Science.gov

Sample records for influenza survival transmission

  1. Household Transmission of Influenza Virus.

    PubMed

    Tsang, Tim K; Lau, Lincoln L H; Cauchemez, Simon; Cowling, Benjamin J

    2016-02-01

    Human influenza viruses cause regular epidemics and occasional pandemics with a substantial public health burden. Household transmission studies have provided valuable information on the dynamics of influenza transmission. We reviewed published studies and found that once one household member is infected with influenza, the risk of infection in a household contact can be up to 38%, and the delay between onset in index and secondary cases is around 3 days. Younger age was associated with higher susceptibility. In the future, household transmission studies will provide information on transmission dynamics, including the correlation of virus shedding and symptoms with transmission, and the correlation of new measures of immunity with protection against infection.

  2. Influenza viruses: transmission between species.

    PubMed

    Webster, R G; Hinshaw, V S; Bean, W J; Sriram, G

    1980-02-25

    The only direct evidence for transmission of influenza viruses between species comes from studies on swine influenza viruses. Antigenically and genetically identical Hsw1N1 influenza viruses were isolated from pigs and man on the same farm in Wisconsin, U.S.A. The isolation of H3N2 influenza viruses from a wide range of lower animals and birds suggests that influenza viruses of man can spread to the lower orders. Under some conditions the H3N2 viruses can persist for a number of years in some species. The isolation, from aquatic birds, of a large number of influenza A viruses that possess surface proteins antigenically similar to the viruses isolated from man, pigs and horses provides indirect evidence for inter-species transmission. There is now a considerable body of evidence which suggests that influenza viruses of lower animals and birds may play a role in the origin of some of the pandemic strains of influenza A viruses. There is no direct evidence that the influenza viruses in aquatic birds are transmitted to man, but they may serve as a genetic pool from which some genes may be introduced into humans by recombination. Preliminary evidence suggests that the molecular basis of host range and virulence may be related to the RNA segments coding for one of the polymerase proteins (P3) and for the nucleoprotein (NP).

  3. Transmission of Influenza A Viruses

    PubMed Central

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  4. Transmission of influenza A viruses.

    PubMed

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-05-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages.

  5. Influenza Burden and Transmission in the Tropics.

    PubMed

    Ng, Sophia; Gordon, Aubree

    Each year, influenza causes substantial mortality and morbidity worldwide. It is important to understand influenza in the tropics because of the significant burden in the region and its relevance to global influenza circulation. In this review, influenza burden, transmission dynamics, and their determinants in the tropics are discussed. Environmental, cultural, and social conditions in the tropics are very diverse and often differ from those of temperate regions. Theories that account for and predict influenza dynamics in temperate regions do not fully explain influenza epidemic patterns observed in the tropics. Routine surveillance and household studies have been useful in understanding influenza dynamics in the tropics, but these studies have been limited to only some regions; there is still a lack of information regarding influenza burden and transmission dynamics in many tropical countries. Further studies in the tropics will provide useful insight on many questions that remain.

  6. Review Article: Influenza Transmission on Aircraft

    PubMed Central

    Adlhoch, Cornelia

    2016-01-01

    Background: Air travel is associated with the spread of influenza through infected passengers and potentially through in-flight transmission. Contact tracing after exposure to influenza is not performed systematically. We performed a systematic literature review to evaluate the evidence for influenza transmission aboard aircraft. Methods: Using PubMed and EMBASE databases, we identified and critically appraised identified records to assess the evidence of such transmission to passengers seated in close proximity to the index cases. We also developed a bias assessment tool to evaluate the quality of evidence provided in the retrieved studies. Results: We identified 14 peer-reviewed publications describing contact tracing of passengers after possible exposure to influenza virus aboard an aircraft. Contact tracing during the initial phase of the influenza A(H1N1)pdm09 pandemic was described in 11 publications. The studies describe the follow-up of 2,165 (51%) of 4,252 traceable passengers. Altogether, 163 secondary cases were identified resulting in an overall secondary attack rate among traced passengers of 7.5%. Of these secondary cases, 68 (42%) were seated within two rows of the index case. Conclusion: We found an overall moderate quality of evidence for transmission of influenza virus aboard an aircraft. The major limiting factor was the comparability of the studies. A majority of secondary cases was identified at a greater distance than two rows from the index case. A standardized approach for initiating, conducting, and reporting contact tracing could help to increase the evidence base for better assessing influenza transmission aboard aircraft. PMID:27253070

  7. [Transmissibility and pathogenicity of influenza viruses].

    PubMed

    Horimoto, Taisuke; Yamada, Shinya; Kawaoka, Yoshihiro

    2010-09-01

    In the spring of 2009, a novel swine-origin H1N1 virus, whose antigenicity is quite different from those of seasonal human H1N1 strains, emerged in Mexico and readily transmitted and spread among humans, resulting in the first influenza pandemic in the 21st century. Molecular analyses of the pandemic H1N1 2009 viruses indicate low-pathogenic features for humans, although worldwide transmission of the virus and a considerable numbers of lethal cases with acute pneumonia have been observed in the first wave of the current pandemic. Here, we review our current molecular knowledge of transmissibility and pathogenicity of influenza viruses and discuss the future aspects of the pandemic virus.

  8. Quantifying the transmission potential of pandemic influenza

    NASA Astrophysics Data System (ADS)

    Chowell, Gerardo; Nishiura, Hiroshi

    2008-03-01

    This article reviews quantitative methods to estimate the basic reproduction number of pandemic influenza, a key threshold quantity to help determine the intensity of interventions required to control the disease. Although it is difficult to assess the transmission potential of a probable future pandemic, historical epidemiologic data is readily available from previous pandemics, and as a reference quantity for future pandemic planning, mathematical and statistical analyses of historical data are crucial. In particular, because many historical records tend to document only the temporal distribution of cases or deaths (i.e. epidemic curve), our review focuses on methods to maximize the utility of time-evolution data and to clarify the detailed mechanisms of the spread of influenza. First, we highlight structured epidemic models and their parameter estimation method which can quantify the detailed disease dynamics including those we cannot observe directly. Duration-structured epidemic systems are subsequently presented, offering firm understanding of the definition of the basic and effective reproduction numbers. When the initial growth phase of an epidemic is investigated, the distribution of the generation time is key statistical information to appropriately estimate the transmission potential using the intrinsic growth rate. Applications of stochastic processes are also highlighted to estimate the transmission potential using similar data. Critically important characteristics of influenza data are subsequently summarized, followed by our conclusions to suggest potential future methodological improvements.

  9. Influenza transmission during extreme indoor conditions in a low-resource tropical setting

    NASA Astrophysics Data System (ADS)

    Tamerius, James; Ojeda, Sergio; Uejio, Christopher K.; Shaman, Jeffrey; Lopez, Brenda; Sanchez, Nery; Gordon, Aubree

    2016-08-01

    Influenza transmission occurs throughout the planet across wide-ranging environmental conditions. However, our understanding of the environmental factors mediating transmission is evaluated using outdoor environmental measurements, which may not be representative of the indoor conditions where influenza is transmitted. In this study, we examined the relationship between indoor environment and influenza transmission in a low-resource tropical population. We used a case-based ascertainment design to enroll 34 households with a suspected influenza case and then monitored households for influenza, while recording indoor temperature and humidity data in each household. We show that the indoor environment is not commensurate with outdoor conditions and that the relationship between indoor and outdoor conditions varies significantly across homes. We also show evidence of influenza transmission in extreme indoor environments. Specifically, our data suggests that indoor environments averaged 29 °C, 18 g/kg specific humidity, and 68 % relative humidity across 15 transmission events observed. These indoor settings also exhibited significant temporal variability with temperatures as high as 39 °C and specific and relative humidity increasing to 22 g/kg and 85 %, respectively, during some transmission events. However, we were unable to detect differences in the transmission efficiency by indoor temperature or humidity conditions. Overall, these results indicate that laboratory studies investigating influenza transmission and virus survival should increase the range of environmental conditions that they assess and that observational studies investigating the relationship between environment and influenza activity should use caution using outdoor environmental measurements since they can be imprecise estimates of the conditions that mediate transmission indoors.

  10. Mapping influenza transmission in the ferret model to transmission in humans.

    PubMed

    Buhnerkempe, Michael G; Gostic, Katelyn; Park, Miran; Ahsan, Prianna; Belser, Jessica A; Lloyd-Smith, James O

    2015-09-02

    The controversy surrounding 'gain-of-function' experiments on high-consequence avian influenza viruses has highlighted the role of ferret transmission experiments in studying the transmission potential of novel influenza strains. However, the mapping between influenza transmission in ferrets and in humans is unsubstantiated. We address this gap by compiling and analyzing 240 estimates of influenza transmission in ferrets and humans. We demonstrate that estimates of ferret secondary attack rate (SAR) explain 66% of the variation in human SAR estimates at the subtype level. Further analysis shows that ferret transmission experiments have potential to identify influenza viruses of concern for epidemic spread in humans, though small sample sizes and biological uncertainties prevent definitive classification of human transmissibility. Thus, ferret transmission experiments provide valid predictions of pandemic potential of novel influenza strains, though results should continue to be corroborated by targeted virological and epidemiological research.

  11. Mapping influenza transmission in the ferret model to transmission in humans

    PubMed Central

    Buhnerkempe, Michael G; Gostic, Katelyn; Park, Miran; Ahsan, Prianna; Belser, Jessica A; Lloyd-Smith, James O

    2015-01-01

    The controversy surrounding 'gain-of-function' experiments on high-consequence avian influenza viruses has highlighted the role of ferret transmission experiments in studying the transmission potential of novel influenza strains. However, the mapping between influenza transmission in ferrets and in humans is unsubstantiated. We address this gap by compiling and analyzing 240 estimates of influenza transmission in ferrets and humans. We demonstrate that estimates of ferret secondary attack rate (SAR) explain 66% of the variation in human SAR estimates at the subtype level. Further analysis shows that ferret transmission experiments have potential to identify influenza viruses of concern for epidemic spread in humans, though small sample sizes and biological uncertainties prevent definitive classification of human transmissibility. Thus, ferret transmission experiments provide valid predictions of pandemic potential of novel influenza strains, though results should continue to be corroborated by targeted virological and epidemiological research. DOI: http://dx.doi.org/10.7554/eLife.07969.001 PMID:26329460

  12. Transmission of influenza B viruses in the guinea pig.

    PubMed

    Pica, Natalie; Chou, Yi-Ying; Bouvier, Nicole M; Palese, Peter

    2012-04-01

    Epidemic influenza is typically caused by infection with viruses of the A and B types and can result in substantial morbidity and mortality during a given season. Here we demonstrate that influenza B viruses can replicate in the upper respiratory tract of the guinea pig and that viruses of the two main lineages can be transmitted with 100% efficiency between inoculated and naïve animals in both contact and noncontact models. Our results also indicate that, like in the case for influenza A virus, transmission of influenza B viruses is enhanced at colder temperatures, providing an explanation for the seasonality of influenza epidemics in temperate climates. We therefore present, for the first time, a small animal model with which to study the underlying mechanisms of influenza B virus transmission.

  13. Avian Influenza spread and transmission dynamics

    USGS Publications Warehouse

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John Y.; Wu, Jianhong; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  14. Estimating parameter of influenza transmission using regularized least square

    NASA Astrophysics Data System (ADS)

    Nuraini, N.; Syukriah, Y.; Indratno, S. W.

    2014-02-01

    Transmission process of influenza can be presented in a mathematical model as a non-linear differential equations system. In this model the transmission of influenza is determined by the parameter of contact rate of the infected host and susceptible host. This parameter will be estimated using a regularized least square method where the Finite Element Method and Euler Method are used for approximating the solution of the SIR differential equation. The new infected data of influenza from CDC is used to see the effectiveness of the method. The estimated parameter represents the contact rate proportion of transmission probability in a day which can influence the number of infected people by the influenza. Relation between the estimated parameter and the number of infected people by the influenza is measured by coefficient of correlation. The numerical results show positive correlation between the estimated parameters and the infected people.

  15. The influence of meteorology on the spread of influenza: survival analysis of an equine influenza (A/H3N8) outbreak.

    PubMed

    Firestone, Simon M; Cogger, Naomi; Ward, Michael P; Toribio, Jenny-Ann L M L; Moloney, Barbara J; Dhand, Navneet K

    2012-01-01

    The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period of equine influenza. Hazard of equine influenza infection was higher when relative humidity was <60% and lowest on days when daily maximum air temperature was 20-25°C. Wind speeds >30 km hour(-1) from the direction of nearby infected premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A transmission conducted under laboratory conditions. The relationships described are of direct importance for managing disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of influenza A viruses under field conditions.

