of influenza virus A and the hemagglutinin gene segment of influenza virus B. The applicability of this multiplex PCR was evaluated with 27 influenza virus A and 9 influenza virus B reference strains and isolates. In addition, the specificity of the assay was assessed using eight reference strains of other respiratory viruses (parainfluenza viruses 1 to 3, respiratory syncytial virus Long strain, rhinoviruses 1A and 14, and coronaviruses OC43 and 229E) and 30 combined nose and throat swabs from asymptomatic subjects. Electron microscopy-counted stocks of influenza viruses A and B were used to develop a quantitative PCR format. Thirteen copies of viral RNA were detected for influenza virus A, and 11 copies were detected for influenza virus B, equaling 0.02 and 0.006 50% tissue culture infective doses, respectively. The diagnostic efficacy of the multiplex TaqMan-based PCR was determined by testing 98 clinical samples. This real-time PCR technique was found to be more sensitive than the combination of conventional viral culturing and shell vial culturing.

  5. Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: a potential animal model for human H1N1 influenza virus.

    PubMed

    Khatri, Mahesh; Dwivedi, Varun; Krakowka, Steven; Manickam, Cordelia; Ali, Ahmed; Wang, Leyi; Qin, Zhuoming; Renukaradhya, Gourapura J; Lee, Chang-Won

    2010-11-01

    Pigs are capable of generating reassortant influenza viruses of pandemic potential, as both the avian and mammalian influenza viruses can infect pig epithelial cells in the respiratory tract. The source of the current influenza pandemic is H1N1 influenza A virus, possibly of swine origin. This study was conducted to understand better the pathogenesis of H1N1 influenza virus and associated host mucosal immune responses during acute infection in humans. Therefore, we chose a H1N1 swine influenza virus, Sw/OH/24366/07 (SwIV), which has a history of transmission to humans. Clinically, inoculated pigs had nasal discharge and fever and shed virus through nasal secretions. Like pandemic H1N1, SwIV also replicated extensively in both the upper and lower respiratory tracts, and lung lesions were typical of H1N1 infection. We detected innate, proinflammatory, Th1, Th2, and Th3 cytokines, as well as SwIV-specific IgA antibody in lungs of the virus-inoculated pigs. Production of IFN-γ by lymphocytes of the tracheobronchial lymph nodes was also detected. Higher frequencies of cytotoxic T lymphocytes, γδ T cells, dendritic cells, activated T cells, and CD4+ and CD8+ T cells were detected in SwIV-infected pig lungs. Concomitantly, higher frequencies of the immunosuppressive T regulatory cells were also detected in the virus-infected pig lungs. The findings of this study have relevance to pathogenesis of the pandemic H1N1 influenza virus in humans; thus, pigs may serve as a useful animal model to design and test effective mucosal vaccines and therapeutics against influenza virus.

  6. Adaptation of an H7N7 equine influenza A virus in mice.

    PubMed

    Shinya, Kyoko; Watanabe, Shinji; Ito, Toshihiro; Kasai, Noriyuki; Kawaoka, Yoshihiro

    2007-02-01

    Wild waterfowl are a reservoir for influenza A viruses, which can be transmitted from these birds to other animal species. Occasionally, influenza A viruses are transmitted to other animal species from animals other than wild waterfowl, e.g. an equine influenza virus has been transmitted to dogs and caused outbreaks. To understand the molecular mechanism by which influenza A viruses adapt to a new animal species, the molecular changes involved in the adaptation of an H7N7 equine influenza A virus were studied in mice. Mutations in the mouse-adapted virus mapped to one amino acid change in the PA protein, one in PB2 and two in PB1. Of these mutations, the Glu-to-Lys substitution at position 627 of PB2 (PB2-E627K) increased virulence appreciably. To understand the mechanism of this increased virulence, a recombinant virus expressing a reporter green fluorescent protein was constructed, thus enabling the effect of this mutation on viral protein expression to be tested in the context of virus replication in situ. It was found that the PB2-E627K substitution in this equine virus contributed to increased viral protein expression and virus replication in mouse cells and enhanced brain invasiveness in mice. These results demonstrate that the importance of the PB2-E627K substitution for mouse adaptation, which was identified previously in human H5N1 isolates, extends to equine influenza A virus.

  7. Previous infection with a mesogenic strain of Newcastle disease virus affects infection with highly pathogenic avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known on the interactions between these two viruses when infecting birds. In a previous study we found that infection of chickens with a mesogenic strain of...

  8. Swine Influenza Virus: Emerging Understandings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: In March-April 2009, a novel pandemic H1N1 emerged in the human population in North America [1]. The gene constellation of the emerging virus was demonstrated to be a combination of genes from swine influenza A viruses (SIV) of North American and Eurasian lineages that had never before...

  9. Attenuation of a human H9N2 influenza virus in mammalian host by reassortment with an avian influenza virus.

    PubMed

    Saito, T; Lim, W; Tashiro, M

    2004-07-01

    In order to develop a surrogate virus strain for production of an inactivated influenza vaccine against a human H9N2 virus, A/Hong Kong/1073/99 (HK1073: H9N2) was co-infected in embryonated chicken eggs with an apathogenic avian influenza virus, A/Duck/Czechoslovakia/56 (Dk/Cz: H4N6), for gene segment reassortment. Multiple-gene reassortants obtained were examined for replication in mammalian hosts in vitro and in vivo by infecting MDCK cells and by intranasal administration to hamsters, respectively. A 2-6 gene reassortant with both surface glycoproteins of HK1073 origin and the rest of Dk/Cz origin, HK/CZ-13, was shown to replicate poorly in the mammalian hosts both in vivo and in vitro comparing with HK1073, although this reassortant replicated as efficiently as each parental strain in embryonated eggs. No sequence difference was observed in the HA1 region between HK1073 and HK/CZ-13, indicating that the reassortant would be equivalent in its immunogenicity to the parental HK1073 strain when it is used as an inactivated vaccine. A virus strain with attenuation in mammalian hosts is preferable for production of an H9 vaccine, since it should reduce the risk of manufacturing-related infections of employees during the vaccine production. HK/CZ-13 can therefore be a surrogate strain for production of an inactivated vaccine as well as diagnostic antigens in case of a possible future pandemic caused by an HK1073-like H9 influenza virus.

  10. A vesicular stomatitis pseudovirus expressing the surface glycoproteins of influenza A virus.

    PubMed

    Cheresiz, S V; Kononova, A A; Razumova, Yu V; Dubich, T S; Chepurnov, A A; Kushch, A A; Davey, R; Pokrovsky, A G

    2014-10-01

    Pseudotyped viruses bearing the glycoprotein(s) of a donor virus over the nucleocapsid core of a surrogate virus are widely used as safe substitutes for infectious virus in virology studies. Retroviral particles pseudotyped with influenza A virus glycoproteins have been used recently for the study of influenza hemagglutinin and neuraminidase-dependent processes. Here, we report the development of vesicular-stomatitis-virus-based pseudotypes bearing the glycoproteins of influenza A virus. We show that pseudotypes bearing the hemagglutinin and neuraminidase of H5N1 influenza A virus mimic the wild-type virus in neutralization assays and sensitivity to entry inhibitors. We demonstrate the requirement of NA for the infectivity of pseudotypes and show that viruses obtained with different NA proteins are significantly different in their transduction activities. Inhibition studies with oseltamivir carboxylate show that neuraminidase activity is required for pseudovirus production, but not for the infection of target cells with H5N1-VSV pseudovirus. The HA-NA-VSV pseudoviruses have high transduction titers and better stability than the previously reported retroviral pseudotypes and can replace live influenza virus in the development of neutralization assays, screening of potential antivirals, and the study of different HA/NA reassortants.

  11. A novel molecular test for influenza B virus detection and lineage differentiation

    PubMed Central

    Wong, Chloe KS; Tsang, Gary CH; Chan, Kwok-Hung; Li, Olive TW; Peiris, Malik; Poon, Leo LM

    2014-01-01

    Contemporary influenza B viruses are classified into two groups known as Yamagata and Victoria lineages. The co-circulation of two viral lineages in recent years urges for a robust and simple diagnostic test for detecting influenza B viruses and for lineage differentiation. In this study, a SYBR green-based asymmetric PCR assay has been developed for influenza B virus detection. Apart from identifying influenza B virus, the assay contains sequence-specific probes for lineage differentiation. This allows identifying influenza B virus and detecting influenza B viral lineage in a single reaction. The test has been evaluated by a panel of respiratory specimens. Of 108 Influenza B virus-positive specimens, 105 (97%) were positive in this assay. None of the negative control respiratory specimens were positive in the test (N=60). Viral lineages of all samples that are positive in the assay (N=105) can also be classified correctly. These results suggest that this assay has a potential for routine influenza B virus surveillance. PMID:24760697

  12. Trivalent inactivated influenza vaccine effective against influenza A(H3N2) variant viruses in children during the 2014/15 season, Japan.

    PubMed

    Sugaya, Norio; Shinjoh, Masayoshi; Kawakami, Chiharu; Yamaguchi, Yoshio; Yoshida, Makoto; Baba, Hiroaki; Ishikawa, Mayumi; Kono, Mio; Sekiguchi, Shinichiro; Kimiya, Takahisa; Mitamura, Keiko; Fujino, Motoko; Komiyama, Osamu; Yoshida, Naoko; Tsunematsu, Kenichiro; Narabayashi, Atsushi; Nakata, Yuji; Sato, Akihiro; Taguchi, Nobuhiko; Fujita, Hisayo; Toki, Machiko; Myokai, Michiko; Ookawara, Ichiro; Takahashi, Takao

    2016-10-20

    The 2014/15 influenza season in Japan was characterised by predominant influenza A(H3N2) activity; 99% of influenza A viruses detected were A(H3N2). Subclade 3C.2a viruses were the major epidemic A(H3N2) viruses, and were genetically distinct from A/New York/39/2012(H3N2) of 2014/15 vaccine strain in Japan, which was classified as clade 3C.1. We assessed vaccine effectiveness (VE) of inactivated influenza vaccine (IIV) in children aged 6 months to 15 years by test-negative case-control design based on influenza rapid diagnostic test. Between November 2014 and March 2015, a total of 3,752 children were enrolled: 1,633 tested positive for influenza A and 42 for influenza B, and 2,077 tested negative. Adjusted VE was 38% (95% confidence intervals (CI): 28 to 46) against influenza virus infection overall, 37% (95% CI: 27 to 45) against influenza A, and 47% (95% CI: -2 to 73) against influenza B. However, IIV was not statistically significantly effective against influenza A in infants aged 6 to 11 months or adolescents aged 13 to 15 years. VE in preventing hospitalisation for influenza A infection was 55% (95% CI: 42 to 64). Trivalent IIV that included A/New York/39/2012(H3N2) was effective against drifted influenza A(H3N2) virus, although vaccine mismatch resulted in low VE.

  13. A novel activation mechanism of avian influenza virus H9N2 by furin.

    PubMed

    Tse, Longping V; Hamilton, Alice M; Friling, Tamar; Whittaker, Gary R

    2014-02-01

    Avian influenza virus H9N2 is prevalent in waterfowl and has become endemic in poultry in Asia and the Middle East. H9N2 influenza viruses have served as a reservoir of internal genes for other avian influenza viruses that infect humans, and several cases of human infection by H9N2 influenza viruses have indicated its pandemic potential. Fortunately, an extensive surveillance program enables close monitoring of H9N2 influenza viruses worldwide and has generated a large repository of virus sequences and phylogenetic information. Despite the large quantity of sequences in different databases, very little is known about specific virus isolates and their pathogenesis. Here, we characterize a low-pathogenicity avian influenza virus, A/chicken/Israel/810/2001 (H9N2) (Israel810), which is representative of influenza virus strains that have caused severe morbidity and mortality in poultry farms. We show that under certain circumstances the Israel810 hemagglutinin (HA) can be activated by furin, a hallmark of highly pathogenic avian influenza virus. We demonstrate that Israel810 HA can be cleaved in cells with high levels of furin expression and that a mutation that eliminates a glycosylation site in HA(1) allows the Israel810 HA to gain universal cleavage in cell culture. Pseudoparticles generated from Israel810 HA, or the glycosylation mutant, transduce cells efficiently. In contrast, introduction of a polybasic cleavage site into Israel810 HA leads to pseudoviruses that are compromised for transduction. Our data indicate a mechanism for an H9N2 evolutionary pathway that may allow it to gain virulence in a distinct manner from H5 and H7 influenza viruses.

  14. Characterization of a new avian-like influenza A virus from horses in China.

    PubMed

    Guo, Y; Wang, M; Kawaoka, Y; Gorman, O; Ito, T; Saito, T; Webster, R G

    1992-05-01

    In March 1989 a severe outbreak of respiratory disease occurred in horses in the Jilin and Heilongjiang provinces of Northeast China that caused up to 20% mortality in some herds. An influenza virus of the H3N8 subtype was isolated from the infected animals and was antigenically and molecularly distinguishable from the equine 2 (H3N8) viruses currently circulating in the world. The reference strain A/Equine/Jilin/1/89 (H3N8) was most closely related to avian H3N8 influenza viruses. Sequence comparisons of the entire hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), matrix (M), and NS genes along with partial sequences of the three polymerase (PB1, PB2, PA) genes suggest that six of the eight gene segments (PA, HA, NP, NA, M, NS) are closely related to avian influenza viruses. Since direct sequence analysis can only provide a crude measure of relationship, phylogenetic analysis was done on the sequence information. Phylogenetic analyses of the entire HA, NP, M, and NS genes and of partial sequences of PB1, PB2, and PA indicated that these genes are of recent avian origin. The NP gene segment is closely related to the gene segment found in the newly described H14 subtype isolated from ducks in the USSR. The A/Equine/Jilin/1/89 (H3N8) influenza virus failed to replicate in ducks, but did replicate and cause disease in mice on initial inoculation and on subsequent passaging caused 100% mortality. In ferrets, the virus caused severe influenza symptoms. A second outbreak of influenza in horses in Northeast China occurred in April 1990 in the Heilongjiang province with 48% morbidity and no mortality. The viruses isolated from this outbreak were antigenically indistinguishable from those in the 1989 outbreak and it is probable that the reduced mortality was due to the immune status of of the horses in the region. No influenza was detected in horses in Northern China in the spring, summer, or fall of 1991 and no influenza has been detected in horses in adjacent

  15. Evaluation of the Cepheid Xpert Flu Assay for Rapid Identification and Differentiation of Influenza A, Influenza A 2009 H1N1, and Influenza B Viruses

    PubMed Central

    Marlowe, E. M.; Poulter, M.; Dwyer, D.; Speers, D.; Rawlinson, W.; Baleriola, C.; Robinson, C. C.

    2012-01-01

    The Xpert Flu Assay cartridge is a next-generation nucleic acid amplification system that provides multiplexed PCR detection of the influenza A, influenza A 2009 H1N1, and influenza B viruses in approximately 70 min with minimal hands-on time. Six laboratories participated in a clinical trial comparing the results of the new Cepheid Xpert Flu Assay to those of culture or real-time PCR with archived and prospectively collected nasal aspirate-wash (NA-W) specimens and nasopharyngeal (NP) swabs from children and adults. Discrepant results were resolved by DNA sequence analysis. After discrepant-result analysis, the sensitivities of the Xpert Flu Assay for prospective NA-W specimens containing the influenza A, influenza A 2009 H1N1, and influenza B viruses compared to those of culture were 90.0%, 100%, and 100%, respectively, while the sensitivities of the assay for prospective NP swabs compared to those of culture were 100%, 100%, and 100%, respectively. The sensitivities of the Xpert Flu Assay for archived NA-W specimens compared to those of Gen-Probe ProFlu+ PCR for the influenza A, influenza A 2009 H1N1, and influenza B viruses were 99.4%, 98.4%, and 100%, respectively, while the sensitivities of the Xpert Flu Assay for archived NP swabs compared to those of ProFlu+ were 98.1%, 100%, and 93.8%, respectively. The sensitivities of the Xpert Flu Assay with archived NP specimens compared to those of culture for the three targets were 97.5%, 100%, and 93.8%, respectively. We conclude that the Cepheid Xpert Flu Assay is an accurate and rapid method that is suitable for on-demand testing for influenza viral infection. PMID:22378908

  16. Evaluation of the Cepheid Xpert Flu Assay for rapid identification and differentiation of influenza A, influenza A 2009 H1N1, and influenza B viruses.

    PubMed

    Novak-Weekley, S M; Marlowe, E M; Poulter, M; Dwyer, D; Speers, D; Rawlinson, W; Baleriola, C; Robinson, C C

    2012-05-01

    The Xpert Flu Assay cartridge is a next-generation nucleic acid amplification system that provides multiplexed PCR detection of the influenza A, influenza A 2009 H1N1, and influenza B viruses in approximately 70 min with minimal hands-on time. Six laboratories participated in a clinical trial comparing the results of the new Cepheid Xpert Flu Assay to those of culture or real-time PCR with archived and prospectively collected nasal aspirate-wash (NA-W) specimens and nasopharyngeal (NP) swabs from children and adults. Discrepant results were resolved by DNA sequence analysis. After discrepant-result analysis, the sensitivities of the Xpert Flu Assay for prospective NA-W specimens containing the influenza A, influenza A 2009 H1N1, and influenza B viruses compared to those of culture were 90.0%, 100%, and 100%, respectively, while the sensitivities of the assay for prospective NP swabs compared to those of culture were 100%, 100%, and 100%, respectively. The sensitivities of the Xpert Flu Assay for archived NA-W specimens compared to those of Gen-Probe ProFlu+ PCR for the influenza A, influenza A 2009 H1N1, and influenza B viruses were 99.4%, 98.4%, and 100%, respectively, while the sensitivities of the Xpert Flu Assay for archived NP swabs compared to those of ProFlu+ were 98.1%, 100%, and 93.8%, respectively. The sensitivities of the Xpert Flu Assay with archived NP specimens compared to those of culture for the three targets were 97.5%, 100%, and 93.8%, respectively. We conclude that the Cepheid Xpert Flu Assay is an accurate and rapid method that is suitable for on-demand testing for influenza viral infection.

  17. A flow-through chromatography process for influenza A and B virus purification.

    PubMed

    Weigel, Thomas; Solomaier, Thomas; Peuker, Alessa; Pathapati, Trinath; Wolff, Michael W; Reichl, Udo

    2014-10-01

    Vaccination is still the most efficient measure to protect against influenza virus infections. Besides the seasonal wave of influenza, pandemic outbreaks of bird or swine flu represent a high threat to human population. With the establishment of cell culture-based processes, there is a growing demand for robust, economic and efficient downstream processes for influenza virus purification. This study focused on the development of an economic flow-through chromatographic process avoiding virus strain sensitive capture steps. Therefore, a three-step process consisting of anion exchange chromatography (AEC), Benzonase(®) treatment, and size exclusion chromatography with a ligand-activated core (LCC) was established, and tested for purification of two influenza A virus strains and one influenza B virus strain. The process resulted in high virus yields (≥68%) with protein contamination levels fulfilling requirements of the European Pharmacopeia for production of influenza vaccines for human use. DNA was depleted by ≥98.7% for all strains. The measured DNA concentrations per dose were close to the required limits of 10ng DNA per dose set by the European Pharmacopeia. In addition, the added Benzonase(®) could be successfully removed from the product fraction. Overall, the presented downstream process could potentially represent a simple, robust and economic platform technology for production of cell culture-derived influenza vaccines.

  18. Lethal dissemination of H5N1 influenza virus is associated with dysregulation of inflammation and lipoxin signaling in a mouse model of infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Periodic outbreaks of highly pathogenic avian H5N1 influenza viruses, and the current H1N1 pandemic, highlight the need for a more detailed understanding of influenza virus pathogenesis. The continued emergence of new influenza viruses highlights the need to better understand influenza virus-host in...

  19. Multisegment one-step RT-PCR fluorescent labeling of influenza A virus genome for use in diagnostic microarray applications

    NASA Astrophysics Data System (ADS)

    Vasin, A. V.; Sandybaev, N. T.; Plotnikova, M. A.; Klotchenko, S. A.; Chervyakova, O. V.; Strochkov, V. M.; Taylakova, E. T.; Elpaeva, E. A.; Komissarov, A. B.; Egorov, V. V.; Koshemetov, J. K.; Kiselev, O. I.; Mamadaliev, S. M.

    2011-04-01

    Microarray technology is one of the most challenging methods of influenza A virus subtyping, which is based on the antigenic properties of viral surface glycoproteins - hemagglutinin and neuraminidase. On the example of biochip for detection of influenza A/H5N1 virus we showed the possibility of using multisegment RTPCR method for amplification of fluorescently labeled cDNA of all possible influenza A virus subtypes with a single pair of primers in influenza diagnostic microarrays.

  20. Pandemic influenza A (H1N1) virus infection and avian influenza A (H5N1) virus infection: a comparative analysis.

    PubMed

    Korteweg, Christine; Gu, Jiang

    2010-08-01

    The 2009 H1N1 and H5N1 influenza viruses are newly (re-) emerged influenza A viruses (2009 A(H1N1) and A(H5N1), respectively) that have recently posed tremendous health threats in many regions worldwide. With the 2009 outbreak of H1N1 influenza A, the world witnessed the first influenza pandemic of the 21st century. The disease has rapidly spread across the entire globe, and has resulted in hundreds of thousands of cases with confirmed infection. Although characterized by high transmissibility, the virulence and fatality of the 2009 A(H1N1) influenza virus have thus far remained relatively low. The reverse holds true for A(H5N1) influenza; at a fatality rate that exceeds 60%, it is known to cause severe damage to the human respiratory system, but is not presently capable of efficient transmission from human to human. Apart from the clear differences between the two types of influenza, there are some significant similarities that warrant attention. In particular, the more severe and fatal 2009 A(H1N1) influenza cases have shown symptoms similar to those reported in cases of A(H5N1) influenza. Histopathological findings for these cases, to the extent available, also appear to have similarities for both diseases in terms of damage and severity. Here we review important recent publications in this area, and we discuss some of the key commonalities and contrasts between the two influenza A types in terms of their biology, origins, clinical features, pathology and pathogenesis, and receptors and transmissibility.

  1. Diversity of influenza A virus subtypes isolated from domestic poultry in Hong Kong.

    PubMed

    Shortridge, K F; Butterfield, W K; Webster, R G; Campbell, C H

    1979-01-01

    The second phase of a 2-year influenza virus surveillance programme of domestic avian species in Hong Kong (up to October 1977) yielded influenza A virus, Newcastle disease virus, and Hong Kong paramyxovirus, as well as unidentified haemagglutinating agents. These viruses were isolated from the trachea or cloaca of apparently healthy domestic ducks, geese, and chickens originating from China and Hong Kong. Twenty-five combinations of haemagglutinin and neuraminidase surface antigens were identified from the 136 influenza A viruses isolated. Eight of the combinations do not appear to have been previously reported - Hav3Nav2, Hav4Nav2, Hav4Nav4, Hav4Nav5, Hav4Neq1, Hav6Nav4, Hav6Nav6, and Hav9Nav1. The existence of such a diverse pool of influenza virus genetic information may play a role in the emergence of new human pandemic strains.

  2. Trends in global warming and evolution of nucleoproteins from influenza A viruses since 1918.

    PubMed

    Yan, S; Wu, G

    2010-12-01

    Global warming affects not only the environment where we live, but also all living species to different degree, including influenza A virus. We recently conducted several studies on the possible impact of global warming on the protein families of influenza A virus. More studies are needed in order to have a full picture of the impact of global warming on living organisms, especially its effect on viruses. In this study, we correlate trends in global warming with evolution of the nucleoprotein from influenza A virus and then analyse the trends with respect to northern/southern hemispheres, virus subtypes and sampling species. The results suggest that global warming may have an impact on the evolution of the nucleoprotein from influenza A virus.

  3. Influenza A virus infections in marine mammals and terrestrial carnivores.

    PubMed

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated.

  4. Spatial dynamics of human-origin H1 influenza A virus in North American swine.

    PubMed

    Nelson, Martha I; Lemey, Philippe; Tan, Yi; Vincent, Amy; Lam, Tommy Tsan-Yuk; Detmer, Susan; Viboud, Cécile; Suchard, Marc A; Rambaut, Andrew; Holmes, Edward C; Gramer, Marie

    2011-06-01

    The emergence and rapid global spread of the swine-origin H1N1/09 pandemic influenza A virus in humans underscores the importance of swine populations as reservoirs for genetically diverse influenza viruses with the potential to infect humans. However, despite their significance for animal and human health, relatively little is known about the phylogeography of swine influenza viruses in the United States. This study utilizes an expansive data set of hemagglutinin (HA1) sequences (n = 1516) from swine influenza viruses collected in North America during the period 2003-2010. With these data we investigate the spatial dissemination of a novel influenza virus of the H1 subtype that was introduced into the North American swine population via two separate human-to-swine transmission events around 2003. Bayesian phylogeographic analysis reveals that the spatial dissemination of this influenza virus in the US swine population follows long-distance swine movements from the Southern US to the Midwest, a corn-rich commercial center that imports millions of swine annually. Hence, multiple genetically diverse influenza viruses are introduced and co-circulate in the Midwest, providing the opportunity for genomic reassortment. Overall, the Midwest serves primarily as an ecological sink for swine influenza in the US, with sources of virus genetic diversity instead located in the Southeast (mainly North Carolina) and South-central (mainly Oklahoma) regions. Understanding the importance of long-distance pig transportation in the evolution and spatial dissemination of the influenza virus in swine may inform future strategies for the surveillance and control of influenza, and perhaps other swine pathogens.

  5. Pandemic and Avian Influenza A Viruses in Humans: Epidemiology, Virology, Clinical Characteristics, and Treatment Strategy.

    PubMed

    Li, Hui; Cao, Bin

    2017-03-01

    The intermittent outbreak of pandemic influenza and emergence of novel avian influenza A virus is worldwide threat. Although most patients present with mild symptoms, some deteriorate to severe pneumonia and even death. Great progress in the understanding of the mechanism of disease pathogenesis and a series of vaccines has been promoted worldwide; however, incidence, morbidity, and mortality remains high. To step up vigilance and improve pandemic preparedness, this article elucidates the virology, epidemiology, pathogenesis, clinical characteristics, and treatment of human infections by influenza A viruses, with an emphasis on the influenza A(H1N1)pdm09, H5N1, and H7N9 subtypes.

  6. Weighing serological evidence of human exposure to animal influenza virusesa literature review

    PubMed Central

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-01-01

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America. PMID:27874827

  7. Weighing serological evidence of human exposure to animal influenza viruses - a literature review.

    PubMed

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-11-03

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America.

  8. Reassortment events among swine influenza A viruses in China: implications for the origin of the 2009 influenza pandemic.

    PubMed

    Lam, Tommy Tsan-Yuk; Zhu, Huachen; Wang, Jia; Smith, David K; Holmes, Edward C; Webster, Robert G; Webby, Richard; Peiris, Joseph M; Guan, Yi

    2011-10-01

    That pigs may play a pivotal role in the emergence of pandemic influenza was indicated by the recent H1N1/2009 human pandemic, likely caused by a reassortant between viruses of the American triple-reassortant (TR) and Eurasian avian-like (EA) swine influenza lineages. As China has the largest human and pig populations in the world and is the only place where both TR and EA viruses have been reported to cocirculate, it is potentially the source of the H1N1/2009 pandemic virus. To examine this, the genome sequences of 405 swine influenza viruses from China were analyzed. Thirty-six TR and EA reassortant viruses were identified before and after the occurrence of the pandemic. Several of these TR-EA reassortant viruses had genotypes with most segments having the same lineage origin as the segments of the H1N1/2009 pandemic virus. However, these viruses were generated from independent reassortment events throughout our survey period and were not associated with the current pandemic. One TR-EA reassortant, which is least similar to the pandemic virus, has persisted since 2007, while all the other variants appear to be transient. Despite frequent reassortment events between TR and EA lineage viruses in China, evidence for the genesis of the 2009 pandemic virus in pigs in this region is still absent.

  9. Influenza A Virus Assembly Intermediates Fuse in the Cytoplasm

    PubMed Central

    Lakdawala, Seema S.; Wu, Yicong; Wawrzusin, Peter; Kabat, Juraj; Broadbent, Andrew J.; Lamirande, Elaine W.; Fodor, Ervin; Altan-Bonnet, Nihal; Shroff, Hari; Subbarao, Kanta

    2014-01-01

    Reassortment of influenza viral RNA (vRNA) segments in co-infected cells can lead to the emergence of viruses with pandemic potential. Replication of influenza vRNA occurs in the nucleus of infected cells, while progeny virions bud from the plasma membrane. However, the intracellular mechanics of vRNA assembly into progeny virions is not well understood. Here we used recent advances in microscopy to explore vRNA assembly and transport during a productive infection. We visualized four distinct vRNA segments within a single cell using fluorescent in situ hybridization (FISH) and observed that foci containing more than one vRNA segment were found at the external nuclear periphery, suggesting that vRNA segments are not exported to the cytoplasm individually. Although many cytoplasmic foci contain multiple vRNA segments, not all vRNA species are present in every focus, indicating that assembly of all eight vRNA segments does not occur prior to export from the nucleus. To extend the observations made in fixed cells, we used a virus that encodes GFP fused to the viral polymerase acidic (PA) protein (WSN PA-GFP) to explore the dynamics of vRNA assembly in live cells during a productive infection. Since WSN PA-GFP colocalizes with viral nucleoprotein and influenza vRNA segments, we used it as a surrogate for visualizing vRNA transport in 3D and at high speed by inverted selective-plane illumination microscopy. We observed cytoplasmic PA-GFP foci colocalizing and traveling together en route to the plasma membrane. Our data strongly support a model in which vRNA segments are exported from the nucleus as complexes that assemble en route to the plasma membrane through dynamic colocalization events in the cytoplasm. PMID:24603687

  10. Review of influenza A virus in swine worldwide: a call for increased surveillance and research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveillance for influenza A viruses (IAV) circulating in pigs and other non-human mammals has been chronically underfunded and virtually nonexistent in many areas of the world. This deficit continues in spite of our knowledge that influenza is a disease shared between humans and pigs since at least...

  11. Global migration of influenza A viruses in swine

    PubMed Central

    Nelson, Martha I.; Viboud, Cécile; Vincent, Amy L.; Culhane, Marie R.; Detmer, Susan E.; Wentworth, David E.; Rambaut, Andrew; Suchard, Marc A.; Holmes, Edward C.; Lemey, Philippe

    2015-01-01

    The complex and unresolved evolutionary origins of the 2009 H1N1 influenza pandemic exposed major gaps in our knowledge of the global spatial ecology and evolution of influenza A viruses in swine (swIAVs). Here we undertake an expansive phylogenetic analysis of swIAV sequence data and demonstrate that the global live swine trade strongly predicts the spatial dissemination of swIAVs, with Europe and North America acting as sources of viruses in Asian countries. In contrast, China has the world’s largest swine population but is not a major exporter of live swine, and is not an important source of swIAVs in neighboring Asian countries or globally. A meta-population simulation model incorporating trade data predicts that the global ecology of swIAVs is more complex than previously thought, and the US and China’s large swine populations are unlikely to be representative of swIAV diversity in their respective geographic regions, requiring independent surveillance efforts throughout Latin America and Asia. PMID:25813399

  12. Global migration of influenza A viruses in swine.

    PubMed

    Nelson, Martha I; Viboud, Cécile; Vincent, Amy L; Culhane, Marie R; Detmer, Susan E; Wentworth, David E; Rambaut, Andrew; Suchard, Marc A; Holmes, Edward C; Lemey, Philippe

    2015-03-27

    The complex and unresolved evolutionary origins of the 2009 H1N1 influenza pandemic exposed major gaps in our knowledge of the global spatial ecology and evolution of influenza A viruses in swine (swIAVs). Here we undertake an expansive phylogenetic analysis of swIAV sequence data and demonstrate that the global live swine trade strongly predicts the spatial dissemination of swIAVs, with Europe and North America acting as sources of viruses in Asian countries. In contrast, China has the world's largest swine population but is not a major exporter of live swine, and is not an important source of swIAVs in neighbouring Asian countries or globally. A meta-population simulation model incorporating trade data predicts that the global ecology of swIAVs is more complex than previously thought, and the United States and China's large swine populations are unlikely to be representative of swIAV diversity in their respective geographic regions, requiring independent surveillance efforts throughout Latin America and Asia.

  13. An update on swine-origin influenza virus A/H1N1: a review.

    PubMed

    Schnitzler, Sebastian U; Schnitzler, Paul

    2009-12-01

    Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. The emergence of new strains will continue to pose challenges to public health and the scientific communities. The recent flu pandemic caused by a swine-origin influenza virus A/H1N1 (S-OIV) presents an opportunity to examine virulence factors, the spread of the infection and to prepare for major influenza outbreaks in the future. The virus contains a novel constellation of gene segments, the nearest known precursors being viruses found in swine and it probably arose through reassortment of two viruses of swine origin. Specific markers for virulence can be evaluated in the viral genome, PB1-F2 is a molecular marker of pathogenicity but is not present in the new S-OIV. While attention was focused on a threat of an avian influenza H5N1 pandemic emerging from Asia, a novel influenza virus of swine origin emerged in North America, and is now spreading worldwide. However, S-OIV demonstrates that even serotypes already encountered in past human pandemics may constitute new pandemic threats. There are concerns that this virus may mutate or reassort with existing influenza viruses giving rise to more transmissible or more pathogenic viruses. The 1918 Spanish flu pandemic virus was relatively mild in its first wave and acquired more virulence when it returned in the winter. Thus preparedness on a global scale against a potential more virulent strain is highly recommended. Most isolates of the new S-OIVs are susceptible to neuraminidase inhibitors, and currently a vaccine against the pandemic strain is being manufactured and will be available this fall. This review summarizes the current information on the new pandemic swine-origin influenza virus A/H1N1.

  14. Comparison of conventional lateral-flow assays and a new fluorescent immunoassay to detect influenza viruses.

    PubMed

    Leonardi, Gary P; Wilson, Adele M; Zuretti, Alejandro R

    2013-05-01

    Sofia, a novel, fluorescent lateral-flow immunoassay was compared with two conventional colorimetric assays, Quickvue Influenza A+B and Directigen FLU A+B, to identify influenza viral antigen from patient nasopharyngeal specimens. A total of 118 frozen original influenza-positive specimens and 57 prospective specimens were examined. Using rt-PCR as a referee assay, sensitivity values (%) for influenza A/B of 80.0/74.8, 73.3/59.3 and 73.3/40.7 were obtained using the Sofia, Quickvue and Directigen assays, respectively. All assays demonstrated reduced sensitivity for influenza B as compared with influenza A virus. With respect to the Sofia assay, the sensitivity of influenza B for the Directigen assay was significantly diminished. False positive results were not observed in the Sofia and Directigen assays. The Quickvue assay produced 3 false-positive results (2 influenza A and 1 influenza B) resulting in a specificity (%) of 96 and 98 for influenza A and B, respectively. Cross-reactivity to other respiratory viruses was not observed among immunoassays. A sensitivity rank (highest to low) of rt-PCR>culture>Sofia>Quickvue>Directigen was established using dilutions of influenza A and B. Sofia provides enhanced sensitivity and objective result interpretation over conventional colorimetric immunoassays.

  15. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor

    PubMed Central

    Hushegyi, András; Pihíková, Dominika; Bertók, Tomáš; Adam, Vojtech; Kizek, René; Tkac, Jan

    2016-01-01

    An ultrasensitive impedimetric glycan-based biosensor for reliable and selective detection of inactivated, but intact influenza viruses H3N2 was developed. Such glycan-based approach has a distinct advantage over antibody-based detection of influenza viruses since glycans are natural viral receptors with a possibility to selectively distinguish between potentially pathogenic influenza subtypes by the glycan-based biosensors. Build-up of the biosensor was carefully optimized with atomic force microscopy applied for visualization of the biosensor surface after binding of viruses with the topology of an individual viral particle H3N2 analyzed. The glycan biosensor could detect a glycan binding lectin with a limit of detection (LOD) of 5 aM. The biosensor was finally applied for analysis of influenza viruses H3N2 with LOD of 13 viral particles in 1 μl, what is the lowest LOD for analysis of influenza viral particles by the glycan-based device achieved so far. The biosensor could detect H3N2 viruses selectively with a sensitivity ratio of 30 over influenza viruses H7N7. The impedimetric biosensor presented here is the most sensitive glycan-based device for detection of influenza viruses and among the most sensitive antibody or aptamer based biosensor devices. PMID:26765527

  16. Immune responses elicited to a live-attenuated influenza virus vaccine compared to a traditional whole-inactivated virus vaccine for pandemic H1N1in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States there are currently two influenza vaccine platforms approved for use in humans - conventional inactivated virus and live-attenuated influenza virus (LAIV). One of the major challenges for influenza vaccination is designing a platform that provides cross-protection across strains...

  17. Protection against multiple subtypes of influenza viruses by virus-like particle vaccines based on a hemagglutinin conserved epitope.

    PubMed

    Chen, Shaoheng; Zheng, Dan; Li, Changgui; Zhang, Wenjie; Xu, Wenting; Liu, Xueying; Fang, Fang; Chen, Ze

    2015-01-01

    We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA) trimmer, the long alpha helix (LAH), as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR) of hepatitis B virus core protein (HBc), and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP). Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB(*)) adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8) (H1N1)). In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB(*) adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  18. Recombinant IgA is sufficient to prevent influenza virus transmission in guinea pigs.

    PubMed

    Seibert, Christopher W; Rahmat, Saad; Krause, Jens C; Eggink, Dirk; Albrecht, Randy A; Goff, Peter H; Krammer, Florian; Duty, J Andrew; Bouvier, Nicole M; García-Sastre, Adolfo; Palese, Peter

    2013-07-01

    A serum hemagglutination inhibition (HAI) titer of 40 or greater is thought to be associated with reduced influenza virus pathogenesis in humans and is often used as a correlate of protection in influenza vaccine studies. We have previously demonstrated that intramuscular vaccination of guinea pigs with inactivated influenza virus generates HAI titers greater than 300 but does not protect vaccinated animals from becoming infected with influenza virus by transmission from an infected cage mate. Only guinea pigs intranasally inoculated with a live influenza virus or a live attenuated virus vaccine, prior to challenge, were protected from transmission (A. C. Lowen et al., J. Virol. 83:2803-2818, 2009.). Because the serum HAI titer is mostly determined by IgG content, these results led us to speculate that prevention of viral transmission may require IgA antibodies or cellular immune responses. To evaluate this hypothesis, guinea pigs and ferrets were administered a potent, neutralizing mouse IgG monoclonal antibody, 30D1 (Ms 30D1 IgG), against the A/California/04/2009 (H1N1) virus hemagglutinin and exposed to respiratory droplets from animals infected with this virus. Even though HAI titers were greater than 160 1 day postadministration, Ms 30D1 IgG did not prevent airborne transmission to passively immunized recipient animals. In contrast, intramuscular administration of recombinant 30D1 IgA (Ms 30D1 IgA) prevented transmission to 88% of recipient guinea pigs, and Ms 30D1 IgA was detected in animal nasal washes. Ms 30D1 IgG administered intranasally also prevented transmission, suggesting the importance of mucosal immunity in preventing influenza virus transmission. Collectively, our data indicate that IgG antibodies may prevent pathogenesis associated with influenza virus infection but do not protect from virus infection by airborne transmission, while IgA antibodies are more important for preventing transmission of influenza viruses.