  16. Influenza transmission in households during the 1918 pandemic.

    PubMed

    Fraser, Christophe; Cummings, Derek A T; Klinkenberg, Don; Burke, Donald S; Ferguson, Neil M

    2011-09-01

    Analysis of historical data has strongly shaped our understanding of the epidemiology of pandemic influenza and informs analysis of current and future epidemics. Here, the authors analyzed previously unpublished documents from a large household survey of the "Spanish" H1N1 influenza pandemic, conducted in 1918, for the first time quantifying influenza transmissibility at the person-to-person level during that most lethal of pandemics. The authors estimated a low probability of person-to-person transmission relative to comparable estimates from seasonal influenza and other directly transmitted infections but similar to recent estimates from the 2009 H1N1 pandemic. The authors estimated a very low probability of asymptomatic infection, a previously unknown parameter for this pandemic, consistent with an unusually virulent virus. The authors estimated a high frequency of prior immunity that they attributed to a largely unreported influenza epidemic in the spring of 1918 (or perhaps to cross-reactive immunity). Extrapolating from this finding, the authors hypothesize that prior immunity partially protected some populations from the worst of the fall pandemic and helps explain differences in attack rates between populations. Together, these analyses demonstrate that the 1918 influenza virus, though highly virulent, was only moderately transmissible and thus in a modern context would be considered controllable.

  17. Vaccination of influenza a virus decreases transmission rates in pigs.

    PubMed

    Romagosa, Anna; Allerson, Matt; Gramer, Marie; Joo, Han Soo; Deen, John; Detmer, Susan; Torremorell, Montserrat

    2011-12-20

    Limited information is available on the transmission and spread of influenza virus in pig populations with differing immune statuses. In this study we assessed differences in transmission patterns and quantified the spread of a triple reassortant H1N1 influenza virus in naïve and vaccinated pig populations by estimating the reproduction ratio (R) of infection (i.e. the number of secondary infections caused by an infectious individual) using a deterministic Susceptible-Infectious-Recovered (SIR) model, fitted on experimental data. One hundred and ten pigs were distributed in ten isolated rooms as follows: (i) non-vaccinated (NV), (ii) vaccinated with a heterologous vaccine (HE), and (iii) vaccinated with a homologous inactivated vaccine (HO). The study was run with multiple replicates and for each replicate, an infected non-vaccinated pig was placed with 10 contact pigs for two weeks and transmission of influenza evaluated daily by analyzing individual nasal swabs by RT-PCR. A statistically significant difference between R estimates was observed between vaccinated and non-vaccinated pigs (p < 0.05). A statistically significant reduction in transmission was observed in the vaccinated groups where R (95%CI) was 1 (0.39-2.09) and 0 for the HE and the HO groups respectively, compared to an Ro value of 10.66 (6.57-16.46) in NV pigs (p < 0.05). Transmission in the HE group was delayed and variable when compared to the NV group and transmission could not be detected in the HO group. Results from this study indicate that influenza vaccines can be used to decrease susceptibility to influenza infection and decrease influenza transmission.

  18. The Role of Environmental Transmission in Recurrent Avian Influenza Epidemics

    PubMed Central

    Breban, Romulus; Drake, John M.; Stallknecht, David E.; Rohani, Pejman

    2009-01-01

    Avian influenza virus (AIV) persists in North American wild waterfowl, exhibiting major outbreaks every 2–4 years. Attempts to explain the patterns of periodicity and persistence using simple direct transmission models are unsuccessful. Motivated by empirical evidence, we examine the contribution of an overlooked AIV transmission mode: environmental transmission. It is known that infectious birds shed large concentrations of virions in the environment, where virions may persist for a long time. We thus propose that, in addition to direct fecal/oral transmission, birds may become infected by ingesting virions that have long persisted in the environment. We design a new host–pathogen model that combines within-season transmission dynamics, between-season migration and reproduction, and environmental variation. Analysis of the model yields three major results. First, environmental transmission provides a persistence mechanism within small communities where epidemics cannot be sustained by direct transmission only (i.e., communities smaller than the critical community size). Second, environmental transmission offers a parsimonious explanation of the 2–4 year periodicity of avian influenza epidemics. Third, very low levels of environmental transmission (i.e., few cases per year) are sufficient for avian influenza to persist in populations where it would otherwise vanish. PMID:19360126

  19. Effect of the One-Child Policy on Influenza Transmission in China: A Stochastic Transmission Model

    PubMed Central

    Liu, Fengchen; Enanoria, Wayne T. A.; Ray, Kathryn J.; Coffee, Megan P.; Gordon, Aubree; Aragón, Tomás J.; Yu, Guowei; Cowling, Benjamin J.; Porco, Travis C.

    2014-01-01

    Background China's one-child-per-couple policy, introduced in 1979, led to profound demographic changes for nearly a quarter of the world's population. Several decades later, the consequences include decreased fertility rates, population aging, decreased household sizes, changes in family structure, and imbalanced sex ratios. The epidemiology of communicable diseases may have been affected by these changes since the transmission dynamics of infectious diseases depend on demographic characteristics of the population. Of particular interest is influenza because China and Southeast Asia lie at the center of a global transmission network of influenza. Moreover, changes in household structure may affect influenza transmission. Is it possible that the pronounced demographic changes that have occurred in China have affected influenza transmission? Methods and Findings To address this question, we developed a continuous-time, stochastic, individual-based simulation model for influenza transmission. With this model, we simulated 30 years of influenza transmission and compared influenza transmission rates in populations with and without the one-child policy control. We found that the average annual attack rate is reduced by 6.08% (SD 2.21%) in the presence of the one-child policy compared to a population in which no demographic changes occurred. There was no discernible difference in the secondary attack rate, −0.15% (SD 1.85%), between the populations with and without a one-child policy. We also forecasted influenza transmission over a ten-year time period in a population with a two-child policy under a hypothesis that a two-child-per-couple policy will be carried out in 2015, and found a negligible difference in the average annual attack rate compared to the population with the one-child policy. Conclusions This study found that the average annual attack rate is slightly lowered in a population with a one-child policy, which may have resulted from a decrease in household

  20. Predictors of indoor absolute humidity and estimated effects on influenza virus survival in grade schools

    PubMed Central

    2013-01-01

    Background Low absolute humidity (AH) has been associated with increased influenza virus survival and transmissibility and the onset of seasonal influenza outbreaks. Humidification of indoor environments may mitigate viral transmission and may be an important control strategy, particularly in schools where viral transmission is common and contributes to the spread of influenza in communities. However, the variability and predictors of AH in the indoor school environment and the feasibility of classroom humidification to levels that could decrease viral survival have not been studied. Methods Automated sensors were used to measure temperature, humidity and CO2 levels in two Minnesota grade schools without central humidification during two successive winters. Outdoor AH measurements were derived from the North American Land Data Assimilation System. Variability in indoor AH within classrooms, between classrooms in the same school, and between schools was assessed using concordance correlation coefficients (CCC). Predictors of indoor AH were examined using time-series Auto-Regressive Conditional Heteroskedasticity models. Classroom humidifiers were used when school was not in session to assess the feasibility of increasing indoor AH to levels associated with decreased influenza virus survival, as projected from previously published animal experiments. Results AH varied little within classrooms (CCC >0.90) but was more variable between classrooms in the same school (CCC 0.81 for School 1, 0.88 for School 2) and between schools (CCC 0.81). Indoor AH varied widely during the winter (range 2.60 to 10.34 millibars [mb]) and was strongly associated with changes in outdoor AH (p < 0.001). Changes in indoor AH on school weekdays were strongly associated with CO2 levels (p < 0.001). Over 4 hours, classroom humidifiers increased indoor AH by 4 mb, an increase sufficient to decrease projected 1-hour virus survival by an absolute value of 30% during winter months

  1. Animal models for influenza virus transmission studies: A historical perspective

    PubMed Central

    Bouvier, Nicole M.

    2015-01-01

    Animal models are used to simulate, under experimental conditions, the complex interactions among host, virus, and environment that affect the person-to-person spread of influenza viruses. The three species that have been most frequently employed, both past and present, as influenza virus transmission models -- ferrets, mice, and guinea pigs -- have each provided unique insights into the factors governing the efficiency with which these viruses pass from an infected host to a susceptible one. This review will highlight a few of these noteworthy discoveries, with a particular focus on the historical contexts in which each model was developed and the advantages and disadvantages of each species with regard to the study of influenza virus transmission among mammals. PMID:26126082

  2. The risk of airborne influenza transmission in passenger cars.

    PubMed

    Knibbs, L D; Morawska, L; Bell, S C

    2012-03-01

    Travel in passenger cars is a ubiquitous aspect of the daily activities of many people. During the 2009 influenza A(H1N1) pandemic a case of probable transmission during car travel was reported in Australia, to which spread via the airborne route may have contributed. However, there are no data to indicate the likely risks of such events, and how they may vary and be mitigated. To address this knowledge gap, we estimated the risk of airborne influenza transmission in two cars (1989 model and 2005 model) by employing ventilation measurements and a variation of the Wells-Riley model. Results suggested that infection risk can be reduced by not recirculating air; however, estimated risk ranged from 59% to 99·9% for a 90-min trip when air was recirculated in the newer vehicle. These results have implications for interrupting in-car transmission of other illnesses spread by the airborne route.

  3. Contrasting the epidemiological and evolutionary dynamics of influenza spatial transmission

    PubMed Central

    Viboud, Cécile; Nelson, Martha I.; Tan, Yi; Holmes, Edward C.

    2013-01-01

    In the past decade, rapid increases in the availability of high-resolution molecular and epidemiological data, combined with developments in statistical and computational methods to simulate and infer migration patterns, have provided key insights into the spatial dynamics of influenza A viruses in humans. In this review, we contrast findings from epidemiological and molecular studies of influenza virus transmission at different spatial scales. We show that findings are broadly consistent in large-scale studies of inter-regional or inter-hemispheric spread in temperate regions, revealing intense epidemics associated with multiple viral introductions, followed by deep troughs driven by seasonal bottlenecks. However, aspects of the global transmission dynamics of influenza viruses are still debated, especially with respect to the existence of tropical source populations experiencing high levels of genetic diversity and the extent of prolonged viral persistence between epidemics. At the scale of a country or community, epidemiological studies have revealed spatially structured diffusion patterns in seasonal and pandemic outbreaks, which were not identified in molecular studies. We discuss the role of sampling issues in generating these conflicting results, and suggest strategies for future research that may help to fully integrate the epidemiological and evolutionary dynamics of influenza virus over space and time. PMID:23382422

  4. Inference of seasonal and pandemic influenza transmission dynamics

    PubMed Central

    Yang, Wan; Lipsitch, Marc; Shaman, Jeffrey

    2015-01-01

    The inference of key infectious disease epidemiological parameters is critical for characterizing disease spread and devising prevention and containment measures. The recent emergence of surveillance records mined from big data such as health-related online queries and social media, as well as model inference methods, permits the development of new methodologies for more comprehensive estimation of these parameters. We use such data in conjunction with Bayesian inference methods to study the transmission dynamics of influenza. We simultaneously estimate key epidemiological parameters, including population susceptibility, the basic reproductive number, attack rate, and infectious period, for 115 cities during the 2003–2004 through 2012–2013 seasons, including the 2009 pandemic. These estimates discriminate key differences in the epidemiological characteristics of these outbreaks across 10 y, as well as spatial variations of influenza transmission dynamics among subpopulations in the United States. In addition, the inference methods appear to compensate for observational biases and underreporting inherent in the surveillance data. PMID:25730851

  5. Spatial Transmission of 2009 Pandemic Influenza in the US

    PubMed Central

    Gog, Julia R.; Ballesteros, Sébastien; Viboud, Cécile; Simonsen, Lone; Bjornstad, Ottar N.; Shaman, Jeffrey; Chao, Dennis L.; Khan, Farid; Grenfell, Bryan T.

    2014-01-01

    The 2009 H1N1 influenza pandemic provides a unique opportunity for detailed examination of the spatial dynamics of an emerging pathogen. In the US, the pandemic was characterized by substantial geographical heterogeneity: the 2009 spring wave was limited mainly to northeastern cities while the larger fall wave affected the whole country. Here we use finely resolved spatial and temporal influenza disease data based on electronic medical claims to explore the spread of the fall pandemic wave across 271 US cities and associated suburban areas. We document a clear spatial pattern in the timing of onset of the fall wave, starting in southeastern cities and spreading outwards over a period of three months. We use mechanistic models to tease apart the external factors associated with the timing of the fall wave arrival: differential seeding events linked to demographic factors, school opening dates, absolute humidity, prior immunity from the spring wave, spatial diffusion, and their interactions. Although the onset of the fall wave was correlated with school openings as previously reported, models including spatial spread alone resulted in better fit. The best model had a combination of the two. Absolute humidity or prior exposure during the spring wave did not improve the fit and population size only played a weak role. In conclusion, the protracted spread of pandemic influenza in fall 2009 in the US was dominated by short-distance spatial spread partially catalysed by school openings rather than long-distance transmission events. This is in contrast to the rapid hierarchical transmission patterns previously described for seasonal influenza. The findings underline the critical role that school-age children play in facilitating the geographic spread of pandemic influenza and highlight the need for further information on the movement and mixing patterns of this age group. PMID:24921923

  6. A nice day for an infection? Weather conditions and social contact patterns relevant to influenza transmission.

    PubMed

    Willem, Lander; Van Kerckhove, Kim; Chao, Dennis L; Hens, Niel; Beutels, Philippe

    2012-01-01

    Although there is no doubt that significant morbidity and mortality occur during annual influenza epidemics, the role of contextual circumstances, which catalyze seasonal influenza transmission, remains unclear. Weather conditions are believed to affect virus survival, efficiency of transmission and host immunity, but seasonality may also be driven by a tendency of people to congregate indoors during periods of bad weather. To test this hypothesis, we combined data from a social contact survey in Belgium with local weather data. In the absence of a previous in-depth weather impact analysis of social contact patterns, we explored the possibilities and identified pitfalls. We found general dominance of day-type (weekend, holiday, working day) over weather conditions, but nonetheless observed an increase in long duration contacts ([Formula: see text]1 hour) on regular workdays with low temperatures, almost no precipitation and low absolute humidity of the air. Interestingly, these conditions are often assumed to be beneficial for virus survival and transmission. Further research is needed to establish the impact of the weather on social contacts. We recommend that future studies sample over a broad spectrum of weather conditions and day types and include a sufficiently large proportion of holiday periods and weekends.

  7. Transmission of avian H9N2 influenza viruses in a murine model.

    PubMed

    Wu, Rui; Sui, Zhiwei; Liu, Zewen; Liang, Wangwang; Yang, Keli; Xiong, Zhongliang; Xu, Diping

    2010-05-19

    Avian H9N2 influenza viruses have circulated widely in domestic poultry around the world, resulting in occasional transmission of virus from infected poultry to humans. However, it is unknown whether H9N2 influenza virus has acquired the ability to be transmitted from human to human. Here, we report that mouse-adapted H9N2 influenza viruses can replicate efficiently and are lethal for several strains of mice. To evaluate the transmissibility of mouse-adapted H9N2 influenza viruses, we carried out transmission studies in mice using both contact and respiratory droplet routes. Our results indicate that mouse-adapted H9N2 influenza viruses can replicate efficiently and be transmitted between mice. This suggests that once H9N2 influenza viruses adapt to new host, they should present potential public health risks, therefore, urgent attention should be paid to H9N2 influenza viruses.

  8. Assessing coughing-induced influenza droplet transmission and implications for infection risk control.

    PubMed

    Cheng, Y-H; Wang, C-H; You, S-H; Hsieh, N-H; Chen, W-Y; Chio, C-P; Liao, C-M

    2016-01-01

    Indoor transmission of respiratory droplets bearing influenza within humans poses high risks to respiratory function deterioration and death. Therefore, we aimed to develop a framework for quantifying the influenza infection risk based on the relationships between inhaled/exhaled respiratory droplets and airborne transmission dynamics in a ventilated airspace. An experiment was conducted to measure the size distribution of influenza-containing droplets produced by coughing for a better understanding of potential influenza spread. Here we integrated influenza population transmission dynamics, a human respiratory tract model, and a control measure approach to examine the indoor environment-virus-host interactions. A probabilistic risk model was implemented to assess size-specific infection risk for potentially transmissible influenza droplets indoors. Our results found that there was a 50% probability of the basic reproduction number (R0) exceeding 1 for small-size influenza droplets of 0·3-0·4 µm, implicating a potentially high indoor infection risk to humans. However, a combination of public health interventions with enhanced ventilation could substantially contain indoor influenza infection. Moreover, the present dynamic simulation and control measure assessment provide insights into why indoor transmissible influenza droplet-induced infection is occurring not only in upper lung regions but also in the lower respiratory tract, not normally considered at infection risk.

  9. Network information analysis reveals risk perception transmission in a behaviour-influenza dynamics system.

    PubMed

    Liao, C-M; You, S-H; Cheng, Y-H

    2015-01-01

    Influenza poses a significant public health burden worldwide. Understanding how and to what extent people would change their behaviour in response to influenza outbreaks is critical for formulating public health policies. We incorporated the information-theoretic framework into a behaviour-influenza (BI) transmission dynamics system in order to understand the effects of individual behavioural change on influenza epidemics. We showed that information transmission of risk perception played a crucial role in the spread of health-seeking behaviour throughout influenza epidemics. Here a network BI model provides a new approach for understanding the risk perception spread and human behavioural change during disease outbreaks. Our study allows simultaneous consideration of epidemiological, psychological, and social factors as predictors of individual perception rates in behaviour-disease transmission systems. We suggest that a monitoring system with precise information on risk perception should be constructed to effectively promote health behaviours in preparation for emerging disease outbreaks.

  10. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 10(3) EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 10(6) EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  11. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 103 EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 106 EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  12. Animal models for influenza virus pathogenesis, transmission, and immunology

    PubMed Central

    Thangavel, Rajagowthamee R.; Bouvier, Nicole M.

    2014-01-01

    In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research -- mice, ferrets, and guinea pigs -- and discuss the advantages and disadvantages of each. PMID:24709389

  13. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination.

    PubMed

    Otter, J A; Donskey, C; Yezli, S; Douthwaite, S; Goldenberg, S D; Weber, D J

    2016-03-01

    Viruses with pandemic potential including H1N1, H5N1, and H5N7 influenza viruses, and severe acute respiratory syndrome (SARS)/Middle East respiratory syndrome (MERS) coronaviruses (CoV) have emerged in recent years. SARS-CoV, MERS-CoV, and influenza virus can survive on surfaces for extended periods, sometimes up to months. Factors influencing the survival of these viruses on surfaces include: strain variation, titre, surface type, suspending medium, mode of deposition, temperature and relative humidity, and the method used to determine the viability of the virus. Environmental sampling has identified contamination in field-settings with SARS-CoV and influenza virus, although the frequent use of molecular detection methods may not necessarily represent the presence of viable virus. The importance of indirect contact transmission (involving contamination of inanimate surfaces) is uncertain compared with other transmission routes, principally direct contact transmission (independent of surface contamination), droplet, and airborne routes. However, influenza virus and SARS-CoV may be shed into the environment and be transferred from environmental surfaces to hands of patients and healthcare providers. Emerging data suggest that MERS-CoV also shares these properties. Once contaminated from the environment, hands can then initiate self-inoculation of mucous membranes of the nose, eyes or mouth. Mathematical and animal models, and intervention studies suggest that contact transmission is the most important route in some scenarios. Infection prevention and control implications include the need for hand hygiene and personal protective equipment to minimize self-contamination and to protect against inoculation of mucosal surfaces and the respiratory tract, and enhanced surface cleaning and disinfection in healthcare settings.

  14. Recombinant IgA is sufficient to prevent influenza virus transmission in guinea pigs.

    PubMed

    Seibert, Christopher W; Rahmat, Saad; Krause, Jens C; Eggink, Dirk; Albrecht, Randy A; Goff, Peter H; Krammer, Florian; Duty, J Andrew; Bouvier, Nicole M; García-Sastre, Adolfo; Palese, Peter

    2013-07-01

    A serum hemagglutination inhibition (HAI) titer of 40 or greater is thought to be associated with reduced influenza virus pathogenesis in humans and is often used as a correlate of protection in influenza vaccine studies. We have previously demonstrated that intramuscular vaccination of guinea pigs with inactivated influenza virus generates HAI titers greater than 300 but does not protect vaccinated animals from becoming infected with influenza virus by transmission from an infected cage mate. Only guinea pigs intranasally inoculated with a live influenza virus or a live attenuated virus vaccine, prior to challenge, were protected from transmission (A. C. Lowen et al., J. Virol. 83:2803-2818, 2009.). Because the serum HAI titer is mostly determined by IgG content, these results led us to speculate that prevention of viral transmission may require IgA antibodies or cellular immune responses. To evaluate this hypothesis, guinea pigs and ferrets were administered a potent, neutralizing mouse IgG monoclonal antibody, 30D1 (Ms 30D1 IgG), against the A/California/04/2009 (H1N1) virus hemagglutinin and exposed to respiratory droplets from animals infected with this virus. Even though HAI titers were greater than 160 1 day postadministration, Ms 30D1 IgG did not prevent airborne transmission to passively immunized recipient animals. In contrast, intramuscular administration of recombinant 30D1 IgA (Ms 30D1 IgA) prevented transmission to 88% of recipient guinea pigs, and Ms 30D1 IgA was detected in animal nasal washes. Ms 30D1 IgG administered intranasally also prevented transmission, suggesting the importance of mucosal immunity in preventing influenza virus transmission. Collectively, our data indicate that IgG antibodies may prevent pathogenesis associated with influenza virus infection but do not protect from virus infection by airborne transmission, while IgA antibodies are more important for preventing transmission of influenza viruses.

  15. Hemagglutinin Stalk Immunity Reduces Influenza Virus Replication and Transmission in Ferrets

    PubMed Central

    Nachbagauer, Raffael; Miller, Matthew S.; Hai, Rong; Ryder, Alex B.; Rose, John K.; Palese, Peter; García-Sastre, Adolfo

    2015-01-01

    We assessed whether influenza virus hemagglutinin stalk-based immunity protects ferrets against aerosol-transmitted H1N1 influenza virus infection. Immunization of ferrets by a universal influenza virus vaccine strategy based on viral vectors expressing chimeric hemagglutinin constructs induced stalk-specific antibody responses. Stalk-immunized ferrets were cohoused with H1N1-infected ferrets under conditions that permitted virus transmission. Hemagglutinin stalk-immunized ferrets had lower viral titers and delayed or no virus replication at all following natural exposure to influenza virus. PMID:26719251

  16. Highly Pathogenic Influenza A(H5N1) Virus Survival in Complex Artificial Aquatic Biotopes

    PubMed Central

    Horm, Viseth Srey; Gutiérrez, Ramona A.; Nicholls, John M.; Buchy, Philippe

    2012-01-01

    Background Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI) H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. Methodology/Principal Findings The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna) relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates) was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. Conclusions/Significance Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs. PMID:22514622

  17. Remote sensing and avian influenza: A review of image processing methods for extracting key variables affecting avian influenza virus survival in water from Earth Observation satellites

    NASA Astrophysics Data System (ADS)

    Tran, Annelise; Goutard, Flavie; Chamaillé, Lise; Baghdadi, Nicolas; Lo Seen, Danny

    2010-02-01

    Recent studies have highlighted the potential role of water in the transmission of avian influenza (AI) viruses and the existence of often interacting variables that determine the survival rate of these viruses in water; the two main variables are temperature and salinity. Remote sensing has been used to map and monitor water bodies for several decades. In this paper, we review satellite image analysis methods used for water detection and characterization, focusing on the main variables that influence AI virus survival in water. Optical and radar imagery are useful for detecting water bodies at different spatial and temporal scales. Methods to monitor the temperature of large water surfaces are also available. Current methods for estimating other relevant water variables such as salinity, pH, turbidity and water depth are not presently considered to be effective.

  18. Influenza A virus PB1-F2 protein prolongs viral shedding in chickens lengthening the transmission window

    PubMed Central

    James, Joe; Howard, Wendy; Iqbal, Munir; Nair, Venugopal K.; Barclay, Wendy S.