  19. A Review of the Antiviral Susceptibility of Human and Avian Influenza Viruses over the Last Decade

    PubMed Central

    Oh, Ding Yuan; Hurt, Aeron C.

    2014-01-01

    Antivirals play an important role in the prevention and treatment of influenza infections, particularly in high-risk or severely ill patients. Two classes of influenza antivirals have been available in many countries over the last decade (2004–2013), the adamantanes and the neuraminidase inhibitors (NAIs). During this period, widespread adamantane resistance has developed in circulating influenza viruses rendering these drugs useless, resulting in the reliance on the most widely available NAI, oseltamivir. However, the emergence of oseltamivir-resistant seasonal A(H1N1) viruses in 2008 demonstrated that NAI-resistant viruses could also emerge and spread globally in a similar manner to that seen for adamantane-resistant viruses. Previously, it was believed that NAI-resistant viruses had compromised replication and/or transmission. Fortunately, in 2013, the majority of circulating human influenza viruses remain sensitive to all of the NAIs, but significant work by our laboratory and others is now underway to understand what enables NAI-resistant viruses to retain the capacity to replicate and transmit. In this review, we describe how the susceptibility of circulating human and avian influenza viruses has changed over the last ten years and describe some research studies that aim to understand how NAI-resistant human and avian influenza viruses may emerge in the future. PMID:24800107

  20. A Novel Endonuclease Inhibitor Exhibits Broad-Spectrum Anti-Influenza Virus Activity In Vitro

    PubMed Central

    Jones, Jeremy C.; Marathe, Bindumadhav M.; Lerner, Christian; Kreis, Lukas; Gasser, Rodolfo; Pascua, Philippe Noriel Q.; Najera, Isabel

    2016-01-01

    Antiviral drugs are important in preventing and controlling influenza, particularly when vaccines are ineffective or unavailable. A single class of antiviral drugs, the neuraminidase inhibitors (NAIs), is recommended for treating influenza. The limited therapeutic options and the potential risk of antiviral resistance are driving the search for additional small-molecule inhibitors that act on influenza virus proteins. The acid polymerase (PA) of influenza viruses is a promising target for new antivirals because of its essential role in initiating virus transcription. Here, we characterized a novel compound, RO-7, identified as a putative PA endonuclease inhibitor. RO-7 was effective when added before the cessation of genome replication, reduced polymerase activity in cell-free systems, and decreased relative amounts of viral mRNA and genomic RNA during influenza virus infection. RO-7 specifically inhibited the ability of the PA endonuclease domain to cleave a nucleic acid substrate. RO-7 also inhibited influenza A viruses (seasonal and 2009 pandemic H1N1 and seasonal H3N2) and B viruses (Yamagata and Victoria lineages), zoonotic viruses (H5N1, H7N9, and H9N2), and NAI-resistant variants in plaque reduction, yield reduction, and cell viability assays in Madin-Darby canine kidney (MDCK) cells with nanomolar to submicromolar 50% effective concentrations (EC50s), low toxicity, and favorable selective indices. RO-7 also inhibited influenza virus replication in primary normal human bronchial epithelial cells. Overall, RO-7 exhibits broad-spectrum activity against influenza A and B viruses in multiple in vitro assays, supporting its further characterization and development as a potential antiviral agent for treating influenza. PMID:27381402

  1. Architecture of ribonucleoprotein complexes in influenza A virus particles.

    PubMed

    Noda, Takeshi; Sagara, Hiroshi; Yen, Albert; Takada, Ayato; Kida, Hiroshi; Cheng, R Holland; Kawaoka, Yoshihiro

    2006-01-26

    In viruses, as in eukaryotes, elaborate mechanisms have evolved to protect the genome and to ensure its timely replication and reliable transmission to progeny. Influenza A viruses are enveloped, spherical or filamentous structures, ranging from 80 to 120 nm in diameter. Inside each envelope is a viral genome consisting of eight single-stranded negative-sense RNA segments of 890 to 2,341 nucleotides each. These segments are associated with nucleoprotein and three polymerase subunits, designated PA, PB1 and PB2; the resultant ribonucleoprotein complexes (RNPs) resemble a twisted rod (10-15 nm in width and 30-120 nm in length) that is folded back and coiled on itself. Late in viral infection, newly synthesized RNPs are transported from the nucleus to the plasma membrane, where they are incorporated into progeny virions capable of infecting other cells. Here we show, by transmission electron microscopy of serially sectioned virions, that the RNPs of influenza A virus are organized in a distinct pattern (seven segments of different lengths surrounding a central segment). The individual RNPs are suspended from the interior of the viral envelope at the distal end of the budding virion and are oriented perpendicular to the budding tip. This finding argues against random incorporation of RNPs into virions, supporting instead a model in which each segment contains specific incorporation signals that enable the RNPs to be recruited and packaged as a complete set. A selective mechanism of RNP incorporation into virions and the unique organization of the eight RNP segments may be crucial to maintaining the integrity of the viral genome during repeated cycles of replication.

  2. Rapid detection and differentiation of swine-origin influenza A virus (H1N1/2009) from other seasonal influenza A viruses.

    PubMed

    Zhao, Jiangqin; Wang, Xue; Ragupathy, Viswanath; Zhang, Panhe; Tang, Wei; Ye, Zhiping; Eichelberger, Maryna; Hewlett, Indira

    2012-11-09

    We previously developed a rapid and simple gold nanoparticle(NP)-based genomic microarray assay for identification of the avian H5N1 virus and its discrimination from other influenza A virus strains (H1N1, H3N2). In this study, we expanded the platform to detect the 2009 swine-origin influenza A virus (H1N1/2009). Multiple specific capture and intermediate oligonucleotides were designed for the matrix (M), hemagglutinin (HA), and neuraminidase (NA) genes of the H1N1/2009 virus. The H1N1/2009 microarrays were printed in the same format as those of the seasonal influenza H1N1 and H3N2 for the HA, NA, and M genes. Viral RNA was tested using capture-target-intermediate oligonucleotide hybridization and gold NP-mediated silver staining. The signal from the 4 capture-target-intermediates of the HA and NA genes was specific for H1N1/2009 virus and showed no cross hybridization with viral RNA from other influenza strains H1N1, H3N2, and H5N1. All of the 3 M gene captures showed strong affinity with H1N1/2009 viral RNA, with 2 out of the 3 M gene captures showing cross hybridization with the H1N1, H3N2, and H5N1 samples tested. The current assay was able to detect H1N1/2009 and distinguish it from other influenza A viruses. This new method may be useful for simultaneous detection and subtyping of influenza A viruses and can be rapidly modified to detect other emerging influenza strains in public health settings.

  3. Multiple Natural Substitutions in Avian Influenza A Virus PB2 Facilitate Efficient Replication in Human Cells

    PubMed Central

    Mänz, Benjamin; de Graaf, Miranda; Mögling, Ramona; Richard, Mathilde; Bestebroer, Theo M.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT A strong restriction of the avian influenza A virus polymerase in mammalian cells generally limits viral host-range switching. Although substitutions like E627K in the PB2 polymerase subunit can facilitate polymerase activity to allow replication in mammals, many human H5N1 and H7N9 viruses lack this adaptive substitution. Here, several previously unknown, naturally occurring, adaptive substitutions in PB2 were identified by bioinformatics, and their enhancing activity was verified using in vitro assays. Adaptive substitutions enhanced polymerase activity and virus replication in mammalian cells for avian H5N1 and H7N9 viruses but not for a partially human-adapted H5N1 virus. Adaptive substitutions toward basic amino acids were frequent and were mostly clustered in a putative RNA exit channel in a polymerase crystal structure. Phylogenetic analysis demonstrated divergent dependency of influenza viruses on adaptive substitutions. The novel adaptive substitutions found in this study increase basic understanding of influenza virus host adaptation and will help in surveillance efforts. IMPORTANCE Influenza viruses from birds jump the species barrier into humans relatively frequently. Such influenza virus zoonoses may pose public health risks if the virus adapts to humans and becomes a pandemic threat. Relatively few amino acid substitutions—most notably in the receptor binding site of hemagglutinin and at positions 591 and 627 in the polymerase protein PB2—have been identified in pandemic influenza virus strains as determinants of host adaptation, to facilitate efficient virus replication and transmission in humans. Here, we show that substantial numbers of amino acid substitutions are functionally compensating for the lack of the above-mentioned mutations in PB2 and could facilitate influenza virus emergence in humans. PMID:27076644

  4. Influenza A (H15N4) virus isolation in Western Siberia, Russia.

    PubMed

    Sivay, Mariya V; Baranovich, Tatiana; Marchenko, Vasiliy Y; Sharshov, Kirill A; Govorkova, Elena A; Shestopalov, Aleksander M; Webby, Richard J

    2013-03-01

    The rarely identified influenza A viruses of the H15 hemagglutinin subtype have been isolated exclusively in Australia. Here we report the isolation of an H15N4 influenza A virus (A/teal/Chany/7119/2008) in Western Siberia, Russia. Phylogenetic analysis demonstrated that the internal genes of the A/teal/Chany/7119/2008 strain belong to the Eurasian clade and that the H15 and N4 genes were introduced into the gene pool of circulating endemic avian influenza viruses through reassortment events.

  5. Serum virus neutralization assay for detection and quantitation of serum neutralizing antibodies to influenza A virus in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The serum virus neutralization (SVN) assay is a serological test to detect the presence and magnitude of functional systemic antibodies that prevent infectivity of a virus. The SVN assay is a highly sensitive and specific test that may be applied to influenza A viruses (IAV) in swine to measure the ...

  6. Antiviral Efficacy of Verdinexor In Vivo in Two Animal Models of Influenza A Virus Infection

    PubMed Central

    Perwitasari, Olivia; Johnson, Scott; Yan, Xiuzhen; Register, Emery; Crabtree, Jackelyn; Gabbard, Jon; Howerth, Elizabeth; Shacham, Sharon; Carlson, Robert; Tamir, Sharon; Tripp, Ralph A.

    2016-01-01

    Influenza A virus (IAV) causes seasonal epidemics of respiratory illness that can cause mild to severe illness and potentially death. Antiviral drugs are an important countermeasure against IAV; however, drug resistance has developed, thus new therapeutic approaches are being sought. Previously, we demonstrated the antiviral activity of a novel nuclear export inhibitor drug, verdinexor, to reduce influenza replication in vitro and pulmonary virus burden in mice. In this study, in vivo efficacy of verdinexor was further evaluated in two animal models or influenza virus infection, mice and ferrets. In mice, verdinexor was efficacious to limit virus shedding, reduce pulmonary pro-inflammatory cytokine expression, and moderate leukocyte infiltration into the bronchoalveolar space. Similarly, verdinexor-treated ferrets had reduced lung pathology, virus burden, and inflammatory cytokine expression in the nasal wash exudate. These findings support the anti-viral efficacy of verdinexor, and warrant its development as a novel antiviral therapeutic for influenza infection. PMID:27893810

  7. CD206+ Cell Number Differentiates Influenza A (H1N1)pdm09 from Seasonal Influenza A Virus in Fatal Cases

    PubMed Central

    Rodriguez-Ramirez, Heidi G.; Salinas-Carmona, Mario C.; Barboza-Quintana, Oralia; Melo-de la Garza, Americo; Ceceñas-Falcon, Luis Angel; Rangel-Martinez, Lilia M.; Rosas-Taraco, Adrian G.

    2014-01-01

    In 2009, a new influenza A (H1N1) virus affected many persons around the world. There is an urgent need for finding biomarkers to distinguish between influenza A (H1N1)pdm09 and seasonal influenza virus. We investigated these possible biomarkers in the lung of fatal cases of confirmed influenza A (H1N1)pdm09. Cytokines (inflammatory and anti-inflammatory) and cellular markers (macrophages and lymphocytes subpopulation markers) were analyzed in lung tissue from both influenza A (H1N1)pdm09 and seasonal influenza virus. High levels of IL-17, IFN-γ, and TNF-α positive cells were identical in lung tissue from the influenza A (H1N1)pdm09 and seasonal cases when compared with healthy lung tissue (P < 0.05). Increased IL-4+ cells, and CD4+ and CD14+ cells were also found in high levels in both influenza A (H1N1)pdm09 and seasonal influenza virus (P < 0.05). Low levels of CD206+ cells (marker of alternatively activated macrophages marker in lung) were found in influenza A (H1N1)pdm09 when compared with seasonal influenza virus (P < 0.05), and the ratio of CD206/CD14+ cells was 2.5-fold higher in seasonal and noninfluenza group compared with influenza A (H1N1)pdm09 (P < 0.05). In conclusion, CD206+ cells differentiate between influenza A (H1N1)pdm09 and seasonal influenza virus in lung tissue of fatal cases. PMID:25614715

  8. A functional sequence-specific interaction between influenza A virus genomic RNA segments

    PubMed Central

    Gavazzi, Cyrille; Yver, Matthieu; Isel, Catherine; Smyth, Redmond P.; Rosa-Calatrava, Manuel; Lina, Bruno; Moulès, Vincent; Marquet, Roland

    2013-01-01

    Influenza A viruses cause annual influenza epidemics and occasional severe pandemics. Their genome is segmented into eight fragments, which offers evolutionary advantages but complicates genomic packaging. The existence of a selective packaging mechanism, in which one copy of each viral RNA is specifically packaged into each virion, is suspected, but its molecular details remain unknown. Here, we identified a direct intermolecular interaction between two viral genomic RNA segments of an avian influenza A virus using in vitro experiments. Using silent trans-complementary mutants, we then demonstrated that this interaction takes place in infected cells and is required for optimal viral replication. Disruption of this interaction did not affect the HA titer of the mutant viruses, suggesting that the same amount of viral particles was produced. However, it nonspecifically decreased the amount of viral RNA in the viral particles, resulting in an eightfold increase in empty viral particles. Competition experiments indicated that this interaction favored copackaging of the interacting viral RNA segments. The interaction we identified involves regions not previously designated as packaging signals and is not widely conserved among influenza A virus. Combined with previous studies, our experiments indicate that viral RNA segments can promote the selective packaging of the influenza A virus genome by forming a sequence-dependent supramolecular network of interactions. The lack of conservation of these interactions might limit genetic reassortment between divergent influenza A viruses. PMID:24067651

  9. Reassortment patterns in Swine influenza viruses.

    PubMed

    Khiabanian, Hossein; Trifonov, Vladimir; Rabadan, Raul

    2009-10-07

    Three human influenza pandemics occurred in the twentieth century, in 1918, 1957, and 1968. Influenza pandemic strains are the results of emerging viruses from non-human reservoirs to which humans have little or no immunity. At least two of these pandemic strains, in 1957 and in 1968, were the results of reassortments between human and avian viruses. Also, many cases of swine influenza viruses have reportedly infected humans, in particular, the recent H1N1 influenza virus of swine origin, isolated in Mexico and the United States. Pigs are documented to allow productive replication of human, avian, and swine influenza viruses. Thus it has been conjectured that pigs are the "mixing vessel" that create the avian-human reassortant strains, causing the human pandemics. Hence, studying the process and patterns of viral reassortment, especially in pigs, is a key to better understanding of human influenza pandemics. In the last few years, databases containing sequences of influenza A viruses, including swine viruses, collected since 1918 from diverse geographical locations, have been developed and made publicly available. In this paper, we study an ensemble of swine influenza viruses to analyze the reassortment phenomena through several statistical techniques. The reassortment patterns in swine viruses prove to be similar to the previous results found in human viruses, both in vitro and in vivo, that the surface glycoprotein coding segments reassort most often. Moreover, we find that one of the polymerase segments (PB1), reassorted in the strains responsible for the last two human pandemics, also reassorts frequently.

  10. Deep Sequencing Reveals Potential Antigenic Variants at Low Frequencies in Influenza A Virus-Infected Humans

    PubMed Central

    Dinis, Jorge M.; Florek, Nicholas W.; Fatola, Omolayo O.; Moncla, Louise H.; Mutschler, James P.; Charlier, Olivia K.; Meece, Jennifer K.; Belongia, Edward A.

    2016-01-01

    ABSTRACT Influenza vaccines must be frequently reformulated to account for antigenic changes in the viral envelope protein, hemagglutinin (HA). The rapid evolution of influenza virus under immune pressure is likely enhanced by the virus's genetic diversity within a host, although antigenic change has rarely been investigated on the level of individual infected humans. We used deep sequencing to characterize the between- and within-host genetic diversity of influenza viruses in a cohort of patients that included individuals who were vaccinated and then infected in the same season. We characterized influenza HA segments from the predominant circulating influenza A subtypes during the 2012-2013 (H3N2) and 2013-2014 (pandemic H1N1; H1N1pdm) flu seasons. We found that HA consensus sequences were similar in nonvaccinated and vaccinated subjects. In both groups, purifying selection was the dominant force shaping HA genetic diversity. Interestingly, viruses from multiple individuals harbored low-frequency mutations encoding amino acid substitutions in HA antigenic sites at or near the receptor-binding domain. These mutations included two substitutions in H1N1pdm viruses, G158K and N159K, which were recently found to confer escape from virus-specific antibodies. These findings raise the possibility that influenza antigenic diversity can be generated within individual human hosts but may not become fixed in the viral population even when they would be expected to have a strong fitness advantage. Understanding constraints on influenza antigenic evolution within individual hosts may elucidate potential future pathways of antigenic evolution at the population level. IMPORTANCE Influenza vaccines must be frequently reformulated due to the virus's rapid evolution rate. We know that influenza viruses exist within each infected host as a “swarm” of genetically distinct viruses, but the role of this within-host diversity in the antigenic evolution of influenza has been unclear

  11. Phylogenetic evolution of swine-origin human influenza virus: a pandemic H1N1 2009.

    PubMed

    Kowalczyk, A; Markowska-Daniel, I

    2010-01-01

    The knowledge of the genome constellation in pandemic influenza A virus H1N1 2009 from different countries and different hosts is valuable for monitoring and understanding of the evolution and migration of these strains. The complete genome sequences of selected worldwide distributed influenza A viruses are publicly available and there have been few longitudinal genome studies of human, avian and swine influenza A viruses. All possible to download SIV sequences of influenza A viruses available at GISAID Platform (Global Initiative on Sharing Avian Influenza Data) were analyzed firstly through the web servers of the Influenza Virus Resource in NCBI. Phylogenetic study of circulating human pandemic H1N1 virus indicated that the new variant possesses a distinctive evolutionary trait. There is no one way the pandemic H1N1 have acquired new genes from other distinguishable viruses circulating recently in local human, pig or domestic poultry populations from various geographic regions. The extensive genetic diversity among whole segments present in pandemic H1N1 genome suggests that multiple introduction of virus have taken place during the period 1999-2009. The initial interspecies transmission could have occurred in the long-range past and after it the reassortants steps lead to three lineages: classical SIV prevalent in the North America, avian-like SIV in Europe and avian-like related SIV in Asia. This analysis contributes to the evidence that pigs are not the only hosts playing the role of "mixing vessel", as it was suggested for many years.

  12. New Small Molecule Entry Inhibitors Targeting Hemagglutinin-Mediated Influenza A Virus Fusion

    PubMed Central

    Antanasijevic, Aleksandar; Wang, Minxiu; Li, Bing; Mills, Debra M.; Ames, Jessica A.; Nash, Peter J.; Williams, John D.; Peet, Norton P.; Moir, Donald T.; Prichard, Mark N.; Keith, Kathy A.; Barnard, Dale L.; Caffrey, Michael; Rong, Lijun; Bowlin, Terry L.

    2014-01-01

    Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 μM); (ii) are selective (50% cytotoxicity concentration [CC50] of >100 μM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 μM2 % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process. PMID:24198411

  13. A Vero-cell-adapted vaccine donor strain of influenza A virus generated by serial passages.

    PubMed

    Hu, Weibin; Zhang, Hong; Han, Qinglin; Li, Li; Chen, Yixin; Xia, Ningshao; Chen, Ze; Shu, Yuelong; Xu, Ke; Sun, Bing

    2015-01-03

    A cell culture-based vaccine production system is preferred for the large-scale production of influenza vaccines and has advantages for generating vaccines against highly pathogenic influenza A viruses. Vero cells have been widely used in human vaccine manufacturing, and the safety of these cells has been well demonstrated. However, the most commonly used influenza-vaccine donor virus, A/Puerto Rico/8/1934 (PR8) virus, does not grow efficiently in Vero cells. Therefore, we adapted the PR8 virus to Vero cells by continuous passaging, and a high-growth strain was obtained after 20 passages. Sequence analysis and virological assays of the adapted strain revealed that mutations in four viral internal genes (NP, PB1, PA and NS1) were sufficient for adaptation. The recombinant virus harboring these mutations (PR8-4mut) displayed accelerated viral transport into the nucleus and increased RNP activity. Importantly, the PR8-4mut could serve as a backbone donor virus to support the growth of the H7N1, H9N2 and H5N1 avian viruses and the H1N1 and H3N2 human viruses in Vero cells without changing its pathogenicity in either chicken embryos or mice. Thus, our work describes the generation of a Vero-adapted, high-yield PR8-4mut virus that may serve as a promising candidate for an influenza-vaccine donor virus.

  14. Oseltamivir-Resistant Influenza A(H1N1)pdm09 Viruses, United States, 2013–14

    PubMed Central

    Okomo-Adhiambo, Margaret; Fry, Alicia M.; Su, Su; Nguyen, Ha T.; Elal, Anwar Abd; Negron, Elizabeth; Hand, Julie; Garten, Rebecca J.; Barnes, John; Xiyan, Xu; Villanueva, Julie M.

    2015-01-01

    We report characteristics of oseltamivir-resistant influenza A(H1N1)pdm09 viruses and patients infected with these viruses in the United States. During 2013–14, fifty-nine (1.2%) of 4,968 analyzed US influenza A(H1N1)pdm09 viruses had the H275Y oseltamivir resistance–conferring neuraminidase substitution. Our results emphasize the need for local surveillance for neuraminidase inhibitor susceptibility among circulating influenza viruses. PMID:25532050

  15. Diagnostic virology practices for respiratory syncytial virus and influenza virus among children in the hospital setting: a national survey.

    PubMed

    Jafri, Hasan S; Ramilo, Octavio; Makari, Doris; Charsha-May, Deborah; Romero, José R

    2007-10-01

    A survey was sent to the emergency room and laboratory directors of 400 randomly selected US hospitals to assess the diagnostic testing practices for respiratory syncytial virus and influenza virus in children. The results demonstrate that the majority of hospitals routinely perform viral testing for both viruses and use virology testing practices appropriate for the reasons reported for testing.

  16. Subclinical avian influenza A(H5N1) virus infection in human, Vietnam.

    PubMed

    Le, Mai Quynh; Horby, Peter; Fox, Annette; Nguyen, Hien Tran; Le Nguyen, Hang Khanh; Hoang, Phuong Mai Vu; Nguyen, Khanh Cong; de Jong, Menno D; Jeeninga, Rienk E; Rogier van Doorn, H; Farrar, Jeremy; Wertheim, Heiman F L

    2013-10-01

    Laboratory-confirmed cases of subclinical infection with avian influenza A(H5N1) virus in humans are rare, and the true number of these cases is unknown. We describe the identification of a laboratory-confirmed subclinical case in a woman during an influenza A(H5N1) contact investigation in northern Vietnam.

  17. Structure of NS1A effector domain from the influenza A/Udorn/72 virus

    SciTech Connect

    Xia, Shuangluo; Monzingo, Arthur F.; Robertus, Jon D.

    2009-01-01

    The structure of the effector domain of the influenza protein NS1, a validated antiviral drug target, has been solved in two space groups. The nonstructural protein NS1A from influenza virus is a multifunctional virulence factor and a potent inhibitor of host immunity. It has two functional domains: an N-terminal 73-amino-acid RNA-binding domain and a C-terminal effector domain. Here, the crystallographic structure of the NS1A effector domain of influenza A/Udorn/72 virus is presented. Structure comparison with the NS1 effector domain from mouse-adapted influenza A/Puerto Rico/8/34 (PR8) virus strain reveals a similar monomer conformation but a different dimer interface. Further analysis and evaluation shows that the dimer interface observed in the structure of the PR8 NS1 effector domain is likely to be a crystallographic packing effect. A hypothetical model of the intact NS1 dimer is presented.

  18. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    SciTech Connect

    Pan, Yang; Sasaki, Tadahiro; Du, Anariwa; and others

    2014-07-18

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.

  19. Influenza virus A (H1N1) in giant anteaters (Myrmecophaga tridactyla).

    PubMed

    Nofs, Sally; Abd-Eldaim, Mohamed; Thomas, Kathy V; Toplon, David; Rouse, Dawn; Kennedy, Melissa

    2009-07-01

    In February 2007, an outbreak of respiratory disease occurred in a group of giant anteaters (Myrmecophaga tridactyla) at the Nashville Zoo. Isolates from 2 affected animals were identified in March 2007 as a type A influenza virus related to human influenza subtype H1N1.

  20. Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia.

    PubMed

    Arzey, George G; Kirkland, Peter D; Arzey, K Edla; Frost, Melinda; Maywood, Patrick; Conaty, Stephen; Hurt, Aeron C; Deng, Yi-Mo; Iannello, Pina; Barr, Ian; Dwyer, Dominic E; Ratnamohan, Mala; McPhie, Kenneth; Selleck, Paul

    2012-05-01

    In March 2010, an outbreak of low pathogenicity avian influenza A (H10N7) occurred on a chicken farm in Australia. After processing clinically normal birds from the farm, 7 abattoir workers reported conjunctivitis and minor upper respiratory tract symptoms. Influenza virus A subtype H10 infection was detected in 2 workers.

  1. Single-Dose Vaccination of a Recombinant Parainfluenza Virus 5 Expressing NP from H5N1 Virus Provides Broad Immunity against Influenza A Viruses

    PubMed Central

    Li, Zhuo; Gabbard, Jon D.; Mooney, Alaina; Gao, Xiudan; Chen, Zhenhai; Place, Ryan J.; Tompkins, S. Mark

    2013-01-01

    Influenza viruses often evade host immunity via antigenic drift and shift despite previous influenza virus infection and/or vaccination. Vaccines that match circulating virus strains are needed for optimal protection. Development of a universal influenza virus vaccine providing broadly cross-protective immunity will be of great importance. The nucleoprotein (NP) of influenza A virus is highly conserved among all strains of influenza A viruses and has been explored as an antigen for developing a universal influenza virus vaccine. In this work, we generated a recombinant parainfluenza virus 5 (PIV5) containing NP from H5N1 (A/Vietnam/1203/2004), a highly pathogenic avian influenza (HPAI) virus, between HN and L (PIV5-NP-HN/L) and tested its efficacy. PIV5-NP-HN/L induced humoral and T cell responses in mice. A single inoculation of PIV5-NP-HN/L provided complete protection against lethal heterosubtypic H1N1 challenge and 50% protection against lethal H5N1 HPAI virus challenge. To improve efficacy, NP was inserted into different locations within the PIV5 genome. Recombinant PIV5 containing NP between F and SH (PIV5-NP-F/SH) or between SH and HN (PIV5-NP-SH/HN) provided better protection against H5N1 HPAI virus challenge than did PIV5-NP-HN/L. These results suggest that PIV5 expressing NP from H5N1 has the potential to be utilized as a universal influenza virus vaccine. PMID:23514880

  2. Inactivation of avian influenza virus in chicken litter as a potential method to decontaminate poultry houses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Full cleaning and disinfection of a poultry house after an avian influenza virus (AIV) outbreak is expensive and labor intensive. An alternative to full house cleaning and disinfection is to inactivate the virus with high temperatures within the house. Litter in the house normally has a high virus...

  3. Full Genome of Influenza A (H7N9) Virus Derived by Direct Sequencing without Culture

    PubMed Central

    Ren, Xianwen; Yang, Fan; Hu, Yongfeng; Zhang, Ting; Liu, Liguo; Dong, Jie; Sun, Lilian; Zhu, Yafang; Xiao, Yan; Li, Li; Yang, Jian; Wang, Jianwei

    2013-01-01

    An epidemic caused by influenza A (H7N9) virus was recently reported in China. Deep sequencing revealed the full genome of the virus obtained directly from a patient’s sputum without virus culture. The full genome showed substantial sequence heterogeneity and large differences compared with that from embryonated chicken eggs. PMID:24206919

  4. Genomic analysis of influenza A viruses, including avian flu (H5N1) strains.

    PubMed

    Ahn, Insung; Jeong, Byeong-Jin; Bae, Se-Eun; Jung, Jin; Son, Hyeon S

    2006-01-01

    This study was designed to conduct genomic analysis in two steps, such as the overall relative synonymous codon usage (RSCU) analysis of the five virus species in the orthomyxoviridae family, and more intensive pattern analysis of the four subtypes of influenza A virus (H1N1, H2N2, H3N2, and H5N1) which were isolated from human population. All the subtypes were categorized by their isolated regions, including Asia, Europe, and Africa, and most of the synonymous codon usage patterns were analyzed by correspondence analysis (CA). As a result, influenza A virus showed the lowest synonymous codon usage bias among the virus species of the orthomyxoviridae family, and influenza B and influenza C virus were followed, while suggesting that influenza A virus might have an advantage in transmitting across the species barrier due to their low codon usage bias. The ENC values of the host-specific HA and NA genes represented their different HA and NA types very well, and this reveals that each influenza A virus subtype uses different codon usage patterns as well as the amino acid compositions. In NP, PA and PB2 genes, most of the virus subtypes showed similar RSCU patterns except for H5N1 and H3N2 (A/HK/1774/1999) subtypes which were suspected to be transmitted across the species barrier, from avian and porcine species to human beings, respectively. This distinguishable synonymous codon usage patterns in non-human origin viruses might be useful in determining the origin of influenza A viruses in genomic levels as well as the serological tests. In this study, all the process, including extracting sequences from GenBank flat file and calculating codon usage values, was conducted by Java codes, and these bioinformatics-related methods may be useful in predicting the evolutionary patterns of pandemic viruses.

  5. Influenza A(H10N7) Virus in Dead Harbor Seals, Denmark

    PubMed Central

    Hansen, Mette S.; Holm, Elisabeth; Hjulsager, Charlotte K.; Chriél, Mariann; Pedersen, Karl; Andresen, Lars O.; Abildstrøm, Morten; Jensen, Trine H.; Larsen, Lars E.

    2015-01-01

    Since April 2014, an outbreak of influenza in harbor seals has been ongoing in northern Europe. In Denmark during June–August, 152 harbor seals on the island of Anholt were found dead from severe pneumonia. We detected influenza A(H10N7) virus in 2 of 4 seals examined. PMID:25811098

  6. Influenza A virus infections in land birds, People's Republic of China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present assumption is that waterbirds are the primary reservoir for avian influenza (AI) viruses. We reexamined this assumption by sampling and real-time RT-PCR testing of 610 Asian birds of 135 species. We showed that influenza A infections are common among non-waterbird species, emphasizing ...

  7. The International Reference Preparation of Influenza Virus Haemagglutinin (Type A)

    PubMed Central

    Krag, P.; Bentzon, M. Weis

    1971-01-01

    This paper describes the international collaborative assay that led to the establishment in 1967 of the International Reference Preparation of Influenza Virus Haemagglutinin (Type A) and the studies completed during the following years on the use of the preparation for evaluating the haemagglutinin content of 46 influenza virus vaccines in terms of international units. The WHO Expert Committee on Biological Standardization (1967) defined the International Unit as 0,09361 mg of the International Reference Preparation. Altogether 14 laboratories in 12 countries took part in one or both studies, using a total of 24 methods (HA titrations and, in a few cases CCA titrations). Major differences in the HA titres were found between laboratories, while the potencies (the haemagglutinin content values) relative to the International Reference Preparation were free from most of these differences. Haemagglutination titres varied over a range factor up to 50, while the corresponding relative ”potencies” varied with a factor of only 2. The CCA method used in a few laboratories gave results close to the lowest haemagglutination titres and showed relatively small variations between laboratories. The analyses of variance disclosed differences in the variation within laboratories, but for the majority of the laboratories the variation allowed an overall estimate of a standard error. The calculation of haemagglutinin content (in IU) from relative potencies is described. Advice is given on the selection, preparation, and titration of a local reference vaccine with a view to expressing its haemagglutinin content in international units. The test results with 46 local vaccines are also given. The deviations of the relative potencies from the average per vaccine showed a distribution with eight major discrepancies instead of the expected one. The background for these cases is discussed. PMID:5317082

  8. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    PubMed

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  9. Novel Eurasian highly pathogenic influenza A H5 viruses in wild birds, Washington, USA

    USGS Publications Warehouse

    Ip, Hon S.; Kim Torchetti, Mia; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara L.; Shearn-Bochsler, Valerie I.; Killian, Mary Lea; Pederson, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  10. Connecting the dots between swine influenza A virus surveillance and vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Influenza A virus (IAV) infection was first recognized in the USA swine population following the 1918 Spanish flu pandemic in humans with the identification of an H1N1 virus that became known as the classical swine H1N1. In 1997-98, the incursion of the triple reassortant viruses with g...

  11. Preliminary Proteomic Analysis of A549 Cells Infected with Avian Influenza Virus H7N9 and Influenza A Virus H1N1

    PubMed Central

    Ding, Xiaoman; Lu, Jiahai; Yu, Ruoxi; Wang, Xin; Wang, Ting; Dong, Fangyuan; Peng, Bo; Wu, Weihua; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Cheng, Jinquan; Yu, Muhua; Fang, Shisong

    2016-01-01

    A newly emerged H7N9 influenza virus poses high risk to human beings. However, the pathogenic mechanism of the virus remains unclear. The temporal response of primary human alveolar adenocarcinoma epithelial cells (A549) infected with H7N9 influenza virus and H1N1 influenza A virus (H1N1, pdm09) were evaluated using the proteomics approaches (2D-DIGE combined with MALDI-TOF-MS/MS) at 24, 48 and 72 hours post of the infection (hpi). There were 11, 12 and 33 proteins with significant different expressions (P<0.05) at 24, 48 and 72hpi, especially F-actin-capping protein subunit alpha-1 (CAPZA1), Ornithine aminotransferase (OAT), Poly(rC)-binding protein 1 (PCBP1), Eukaryotic translation initiation factor 5A-1 (EIF5A) and Platelet-activating factor acetylhydrolaseⅠb subunit beta (PAFAH1B2) were validated by western-blot analysis. The functional analysis revealed that the differential proteins in A549 cells involved in regulating cytopathic effect. Among them, the down-regulation of CAPZA1, OAT, PCBP1, EIF5A are related to the death of cells infected by H7N9 influenza virus. This is the first time show that the down-regulation of PAFAH1B2 is related to the later clinical symptoms of patients infected by H7N9 influenza virus. These findings may improve our understanding of pathogenic mechanism of H7N9 influenza virus in proteomics. PMID:27223893

  12. Application of a fluorogenic PCR assay for typing and subtyping of influenza viruses in respiratory samples.

    PubMed

    Schweiger, B; Zadow, I; Heckler, R; Timm, H; Pauli, G

    2000-04-01

    A fluorogenic PCR-based method (TaqMan-PCR) was developed for typing and subtyping of influenza virus genomes in clinical specimens. The TaqMan-PCR employs a probe technology that exploits the endogenous 5'-3' nuclease activity of the Taq DNA polymerase to allow direct detection of the amplicon by release of a fluorescent reporter during the PCR. Therefore, post-PCR analysis is avoided since hybridization with the fluorogenic probe and quantification of the amplified product is performed simultaneously during PCR cycling. The specificity of the method was evaluated on 86 influenza A (25 H1N1 and 61 H3N2) and 49 influenza B virus reference strains and isolates. The sensitivity of the technique was found to be at the level of 0.1 50% tissue culture infective dose. This TaqMan-PCR was applied prospectively to surveillance work by community-based sampling in Germany during the last two influenza seasons. Seven hundred five throat swabs were analyzed during the winter of 1997-1998. A total of 195 of 705 samples (28%) were positive by PCR. Influenza viruses could be isolated from 125 specimens (18%). During the 1998-1999 season, 1,840 respiratory samples were received. Influenza viruses were isolated from 281 specimens (15%) out of 525 throat swabs (29%) which were positive for influenza A or B virus by TaqMan-PCR. Further differentiation of influenza A virus-positive swabs revealed an intensive circulation of the subtype H3N2 during both seasons, 1997-1998 and 1998-1999. The TaqMan-PCR was much more sensitive than culture and revealed an excellent correlation for typing and subtyping of influenza viruses when samples were positive by both methods.

  13. Infrarenal Aorta Thrombosis Associated with H1N1 Influenza A Virus Infection

    PubMed Central

    Saglam, Mustafa; Arıkan, Ali; Doner, Barıs; Akıncı, Gulay

    2016-01-01

    Influenza viruses are members of the Orthomyxoviridae family, of which influenza A, B, and C viruses constitute three separate genera. Arterial thrombosis associated with H1N1 influenza A virus infection has rarely been reported. A Turkish man aged 28 years was admitted to our emergency department with dyspnea, bilateral lower extremity insensitivity, and cold. He reported symptoms of fever, myalgia, and cough, which he had had for fifteen days before being admitted to our hospital. The patient was tested for pandemic influenza A (H1N1) virus using polymerase chain reaction (PCR) tests, which were positive. Abdominal computerized tomography with contrast revealed a large occlusive thrombus within the infrarenal aorta. PMID:27872775

  14. Efficacy of trivalent, cold-adapted, influenza virus vaccine against influenza A (Fujian), a drift variant, during 2003-2004.