    2016-01-01

    Avian influenza is a significant economic burden on the poultry industry in geographical regions where it is enzootic. It also poses a public health concern when avian influenza subtypes infect humans, often with high mortality. Understanding viral genetic factors which positively contribute to influenza A virus (IAV) fitness – infectivity, spread and pathogenesis – is of great importance both for human and livestock health. PB1-F2 is a small accessory protein encoded by IAV and in mammalian hosts has been implicated in a wide range of functions that contribute to increased pathogenesis. In the avian host, the protein has been understudied despite high-level full-length conservation in avian IAV isolates, which is in contrast to the truncations of the PB1-F2 length frequently found in mammalian host isolates. Here we report that the presence of a full-length PB1-F2 protein, from a low pathogenicity H9N2 avian influenza virus, prolongs infectious virus shedding from directly inoculated chickens, thereby enhancing transmission of the virus by lengthening the transmission window to contact birds. As well as extending transmission, the presence of a full-length PB1-F2 suppresses pathogenicity evidenced by an increased minimum lethal dose in embryonated chicken eggs and increasing survival in directly infected birds when compared to a virus lacking an ORF for PB1-F2. We propose that there is a positive pressure to maintain a full-length functional PB1-F2 protein upon infection of avian hosts as it contributes to the effective transmission of IAV in the field. PMID:27558742

  19. Determinants of Influenza Transmission in South East Asia: Insights from a Household Cohort Study in Vietnam

    PubMed Central

    Cauchemez, Simon; Ferguson, Neil M.; Fox, Annette; Mai, Le Quynh; Thanh, Le Thi; Thai, Pham Quang; Thoang, Dang Dinh; Duong, Tran Nhu; Minh Hoa, Le Nguyen; Tran Hien, Nguyen; Horby, Peter

    2014-01-01

    To guide control policies, it is important that the determinants of influenza transmission are fully characterized. Such assessment is complex because the risk of influenza infection is multifaceted and depends both on immunity acquired naturally or via vaccination and on the individual level of exposure to influenza in the community or in the household. Here, we analyse a large household cohort study conducted in 2007–2010 in Vietnam using innovative statistical methods to ascertain in an integrative framework the relative contribution of variables that influence the transmission of seasonal (H1N1, H3N2, B) and pandemic H1N1pdm09 influenza. Influenza infection was diagnosed by haemagglutination-inhibition (HI) antibody assay of paired serum samples. We used a Bayesian data augmentation Markov chain Monte Carlo strategy based on digraphs to reconstruct unobserved chains of transmission in households and estimate transmission parameters. The probability of transmission from an infected individual to another household member was 8% (95% CI, 6%, 10%) on average, and varied with pre-season titers, age and household size. Within households of size 3, the probability of transmission from an infected member to a child with low pre-season HI antibody titers was 27% (95% CI 21%–35%). High pre-season HI titers were protective against infection, with a reduction in the hazard of infection of 59% (95% CI, 44%–71%) and 87% (95% CI, 70%–96%) for intermediate (1∶20–1∶40) and high (≥1∶80) HI titers, respectively. Even after correcting for pre-season HI titers, adults had half the infection risk of children. Twenty six percent (95% CI: 21%, 30%) of infections may be attributed to household transmission. Our results highlight the importance of integrated analysis by influenza sub-type, age and pre-season HI titers in order to infer influenza transmission risks in and outside of the household. PMID:25144780

  20. One health, multiple challenges: The inter-species transmission of influenza A virus

    PubMed Central

    Short, Kirsty R.; Richard, Mathilde; Verhagen, Josanne H.; van Riel, Debby; Schrauwen, Eefje J. A.; van den Brand, Judith M. A.; Mänz, Benjamin; Bodewes, Rogier

    2015-01-01

    Influenza A viruses are amongst the most challenging viruses that threaten both human and animal health. Influenza A viruses are unique in many ways. Firstly, they are unique in the diversity of host species that they infect. This includes waterfowl (the original reservoir), terrestrial and aquatic poultry, swine, humans, horses, dog, cats, whales, seals and several other mammalian species. Secondly, they are unique in their capacity to evolve and adapt, following crossing the species barrier, in order to replicate and spread to other individuals within the new species. Finally, they are unique in the frequency of inter-species transmission events that occur. Indeed, the consequences of novel influenza virus strain in an immunologically naïve population can be devastating. The problems that influenza A viruses present for human and animal health are numerous. For example, influenza A viruses in humans represent a major economic and disease burden, whilst the poultry industry has suffered colossal damage due to repeated outbreaks of highly pathogenic avian influenza viruses. This review aims to provide a comprehensive overview of influenza A viruses by shedding light on interspecies virus transmission and summarising the current knowledge regarding how influenza viruses can adapt to a new host. PMID:26309905

  1. Transmission and control of an emerging influenza pandemic in a small-world airline network.

    PubMed

    Hsu, Chaug-Ing; Shih, Hsien-Hung

    2010-01-01

    The avian influenza virus H5N1 and the 2009 swine flu H1N1 are potentially serious pandemic threats to human health, and air travel readily facilitates the spread of infectious diseases. However, past studies have not yet incorporated the effects of air travel on the transmission of influenza in the construction of mathematical epidemic models. Therefore, this paper focused on the human-to-human transmission of influenza, and investigated the effects of air travel activities on an influenza pandemic in a small-world network. These activities of air travel include passengers' consolidation, conveyance and distribution in airports and flights. Dynamic transmission models were developed to assess the expected burdens of the pandemic, with and without control measures. This study also investigated how the small-world properties of an air transportation network facilitate the spread of influenza around the globe. The results show that, as soon as the influenza is spread to the top 50 global airports, the transmission is greatly accelerated. Under the constraint of limited resources, a strategy that first applies control measures to the top 50 airports after day 13 and then soon afterwards to all other airports may result in remarkable containment effectiveness. As the infectiousness of the disease increases, it will expand the scale of the pandemic, and move the start time of the pandemic ahead.

  2. Maternally-derived antibodies do not prevent transmission of swine influenza A virus between pigs.

    PubMed

    Cador, Charlie; Hervé, Séverine; Andraud, Mathieu; Gorin, Stéphane; Paboeuf, Frédéric; Barbier, Nicolas; Quéguiner, Stéphane; Deblanc, Céline; Simon, Gaëlle; Rose, Nicolas

    2016-08-17

    A transmission experiment involving 5-week-old specific-pathogen-free (SPF) piglets, with (MDA(+)) or without maternally-derived antibodies (MDA(-)), was carried out to evaluate the impact of passive immunity on the transmission of a swine influenza A virus (swIAV). In each group (MDA(+)/MDA(-)), 2 seeders were placed with 4 piglets in direct contact and 5 in indirect contact (3 replicates per group). Serological kinetics (ELISA) and individual viral shedding (RT-PCR) were monitored for 28 days after infection. MDA waning was estimated using a nonlinear mixed-effects model and survival analysis. Differential transmission rates were estimated depending on the piglets' initial serological status and contact structure (direct contact with pen-mates or indirect airborne contact). The time to MDA waning was 71.3 [52.8-92.1] days on average. The airborne transmission rate was 1.41 [0.64-2.63] per day. The compared shedding pattern between groups showed that MDA(+) piglets had mainly a reduced susceptibility to infection compared to MDA(-) piglets. The resulting reproduction number estimated in MDA(+) piglets (5.8 [1.4-18.9]), although 3 times lower than in MDA(-) piglets (14.8 [6.4-27.1]), was significantly higher than 1. Such an efficient and extended spread of swIAV at the population scale in the presence of MDAs could contribute to swIAV persistence on farms, given the fact that the period when transmission is expected to be impacted by the presence of MDAs can last up to 10 weeks.

  3. Transmission Potential of Influenza A(H7N9) Virus, China, 2013-2014.

    PubMed

    Kucharski, Adam J; Mills, Harriet L; Donnelly, Christl A; Riley, Steven

    2015-05-01

    To determine transmission potential of influenza A(H7N9) virus, we used symptom onset data to compare 2 waves of infection in China during 2013-2014. We found evidence of increased transmission potential in the second wave and showed that live bird market closure was significantly less effective in Guangdong than in other regions.

  4. Transmission Potential of Influenza A(H7N9) Virus, China, 2013–2014

    PubMed Central

    Mills, Harriet L.; Donnelly, Christl A.; Riley, Steven

    2015-01-01

    To determine transmission potential of influenza A(H7N9) virus, we used symptom onset data to compare 2 waves of infection in China during 2013–2014. We found evidence of increased transmission potential in the second wave and showed that live bird market closure was significantly less effective in Guangdong than in other regions. PMID:25897624

  5. Inter-Seasonal Influenza is Characterized by Extended Virus Transmission and Persistence.

    PubMed

    Patterson Ross, Zoe; Komadina, Naomi; Deng, Yi-Mo; Spirason, Natalie; Kelly, Heath A; Sullivan, Sheena G; Barr, Ian G; Holmes, Edward C

    2015-06-01

    The factors that determine the characteristic seasonality of influenza remain enigmatic. Current models predict that occurrences of influenza outside the normal surveillance season within a temperate region largely reflect the importation of viruses from the alternate hemisphere or from equatorial regions in Asia. To help reveal the drivers of seasonality we investigated the origins and evolution of influenza viruses sampled during inter-seasonal periods in Australia. To this end we conducted an expansive phylogenetic analysis of 9912, 3804, and 3941 hemagglutinnin (HA) sequences from influenza A/H1N1pdm, A/H3N2, and B, respectively, collected globally during the period 2009-2014. Of the 1475 viruses sampled from Australia, 396 (26.8% of Australian, or 2.2% of global set) were sampled outside the monitored temperate influenza surveillance season (1 May - 31 October). Notably, rather than simply reflecting short-lived importations of virus from global localities with higher influenza prevalence, we documented a variety of more complex inter-seasonal transmission patterns including "stragglers" from the preceding season and "heralds" of the forthcoming season, and which included viruses sampled from clearly temperate regions within Australia. We also provide evidence for the persistence of influenza B virus between epidemic seasons, in which transmission of a viral lineage begins in one season and continues throughout the inter-seasonal period into the following season. Strikingly, a disproportionately high number of inter-seasonal influenza transmission events occurred in tropical and subtropical regions of Australia, providing further evidence that climate plays an important role in shaping patterns of influenza seasonality.

  6. Quantifying the impact of immune escape on transmission dynamics of influenza.

    PubMed

    Park, Andrew W; Daly, Janet M; Lewis, Nicola S; Smith, Derek J; Wood, James L N; Grenfell, Bryan T

    2009-10-30

    Influenza virus evades prevailing natural and vaccine-induced immunity by accumulating antigenic change in the haemagglutinin surface protein. Linking amino acid substitutions in haemagglutinin epitopes to epidemiology has been problematic because of the scarcity of data connecting these scales. We use experiments on equine influenza virus to address this issue, quantifying how key parameters of viral establishment and shedding increase the probability of transmission with genetic distance between previously immunizing virus and challenge virus. Qualitatively similar patterns emerge from analyses based on antigenic distance and from a published human influenza study. Combination of the equine data and epidemiological models allows us to calculate the effective reproductive number of transmission as a function of relevant genetic change in the virus, illuminating the probability of influenza epidemics as a function of immunity.

  7. Transmission of avian influenza virus (H3N2) to dogs.

    PubMed

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun; Oh, Jinsik

    2008-05-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) isolate. The beagles shed virus through nasal excretion, seroconverted, and became ill with severe necrotizing tracheobronchitis and bronchioalveolitis with accompanying clinical signs (e.g., high fever). Consistent with histologic observation of lung lesions, large amounts of avian influenza virus binding receptor (SAalpha 2,3-gal) were identified in canine tracheal, bronchial, and bronchiolar epithelial cells, which suggests potential for direct transmission of avian influenza virus (H3N2) from poultry to dogs. Our data provide evidence that dogs may play a role in interspecies transmission and spread of influenza virus.

  8. Infection of dogs with equine influenza virus: evidence for transmission from horses during the Australian outbreak.

    PubMed

    Crispe, E; Finlaison, D S; Hurt, A C; Kirkland, P D

    2011-07-01

    During the equine influenza (EI) outbreak, respiratory disease was observed in dogs that were in close proximity to infected horses. Investigations were undertaken to exclude influenza virus infection. Of the 23 dogs that were seropositive in tests using the influenza A/Sydney/2007 virus as the test antigen, 10 showed clinical signs. EI virus appeared to be readily transmitted to dogs that were held in close proximity to infected horses, but there was no evidence of lateral transmission of the virus to other dogs that did not have contact with or were not held in close proximity to horses.

  9. Transmission and reassortment of avian influenza viruses at the Asian-North American interface

    USGS Publications Warehouse

    Ramey, Andrew M.; Pearce, John M.; Ely, Craig R.; Guy, Lisa M. Sheffield; Irons, David B.; Derksen, Dirk V.; Ip, Hon S.

    2010-01-01

    Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian–North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted.

  10. Genetic data provide evidence for wind-mediated transmission of highly pathogenic avian influenza.

    PubMed

    Ypma, Rolf J F; Jonges, Marcel; Bataille, Arnaud; Stegeman, Arjan; Koch, Guus; van Boven, Michiel; Koopmans, Marion; van Ballegooijen, W Marijn; Wallinga, Jacco

    2013-03-01

    Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of interfarm transmission are largely unknown. Dispersal of infectious material by wind has been suggested, but never demonstrated, as a possible cause of transmission between farms. Here we provide statistical evidence that the direction of spread of avian influenza A(H7N7) is correlated with the direction of wind at date of infection. Using detailed genetic and epidemiological data, we found the direction of spread by reconstructing the transmission tree for a large outbreak in the Netherlands in 2003. We conservatively estimate the contribution of a possible wind-mediated mechanism to the total amount of spread during this outbreak to be around 18%.

  11. [Interspecies transmission, adaptation to humans and pathogenicity of animal influenza viruses].

    PubMed

    Munier, S; Moisy, D; Marc, D; Naffakh, N

    2010-04-01

    The emergence in 2009 of a novel A(H1N1)v influenza virus of swine origin and the regular occurrence since 2003 of human cases of infection with A(H5N1) avian influenza viruses underline the zoonotic and pandemic potential of type A influenza viruses. Influenza viruses from the wild aquatic birds reservoir usually do not replicate efficiently in humans. Domestic poultry and swine can act as intermediate hosts for the acquisition of determinants that increase the potential of transmission and adaptation to humans, through the accumulation of mutations or by genetic reassortment. The rapid evolution of influenza viruses following interspecies transmission probably results from the selection of genetic variations that favor optimal interactions between viral proteins and cellular factors, leading to an increased multiplication potential and a better escape to the host antiviral response. Whereas influenza viruses usually cause asymptomatic infections in wild aquatic birds, they may be highly pathogenic in other species. Molecular determinants of host-specificity and pathogenesis have been identified in most viral genes, notably in genes that encode viral surface glycoproteins, proteins involved in the viral genome replication, and proteins that counteract the host immune response. However, our knowledge of these numerous and interdependant determinants remains incomplete, and the molecular mechanisms involved are still to be understood.

  12. Oseltamivir inhibits influenza virus replication and transmission following ocular-only aerosol inoculation of ferrets.

    PubMed

    Belser, Jessica A; Maines, Taronna R; Creager, Hannah M; Katz, Jacqueline M; Tumpey, Terrence M

    2015-10-01

    Ocular exposure to influenza virus represents an alternate route of virus entry capable of establishing a respiratory infection in mammals, but the effectiveness of currently available antiviral treatments to limit virus replication within ocular tissue or inhibit virus spread from ocular sites to the respiratory tract is poorly understood. Using an inoculation method that delivers an aerosol inoculum exclusively to the ocular surface, we demonstrate that oral oseltamivir administration following ocular-only aerosol inoculation with multiple avian and human influenza viruses protected ferrets from a fatal and systemic infection, reduced clinical signs and symptoms of illness, and decreased virus transmissibility to susceptible contacts when a respiratory infection was initiated. The presence of oseltamivir further inhibited influenza virus replication in primary human corneal epithelial cells. These findings provide critical experimental evidence supporting the use of neuraminidase inhibitors during outbreaks of influenza virus resulting in ocular disease or following ocular exposure.

  13. A data-driven model for influenza transmission incorporating media effects.

    PubMed

    Mitchell, Lewis; Ross, Joshua V

    2016-10-01

    Numerous studies have attempted to model the effect of mass media on the transmission of diseases such as influenza; however, quantitative data on media engagement has until recently been difficult to obtain. With the recent explosion of 'big data' coming from online social media and the like, large volumes of data on a population's engagement with mass media during an epidemic are becoming available to researchers. In this study, we combine an online dataset comprising millions of shared messages relating to influenza with traditional surveillance data on flu activity to suggest a functional form for the relationship between the two. Using this data, we present a simple deterministic model for influenza dynamics incorporating media effects, and show that such a model helps explain the dynamics of historical influenza outbreaks. Furthermore, through model selection we show that the proposed media function fits historical data better than other media functions proposed in earlier studies.

  14. A data-driven model for influenza transmission incorporating media effects

    PubMed Central

    Ross, Joshua V.

    2016-01-01

    Numerous studies have attempted to model the effect of mass media on the transmission of diseases such as influenza; however, quantitative data on media engagement has until recently been difficult to obtain. With the recent explosion of ‘big data’ coming from online social media and the like, large volumes of data on a population’s engagement with mass media during an epidemic are becoming available to researchers. In this study, we combine an online dataset comprising millions of shared messages relating to influenza with traditional surveillance data on flu activity to suggest a functional form for the relationship between the two. Using this data, we present a simple deterministic model for influenza dynamics incorporating media effects, and show that such a model helps explain the dynamics of historical influenza outbreaks. Furthermore, through model selection we show that the proposed media function fits historical data better than other media functions proposed in earlier studies. PMID:27853563

  15. Contact transmission of influenza virus between ferrets imposes a looser bottleneck than respiratory droplet transmission allowing propagation of antiviral resistance

    PubMed Central

    Frise, Rebecca; Bradley, Konrad; van Doremalen, Neeltje; Galiano, Monica; Elderfield, Ruth A.; Stilwell, Peter; Ashcroft, Jonathan W.; Fernandez-Alonso, Mirian; Miah, Shahjahan; Lackenby, Angie; Roberts, Kim L.; Donnelly, Christl A.; Barclay, Wendy S.

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics. It is important to elucidate the stringency of bottlenecks during transmission to shed light on mechanisms that underlie the evolution and propagation of antigenic drift, host range switching or drug resistance. The virus spreads between people by different routes, including through the air in droplets and aerosols, and by direct contact. By housing ferrets under different conditions, it is possible to mimic various routes of transmission. Here, we inoculated donor animals with a mixture of two viruses whose genomes differed by one or two reverse engineered synonymous mutations, and measured the transmission of the mixture to exposed sentinel animals. Transmission through the air imposed a tight bottleneck since most recipient animals became infected by only one virus. In contrast, a direct contact transmission chain propagated a mixture of viruses suggesting the dose transferred by this route was higher. From animals with a mixed infection of viruses that were resistant and sensitive to the antiviral drug oseltamivir, resistance was propagated through contact transmission but not by air. These data imply that transmission events with a looser bottleneck can propagate minority variants and may be an important route for influenza evolution. PMID:27430528

  16. Role of Temperature, Humidity and Rainfall on Influenza Transmission in Guatemala, El Salvador and Panama

    NASA Technical Reports Server (NTRS)

    Soebiyanto, Radina P.; Bonilla, Luis; Jara, Jorge; McCracken, John; Azziz?-Baumgartner, Eduardo; Widdowson, Marc-Alain; Kiang, Richard

    2012-01-01

    Worldwide, seasonal influenza causes about 500,000 deaths and 5 million severe illnesses per year. The environmental drivers of influenza transmission are poorly understood especially in the tropics. We aimed to identify meteorological factors for influenza transmission in tropical Central America. We gathered laboratory-confirmed influenza case-counts by week from Guatemala City, San Salvador Department (El Salvador) and Panama Province from 2006 to 2010. The average total cases per year were: 390 (Guatemala), 99 (San Salvador) and 129 (Panama). Meteorological factors including daily air temperature, rainfall, relative and absolute humidity (RH, AH) were obtained from ground stations, NASA satellites and land models. For these factors, we computed weekly averages and their deviation from the 5-yr means. We assessed the relationship between the number of influenza case-counts and the meteorological factors, including effects lagged by 1 to 4 weeks, using Poisson regression for each site. Our results showed influenza in San Salvador would increase by 1 case within a week of every 1 day with RH>75% (Relative Risk (RR)= 1.32, p=.001) and every 1C increase in minimum temperature (RR=1.29, p=.007) but it would decrease by 1 case for every 1mm-above mean weekly rainfall (RR=0.93,p<.001) (model pseudo-R2=0.55). Within 2 weeks, influenza in Panama was increased by 1 case for every 1% increase in RH (RR=1.04, p=.003), and it was increased by 2 cases for every 1C increase of minimum temperature (RR=2.01, p<.001) (model pseudo-R2=0.4). Influenza counts in Guatemala had 1 case increase for every 1C increase in minimum temperature in the previous week (RR=1.21, p<.001), and for every 1mm/day-above normal increase of rainfall rate (RR=1.03, p=.03) (model pseudo-R2=0.54). Our findings that cases increase with temperature and humidity differ from some temperate-zone studies. But they indicate that climate parameters such as humidity and temperature could be predictive of influenza

  17. Survivability of Eurasian H5N1 highly pathogenic avian influenza viruses in water varies between strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic habitats play critical role in the transmission and maintenance of low pathogenic avian influenza (LPAI) viruses in wild waterfowl; however the importance of these environments in the ecology of H5N1 highly pathogenic avian influenza (HPAI) viruses is unknown. In laboratory-based studies, L...

  18. Estimating dynamic transmission model parameters for seasonal influenza by fitting to age and season-specific influenza-like illness incidence.

    PubMed

    Goeyvaerts, Nele; Willem, Lander; Van Kerckhove, Kim; Vandendijck, Yannick; Hanquet, Germaine; Beutels, Philippe; Hens, Niel

    2015-12-01

    Dynamic transmission models are essential to design and evaluate control strategies for airborne infections. Our objective was to develop a dynamic transmission model for seasonal influenza allowing to evaluate the impact of vaccinating specific age groups on the incidence of infection, disease and mortality. Projections based on such models heavily rely on assumed 'input' parameter values. In previous seasonal influenza models, these parameter values were commonly chosen ad hoc, ignoring between-season variability and without formal model validation or sensitivity analyses. We propose to directly estimate the parameters by fitting the model to age-specific influenza-like illness (ILI) incidence data over multiple influenza seasons. We used a weighted least squares (WLS) criterion to assess model fit and applied our method to Belgian ILI data over six influenza seasons. After exploring parameter importance using symbolic regression, we evaluated a set of candidate models of differing complexity according to the number of season-specific parameters. The transmission parameters (average R0, seasonal amplitude and timing of the seasonal peak), waning rates and the scale factor used for WLS optimization, influenced the fit to the observed ILI incidence the most. Our results demonstrate the importance of between-season variability in influenza transmission and our estimates are in line with the classification of influenza seasons according to intensity and vaccine matching.

  19. Avian biology, the human influence on global avian influenza transmission, and performing surveillance in wild birds.

    PubMed

    Gibbs, Samantha E J

    2010-06-01

    This paper takes a closer look at three interrelated areas of study: avian host biology, the role of human activities in virus transmission, and the surveillance activities centered on avian influenza in wild birds. There are few ecosystems in which birds are not found. Correspondingly, avian influenza viruses are equally global in distribution, relying on competent avian hosts. The immune systems, annual cycles, feeding behaviors, and migration patterns of these hosts influence the ecology of the disease. Decreased biodiversity has also been linked to heightened disease transmission in several disease systems, and it is evident that active destruction and modification of wetland environments for human use is impacting avian populations drastically. Legal and illegal trade in wild birds present a significant risk for introduction and maintenance of exotic diseases. After the emergence of HPAI H5N1 in Hong Kong in 1996 and the ensuing geographic spread of outbreaks after 2003, both infected countries and those at risk of introduction began intensifying avian influenza surveillance efforts. Several techniques for sampling wild birds for influenza viruses have been applied. Benefits, problems, and biases exist for each method. The wild bird avian influenza surveillance programs taking place across the continents are now scaling back due to the rise of other spending priorities; hopefully the lessons learned from this work will be preserved and will inform future research and disease outbreak response priorities.

  20. Influenza-Sediment Interactions

    NASA Astrophysics Data System (ADS)

    Trusiak, A.; Block, K. A.; Katz, A.; Gottlieb, P.; Alimova, A.; Galarza, J.; Wei, H.; Steiner, J. C.

    2013-12-01

    A typical water fowl can secrete 1012 influenza virions per day. Therefore it is not unexpected that influenza virions interact with sediments in the water column. The influence of sediments on avian influenza virions is not known. With the threat of avian influenza emerging into the human population, it is crucial to understand virus survivability and residence time in a body of water. Influenza and clay sediments are colloidal particles and thus aggregate as explained by DLVO (Derjaguin & Landau, Verwey & Overbeek) theory. Of great importance is an understanding of the types of particulate or macromolecular components that bind the virus particles, and whether the virus remains biologically active. We present results of hetero-aggregation and transmission electron microscopy experiments performed with influenza A/PR8/38. Influenza particles are suspended with sediment and minimal nutrients for several days, after which the components are evaluated to determine influenza concentration and survivability. Transmission electron microscopy results are reported on the influenza-sediment aggregates to elucidate structure and morphology of the components.

  1. Avian influenza shedding patterns in waterfowl: implications for surveillance, environmental transmission, and disease spread

    USGS Publications Warehouse

    Viviane Henaux,; Samuel, Michael D.

    2011-01-01

    Despite the recognized importance of fecal/oral transmission of low pathogenic avian influenza (LPAI) via contaminated wetlands, little is known about the length, quantity, or route of AI virus shed by wild waterfowl. We used published laboratory challenge studies to evaluate the length and quantity of low pathogenic (LP) and highly pathogenic (HP) virus shed via oral and cloacal routes by AI-infected ducks and geese, and how these factors might influence AI epidemiology and virus detection. We used survival analysis to estimate the duration of infection (from virus inoculation to the last day virus was shed) and nonlinear models to evaluate temporal patterns in virus shedding. We found higher mean virus titer and longer median infectious period for LPAI-infected ducks (10–11.5 days in oral and cloacal swabs) than HPAI-infected ducks (5 days) and geese (7.5 days). Based on the median bird infectious dose, we found that environmental contamination is two times higher for LPAI- than HPAI-infectious ducks, which implies that susceptible birds may have a higher probability of infection during LPAI than HPAI outbreaks. Less environmental contamination during the course of infection and previously documented shorter environmental persistence for HPAI than LPAI suggest that the environment is a less favorable reservoir for HPAI. The longer infectious period, higher virus titers, and subclinical infections with LPAI viruses favor the spread of these viruses by migratory birds in comparison to HPAI. Given the lack of detection of HPAI viruses through worldwide surveillance, we suggest monitoring for AI should aim at improving our understanding of AI dynamics (in particular, the role of the environment and immunity) using long-term comprehensive live bird, serologic, and environmental sampling at targeted areas. Our findings on LPAI and HPAI shedding patterns over time provide essential information to parameterize environmental transmission and virus spread in predictive

  2. Disrupting the Transmission of Influenza A: Face Masks and Ultraviolet Light as Control Measures

    PubMed Central

    Weiss, Martin Meyer; Weiss, Peter D.; Weiss, Danielle E.; Weiss, Joseph B.