    PubMed

    Halloran, M Elizabeth; Piedra, Pedro A; Longini, Ira M; Gaglani, Manjusha J; Schmotzer, Brian; Fewlass, Charles; Herschler, Gayla B; Glezen, W Paul

    2007-05-16

    In the 2003-2004 influenza season, the predominant circulating influenza A (H3N2) virus in the United States was similar antigenically to A/Fujian/411/2002 (H3N2), a drift variant of A/Panama/2007/99 (H3N2), the vaccine strain. That year, a field study of trivalent live-attenuated influenza vaccine (LAIV-T) was conducted in Temple-Belton, Texas, as part of a larger community-based, non-randomized, open-label study in three communities that began in August 1998 [Gaglani MJ, Piedra PA, Herschler GB, Griffith ME, Kozinetz CA, Riggs MW, et al. Direct effectiveness of the trivalent, cold-adapted, influenza virus vaccine (CAIV-T) against the 2000-2001 influenza A (H1N1) and B epidemic in healthy children. Arch Pediatr Adolesc Med 2004;158:65-73; Piedra PA, Gaglani MJ, Kozinetz CA, Herschler G, Riggs M, Griffith M, et al. Herd immunity in adults against influenza-related illnesses with use of the trivalent-live attenuated influenza vaccine (CAIV-T) in children. Vaccine 2005;23:1540-8; Piedra PA, Gaglani MJ, Riggs M, Herschler G, Fewlass C, Watts M, et al. Live attenuated influenza vaccine, trivalent, is safe in healthy children 18 months to 4 years, 5 to 9 years, and 10 to 18 years of age in a community-based, nonrandomized, open-label trial. Pediatrics 2005;116:397-407]. Participants were healthy children aged 5-18 years. The analysis here concerns 6403 children in the Scott & White Health Plan (SWHP) database living within zip codes of the Temple-Belton area, of whom 1706 received LAIV-T and 548 received trivalent inactivated vaccine (TIV) in 2003, 983 had been previously vaccinated in 1998-2001, but not in 2002-2003 or 2003, and 3166 had never been vaccinated. The main outcome measure was medically-attended acute respiratory illness (MAARI). Surveillance culture results were incorporated into the analysis to estimate efficacy against culture-confirmed influenza illness. Vaccine effectiveness of LAIV-T against MAARI was 26% (95% confidence interval (CI) 11, 39). Vaccine

  15. Eosinophils Promote Antiviral Immunity in Mice Infected with Influenza A Virus

    PubMed Central

    Melo, Rossana C. N.; Duan, Susu; LeMessurier, Kim S.; Liedmann, Swantje; Surman, Sherri L.; Lee, James J.; Hurwitz, Julia L.; Thomas, Paul G.; McCullers, Jonathan A.

    2017-01-01

    Eosinophils are multifunctional cells of the innate immune system linked to allergic inflammation. Asthmatics were more likely to be hospitalized but less likely to suffer severe morbidity and mortality during the 2009 influenza pandemic. These epidemiologic findings were recapitulated in a mouse model of fungal asthma wherein infection during heightened allergic inflammation was protective against influenza A virus (IAV) infection and disease. Our goal was to delineate a mechanism(s) by which allergic asthma may alleviate influenza disease outcome, focused on the hypothesis that pulmonary eosinophilia linked with allergic respiratory disease is able to promote antiviral host defenses against the influenza virus. The transfer of eosinophils from the lungs of allergen-sensitized and challenged mice into influenza virus–infected mice resulted in reduced morbidity and viral burden, improved lung compliance, and increased CD8+ T cell numbers in the airways. In vitro assays with primary or bone marrow–derived eosinophils were used to determine eosinophil responses to the virus using the laboratory strain (A/PR/08/1934) or the pandemic strain (A/CA/04/2009) of IAV. Eosinophils were susceptible to IAV infection and responded by activation, piecemeal degranulation, and upregulation of Ag presentation markers. Virus- or viral peptide–exposed eosinophils induced CD8+ T cell proliferation, activation, and effector functions. Our data suggest that eosinophils promote host cellular immunity to reduce influenza virus replication in lungs, thereby providing a novel mechanism by which hosts with allergic asthma may be protected from influenza morbidity. PMID:28283567

  16. The pandemic potential of avian influenza A(H7N9) virus: a review.

    PubMed

    Tanner, W D; Toth, D J A; Gundlapalli, A V

    2015-12-01

    In March 2013 the first cases of human avian influenza A(H7N9) were reported to the World Health Organization. Since that time, over 650 cases have been reported. Infections are associated with considerable morbidity and mortality, particularly within certain demographic groups. This rapid increase in cases over a brief time period is alarming and has raised concerns about the pandemic potential of the H7N9 virus. Three major factors influence the pandemic potential of an influenza virus: (1) its ability to cause human disease, (2) the immunity of the population to the virus, and (3) the transmission potential of the virus. This paper reviews what is currently known about each of these factors with respect to avian influenza A(H7N9). Currently, sustained human-to-human transmission of H7N9 has not been reported; however, population immunity to the virus is considered very low, and the virus has significant ability to cause human disease. Several statistical and geographical modelling studies have estimated and predicted the spread of the H7N9 virus in humans and avian species, and some have identified potential risk factors associated with disease transmission. Additionally, assessment tools have been developed to evaluate the pandemic potential of H7N9 and other influenza viruses. These tools could also hypothetically be used to monitor changes in the pandemic potential of a particular virus over time.

  17. RNA replicons - a new approach for influenza virus immunoprophylaxis.

    PubMed

    Zimmer, Gert

    2010-02-01

    RNA replicons are derived from either positive- or negative-strand RNA viruses. They represent disabled virus vectors that are not only avirulent, but also unable to revert to virulence. Due to autonomous RNA replication, RNA replicons are able to drive high level, cytosolic expression of recombinant antigens stimulating both the humoral and the cellular branch of the immune system. This review provides an update on the available literature covering influenza virus vaccines based on RNA replicons. The pros and cons of these vaccine strategies will be discussed and future perspectives disclosed.

  18. Structure-Based Drug Design Targeting a Subunit Interaction of Influenza Virus RNA Polymerase

    NASA Astrophysics Data System (ADS)

    Sugiyama, Kanako; Obayashi, Eiji; Yoshida, Hisashi; Park, Sam-Yong

    Influenza A virus is a major human and animal pathogen with the potential to cause catastrophic loss of life. Influenza virus reproduces rapidly, mutates frequently, and occasionally crosses species barriers. The recent emergence of swine-origin influenza H1N1 and avian influenza related to highly pathogenic forms of the human virus has highlighted the urgent need for new effective treatments. Here, we describe two crystal structures of complexes made by fragments of PA and PB1, and PB1 and PB2. These novel interfaces are surprisingly small, yet they play a crucial role in regulating the 250 kDa polymerase complex, and are completely conserved among swine, avian and human influenza viruses. Given their importance to viral replication and strict conservation, the PA/PB1 and PB1/PB2 interfaces appear to be promising targets for novel anti-influenza drugs of use against all strains of influenza A virus. It is hoped that the structures presented here will assist the search for such compounds.

  19. Global and local persistence of influenza A(H5N1) virus.

    PubMed

    Li, Xianbin; Zhang, Zhong; Yu, Ailian; Ho, Simon Y W; Carr, Michael J; Zheng, Weimin; Zhang, Yanzhou; Zhu, Chaodong; Lei, Fumin; Shi, Weifeng

    2014-08-01

    An understanding of the global migration dynamics of highly pathogenic avian influenza A(H5N1) virus is helpful for surveillance and disease prevention. To characterize the migration network of this virus, we used genetic analysis, which supported a global persistence model in which each of 9 regions acts to some extent as a source. Siberia is the major hub for the dispersal of the virus. Southeast Asia and Africa are major sources of genetically and antigenically novel strains. We found evidence of local persistence of the virus in Southeast Asia and Africa, which is rare for human influenza A viruses. The differences in migration dynamics between avian and human influenza viruses might help with the design of region-specific surveillance efforts and the selection of vaccine candidates.

  20. Genetic strategy to prevent influenza virus infections in animals.

    PubMed

    Chen, Jianzhu; Chen, Steve C-Y; Stern, Patrick; Scott, Benjamin B; Lois, Carlos

    2008-02-15

    The natural reservoirs of influenza viruses are aquatic birds. After adaptation, avian viruses can acquire the ability to infect humans and cause severe disease. Because domestic poultry serves as a key link between the natural reservoir of influenza viruses and epidemics and pandemics in human populations, an effective measure to control influenza would be to eliminate or reduce influenza virus infection in domestic poultry. The development and distribution of influenza-resistant poultry represents a proactive strategy for controlling the origin of influenza epidemics and pandemics in both poultry and human populations. Recent developments in RNA interference and transgenesis in birds should facilitate the development of influenza-resistant poultry.

  1. A systems approach to understanding human rhinovirus and influenza virus infection.

    PubMed

    Kim, Taek-Kyun; Bheda-Malge, Anjali; Lin, Yakang; Sreekrishna, Koti; Adams, Rachel; Robinson, Michael K; Bascom, Charles C; Tiesman, Jay P; Isfort, Robert J; Gelinas, Richard

    2015-12-01

    Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. We modeled host responses to these viral infections with time and documented the qualitative and quantitative differences in innate immune activation and regulation.

  2. Generation of influenza A virus from cloned cDNAs--historical perspective and outlook for the new millenium.

    PubMed

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2002-01-01

    Influenza virus reverse genetics has reached a level of sophistication where one can confidently generate virus entirely from cloned DNAs. The new systems makes it feasible to study the molecular mechanisms of virus replication and pathogenicity, as well as to generate attenuated live virus vaccines, gene delivery vehicles, and possibly other RNA viruses from cloned cDNAs. During the next decade, one can anticipate the translation of influenza virus reverse genetics into biomedically relevant advances.

  3. Inhibition of influenza A virus replication by influenza B virus nucleoprotein: An insight into interference between influenza A and B viruses

    SciTech Connect

    Wanitchang, Asawin; Narkpuk, Jaraspim; Jaru-ampornpan, Peera; Jengarn, Juggagarn; Jongkaewwattana, Anan

    2012-10-10

    Given that co-infection of cells with equivalent titers of influenza A and B viruses (FluA and FluB) has been shown to result in suppression of FluA growth, it is possible that FluB-specific proteins might hinder FluA polymerase activity and replication. We addressed this possibility by individually determining the effect of each gene of FluB on the FluA polymerase assay and found that the nucleoprotein of FluB (NP{sub FluB}) inhibits polymerase activity of FluA in a dose-dependent manner. Mutational analyses of NP{sub FluB} suggest that functional NP{sub FluB} is necessary for this inhibition. Slower growth of FluA was also observed in MDCK cells stably expressing NP{sub FluB}. Further analysis of NP{sub FluB} indicated that it does not affect nuclear import of NP{sub FluA}. Taken together, these findings suggest a novel role of NP{sub FluB} in inhibiting replication of FluA, providing more insights into the mechanism of interference between FluA and FluB and the lack of reassortants between them.

  4. H6 Influenza Viruses Pose a Potential Threat to Human Health

    PubMed Central

    Wang, Guojun; Deng, Guohua; Shi, Jianzhong; Luo, Weiyu; Zhang, Guoquan; Zhang, Qianyi; Liu, Liling; Jiang, Yongping; Li, Chengjun; Sriwilaijaroen, Nongluk; Hiramatsu, Hiroaki; Suzuki, Yasuo; Kawaoka, Yoshihiro

    2014-01-01

    ABSTRACT Influenza viruses of the H6 subtype have been isolated from wild and domestic aquatic and terrestrial avian species throughout the world since their first detection in a turkey in Massachusetts in 1965. Since 1997, H6 viruses with different neuraminidase (NA) subtypes have been detected frequently in the live poultry markets of southern China. Although sequence information has been gathered over the last few years, the H6 viruses have not been fully biologically characterized. To investigate the potential risk posed by H6 viruses to humans, here we assessed the receptor-binding preference, replication, and transmissibility in mammals of a series of H6 viruses isolated from live poultry markets in southern China from 2008 to 2011. Among the 257 H6 strains tested, 87 viruses recognized the human type receptor. Genome sequence analysis of 38 representative H6 viruses revealed 30 different genotypes, indicating that these viruses are actively circulating and reassorting in nature. Thirty-seven of 38 viruses tested in mice replicated efficiently in the lungs and some caused mild disease; none, however, were lethal. We also tested the direct contact transmission of 10 H6 viruses in guinea pigs and found that 5 viruses did not transmit to the contact animals, 3 viruses transmitted to one of the three contact animals, and 2 viruses transmitted to all three contact animals. Our study demonstrates that the H6 avian influenza viruses pose a clear threat to human health and emphasizes the need for continued surveillance and evaluation of the H6 influenza viruses circulating in nature. IMPORTANCE Avian influenza viruses continue to present a challenge to human health. Research and pandemic preparedness have largely focused on the H5 and H7 subtype influenza viruses in recent years. Influenza viruses of the H6 subtype have been isolated from wild and domestic aquatic and terrestrial avian species throughout the world since their first detection in the United States in

  5. Design and testing of multiplex RT-PCR primers for the rapid detection of influenza A virus genomic segments: Application to equine influenza virus.

    PubMed

    Lee, EunJung; Kim, Eun-Ju; Shin, Yeun-Kyung; Song, Jae-Young

    2016-02-01

    The avian influenza A virus causes respiratory infections in animal species. It can undergo genomic recombination with newly obtained genetic material through an interspecies transmission. However, the process is an unpredictable event, making it difficult to predict the emergence of a new pandemic virus and distinguish its origin, especially when the virus is the result of multiple infections. Therefore, identifying a novel influenza is entirely dependent on sequencing its whole genome. Occasionally, however, it can be time-consuming, costly, and labor-intensive when sequencing many influenza viruses. To compensate for the difficulty, we developed a rapid, cost-effective, and simple multiplex RT-PCR to identify the viral genomic segments. As an example to evaluate its performance, H3N8 equine influenza virus (EIV) was studied for the purpose. In developing this protocol to amplify the EIV eight-segments, a series of processes, including phylogenetic analysis based on different influenza hosts, in silico analyses to estimate primer specificity, coverage, and variation scores, and investigation of host-specific amino acids, were progressively conducted to reduce or eliminate the negative factors that might affect PCR amplification. Selectively, EIV specific primers were synthesized with dual priming oligonucleotides (DPO) system to increase primer specificity. As a result, 16 primer pairs were selected to screen the dominantly circulating H3N8 EIV 8 genome segments: PA (3), PB2 (1), PA (3), NP (3), NA8 (2), HA3 (1), NS (1), and M (2). The diagnostic performance of the primers was evaluated with eight sets composing of four segment combinations using viral samples from various influenza hosts. The PCR results suggest that the multiplex RT-PCR has a wide range of applications in detection and diagnosis of newly emerging EIVs. Further, the proposed procedures of designing multiplex primers are expected to be used for detecting other animal influenza A viruses.

  6. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a surrogate for humans in influenza pathogenicity a...

  7. DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry.

    PubMed

    Zmora, Pawel; Blazejewska, Paulina; Moldenhauer, Anna-Sophie; Welsch, Kathrin; Nehlmeier, Inga; Wu, Qingyu; Schneider, Heike; Pöhlmann, Stefan; Bertram, Stephanie

    2014-10-01

    The type II transmembrane serine protease (TTSP) TMPRSS2 cleaves and activates the influenza virus and coronavirus surface proteins. Expression of TMPRSS2 is essential for the spread and pathogenesis of H1N1 influenza viruses in mice. In contrast, H3N2 viruses are less dependent on TMPRSS2 for viral amplification, suggesting that these viruses might employ other TTSPs for their activation. Here, we analyzed TTSPs, reported to be expressed in the respiratory system, for the ability to activate influenza viruses and coronaviruses. We found that MSPL and, to a lesser degree, DESC1 are expressed in human lung tissue and cleave and activate the spike proteins of the Middle East respiratory syndrome and severe acute respiratory syndrome coronaviruses for cell-cell and virus-cell fusion. In addition, we show that these proteases support the spread of all influenza virus subtypes previously pandemic in humans. In sum, we identified two host cell proteases that could promote the amplification of influenza viruses and emerging coronaviruses in humans and might constitute targets for antiviral intervention. Importance: Activation of influenza viruses by host cell proteases is essential for viral infectivity and the enzymes responsible are potential targets for antiviral intervention. The present study demonstrates that two cellular serine proteases, DESC1 and MSPL, activate influenza viruses and emerging coronaviruses in cell culture and, because of their expression in human lung tissue, might promote viral spread in the infected host. Antiviral strategies aiming to prevent viral activation might thus need to encompass inhibitors targeting MSPL and DESC1.

  8. Fabrication of Electrochemical Model Influenza A Virus Biosensor Based on the Measurements of Neuroaminidase Enzyme Activity.

    PubMed

    Anik, Ülkü; Tepeli, Yudum; Diouani, Mohamed F

    2016-06-21

    Neuroaminidase (NA) enzyme is a kind of glycoprotein that is found on the influenza A virus. During infection, NA is important for the release of influenza virions from the host cell surface together with viral aggregates. It may also be involved in targeting the virus to respiratory epithelial cells. In this study, a model electrochemical influenza A viral biosensor in which receptor-binding properties have been based on NA was developed for the first time. The biosensor's working principle is based on monitoring the interactions between fetuin A and NA enzyme. The assay was monitored step by step by using electrochemical impedance spectroscopy.

  9. The influenza virus nucleoprotein synthesized from cloned DNA in a simian virus 40 vector is detected in the nucleus.

    PubMed Central

    Lin, B C; Lai, C J

    1983-01-01

    We obtained DNA sequences coding for the nucleoprotein (NP) of an influenza A virus by reverse transcription of virion RNA with synthetic oligonucleotide primers. Terminal sequence analysis showed that the cloned gene contained a full-length copy of the virion RNA segment. The NP-specific DNA was inserted into the late region of a simian virus 40 vector, and the DNA recombinant was propagated in the presence of an early simian virus 40 temperature-sensitive mutant helper. Infection of African green monkey kidney cells with the recombinant produced a polypeptide immunoprecipitable with NP-specific antisera. The polypeptide product had a molecular weight of 56,000, identical to that of the nucleoprotein of influenza virus as estimated on polyacrylamide gels. The putative NP was detected in the nucleus of infected primate cells by an immunofluorescence assay. This nuclear localization of NP from recombinant DNA was similar to that seen during influenza virus infection. Images PMID:6296449

  10. Acute influenza virus-associated encephalitis and encephalopathy in adults: a challenging diagnosis

    PubMed Central

    Linn, Francisca H. H.; Wensing, Anne M. J.; Leavis, Helen L.; van Riel, Debby; GeurtsvanKessel, Corine H.; Wattjes, Mike P.; Murk, Jean-Luc

    2016-01-01

    Background: Acute influenza-associated encephalopathy/encephalitis (IAE) in adults is a rare but well-known complication of influenza virus infection. The diagnosis is difficult to make due to the absence of distinctive clinical symptoms and validated diagnostic criteria. We present an illustrative case and a case review on acute IAE in adults. Methods: We performed a Medline search of the English literature using the terms influenz*, encephal* and adult, and constructed a database of detailed descriptions of patients with influenza virus infection with influenza-like symptoms at the onset of neurological symptoms. Results: A total of 44 patients were included. Confusion and seizures were the most prevalent neurological symptoms, present in 12 (27 %) and 10 (23 %) patients, respectively. Magnetic resonance imaging (MRI) was performed in 21 patients and anomalies were found in 13 (62 %), with lesions located throughout the brain. Influenza virus RNA was detected in cerebrospinal fluid (CSF) in 5 (16 %) of 32 patients. Eight (18 %) of the forty-four patients died. The benefits of antiviral and immunomodulatory therapy have not been well studied. Discussion: Our results show that many different neurological symptoms can be present in patients with acute onset IAE. Therefore, the diagnosis should be considered in patients with fever and neurological symptoms, especially during the influenza season. Laboratory diagnosis consists of demonstration of influenza virus RNA in brain tissue, CSF or respiratory samples, and demonstration of intrathecal antibody production against influenza virus. The presence of brain lesions in MRI and influenza virus in CSF appear to be of prognostic value. PMID:28348797

  11. Novel swine-origin influenza A virus in humans: another pandemic knocking at the door.

    PubMed

    Michaelis, Martin; Doerr, Hans Wilhem; Cinatl, Jindrich

    2009-08-01

    Influenza A viruses represent a continuous pandemic threat. In April 2009, a novel influenza A virus, the so-called swine-origin influenza A (H1N1) virus (S-OIV), was identified in Mexico. Although S-OIV originates from triple-reassortant swine influenza A (H1) that has been circulating in North American pig herds since the end of the 1990s, S-OIV is readily transmitted between humans but is not epidemic in pigs. After its discovery, S-OIV rapidly spread throughout the world within few weeks. In this review, we sum up the current situation and put it into the context of the current state of knowledge of influenza and influenza pandemics. Some indications suggest that a pandemic may be mild but even "mild" pandemics can result in millions of deaths. However, no reasonable forecasts how this pandemic may develop can be made at this time. Despite stockpiling by many countries and WHO, antiviral drugs will be limited in case of pandemic and resistances may emerge. Effective vaccines are regarded to be crucial for the control of influenza pandemics. However, production capacities are restricted and development/production of a S-OIV vaccine will interfere with manufacturing of seasonal influenza vaccines. The authors are convinced that S-OIV should be taken seriously as pandemic threat and underestimation of the menace by S-OIV to be by far more dangerous than its overestimation.

  12. High genetic and antigenic similarity between a swine H3N2 influenza A virus and a prior human influenza vaccine virus: a possible immune pressure-driven cross-species transmission.

    PubMed

    Pan, Chungen; Wang, Guiping; Liao, Ming; Zhang, Gui-Hong; Jiang, Shibo

    2009-07-31

    In late April of 2009, a global outbreak of human influenza was reported. The causative agent is a highly unusual reassortant H1N1 influenza virus carrying genetic segments derived from swine, human and avian influenza viruses. In this study, we compared the HA, NA and other gene segments of a swine H3N2 influenza A virus, A/Swine/Guangdong/z5/2003, which was isolated from pigs in 2003 in Guangdong Province, China, to the predominant human and swine H3N2 viruses. We found that the similarity of gene segments of A/Swine/Guangdong/z5/2003 was closer to Moscow/99-like human H3N2 virus than Europe swine H3N2 viruses during 1999-2002. These results suggest that A/Swine/Guangdong/z5/2003 may be porcine in origin, possibly being driven by human immune pressure induced by either natural H3N2 virus infection or use of A/Moscow/10/99 (H3N2)-based human influenza vaccine. The results further confirm that swine may play a dual role as a "shelter" for hosting influenza virus from humans or birds and as a "mixing vessel" for generating reassortant influenza viruses, such as the one causing current influenza pandemic.

  13. Low-pathogenic influenza A viruses in North American diving ducks contribute to the emergence of a novel highly pathogenic influenza A(H7N8) virus

    USGS Publications Warehouse

    Xu, Yifei; Ramey, Andrew M.; Bowman, Andrew S; DeLiberto, Thomas J.; Killian, Mary Lea; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.; Wan, Xiu-Feng

    2017-01-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.

  14. WHO recommendations for the viruses used in the 2013-2014 Northern Hemisphere influenza vaccine: Epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from October 2012 to January 2013.

    PubMed

    Barr, Ian G; Russell, Colin; Besselaar, Terry G; Cox, Nancy J; Daniels, Rod S; Donis, Ruben; Engelhardt, Othmar G; Grohmann, Gary; Itamura, Shigeyuki; Kelso, Anne; McCauley, John; Odagiri, Takato; Schultz-Cherry, Stacey; Shu, Yuelong; Smith, Derek; Tashiro, Masato; Wang, Dayan; Webby, Richard; Xu, Xiyan; Ye, Zhiping; Zhang, Wenqing

    2014-08-20

    In February the World Health Organisation (WHO) recommends influenza viruses to be included in influenza vaccines for the forthcoming winter in the Northern Hemisphere. These recommendations are based on data collected by National Influenza Centres (NICs) through the WHO Global Influenza Surveillance and Response System (GISRS) and a more detailed analysis of representative and potential antigenically variant influenza viruses from the WHO Collaborating Centres for Influenza (WHO CCs) and Essential Regulatory Laboratories (ERLs). This article provides a detailed summary of the antigenic and genetic properties of viruses and additional background data used by WHO experts during development of the recommendations of the 2013-2014 Northern Hemisphere influenza vaccine composition.

  15. [An overview on swine influenza viruses].

    PubMed

    Yang, Shuai; Zhu, Wen-Fei; Shu, Yue-Long

    2013-05-01

    Swine influenza viruses (SIVs) are respiratory pathogens of pigs. They cause both economic bur den in livestock-dependent industries and serious global public health concerns in humans. Because of their dual susceptibility to human and avian influenza viruses, pigs are recognized as intermediate hosts for genetic reassortment and interspecies transmission. Subtypes H1N1, H1N2, and H3N2 circulate in swine populations around the world, with varied origin and genetic characteristics among different continents and regions. In this review, the role of pigs in evolution of influenza A viruses, the genetic evolution of SIVs and interspecies transmission of SIVs are described. Considering the possibility that pigs might produce novel influenza viruses causing more outbreaks and pandemics, routine epidemiological surveillance of influenza viruses in pig populations is highly recommended.

  16. Staphylococcus aureus and Influenza A Virus: Partners in Coinfection

    PubMed Central

    Mulcahy, Michelle E.

    2016-01-01

    ABSTRACT Nasal carriage of Staphylococcus aureus is a significant risk factor for secondary staphylococcal pneumonia in influenza A virus (IAV)-infected hosts. However, little research has been undertaken to define the environmental and physiological changes that cause S. aureus to shift from commensal to pathogenic organism in this setting. The ability of virus-driven danger signals to cause S. aureus to transition from commensalism to pulmonary infection was explored in a recent study by Reddinger et al. R. M. Reddinger, N. R. Luke-Marshall, A. P. Hakansson, and A. A. Campagnari, mBio 7(6):e01235-16, 2016, http://dx.doi.org/10.1128/mBio.01235-16. The authors report that physiological host changes, including febrile temperature and a combination of host stress response signals, caused S. aureus biofilms to disperse from the nasal environment and cause active pulmonary infection. This commentary discusses the new finding in light of the current understanding of the mechanisms behind staphylococcal coinfection with IAV. In addition, it considers the mechanisms behind staphylococcal dispersal in this model. Overall, the study indicates that interkingdom signaling may occur following IAV infection and this likely contributes to sensitizing the IAV-infected host to secondary staphylococcal pneumonia. PMID:27965455

  17. Novel human H7N9 influenza virus in China.

    PubMed

    Wang, Chengmin; Luo, Jing; Wang, Jing; Su, Wen; Gao, Shanshan; Zhang, Min; Xie, Li; Ding, Hua; Liu, Shelan; Liu, Xiaodong; Chen, Yu; Jia, Yaxiong; He, Hongxuan

    2014-06-01

    Outbreaks of H7N9 avian influenza in humans in 5 provinces and 2 municipalities of China have reawakened concern that avian influenza viruses may again cross species barriers to infect the human population and thereby initiate a new influenza pandemic. Evolutionary analysis shows that human H7N9 influenza viruses originated from the H9N2, H7N3 and H11N9 avian viruses, and that it is as a novel reassortment influenza virus. This article reviews current knowledge on 11 subtypes of influenza A virus from human which can cause human infections.

  18. Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses.

    PubMed

    Hillaire, Marine L B; Vogelzang-van Trierum, Stella E; Kreijtz, Joost H C M; de Mutsert, Gerrie; Fouchier, Ron A M; Osterhaus, Albert D M E; Rimmelzwaan, Guus F

    2013-03-01

    Virus-specific CD8(+) T-cells contribute to protective immunity against influenza A virus (IAV) infections. As the majority of these cells are directed to conserved viral proteins, they may afford protection against IAVs of various subtypes. The present study assessed the cross-reactivity of human CD8(+) T-lymphocytes, induced by infection with seasonal A (H1N1) or A (H3N2) influenza virus, with 2009 pandemic influenza A (H1N1) virus [A(H1N1)pdm09] and swine-origin triple-reassortant A (H3N2) [A(H3N2)v] viruses that are currently causing an increasing number of human cases in the USA. It was demonstrated that CD8(+) T-cells induced after seasonal IAV infections exerted lytic activity and produced gamma interferon upon in vitro restimulation with A(H1N1)pdm09 and A(H3N2)v influenza A viruses. Furthermore, CD8(+) T-cells directed to A(H1N1)pdm09 virus displayed a high degree of cross-reactivity with A(H3N2)v viruses. It was concluded that cross-reacting T-cells had the potential to afford protective immunity against A(H1N1)pdm09 viruses during the pandemic and offer some degree of protection against infection with A(H3N2)v viruses.

  19. [Simultaneous detection of respiratory viruses and influenza A virus subtypes using multiplex PCR].

    PubMed

    Ciçek, Candan; Bayram, Nuri; Anıl, Murat; Gülen, Figen; Pullukçu, Hüsnü; Saz, Eylem Ulaş; Telli, Canan; Cok, Gürsel

    2014-10-01

    This study was conducted to investigate the respiratory viruses and subtyping of influenza A virus when positive by multiplex PCR in patients with flu-like symptoms, after the pandemic caused by influenza A (H1N1)pdm09. Nasopharyngeal swab samples collected from 700 patients (313 female, 387 male; age range: 24 days-94 yrs, median age: 1 yr) between December 2010 - January 2013 with flu-like symptoms including fever, headache, sore throat, rhinitis, cough, myalgia as defined by the World Health Organization were included in the study. Nucleic acid extractions (Viral DNA/RNA Extraction Kit, iNtRON, South Korea) and cDNA synthesis (RevertAid First Strand cDNA Synthesis Kits, Fermentas, USA) were performed according to the manufacturer's protocol. Multiplex amplification of nucleic acids was performed using DPO (dual priming oligonucleotide) primers and RV5 ACE Screening Kit (Seegene, South Korea) in terms of the presence of influenza A (INF-A) virus, influenza B (INF-B) virus, respiratory syncytial virus (RSV), and the other respiratory viruses. PCR products were detected by automated polyacrylamide gel electrophoresis using Screen Tape multiple detection system. Specimens which were positive for viral nucleic acids have been further studied by using specific DPO primers, FluA ACE Subtyping and RV15 Screening (Seegene, South Korea) kits. Four INF-A virus subtypes [human H1 (hH1), human H3 (hH3), swine H1 (sH1), avian H5 (aH5)] and 11 other respiratory viruses [Adenovirus, parainfluenza virus (PIV) types 1-4, human bocavirus (HBoV), human metapneumovirus (HMPV), rhinovirus types A and B, human coronaviruses (HCoV) OC43, 229E/NL63] were investigated with those tests. In the study, 53.6% (375/700) of the patients were found to be infected with at least one virus and multiple respiratory virus infections were detected in 15.7% (59/375) of the positive cases, which were mostly (49/59, 83%) in pediatric patients. RSV and rhinovirus coinfections were the most prevalent (18

  20. [Evaluation of flow-through immunoassay for rapid detection of influenza A and B viruses].

    PubMed

    Yamazaki, Masahiko; Mitamura, Keiko; Ichikawa, Masataka; Kimura, Kazuhiro; Komiyama, Osamu; Shimizu, Hideaki; Kawakami, Chiharu; Watanabe, Sumi; Imai, Mitsunobu; Cho, Hideo; Takeuchi, Yoshinao

    2004-09-01

    We evaluated a flow-through immunoassay for rapid detection of influenza A and B viral antigens, RapidTesta FLU AB (Daiichi Pure Chemicals Co., Ltd., Tokyo, Japan), by using 507 specimens collected from patients with influenza-like symptoms during the 2002/2003 influenza season in Japan. The specimens consisted of 239 nasal swabs and 268 nasal aspirates; 374 specimens were collected from pediatric patients (under 16 years of age) and 133 from adult patients. RapidTesta FLU AB was compared with cell culture and nested reverse transcription-polymerase chain reaction (RT-PCR). Cell culture detected influenza virus from 66.7% of the 507 specimens (influenza AH3: 44.0%, B: 22.7%). For nasal swabs, it had a sensitivity of 81.9% (77/94), a specificity of 97.9% (142/145) and an efficiency of 91.6% (219/239) for influenza A virus as well as a sensitivity of 80.0% (52/65), a specificity of 98.3% (171/174) and an efficiency of 93.3% (223/239) for influenza B. For nasal aspirates, RapidTesta FLU AB had a sensitivity of 83.2% (109/131), a specificity of 98.5% (135/137) and an efficiency of 91.0% (244/268) for influenza A as well as a sensitivity of 82.7% (43/52), a specificity of 97.7% (211/216) and an efficiency of 94.8% (254/268) for influenza B. RapidTesta FLU AB is characterized by high specificity, low false positive rate, and 10-minute detection of influenza virus. These advantages suggest that RapidTesta FLU AB is a useful kit to assist physicians in making a diagnosis of influenza on candidates for antiviral therapy.

  1. Evolution of influenza A virus PB2 genes: implications for evolution of the ribonucleoprotein complex and origin of human influenza A virus.

    PubMed

    Gorman, O T; Donis, R O; Kawaoka, Y; Webster, R G

    1990-10-01

    Phylogenetic analysis of 20 influenza A virus PB2 genes showed that PB2 genes have evolved into the following four major lineages: (i) equine/Prague/56 (EQPR56); (ii and iii) two distinct avian PB2 lineages, one containing FPV/34 and H13 gull virus strains and the other containing North American avian and recent equine strains; and (iv) human virus strains joined with classic swine virus strains (i.e., H1N1 swine virus strains related to swine/Iowa/15/30). The human virus lineage showed the greatest divergence from its root relative to other lineages. The estimated nucleotide evolutionary rate for the human PB2 lineage was 1.82 x 10(-3) changes per nucleotide per year, which is within the range of published estimates for NP and NS genes of human influenza A viruses. At the amino acid level, PB2s of human viruses have accumulated 34 amino acid changes over the past 55 years. In contrast, the avian PB2 lineages showed much less evolution, e.g., recent avian PB2s showed as few as three amino acid changes relative to the avian root. The completion of evolutionary analyses of the PB1, PB2, PA and NP genes of the ribonucleoprotein (RNP) complex permits comparison of evolutionary pathways. Different patterns of evolution among the RNP genes indicate that the genes of the complex are not coevolving as a unit. Evolution of the PB1 and PB2 genes is less correlated with host-specific factors, and their proteins appear to be evolving more slowly than NP and PA. This suggests that protein functional constraints are limiting the evolutionary divergence of PB1 and PB2 genes. The parallel host-specific evolutionary pathways of the NP and PA genes suggest that these proteins are coevolving in response to host-specific factors. PB2s of human influenza A viruses share a common ancestor with classic swine virus PB2s, and the pattern of evolution suggests that the ancestor was an avian virus PB2. This same pattern of evolution appears in the other genes of the RNP complex. Antigenic

  2. Anti-Influenza Activity of Betulinic Acid from Zizyphus jujuba on Influenza A/PR/8 Virus

    PubMed Central

    Hong, Eun-Hye; Song, Jae Hyoung; Kang, Kyo Bin; Sung, Sang Hyun; Ko, Hyun-Jeong; Yang, Heejung

    2015-01-01

    Betulinic acid, a pentacyclic triterpene isolated from Jujube tree (Zizyphus jujuba Mill), has been known for a wide range of biological and medicinal properties such as antibacterial, antimalarial, anti-inflammatory, antihelmintic, antinociceptive, and anticancer activities. In the study, we investigated the antiviral activity on influenza A/PR/8 virus infected A549 human lung adenocarcinoma epithelial cell line and C57BL/6 mice. Betulinic acid showed the anti-influenza viral activity at a concentration of 50 μM without a significant cytotoxicity in influenza A/PR/8 virus infected A549 cells. Also, betulinic acid significantly attenuated pulmonary pathology including increased necrosis, numbers of inflammatory cells and pulmonary edema induced by influenza A/PR/8 virus infection compared with vehicle- or oseltamivir-treated mice in vivo model. The down-regulation of IFN-γ level, which is critical for innate and adaptive immunity in viral infection, after treating of betulinic acid in mouse lung. Based on the obtained results, it is suggested that betulinic acid can be the potential therapeutic agent for virus infection via anti-inflammatory activity. PMID:26157551

  3. Multi-Modal Imaging with a Toolbox of Influenza A Reporter Viruses.

    PubMed

    Tran, Vy; Poole, Daniel S; Jeffery, Justin J; Sheahan, Timothy P; Creech, Donald; Yevtodiyenko, Aleksey; Peat, Andrew J; Francis, Kevin P; You, Shihyun; Mehle, Andrew

    2015-10-13

    Reporter viruses are useful probes for studying multiple stages of the viral life cycle. Here we describe an expanded toolbox of fluorescent and bioluminescent influenza A reporter viruses. The enhanced utility of these tools enabled kinetic studies of viral attachment, infection, and co-infection. Multi-modal bioluminescence and positron emission tomography-computed tomography (PET/CT) imaging of infected animals revealed that antiviral treatment reduced viral load, dissemination, and inflammation. These new technologies and applications will dramatically accelerate in vitro and in vivo influenza virus studies.

  4. Influenza B virus outbreak on a cruise ship--Northern Europe, 2000.

    PubMed

    2001-03-02

    During June 23-July 5, 2000, an outbreak of respiratory illnesses occurred on the MS Rotterdam (Holland America Line & Windstar Cruises) during a 12-day Baltic cruise from the United Kingdom to Germany via Russia. The ship carried 1311 passengers, primarily from the United States, and 506 crew members from many countries. Although results of rapid viral testing for influenza A and B viruses were negative, immunofluorescence staining and viral culture results implicated influenza B virus infection as the cause of the outbreak. This report summarizes the findings of the outbreak investigation conducted by the ship's medical department and describes the measures taken to control the outbreak. Travelers at high risk for complications of influenza who were not vaccinated with influenza vaccine during the preceding fall or winter should consider receiving influenza vaccine before travel with large tourist groups at any time of year or to certain regions of the world.