    2007-01-01

    In the event of an influenza pandemic, where effective vaccine and antiviral drugs may be lacking, disrupting environmental transmission of the influenza virus will be the only viable strategy to protect the public. We discuss 2 such modalities, respirators (face masks) and ultraviolet (UV) light. Largely overlooked, the potential utility of each is underappreciated. The effectiveness of disposable face masks may be increased by sealing the edges of the mask to the face. Reusable masks should be stockpiled, because the supply of disposable masks will likely prove inadequate. UV light, directed overhead, may be beneficial in hospitals and nursing homes. PMID:17413061

  3. Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates.

    PubMed

    Lee, Jeehyun; Kim, Jungeun; Kwon, Hee-Dae

    2013-01-21

    This study considers an optimal intervention strategy for influenza outbreaks. Variations in the SEIAR model are considered to include seasonal forcing and age structure, and control strategies include vaccination, antiviral treatment, and social distancing such as school closures. We formulate an optimal control problem by minimizing the incidence of influenza outbreaks while considering intervention costs. We examine the effects of delays in vaccine production, seasonal forcing, and age-dependent transmission rates on the optimal control and suggest some optimal strategies through numerical simulations.

  4. Transmission potential of influenza A/H7N9, February to May 2013, China

    PubMed Central

    2013-01-01

    Background On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013, in 10 Chinese provinces and Taiwan. The incidence of A/H7N9 cases has stalled in recent weeks, presumably as a consequence of live bird market closures in the most heavily affected areas. Here we compare the transmission potential of influenza A/H7N9 with that of other emerging pathogens and evaluate the impact of intervention measures in an effort to guide pandemic preparedness. Methods We used a Bayesian approach combined with a SEIR (Susceptible-Exposed-Infectious-Removed) transmission model fitted to daily case data to assess the reproduction number (R) of A/H7N9 by province and to evaluate the impact of live bird market closures in April and May 2013. Simulation studies helped quantify the performance of our approach in the context of an emerging pathogen, where human-to-human transmission is limited and most cases arise from spillover events. We also used alternative approaches to estimate R based on individual-level information on prior exposure and compared the transmission potential of influenza A/H7N9 with that of other recent zoonoses. Results Estimates of R for the A/H7N9 outbreak were below the epidemic threshold required for sustained human-to-human transmission and remained near 0.1 throughout the study period, with broad 95% credible intervals by the Bayesian method (0.01 to 0.49). The Bayesian estimation approach was dominated by the prior distribution, however, due to relatively little information contained in the case data. We observe a statistically significant deceleration in growth rate after 6 April 2013, which is consistent with a reduction in A/H7N9 transmission associated with the preemptive closure of live bird markets. Although confidence intervals are broad, the estimated

  5. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    NASA Astrophysics Data System (ADS)

    Bao, L. M.; Zhang, G. L.; Lei, Q. T.; Li, Y.; Li, X. L.; Hwu, Y. K.; Yi, J. M.

    2015-09-01

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained.

  6. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential

    PubMed Central

    Richard, Mathilde; Fouchier, Ron A.M.

    2015-01-01

    Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks. PMID:26385895

  7. Oseltamivir expands quasispecies of influenza virus through cell-to-cell transmission.

    PubMed

    Mori, Kotaro; Murano, Kensaku; Ohniwa, Ryosuke L; Kawaguchi, Atsushi; Nagata, Kyosuke

    2015-03-16

    The population of influenza virus consists of a huge variety of variants, called quasispecies, due to error-prone replication. Previously, we reported that progeny virions of influenza virus become infected to adjacent cells via cell-to-cell transmission pathway in the presence of oseltamivir. During cell-to-cell transmission, viruses become infected to adjacent cells at high multiplicity since progeny virions are enriched on plasma membrane between infected cells and their adjacent cells. Co-infection with viral variants may rescue recessive mutations with each other. Thus, it is assumed that the cell-to-cell transmission causes expansion of virus quasispecies. Here, we have demonstrated that temperature-sensitive mutations remain in progeny viruses even at non-permissive temperature by co-infection in the presence of oseltamivir. This is possibly due to a multiplex infection through the cell-to-cell transmission by the addition of oseltamivir. Further, by the addition of oseltamivir, the number of missense mutation introduced by error-prone replication in segment 8 encoding NS1 was increased in a passage-dependent manner. The number of missense mutation in segment 5 encoding NP was not changed significantly, whereas silent mutation was increased. Taken together, we propose that oseltamivir expands influenza virus quasispecies via cell-to-cell transmission, and may facilitate the viral evolution and adaptation.

  8. The impact of illness on social networks: implications for transmission and control of influenza.

    PubMed

    Van Kerckhove, Kim; Hens, Niel; Edmunds, W John; Eames, Ken T D

    2013-12-01

    We expect social networks to change as a result of illness, but social contact data are generally collected from healthy persons. Here we quantified the impact of influenza-like illness on social mixing patterns. We analyzed the contact patterns of persons from England measured when they were symptomatic with influenza-like illness during the 2009 A/H1N1pdm influenza epidemic (2009-2010) and again 2 weeks later when they had recovered. Illness was associated with a reduction in the number of social contacts, particularly in settings outside the home, reducing the reproduction number to about one-quarter of the value it would otherwise have taken. We also observed a change in the age distribution of contacts. By comparing the expected age distribution of cases resulting from transmission by (a)symptomatic persons with incidence data, we estimated the contribution of both groups to transmission. Using this, we calculated the fraction of transmission resulting from (a)symptomatic persons, assuming equal duration of infectiousness. We estimated that 66% of transmission was attributable to persons with symptomatic disease (95% confidence interval: 0.23, 1.00). This has important implications for control: Treating symptomatic persons with antiviral agents or encouraging home isolation would be expected to have a major impact on transmission, particularly since the reproduction number for this strain was low.

  9. Transmission of Eurasian avian H2 influenza virus to shorebirds in North America.

    PubMed

    Makarova, N V; Kaverin, N V; Krauss, S; Senne, D; Webster, R G

    1999-12-01

    Influenza A virus of the H2 subtype caused a serious pandemic in 1957 and may cause similar outbreaks in the future. To assess the evolution and the antigenic relationships of avian influenza H2 viruses, we sequenced the haemagglutinin (HA) genes of H2 isolates from shorebirds, ducks and poultry in North America and derived a phylogenetic tree to establish their interrelationships. This analysis confirmed the divergence of H2 HA into two geographical lineages, American and Eurasian. One group of viruses isolated from shorebirds in North America had HA belonging to the Eurasian lineage, indicating an interregional transmission of the H2 gene. Characterization of HA with a monoclonal antibody panel revealed that the antigenicity of the Delaware strains differed from the other avian strains analysed. The data emphasizes the importance of avian influenza surveillance.

  10. Environmental Conditions Affect Exhalation of H3N2 Seasonal and Variant Influenza Viruses and Respiratory Droplet Transmission in Ferrets

    PubMed Central

    Gustin, Kortney M.; Belser, Jessica A.; Veguilla, Vic; Zeng, Hui; Katz, Jacqueline M.; Tumpey, Terrence M.; Maines, Taronna R.

    2015-01-01

    The seasonality of influenza virus infections in temperate climates and the role of environmental conditions like temperature and humidity in the transmission of influenza virus through the air are not well understood. Using ferrets housed at four different environmental conditions, we evaluated the respiratory droplet transmission of two influenza viruses (a seasonal H3N2 virus and an H3N2 variant virus, the etiologic virus of a swine to human summertime infection) and concurrently characterized the aerosol shedding profiles of infected animals. Comparisons were made among the different temperature and humidity conditions and between the two viruses to determine if the H3N2 variant virus exhibited enhanced capabilities that may have contributed to the infections occurring in the summer. We report here that although increased levels of H3N2 variant virus were found in ferret nasal wash and exhaled aerosol samples compared to the seasonal H3N2 virus, enhanced respiratory droplet transmission was not observed under any of the environmental settings. However, overall environmental conditions were shown to modulate the frequency of influenza virus transmission through the air. Transmission occurred most frequently at 23°C/30%RH, while the levels of infectious virus in aerosols exhaled by infected ferrets agree with these results. Improving our understanding of how environmental conditions affect influenza virus infectivity and transmission may reveal ways to better protect the public against influenza virus infections. PMID:25969995

  11. Transmission of influenza reflects seasonality of wild birds across the annual cycle

    USGS Publications Warehouse

    Hill, Nichola J.; Ma, Eric J.; Meixell, Brandt W.; Lindberg, Mark S.; Boyce, Walter M.; Runstadler, Jonathan A.

    2016-01-01

    Influenza A Viruses (IAV) in nature must overcome shifting transmission barriers caused by the mobility of their primary host, migratory wild birds, that change throughout the annual cycle. Using a phylogenetic network of viral sequences from North American wild birds (2008–2011) we demonstrate a shift from intraspecific to interspecific transmission that along with reassortment, allows IAV to achieve viral flow across successive seasons from summer to winter. Our study supports amplification of IAV during summer breeding seeded by overwintering virus persisting locally and virus introduced from a wide range of latitudes. As birds migrate from breeding sites to lower latitudes, they become involved in transmission networks with greater connectivity to other bird species, with interspecies transmission of reassortant viruses peaking during the winter. We propose that switching transmission dynamics may be a critical strategy for pathogens that infect mobile hosts inhabiting regions with strong seasonality.

  12. Association of Oseltamivir Treatment With Virus Shedding, Illness, and Household Transmission of Influenza Viruses.

    PubMed

    Cheung, Doug H; Tsang, Tim K; Fang, Vicky J; Xu, Jiajing; Chan, Kwok-Hung; Ip, Dennis K M; Peiris, Joseph Sriyal Malik; Leung, Gabriel M; Cowling, Benjamin J

    2015-08-01

    In an observational study of 582 patients with laboratory-confirmed influenza virus infections and their household contacts, we found that the initiation of oseltamivir within 24 hours was associated with shorter duration of self-reported illness symptoms (56% reduction in duration; 95% confidence interval, 41%-67%). However, we did not find any association of oseltamivir treatment with duration of viral shedding by polymerase chain reaction or with the risk of household transmission.

  13. Association of Oseltamivir Treatment With Virus Shedding, Illness, and Household Transmission of Influenza Viruses

    PubMed Central

    Cheung, Doug H.; Tsang, Tim K.; Fang, Vicky J.; Xu, Jiajing; Chan, Kwok-Hung; Ip, Dennis K. M.; Peiris, Joseph Sriyal Malik; Leung, Gabriel M.; Cowling, Benjamin J.

    2015-01-01

    In an observational study of 582 patients with laboratory-confirmed influenza virus infections and their household contacts, we found that the initiation of oseltamivir within 24 hours was associated with shorter duration of self-reported illness symptoms (56% reduction in duration; 95% confidence interval, 41%–67%). However, we did not find any association of oseltamivir treatment with duration of viral shedding by polymerase chain reaction or with the risk of household transmission. PMID:25646354

  14. Serological evidence of pig-to-human influenza virus transmission on Thai swine farms.

    PubMed

    Kitikoon, Pravina; Sreta, Donruethai; Tuanudom, Ranida; Amonsin, Alongkorn; Suradhat, Sanipa; Oraveerakul, Kanisak; Poovorawan, Yong; Thanawongnuwech, Roongroje

    2011-03-24

    We investigated influenza interspecies transmission in two commercial swine farms in Thailand. Sera from swine-exposed workers (n=78), age-matched non-swine-exposed healthy people (n=60) and swine populations in both farms (n=85) were studied. Hemagglutination-inhibition (HI) assay was performed on Thai swine H1 viruses (swH1N1 and swH1N2) isolated from both farms. Thai human H1N1 (huH1N1) and pandemic H1N1 2009 (pH1N1) were also used as test antigens. The hemagglutinin (HA) 1 genes of swH1N1 and swH1N2 viruses were sequenced and shown to be genetically distinct from the Thai huH1N1 and pH1N1 viruses. Evidence of pig-to-human influenza virus transmission was found in farm workers with increased odds of elevated antibody titers to both swH1N1 (OR 42.63, 95% CI, 14.65-124) and swH1N2 (OR 58, 95% CI, 13.12-256.3) viruses. No evidence of human-to-pig influenza virus transmission was detected in this study.