  5. Epidemiological and Virological Characterization of Influenza B Virus Infections

    PubMed Central

    Sharabi, Sivan; Drori, Yaron; Micheli, Michal; Friedman, Nehemya; Orzitzer, Sara; Bassal, Ravit; Glatman-Freedman, Aharona; Shohat, Tamar; Mendelson, Ella; Hindiyeh, Musa; Mandelboim, Michal

    2016-01-01

    While influenza A viruses comprise a heterogeneous group of clinically relevant influenza viruses, influenza B viruses form a more homogeneous cluster, divided mainly into two lineages: Victoria and Yamagata. This divergence has complicated seasonal influenza vaccine design, which traditionally contained two seasonal influenza A virus strains and one influenza B virus strain. We examined the distribution of the two influenza B virus lineages in Israel, between 2011–2014, in hospitalized and in non-hospitalized (community) influenza B virus-infected patients. We showed that influenza B virus infections can lead to hospitalization and demonstrated that during some winter seasons, both influenza B virus lineages circulated simultaneously in Israel. We further show that the influenza B virus Yamagata lineage was dominant, circulating in the county in the last few years of the study period, consistent with the anti-Yamagata influenza B virus antibodies detected in the serum samples of affected individuals residing in Israel in the year 2014. Interestingly, we found that elderly people were particularly vulnerable to Yamagata lineage influenza B virus infections. PMID:27533045

  6. Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolution of receptor specificity of classical swine influenza viruses leading to the 2009 H1N1 pandemic virus was analyzed in glycan microarrays. Classical influenza viruses from the alpha, beta, and gamma antigenic clusters isolated between 1945 and 2009 revealed a binding profile very simila...

  7. Anti-influenza Virus Effects of Catechins: A Molecular and Clinical Review.

    PubMed

    Ide, Kazuke; Kawasaki, Yohei; Kawakami, Koji; Yamada, Hiroshi

    2016-01-01

    Influenza infection and associated epidemics represent a serious public health problem. Several preventive and curative measures exist against its spread including vaccination and therapeutic agents such as neuraminidase inhibitors (e.g., oseltamivir, zanamivir, as well as peramivir and laninamivir, which are licensed in several countries) and adamantanes (e.g., amantadine and rimantadine). However, neuraminidase inhibitor- and adamantane- resistant viruses have been detected, whereas vaccines exhibit strain-specific effects and are limited in supply. Thus, new approaches are needed to prevent and treat influenza infections. Catechins, a class of polyphenolic flavonoids present in tea leaves, have been reported as potential anti-influenza virus agents based on experimental and clinical studies. (-)-epigallocatechin gallate (EGCG), a major and highly bioactive catechin, is known to inhibit influenza A and B virus infections in Madin-Darby canine kidney cells. Additionally, EGCG and other catechin compounds such as epicatechin gallate and catechin-5-gallate also show neuraminidase inhibitory activities as demonstrated via molecular docking. These catechins can bind differently to neuraminidase and might overcome known drug resistancerelated virus mutations. Furthermore, the antiviral effects of chemically modified catechin derivatives have also been investigated, and future structure-based drug design studies of catechin derivatives might contribute to improvements in influenza prevention and treatment. This review briefly summarizes probable mechanisms underlying the inhibitory effects of tea catechins against influenza infection and their clinical benefits on influenza prevention and treatment. Additionally, the great potential of tea catechins and their chemical derivatives as effective antiviral agents is described.

  8. Antigenic relationship between influenza B viruses*

    PubMed Central

    Chakraverty, Pratima

    1971-01-01

    The object of this study was to determine whether antigenic groupings exist among influenza B viruses. Altogether, 22 influenza type B strains isolated during the years 1940-68 were examined by reciprocal haemagglutination-inhibition, strain-specific complement-fixation, and serum neutralization tests with sera produced in ferrets and guinea-pigs. It was found that the strain-specific complement-fixation test was superior for separating influenza B viruses into groups whereas the haemagglutination-inhibition and serum neutralization tests were better for demonstrating similarities. The results obtained with these three immunological techniques confirmed that antigenic variation exists among influenza B viruses, although it is not as clearcut as among influenza A viruses. The results were subjected to numerical taxonomic analysis. Dendrograms and minimum-spanning trees were constructed, using methods based on cluster analysis of similarity coefficients. Four main groups of influenza B viruses were established, although they were all interlinked. The results of this study do not justify the separation of influenza B viruses into subtypes similar to those of influenza A viruses. PMID:5317011

  9. In vitro Anti-viral Activity of Psoraleae Semen Water Extract against Influenza A Viruses.

    PubMed

    Choi, Jang-Gi; Jin, Young-Hee; Kim, Ji-Hye; Oh, Tae Woo; Yim, Nam-Hui; Cho, Won-Kyung; Ma, Jin Yeul

    2016-01-01

    Influenza causes respiratory infections and poses health risks to humans and animals; its effects are complicated by increasing resistance to existing anti-influenza viral agents. Therefore, novel therapeutic approaches against influenza virus infection are required. Psoraleae semen has been widely used in traditional medicine in Korea, Taiwan, China, and Japan for treating and preventing various diseases. In this study, we examined the anti-viral activities and mechanism of action of the water extract of Psoraleae semen (WPS) using RAW 264.7 and MDCK cells. We found that pre- and post-treatment with 100 μg/mL WPS markedly inhibited influenza A virus replication as assessed using a green fluorescent protein reporter virus, reduced viral protein expression (NS-1, PA, HA, PB-1, M1, and M2), and inhibited NA and HA activities. Mechanism studies revealed that WPS induced type I interferon cytokine secretion and subsequent stimulation of an anti-viral state in RAW 264.7 cells. Further, WPS exerted inhibitory effects on neuraminidase in influenza virus strains H1N1 and H3N2. Meanwhile, WPS exhibited inhibitory effects on hemagglutination in H3N2 but not in H1N1. Based on these results, WPS serves as an immunomodulator and inhibitor of influenza hemagglutinin and neuraminidase. Our results suggest that WPS is a promising source of novel anti-influenza drug candidates.

  10. In vitro Anti-viral Activity of Psoraleae Semen Water Extract against Influenza A Viruses

    PubMed Central

    Choi, Jang-gi; Jin, Young-Hee; Kim, Ji-Hye; Oh, Tae Woo; Yim, Nam-Hui; Cho, Won-Kyung; Ma, Jin Yeul

    2016-01-01

    Influenza causes respiratory infections and poses health risks to humans and animals; its effects are complicated by increasing resistance to existing anti-influenza viral agents. Therefore, novel therapeutic approaches against influenza virus infection are required. Psoraleae semen has been widely used in traditional medicine in Korea, Taiwan, China, and Japan for treating and preventing various diseases. In this study, we examined the anti-viral activities and mechanism of action of the water extract of Psoraleae semen (WPS) using RAW 264.7 and MDCK cells. We found that pre- and post-treatment with 100 μg/mL WPS markedly inhibited influenza A virus replication as assessed using a green fluorescent protein reporter virus, reduced viral protein expression (NS-1, PA, HA, PB-1, M1, and M2), and inhibited NA and HA activities. Mechanism studies revealed that WPS induced type I interferon cytokine secretion and subsequent stimulation of an anti-viral state in RAW 264.7 cells. Further, WPS exerted inhibitory effects on neuraminidase in influenza virus strains H1N1 and H3N2. Meanwhile, WPS exhibited inhibitory effects on hemagglutination in H3N2 but not in H1N1. Based on these results, WPS serves as an immunomodulator and inhibitor of influenza hemagglutinin and neuraminidase. Our results suggest that WPS is a promising source of novel anti-influenza drug candidates. PMID:27965579

  11. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses.

    PubMed

    Pan, Yang; Sasaki, Tadahiro; Kubota-Koketsu, Ritsuko; Inoue, Yuji; Yasugi, Mayo; Yamashita, Akifumi; Ramadhany, Ririn; Arai, Yasuha; Du, Anariwa; Boonsathorn, Naphatsawan; Ibrahim, Madiha S; Daidoji, Tomo; Nakaya, Takaaki; Ono, Ken-ichiro; Okuno, Yoshinobu; Ikuta, Kazuyoshi; Watanabe, Yohei

    2014-07-18

    Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.

  12. Recombinant parainfluenza virus 5 (PIV5) expressing the influenza A virus hemagglutinin provides immunity in mice to influenza A virus challenge

    PubMed Central

    Tompkins, S. Mark; Lin, Yuan; Leser, George P.; Kramer, Kari A.; Haas, Debra L.; Howerth, Elizabeth W.; Xu, Jie; Kennett, Mary J.; Durbin, Russell K.; Durbin, Joan E.; Tripp, Ralph; Lamb, Robert A.; He, Biao

    2007-01-01

    Parainfluenza virus type 5 (PIV5), formerly known as simian virus 5 (SV5), is a non-segmented negative strand RNA virus that offers several advantages as a vaccine vector. PIV5 infects many cell types causing little cytopathic effect, it replicates in the cytoplasm of infected cells, and does not have a DNA phase in its life cycle thus avoiding the possibility of introducing foreign genes into the host DNA genome. Importantly, PIV5 can infect humans but it is not associated with any known human illness. PIV5 grows well in tissue culture cells, including Vero cells, which have been approved for vaccine production, and the virus can be obtained easily from the media. To test the feasibility of using PIV5 as a live vaccine vector, the hemagglutinin (HA) gene from influenza A virus strain A/Udorn/72 (H3N2) was inserted into the PIV5 genome as an extra gene between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Recombinant PIV5 containing the HA gene of Udorn (rPIV5-H3) was recovered and it replicated similarly to wild type PIV5, both in vitro and in vivo. The HA protein expressed by rPIV5-H3 infected cells was incorporated into the virions and addition of the HA gene did not increase virus virulence in mice. The efficacy of rPIV5-H3 as a live vaccine was examined in 6-week-old BALB/c mice. The results show that a single dose inoculation provides broad and considerable immunity against influenza A virus infection. PMID:17254623

  13. Strain-specific antiviral activity of iminosugars against human influenza A viruses

    PubMed Central

    Hussain, S.; Miller, J. L.; Harvey, D. J.; Gu, Y.; Rosenthal, P. B.; Zitzmann, N.; McCauley, J. W.

    2015-01-01

    Objectives Drugs that target host cell processes can be employed to complement drugs that specifically target viruses, and iminosugar compounds that inhibit host α-glucosidases have been reported to show antiviral activity against multiple viruses. Here the effect and mechanism of two iminosugar α-glucosidase inhibitors, N-butyl-deoxynojirimycin (NB-DNJ) and N-nonyl-deoxynojirimycin (NN-DNJ), on human influenza A viruses was examined. Methods The viruses examined were a recently circulating seasonal influenza A(H3N2) virus strain A/Brisbane/10/2007, an older H3N2 strain A/Udorn/307/72, and A/Lviv/N6/2009, a strain representative of the currently circulating pandemic influenza A(H1N1)pdm09 virus. Results The inhibitors had the strongest effect on Brisbane/10 and NN-DNJ was more potent than NB-DNJ. Both compounds showed antiviral activity in cell culture against three human influenza A viruses in a strain-specific manner. Consistent with its action as an α-glucosidase inhibitor, NN-DNJ treatment resulted in an altered glycan processing of influenza haemagglutinin (HA) and neuraminidase (NA), confirmed by MS. NN-DNJ treatment was found to reduce the cell surface expression of the H3 subtype HA. The level of sialidase activity of NA was reduced in infected cells, but the addition of exogenous sialidase to the cells did not complement the NN-DNJ-mediated inhibition of virus replication. Using reassortant viruses, the drug susceptibility profile was determined to correlate with the origin of the HA. Conclusions NN-DNJ inhibits influenza A virus replication in a strain-specific manner that is dependent on the HA. PMID:25223974

  14. [Study on the morphology of influenza virus A by atomic force microscopy].

    PubMed

    Liu, Yan-Fei; Hu, Kong-Xin; Hong, Yi-Jiang; Yang, Yun-Qiu; Suo, Hua-Qian; Wang, Jing

    2008-06-01

    The aim of the study is through observing the morphology of the prepared influenza virus (H1N1) with transmission electron microscopy (TEM) and atomic force microscopy (AFM) to explore the application of AFM on the research of the external character of viruses and provide a new, simple and efficient technique for the study of the viral morphology. TEM image was obtained by negatively stained influenza virus with 1% Phosphotungstic Acid; AFM image applied the tapping mode to influenza virus without any further treatment in air at room temperature, and the morphology parameters, including length (diameter), Ra and Rq are calculated by sectional analysis. The shapes of influenza virus A are spherical, filamentous or other pleomorphous particles observed by both AFM and TEM. TEM image of influenza virus A is two-dimensional image, and viral surface has visible spikes, while AFM exhibits the three-dimensional image that can be described with several quantifiable indexes through sectional analysis. AFM phase images show viral surface clearly which is characterized by rugged feature and gear-like protuberance. As compared with TEM, AFM is a new research tool for viral morphology study with the advantages of simple sample preparing, visible interface and is intuitionistic for researchers. The surface characteristic parameters of viruses provided by AFM can be served as the main quantifiable indexes for viral morphological study.

  15. Serological Evidence of Influenza A Viruses in Frugivorous Bats from Africa

    PubMed Central

    Müller, Marcel Alexander; de Bruin, Erwin; van Beek, Janko; Corman, Victor Max; Rasche, Andrea; Drexler, Jan Felix; Sylverken, Augustina; Oppong, Samuel K.; Adu-Sarkodie, Yaw; Tschapka, Marco; Cottontail, Veronika M.; Drosten, Christian; Koopmans, Marion

    2015-01-01

    Bats are likely natural hosts for a range of zoonotic viruses such as Marburg, Ebola, Rabies, as well as for various Corona- and Paramyxoviruses. In 2009/10, researchers discovered RNA of two novel influenza virus subtypes – H17N10 and H18N11 – in Central and South American fruit bats. The identification of bats as possible additional reservoir for influenza A viruses raises questions about the role of this mammalian taxon in influenza A virus ecology and possible public health relevance. As molecular testing can be limited by a short time window in which the virus is present, serological testing provides information about past infections and virus spread in populations after the virus has been cleared. This study aimed at screening available sera from 100 free-ranging, frugivorous bats (Eidolon helvum) sampled in 2009/10 in Ghana, for the presence of antibodies against the complete panel of influenza A haemagglutinin (HA) types ranging from H1 to H18 by means of a protein microarray platform. This technique enables simultaneous serological testing against multiple recombinant HA-types in 5μl of serum. Preliminary results indicate serological evidence against avian influenza subtype H9 in about 30% of the animals screened, with low-level cross-reactivity to phylogenetically closely related subtypes H8 and H12. To our knowledge, this is the first report of serological evidence of influenza A viruses other than H17 and H18 in bats. As avian influenza subtype H9 is associated with human infections, the implications of our findings from a public health context remain to be investigated. PMID:25965069

  16. Trends in global warming and evolution of matrix protein 2 family from influenza A virus.

    PubMed

    Yan, Shao-Min; Wu, Guang

    2009-12-01

    The global warming is an important factor affecting the biological evolution, and the influenza is an important disease that threatens humans with possible epidemics or pandemics. In this study, we attempted to analyze the trends in global warming and evolution of matrix protein 2 family from influenza A virus, because this protein is a target of anti-flu drug, and its mutation would have significant effect on the resistance to anti-flu drugs. The evolution of matrix protein 2 of influenza A virus from 1959 to 2008 was defined using the unpredictable portion of amino-acid pair predictability. Then the trend in this evolution was compared with the trend in the global temperature, the temperature in north and south hemispheres, and the temperature in influenza A virus sampling site, and species carrying influenza A virus. The results showed the similar trends in global warming and in evolution of M2 proteins although we could not correlate them at this stage of study. The study suggested the potential impact of global warming on the evolution of proteins from influenza A virus.

  17. Verdinexor, a Novel Selective Inhibitor of Nuclear Export, Reduces Influenza A Virus Replication In Vitro and In Vivo

    PubMed Central

    Perwitasari, Olivia; Johnson, Scott; Yan, Xiuzhen; Howerth, Elizabeth; Shacham, Sharon; Landesman, Yosef; Baloglu, Erkan; McCauley, Dilara; Tamir, Sharon; Tompkins, S. Mark

    2014-01-01

    ABSTRACT Influenza is a global health concern, causing death, morbidity, and economic losses. Chemotherapeutics that target influenza virus are available; however, rapid emergence of drug-resistant strains is common. Therapeutic targeting of host proteins hijacked by influenza virus to facilitate replication is an antiviral strategy to reduce the development of drug resistance. Nuclear export of influenza virus ribonucleoprotein (vRNP) from infected cells has been shown to be mediated by exportin 1 (XPO1) interaction with viral nuclear export protein tethered to vRNP. RNA interference screening has identified XPO1 as a host proinfluenza factor where XPO1 silencing results in reduced influenza virus replication. The Streptomyces metabolite XPO1 inhibitor leptomycin B (LMB) has been shown to limit influenza virus replication in vitro; however, LMB is toxic in vivo, which makes it unsuitable for therapeutic use. In this study, we tested the anti-influenza virus activity of a new class of orally available small-molecule selective inhibitors of nuclear export, specifically, the XPO1 antagonist KPT-335 (verdinexor). Verdinexor was shown to potently and selectively inhibit vRNP export and effectively inhibited the replication of various influenza virus A and B strains in vitro, including pandemic H1N1 virus, highly pathogenic H5N1 avian influenza virus, and the recently emerged H7N9 strain. In vivo, prophylactic and therapeutic administration of verdinexor protected mice against disease pathology following a challenge with influenza virus A/California/04/09 or A/Philippines/2/82-X79, as well as reduced lung viral loads and proinflammatory cytokine expression, while having minimal toxicity. These studies show that verdinexor acts as a novel anti-influenza virus therapeutic agent. IMPORTANCE Antiviral drugs represent important means of influenza virus control. However, substantial resistance to currently approved influenza therapeutic drugs has developed. New antiviral

  18. Avian influenza virus (H5N1): a threat to human health.

    PubMed

    Peiris, J S Malik; de Jong, Menno D; Guan, Yi

    2007-04-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, and the next pandemic may well arise from a low-pathogenicity virus. The rationale for particular concern about an H5N1 pandemic is not its inevitability but its potential severity. An H5N1 pandemic is an event of low probability but one of high human health impact and poses a predicament for public health. Here, we review the ecology and evolution of highly pathogenic avian influenza H5N1 viruses, assess the pandemic risk, and address aspects of human H5N1 disease in relation to its epidemiology, clinical presentation, pathogenesis, diagnosis, and management.

  19. Avian Influenza Virus (H5N1): a Threat to Human Health

    PubMed Central

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, and the next pandemic may well arise from a low-pathogenicity virus. The rationale for particular concern about an H5N1 pandemic is not its inevitability but its potential severity. An H5N1 pandemic is an event of low probability but one of high human health impact and poses a predicament for public health. Here, we review the ecology and evolution of highly pathogenic avian influenza H5N1 viruses, assess the pandemic risk, and address aspects of human H5N1 disease in relation to its epidemiology, clinical presentation, pathogenesis, diagnosis, and management. PMID:17428885

  20. Screening of a high growth influenza B virus strain in Vero cells.

    PubMed

    Liu, Ze; Li, Wei-dong; Sun, Ming-bo; Ma, Lei; Guo, Zi-quan; Jiang, Shu-de; Liao, Guo-yang; Yang, Jing-si; Li, Chang-gui

    2010-02-01

    Due to the insufficient supply of embryonated chicken eggs, the preparation of large quantities of inactivated influenza vaccines will require an alternative virus culture system after the emergence or reemergence of a pandemic influenza virus. The Vero cell is one of the ideal options since it was used for producing many kinds of human vaccines. However, most of the influenza viruses can not grow well in Vero cells. To develop a new influenza vaccine with Vero cells as a substrate, the virus needs to adapt to this cell substrate to maintain high growth characteristics. By serial passages in Vero cells, the B/Yunnan/2/2005va (B) strain was successfully adapted to Vero cells, with the hemagglutination titer (HAT) of the virus reaching 1:512. The high growth characteristic of this strain is stable up to 21 passages. The strain was identified by hemagglutination inhibition (HAI) test and sequencing respectively; the HA₁ gene sequence of the virus was cloned and analyzed. The screening and establishment of high growth B virus provides an important tool for influenza vaccine production in Vero cells.

  1. Influenza A virus preferentially snatches noncoding RNA caps.

    PubMed

    Gu, Weifeng; Gallagher, Glen R; Dai, Weiwei; Liu, Ping; Li, Ruidong; Trombly, Melanie I; Gammon, Don B; Mello, Craig C; Wang, Jennifer P; Finberg, Robert W

    2015-12-01

    Influenza A virus (IAV) lacks the enzyme for adding 5' caps to its RNAs and snatches the 5' ends of host capped RNAs to prime transcription. Neither the preference of the host RNA sequences snatched nor the effect of cap-snatching on host processes is completely defined. Previous studies of influenza cap-snatching used poly(A)-selected RNAs from infected cells or relied on annotated host genes to define the snatched host RNAs, and thus lack details on many noncoding host RNAs including snRNAs, snoRNAs, and promoter-associated capped small (cs)RNAs, which are made by "paused" Pol II during transcription initiation. In this study, we used a nonbiased technique, CapSeq, to identify host and viral-capped RNAs including nonpolyadenylated RNAs in the same samples, and investigated the substrate-product correlation between the host RNAs and the viral RNAs. We demonstrated that noncoding host RNAs, particularly U1 and U2, are the preferred cap-snatching source over mRNAs or pre-mRNAs. We also found that csRNAs are highly snatched by IAV. Because the functions of csRNAs remain mostly unknown, especially in somatic cells, our finding reveals that csRNAs at least play roles in the process of IAV infection. Our findings support a model where nascent RNAs including csRNAs are the preferred targets for cap-snatching by IAV and raise questions about how IAV might use snatching preferences to modulate host-mRNA splicing and transcription.

  2. Integrating Decision Tree and Hidden Markov Model (HMM) for Subtype Prediction of Human Influenza A Virus

    NASA Astrophysics Data System (ADS)

    Attaluri, Pavan K.; Chen, Zhengxin; Weerakoon, Aruna M.; Lu, Guoqing

    Multiple criteria decision making (MCDM) has significant impact in bioinformatics. In the research reported here, we explore the integration of decision tree (DT) and Hidden Markov Model (HMM) for subtype prediction of human influenza A virus. Infection with influenza viruses continues to be an important public health problem. Viral strains of subtype H3N2 and H1N1 circulates in humans at least twice annually. The subtype detection depends mainly on the antigenic assay, which is time-consuming and not fully accurate. We have developed a Web system for accurate subtype detection of human influenza virus sequences. The preliminary experiment showed that this system is easy-to-use and powerful in identifying human influenza subtypes. Our next step is to examine the informative positions at the protein level and extend its current functionality to detect more subtypes. The web functions can be accessed at http://glee.ist.unomaha.edu/.

  3. Trivalent inactivated influenza vaccine effective against influenza A(H3N2) variant viruses in children during the 2014/15 season, Japan

    PubMed Central

    Sugaya, Norio; Shinjoh, Masayoshi; Kawakami, Chiharu; Yamaguchi, Yoshio; Yoshida, Makoto; Baba, Hiroaki; Ishikawa, Mayumi; Kono, Mio; Sekiguchi, Shinichiro; Kimiya, Takahisa; Mitamura, Keiko; Fujino, Motoko; Komiyama, Osamu; Yoshida, Naoko; Tsunematsu, Kenichiro; Narabayashi, Atsushi; Nakata, Yuji; Sato, Akihiro; Taguchi, Nobuhiko; Fujita, Hisayo; Toki, Machiko; Myokai, Michiko; Ookawara, Ichiro; Takahashi, Takao

    2016-01-01

    The 2014/15 influenza season in Japan was characterised by predominant influenza A(H3N2) activity; 99% of influenza A viruses detected were A(H3N2). Subclade 3C.2a viruses were the major epidemic A(H3N2) viruses, and were genetically distinct from A/New York/39/2012(H3N2) of 2014/15 vaccine strain in Japan, which was classified as clade 3C.1. We assessed vaccine effectiveness (VE) of inactivated influenza vaccine (IIV) in children aged 6 months to 15 years by test-negative case–control design based on influenza rapid diagnostic test. Between November 2014 and March 2015, a total of 3,752 children were enrolled: 1,633 tested positive for influenza A and 42 for influenza B, and 2,077 tested negative. Adjusted VE was 38% (95% confidence intervals (CI): 28 to 46) against influenza virus infection overall, 37% (95% CI: 27 to 45) against influenza A, and 47% (95% CI: -2 to 73) against influenza B. However, IIV was not statistically significantly effective against influenza A in infants aged 6 to 11 months or adolescents aged 13 to 15 years. VE in preventing hospitalisation for influenza A infection was 55% (95% CI: 42 to 64). Trivalent IIV that included A/New York/39/2012(H3N2) was effective against drifted influenza A(H3N2) virus, although vaccine mismatch resulted in low VE. PMID:27784529

  4. Importance of interferon inducible trans-membrane proteins and retinoic acid inducible gene I for influenza virus replication: A review.

    PubMed

    Suo, Siqingaowa; Ren, Xiaofeng

    2016-01-01

    Understanding the interplay between Influenza viruses and host cells is key to elucidating the pathogenesis of these viruses. Several host factors have been identified that exert antiviral functions; however, influenza viruses continue to replicate utilizing host cell machinery. Herein, we review the mechanisms of action of two host-derived proteins on conferring cellular resistance to the influenza virus; (1) the interferon inducible trans-membrane proteins, 1, 2 and 3, a recently identified family of early restriction factors; and (2) retinoic acid inducible gene I, a key mediator of antiviral immunity. These data may contribute to the design of novel and efficient anti-influenza treatments.

  5. Vaccination with inactivated influenza A virus during pregnancy protects neonatal mice against lethal challenge by influenza A viruses representing three subtypes.

    PubMed Central

    Mbawuike, I N; Six, H R; Cate, T R; Couch, R B

    1990-01-01

    A single intraperitoneal injection of pregnant mice with a monovalent Formalin-inactivated influenza A virus vaccine protected their offspring against a lethal challenge dose of the same influenza A virus H3N2, H2N2, and H1N1 subtypes, as well as against challenge with the other two subtypes. Degree of protection was vaccine dose related. Cross-fostering of neonates indicated that protection was conferred by breast milk antibodies. Serum virus-specific neutralizing antibodies in the mothers and neonates correlated with resistance to vaccine virus, but were detected against other subtypes only in a complement enhancement test or when high doses of vaccine were given. PMID:2304146

  6. Molecular characterization of influenza B virus outbreak on a cruise ship in Brazil 2012.

    PubMed

    Borborema, Samanta Etel Treiger; Silva, Daniela Bernardes Borges da; Silva, Kátia Corrêa Oliveira; Pinho, Margarete Aparecida Benega; Curti, Suely Pires; Paiva, Terezinha Maria de; Santos, Cecília Luiza Simões

    2014-01-01

    In February 2012, an outbreak of respiratory illness occurred on the cruise ship MSC Armonia in Brazil. A 31-year-old female crew member was hospitalized with respiratory failure and subsequently died. To study the etiology of the respiratory illness, tissue taken at necropsy from the deceased woman and respiratory specimens from thirteen passengers and crew members with respiratory symptoms were analyzed. Influenza real-time RT-PCR assays were performed, and the full-length hemagglutinin (HA) gene of influenza-positive samples was sequenced. Influenza B virus was detected in samples from seven of the individuals, suggesting that it was the cause of this respiratory illness outbreak. The sequence analysis of the HA gene indicated that the virus was closely related to the B/Brisbane/60/2008-like virus, Victoria lineage, a virus contained in the 2011-12 influenza vaccine for the Southern Hemisphere. Since the recommended composition of the influenza vaccine for use during the 2013 season changed, an intensive surveillance of viruses circulating worldwide is crucial. Molecular analysis is an important tool to characterize the pathogen responsible for an outbreak such as this. In addition, laboratory disease surveillance contributes to the control measures for vaccine-preventable influenza.

  7. MOLECULAR CHARACTERIZATION OF INFLUENZA B VIRUS OUTBREAK ON A CRUISE SHIP IN BRAZIL 2012

    PubMed Central

    Borborema, Samanta Etel Treiger; da Silva, Daniela Bernardes Borges; Silva, Kátia Corrêa Oliveira; Pinho, Margarete Aparecida Benega; Curti, Suely Pires; de Paiva, Terezinha Maria; Santos, Cecília Luiza Simões

    2014-01-01

    In February 2012, an outbreak of respiratory illness occurred on the cruise ship MSC Armonia in Brazil. A 31-year-old female crew member was hospitalized with respiratory failure and subsequently died. To study the etiology of the respiratory illness, tissue taken at necropsy from the deceased woman and respiratory specimens from thirteen passengers and crew members with respiratory symptoms were analyzed. Influenza real-time RT-PCR assays were performed, and the full-length hemagglutinin (HA) gene of influenza-positive samples was sequenced. Influenza B virus was detected in samples from seven of the individuals, suggesting that it was the cause of this respiratory illness outbreak. The sequence analysis of the HA gene indicated that the virus was closely related to the B/Brisbane/60/2008-like virus, Victoria lineage, a virus contained in the 2011-12 influenza vaccine for the Southern Hemisphere. Since the recommended composition of the influenza vaccine for use during the 2013 season changed, an intensive surveillance of viruses circulating worldwide is crucial. Molecular analysis is an important tool to characterize the pathogen responsible for an outbreak such as this. In addition, laboratory disease surveillance contributes to the control measures for vaccine-preventable influenza. PMID:24878994

  8. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    USGS Publications Warehouse

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun W.; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2014-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance.

  9. Serologic evidence of influenza A(H1N1)pdm09 virus in northern sea otters

    USGS Publications Warehouse

    Li, Zhu-Nan; Ip, Hon S.; Frost, Jessica F.; White, C. LeAnn; Murray, Michael J.; Carney, Paul J.; Sun, Xiang-Jie; Stevens, James; Levine, Min Z.; Katz, Jacqueline M.

    2014-01-01

    Sporadic epizootics of pneumonia among marine mammals have been associated with multiple animal-origin influenza A virus subtypes (1–6); seals are the only known nonhuman host for influenza B viruses (7). Recently, we reported serologic evidence of influenza A virus infection in free-ranging northern sea otters (Enhydra lutris kenyoni) captured off the coast of Washington, USA, in August 2011 (8). To investigate further which influenza A virus subtype infected these otters, we tested serum samples from these otters by ELISA for antibody-binding activity against 12 recombinant hemagglutinins (rHAs) from 7 influenza A hemagglutinin (HA) subtypes and 2 lineages of influenza B virus (Technical Appendix Table 1). Estimated ages for the otters were 2–19 years (Technical Appendix Table 2); we also tested archived serum samples from sea otters of similar ages collected from a study conducted during 2001–2002 along the Washington coast (9).

  10. Molecular epidemiology study of swine influenza virus revealing a reassorted virus H1N1 in swine farms in Cuba.

    PubMed

    Pérez, Lester J; Perera, Carmen Laura; Coronado, Liani; Rios, Liliam; Vega, Armando; Frías, Maria T; Ganges, Llilianne; Núñez, José Ignacio; Díaz de Arce, Heidy

    2015-05-01

    In this report, we describe the emergence of reassorted H1N1 swine influenza virus, originated from a reassortment event between the H1N1 pandemic influenza virus (H1N1p/2009) and endemic swine influenza virus in Cuban swine population. In November 2010, a clinical respiratory outbreak was reported on a pig fattening farm in Cuba. Phylogenetic analysis showed that all the genes of one of the isolate obtained, with the exception of neuraminidase, belonged to the H1N1p/2009 cluster. This finding suggests that H1N1pdm has been established in swine and has become a reservoir of reassortment that may produce new viruses with both animal and public health risks.

  11. Detection of influenza virus using a lateral flow immunoassay for amplified DNA by a microfluidic RT-PCR chip.

    PubMed

    Nagatani, Naoki; Yamanaka, Keiichiro; Ushijima, Hiromi; Koketsu, Ritsuko; Sasaki, Tadahiro; Ikuta, Kazuyoshi; Saito, Masato; Miyahara, Toshiro; Tamiya, Eiichi

    2012-08-07

    Influenza virus RNA was amplified by a continuous-flow polydimethylsiloxane microfluidic RT-PCR chip within 15-20 min. The amplified influenza virus RNA was observed with the naked eye, as the red color at the test line, using a lateral flow immunoassay within 1 min.

  12. Subtype identification of the novel A H1N1 and other human influenza A viruses using an oligonucleotide microarray.

    PubMed

    Kang, Xiaoping; Li, Yongqiang; Sun, Honghe; Wu, Weili; Liu, Hong; Lin, Fang; Qing, Chenfeng; Chang, Guohui; Zhu, Qingyu; Chen, Weijun; Yang, Yinhui

    2010-01-01

    A novel strain of influenza A (H1N1) virus was isolated in Mexico and the US in March and April 2009. This novel virus spread to many countries and regions in a few months, and WHO raised the level of pandemic alert from phase 5 to phase 6 on June 11, 2009. The accurate identification of H1N1 virus and other human seasonal influenza A viruses is very important for further treatment and control of their infections. In this study, we developed an oligonucleotide microarray to subtype human H1N1, H3N2 and H5N1 influenza viruses, which could distinguish the novel H1N1 from human seasonal H1N1 influenza viruses and swine H1N1 influenza viruses. The microarray utilizes a panel of primers for multiplex PCR amplification of the hemagglutinin (HA), neuraminidase (NA) and matrix (MP) genes of human influenza A viruses. The 59-mer oligonucleotides were designed to distinguish different subtypes of human influenza A viruses. With this microarray, we accurately identified and correctly subtyped the reference virus strains. Moreover, we confirmed 4 out of 39 clinical throat swab specimens from suspected cases of novel H1N1.

  13. Predominance of influenza A(H1N1)pdm09 virus genetic subclade 6B.1 and influenza B/Victoria lineage viruses at the start of the 2015/16 influenza season in Europe.

    PubMed

    Broberg, Eeva; Melidou, Angeliki; Prosenc, Katarina; Bragstad, Karoline; Hungnes, Olav

    2016-01-01

    Influenza A(H1N1)pdm09 viruses predominated in the European influenza 2015/16 season. Most analysed viruses clustered in a new genetic subclade 6B.1, antigenically similar to the northern hemisphere vaccine component A/California/7/2009. The predominant influenza B lineage was Victoria compared with Yamagata in the previous season. It remains to be evaluated at the end of the season if these changes affected the effectiveness of the vaccine for the 2015/16 season.

  14. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Influenza virus serological reagents. 866.3330... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3330 Influenza virus serological reagents. (a) Identification. Influenza virus serological reagents are devices...

  15. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Influenza virus serological reagents. 866.3330... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3330 Influenza virus serological reagents. (a) Identification. Influenza virus serological reagents are devices...

  16. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Influenza virus serological reagents. 866.3330... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3330 Influenza virus serological reagents. (a) Identification. Influenza virus serological reagents are devices...

  17. 21 CFR 866.3330 - Influenza virus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Influenza virus serological reagents. 866.3330... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3330 Influenza virus serological reagents. (a) Identification. Influenza virus serological reagents are devices...

  18. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation.

    PubMed

    Li, Shih-Wen; Yang, Tsuey-Ching; Lai, Chien-Chen; Huang, Su-Hua; Liao, Jun-Ming; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen

    2014-09-05

    Novel influenza A H7N9 virus, which emerged in 2013, and highly pathogenic H5N1 virus, identified since 2003, pose challenges to public health and necessitate quest for new anti-influenza compounds. Anthraquinone derivatives like aloe-emodin, emodin and chrysophanol, reportedly exhibit antiviral activity. This study probes their inhibitory mechanism and effect against influenza A virus. Of three anthraquinone derivatives, aloe-emodin, with a lower cytotoxicity showed concentration-dependently reducing virus-induced cytopathic effect and inhibiting replication of influenza A in MDCK cells. 50% inhibitory concentration value of aloe-emodin on virus yield was less than 0.05 μg/ml. Proteomics and Western blot of MDCK cells indicated aloe-emodin up-regulating galectin-3, and thioredoxin as well as down-regulating nucleoside diphosphate kinase A. Western blot and quantitative PCR confirmed aloe-emodin up-regulating galectin-3 expression; recombinant galectin-3 augmented expression of antiviral genes IFN-β, IFN-γ, PKR and 2'5',-OAS in infected cells, agreeing with expression pattern of those treated with aloe-emodin. Galectin-3 also inhibited influenza A virus replication. Proteomic analysis of treated cells indicated galectin-3 up-regulation as one anti-influenza A virus action by aloe-emodin. Since galectin-3 exhibited cytokine-like regulatory actions via JAK/STAT pathways, aloe-emodin also restored NS1-inhibited STAT1-mediated antiviral responses in transfected cells: e.g., STAT1 phosphorylation of interferon (IFN) stimulation response element (ISRE)-driven promoter, RNA-dependent protein kinase (PKR) and 2'5',-oligoadenylate synthetase (2'5',-OAS) expression. Treatment with aloe-emodin could control influenza infection in humans.

  19. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection

    PubMed Central

    Vereecke, Lars; Mc Guire, Conor; Sze, Mozes; Schuijs, Martijn J.; Willart, Monique; Itati Ibañez, Lorena; Hammad, Hamida; Lambrecht, Bart N.; Beyaert, Rudi; Saelens, Xavier; van Loo, Geert

    2016-01-01

    A20 negatively regulates multiple inflammatory signalling pathways. We here addressed the role of A20 in club cells (also known as Clara cells) of the bronchial epithelium in their response to influenza A virus infection. Club cells provide a niche for influenza virus replication, but little is known about the functions of these cells in antiviral immunity. Using airway epithelial cell-specific A20 knockout (A20AEC-KO) mice, we show that A20 in club cells critically controls innate immune responses upon TNF or double stranded RNA stimulation. Surprisingly, A20AEC-KO mice are better protected against influenza A virus challenge than their wild type littermates. This phenotype is not due to decreased viral replication. Instead host innate and adaptive immune responses and lung damage are reduced in A20AEC-KO mice. These attenuated responses correlate with a dampened cytotoxic T cell (CTL) response at later stages during infection, indicating that A20AEC-KO mice are better equipped to tolerate Influenza A virus infection. Expression of the chemokine CCL2 (also named MCP-1) is particularly suppressed in the lungs of A20AEC-KO mice during later stages of infection. When A20AEC-KO mice were treated with recombinant CCL2 the protective effect was abrogated demonstrating the crucial contribution of this chemokine to the protection of A20AEC-KO mice to Influenza A virus infection. Taken together, we propose a mechanism of action by which A20 expression in club cells controls inflammation and antiviral CTL responses in response to influenza virus infection. PMID:26815999

  20. A real-time PCR assay for the monitoring of influenza A virus in wild birds.

    PubMed

    Karlsson, Malin; Wallensten, Anders; Lundkvist, Ake; Olsen, Björn; Brytting, Maria

    2007-09-01

    A screening system including a new real-time PCR assay for the monitoring of influenza A virus in wild birds was developed. The real-time PCR assay uses SYBR green chemistry and the primers are targeting the matrix gene of influenza A virus. The performance of the assay was compared with two other assays, one assay also using SYBR green chemistry and one assay using TaqMan chemistry, i.e. a specific probe. A total of 45 fecal bird samples were analysed for influenza A virus in three different PCR reactions. Overall, 26 samples were positive in at least one of the three real-time PCR assays. Of the 26 samples, 18 were positive by all three reactions. Eight samples were found positive exclusively by the two SYBR green reactions, six of which were detected by both SYBR green reactions. Of the 26 positive samples, 15 samples were verified as positive either by virus isolation or influenza A M2-gene PCR. The results showed that the two SYBR green systems had a higher performance regarding the detection of influenza A as compared to the PCR reaction using a specific probe.