  15. Human mobility and the spatial transmission of influenza in the United States

    PubMed Central

    Charu, Vivek; Zeger, Scott; Gog, Julia; Bjørnstad, Ottar N.; Simonsen, Lone; Grenfell, Bryan T.; Viboud, Cécile

    2017-01-01

    Seasonal influenza epidemics offer unique opportunities to study the invasion and re-invasion waves of a pathogen in a partially immune population. Detailed patterns of spread remain elusive, however, due to lack of granular disease data. Here we model high-volume city-level medical claims data and human mobility proxies to explore the drivers of influenza spread in the US during 2002–2010. Although the speed and pathways of spread varied across seasons, seven of eight epidemics likely originated in the Southern US. Each epidemic was associated with 1–5 early long-range transmission events, half of which sparked onward transmission. Gravity model estimates indicate a sharp decay in influenza transmission with the distance between infectious and susceptible cities, consistent with spread dominated by work commutes rather than air traffic. Two early-onset seasons associated with antigenic novelty had particularly localized modes of spread, suggesting that novel strains may spread in a more localized fashion than previously anticipated. PMID:28187123

  16. Influenza A Virus Acquires Enhanced Pathogenicity and Transmissibility after Serial Passages in Swine

    PubMed Central

    Wei, Kai; Sun, Honglei; Sun, Zhenhong; Sun, Yipeng; Kong, Weili; Pu, Juan; Ma, Guangpeng; Yin, Yanbo; Yang, Hanchun; Guo, Xin; Chang, Kin-Chow

    2014-01-01

    ABSTRACT Genetic and phylogenetic analyses suggest that the pandemic H1N1/2009 virus was derived from well-established swine influenza lineages; however, there is no convincing evidence that the pandemic virus was generated from a direct precursor in pigs. Furthermore, the evolutionary dynamics of influenza virus in pigs have not been well documented. Here, we subjected a recombinant virus (rH1N1) with the same constellation makeup as the pandemic H1N1/2009 virus to nine serial passages in pigs. The severity of infection sequentially increased with each passage. Deep sequencing of viral quasispecies from the ninth passage found five consensus amino acid mutations: PB1 A469T, PA 1129T, NA N329D, NS1 N205K, and NEP T48N. Mutations in the hemagglutinin (HA) protein, however, differed greatly between the upper and lower respiratory tracts. Three representative viral clones with the five consensus mutations were selected for functional evaluation. Relative to the parental virus, the three viral clones showed enhanced replication and polymerase activity in vitro and enhanced replication, pathogenicity, and transmissibility in pigs, guinea pigs, and ferrets in vivo. Specifically, two mutants of rH1N1 (PB1 A469T and a combination of NS1 N205K and NEP T48N) were identified as determinants of transmissibility in guinea pigs. Crucially, one mutant viral clone with the five consensus mutations, which also carried D187E, K211E, and S289N mutations in its HA, additionally was able to infect ferrets by airborne transmission as effectively as the pandemic virus. Our findings demonstrate that influenza virus can acquire viral characteristics that are similar to those of the pandemic virus after limited serial passages in pigs. IMPORTANCE We demonstrate here that an engineered reassortant swine influenza virus, with the same gene constellation pattern as the pandemic H1N1/2009 virus and subjected to only nine serial passages in pigs, acquired greatly enhanced virulence and

  17. Influenza A virus acquires enhanced pathogenicity and transmissibility after serial passages in swine.

    PubMed

    Wei, Kai; Sun, Honglei; Sun, Zhenhong; Sun, Yipeng; Kong, Weili; Pu, Juan; Ma, Guangpeng; Yin, Yanbo; Yang, Hanchun; Guo, Xin; Chang, Kin-Chow; Liu, Jinhua

    2014-10-01

    Genetic and phylogenetic analyses suggest that the pandemic H1N1/2009 virus was derived from well-established swine influenza lineages; however, there is no convincing evidence that the pandemic virus was generated from a direct precursor in pigs. Furthermore, the evolutionary dynamics of influenza virus in pigs have not been well documented. Here, we subjected a recombinant virus (rH1N1) with the same constellation makeup as the pandemic H1N1/2009 virus to nine serial passages in pigs. The severity of infection sequentially increased with each passage. Deep sequencing of viral quasispecies from the ninth passage found five consensus amino acid mutations: PB1 A469T, PA 1129T, NA N329D, NS1 N205K, and NEP T48N. Mutations in the hemagglutinin (HA) protein, however, differed greatly between the upper and lower respiratory tracts. Three representative viral clones with the five consensus mutations were selected for functional evaluation. Relative to the parental virus, the three viral clones showed enhanced replication and polymerase activity in vitro and enhanced replication, pathogenicity, and transmissibility in pigs, guinea pigs, and ferrets in vivo. Specifically, two mutants of rH1N1 (PB1 A469T and a combination of NS1 N205K and NEP T48N) were identified as determinants of transmissibility in guinea pigs. Crucially, one mutant viral clone with the five consensus mutations, which also carried D187E, K211E, and S289N mutations in its HA, additionally was able to infect ferrets by airborne transmission as effectively as the pandemic virus. Our findings demonstrate that influenza virus can acquire viral characteristics that are similar to those of the pandemic virus after limited serial passages in pigs. Importance: We demonstrate here that an engineered reassortant swine influenza virus, with the same gene constellation pattern as the pandemic H1N1/2009 virus and subjected to only nine serial passages in pigs, acquired greatly enhanced virulence and transmissibility

  18. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    USGS Publications Warehouse

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun W.; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2014-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance.

  19. Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission

    PubMed Central

    Saunders-Hastings, Patrick R.; Krewski, Daniel

    2016-01-01

    For centuries, novel strains of influenza have emerged to produce human pandemics, causing widespread illness, death, and disruption. There have been four influenza pandemics in the past hundred years. During this time, globalization processes, alongside advances in medicine and epidemiology, have altered the way these pandemics are experienced. Drawing on international case studies, this paper provides a review of the impact of past influenza pandemics, while examining the evolution of our understanding of, and response to, these viruses. This review argues that pandemic influenza is in part a consequence of human development, and highlights the importance of considering outbreaks within the context of shifting global landscapes. While progress in infectious disease prevention, control, and treatment has improved our ability to respond to such outbreaks, globalization processes relating to human behaviour, demographics, and mobility have increased the threat of pandemic emergence and accelerated global disease transmission. Preparedness planning must continue to evolve to keep pace with this heightened risk. Herein, we look to the past for insights on the pandemic experience, underlining both progress and persisting challenges. However, given the uncertain timing and severity of future pandemics, we emphasize the need for flexible policies capable of responding to change as such emergencies develop. PMID:27929449

  20. Long-term evolution and transmission dynamics of swine influenza A virus.

    PubMed

    Vijaykrishna, Dhanasekaran; Smith, Gavin J D; Pybus, Oliver G; Zhu, Huachen; Bhatt, Samir; Poon, Leo L M; Riley, Steven; Bahl, Justin; Ma, Siu K; Cheung, Chung L; Perera, Ranawaka A P M; Chen, Honglin; Shortridge, Kennedy F; Webby, Richard J; Webster, Robert G; Guan, Yi; Peiris, J S Malik

    2011-05-26

    Swine influenza A viruses (SwIV) cause significant economic losses in animal husbandry as well as instances of human disease and occasionally give rise to human pandemics, including that caused by the H1N1/2009 virus. The lack of systematic and longitudinal influenza surveillance in pigs has hampered attempts to reconstruct the origins of this pandemic. Most existing swine data were derived from opportunistic samples collected from diseased pigs in disparate geographical regions, not from prospective studies in defined locations, hence the evolutionary and transmission dynamics of SwIV are poorly understood. Here we quantify the epidemiological, genetic and antigenic dynamics of SwIV in Hong Kong using a data set of more than 650 SwIV isolates and more than 800 swine sera from 12 years of systematic surveillance in this region, supplemented with data stretching back 34 years. Intercontinental virus movement has led to reassortment and lineage replacement, creating an antigenically and genetically diverse virus population whose dynamics are quantitatively different from those previously observed for human influenza viruses. Our findings indicate that increased antigenic drift is associated with reassortment events and offer insights into the emergence of influenza viruses with epidemic potential in swine and humans.

  1. Transmissibility of the Influenza Virus during Influenza Outbreaks and Related Asymptomatic Infection in Mainland China, 2005-2013.

    PubMed

    Chen, Tao; Chen, Tianmu; Liu, Ruchun; Xu, Cuiling; Wang, Dayan; Chen, Faming; Zhu, Wenfei; Zhang, Xixing; Yang, Jing; Wang, Lijie; Xie, Zhi; Chen, Yongkun; Bai, Tian; Li, Yelan; Wang, Zhiyu; Zhang, Min; Chen, Shuilian; Shu, Yuelong

    2016-01-01

    We collected 2768 Influenza-like illness emergency public health incidents from April 1, 2005 to November 30, 2013reported in the Emergency Public Reporting System. After screening by strict inclusion and exclusion criteria, there were 613 outbreaks analyzed with susceptible-exposed-infectious/asymptomatic-removed model in order to estimate the proportion of asymptomatic individuals (p) and the effective reproduction number (Rt). The relation between Rt and viral subtypes, regions, outbreak sites, populations, and seasons were analyzed. The mean values of p of different subtypes ranged from 0.09 to 0.15, but could be as high as up to 0.94. Different subtypes, provinces, regions, and sites of outbreak had statistically significantly different Rt. In particular, the southern region also manifested different Rt by affected population size and seasonality. Our results provide China and also the rest of the world a reference to understand characteristics of transmission and develop prevention and control strategies.

  2. Transmissibility of the Influenza Virus during Influenza Outbreaks and Related Asymptomatic Infection in Mainland China, 2005-2013

    PubMed Central

    Liu, Ruchun; Xu, Cuiling; Wang, Dayan; Chen, Faming; Zhu, Wenfei; Zhang, Xixing; Yang, Jing; Wang, Lijie; Xie, Zhi; Chen, Yongkun; Bai, Tian; Li, Yelan; Wang, Zhiyu; Zhang, Min; Chen, Shuilian; Shu, Yuelong

    2016-01-01

    We collected 2768 Influenza-like illness emergency public health incidents from April 1, 2005 to November 30, 2013reported in the Emergency Public Reporting System. After screening by strict inclusion and exclusion criteria, there were 613 outbreaks analyzed with susceptible–exposed–infectious/asymptomatic–removed model in order to estimate the proportion of asymptomatic individuals (p) and the effective reproduction number (Rt). The relation between Rt and viral subtypes, regions, outbreak sites, populations, and seasons were analyzed. The mean values of p of different subtypes ranged from 0.09 to 0.15, but could be as high as up to 0.94. Different subtypes, provinces, regions, and sites of outbreak had statistically significantly different Rt. In particular, the southern region also manifested different Rt by affected population size and seasonality. Our results provide China and also the rest of the world a reference to understand characteristics of transmission and develop prevention and control strategies. PMID:27880774

  3. Disparities in influenza mortality and transmission related to sociodemographic factors within Chicago in the pandemic of 1918

    PubMed Central

    Grantz, Kyra H.; Rane, Madhura S.; Salje, Henrik; Glass, Gregory E.; Schachterle, Stephen E.; Cummings, Derek A. T.

    2016-01-01

    Social factors have been shown to create differential burden of influenza across different geographic areas. We explored the relationship between potential aggregate-level social determinants and mortality during the 1918 influenza pandemic in Chicago using a historical dataset of 7,971 influenza and pneumonia deaths. Census tract-level social factors, including rates of illiteracy, homeownership, population, and unemployment, were assessed as predictors of pandemic mortality in Chicago. Poisson models fit with generalized estimating equations (GEEs) were used to estimate the association between social factors and the risk of influenza and pneumonia mortality. The Poisson model showed that influenza and pneumonia mortality increased, on average, by 32.2% for every 10% increase in illiteracy rate adjusted for population density, homeownership, unemployment, and age. We also found a significant association between transmissibility and population density, illiteracy, and unemployment but not homeownership. Lastly, analysis of the point locations of reported influenza and pneumonia deaths revealed fine-scale spatiotemporal clustering. This study shows that living in census tracts with higher illiteracy rates increased the risk of influenza and pneumonia mortality during the 1918 influenza pandemic in Chicago. Our observation that disparities in structural determinants of neighborhood-level health lead to disparities in influenza incidence in this pandemic suggests that disparities and their determinants should remain targets of research and control in future pandemics. PMID:27872284

  4. Genetic Adaptation of Influenza A Viruses in Domestic Animals and Their Potential Role in Interspecies Transmission: A Literature Review.