  1. Influenza A Subtype H3 Viruses in Feral Swine, United States, 2011–2012

    PubMed Central

    Feng, Zhixin; Baroch, John A.; Long, Li-Ping; Xu, Yifei; Cunningham, Frederick L.; Pedersen, Kerri; Lutman, Mark W.; Schmit, Brandon S.; Bowman, Andrew S.; DeLiberto, Thomas J.

    2014-01-01

    To determine whether, and to what extent, influenza A subtype H3 viruses were present in feral swine in the United States, we conducted serologic and virologic surveillance during October 2011–September 2012. These animals were periodically exposed to and infected with A(H3N2) viruses, suggesting they may threaten human and animal health. PMID:24751326

  2. Introductions and evolution of human-origin seasonal influenza A viruses in multinational swine populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capacity of influenza A viruses to cross species barriers presents a continual threat to human and animal health. Knowledge of the human-swine interface is particularly important for understanding how viruses with pandemic potential evolve in swine hosts. We sequenced the genomes of 141 influen...

  3. Complete and Incomplete Genome Packaging of Influenza A and B Viruses

    PubMed Central

    Nakatsu, Sumiho; Sagara, Hiroshi; Sakai-Tagawa, Yuko; Sugaya, Norio

    2016-01-01

    ABSTRACT The genomes of influenza A and B viruses comprise eight segmented, single-stranded, negative-sense viral RNAs (vRNAs). Although segmentation of the virus genome complicates the packaging of infectious progeny into virions, it provides an evolutionary benefit in that it allows viruses to exchange vRNAs with other strains. Influenza A viruses are believed to package their eight different vRNAs in a specific manner. However, several studies have shown that many viruses are noninfectious and fail to package at least one vRNA. Therefore, the genome-packaging mechanism is not fully understood. In this study, we used electron microscopy to count the number of ribonucleoproteins (RNPs) inside the virions of different influenza A and B virus strains. All eight strains examined displayed eight RNPs arranged in a “7+1” configuration in which a central RNP was surrounded by seven RNPs. Three-dimensional analysis of the virions showed that at least 80% of the virions packaged all eight RNPs; however, some virions packaged only five to seven RNPs, with the exact proportion depending on the strain examined. These results directly demonstrate that most viruses package eight RNPs, but some do indeed package fewer. Our findings support the selective genome-packaging model and demonstrate the variability in the number of RNPs incorporated by virions, suggesting that the genome-packaging mechanism of influenza viruses is more flexible than previously thought. PMID:27601575

  4. Infection of influenza virus neuraminidase-vaccinated mice with homologous influenza virus leads to strong protection against heterologous influenza viruses.

    PubMed

    He, Biao; Chang, Haiyan; Liu, Zhihua; Huang, Chaoyang; Liu, Xueying; Zheng, Dan; Fang, Fang; Sun, Bing; Chen, Ze

    2014-12-01

    Vaccination is the best measure to prevent influenza pandemics. Here, we studied the protective effect against heterologous influenza viruses, including A/reassortant/NYMC X-179A (pH1N1), A/Chicken/Henan/12/2004 (H5N1), A/Chicken/Jiangsu/7/2002 (H9N2) and A/Guizhou/54/89×A/PR/8/34 (A/Guizhou-X) (H3N2), in mice first vaccinated with a DNA vaccine of haemagglutinin (HA) or neuraminidase (NA) of A/PR/8/34 (PR8) and then infected with the homologous virus. We showed that PR8 HA or NA vaccination both protected mice against a lethal dose of the homologous virus; PR8 HA or NA DNA vaccination and then PR8 infection in mice offered poor or excellent protection, respectively, against a second, heterologous influenza virus challenge. In addition, before the second heterologous influenza infection, the highest antibody level against nucleoprotein (NP) and matrix (M1 and M2) proteins was found in the PR8 NA-vaccinated and PR8-infected group. The level of induced cellular immunity against NP and M1 showed a trend consistent with that seen in antibody levels. However, PR8 HA+NA vaccination and then PR8 infection resulted in limited protection against heterologous influenza virus challenge. Results of the present study demonstrated that infection of the homologous influenza virus in mice already immunized with a NA vaccine could provide excellent protection against subsequent infection of a heterologous influenza virus. These findings suggested that NA, a major antigen of influenza virus, could be an important candidate antigen for universal influenza vaccines.

  5. Simultaneous detection of influenza viruses A, B, and swine origin influenza A using multiplex one-step real-time RT-PCR assay.

    PubMed

    Monavari, S H R; Mollaie, H R; Fazlalipour, M

    2014-01-01

    Every year, seasonal epidemics of influenza viruses are causing considerable morbidity and mortality worldwide. Also infrequent novel and rearranged strains of influenza viruses have caused quick, acute universal pandemics resulting in millions of mortalities. The usage of efficient and accurate detection is superior for infection control, effective treatment, and epidemiological supervision. Therefore, evaluation of useful real-time PCR molecular tests for the detection of pandemic viruses is important before the next wave of the pandemic. A novel quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) assay with specific primers was used successfully for detection and monitoring of the influenza A, B, and swine influenza. The newly designed primers target highly conserved regions in influenza viruses. Our qRT-PCR assay is highly specific for detecting influenza A, B, and swine influenza viruses. The cutoff CT value was determined <38 for domestic human diagnostic test, under conditions of FDA emergency, and the reaction efficiency of the InfA, swInfA, and InfB assays were thereby estimated to be 97.9 % (R2 = 0.998), 98.3 % (R2 = 0.986), and 99.5 % (R2 = 0.995), respectively. Interestingly, based on our finding, there is no cross reactivity of detecting other viruses.

  6. Influenza and Other Respiratory Viruses in Three Central American Countries

    DTIC Science & Technology

    2010-01-01

    herpes simplex virus in college students. Pediatr Infect Dis J 1993; 12(4):280–284. Laguna-Torres et al. 12 ª 2010 Blackwell Publishing Ltd, Influenza and Other Respiratory Viruses ...parainfluenza viruses (57; 3.2%), influenza B virus (47; 2.7% of cases), and herpes simplex virus 1 (22; 1.3%). In addition, human metapneumovirus and...the identification of adenovirus- es, influenza A virus, influenza B virus, PIVs (types 1, 2, and 3), and RSV. The D3 DFA Herpes Simplex Virus

  7. Cross-reactivity between avian influenza A (H7N9) virus and divergent H7 subtypic- and heterosubtypic influenza A viruses.

    PubMed

    Guo, Li; Wang, Dayan; Zhou, Hongli; Wu, Chao; Gao, Xin; Xiao, Yan; Ren, Lili; Paranhos-Baccalà, Gláucia; Shu, Yuelong; Jin, Qi; Wang, Jianwei

    2016-02-24

    The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses.

  8. Cross-reactivity between avian influenza A (H7N9) virus and divergent H7 subtypic- and heterosubtypic influenza A viruses

    PubMed Central

    Guo, Li; Wang, Dayan; Zhou, Hongli; Wu, Chao; Gao, Xin; Xiao, Yan; Ren, Lili; Paranhos-Baccalà, Gláucia; Shu, Yuelong; Jin, Qi; Wang, Jianwei

    2016-01-01

    The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses. PMID:26907865

  9. Spatiotemporal Analysis of the Genetic Diversity of Seal Influenza A(H10N7) Virus, Northwestern Europe

    PubMed Central

    Zohari, Siamak; Krog, Jesper S.; Hall, Matthew D.; Harder, Timm C.; Bestebroer, Theo M.; van de Bildt, Marco W. G.; Spronken, Monique I.; Larsen, Lars E.; Siebert, Ursula; Wohlsein, Peter; Puff, Christina; Seehusen, Frauke; Baumgärtner, Wolfgang; Härkönen, Tero; Smits, Saskia L.; Herfst, Sander; Osterhaus, Albert D. M. E.; Fouchier, Ron A. M.; Koopmans, Marion P.; Kuiken, Thijs

    2016-01-01

    ABSTRACT Influenza A viruses are major pathogens for humans, domestic animals, and wildlife, and these viruses occasionally cross the species barrier. In spring 2014, increased mortality of harbor seals (Phoca vitulina), associated with infection with an influenza A(H10N7) virus, was reported in Sweden and Denmark. Within a few months, this virus spread to seals of the coastal waters of Germany and the Netherlands, causing the death of thousands of animals. Genetic analysis of the hemagglutinin (HA) and neuraminidase (NA) genes of this seal influenza A(H10N7) virus revealed that it was most closely related to various avian influenza A(H10N7) viruses. The collection of samples from infected seals during the course of the outbreak provided a unique opportunity to follow the adaptation of the avian virus to its new seal host. Sequence data for samples collected from 41 different seals from four different countries between April 2014 and January 2015 were obtained by Sanger sequencing and next-generation sequencing to describe the molecular epidemiology of the seal influenza A(H10N7) virus. The majority of sequence variation occurred in the HA gene, and some mutations corresponded to amino acid changes not found in H10 viruses isolated from Eurasian birds. Also, sequence variation in the HA gene was greater at the beginning than at the end of the epidemic, when a number of the mutations observed earlier had been fixed. These results imply that when an avian influenza virus jumps the species barrier from birds to seals, amino acid changes in HA may occur rapidly and are important for virus adaptation to its new mammalian host. IMPORTANCE Influenza A viruses are major pathogens for humans, domestic animals, and wildlife. In addition to the continuous circulation of influenza A viruses among various host species, cross-species transmission of influenza A viruses occurs occasionally. Wild waterfowl and shorebirds are the main reservoir for most influenza A virus subtypes

  10. Protective efficacy of orally administered, heat-killed Lactobacillus pentosus b240 against influenza A virus

    PubMed Central

    Kiso, Maki; Takano, Ryo; Sakabe, Saori; Katsura, Hiroaki; Shinya, Kyoko; Uraki, Ryuta; Watanabe, Shinji; Saito, Hiroshi; Toba, Masamichi; Kohda, Noriyuki; Kawaoka, Yoshihiro

    2013-01-01

    Influenza A(H1N1)pdm virus caused the first human pandemic of the 21st century. Although various probiotic Lactobacillus species have been shown to have anti-microbial effects against pneumonia-inducing pathogens, the prophylactic efficacy and mechanisms behind their protection remain largely unknown. Here, we evaluated the prophylactic efficacy of heat-killed Lactobacillus pentosus b240 against lethal influenza A(H1N1)pdm virus infection in a mouse model. To further define the protective responses induced by b240, we performed virologic, histopathologic, and transcriptomic analyses on the mouse lungs. Although we did not observe an appreciable effect of b240 on virus growth, cytokine production, or histopathology, gene expressional analysis revealed that oral administration of b240 differentially regulates antiviral gene expression in mouse lungs. Our results unveil the possible mechanisms behind the protection mediated by b240 against influenza virus infection and provide new insights into probiotic therapy. PMID:23535544

  11. Protective efficacy of orally administered, heat-killed Lactobacillus pentosus b240 against influenza A virus.

    PubMed

    Kiso, Maki; Takano, Ryo; Sakabe, Saori; Katsura, Hiroaki; Shinya, Kyoko; Uraki, Ryuta; Watanabe, Shinji; Saito, Hiroshi; Toba, Masamichi; Kohda, Noriyuki; Kawaoka, Yoshihiro

    2013-01-01

    Influenza A(H1N1)pdm virus caused the first human pandemic of the 21st century. Although various probiotic Lactobacillus species have been shown to have anti-microbial effects against pneumonia-inducing pathogens, the prophylactic efficacy and mechanisms behind their protection remain largely unknown. Here, we evaluated the prophylactic efficacy of heat-killed Lactobacillus pentosus b240 against lethal influenza A(H1N1)pdm virus infection in a mouse model. To further define the protective responses induced by b240, we performed virologic, histopathologic, and transcriptomic analyses on the mouse lungs. Although we did not observe an appreciable effect of b240 on virus growth, cytokine production, or histopathology, gene expressional analysis revealed that oral administration of b240 differentially regulates antiviral gene expression in mouse lungs. Our results unveil the possible mechanisms behind the protection mediated by b240 against influenza virus infection and provide new insights into probiotic therapy.

  12. Antigenic and genetic analyses of H1N1 influenza A viruses from European pigs.

    PubMed

    Brown, I H; Ludwig, S; Olsen, C W; Hannoun, C; Scholtissek, C; Hinshaw, V S; Harris, P A; McCauley, J W; Strong, I; Alexander, D J

    1997-03-01

    H1N1 influenza A viruses isolated from pigs in Europe since 1981 were examined both antigenically and genetically and compared with H1N1 viruses from other sources. H1N1 viruses from pigs and birds could be divided into three groups: avian, classical swine and 'avian-like' swine viruses. Low or no reactivity of 'avian-like' swine viruses in HI tests with monoclonal antibodies raised against classical swine viruses was associated with amino acid substitutions within antigenic sites of the haemagglutinin (HA). Phylogenetic analysis of the HA gene revealed that classical swine viruses from European pigs are most similar to each other and are closely related to North American swine strains, whilst the 'avian-like' swine viruses cluster with avian viruses. 'Avian-like' viruses introduced into pigs in the UK in 1992 apparently originated directly from strains in pigs in continental Europe at that time. The HA genes of the swine viruses examined had undergone limited variation in antigenic sites and also contained fewer potential glycosylation sites compared to human H1N1 viruses. The HA exhibited antigenic drift which was more marked in 'avian-like' swine viruses than in classical swine strains. Genetic analyses of two recent 'avian-like' swine viruses indicated that all the RNA segments are related most closely to those of avian influenza A viruses.

  13. Molecular hybridization with DNA-probes as a laboratory diagnostic test for influenza viruses.

    PubMed

    Pljusnin, A Z; Rozhkova, S A; Nolandt, O V; Bryantseva, E A; Kuznetsov, O K; Noskov, F S

    1987-01-01

    The possibilities of using DNA-copies of different influenza A virus genes cloned with recombinant bacterial plasmids for the detection of virus-specific RNA by molecular dot-hybridization were analyzed. High specificity of RNA identification has been demonstrated and it has been shown expedient to use DNA-probes with high-conservative virus genes (polymerase, nucleoprotein, or matrix) for the detection of influenza A virus subtypes (H1N1, H2N2, H3N2) and probes with corresponding hemagglutinin genes for the differentiation of the subtypes H3N2 and H1N1. The results of nasopharyngeal specimens testing proved the effectiveness of molecular dot-hybridization in epidemiological studies of influenza outbreaks, especially of mixed etiology.

  14. Influenza A virus in birds during spring migration in the Camargue, France.

    PubMed

    Lebarbenchon, Camille; Chang, Chung-Ming; van der Werf, Sylvie; Aubin, Jean-Thierry; Kayser, Yves; Ballesteros, Manuel; Renaud, François; Thomas, Frédéric; Gauthier-Clerc, Michel

    2007-10-01

    Wild aquatic birds are considered to be the natural reservoir for influenza A viruses, and previous studies have focused mainly on species in the orders Anseriformes and Charadriiformes. In this study, we surveyed a larger spectrum of potential hosts belonging to 10 avian orders. Cloacal swabs (n=1,044) from 72 free-living bird species, were analysed by reverse transcription-polymerase chain reaction for the presence of avian influenza virus. Only two Mediterranean Gulls (Larus melanocephalus) tested positive; one of these viruses was identified as an H9N2 subtype. The absence of infection among passerine birds supports the idea that the prevalence of avian influenza virus infection in terrestrial species is low.

  15. Reassortant Eurasian Avian-Like Influenza A(H1N1) Virus from a Severely Ill Child, Hunan Province, China, 2015

    PubMed Central

    Zhu, Wenfei; Zhang, Hong; Xiang, Xingyu; Zhong, Lili; Yang, Lei; Guo, Junfeng; Xie, Yiran; Li, Fangcai; Deng, Zhihong; Feng, Hong; Huang, Yiwei; Hu, Shixiong; Xu, Xin; Zou, Xiaohui; Li, Xiaodan; Bai, Tian; Chen, Yongkun; Li, Zi

    2016-01-01

    In 2015, a novel influenza A(H1N1) virus was isolated from a boy in China who had severe pneumonia. The virus was a genetic reassortant of Eurasian avian-like influenza A(H1N1) (EA-H1N1) virus. The hemagglutinin, neuraminidase, and matrix genes of the reassortant virus were highly similar to genes in EA-H1N1 swine influenza viruses, the polybasic 1 and 2, polymerase acidic, and nucleoprotein genes originated from influenza A(H1N1)pdm09 virus, and the nonstructural protein gene derived from classical swine influenza A(H1N1) (CS H1N1) virus. In a mouse model, the reassortant virus, termed influenza A/Hunan/42443/2015(H1N1) virus, showed higher infectivity and virulence than another human EA-H1N1 isolate, influenza A/Jiangsu/1/2011(H1N1) virus. In the respiratory tract of mice, virus replication by influenza A/Hunan/42443/2015(H1N1) virus was substantially higher than that by influenza A/Jiangsu/1/2011(H1N1) virus. Human-to-human transmission of influenza A/Hunan/42443/2015(H1N1) virus has not been detected; however, given the circulation of novel EA-H1N1 viruses in pigs, enhanced surveillance should be instituted among swine and humans. PMID:27767007

  16. The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses.

    PubMed

    Parrish, Colin R; Kawaoka, Yoshihiro

    2005-01-01

    Transfer of viruses between hosts to create a new self-sustaining epidemic is rare; however, those new viruses can cause severe outbreaks. Examples of such viruses include three pandemic human influenza A viruses and canine parvovirus in dogs. In each case one virus made the original transfer and spread worldwide, and then further adaptation resulted in the emergence of variants worldwide. For the influenza viruses several changes were required for growth and spread between humans, and the emergence of human H2N2 and H3N2 strains in 1957 and 1968 involved the acquisition of three or two new genomic segments, respectively. Adaptation to humans involved several viral genes including the hemagglutinin, the neuraminidase, and the replication proteins. The canine adaptation of the parvoviruses involved capsid protein changes altering the recognition of the host transferrin receptors, allowing canine transferrin receptor binding and its use as a receptor for cell infection.

  17. Influenza A Virus Hemagglutinin Trimerization Completes Monomer Folding and Antigenicity

    PubMed Central

    Magadán, Javier G.; Khurana, Surender; Das, Suman R.; Frank, Gregory M.; Stevens, James; Golding, Hana; Bennink, Jack R.

    2013-01-01

    Influenza A virus (IAV) remains an important human pathogen largely because of antigenic drift, the rapid emergence of antibody escape mutants that precludes durable vaccination. The most potent neutralizing antibodies interact with cognate epitopes in the globular “head” domain of hemagglutinin (HA), a homotrimeric glycoprotein. The H1 HA possesses five distinct regions defined by a large number of mouse monoclonal antibodies (MAbs), i.e., Ca1, Ca2, Cb, Sa, and Sb. Ca1-Ca2 sites require HA trimerization to attain full antigenicity, consistent with their locations on opposite sides of the trimer interface. Here, we show that full antigenicity of Cb and Sa sites also requires HA trimerization, as revealed by immunofluorescence microscopy of IAV-infected cells and biochemically by pulse-chase radiolabeling experiments. Surprisingly, epitope antigenicity acquired by HA trimerization persists following acid triggering of the globular domains dissociation and even after proteolytic release of monomeric heads from acid-treated HA. Thus, the requirement for HA trimerization by trimer-specific MAbs mapping to the Ca, Cb, and Sa sites is not dependent upon the bridging of adjacent monomers in the native HA trimer. Rather, complete antigenicity of HA (and, by inference, immunogenicity) requires a final folding step that accompanies its trimerization. Once this conformational change occurs, HA trimers themselves would not necessarily be required to induce a highly diverse neutralizing response to epitopes in the globular domain. PMID:23824811

  18. Low-pH Stability of Influenza A Virus Sialidase Contributing to Virus Replication and Pandemic.

    PubMed

    Takahashi, Tadanobu; Suzuki, Takashi

    2015-01-01

    The spike glycoprotein neuraminidase (NA) of influenza A virus (IAV) has sialidase activity that cleaves the terminal sialic acids (viral receptors) from oligosaccharide chains of glycoconjugates. A new antigenicity of viral surface glycoproteins for humans has pandemic potential. We found "low-pH stability of sialidase activity" in NA. The low-pH stability can maintain sialidase activity under acidic conditions of pH 4-5. For human IAVs, NAs of all pandemic viruses were low-pH-stable, whereas those of almost all human seasonal viruses were not. The low-pH stability was dependent on amino acid residues near the active site, the calcium ion-binding site, and the subunit interfaces of the NA homotetramer, suggesting effects of the active site and the homotetramer on structural stability. IAVs with the low-pH-stable NA showed much higher virus replication rates than those of IAVs with low-pH-unstable NA, which was correlated with maintenance of sialidase activity under an endocytic pathway of the viral cell entry mechanism, indicating contribution of low-pH stability to high replication rates of pandemic viruses. The low-pH-stable NA of the 1968 H3N2 pandemic virus was derived from the low-pH-stable NA of H2N2 human seasonal virus, one of two types classified by both low-pH stability in N2 NA and a phylogenetic tree of N2 NA genes. The 2009 H1N1 pandemic virus acquired low-pH-stable NA by two amino acid substitutions at the early stage of the 2009 pandemic. It is thought that low-pH stability contributes to infection spread in a pandemic through enhancement of virus replication.

  19. Evidence that the matrix protein of influenza C virus is coded for by a spliced mRNA.

    PubMed Central

    Yamashita, M; Krystal, M; Palese, P

    1988-01-01

    In contrast to influenza A and B viruses, which encode their matrix (M) proteins via an unspliced mRNA, the influenza C virus M protein appears to be coded for by a spliced mRNA from RNA segment 6. Although an open reading frame in RNA segment 6 of influenza C/JJ/50 virus could potentially code for a protein of 374 amino acids, a splicing event results in an mRNA coding for a 242-amino-acid M protein. The message for this protein represents the major M gene-specific mRNA species in C virus-infected cells. Despite the difference in coding strategies, there are sequence homologies among the M proteins of influenza A, B, and C viruses which confirm the evolutionary relationship of the three influenza virus types. Images PMID:3404579

  20. Experimental Approaches to Study Genome Packaging of Influenza A Viruses

    PubMed Central

    Isel, Catherine; Munier, Sandie; Naffakh, Nadia

    2016-01-01

    The genome of influenza A viruses (IAV) consists of eight single-stranded negative sense viral RNAs (vRNAs) encapsidated into viral ribonucleoproteins (vRNPs). It is now well established that genome packaging (i.e., the incorporation of a set of eight distinct vRNPs into budding viral particles), follows a specific pathway guided by segment-specific cis-acting packaging signals on each vRNA. However, the precise nature and function of the packaging signals, and the mechanisms underlying the assembly of vRNPs into sub-bundles in the cytoplasm and their selective packaging at the viral budding site, remain largely unknown. Here, we review the diverse and complementary methods currently being used to elucidate these aspects of the viral cycle. They range from conventional and competitive reverse genetics, single molecule imaging of vRNPs by fluorescence in situ hybridization (FISH) and high-resolution electron microscopy and tomography of budding viral particles, to solely in vitro approaches to investigate vRNA-vRNA interactions at the molecular level. PMID:27517951

  1. Dietary lactosucrose suppresses influenza A (H1N1) virus infection in mice

    PubMed Central

    KISHINO, Eriko; TAKEMURA, Naho; MASAKI, Hisaharu; ITO, Tetsuya; NAKAZAWA, Masatoshi

    2015-01-01

    This study examined the effects of lactosucrose (4G-β-D-galactosylsucrose) on influenza A virus infections in mice. First, the effects of lactosucrose on fermentation in the cecum and on immune function were investigated. In female BALB/c mice, lactosucrose supplementation for 6 weeks promoted cecal fermentation and increased both secretory IgA (SIgA) levels in feces and total IgA and IgG2a concentrations in serum. Both the percentage of CD4+ T cells in Peyer’s patches and the cytotoxic activity of splenic natural killer (NK) cells increased significantly in response to lactosucrose. Next, we examined the effects of lactosucrose on low-dose influenza A virus infection in mice. After 2 weeks of dietary supplementation with lactosucrose, the mice were infected with low-dose influenza A virus. At 7 days post infection, a comparison with control mice showed that weight loss was suppressed, as were viral titers in the lungs. In the spleens of lactosucrose-fed mice, there was an increase in the percentage of NK cells. Lastly, mice fed lactosucrose were challenged with a lethal dose of influenza A virus. The survival rate of these mice was significantly higher than that of mice fed a control diet. These results suggested that lactosucrose supplementation suppresses influenza A virus infection by augmenting innate immune responses and enhancing cellular and mucosal immunity. PMID:26594606

  2. Identification of small molecule inhibitors for influenza a virus using in silico and in vitro approaches

    PubMed Central

    Makau, Juliann Nzembi; Watanabe, Ken; Ishikawa, Takeshi; Mizuta, Satoshi; Hamada, Tsuyoshi; Kobayashi, Nobuyuki; Nishida, Noriyuki

    2017-01-01

    Influenza viruses have acquired resistance to approved neuraminidase-targeting drugs, increasing the need for new drug targets for the development of novel anti-influenza drugs. Nucleoprotein (NP) is an attractive target since it has an indispensable role in virus replication and its amino acid sequence is well conserved. In this study, we aimed to identify new inhibitors of the NP using a structure-based drug discovery algorithm, named Nagasaki University Docking Engine (NUDE), which has been established especially for the Destination for GPU Intensive Machine (DEGIMA) supercomputer. The hit compounds that showed high binding scores during in silico screening were subsequently evaluated for anti-influenza virus effects using a cell-based assay. A 4-hydroxyquinolinone compound, designated as NUD-1, was found to inhibit the replication of influenza virus in cultured cells. Analysis of binding between NUD-1 and NP using surface plasmon resonance assay and fragment molecular orbital calculations confirmed that NUD-1 binds to NP and could interfere with NP-NP interactions essential for virus replication. Time-of-addition experiments showed that the compound inhibited the mid-stage of infection, corresponding to assembly of the NP and other viral proteins. Moreover, NUD-1 was also effective against various types of influenza A viruses including a clinical isolate of A(H1N1)pdm09 influenza with a 50% inhibitory concentration range of 1.8–2.1 μM. Our data demonstrate that the combined use of NUDE system followed by the cell-based assay is useful to obtain lead compounds for the development of novel anti-influenza drugs. PMID:28273150

  3. Identification of small molecule inhibitors for influenza a virus using in silico and in vitro approaches.

    PubMed

    Makau, Juliann Nzembi; Watanabe, Ken; Ishikawa, Takeshi; Mizuta, Satoshi; Hamada, Tsuyoshi; Kobayashi, Nobuyuki; Nishida, Noriyuki

    2017-01-01

    Influenza viruses have acquired resistance to approved neuraminidase-targeting drugs, increasing the need for new drug targets for the development of novel anti-influenza drugs. Nucleoprotein (NP) is an attractive target since it has an indispensable role in virus replication and its amino acid sequence is well conserved. In this study, we aimed to identify new inhibitors of the NP using a structure-based drug discovery algorithm, named Nagasaki University Docking Engine (NUDE), which has been established especially for the Destination for GPU Intensive Machine (DEGIMA) supercomputer. The hit compounds that showed high binding scores during in silico screening were subsequently evaluated for anti-influenza virus effects using a cell-based assay. A 4-hydroxyquinolinone compound, designated as NUD-1, was found to inhibit the replication of influenza virus in cultured cells. Analysis of binding between NUD-1 and NP using surface plasmon resonance assay and fragment molecular orbital calculations confirmed that NUD-1 binds to NP and could interfere with NP-NP interactions essential for virus replication. Time-of-addition experiments showed that the compound inhibited the mid-stage of infection, corresponding to assembly of the NP and other viral proteins. Moreover, NUD-1 was also effective against various types of influenza A viruses including a clinical isolate of A(H1N1)pdm09 influenza with a 50% inhibitory concentration range of 1.8-2.1 μM. Our data demonstrate that the combined use of NUDE system followed by the cell-based assay is useful to obtain lead compounds for the development of novel anti-influenza drugs.

  4. On the spread of the novel influenza A (H1N1) virus in Mexico.

    PubMed

    López-Cervantes, Malaquías; Venado, Aida; Moreno, Andrés; Pacheco-Domínguez, Reyna L; Ortega-Pierres, Guadalupe

    2009-06-01

    A novel influenza A H1N1 virus of swine origin is responsible for the influenza epidemic affecting Mexico, the United States of America (USA), and 39 other countries. While the origin of this emerging pathogen remains uncertain, an increase in the reported incidence of respiratory diseases was noted during March 2009 at the town of La Gloria, in the southeastern state of Veracruz, Mexico. So far, this is the first community in which a case of novel influenza A H1N1 virus has been identified. Further cases were rapidly detected in other areas of Mexico and elsewhere. Initially, the atypical respiratory disease outbreak caused great uncertainty posing a challenge to the Mexican health system. Control measures such as social distancing, timely medical care, and personal hygiene have so far proven effective in containing the outbreak, resulting in a decline of the number of new cases. To the best of our knowledge, it appears that the virus might not be as virulent or contagious as previously thought. Here we provide a description of the influenza epidemic spread in Mexico. As the virus disseminates worldwide, there is concern about the possibility of a new reassortment resulting in a more pathogenic strain that will pose a threat for every country. The influenza epidemic provided lessons that underscore the importance of epidemiologic surveillance and preparedness. Further investigation to address questions about this new virus and conditions for its spread is warranted.

  5. Biogenesis, assembly, and export of viral messenger ribonucleoproteins in the influenza A virus infected cell.

    PubMed

    York, Ashley; Fodor, Ervin

    2013-08-01

    The flow of genetic information from sites of transcription within the nucleus to the cytoplasmic translational machinery of eukaryotic cells is obstructed by a physical blockade, the nuclear double membrane, which must be overcome in order to adhere to the central dogma of molecular biology, DNA makes RNA makes protein. Advancement in the field of cellular and molecular biology has painted a detailed picture of the molecular mechanisms from transcription of genes to mRNAs and their processing that is closely coupled to export from the nucleus. The rules that govern delivering messenger transcripts from the nucleus must be obeyed by influenza A virus, a member of the Orthomyxoviridae that has adopted a nuclear replication cycle. The negative-sense genome of influenza A virus is segmented into eight individual viral ribonucleoprotein (vRNP) complexes containing the viral RNA-dependent RNA polymerase and single-stranded RNA encapsidated in viral nucleoprotein. Influenza A virus mRNAs fall into three major categories, intronless, intron-containing unspliced and spliced. During evolutionary history, influenza A virus has conceived a way of negotiating the passage of viral transcripts from the nucleus to cytoplasmic sites of protein synthesis. The major mRNA nuclear export NXF1 pathway is increasingly implicated in viral mRNA export and this review considers and discusses the current understanding of how influenza A virus exploits the host mRNA export pathway for replication.

  6. Emergence of H7N9 Influenza A Virus Resistant to Neuraminidase Inhibitors in Nonhuman Primates

    PubMed Central

    Shichinohe, Shintaro; Nakayama, Misako; Igarashi, Manabu; Ishii, Akihiro; Ishigaki, Hirohito; Ishida, Hideaki; Kitagawa, Naoko; Sasamura, Takako; Shiohara, Masanori; Doi, Michiko; Tsuchiya, Hideaki; Nakamura, Shinichiro; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi

    2015-01-01

    The number of patients infected with H7N9 influenza virus has been increasing since 2013. We examined the efficacy of neuraminidase (NA) inhibitors and the efficacy of a vaccine against an H7N9 influenza virus, A/Anhui/1/2013 (H7N9), isolated from a patient in a cynomolgus macaque model. NA inhibitors (oseltamivir and peramivir) barely reduced the total virus amount because of the emergence of resistant variants with R289K or I219T in NA [residues 289 and 219 in N9 of A/Anhui/1/2013 (H7N9) correspond to 292 and 222 in N2, respectively] in three of the six treated macaques, whereas subcutaneous immunization of an inactivated vaccine derived from A/duck/Mongolia/119/2008 (H7N9) prevented propagation of A/Anhui/1/2013 (H7N9) in all vaccinated macaques. The percentage of macaques in which variant H7N9 viruses with low sensitivity to the NA inhibitors were detected was much higher than that of macaques in which variant H5N1 highly pathogenic influenza virus was detected after treatment with one of the NA inhibitors in our previous study. The virus with R289K in NA was reported in samples from human patients, whereas that with I219T in NA was identified for the first time in this study using macaques, though no variant H7N9 virus was reported in previous studies using mice. Therefore, the macaque model enables prediction of the frequency of emerging H7N9 virus resistant to NA inhibitors in vivo. Since H7N9 strains resistant to NA inhibitors might easily emerge compared to other influenza viruses, monitoring of the emergence of variants is required during treatment of H7N9 influenza virus infection with NA inhibitors. PMID:26055368

  7. Isolation and genetic characterization of avian influenza viruses and a Newcastle disease virus from wild birds in Barbados: 2003-2004.

    PubMed

    Douglas, Kirk O; Lavoie, Marc C; Kim, L Mia; Afonso, Claudio L; Suarez, David L

    2007-09-01

    Zoonotic transmission of an H5N1 avian influenza A virus to humans in 2003-present has generated increased public health and scientific interest in the prevalence and variability of influenza A viruses in wild birds and their potential threat to human health. Migratory waterfowl and shorebirds are regarded as the primordial reservoir of all influenza A viral subtypes and have been repeatedly implicated in avian influenza outbreaks in domestic poultry and swine. All of the 16 hemagglutinin and nine neuraminidase influenza subtypes have been isolated from wild birds, but waterfowl of the order Anseriformes are the most commonly infected. Using 9-to-11-day-old embryonating chicken egg culture, virus isolation attempts were conducted on 168 cloacal swabs from various resident, imported, and migratory bird species in Barbados during the months of July to October of 2003 and 2004. Hemagglutination assay and reverse transcription-polymerase chain reaction were used to screen all allantoic fluids for the presence of hemagglutinating agents and influenza A virus. Hemagglutination positive-influenza negative samples were also tested for Newcastle disease virus (NDV), which is also found in waterfowl. Two influenza A viruses and one NDV were isolated from Anseriformes (40/168), with isolation rates of 5.0% (2/40) and 2.5% (1/40), respectively, for influenza A and NDV. Sequence analysis of the influenza A virus isolates showed them to be H4N3 viruses that clustered with other North American avian influenza viruses. This is the first report of the presence of influenza A virus and NDV in wild birds in the English-speaking Caribbean.

  8. Influenza A virus hemagglutinin and neuraminidase act as novel motile machinery

    PubMed Central

    Sakai, Tatsuya; Nishimura, Shin I.; Naito, Tadasuke; Saito, Mineki

    2017-01-01

    Influenza A virus (IAV) membrane proteins hemagglutinin (HA) and neuraminidase (NA) are determinants of virus infectivity, transmissibility, pathogenicity, host specificity, and major antigenicity. HA binds to a virus receptor, a sialoglycoprotein or sialoglycolipid, on the host cell and mediates virus attachment to the cell surface. The hydrolytic enzyme NA cleaves sialic acid from viral receptors and accelerates the release of progeny virus from host cells. In this study, we identified a novel function of HA and NA as machinery for viral motility. HAs exchanged binding partner receptors iteratively, generating virus movement on a receptor-coated glass surface instead of a cell surface. The virus movement was also dependent on NA. Virus movement mediated by HA and NA resulted in a three to four-fold increase in virus internalisation by cultured cells. We concluded that cooperation of HA and NA moves IAV particles on a cell surface and enhances virus infection of host cells. PMID:28344335

  9. Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus.

    PubMed

    Liu, Mi; Zhao, Xiang; Hua, Sha; Du, Xiangjun; Peng, Yousong; Li, Xiyan; Lan, Yu; Wang, Dayan; Wu, Aiping; Shu, Yuelong; Jiang, Taijiao

    2015-09-28

    The influenza A (H1N1) virus causes seasonal epidemics that result in severe illnesses and deaths almost every year. A deep understanding of the antigenic patterns and evolution of human influenza A (H1N1) virus is extremely important for its effective surveillance and prevention. Through development of antigenicity inference method for human influenza A (H1N1), named PREDAC-H1, we systematically mapped the antigenic patterns and evolution of the human influenza A (H1N1) virus. Eight dominant antigenic clusters have been inferred for seasonal H1N1 viruses since 1977, which demonstrated sequential replacements over time with a similar pattern in Asia, Europe and North America. Among them, six clusters emerged first in Asia. As for China, three of the eight antigenic clusters were detected in South China earlier than in North China, indicating the leading role of South China in H1N1 transmission. The comprehensive view of the antigenic evolution of human influenza A (H1N1) virus can help formulate better strategy for its prevention and control.

  10. Validation of the TaqMan Influenza A Detection Kit and a rapid automated total nucleic acid extraction method to detect influenza A virus in nasopharyngeal specimens.

    PubMed

    Bolotin, Shelly; De Lima, Cedric; Choi, Kam-Wing; Lombos, Ernesto; Burton, Laura; Mazzulli, Tony; Drews, Steven J

    2009-01-01

    This study describes the validation of the TaqMan Influenza A Detection Kit v2.0 combined with an automated nucleic acid extraction method. The limit of detection of this assay was determined by probit regression (95% confidence interval) to be 2 influenza A/PR/8/34 (H1N1) virus particles per microlitre. One hundred and eleven specimens previously tested using the Seeplex RV assay and viral culture methods were tested using the TaqMan Influenza A Detection Kit. Compared to the aggregate gold-standard, the sensitivity and specificity of the TaqMan Influenza A Detection Kit were 100% (35/35) and 97% (74/76), respectively. Because of its accuracy, quick turn-around-time and lyophilized bead form, the TaqMan Influenza A Detection Kit, combined with the NucliSense easyMAG automated extraction method, constitutes a reliable protocol for influenza A diagnosis.

  11. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential

    PubMed Central

    Richard, Mathilde; Fouchier, Ron A.M.

    2015-01-01

    Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks. PMID:26385895

  12. Avian Influenza A(H5N1) Virus in Egypt

    PubMed Central

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Maatouq, Asmaa M.; Cai, Zhipeng; McKenzie, Pamela P.; Webby, Richard J.; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A.

    2016-01-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  13. Avian Influenza A(H5N1) Virus in Egypt.

    PubMed

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Maatouq, Asmaa M; Cai, Zhipeng; McKenzie, Pamela P; Webby, Richard J; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A

    2016-03-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt.

  14. Selective Bottlenecks Shape Evolutionary Pathways Taken during Mammalian Adaptation of a 1918-like Avian Influenza Virus.

    PubMed

    Moncla, Louise H; Zhong, Gongxun; Nelson, Chase W; Dinis, Jorge M; Mutschler, James; Hughes, Austin L; Watanabe, Tokiko; Kawaoka, Yoshihiro; Friedrich, Thomas C

    2016-02-10

    Avian influenza virus reassortants resembling the 1918 human pandemic virus can become transmissible among mammals by acquiring mutations in hemagglutinin (HA) and polymerase. Using the ferret model, we trace the evolutionary pathway by which an avian-like virus evolves the capacity for mammalian replication and airborne transmission. During initial infection, within-host HA diversity increased drastically. Then, airborne transmission fixed two polymerase mutations that do not confer a detectable replication advantage. In later transmissions, selection fixed advantageous HA1 variants. Transmission initially involved a "loose" bottleneck, which became strongly selective after additional HA mutations emerged. The stringency and evolutionary forces governing between-host bottlenecks may therefore change throughout host adaptation. Mutations occurred in multiple combinations in transmitted viruses, suggesting that mammalian transmissibility can evolve through multiple genetic pathways despite phenotypic constraints. Our data provide a glimpse into avian influenza virus adaptation in mammals, with broad implications for surveillance on potentially zoonotic viruses.

  15. The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication.

    PubMed

    Portela, Agustín; Digard, Paul

    2002-04-01

    All viruses with negative-sense RNA genomes encode a single-strand RNA-binding nucleoprotein (NP). The primary function of NP is to encapsidate the virus genome for the purposes of RNA transcription, replication and packaging. The purpose of this review is to illustrate using the influenza virus NP as a well-studied example that the molecule is much more than a structural RNA-binding protein, but also functions as a key adapter molecule between virus and host cell processes. It does so through the ability to interact with a wide variety of viral and cellular macromolecules, including RNA, itself, two subunits of the viral RNA-dependent RNA polymerase and the viral matrix protein. NP also interacts with cellular polypeptides, including actin, components of the nuclear import and export apparatus and a nuclear RNA helicase. The evidence for the existence of each of these activities and their possible roles in transcription, replication and intracellular trafficking of the virus genome is considered.

  16. Hemagglutinin Stalk-Based Universal Vaccine Constructs Protect against Group 2 Influenza A Viruses

    PubMed Central

    Margine, I.; Hai, R.; Heaton, N. S.; Tan, G. S.; Andrews, S. A.; Runstadler, J. A.; Wilson, P. C.; Albrecht, R. A.; García-Sastre, A.

    2013-01-01

    Current influenza virus vaccines contain H1N1 (phylogenetic group 1 hemagglutinin), H3N2 (phylogenetic group 2 hemagglutinin), and influenza B virus components. These vaccines induce good protection against closely matched strains by predominantly eliciting antibodies against the membrane distal globular head domain of their respective viral hemagglutinins. This domain, however, undergoes rapid antigenic drift, allowing the virus to escape neutralizing antibody responses. The membrane proximal stalk domain of the hemagglutinin is much more conserved compared to the head domain. In recent years, a growing collection of antibodies that neutralize a broad range of influenza virus strains and subtypes by binding to this domain has been isolated. Here, we demonstrate that a vaccination strategy based on the stalk domain of the H3 hemagglutinin (group 2) induces in mice broadly neutralizing anti-stalk antibodies that are highly cross-reactive to heterologous H3, H10, H14, H15, and H7 (derived from the novel Chinese H7N9 virus) hemagglutinins. Furthermore, we demonstrate that these antibodies confer broad protection against influenza viruses expressing various group 2 hemagglutinins, including an H7 subtype. Through passive transfer experiments, we show that the protection is mediated mainly by neutralizing antibodies against the stalk domain. Our data suggest that, in mice, a vaccine strategy based on the hemagglutinin stalk domain can protect against viruses expressing divergent group 2 hemagglutinins. PMID:23903831

  17. Inhibitory effects of carbocisteine on type A seasonal influenza virus infection in human airway epithelial cells.

    PubMed

    Yamaya, Mutsuo; Nishimura, Hidekazu; Shinya, Kyoko; Hatachi, Yukimasa; Sasaki, Takahiko; Yasuda, Hiroyasu; Yoshida, Motoki; Asada, Masanori; Fujino, Naoya; Suzuki, Takaya; Deng, Xue; Kubo, Hiroshi; Nagatomi, Ryoichi

    2010-08-01

    Type A human seasonal influenza (FluA) virus infection causes exacerbations of bronchial asthma and chronic obstructive pulmonary disease (COPD). l-carbocisteine, a mucolytic agent, reduces the frequency of common colds and exacerbations in COPD. However, the inhibitory effects of l-carbocisteine on FluA virus infection are uncertain. We studied the effects of l-carbocisteine on FluA virus infection in airway epithelial cells. Human tracheal epithelial cells were pretreated with l-carbocisteine and infected with FluA virus (H(3)N(2)). Viral titers in supernatant fluids, RNA of FluA virus in the cells, and concentrations of proinflammatory cytokines in supernatant fluids, including IL-6, increased with time after infection. l-carbocisteine reduced viral titers in supernatant fluids, RNA of FluA virus in the cells, the susceptibility to FluA virus infection, and concentrations of cytokines induced by virus infection. The epithelial cells expressed sialic acid with an alpha2,6-linkage (SAalpha2,6Gal), a receptor for human influenza virus on the cells, and l-carbocisteine reduced the expression of SAalpha2,6Gal. l-carbocisteine reduced the number of acidic endosomes from which FluA viral RNA enters into the cytoplasm and reduced the fluorescence intensity from acidic endosomes. Furthermore, l-carbocisteine reduced NF-kappaB proteins including p50 and p65 in the nuclear extracts of the cells. These findings suggest that l-carbocisteine may inhibit FluA virus infection, partly through the reduced expression of the receptor for human influenza virus in the human airway epithelial cells via the inhibition of NF-kappaB and through increasing pH in endosomes. l-carbocisteine may reduce airway inflammation in influenza virus infection.

  18. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    PubMed

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed

  19. Recent discoveries of influenza A drug target sites to combat virus replication.

    PubMed

    Patel, Hershna; Kukol, Andreas

    2016-06-15

    Sequence variations in the binding sites of influenza A proteins are known to limit the effectiveness of current antiviral drugs. Clinically, this leads to increased rates of virus transmission and pathogenicity. Potential influenza A inhibitors are continually being discovered as a result of high-throughput cell based screening studies, whereas the application of computational tools to aid drug discovery has further increased the number of predicted inhibitors reported. This review brings together the aspects that relate to the identification of influenza A drug target sites and the findings from recent antiviral drug discovery strategies.

  20. Avian influenza viruses and human health.

    PubMed

    Alexander, D J

    2006-01-01

    Influenza A viruses cause natural infections of humans, some other mammals and birds. Few of the 16 haemagglutinin and nine neuraminidase subtype combinations have been isolated from mammals, but all subtypes have been isolated from birds. In the 20th century, there were four pandemics of influenza as a result of the emergence of antigenically different strains in humans: 1918 (H1N1), 1957 (H2N2), 1968 (H3N2) and 1977 (H1N1). Influenza A viruses contain eight distinct RNA genes and reassortment of these can occur in mixed infections with different viruses. The 1957 and 1968 pandemic viruses differed from the preceding viruses in humans by the substitution of genes that came from avian viruses, suggesting they arose by genetic reassortment of viruses of human and avian origin. Up to 1995, there had been only three reports of avian influenza viruses infecting humans, in 1959, 1977 and 1981 (all H7N7), but, since 1996, there have been regular reports of natural infections of humans with avian influenza viruses: in England in 1996 (H7N7), Hong Kong 1997 (H5N1), 1999 (H9N2), and 2003 (H5N1), in The Netherlands 2003 (H7N7), Canada 2004 (H7N3), Vietnam 2004 (H5N1) and Thailand 2004 (H5N1). The H5N1 virus is alarming because 51 (64 %) of the 80 people confirmed as infected since 1997 have died.

  1. Influenza A(H1N1)pdm09 virus in pigs, Réunion Island.

    PubMed

    Cardinale, Eric; Pascalis, Hervé; Temmam, Sarah; Hervé, Séverine; Saulnier, Aure; Turpin, Magali; Barbier, Nicolas; Hoarau, Johny; Quéguiner, Stéphane; Gorin, Stéphane; Foray, Coralie; Roger, Matthieu; Porphyre, Vincent; André, Paul; Thomas, Thierry; de Lamballerie, Xavier; Dellagi, Koussay; Simon, Gaëlle

    2012-10-01

    During 2009, pandemic influenza A(H1N1)pdm09 virus affected humans on Réunion Island. Since then, the virus has sustained circulation among local swine herds, raising concerns about the potential for genetic evolution of the virus and possible retransmission back to humans of variants with increased virulence. Continuous surveillance of A(H1N1)pdm09 infection in pigs is recommended.

  2. Transmission of avian H9N2 influenza viruses in a murine model.

    PubMed

    Wu, Rui; Sui, Zhiwei; Liu, Zewen; Liang, Wangwang; Yang, Keli; Xiong, Zhongliang; Xu, Diping

    2010-05-19

    Avian H9N2 influenza viruses have circulated widely in domestic poultry around the world, resulting in occasional transmission of virus from infected poultry to humans. However, it is unknown whether H9N2 influenza virus has acquired the ability to be transmitted from human to human. Here, we report that mouse-adapted H9N2 influenza viruses can replicate efficiently and are lethal for several strains of mice. To evaluate the transmissibility of mouse-adapted H9N2 influenza viruses, we carried out transmission studies in mice using both contact and respiratory droplet routes. Our results indicate that mouse-adapted H9N2 influenza viruses can replicate efficiently and be transmitted between mice. This suggests that once H9N2 influenza viruses adapt to new host, they should present potential public health risks, therefore, urgent attention should be paid to H9N2 influenza viruses.

  3. Avian influenza A (H7N9) virus infection in humans: epidemiology, evolution, and pathogenesis.

    PubMed

    Husain, Matloob

    2014-12-01

    New human influenza A virus strains regularly emerge causing seasonal epidemics and occasional pandemics. Lately, several zoonotic avian influenza A strains have been reported to directly infect humans. In early 2013, a novel avian influenza A virus (H7N9) strain was discovered in China to cause severe respiratory disease in humans. Since then, over 450 human cases of H7N9 infection have been discovered and 165 of them have died. Multiple epidemiological, phylogenetic, in vivo, and in vitro studies have been done to determine the origin and pathogenesis of novel H7N9 strain. This article reviews the literature related to the epidemiology, evolution, and pathogenesis of the H7N9 strain since its discovery in February 2013 till August 2014. The data available so far indicate that H7N9 was originated by a two-step reassortment process in birds and transmitted to humans through direct contact with live-bird markets. H7N9 is a low-pathogenic avian virus and contains several molecular signatures for adaptation in mammals. The severity of the respiratory disease caused by novel H7N9 virus in humans can be partly attributed to the age, sex, and underlying medical conditions of the patients. A universal influenza vaccine is not available, though several strain-specific H7N9 candidate vaccine viruses have been developed. Further, novel H7N9 virus is resistant to antiviral drug amantadine and some H7N9 isolates have acquired the resistance to neuraminidase-inhibitors. Therefore, constant surveillance and prompt control measures combined with novel research approaches to develop alternative and effective anti-influenza strategies are needed to overcome influenza A virus.

  4. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential.

    PubMed

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C; Smith, Derek J; Kawaoka, Yoshihiro

    2014-06-11

    Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited pathogenicity in mice and ferrets higher than that in an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential.

  5. Full-Genome Sequence of a Reassortant H1N1 Swine Influenza Virus Isolated from Pigs in Italy.

    PubMed

    Chiapponi, Chiara; Baioni, Laura; Luppi, Andrea; Moreno, Ana; Castellan, Alberto; Foni, Emanuela

    2013-10-03

    In this study, the full-genome sequence of a novel reassortant H1N1 swine influenza virus (SIV) is reported. The isolate has a hemagglutinin (HA) gene of the pandemic H1N1 influenza virus, but it carries the seven genome segments of the avian-origin H1N1 SIV currently circulating in European pig farms.

  6. Full-Genome Sequence of a Reassortant H1N1 Swine Influenza Virus Isolated from Pigs in Italy

    PubMed Central

    Chiapponi, Chiara; Baioni, Laura; Luppi, Andrea; Moreno, Ana; Castellan, Alberto

    2013-01-01

    In this study, the full-genome sequence of a novel reassortant H1N1 swine influenza virus (SIV) is reported. The isolate has a hemagglutinin (HA) gene of the pandemic H1N1 influenza virus, but it carries the seven genome segments of the avian-origin H1N1 SIV currently circulating in European pig farms. PMID:24092781

  7. Characterization of triple reassortant H1N1 influenza A viruses from swine in Ohio.

    PubMed

    Yassine, H M; Khatri, M; Zhang, Y J; Lee, C W; Byrum, B A; O'Quin, J; Smith, K A; Saif, Y M

    2009-10-20

    An H1N1 influenza A virus, A/swine/Ohio/24366/07, was isolated from pigs in an Ohio county fair. Twenty-six people who came in contact with the infected pigs developed respiratory disease and two of these people were laboratory confirmed as H1N1 by the Centers for Disease Control and Prevention (CDC). The A/swine/Ohio/24366/07 virus we isolated from swine was shown at the CDC to have 100% identical genome sequence to the human virus associated with the county fair. This prompted us to characterize three swine and two human origin H1N1 influenza A viruses isolated at different time points in the State of Ohio. The three swine viruses were shown to be triple reassortant viruses harboring genes of human (PB1), swine (HA, NA, NP, M, and NS), and avian (PB2 and PA) lineage viruses. Although viruses evaluated in this study were isolated during a short time interval (3 years), genetic drift was observed within the HA and NA genes, including changes at the receptor binding and antigenic sites of HA1 protein. Nevertheless, all viruses exhibited antigenic similarity as evaluated with hemagglutination inhibition and virus neutralizing tests. Internal genes were similar to other reassortant viruses of various subtypes currently circulating in the United States. Interestingly, two of the swine viruses including the 2007 isolate replicated well in human airway epithelial cells, however, another virus isolated in 2006 showed very little replication.

  8. Viva la Revolución: Rethinking Influenza A Virus Antigenic Drift

    PubMed Central

    Yewdell, Jonathan W.

    2011-01-01

    Rapid antigenic evolution of the influenza A virus hemagglutinin has precluded developing vaccines that provide durable protection. The yearly costs of influenza (circa $1011 in the USA alone) easily justify investments in better understanding the interaction of influenza with antibodies and other inducible elements of the immune system that potentially limit or circumvent antigenic variation. Here, I summarize exciting new findings that offer the possibility of a quantum improvement in vaccine efficacy, focusing on studies clearly documenting robust neutralizing antibody responses to the conserved stem region of the hemagglutinin. PMID:22034587

  9. Cellular response to influenza virus infection: a potential role for autophagy in CXCL10 and interferon-alpha induction.

    PubMed

    Law, Anna Hing-Yee; Lee, Davy Chun-Wai; Yuen, Kwok-Yung; Peiris, Malik; Lau, Allan Sik-Yin

    2010-07-01

    Historically, influenza pandemics have arisen from avian influenza viruses. Avian influenza viruses H5N1 and H9N2 are potential pandemic candidates. Infection of humans with the highly pathogenic avian influenza H5N1 virus is associated with a mortality in excess of 60%, which has been attributed to dysregulation of the cytokine system. Human macrophages and epithelial cells infected with some genotypes of H5N1 and H9N2 viruses express markedly elevated cytokine and chemokine levels when compared with seasonal influenza A subtype H1N1 virus. The mechanisms underlying this cytokine and chemokine hyperinduction are not fully elucidated. In the present study, we demonstrate that autophagy, a tightly regulated homeostatic process for self-digestion of unwanted cellular subcomponents, plays a role in cytokine induction. Autophagy is induced to a greater extent by H9N2/G1, in association with cytokine hyperinduction, compared with H1N1 and the novel pandemic swine-origin influenza A/H1N1 viruses. Using 3-methyladenine to inhibit autophagy and small interfering RNA to silence the autophagy gene, Atg5, we further show that autophagic responses play a role in influenza virus-induced CXCL10 and interferon-alpha expression in primary human blood macrophages. Our results provide new insights into the pathogenic mechanisms of avian influenza viruses.

  10. Inside the Outbreak of the 2009 Influenza A (H1N1)v Virus in Mexico

    PubMed Central

    Zepeda-Lopez, Hector M.; Perea-Araujo, Lizbeth; Miliar-García, Angel; Dominguez-López, Aarón; Xoconostle-Cázarez, Beatriz; Lara-Padilla, Eleazar; Ramírez Hernandez, Jorge A.; Sevilla-Reyes, Edgar; Orozco, Maria Esther; Ahued-Ortega, Armando; Villaseñor-Ruiz, Ignacio; Garcia-Cavazos, Ricardo J.; Teran, Luis M.

    2010-01-01

    Background Influenza viruses pose a threat to human health because of their potential to cause global disease. Between mid March and mid April a pandemic influenza A virus emerged in Mexico. This report details 202 cases of infection of humans with the 2009 influenza A virus (H1N1)v which occurred in Mexico City as well as the spread of the virus throughout the entire country. Methodology and Findings From May 1st to May 5th nasopharyngeal swabs, derived from 751 patients, were collected at 220 outpatient clinics and 28 hospitals distributed throughout Mexico City. Analysis of samples using real time RT-PCR revealed that 202 patients out of the 751 subjects (26.9%) were confirmed to be infected with the new virus. All confirmed cases of human infection with the strain influenza (H1N1)v suffered respiratory symptoms. The greatest number of confirmed cases during the outbreak of the 2009 influenza A (H1N1)v were seen in neighbourhoods on the northeast side of Mexico City including Iztapalapa, Gustavo A. Madero, Iztacalco, and Tlahuac which are the most populated areas in Mexico City. Using these data, together with data reported by the Mexican Secretariat of Health (MSH) to date, we plot the course of influenza (H1N1)v activity throughout Mexico. Conclusions Our data, which is backed up by MSH data, show that the greatest numbers of the 2009 influenza A (H1N1) cases were seen in the most populated areas. We speculate on conditions in Mexico which may have sparked this flu pandemic, the first in 41 years. We accept the hypothesis that high population density and a mass gathering which took in Iztapalapa contributed to the rapid spread of the disease which developed in three peaks of activity throughout the Country. PMID:20949040

  11. Lack of transmission of a human influenza virus with avian receptor specificity between ferrets is not due to decreased virus shedding but rather a lower infectivity in vivo.

    PubMed

    Roberts, Kim L; Shelton, Holly; Scull, Margaret; Pickles, Raymond; Barclay, Wendy S

    2011-08-01

    Influenza virus attaches to host cells by sialic acid (SA). Human influenza viruses show preferential affinity for α2,6-linked SA, whereas avian influenza viruses bind α2,3-linked SA. In this study, mutation of the haemagglutinin receptor-binding site of a human H3N2 influenza A virus to switch binding to α2,3-linked SA did not eliminate infection of ferrets but prevented transmission, even in a co-housed model. The mutant virus was shed from the noses of ferrets directly inoculated with virus in the same amounts and for the same length of time as wild-type virus. Mutant virus infection was localized to the same anatomical regions of the upper respiratory tract of directly inoculated animals. Interestingly, wild-type virus was more readily neutralized than the mutant virus in vitro by ferret nasal washes containing mucus. Moreover after inoculation of equal doses, the mutant virus grew poorly in ex vivo ferret nasal turbinate tissue compared with wild-type virus. The dose of mutant virus required to establish infection in the directly inoculated ferrets was 40-fold higher than for wild-type virus. It was concluded that minimum infectious dose is a predictor of virus transmissibility and it is suggested that, as virus passes from one host to another through stringent environmental conditions, viruses with a preference for α2,3-linked SA are unlikely to inoculate a new mammalian host in sufficient quantities to initiate a productive infection.

  12. Continual re-introduction of human pandemic H1N1 influenza A viruses into US swine, 2009-2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human-to-swine transmission of pandemic H1N1 influenza viruses (pH1N1) increased the genetic diversity of influenza A viruses in swine (swIAVs) globally and is linked to the emergence of new pandemic threats, including H3N2v variants. Through phylogenetic analysis of contemporary swIAVs in the Unit...

  13. A nuclear export signal in the matrix protein of Influenza A virus is required for efficient virus replication.

    PubMed

    Cao, Shuai; Liu, Xiaoling; Yu, Maorong; Li, Jing; Jia, Xiaojuan; Bi, Yuhai; Sun, Lei; Gao, George F; Liu, Wenjun

    2012-05-01

    The influenza A virus matrix 1 protein (M1) shuttles between the cytoplasm and the nucleus during the viral life cycle and plays an important role in the replication, assembly, and budding of viruses. Here, a leucine-rich nuclear export signal (NES) was identified specifically for the nuclear export of the M1 protein. The predicted NES, designated the Flu-A-M1 NES, is highly conserved among all sequences from the influenza A virus subtype, but no similar NES motifs are found in the M1 sequences of influenza B or C viruses. The biological function of the Flu-A-M1 NES was demonstrated by its ability to translocate an enhanced green fluorescent protein (EGFP)-NES fusion protein from the nucleus to the cytoplasm in transfected cells, compared to the even nuclear and cytoplasmic distribution of EGFP. The translocation of EGFP-NES from the nucleus to the cytoplasm was not inhibited by leptomycin B. NES mutations in M1 caused a nuclear retention of the protein and an increased nuclear accumulation of NEP during transfection. Indeed, as shown by rescued recombinant viruses, the mutation of the NES impaired the nuclear export of M1 and significantly reduced the virus titer compared to titers of wild-type viruses. The NES-defective M1 protein was retained in the nucleus during infection, accompanied by a lowered efficiency of the nuclear export of viral RNPs (vRNPs). In conclusion, M1 nuclear export was specifically dependent on the Flu-A-M1 NES and critical for influenza A virus replication.

  14. From where did the 2009 'swine-origin' influenza A virus (H1N1) emerge?

    PubMed

    Gibbs, Adrian J; Armstrong, John S; Downie, Jean C

    2009-11-24

    The swine-origin influenza A (H1N1) virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative framework coordinating

  15. Birds and viruses at a crossroad--surveillance of influenza A virus in Portuguese waterfowl.

    PubMed

    Tolf, Conny; Bengtsson, Daniel; Rodrigues, David; Latorre-Margalef, Neus; Wille, Michelle; Figueiredo, Maria Ester; Jankowska-Hjortaas, Monika; Germundsson, Anna; Duby, Pierre-Yves; Lebarbenchon, Camille; Gauthier-Clerc, Michel; Olsen, Björn; Waldenström, Jonas

    2012-01-01

    During recent years, extensive amounts of data have become available regarding influenza A virus (IAV) in wild birds in northern Europe, while information from southern Europe is more limited. Here, we present an IAV surveillance study conducted in western Portugal 2008-2009, analyzing 1653 samples from six different species of waterfowl, with the majority of samples taken from Mallards (Anas platyrhynchos). Overall 4.4% of sampled birds were infected. The sampling results revealed a significant temporal variation in the IAV prevalence, including a pronounced peak among predominantly young birds in June, indicating that IAV circulate within breeding populations in the wetlands of western Portugal. The H10N7 and H9N2 subtypes were predominant among isolated viruses. Phylogenetic analyses of the hemagglutinin and neuraminidase sequences of H10N7, H9N2 and H11N3 virus showed that sequences from Portugal were closely related to viral sequences from Central Europe as well as to IAVs isolated in the southern parts of Africa, reflecting Portugal's position on the European-African bird migratory flyway. This study highlights the importance of Portugal as a migratory crossroad for IAV, connecting breeding stationary waterfowl with birds migrating between continents which enable transmission and spread of IAV.

  16. H7N9 and other pathogenic avian influenza viruses elicit a three-pronged transcriptomic signature that is reminiscent of 1918 influenza virus and is associated with lethal outcome in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modulating the host response is a promising approach to treating influenza, a virus whose pathogenesis is determined in part by the host response it elicits. Though the pathogenicity of emerging H7N9 influenza virus has been reported in several animal models, these studies have not included a detai...

  17. Nucleoprotein of influenza B virus binds to its type A counterpart and disrupts influenza A viral polymerase complex formation

    SciTech Connect

    Jaru-ampornpan, Peera Narkpuk, Jaraspim; Wanitchang, Asawin; Jongkaewwattana, Anan

    2014-01-03

    Highlights: •FluB nucleoprotein (BNP) can bind to FluA nucleoprotein (ANP). •BNP–ANP interaction inhibits FluA polymerase activity. •BNP binding prevents ANP from forming a functional FluA polymerase complex. •Nuclear localization of BNP is necessary for FluA polymerase inhibition. •Viral RNA is not required for the BNP–ANP interaction. -- Abstract: Upon co-infection with influenza B virus (FluB), influenza A virus (FluA) replication is substantially impaired. Previously, we have shown that the nucleoprotein of FluB (BNP) can inhibit FluA polymerase machinery, retarding the growth of FluA. However, the molecular mechanism underlying this inhibitory action awaited further investigation. Here, we provide evidence that BNP hinders the proper formation of FluA polymerase complex by competitively binding to the nucleoprotein of FluA. To exert this inhibitory effect, BNP must be localized in the nucleus. The interaction does not require the presence of the viral RNA but needs an intact BNP RNA-binding motif. The results highlight the novel role of BNP as an anti-influenza A viral agent and provide insights into the mechanism of intertypic interference.

  18. Detection of airborne influenza a virus in experimentally infected pigs with maternally derived antibodies.

    PubMed

    Corzo, C A; Allerson, M; Gramer, M; Morrison, R B; Torremorell, M

    2014-02-01

    This study assessed whether recently weaned piglets with maternally derived antibodies were able to generate infectious influenza aerosols. Three groups of piglets were assembled based on the vaccination status of the dam. Sows were either non-vaccinated (CTRL) or vaccinated with the same (VAC-HOM) strain or a different (VAC-HET) strain to the one used for challenge. Piglets acquired the maternally derived antibodies by directly suckling colostrum from their respective dams. At weaning, pigs were challenged with influenza virus by direct contact with an infected pig (seeder pig) and clinical signs evaluated. Air samples, collected using a liquid cyclonic air collector, and individual nasal swabs were collected daily for 10 days from each group and tested by matrix real-time reverse transcriptase polymerase chain reaction (RRT-PCR) assay. Virus isolation and titration were attempted for air samples on Madin-Darby canine kidney cells. All individual pigs from both VAC-HET and CTRL groups tested positive during the study but only one pig in the VAC-HOM group was positive by nasal swab RRT-PCR. Influenza virus could not be detected or isolated from air samples from the VAC-HOM group. Influenza A virus was isolated from 3.2% and 6.4% air samples from both the VAC-HET and CTRL groups, respectively. Positive RRT-PCR air samples were only detected in VAC-HET and CTRL groups on day 7 post-exposure. Overall, this study provides evidence that recently weaned pigs with maternally derived immunity without obvious clinical signs of influenza infection can generate influenza infectious aerosols which is relevant to the transmission and the ecology of influenza virus in pigs.

  19. History of Swine influenza viruses in Asia.

    PubMed

    Zhu, Huachen; Webby, Richard; Lam, Tommy T Y; Smith, David K; Peiris, Joseph S M; Guan, Yi

    2013-01-01

    The pig is one of the main hosts of influenza A viruses and plays important roles in shaping the current influenza ecology. The occurrence of the 2009 H1N1 pandemic influenza virus demonstrated that pigs could independently facilitate the genesis of a pandemic influenza strain. Genetic analyses revealed that this virus was derived by reassortment between at least two parent swine influenza viruses (SIV), from the northern American triple reassortant H1N2 (TR) and European avian-like H1N1 (EA) lineages. The movement of live pigs between different continents and subsequent virus establishment are preconditions for such a reassortment event to occur. Asia, especially China, has the largest human and pig populations in the world, and seems to be the only region frequently importing pigs from other continents. Virological surveillance revealed that not only classical swine H1N1 (CS), and human-origin H3N2 viruses circulated, but all of the EA, TR and their reassortant variants were introduced into and co-circulated in pigs in this region. Understanding the long-term evolution and history of SIV in Asia would provide insights into the emergence of influenza viruses with epidemic potential in swine and humans.

  20. Initial incursion of pandemic (H1N1) 2009 influenza A virus into European pigs.

    PubMed

    Welsh, M D; Baird, P M; Guelbenzu-Gonzalo, M P; Hanna, A; Reid, S M; Essen, S; Russell, C; Thomas, S; Barrass, L; McNeilly, F; McKillen, J; Todd, D; Harkin, V; McDowell, S; Choudhury, B; Irvine, R M; Borobia, J; Grant, J; Brown, I H

    2010-05-22

    The initial incursion of pandemic (H1N1) 2009 influenza A virus (pH1N1) into a European pig population is reported. Diagnosis of swine influenza caused by pandemic virus was made during September 2009 following routine submission of samples for differential diagnosis of causative agents of respiratory disease, including influenza A virus. All four pigs (aged six weeks) submitted for investigation from a pig herd of approximately 5000 animals in Northern Ireland, experiencing acute-onset respiratory signs in finishing and growing pigs, were positive by immunofluorescence for influenza A. Follow-up analysis of lung tissue homogenates by real-time RT-PCR confirmed the presence of pH1N1. The virus was subsequently detected on two other premises in Northern Ireland; on one premises, detection followed the pre-export health certification testing of samples from pigs presumed to be subclinically infected as no clinical signs were apparent. None of the premises was linked to another epidemiologically. Sequencing of the haemagglutinin and neuraminidase genes revealed high nucleotide identity (>99.4 per cent) with other pH1N1s isolated from human beings. Genotypic analyses revealed all gene segments to be most closely related to those of contemporary pH1N1 viruses in human beings. It is concluded that all three outbreaks occurred independently, potentially as a result of transmission of the virus from human beings to pigs.

  1. Genetically determined resistance to infection by hepatotropic influenza A virus in mice: effect of immunosuppression.

    PubMed Central

    Haller, O; Arnheiter, H; Lindenmann, J

    1976-01-01

    Mice carrying the gene Mx were resistant to the lethal action of a hepatotropic line of avian influenza A virus. In resistant animals, foci of liver necrosis were self-limiting, and maximal virus titers reached were much below those in susceptible animals. Resistance could not be abrogated by immunosuppressive treatment with cyclophosphamide, methotrexate, or procarbazine, although such treatment prevented cellular infiltration at sites of virus replication and appeared to delay virus clearance. Silica and thorium dioxide, thought to inhibit macrophage function, likewise failed to abolish resistance. Regenerating liver tissue did not support more extensive virus replication than did intact adult liver. Images PMID:178595

  2. Vaccines against influenza A viruses in poultry and swine: Status and future developments.

    PubMed

    Rahn, J; Hoffmann, D; Harder, T C; Beer, M

    2015-05-15

    Influenza A viruses are important pathogens with a very broad host spectrum including domestic poultry and swine. For preventing clinical disease and controlling the spread, vaccination is one of the most efficient tools. Classical influenza vaccines for domestic poultry and swine are conventional inactivated preparations. However, a very broad range of novel vaccine types ranging from (i) nucleic acid-based vaccines, (ii) replicon particles, (iii) subunits and virus-like particles, (iv) vectored vaccines, or (v) live-attenuated vaccines has been described, and some of them are now also used in the field. The different novel approaches for vaccines against avian and swine influenza virus infections are reviewed, and additional features like universal vaccines, novel application approaches and the "differentiating infected from vaccinated animals" (DIVA)-strategy are summarized.

  3. Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry

    PubMed Central

    Wu, Wenjiao; Li, Richan; Li, Xianglian; He, Jian; Jiang, Shibo; Liu, Shuwen; Yang, Jie

    2015-01-01

    Influenza A viruses (IAVs) cause seasonal pandemics and epidemics with high morbidity and mortality, which calls for effective anti-IAV agents. The glycoprotein hemagglutinin of influenza virus plays a crucial role in the initial stage of virus infection, making it a potential target for anti-influenza therapeutics development. Here we found that quercetin inhibited influenza infection with a wide spectrum of strains, including A/Puerto Rico/8/34 (H1N1), A/FM-1/47/1 (H1N1), and A/Aichi/2/68 (H3N2) with half maximal inhibitory concentration (IC50) of 7.756 ± 1.097, 6.225 ± 0.467, and 2.738 ± 1.931 μg/mL, respectively. Mechanism studies identified that quercetin showed interaction with the HA2 subunit. Moreover, quercetin could inhibit the entry of the H5N1 virus using the pseudovirus-based drug screening system. This study indicates that quercetin showing inhibitory activity in the early stage of influenza infection provides a future therapeutic option to develop effective, safe and affordable natural products for the treatment and prophylaxis of IAV infections. PMID:26712783

  4. [Clinical evaluation of rapid diagnostic kit detecting separately influenza A and B viruses].

    PubMed

    Yamazaki, M; Kimura, K; Mitamura, K; Watanabe, S; Komiyama, O; Yamamoto, K; Ichikawa, M; Hashimoto, Y; Hagiwara, N; Maezawa, T; Imai, M; Sugaya, N

    2000-12-01

    The Directigen Flu A + B kit, a rapid diagnostic device for influenza virus A and B was evaluated. The nasopharyngeal aspirates were obtained from 239 patients who visited our hospital, between January and March, 2000, presenting flu-like symptoms. Influenza virus AH1: 77 and AH3: 51 were isolated from 128 specimens and none from 111 specimens. Directigen Flu A + B showed 115 specimens positive and 106 specimens negative. The sensitivity and specificity of this kit were 89.8% (115/128) and 95.5% (106/111) compared with viral isolation. Agreement on positive and negative interpretations between Direction Flu A and this kit was 97.9% (234/239). In the evaluation of this kit for influenza B virus, 60 frozen nasopharyngeal aspirates collected from February to April, 1999 were used. The sensitivity and specificity of this kit were 88.9% (16/18) and 88.1% (37/42) compared with viral isolation. Agreement on positive and negative interpretations between FLU OIA and this kit was 91.7% (55/60). The Directigen A + B demonstrated sensitivity and specificity equivalent to the conventional kits in nasopharingeal aspirates. This kit can also differentiate influenza A and B viruses, a feature which is useful for treatment using anti-viral agents such as amantadine and neuraminidase inhibitor. To date, the kit is the most effective tool for the rapid diagnosis of influenza.

  5. Selecting Viruses for the Seasonal Influenza Vaccine

    MedlinePlus

    ... Past Newsletters Selecting Viruses for the Seasonal Influenza Vaccine Language: English Español Recommend on Facebook Tweet ... influence which viruses are selected for use in vaccine production? The influenza viruses in the seasonal flu ...

  6. Variant (Swine Origin) Influenza Viruses in Humans

    MedlinePlus

    ... What's this? Submit Button Past Newsletters Variant Influenza Viruses: Background and CDC Risk Assessment and Reporting Language: ... Background CDC Assessment Reporting Background On Variant Influenza Viruses Swine flu viruses do not normally infect humans. ...

  7. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    PubMed

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  8. Nanophotonic detection of freely interacting molecules on a single influenza virus

    NASA Astrophysics Data System (ADS)

    Kang, Pilgyu; Schein, Perry; Serey, Xavier; O'Dell, Dakota; Erickson, David

    2015-07-01

    Biomolecular interactions, such as antibody-antigen binding, are fundamental to many biological processes. At present, most techniques for analyzing these interactions require immobilizing one or both of the interacting molecules on an assay plate or a sensor surface. This is convenient experimentally but can constrain the natural binding affinity and capacity of the molecules, resulting in data that can deviate from the natural free-solution behavior. Here we demonstrate a label-free method for analyzing free-solution interactions between a single influenza virus and specific antibodies at the single particle level using near-field optical trapping and light-scattering techniques. We determine the number of specific antibodies binding to an optically trapped influenza virus by analyzing the change of the Brownian fluctuations of the virus. We develop an analytical model that determines the increased size of the virus resulting from antibodies binding to the virus membrane with uncertainty of ±1-2 nm. We present stoichiometric results of 26 ± 4 (6.8 ± 1.1 attogram) anti-influenza antibodies binding to an H1N1 influenza virus. Our technique can be applied to a wide range of molecular interactions because the nanophotonic tweezer can handle molecules from tens to thousands of nanometers in diameter.

  9. Influenza A Virus Acquires Enhanced Pathogenicity and Transmissibility after Serial Passages in Swine

    PubMed Central

    Wei, Kai; Sun, Honglei; Sun, Zhenhong; Sun, Yipeng; Kong, Weili; Pu, Juan; Ma, Guangpeng; Yin, Yanbo; Yang, Hanchun; Guo, Xin; Chang, Kin-Chow

    2014-01-01

    ABSTRACT Genetic and phylogenetic analyses suggest that the pandemic H1N1/2009 virus was derived from well-established swine influenza lineages; however, there is no convincing evidence that the pandemic virus was generated from a direct precursor in pigs. Furthermore, the evolutionary dynamics of influenza virus in pigs have not been well documented. Here, we subjected a recombinant virus (rH1N1) with the same constellation makeup as the pandemic H1N1/2009 virus to nine serial passages in pigs. The severity of infection sequentially increased with each passage. Deep sequencing of viral quasispecies from the ninth passage found five consensus amino acid mutations: PB1 A469T, PA 1129T, NA N329D, NS1 N205K, and NEP T48N. Mutations in the hemagglutinin (HA) protein, however, differed greatly between the upper and lower respiratory tracts. Three representative viral clones with the five consensus mutations were selected for functional evaluation. Relative to the parental virus, the three viral clones showed enhanced replication and polymerase activity in vitro and enhanced replication, pathogenicity, and transmissibility in pigs, guinea pigs, and ferrets in vivo. Specifically, two mutants of rH1N1 (PB1 A469T and a combination of NS1 N205K and NEP T48N) were identified as determinants of transmissibility in guinea pigs. Crucially, one mutant viral clone with the five consensus mutations, which also carried D187E, K211E, and S289N mutations in its HA, additionally was able to infect ferrets by airborne transmission as effectively as the pandemic virus. Our findings demonstrate that influenza virus can acquire viral characteristics that are similar to those of the pandemic virus after limited serial passages in pigs. IMPORTANCE We demonstrate here that an engineered reassortant swine influenza virus, with the same gene constellation pattern as the pandemic H1N1/2009 virus and subjected to only nine serial passages in pigs, acquired greatly enhanced virulence and

  10. Influenza A virus acquires enhanced pathogenicity and transmissibility after serial passages in swine.

    PubMed

    Wei, Kai; Sun, Honglei; Sun, Zhenhong; Sun, Yipeng; Kong, Weili; Pu, Juan; Ma, Guangpeng; Yin, Yanbo; Yang, Hanchun; Guo, Xin; Chang, Kin-Chow; Liu, Jinhua

    2014-10-01

    Genetic and phylogenetic analyses suggest that the pandemic H1N1/2009 virus was derived from well-established swine influenza lineages; however, there is no convincing evidence that the pandemic virus was generated from a direct precursor in pigs. Furthermore, the evolutionary dynamics of influenza virus in pigs have not been well documented. Here, we subjected a recombinant virus (rH1N1) with the same constellation makeup as the pandemic H1N1/2009 virus to nine serial passages in pigs. The severity of infection sequentially increased with each passage. Deep sequencing of viral quasispecies from the ninth passage found five consensus amino acid mutations: PB1 A469T, PA 1129T, NA N329D, NS1 N205K, and NEP T48N. Mutations in the hemagglutinin (HA) protein, however, differed greatly between the upper and lower respiratory tracts. Three representative viral clones with the five consensus mutations were selected for functional evaluation. Relative to the parental virus, the three viral clones showed enhanced replication and polymerase activity in vitro and enhanced replication, pathogenicity, and transmissibility in pigs, guinea pigs, and ferrets in vivo. Specifically, two mutants of rH1N1 (PB1 A469T and a combination of NS1 N205K and NEP T48N) were identified as determinants of transmissibility in guinea pigs. Crucially, one mutant viral clone with the five consensus mutations, which also carried D187E, K211E, and S289N mutations in its HA, additionally was able to infect ferrets by airborne transmission as effectively as the pandemic virus. Our findings demonstrate that influenza virus can acquire viral characteristics that are similar to those of the pandemic virus after limited serial passages in pigs. Importance: We demonstrate here that an engineered reassortant swine influenza virus, with the same gene constellation pattern as the pandemic H1N1/2009 virus and subjected to only nine serial passages in pigs, acquired greatly enhanced virulence and transmissibility

  11. Functionalized magnetic microparticle-based colorimetric platform for influenza A virus detection

    NASA Astrophysics Data System (ADS)

    Chen, Chaohui; Zou, Zhong; Chen, Lu; Ji, Xinghu; He, Zhike

    2016-10-01

    A colorimetric platform for influenza A virus detection was developed by using the high efficiency of enzymatic catalysis and the reduction of gold ions with hydrogen peroxide. Aptamer-functionalized magnetic microparticles were synthesized to capture the influenza A virus. This was followed by the binding of ConA-GOx-AuNPs to the H3N2 virus through the ConA-glycan interaction. The sandwich complex was subsequently dispersed in glucose solution to trigger an enzymatic reaction to produce hydrogen peroxide, which controlled the growth of gold nanoparticles and produced colored solutions. The determination of H3N2 concentration was realized by comparing the two differently colored gold nanoparticles. This method could detect the target virus as low as 11.16 μg ml-1. Furthermore, it opens new opportunities for sensitive and colorimetric detection of viruses and proteins.

  12. Reassortment between swine influenza A viruses increased their adaptation to humans in pandemic H1N1/09.

    PubMed

    Furuse, Yuki; Suzuki, Akira; Oshitani, Hitoshi

    2010-05-01

    In April 2009, pandemic H1N1/09 influenza, which originated from swine influenza, appeared in North America, and it has since spread globally among humans. It is important to know how swine influenza A virus broke the host barrier to cause a pandemic. We analyzed 673 strains of human, avian, and swine influenza viruses and assessed the internal genes PB2, PB1, PA, NP, M, and NS. Here we found accumulation of mutations in segments that were retained as well as introduced due to genetic reassortment of viruses. The retained segments may have to mutate to accommodate new segments. The mutations caused by interaction among segments retained and introduced due to reassortment between swine influenza viruses may have increased the adaptation of the virus to humans, leading to pandemic H1N1/09. We indicate the sites that probably contributed to the acquisition of efficient human-to-human transmission.

  13. Oseltamivir-Resistant Influenza Virus A (H1N1), Europe, 2007–08 Season

    PubMed Central

    Lackenby, Angie; Hungnes, Olav; Lina, Bruno; van der Werf, Sylvie; Schweiger, Brunhilde; Opp, Matthias; Paget, John; van de Kassteele, Jan; Hay, Alan; Zambon, Maria

    2009-01-01

    In Europe, the 2007–08 winter season was dominated by influenza virus A (H1N1) circulation through week 7, followed by influenza B virus from week 8 onward. Oseltamivir-resistant influenza viruses A (H1N1) (ORVs) with H275Y mutation in the neuraminidase emerged independently of drug use. By country, the proportion of ORVs ranged from 0% to 68%, with the highest proportion in Norway. The average weighted prevalence of ORVs across Europe increased gradually over time, from near 0 in week 40 of 2007 to 56% in week 19 of 2008 (mean 20%). Neuraminidase genes of ORVs possessing the H275Y substitution formed a homogeneous subgroup closely related to, but distinguishable from, those of oseltamivir-sensitive influenza viruses A (H1N1). Minor variants of ORVs emerged independently, indicating multiclonal ORVs. Overall, the clinical effect of ORVs in Europe, measured by influenza-like illness or acute respiratory infection, was unremarkable and consistent with normal seasonal activity. PMID:19331731

  14. Avian influenza a virus in wild birds in highly urbanized areas.

    PubMed

    Verhagen, Josanne H; Munster, Vincent J; Majoor, Frank; Lexmond, Pascal; Vuong, Oanh; Stumpel, Job B G; Rimmelzwaan, Guus F; Osterhaus, Albert D M E; Schutten, Martin; Slaterus, Roy; Fouchier, Ron A M

    2012-01-01

    Avian influenza virus (AIV) surveillance studies in wild birds are usually conducted in rural areas and nature reserves. Less is known of avian influenza virus prevalence in wild birds located in densely populated urban areas, while these birds are more likely to be in close contact with humans. Influenza virus prevalence was investigated in 6059 wild birds sampled in cities in the Netherlands between 2006 and 2009, and compared with parallel AIV surveillance data from low urbanized areas in the Netherlands. Viral prevalence varied with the level of urbanization, with highest prevalence in low urbanized areas. Within cities virus was detected in 0.5% of birds, while seroprevalence exceeded 50%. Ring recoveries of urban wild birds sampled for virus detection demonstrated that most birds were sighted within the same city, while few were sighted in other cities or migrated up to 2659 km away from the sample location in the Netherlands. Here we show that urban birds were infected with AIVs and that urban birds were not separated completely from populations of long-distance migrants. The latter suggests that wild birds in cities may play a role in the introduction of AIVs into cities. Thus, urban bird populations should not be excluded as a human-animal interface for influenza viruses.

  15. Long-term evolution and transmission dynamics of swine influenza A virus.

    PubMed

    Vijaykrishna, Dhanasekaran; Smith, Gavin J D; Pybus, Oliver G; Zhu, Huachen; Bhatt, Samir; Poon, Leo L M; Riley, Steven; Bahl, Justin; Ma, Siu K; Cheung, Chung L; Perera, Ranawaka A P M; Chen, Honglin; Shortridge, Kennedy F; Webby, Richard J; Webster, Robert G; Guan, Yi; Peiris, J S Malik

    2011-05-26

    Swine influenza A viruses (SwIV) cause significant economic losses in animal husbandry as well as instances of human disease and occasionally give rise to human pandemics, including that caused by the H1N1/2009 virus. The lack of systematic and longitudinal influenza surveillance in pigs has hampered attempts to reconstruct the origins of this pandemic. Most existing swine data were derived from opportunistic samples collected from diseased pigs in disparate geographical regions, not from prospective studies in defined locations, hence the evolutionary and transmission dynamics of SwIV are poorly understood. Here we quantify the epidemiological, genetic and antigenic dynamics of SwIV in Hong Kong using a data set of more than 650 SwIV isolates and more than 800 swine sera from 12 years of systematic surveillance in this region, supplemented with data stretching back 34 years. Intercontinental virus movement has led to reassortment and lineage replacement, creating an antigenically and genetically diverse virus population whose dynamics are quantitatively different from those previously observed for human influenza viruses. Our findings indicate that increased antigenic drift is associated with reassortment events and offer insights into the emergence of influenza viruses with epidemic potential in swine and humans.

  16. Changes of Influenza a (H5) Viruses by Means of Entropic Chaos Degree

    NASA Astrophysics Data System (ADS)

    Sato, Keiko; Ohya, Masanori

    2009-02-01

    To understand how influenza A H5 viruses change and how we can classify the viruses, we applied the entropic chaos degree introduced in information dynamics to the course of sequence changes in hemagglutinin (HA1) protein of all H5 viruses. Phylogenetic analysis of HA1 amino acid sequences of H5 viruses revealed that the HPAI H5N1 viruses appeared after A/Goose/Guangdong/1/96 were different from the cluster made of the LPAI H5 viruses, the HPAI H5N2 and H5N9 viruses and the HPAI H5N1 viruses before 1996. Moreover, the characteristics of the HA1 sequences of H5 viruses are discussed in this paper.

  17. Genetic Adaptation of Influenza A Viruses in Domestic Animals and Their Potential Role in Interspecies Transmission: A Literature Review.

    PubMed

    Munoz, Olga; De Nardi, Marco; van der Meulen, Karen; van Reeth, Kristien; Koopmans, Marion; Harris, Kate; von Dobschuetz, Sophie; Freidl, Gudrun; Meijer, Adam; Breed, Andrew; Hill, Andrew; Kosmider, Rowena; Banks, Jill; Stärk, Katharina D C; Wieland, Barbara; Stevens, Kim; van der Werf, Sylvie; Enouf, Vincent; Dauphin, Gwenaelle; Dundon, William; Cattoli, Giovanni; Capua, Ilaria

    2016-03-01

    In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an epidemiological and virological evidence-based influenza risk assessment framework (IRAF) to assess influenza A virus strains circulating in the animal population according to their potential to cross the species barrier and cause infections in humans. With the purpose of gathering virological data to include in the IRAF, a literature review was conducted and key findings are presented here. Several adaptive traits have been identified in influenza viruses infecting domestic animals and a significance of these adaptations for the emergence of zoonotic influenza, such as shift in receptor preference and mutations in the replication proteins, has been hypothesized. Nonetheless, and despite several decades of research, a comprehensive understanding of the conditions that facilitate interspecies transmission is still lacking. This has been hampered by the intrinsic difficulties of the subject and the complexity of correlating environmental, viral and host factors. Finding the most suitable and feasible way of investigating these factors in laboratory settings represents another challenge. The majority of the studies identified through this review focus on only a subset of species, subtypes and genes, such as influenza in avian species and avian influenza viruses adapting to humans, especially in the context of highly pathogenic avian influenza H5N1. Further research applying a holistic approach and investigating the broader influenza genetic spectrum is urgently needed in the field of genetic adaptation of influenza A viruses.

  18. Behaviour of equine influenza virus in a naïve population: a practitioner's perspective.

    PubMed

    Major, D A; Jones, B

    2011-07-01

    We describe the behaviour of equine influenza (EI) virus infection in a naïve population as observed by equine veterinary practitioners. The clinical signs displayed by infected horses and the highly contagious nature of the disease are discussed, as well as the treatment and management of infected horses.

  19. Sorting of influenza A virus RNA genome segments after nuclear export

    SciTech Connect

    Takizawa, Naoki; Kumakura, Michiko; Takeuchi, Kaoru; Kobayashi, Nobuyuki; Nagata, Kyosuke

    2010-06-05

    The genome of the influenza A virus consists of eight different segments. These eight segments are thought to be sorted selectively in infected cells. However, the cellular compartment where segments are sorted is not known. We examined using temperature sensitive (ts) mutant viruses and cell fusion where segments are sorted in infected cells. Different cells were infected with different ts mutant viruses, and these cells were fused. In fused cells, genome segments are mixed only in the cytoplasm, because M1 prevents their re-import into the nucleus. We made a marker ts53 virus, which has silent mutations in given segments and determined the reassortment frequency on all segments using ts1 and marker ts53. In both co-infected and fused cells, all of marker ts53 segments and ts1 segments were incorporated into progeny virions in a random fashion. These results suggest that influenza virus genome segments are sorted after nuclear export.

  20. Genetic Analysis of Avian Influenza Viruses: Cocirculation of Avian Influenza Viruses with Allele A and B Nonstructural Gene in Northern Pintail (Anas acuta) Ducks Wintering in Japan.

    PubMed

    Jahangir, Alam; Ruenphet, Sakchai; Sultana, Nadia; Shoham, Dany; Takehara, Kazuaki

    2012-01-01

    The pandemic influenza virus strains of 1918 (H1N1), 1957 (H2N2), 1968 (H3N2), and 2009 (H1N1) have genes related to avian influenza viruses (AIVs). The nonstructural (NS) gene of AIVs plays a significant role in host-viral interaction. However, little is known about the degree of diversity of this gene in Northern pintail (Anas acuta) ducks wintering in Japan. This study describes characteristics of pintail-originated H1N1, H1N2, H1N3, H5N2, H5N3, H5N9, and H7N7 viruses. Most of the viruses were revealed to be avian strains and not related to pandemic and seasonal flu strains. Nevertheless, the NP genes of 62.5% (5/8) viruses were found closely related to a A/swine/Korea/C12/08, indicating exchange of genetic material and ongoing mammalian-linked evolution of AIVs. Besides, all the viruses, except Aomori/422/07 H1N1, contain PSIQSR∗GLF motif usually found in avian, porcine, and human H1 strains. The Aomori/422/07 H1N1 has a PSVQSR∗GLF motif identical to a North American strain. This findings linked to an important intercontinental, Asian-American biogeographical interface. Phylogenetically all the viruses were clustered in Eurasian lineage. Cocirculation of allele A and B (NS gene) viruses was evident in the study implying the existence of a wide reservoir of influenza A viruses in pintail wintering in Japan.

  1. Broad Protection against Avian Influenza Virus by Using a Modified Vaccinia Ankara Virus Expressing a Mosaic Hemagglutinin Gene

    PubMed Central

    Kamlangdee, Attapon; Kingstad-Bakke, Brock; Anderson, Tavis K.; Goldberg, Tony L.

    2014-01-01

    ABSTRACT A critical failure in our preparedness for an influenza pandemic is the lack of a universal vaccine. Influenza virus strains diverge by 1 to 2% per year, and commercially available vaccines often do not elicit protection from one year to the next, necessitating frequent formulation changes. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. We have constructed a recombinant modified vaccinia virus Ankara (MVA) that expresses an H5N1 mosaic hemagglutinin (H5M) (MVA-H5M). This mosaic was generated in silico using 2,145 field-sourced H5N1 isolates. A single dose of MVA-H5M provided 100% protection in mice against clade 0, 1, and 2 avian influenza viruses and also protected against seasonal H1N1 virus (A/Puerto Rico/8/34). It also provided short-term (10 days) and long-term (6 months) protection postvaccination. Both neutralizing antibodies and antigen-specific CD4+ and CD8+ T cells were still detected at 5 months postvaccination, suggesting that MVA-H5M provides long-lasting immunity. IMPORTANCE Influenza viruses infect a billion people and cause up to 500,000 deaths every year. A major problem in combating influenza is the lack of broadly effective vaccines. One solution from the field of human immunodeficiency virus vaccinology involves a novel in silico mosaic approach that has been shown to provide broad and robust protection against highly variable viruses. Unlike a consensus algorithm which picks the most frequent residue at each position, the mosaic method chooses the most frequent T-cell epitopes and combines them to form a synthetic antigen. These studies demonstrated that a mosaic influenza virus H5 hemagglutinin expressed by a viral vector can elicit full protection against diverse H5N1 challenges as well as induce broader immunity than a wild-type hemagglutinin. PMID:25210173

  2. Influenza virus infection in guinea pigs raised as livestock, Ecuador.

    PubMed

    Leyva-Grado, Victor H; Mubareka, Samira; Krammer, Florian; Cárdenas, Washington B; Palese, Peter

    2012-07-01

    To determine whether guinea pigs are infected with influenza virus in nature, we conducted a serologic study in domestic guinea pigs in Ecuador. Detection of antibodies against influenza A and B raises the question about the role of guinea pigs in the ecology and epidemiology of influenza virus in the region.

  3. A high diversity of Eurasian lineage low pathogenicity avian influenza A viruses circulate among wild birds sampled in Egypt.

    PubMed

    Gerloff, Nancy A; Jones, Joyce; Simpson, Natosha; Balish, Amanda; Elbadry, Maha Adel; Baghat, Verina; Rusev, Ivan; de Mattos, Cecilia C; de Mattos, Carlos A; Zonkle, Luay Elsayed Ahmed; Kis, Zoltan; Davis, C Todd; Yingst, Sam; Cornelius, Claire; Soliman, Atef; Mohareb, Emad; Klimov, Alexander; Donis, Ruben O

    2013-01-01

    Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring.

  4. A High Diversity of Eurasian Lineage Low Pathogenicity Avian Influenza A Viruses Circulate among Wild Birds Sampled in Egypt

    PubMed Central

    Gerloff, Nancy A.; Jones, Joyce; Simpson, Natosha; Balish, Amanda; ElBadry, Maha Adel; Baghat, Verina; Rusev, Ivan; de Mattos, Cecilia C.; de Mattos, Carlos A.; Zonkle, Luay Elsayed Ahmed; Kis, Zoltan; Davis, C. Todd; Yingst, Sam; Cornelius, Claire; Soliman, Atef; Mohareb, Emad; Klimov, Alexander; Donis, Ruben O.

    2013-01-01

    Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring. PMID:23874653

  5. Isolation and mutation trend analysis of influenza A virus subtype H9N2 in Egypt

    PubMed Central

    2012-01-01

    Background Avian influenza virus H9N2 is a panzootic pathogen that affects poultry causing mild to moderate respiratory distress but has been associated with high morbidity and considerable mortality. Interspecies transmission of H9N2 from avian species to mammalian hosts does occur. The virus possesses human virus-like receptor specificity and it can infect humans producing flu-like illness. Methods Recently, mild influenza like symptoms were detected in H5N1 vaccinated flocks. Influenza A subtype H9N2 was isolated from the infected flock. The virus evolution was investigated by sequencing the viral genes to screen the possible virus recombination. The viral amino acid sequences from the isolated H9N2 strains were compared to other related sequences from the flu data base that were used to assess the robustness of the mutation trend. Changes in the species-associated amino acid residues or those that enabled virulence to mammals were allocated. Results Phylogenetic analyses of haemagglutinin and neuraminidase genes showed that the recently isolated Egyptian strain belonged to the H9N2 sub-lineage that prevails in Israel. The six internal segments of the isolated virus were found to be derived from the same sub-lineage with no new evidence of reassortment. The results demonstrated conserved genetic and biological constitution of H9N2 viruses in the Middle East. The recently isolated H9N2 virus from chicken in Egypt possessed amino acids that could enable the virus to replicate in mammals and caused severe disease in domestic chickens. Conclusion The study highlights the importance of continuous monitoring of the mutations evolved in avian influenza viruses and its impact on virulence to avian species in addition to its importance in the emergence of new strains with the capacity to be a pandemic candidate. PMID:22925485

  6. KINETIC PROFILE OF INFLUENZA VIRUS INFECTION IN THREE RAT STRAINS

    EPA Science Inventory

    Abstract

    Influenza infection is a respiratory disease of viral origin that can cause major epidemics in man. The influenza virus infects and damages epithelial cells of the respiratory tract and causes pneumonia. Lung lesions of mice infected with influenza virus resembl...

  7. [History of influenza epidemics and discovery of influenza virus].

    PubMed

    Shimizu, K

    1997-10-01

    Influenza epidemics occur almost annually, sometimes taking on a global scale and turning into pandemics. According to Noble, the first clearly recorded epidemic was one that struck Europe in 1173 to 1174. In Japan the first comprehensive review of epidemic records was made by Fujikawa in the early 20th century, who listed 46 epidemics between 862 and 1868. Of the ten pandemics since the 1700s that have been certified by Beveridge nine have struck Japan as well. The human influenza A virus was discovered in 1933 soon after Shope succeeded in isolating swine influenza A virus in 1931. Since the discovery studies in the influenza have made immense progress and have contributed greatly to not only virology but also immunology and molecular biology.

  8. Evaluation of the Simplexa Flu A/B and RSV test for the rapid detection of influenza viruses.

    PubMed

    Ko, Sun-Young; Jang, Jin Woo; Song, Dae Jin; Lim, Chae Seung; Kim, Woo Joo

    2013-12-01

    Recently, various molecular systems have been introduced for the detection of influenza viruses. Among these, the Simplexa Flu A/B and respiratory syncytial virus (RSV) test can provide results in approximately 2 hr. Nasopharyngeal swabs from 241 patients (influenza A, n = 81; influenza B, n = 80; influenza A and influenza B mixed, n = 1; influenza A and RSV A mixed, n = 2; and influenza and RSV negative, n = 77) were analyzed using the Simplexa Flu A/B and RSV test, a conventional reverse-transcription polymerase chain reaction (RT-PCR) assay, and a real-time RT-PCR assay. Compared to conventional RT-PCR, the Simplexa test had respective sensitivities and specificities of 100% and 100% for influenza A and 100% and 99.4% for influenza B with extracted RNA samples, and 91.7% and 99.4% for influenza A, and 97.5% and 98.1% for influenza B with unprocessed patient specimens. All RSV A specimens were successfully detected by the Simplexa test using both extracted RNA samples and unprocessed patient specimens. The real-time RT-PCR assay had respective sensitivities and specificities of 96.4% and 99.4% for influenza A, and 98.8% and 99.4% for influenza B. The Simplexa test was effective at detecting influenza viruses from extracted RNA samples as well as from unprocessed patient specimens. The assay was not only simple and rapid for influenza detection, but the performance was also comparable to that of other conventional molecular methods.

  9. Avian influenza virus RNA extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  10. Environmental role in influenza virus outbreaks.

    PubMed

    Sooryanarain, Harini; Elankumaran, Subbiah

    2015-01-01

    The environmental drivers of influenza outbreaks are largely unknown. Despite more than 50 years of research, there are conflicting lines of evidence on the role of the environment in influenza A virus (IAV) survival, stability, and transmissibility. With the increasing and looming threat of pandemic influenza, it is important to understand these factors for early intervention and long-term control strategies. The factors that dictate the severity and spread of influenza would include the virus, natural and acquired hosts, virus-host interactions, environmental persistence, virus stability and transmissibility, and anthropogenic interventions. Virus persistence in different environments is subject to minor variations in temperature, humidity, pH, salinity, air pollution, and solar radiations. Seasonality of influenza is largely dictated by temperature and humidity, with cool-dry conditions enhancing IAV survival and transmissibility in temperate climates in high latitudes, whereas humid-rainy conditions favor outbreaks in low latitudes, as seen in tropical and subtropical zones. In mid-latitudes, semiannual outbreaks result from alternating cool-dry and humid-rainy conditions. The mechanism of virus survival in the cool-dry or humid-rainy conditions is largely determined by the presence of salts and proteins in the respiratory droplets. Social determinants of heath, including health equity, vaccine acceptance, and age-related illness, may play a role in influenza occurrence and spread.

  11. A new concept of the epidemic process of influenza A virus.

    PubMed Central

    Hope-Simpson, R. E.; Golubev, D. B.

    1987-01-01

    Influenza A virus was discovered in 1933, and since then four major variants have caused all the epidemics of human influenza A. Each had an era of solo world prevalence until 1977 as follows: H0N1 (old style) strains until 1946, H1N1 (old style) strains until 1957, H2N2 strains until 1968, then H3N2 strains, which were joined in 1977 by a renewed prevalence of H1N1 (old style) strains. Serological studies show that H2N2 strains probably had had a previous era of world prevalence during the last quarter of the nineteenth century, and had then been replaced by H3N2 strains from about 1900 to 1918. From about 1907 the H3N2 strains had been joined, as now, by H1N1 (old style) strains until both had been replaced in 1918 by a fifth major variant closely related to swine influenza virus A/Hswine1N1 (old style), which had then had an era of solo world prevalence in mankind until about 1929, when it had been replaced by the H0N1 strains that were first isolated in 1933. Eras of prevalence of a major variant have usually been initiated by a severe pandemic followed at intervals of a year or two by successive epidemics in each of which the nature of the virus is usually a little changed (antigenic drift), but not enough to permit frequent recurrent infections during the same era. Changes of major variant (antigenic shift) are large enough to permit reinfection. At both major and minor changes the strains of the previous variant tend to disappear and to be replaced within a single season, worldwide in the case of a major variant, or in the area of prevalence of a previous minor variant. Pandemics, epidemics and antigenic variations all occur seasonally, and influenza and its viruses virtually disappear from the population of any locality between epidemics, an interval of many consecutive months. A global view, however, shows influenza continually present in the world population, progressing each year south and then north, thus crossing the equator twice yearly around the

  12. Fragile X mental retardation protein stimulates ribonucleoprotein assembly of influenza A virus

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuo; Cao, Mengmeng; Guo, Yang; Zhao, Lili; Wang, Jingfeng; Jia, Xue; Li, Jianguo; Wang, Conghui; Gabriel, Gülsah; Xue, Qinghua; Yi, Yonghong; Cui, Sheng; Jin, Qi; Wang, Jianwei; Deng, Tao

    2014-02-01

    The ribonucleoprotein (RNP) of the influenza A virus is responsible for the transcription and replication of viral RNA in the nucleus. These processes require interplay between host factors and RNP components. Here, we report that the Fragile X mental retardation protein (FMRP) targets influenza virus RNA synthesis machinery and facilitates virus replication both in cell culture and in mice. We demonstrate that FMRP transiently associates with viral RNP and stimulates viral RNP assembly through RNA-mediated interaction with the nucleoprotein. Furthermore, the KH2 domain of FMRP mediates its association with the nucleoprotein. A point mutation (I304N) in the KH2 domain, identified from a Fragile X syndrome patient, disrupts the FMRP-nucleoprotein association and abolishes the ability of FMRP to participate in viral RNP assembly. We conclude that FMRP is a critical host factor used by influenza viruses to facilitate viral RNP assembly. Our observation reveals a mechanism of influenza virus RNA synthesis and provides insights into FMRP functions.

  13. Fragile X mental retardation protein stimulates ribonucleoprotein assembly of influenza A virus.

    PubMed

    Zhou, Zhuo; Cao, Mengmeng; Guo, Yang; Zhao, Lili; Wang, Jingfeng; Jia, Xue; Li, Jianguo; Wang, Conghui; Gabriel, Gülsah; Xue, Qinghua; Yi, Yonghong; Cui, Sheng; Jin, Qi; Wang, Jianwei; Deng, Tao

    2014-01-01

    The ribonucleoprotein (RNP) of the influenza A virus is responsible for the transcription and replication of viral RNA in the nucleus. These processes require interplay between host factors and RNP components. Here, we report that the Fragile X mental retardation protein (FMRP) targets influenza virus RNA synthesis machinery and facilitates virus replication both in cell culture and in mice. We demonstrate that FMRP transiently associates with viral RNP and stimulates viral RNP assembly through RNA-mediated interaction with the nucleoprotein. Furthermore, the KH2 domain of FMRP mediates its association with the nucleoprotein. A point mutation (I304N) in the KH2 domain, identified from a Fragile X syndrome patient, disrupts the FMRP-nucleoprotein association and abolishes the ability of FMRP to participate in viral RNP assembly. We conclude that FMRP is a critical host factor used by influenza viruses to facilitate viral RNP assembly. Our observation reveals a mechanism of influenza virus RNA synthesis and provides insights into FMRP functions.

  14. High prevalence of amantadine-resistant influenza A virus isolated in Gyeonggi Province, South Korea, during 2005-2010.

    PubMed

    Cho, Han-Gil; Choi, Jang-Hoon; Kim, Woon-Ho; Hong, Hae-Kun; Yoon, Mi-Hye; Jho, Eek-Hoon; Kang, Chun; Lim, Young-Hee

    2013-01-01

    Amantadine resistance among influenza A viruses was investigated in South Korea in 2005-2010. Of 308 influenza A viruses examined, 229 had the S31N substitution in the M2 protein. The frequency of amantadine resistance was 30 %, 100 %, and 76 % in influenza A/H1N1, pandemic A/H1N1 2009(A/H1N1pdm), and A/H3N2 subtypes, respectively. The amantadine-resistant influenza A/H1N1pdm and A/H3N2 viruses were circulating continuously from 2008 to 2009 and from 2005 to 2006, respectively. Amantadine resistance among influenza A viruses increased dramatically during the 5-year study period, and this has diminished the usefulness of this class of drugs.

  15. Selecting vaccine strains for H3N2 human influenza A virus.

    PubMed

    Suzuki, Yoshiyuki

    2015-06-01

    H3N2 human influenza A virus causes epidemics of influenza mainly in the winter season in temperate regions. Since the antigenicity of this virus evolves rapidly, several attempts have been made to predict the major amino acid sequence of hemagglutinin 1 (HA1) in the target season of vaccination. However, the usefulness of predicted sequence was unclear because its relationship to the antigenicity was unknown. Here the antigenic model for estimating the degree of antigenic difference (antigenic distance) between amino acid sequences of HA1 was integrated into the process of selecting vaccine strains for H3N2 human influenza A virus. When the effectiveness of a potential vaccine strain for a target season was evaluated retrospectively using the average antigenic distance between the strain and the epidemic viruses sampled in the target season, the most effective vaccine strain was identified mostly in the season one year before the target season (pre-target season). Effectiveness of actual vaccines appeared to be lower than that of the strains randomly chosen in the pre-target season on average. It was recommended to replace the vaccine strain for every target season with the strain having the smallest average antigenic distance to the others in the pre-target season. The procedure of selecting vaccine strains for future epidemic seasons described in the present study was implemented in the influenza virus forecasting system (INFLUCAST) (http://www.nsc.nagoya-cu.ac.jp/~yossuzuk/influcast.html).

  16. A universal computational model for predicting antigenic variants of influenza A virus based on conserved antigenic structures

    PubMed Central

    Peng, Yousong; Wang, Dayan; Wang, Jianhong; Li, Kenli; Tan, Zhongyang; Shu, Yuelong; Jiang, Taijiao

    2017-01-01

    Rapid determination of the antigenicity of influenza A virus could help identify the antigenic variants in time. Currently, there is a lack of computational models for predicting antigenic variants of some common hemagglutinin (HA) subtypes of influenza A viruses. By means of sequence analysis, we demonstrate here that multiple HA subtypes of influenza A virus undergo similar mutation patterns of HA1 protein (the immunogenic part of HA). Further analysis on the antigenic variation of influenza A virus H1N1, H3N2 and H5N1 showed that the amino acid residues’ contribution to antigenic variation highly differed in these subtypes, while the regional bands, defined based on their distance to the top of HA1, played conserved roles in antigenic variation of these subtypes. Moreover, the computational models for predicting antigenic variants based on regional bands performed much better in the testing HA subtype than those did based on amino acid residues. Therefore, a universal computational model, named PREDAV-FluA, was built based on the regional bands to predict the antigenic variants for all HA subtypes of influenza A viruses. The model achieved an accuracy of 0.77 when tested with avian influenza H9N2 viruses. It may help for rapid identification of antigenic variants in influenza surveillance. PMID:28165025

  17. Optimisation of a micro-neutralisation assay and its application in antigenic characterisation of influenza viruses

    PubMed Central

    Lin, Yipu; Gu, Yan; Wharton, Stephen A; Whittaker, Lynne; Gregory, Victoria; Li, Xiaoyan; Metin, Simon; Cattle, Nicholas; Daniels, Rodney S; Hay, Alan J; McCauley, John W

    2015-01-01

    Objectives The identification of antigenic variants and the selection of influenza viruses for vaccine production are based largely on antigenic characterisation of the haemagglutinin (HA) of circulating viruses using the haemagglutination inhibition (HI) assay. However, in addition to evolution related to escape from host immunity, variants emerging as a result of propagation in different cell substrates can complicate the interpretation of HI results. The objective was to develop further a micro-neutralisation (MN) assay to complement the HI assay in antigenic characterisation of influenza viruses to assess the emergence of new antigenic variants and reinforce the selection of vaccine viruses. Design and setting A 96-well-plate plaque reduction MN assay based on the measurement of infected cell population using a simple imaging technique. Sample Representative influenza A (H1N1) pdm09, A(H3N2) and B viruses isolated between 2004 and 2013 Main outcome measures and results Improvements to the plaque reduction MN assay included selection of the most suitable cell line according to virus type or subtype, and optimisation of experimental design and data quantitation. Comparisons of the results of MN and HI assays showed the importance of complementary data in determining the true antigenic relationships among recent human influenza A(H1N1)pdm09, A(H3N2) and type B viruses. Conclusions Our study demonstrates that the improved MN assay has certain advantages over the HI assay: it is not significantly influenced by the cell-selected amino acid substitutions in the neuraminidase (NA) of A(H3N2) viruses, and it is particularly useful for antigenic characterisation of viruses which either grow to low HA titre and/or undergo an abortive infection resulting in an inability to form plaques in cultured cells. PMID:26073976

  18. Population modeling of influenza A/H1N1 virus kinetics and symptom dynamics.

    PubMed

    Canini, Laetitia; Carrat, Fabrice

    2011-03-01

    Influenza virus kinetics (VK) is used as a surrogate of infectiousness, while the natural history of influenza is described by symptom dynamics (SD). We used an original virus kinetics/symptom dynamics (VKSD) model to characterize human influenza virus infection and illness, based on a population approach. We combined structural equations and a statistical model to describe intra- and interindividual variability. The structural equations described influenza based on the target epithelial cells, the virus, the innate host response, and systemic symptoms. The model was fitted to individual VK and SD data obtained from 44 volunteers experimentally challenged with influenza A/H1N1 virus. Infection and illness parameters were calculated from best-fitted model estimates. We predicted that the cytokine level and NK cell activity would peak at days 2.2 and 4.2 after inoculation, respectively. Infectiousness, measured as the area under the VK curve above a viral titer threshold, lasted between 7.0 and 1.3 days and was 15 times lower in participants without systemic symptoms than in those with systemic symptoms (P < 0.001). The latent period, defined as the time between inoculation and infectiousness, varied from 0.7 to 1.9 days. The incubation period, defined as the time from inoculation to first symptoms, varied from 1.0 to 2.4 days. Our approach extends previous work by including the innate response and providing realistic estimates of infection and illness parameters, taking into account the strong interindividual variability. This approach could help to optimize studies of influenza VK and SD and to predict the effect of antivirals on infectiousness and symptoms.

  19. Differentiation of human influenza A viruses including the pandemic subtype H1N1/2009 by conventional multiplex PCR.

    PubMed

    Furuse, Yuki; Odagiri, Takashi; Okada, Takashi; Khandaker, Irona; Shimabukuro, Kozue; Sawayama, Rumi; Suzuki, Akira; Oshitani, Hitoshi

    2010-09-01

    April 2009 witnessed the emergence of a novel H1N1 influenza A virus infecting the human population. Currently, pandemic and seasonal influenza viruses are co-circulating in human populations. Understanding the course of the emerging pandemic virus is important. It is still unknown how the novel virus co-circulates with or outcompetes seasonal viruses. Sustainable and detailed influenza surveillance is required throughout the world including developing countries. In the present study, a multiplex PCR using four primers was developed, which was designed to differentiate the pandemic H1N1 virus from the seasonal H1N1 and H3N2 viruses, to obtain amplicons of different sizes. Multiplex PCR analysis could clearly differentiate the three subtypes of human influenza A virus. This assay was performed using 206 clinical samples collected in 2009 in Japan. Between February and April, four samples were subtyped as seasonal H1N1 and four as seasonal H3N2. All samples collected after July were subtyped as pandemic H1N1. Currently, pandemic viruses seem to have replaced seasonal viruses almost completely in Japan. This is a highly sensitive method and its cost is low. Influenza surveillance using this assay would provide significant information on the epidemiology of both pandemic and seasonal influenza.

  20. [Present data on influenza virus isolated from ducks and chickens, and influenza virus C. Anti-influenza drugs].

    PubMed

    Fernández del Campo, José Antonio Cabezas

    2004-01-01

    Present data on influenza virus isolated from ducks and chickens, and influenza virus C. Anti-influenza drugs. Within the broad field of Glycopathology and Glycotherapeutics, research on influenza virus types A, B and C from humans and several bird species (particularly migratory birds such as ducks, since they are reservoirs for viruses), as well as the search for improved drugs designed for the prevention or treatment of epidemics/pandemics produced by most of those viruses are issues of relevant interest not only from a scientific point of view but also for repercussions on health and the important economical consequences. The research work begun by the author and collaborators at the Department of Biochemistry and Molecular Biology of the University of Salamanca (Spain) in the middle of the 1970's, developed later in close cooperation with the "(Unité d'Ecologie Virale" of the Pasteur Institute of Paris (Prof. Claude Hannoun and collaborators), has been published in about twenty papers that mainly focus on the theoretic-experimental study of: The sialidase (neuraminidase) activity of human influenza viruses types A and B. The acetylesterase activity of type C virus from humans and dogs. The sialidase activity of type A virus from ducks and pigs, in comparison with that of humans. Certain sialidase inhibitors as useful anti-influenza drugs, especially in the case of possible future influenza pandemics of avian origin.

  1. Evidence for the Introduction, Reassortment, and Persistence of Diverse Influenza A Viruses in Antarctica

    PubMed Central

    Su, Yvonne C. F.; Aban, Malet; Peck, Heidi; Lau, Hilda; Baas, Chantal; Deng, Yi-Mo; Spirason, Natalie; Ellström, Patrik; Hernandez, Jorge; Olsen, Bjorn; Barr, Ian G.; Vijaykrishna, Dhanasekaran; Gonzalez-Acuna, Daniel

    2016-01-01

    ABSTRACT Avian influenza virus (AIV) surveillance in Antarctica during 2013 revealed the prevalence of evolutionarily distinct influenza viruses of the H11N2 subtype in Adélie penguins. Here we present results from the continued surveillance of AIV on the Antarctic Peninsula during 2014 and 2015. In addition to the continued detection of H11 subtype viruses in a snowy sheathbill during 2014, we isolated a novel H5N5 subtype virus from a chinstrap penguin during 2015. Gene sequencing and phylogenetic analysis revealed that the H11 virus detected in 2014 had a >99.1% nucleotide similarity to the H11N2 viruses isolated in 2013, suggesting the continued prevalence of this virus in Antarctica over multiple years. However, phylogenetic analysis of the H5N5 virus showed that the genome segments were recently introduced to the continent, except for the NP gene, which was similar to that in the endemic H11N2 viruses. Our analysis indicates geographically diverse origins for the H5N5 virus genes, with the majority of its genome segments derived from North American lineage viruses but the neuraminidase gene derived from a Eurasian lineage virus. In summary, we show the persistence of AIV lineages in Antarctica over multiple years, the recent introduction of gene segments from diverse regions, and reassortment between different AIV lineages in Antarctica, which together significantly increase our understanding of AIV ecology in this fragile and pristine environment. IMPORTANCE Analysis of avian influenza viruses (AIVs) detected in Antarctica reveals both the relatively recent introduction of an H5N5 AIV, predominantly of North American-like origin, and the persistence of an evolutionarily divergent H11 AIV. These data demonstrate that the flow of viruses from North America may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within Antarctica. The future introduction of AIVs from North America into the Antarctic

  2. Novel swine-origin influenza virus A (H1N1): the first pandemic of the 21st century.

    PubMed

    Chang, Luan-Yin; Shih, Shin-Ru; Shao, Pei-Lan; Huang, Daniel Tsung-Ning; Huang, Li-Min

    2009-07-01

    An influenza epidemic was detected in April 2009 at the border between the United States and Mexico. The virus was identified soon after to be a swine-origin influenza virus A (S-OIV A) (H1N1). This virus has an HA gene that is derived from the 1918 swine influenza virus and other genes from human, avian, and Eurasian swine influenza viruses. Clinically, it behaves similarly to seasonal influenza. The only differentiating characteristics are vomiting and diarrhea in a quarter of infected patients, which are rare in seasonal influenza. On June 11, 2009, the World Health Organization declared the first pandemic of the 21st century, caused by S-OIV A (H1N1). Vaccination is the only way to dampen this pandemic. Many questions await answers, including the clinical impact of the pandemic, optimal doses of vaccine, and the future destiny of the virus. A breakthrough in vaccinology against influenza is needed to address the recurring influenza pandemic.

  3. Self-Folding of Naked Segment 8 Genomic RNA of Influenza A Virus

    PubMed Central

    Lenartowicz, Elzbieta; Kesy, Julita; Ruszkowska, Agnieszka; Soszynska-Jozwiak, Marta; Michalak, Paula; Moss, Walter N.; Turner, Douglas H.; Kierzek, Ryszard; Kierzek, Elzbieta

    2016-01-01

    Influenza A is a negative sense RNA virus that kills hundreds of thousands of humans each year. Base pairing in RNA is very favorable, but possibilities for RNA secondary structure of the influenza genomic RNA have not been investigated. This work presents the first experimentally-derived exploration of potential secondary structure in an influenza A naked (protein-free) genomic segment. Favorable folding regions are revealed by in vitro chemical structure mapping, thermodynamics, bioinformatics, and binding to isoenergetic microarrays of an entire natural sequence of the 875 nt segment 8 vRNA and of a smaller fragment. Segment 8 has thermodynamically stable and evolutionarily conserved RNA structure and encodes essential viral proteins NEP and NS1. This suggests that vRNA self-folding may generate helixes and loops that are important at one or more stages of the influenza life cycle. PMID:26848969

  4. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus

    PubMed Central

    Krishna, Venkatramana D.; Wu, Kai; Perez, Andres M.; Wang, Jian-Ping

    2016-01-01

    We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a real time electrical readout. GMR biosensor detected as low as 1.5 × 102 TCID50/mL virus and the signal intensity increased with increasing concentration of virus up to 1.0 × 105 TCID50/mL. This study showed that the GMR biosensor assay is relevant for diagnostic application since the virus concentration in nasal samples of influenza virus infected swine was reported to be in the range of 103 to 105 TCID50/mL. PMID:27065967

  5. Vaccine efficacy of live-attenuated virus, whole inactivated virus and alphavirus vectored subunit vaccines against antigenically distinct H3N2 swine influenza A viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Influenza A virus (IAV) is an important pathogen in swine, and the main intervention strategy is vaccination to induce neutralizing antibodies against the hemagglutinin (HA). Three major antigenic clusters, cyan, red, and green, were identified among H3N2 viruses circulating in pigs in ...

  6. Characterization of H5N1 influenza A viruses isolated during the 2003-2004 influenza outbreaks in Japan.

    PubMed

    Mase, Masaji; Tsukamoto, Kenji; Imada, Tadao; Imai, Kunitoshi; Tanimura, Nobuhiko; Nakamura, Kikuyasu; Yamamoto, Yasunori; Hitomi, Toru; Kira, Takuhiro; Nakai, Tadayoshi; Kiso, Maki; Horimoto, Taisuke; Kawaoka, Yoshihiro; Yamaguchi, Shigeo

    2005-02-05

    In Japan, between the end of December 2003 and March 2004, four outbreaks of acute, highly transmissible and lethal disease occurred in birds in three prefectures separated by 150-450 km, involving three chicken farms and a group of chickens raised as pets. The cause of each outbreak was an H5N1 influenza A virus-the first highly pathogenic virus to be isolated from the outbreaks in Japan since 1925. The H5N1 virus was also isolated from dead crows, apparently infected by contact with virus-contaminated material. These H5N1 viruses were antigenically similar to each other, but could be differentiated from other H5 viruses, including those isolated from Hong Kong in 1997 and 2003, by use of a panel of monoclonal antibodies in hemagglutination inhibition assays. Genetically, the H5N1 viruses in Japan were closely related to each other in all genes and were genetically closely related to a single isolate of genotype V that was isolated in 2003 in the Guandong Province of mainland China (A/chicken/Shantou/4231/2003). The virulence of the index isolate (A/chicken/Yamaguchi/7/2004) was studied in chickens and mice. Chickens intravenously or intranasally inoculated with the isolate died within 1 or 3 days of inoculation, respectively. In mice, although this virus replicated well in the lung without prior adaptation and spread to the brain, the dose lethal to 50% of the mice was 5 x 10(5) 50% egg infectious doses (EID50), which is less pathogenic than the Hong Kong 1997 H5N1 viruses isolated from humans. Our findings indicate that the H5N1 viruses associated with the influenza outbreaks in chickens in Japan were genotypically closely related to an H5N1 virus isolated from chicken in China in 2003 (genotype V), but were different from those prevalent in southeastern Asia in 2003-2004 (i.e., genotype Z) and that these highly pathogenic viruses can be transmitted to crows, which are highly susceptible to these viruses.

  7. A vaccine manufacturer's approach to address medical needs related to seasonal and pandemic influenza viruses.

    PubMed

    Baras, Benoit; Bouveret, Nancy; Devaster, Jeanne-Marie; Fries, Louis; Gillard, Paul; Sänger, Roland; Hanon, Emmanuel

    2008-11-01

    Vaccination is considered to be one of the most effective tools to decrease morbidity as well as mortality caused by influenza viruses. For the prevention of seasonal influenza, Fluarix and FluLaval have been marketed since 1987 and 1992, respectively. Both vaccines have consistently been shown to meet or exceed the regulatory criteria for immunogenicity against the three strains H1N1, H3N2 and B, have a good safety profile, and are recommended for vaccinating children and adults of all ages. For the prevention of pandemic influenza, GlaxoSmithKline (GSK) has obtained licensure of a pre-pandemic vaccine, Prepandrix. This split-virus H5N1 adjuvanted with AS03, a proprietary oil-in-water emulsion-based adjuvant system, has demonstrated broad immunity against drifted H5N1 strains and has been shown to be effective in preventing mortality and viral shedding in animal studies. The influenza vaccine portfolio of GSK addresses specific medical needs related to seasonal or pandemic influenza viruses, which remain an important public health threat worldwide.

  8. Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus.

    PubMed

    Lee, Kelly K; Pessi, Antonello; Gui, Long; Santoprete, Alessia; Talekar, Aparna; Moscona, Anne; Porotto, Matteo

    2011-12-09

    We previously described fusion-inhibitory peptides that are targeted to the cell membrane by cholesterol conjugation and potently inhibit enveloped viruses that fuse at the cell surface, including HIV, parainfluenza, and henipaviruses. However, for viruses that fuse inside of intracellular compartments, fusion-inhibitory peptides have exhibited very low antiviral activity. We propose that for these viruses, too, membrane targeting via cholesterol conjugation may yield potent compounds. Here we compare the activity of fusion-inhibitory peptides derived from the influenza hemagglutinin (HA) and show that although the unconjugated peptides are inactive, the cholesterol-conjugated compounds are effective inhibitors of infectivity and membrane fusion. We hypothesize that the cholesterol moiety, by localizing the peptides to the target cell membrane, allows the peptides to follow the virus to the intracellular site of fusion. The cholesterol-conjugated peptides trap HA in a transient intermediate state after fusion is triggered but before completion of the refolding steps that drive the merging of the viral and cellular membranes. These results provide proof of concept for an antiviral strategy that is applicable to intracellularly fusing viruses, including known and emerging viral pathogens.

  9. Capturing a Fusion Intermediate of Influenza Hemagglutinin with a Cholesterol-conjugated Peptide, a New Antiviral Strategy for Influenza Virus*

    PubMed Central

    Lee, Kelly K.; Pessi, Antonello; Gui, Long; Santoprete, Alessia; Talekar, Aparna; Moscona, Anne; Porotto, Matteo

    2011-01-01

    We previously described fusion-inhibitory peptides that are targeted to the cell membrane by cholesterol conjugation and potently inhibit enveloped viruses that fuse at the cell surface, including HIV, parainfluenza, and henipaviruses. However, for viruses that fuse inside of intracellular compartments, fusion-inhibitory peptides have exhibited very low antiviral activity. We propose that for these viruses, too, membrane targeting via cholesterol conjugation may yield potent compounds. Here we compare the activity of fusion-inhibitory peptides derived from the influenza hemagglutinin (HA) and show that although the unconjugated peptides are inactive, the cholesterol-conjugated compounds are effective inhibitors of infectivity and membrane fusion. We hypothesize that the cholesterol moiety, by localizing the peptides to the target cell membrane, allows the peptides to follow the virus to the intracellular site of fusion. The cholesterol-conjugated peptides trap HA in a transient intermediate state after fusion is triggered but before completion of the refolding steps that drive the merging of the viral and cellular membranes. These results provide proof of concept for an antiviral strategy that is applicable to intracellularly fusing viruses, including known and emerging viral pathogens. PMID:21994935

  10. Human influenza A(H7N9) virus infection associated with poultry farm, Northeastern China.

    PubMed

    Fan, Ming; Huang, Biao; Wang, Ao; Deng, Liquan; Wu, Donglin; Lu, Xinrong; Zhao, Qinglong; Xu, Shuang; Havers, Fiona; Wang, Yanhui; Wu, Jing; Yin, Yuan; Sun, Bingxin; Yao, Jianyi; Xiang, Nijuan

    2014-11-01

    We report on a case of human infection with influenza A(H7N9) virus in Jilin Province in northeastern China. This case was associated with a poultry farm rather than a live bird market, which may point to a new focus for public health surveillance and interventions in this evolving outbreak.

  11. Human Influenza A(H7N9) Virus Infection Associated with Poultry Farm, Northeastern China

    PubMed Central

    Fan, Ming; Huang, Biao; Wang, Ao; Deng, Liquan; Wu, Donglin; Lu, Xinrong; Zhao, Qinglong; Xu, Shuang; Havers, Fiona; Wang, Yanhui; Wu, Jing; Yin, Yuan; Sun, Bingxin; Yao, Jianyi

    2014-01-01

    We report on a case of human infection with influenza A(H7N9) virus in Jilin Province in northeastern China. This case was associated with a poultry farm rather than a live bird market, which may point to a new focus for public health surveillance and interventions in this evolving outbreak. PMID:25340624

  12. Performance of rapid-test kits for the detection of the pandemic influenza A/H1N1 virus.

    PubMed

    Tsao, Kuo-Chien; Kuo, Yung-Bin; Huang, Chung-Guei; Chau, Shao-Wen; Chan, Err-Cheng

    2011-05-01

    The early detection of pandemic influenza strains is a key factor for clinicians in treatment decisions and infection control practices. The aims of this study were to determine the analytical sensitivity and clinical performance of the commercially available influenza rapid tests in Taiwan. Four rapid tests for influenza virus (BinaxNow test, QuickVue test, TRU test, and Formosa Rapid test) were evaluated for their detection limit against four influenza viruses (the 2009 pandemic influenza A virus H1N1, seasonal influenza virus H1N1, H3N2, and influenza B virus) circulating in Taiwan. The viral load of these isolates were quantified by rtRT-PCR and then diluted 2-fold serially for the comparison. The lowest detectable viral load of the pandemic influenza A virus H1N1 by the Formosa Rapid test, QuickVue test, TRU test, and Binax Now test was 5.3×10(4), 1.0×10(5), 1.0×10(5), and 4.2×10(5)copies/μL, respectively. Of these four tests, the two most sensitive tests (the QuickVue test and the Formosa Rapid test) were chosen to evaluate 62 nasopharyngeal specimens from patients who were suspected of infection with pandemic influenza A virus H1N1. The positive rate for the Formosa Rapid test and the QuickVue test were 53.2% (33/62) and 45.2% (28/62) (McNemar's test, P=0.125), respectively. In conclusion, the Formosa Rapid test was the most sensitive test in the present study for the detection of influenza antigens and its clinical performance was similar to that of the QuickVue test (Kappa=0.776). This suggests that the Formosa Rapid test could be used to aid clinical decision making in primary health care settings during outbreaks of influenza.

  13. High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution

    PubMed Central

    Wu, Nicholas C.; Young, Arthur P.; Al-Mawsawi, Laith Q.; Olson, C. Anders; Feng, Jun; Qi, Hangfei; Chen, Shu-Hwa; Lu, I.-Hsuan; Lin, Chung-Yen; Chin, Robert G.; Luan, Harding H.; Nguyen, Nguyen; Nelson, Stanley F.; Li, Xinmin; Wu, Ting-Ting; Sun, Ren

    2014-01-01

    Genetic research on influenza virus biology has been informed in large part by nucleotide variants present in seasonal or pandemic samples, or individual mutants generated in the laboratory, leaving a substantial part of the genome uncharacterized. Here, we have developed a single-nucleotide resolution genetic approach to interrogate the fitness effect of point mutations in 98% of the amino acid positions in the influenza A virus hemagglutinin (HA) gene. Our HA fitness map provides a reference to identify indispensable regions to aid in drug and vaccine design as targeting these regions will increase the genetic barrier for the emergence of escape mutations. This study offers a new platform for studying genome dynamics, structure-function relationships, virus-host interactions, and can further rational drug and vaccine design. Our approach can also be applied to any virus that can be genetically manipulated. PMID:24820965

  14. Identification of Novel Fusion Inhibitors of Influenza A Virus by Chemical Genetics

    PubMed Central

    Lai, Kin Kui; Cheung, Nam Nam; Yang, Fang; Dai, Jun; Liu, Li; Chen, Zhiwei; Sze, Kong Hung; Chen, Honglin

    2015-01-01

    ABSTRACT A previous screening of more than 50,000 compounds led to the identification of a pool of bioactive small molecules with inhibitory effect on the influenza A virus. One of these compounds, now widely known as nucleozin, is a small molecule that targets the influenza A virus nucleoprotein. Here we identify and characterize two structurally different novel fusion inhibitors of the influenza A virus group 1 hemagglutinin (HA), FA-583 and FA-617, with low nanomolar activities. Escape mutants that are highly resistant to each of these compounds were generated, and both were found to carry mutations localized in close proximity to the B-loop of the hemagglutinin 2 protein, which plays a crucial role in the virion-host cell fusion process. Recombinant virus, generated through reverse genetics, confirmed the resistance phenotype. In addition, the proposed binding pockets predicted by molecular docking studies are in accordance with the resistance-bearing mutation sites. We show through mechanistic studies that FA-583 and FA-617 act as fusion inhibitors by prohibiting the low-pH-induced conformational change of hemagglutinin. Our study has offered concrete biological and mechanistic explorations for the strategic development of novel fusion inhibitors of influenza A viruses. IMPORTANCE Here we report two structurally distinctive novel fusion inhibitors of influenza A virus that act by interfering with the structural change of HA at acidic pH, a process necessary for successful entry of the virus. Mutational and molecular docking studies have identified their binding pockets situated in close proximity to the B-loop region of hemagglutinin 2. The reduced sensitivity of FA-583- or FA-617-associated mutants to another compound suggests a close proximity and even partial overlap of their binding sites on hemagglutinin. Amino acid sequence alignments and crystal structure analyses of group 1 and group 2 hemagglutinins have shed light on the possible binding mode of

  15. The changing nature of avian influenza A virus (H5N1).

    PubMed

    Watanabe, Yohei; Ibrahim, Madiha S; Suzuki, Yasuo; Ikuta, Kazuyoshi

    2012-01-01

    Highly pathogenic avian influenza A virus subtype H5N1 has been endemic in some bird species since its emergence in 1996 and its ecology, genetics and antigenic properties have continued to evolve. This has allowed diverse virus strains to emerge in endemic areas with altered receptor specificity, including a new H5 sublineage with enhanced binding affinity to the human-type receptor. The pandemic potential of H5N1 viruses is alarming and may be increasing. We review here the complex dynamics and changing nature of the H5N1 virus that may contribute to the emergence of pandemic strains.

  16. Subtype-specific structural constraints in the evolution of influenza A virus hemagglutinin genes

    PubMed Central

    Gultyaev, Alexander P.; Spronken, Monique I.; Richard, Mathilde; Schrauwen, Eefje J. A.; Olsthoorn, René C. L.; Fouchier, Ron A. M.

    2016-01-01

    The influenza A virus genome consists of eight RNA segments. RNA structures within these segments and complementary (cRNA) and protein-coding mRNAs may play a role in virus replication. Here, conserved putative secondary structures that impose significant evolutionary constraints on the gene segment encoding the surface glycoprotein hemagglutinin (HA) were investigated using available sequence data on tens of thousands of virus strains. Structural constraints were identified by analysis of covariations of nucleotides suggested to be paired by structure prediction algorithms. The significance of covariations was estimated by mutual information calculations and tracing multiple covariation events during virus evolution. Covariation patterns demonstrated that structured domains in HA RNAs were mostly subtype-specific, whereas some structures were conserved in several subtypes. The influence of RNA folding on virus replication was studied by plaque assays of mutant viruses with disrupted structures. The results suggest that over the whole length of the HA segment there are local structured domains which contribute to the virus fitness but individually are not essential for the virus. Existence of subtype-specific structured regions in the segments of the influenza A virus genome is apparently an important factor in virus evolution and reassortment of its genes. PMID:27966593

  17. Subclinical Infection with Avian Influenza A H5N1 Virus in Cats

    PubMed Central

    Weikel, Joachim; Möstl, Karin; Revilla-Fernández, Sandra; Wodak, Eveline; Bagó, Zoltan; Vanek, Elisabeth; Benetka, Viviane; Hess, Michael; Thalhammer, Johann G.

    2007-01-01

    Avian influenza A virus subtype H5N1 was transmitted to domestic cats by close contact with infected birds. Virus-specific nucleic acids were detected in pharyngeal swabs from 3 of 40 randomly sampled cats from a group of 194 animals (day 8 after contact with an infected swan). All cats were transferred to a quarantine station and monitored for clinical signs, virus shedding, and antibody production until day 50. Despite unfamiliar handling, social distress and the presence of other viral and nonviral pathogens that caused illness and poor health and compromised the immune systems, none of the cats developed clinical signs of influenza. There was no evidence of horizontal transmission to other cats because only 2 cats developed antibodies against H5N1 virus. PMID:17479886

  18. Design of a set of probes with high potential for influenza virus epidemiological surveillance

    PubMed Central

    Carreño-Durán, Luis R; Larios-Serrato, V; Jaimes-Díaz, Hueman; Pérez-Cervantes, Hilda; Zepeda-López, Héctor; Sánchez-Vallejo, Carlos Javier; Olguín-Ruiz, Gabriela Edith; Maldonado-Rodríguez, Rogelio; Méndez-Tenorio, Alfonso

    2013-01-01

    An Influenza Probe Set (IPS) consisting in 1,249 9-mer probes for genomic fingerprinting of closely and distantly related Influenza Virus strains was designed and tested in silico. The IPS was derived from alignments of Influenza genomes. The RNA segments of 5,133 influenza strains having diverse degree of relatedness were concatenated and aligned. After alignment, 9-mer sites having high Shannon entropy were searched. Additional criteria such as: G+C content between 35 to 65%, absence of dimer or trimer consecutive repeats, a minimum of 2 differences between 9mers and selecting only sequences with Tm values between 34.5 and 36.5oC were applied for selecting probes with high sequential entropy. Virtual Hybridization was used to predict Genomic Fingerprints to assess the capability of the IPS to discriminate between influenza and related strains. Distance scores between pairs of Influenza Genomic Fingerprints were calculated, and used for estimating Taxonomic Trees. Visual examination of both Genomic Fingerprints and Taxonomic Trees suggest that the IPS is able to discriminate between distant and closely related Influenza strains. It is proposed that the IPS can be used to investigate, by virtual or experimental hybridization, any new, and potentially virulent, strain. PMID:23750091

  19. Antiviral activity of acidic polysaccharides from Coccomyxa gloeobotrydiformi, a green alga, against an in vitro human influenza A virus infection.

    PubMed

    Komatsu, Takayuki; Kido, Nobuo; Sugiyama, Tsuyoshi; Yokochi, Takashi

    2013-02-01

    The extracts prepared from green algae are reported to possess a variety of biological activities including antioxidant, antitumor and antiviral activities. The acidic polysaccharide fraction from a green alga Coccomyxa gloeobotrydiformi (CmAPS) was isolated and the antiviral action on an in vitro infection of influenza A virus was examined. CmAPS inhibited the growth and yield of all influenza A virus strains tested, such as A/H1N1, A/H2N2, A/H3N2 and A/H1N1 pandemic strains. The 50% inhibitory concentration of CmAPS on the infection of human influenza A virus strains ranged from 26 to 70 µg/mL and the antiviral activity of CmAPS against influenza A/USSR90/77 (H1N1) was the strongest. The antiviral activity of CmAPS was not due to the cytotoxicity against host cells. The antiviral activity of CmAPS required its presence in the inoculation of virus onto MDCK cells. Pretreatment and post-treatment with CmAPS was ineffective for the antiviral activity. CmAPS inhibited influenza A virus-induced erythrocyte hemagglutination and hemolysis. Taken together, CmAPS was suggested to exhibit the anti-influenza virus activity through preventing the interaction of virus and host cells. The detailed antiviral activity of CmAPS is discussed.

  20. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.

    PubMed

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert

    2016-03-01

    It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses.

  1. Evaluation of Screening Assays for the Detection of Influenza A Virus Serum Antibodies in Swine.

    PubMed

    Goodell, C K; Prickett, J; Kittawornrat, A; Johnson, J; Zhang, J; Wang, C; Zimmerman, J J

    2016-02-01

    Increased surveillance of influenza A virus (IAV) infections in human and swine populations is mandated by public health and animal health concerns. Antibody assays have proven useful in previous surveillance programmes because antibodies provide a record of prior exposure and the technology is inexpensive. The objective of this research was to compare the performance of influenza serum antibody assays using samples collected from pigs (vaccinated or unvaccinated) inoculated with either A/Swine/OH/511445/2007 γ H1N1 virus or A/Swine/Illinois/02907/2009 Cluster IV H3N2 virus and followed for 42 days. Weekly serum samples were tested for anti-IAV antibodies using homologous and heterologous haemagglutination-inhibition (HI) assays, commercial swine influenza H1N1 and H3N2 indirect ELISAs, and a commercial influenza nucleoprotein (NP)-blocking ELISA. The homologous HIs showed 100% diagnostic sensitivity, but largely failed to detect infection with the heterologous virus. With diagnostic sensitivities of 1.4% and 4.9%, respectively, the H1N1 and H3N2 indirect ELISAs were ineffective at detecting IAV antibodies in swine infected with the contemporary influenza viruses used in the study. At a cut-off of S/N ≤ 0.60, the sensitivity and specificity of the NP-blocking ELISA were estimated at 95.5% and 99.6%, respectively. Statistically significant factors which affected S/N results include vaccination status, inoculum (virus subtype), day post-inoculation and the interactions between those factors (P < 0.0001). Serum antibodies against NP provide an ideal universal diagnostic screening target and could provide a cost-effective approach for the detection and surveillance of IAV infections in swine populations.

  2. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses

    SciTech Connect

    Terrier, Olivier; Moules, Vincent; Carron, Coralie; Cartet, Gaeelle; Frobert, Emilie; Yver, Matthieu; Traversier, Aurelien; Wolff, Thorsten; Naffakh, Nadia; and others

    2012-10-10

    Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus-host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.

  3. T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro.

    PubMed

    Baranovich, Tatiana; Wong, Sook-San; Armstrong, Jianling; Marjuki, Henju; Webby, Richard J; Webster, Robert G; Govorkova, Elena A

    2013-04-01

    Several novel anti-influenza compounds are in various phases of clinical development. One of these, T-705 (favipiravir), has a mechanism of action that is not fully understood but is suggested to target influenza virus RNA-dependent RNA polymerase. We investigated the mechanism of T-705 activity against influenza A (H1N1) viruses by applying selective drug pressure over multiple sequential passages in MDCK cells. We found that T-705 treatment did not select specific mutations in potential target proteins, including PB1, PB2, PA, and NP. Phenotypic assays based on cell viability confirmed that no T-705-resistant variants were selected. In the presence of T-705, titers of infectious virus decreased significantly (P < 0.0001) during serial passage in MDCK cells inoculated with seasonal influenza A (H1N1) viruses at a low multiplicity of infection (MOI; 0.0001 PFU/cell) or with 2009 pandemic H1N1 viruses at a high MOI (10 PFU/cell). There was no corresponding decrease in the number of viral RNA copies; therefore, specific virus infectivity (the ratio of infectious virus yield to viral RNA copy number) was reduced. Sequence analysis showed enrichment of G→A and C→T transversion mutations, increased mutation frequency, and a shift of the nucleotide profiles of individual NP gene clones under drug selection pressure. Our results demonstrate that T-705 induces a high rate of mutation that generates a nonviable viral phenotype and that lethal mutagenesis is a key antiviral mechanism of T-705. Our findings also explain the broad spectrum of activity of T-705 against viruses of multiple families.

  4. T-705 (Favipiravir) Induces Lethal Mutagenesis in Influenza A H1N1 Viruses In Vitro

    PubMed Central

    Baranovich, Tatiana; Wong, Sook-San; Armstrong, Jianling; Marjuki, Henju; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Several novel anti-influenza compounds are in various phases of clinical development. One of these, T-705 (favipiravir), has a mechanism of action that is not fully understood but is suggested to target influenza virus RNA-dependent RNA polymerase. We investigated the mechanism of T-705 activity against influenza A (H1N1) viruses by applying selective drug pressure over multiple sequential passages in MDCK cells. We found that T-705 treatment did not select specific mutations in potential target proteins, including PB1, PB2, PA, and NP. Phenotypic assays based on cell viability confirmed that no T-705-resistant variants were selected. In the presence of T-705, titers of infectious virus decreased significantly (P < 0.0001) during serial passage in MDCK cells inoculated with seasonal influenza A (H1N1) viruses at a low multiplicity of infection (MOI; 0.0001 PFU/cell) or with 2009 pandemic H1N1 viruses at a high MOI (10 PFU/cell). There was no corresponding decrease in the number of viral RNA copies; therefore, specific virus infectivity (the ratio of infectious virus yield to viral RNA copy number) was reduced. Sequence analysis showed enrichment of G→A and C→T transversion mutations, increased mutation frequency, and a shift of the nucleotide profiles of individual NP gene clones under drug selection pressure. Our results demonstrate that T-705 induces a high rate of mutation that generates a nonviable viral phenotype and that lethal mutagenesis is a key antiviral mechanism of T-705. Our findings also explain the broad spectrum of activity of T-705 against viruses of multiple families. PMID:23325689

  5. Multiscale Modeling of Influenza A Virus Infection Supports the Development of Direct-Acting Antivirals

    PubMed Central

    Heldt, Frank S.; Frensing, Timo; Pflugmacher, Antje; Gröpler, Robin; Peschel, Britta; Reichl, Udo

    2013-01-01

    Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases. PMID:24278009

  6. A Novel Small Molecule Inhibitor of Influenza A Viruses that Targets Polymerase Function and Indirectly Induces Interferon

    PubMed Central

    Ortigoza, Mila Brum; Dibben, Oliver; Maamary, Jad; Martinez-Gil, Luis; Leyva-Grado, Victor H.; Abreu, Pablo; Ayllon, Juan; Palese, Peter; Shaw, Megan L.

    2012-01-01

    Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN) is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and enhanced pathogenicity. A cell-based assay that monitors IFN production was developed and applied in a high-throughput compound screen to identify molecules that restore the IFN response to influenza virus infected cells. We report the identification of compound ASN2, which induces IFN only in the presence of influenza virus infection. ASN2 preferentially inhibits the growth of influenza A viruses, including the 1918 H1N1, 1968 H3N2 and 2009 H1N1 pandemic strains and avian H5N1 virus. In vivo, ASN2 partially protects mice challenged with a lethal dose of influenza A virus. Surprisingly, we found that the antiviral activity of ASN2 is not dependent on IFN production and signaling. Rather, its IFN-inducing property appears to be an indirect effect resulting from ASN2-mediated inhibition of viral polymerase function, and subsequent loss of the expression of the viral IFN antagonist, NS1. Moreover, we identified a single amino acid mutation at position 499 of the influenza virus PB1 protein that confers resistance to ASN2, suggesting that PB1 is the direct target. This two-pronged antiviral mechanism, consisting of direct inhibition of virus replication and simultaneous activation of the host innate immune response, is a unique property not previously described for any single antiviral molecule. PMID:22577360

  7. A novel small molecule inhibitor of influenza A viruses that targets polymerase function and indirectly induces interferon.

    PubMed

    Ortigoza, Mila Brum; Dibben, Oliver; Maamary, Jad; Martinez-Gil, Luis; Leyva-Grado, Victor H; Abreu, Pablo; Ayllon, Juan; Palese, Peter; Shaw, Megan L

    2012-01-01

    Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN) is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and enhanced pathogenicity. A cell-based assay that monitors IFN production was developed and applied in a high-throughput compound screen to identify molecules that restore the IFN response to influenza virus infected cells. We report the identification of compound ASN2, which induces IFN only in the presence of influenza virus infection. ASN2 preferentially inhibits the growth of influenza A viruses, including the 1918 H1N1, 1968 H3N2 and 2009 H1N1 pandemic strains and avian H5N1 virus. In vivo, ASN2 partially protects mice challenged with a lethal dose of influenza A virus. Surprisingly, we found that the antiviral activity of ASN2 is not dependent on IFN production and signaling. Rather, its IFN-inducing property appears to be an indirect effect resulting from ASN2-mediated inhibition of viral polymerase function, and subsequent loss of the expression of the viral IFN antagonist, NS1. Moreover, we identified a single amino acid mutation at position 499 of the influenza virus PB1 protein that confers resistance to ASN2, suggesting that PB1 is the direct target. This two-pronged antiviral mechanism, consisting of direct inhibition of virus replication and simultaneous activation of the host innate immune response, is a unique property not previously described for any single antiviral molecule.

  8. Molecular characterization and phylogenetic analysis of human influenza A viruses isolated in Iran during the 2014-2015 season.

    PubMed

    Moasser, Elham; Behzadian, Farida; Moattari, Afagh; Fotouhi, Fatemeh; Rahimi, Amir; Zaraket, Hassan; Hosseini, Seyed Younes

    2017-03-22

    Influenza A viruses are an important cause of severe infectious diseases in humans and are characterized by their fast evolution rate. Global monitoring of these viruses is critical to detect newly emerging variants during annual epidemics. Here, we sought to genetically characterize influenza A/H1N1pdm09 and A/H3N2 viruses collected in Iran during the 2014-2015 influenza season. A total of 200 nasopharyngeal swabs were collected from patients with influenza-like illnesses. Swabs were screened for influenza A and B using real-time PCR. Furthermore, positive specimens with high virus load underwent virus isolation and genetic characterization of their hemagglutinin (HA) and M genes. Of the 200 specimens, 80 were influenza A-positive, including 44 A/H1N1pdm09 and 36 A/H3N2, while 18 were influenza B-positive. Phylogenetic analysis of the HA genes of the A/H1N1pdm09 viruses revealed the circulation of clade 6C, characterized by amino acid substitutions D97N, V234I and K283E. Analysis of the A/H3N2 viruses showed a genetic drift from the vaccine strain A/Texas/50/2012 with 5 mutations (T128A, R142G, N145S, P198S and S219F) belonging to the antigenic sites A, B, and D of the HA protein. The A/H3N2 viruses belonged to phylogenetic clades 3C.2 and 3C.3. The M gene trees of the Iranian A/H1N1pdm09 and A/H3N2 mirrored the clustering patterns of their corresponding HA trees. Our results reveal co-circulation of several influenza A virus strains in Iran during the 2014-2015 influenza season.

  9. Highly pathogenic avian influenza A(H7N3) virus in poultry workers, Mexico, 2012.

    PubMed

    Lopez-Martinez, Irma; Balish, Amanda; Barrera-Badillo, Gisela; Jones, Joyce; Nuñez-García, Tatiana E; Jang, Yunho; Aparicio-Antonio, Rodrigo; Azziz-Baumgartner, Eduardo; Belser, Jessica A; Ramirez-Gonzalez, José E; Pedersen, Janice C; Ortiz-Alcantara, Joanna; Gonzalez-Duran, Elizabeth; Shu, Bo; Emery, Shannon L; Poh, Mee K; Reyes-Teran, Gustavo; Vazquez-Perez, Joel A; Avila-Rios, Santiago; Uyeki, Timothy; Lindstrom, Stephen; Villanueva, Julie; Tokars, Jerome; Ruiz-Matus, Cuitláhuac; Gonzalez-Roldan, Jesus F; Schmitt, Beverly; Klimov, Alexander; Cox, Nancy; Kuri-Morales, Pablo; Davis, C Todd; Diaz-Quiñonez, José Alberto

    2013-01-01

    We identified 2 poultry workers with conjunctivitis caused by highly pathogenic avian influenza A(H7N3) viruses in Jalisco, Mexico. Genomic and antigenic analyses of 1 isolate indicated relatedness to poultry and wild bird subtype H7N3 viruses from North America. This isolate had a multibasic cleavage site that might have been derived from recombination with host rRNA.

  10. Inactivation of Influenza A Virus on Copper versus Stainless Steel Surfaces▿

    PubMed Central

    Noyce, J. O.; Michels, H.; Keevil, C. W.

    2007-01-01

    Influenza A virus particles (2 × 106) were inoculated onto copper or stainless steel and incubated at 22°C at 50 to 60% relative humidity. Infectivity of survivors was determined by utilizing a defined monolayer with fluorescent microscopy analysis. After incubation for 24 h on stainless steel, 500,000 virus particles were still infectious. After incubation for 6 h on copper, only 500 particles were active. PMID:17259354

  11. Current trends from the USDA influenza a virus in swine surveillance system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A U.S. national surveillance system for influenza A viruses (IAV) in swine was initiated in 2009 with increasing participation to the present day. The objectives are to monitor genetic evolution of IAV in swine, make isolates available for research, diagnostic reagents, and vaccine development throu...

  12. Immunomodulaton and attenuation of lethal influenza A virus infection by oral administration with KIOM-C.

    PubMed

    Kim, Eun-Ha; Pascua, Philippe Noriel Q; Song, Min-Suk; Baek, Yun Hee; Kwon, Hyeok-Il; Park, Su-Jin; Lim, Gyo-Jin; Kim, Se Mi; Decano, Arun; Lee, Kwang Jin; Cho, Won-Kyung; Ma, Jin Yeul; Choi, Young Ki

    2013-06-01

    Herbal medicine is used to treat many conditions such as asthma, eczema, premenstrual syndrome, rheumatoid arthritis, migraine, headaches, menopausal symptoms, chronic fatigue, irritable bowel syndrome, cancer, and viral infections such as influenza. In this study, we investigated the antiviral effect of KIOM-C for the treatment of influenza A virus infection. Our results show that oral administration of KIOM-C conferred a survival benefit to mice infected with the 2009 pandemic H1N1 [A(H1N1)pdm09] virus, and resulted in a 10- to 100-fold attenuation of viral replication in ferrets in a dose-dependent manner. Additionally, oral administration of KIOM-C increased the production of antiviral cytokines, including IFN-γ and TNF-α, and decreased levels of pro-inflammatory cytokines (IL-6) and chemokines (KC, MCP-1) in the Bronchoalveolar lavage fluid (BALF) of A(H1N1)pdm-infected mice. These results indicate that KIOM-C can promote clearance of influenza virus in the respiratory tracts of mice and ferrets by modulating cytokine production in hosts. Taken together, our results suggest that KIOM-C is a potential therapeutic compound mixture for the treatment of influenza virus infection in humans.

  13. Protective antiviral antibody responses in a mouse model of influenza virus infection require TACI.

    PubMed

    Wolf, Amaya I; Mozdzanowska, Krystyna; Quinn, William J; Metzgar, Michele; Williams, Katie L; Caton, Andrew J; Meffre, Eric; Bram, Richard J; Erickson, Loren D; Allman, David; Cancro, Michael P; Erikson, Jan

    2011-10-01

    Antiviral Abs, for example those produced in response to influenza virus infection, are critical for virus neutralizati