    PubMed

    Munoz, Olga; De Nardi, Marco; van der Meulen, Karen; van Reeth, Kristien; Koopmans, Marion; Harris, Kate; von Dobschuetz, Sophie; Freidl, Gudrun; Meijer, Adam; Breed, Andrew; Hill, Andrew; Kosmider, Rowena; Banks, Jill; Stärk, Katharina D C; Wieland, Barbara; Stevens, Kim; van der Werf, Sylvie; Enouf, Vincent; Dauphin, Gwenaelle; Dundon, William; Cattoli, Giovanni; Capua, Ilaria

    2016-03-01

    In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an epidemiological and virological evidence-based influenza risk assessment framework (IRAF) to assess influenza A virus strains circulating in the animal population according to their potential to cross the species barrier and cause infections in humans. With the purpose of gathering virological data to include in the IRAF, a literature review was conducted and key findings are presented here. Several adaptive traits have been identified in influenza viruses infecting domestic animals and a significance of these adaptations for the emergence of zoonotic influenza, such as shift in receptor preference and mutations in the replication proteins, has been hypothesized. Nonetheless, and despite several decades of research, a comprehensive understanding of the conditions that facilitate interspecies transmission is still lacking. This has been hampered by the intrinsic difficulties of the subject and the complexity of correlating environmental, viral and host factors. Finding the most suitable and feasible way of investigating these factors in laboratory settings represents another challenge. The majority of the studies identified through this review focus on only a subset of species, subtypes and genes, such as influenza in avian species and avian influenza viruses adapting to humans, especially in the context of highly pathogenic avian influenza H5N1. Further research applying a holistic approach and investigating the broader influenza genetic spectrum is urgently needed in the field of genetic adaptation of influenza A viruses.

  5. The role of different social contexts in shaping influenza transmission during the 2009 pandemic

    NASA Astrophysics Data System (ADS)

    Ajelli, Marco; Poletti, Piero; Melegaro, Alessia; Merler, Stefano

    2014-11-01

    Evaluating the relative importance of different social contexts in which infection transmission occurs is critical for identifying optimal intervention strategies. Nonetheless, an overall picture of influenza transmission in different social contexts has yet to emerge. Here we provide estimates of the fraction of infections generated in different social contexts during the 2009 H1N1 pandemic in Italy by making use of a highly detailed individual-based model accounting for time use data and parametrized on the basis of observed age-specific seroprevalence. We found that 41.6% (95%CI: 39-43.7%) of infections occurred in households, 26.7% (95%CI: 21-33.2) in schools, 3.3% (95%CI: 1.7-5%) in workplaces, and 28.4% (95%CI: 24.6-31.9%) in the general community. The above estimates strongly depend on the lower susceptibility to infection of individuals 19+ years old compared to younger ones, estimated to be 0.2 (95%CI 0.12-0.28). We also found that school closure over the weekends contributed to decrease the effective reproduction number of about 8% and significantly affected the pattern of transmission. These results highlight the pivotal role played by schools in the transmission of the 2009 H1N1 influenza. They may be relevant in the evaluation of intervention options and, hence, for informing policy decisions.

  6. Ionizing air affects influenza virus infectivity and prevents airborne-transmission

    PubMed Central

    Hagbom, Marie; Nordgren, Johan; Nybom, Rolf; Hedlund, Kjell-Olof; Wigzell, Hans; Svensson, Lennart

    2015-01-01

    By the use of a modified ionizer device we describe effective prevention of airborne transmitted influenza A (strain Panama 99) virus infection between animals and inactivation of virus (>97%). Active ionizer prevented 100% (4/4) of guinea pigs from infection. Moreover, the device effectively captured airborne transmitted calicivirus, rotavirus and influenza virus, with recovery rates up to 21% after 40 min in a 19 m3 room. The ionizer generates negative ions, rendering airborne particles/aerosol droplets negatively charged and electrostatically attracts them to a positively charged collector plate. Trapped viruses are then identified by reverse transcription quantitative real-time PCR. The device enables unique possibilities for rapid and simple removal of virus from air and offers possibilities to simultaneously identify and prevent airborne transmission of viruses. PMID:26101102

  7. Assessment of transmission, pathogenesis and adaptation of H2 subtype influenza viruses in ferrets.

    PubMed

    Pappas, Claudia; Yang, Hua; Carney, Paul J; Pearce, Melissa B; Katz, Jacqueline M; Stevens, James; Tumpey, Terrence M

    2015-03-01

    After their disappearance from the human population in 1968, influenza H2 viruses have continued to circulate in the natural avian reservoir. The isolation of this virus subtype from multiple bird species as well as swine highlights the need to better understand the potential of these viruses to spread and cause disease in humans. Here we analyzed the virulence, transmissibility and receptor-binding preference of two avian influenza H2 viruses (H2N2 and H2N3) and compared them to a swine H2N3 (A/swine/Missouri/2124514/2006 [swMO]), and a human H2N2 (A/England/10/1967 [Eng/67]) virus using the ferret model as a mammalian host. Both avian H2 viruses possessed the capacity to spread efficiently between cohoused ferrets, and the swine (swMO) and human (Eng/67) viruses transmitted to naïve ferrets by respiratory droplets. Further characterization of the swMO hemagglutinin (HA) by x-ray crystallography and glycan microarray array identified receptor-specific adaptive mutations. As influenza virus quasispecies dynamics during transmission have not been well characterized, we sequenced nasal washes collected during transmission studies to better understand experimental adaptation of H2 HA. The avian H2 viruses isolated from ferret nasal washes contained mutations in the HA1, including a Gln226Leu substitution, which is a mutation associated with α2,6 sialic acid (human-like) binding preference. These results suggest that the molecular structure of HA in viruses of the H2 subtype continue to have the potential to adapt to a mammalian host and become transmissible, after acquiring additional genetic markers.

  8. Contact heterogeneity, rather than transmission efficiency, limits the emergence and spread of canine influenza virus.

    PubMed

    Dalziel, Benjamin D; Huang, Kai; Geoghegan, Jemma L; Arinaminpathy, Nimalan; Dubovi, Edward J; Grenfell, Bryan T; Ellner, Stephen P; Holmes, Edward C; Parrish, Colin R

    2014-10-01

    Host-range shifts in influenza virus are a major risk factor for pandemics. A key question in the study of emerging zoonoses is how the evolution of transmission efficiency interacts with heterogeneity in contact patterns in the new host species, as this interplay influences disease dynamics and prospects for control. Here we use a synergistic mixture of models and data to tease apart the evolutionary and demographic processes controlling a host-range shift in equine H3N8-derived canine influenza virus (CIV). CIV has experienced 15 years of continuous transfer among dogs in the United States, but maintains a patchy distribution, characterized by sporadic short-lived outbreaks coupled with endemic hotspots in large animal shelters. We show that CIV has a high reproductive potential in these facilities (mean R(0) = 3.9) and that these hotspots act as refugia from the sparsely connected majority of the dog population. Intriguingly, CIV has evolved a transmission efficiency that closely matches the minimum required to persist in these refugia, leaving it poised on the extinction/invasion threshold of the host contact network. Corresponding phylogenetic analyses show strong geographic clustering in three US regions, and that the effective reproductive number of the virus (R(e)) in the general dog population is close to 1.0. Our results highlight the critical role of host contact structure in CIV dynamics, and show how host contact networks could shape the evolution of pathogen transmission efficiency. Importantly, efficient control measures could eradicate the virus, in turn minimizing the risk of future sustained transmission among companion dogs that could represent a potential new axis to the human-animal interface for influenza.

  9. Predicting transmission of avian influenza A viruses from avian to human by using informative physicochemical properties.

    PubMed

    Wang, Jia; Ma, Chuang; Kou, Zheng; Zhou, Yan-Hong; Liu, Huai-Lan

    2013-01-01

    Some strains of avian influenza A virus (AIV) can directly transmit from their natural hosts to humans. These avian-to-human transmissions have continuously been reported to cause human deaths worldwide since 1997. Predicting whether AIV strains can transmit from avian to human is valuable for early warning of AIV strains with human pandemic potential. In this study, we constructed a computational model to predict avian-to-human transmission of AIV based on physicochemical properties. Initially, ninety signature positions in the inner protein sequences were extracted with the entropy method. These positions were then encoded with 531 physicochemical features. Subsequently, the optimal subset of these physicochemical features was mined with several feature selection methods. Finally, a support vector machine (SVM) model named A2H was established to integrate the selected optimal features. The experimental results of cross-validation and an independent test show that A2H has the capability of predicting transmission of AIV from avian to human.

  10. Ecological dynamics of influenza A viruses: cross-species transmission and global migration

    PubMed Central

    Ren, Hongguang; Jin, Yuan; Hu, Mingda; Zhou, Jing; Song, Ting; Huang, Zhisong; Li, Beiping; Li, Kaiwu; Zhou, Wei; Dai, Hongmei; Shi, Weifeng; Yue, Junjie; Liang, Long

    2016-01-01

    A comprehensive study of cross-species transmission and inter-regional migration would provide insights into the global ecology of influenza A viruses (IAVs). To this end, we assembled 17,241 non-redundant IAV whole-genome sequences with complete epidemiological information. We hierarchically divided the movements of IAVs into the cross-species transmission in each region and the inter-regional migration driven by each host species. We then systematically identified the potential cross-species transmission and inter-regional migration events. Cross-species transmission networks were obtained for each gene segment of the IAVs. Waterfowl, domestic birds and swine showed higher degrees of connection than did other species in all of the transmission networks. East Asia and Southeast Asia were hot regions for avian-mammal transmissions. Swine and migratory birds were the dominant species for global virus delivery. The importance of swine was reemphasized because it has not only provided an environment for adaptive evolution during the avian-human transmission of IAVs (as incubators) but also served as a key species for the global dissemination of the viruses (as carriers). Therefore, monitoring the global live trade of swine and survey of migratory birds along flyways would be beneficial for the prevention and control of IAVs. PMID:27827462

  11. NADPH Oxidase 1 Is Associated with Altered Host Survival and T Cell Phenotypes after Influenza A Virus Infection in Mice

    PubMed Central

    Hofstetter, Amelia R.; De La Cruz, Juan A.; Cao, Weiping; Patel, Jenish; Belser, Jessica A.; McCoy, James; Liepkalns, Justine S.; Amoah, Samuel; Cheng, Guangjie; Ranjan, Priya; Diebold, Becky A.; Shieh, Wun-Ju; Zaki, Sherif; Katz, Jacqueline M.; Sambhara, Suryaprakash; Lambeth, J. David; Gangappa, Shivaprakash

    2016-01-01

    The role of the reactive oxygen species-producing NADPH oxidase family of enzymes in the pathology of influenza A virus infection remains enigmatic. Previous reports implicated NADPH oxidase 2 in influenza A virus-induced inflammation. In contrast, NADPH oxidase 1 (Nox1) was reported to decrease inflammation in mice within 7 days post-influenza A virus infection. However, the effect of NADPH oxidase 1 on lethality and adaptive immunity after influenza A virus challenge has not been explored. Here we report improved survival and decreased morbidity in mice with catalytically inactive NADPH oxidase 1 (Nox1*/Y) compared with controls after challenge with A/PR/8/34 influenza A virus. While changes in lung inflammation were not obvious between Nox1*/Y and control mice, we observed alterations in the T cell response to influenza A virus by day 15 post-infection, including increased interleukin-7 receptor-expressing virus-specific CD8+ T cells in lungs and draining lymph nodes of Nox1*/Y, and increased cytokine-producing T cells in lungs and spleen. Furthermore, a greater percentage of conventional and interstitial dendritic cells from Nox1*/Y draining lymph nodes expressed the co-stimulatory ligand CD40 within 6 days post-infection. Results indicate that NADPH oxidase 1 modulates the innate and adaptive cellular immune response to influenza virus infection, while also playing a role in host survival. Results suggest that NADPH oxidase 1 inhibitors may be beneficial as adjunct therapeutics during acute influenza infection. PMID:26910342

  12. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail

    PubMed Central

    Obadan, Adebimpe O.; Kimble, Brian J.; Rajao, Daniela; Lager, Kelly; Santos, Jefferson J. S.; Vincent, Amy

    2015-01-01

    Influenza A virus is a major pathogen of birds, swine and humans. Strains can jump between species in a process often requiring mutations and reassortment, resulting in outbreaks and, potentially, pandemics. H9N2 avian influenza is predominant in poultry across Asia and occasionally infects humans and swine. Pandemic H1N1 (H1N1pdm) is endemic in humans and swine and has a history of reassortment in pigs. Previous studies have shown the compatibility of H9N2 and H1N1pdm for reassortment in ferrets, a model for human infection and transmission. Here, the effects of ferret adaptation of H9 surface gene segments on the infectivity and transmission in at-risk natural hosts, specifically swine and quail, were analysed. Reassortant H9N1 and H9N2 viruses, carrying seven or six gene segments from H1N1pdm, showed infectivity and transmissibility in swine, unlike the wholly avian H9N2 virus with ferret-adapted surface genes. In quail, only the reassortant H9N2 with the six internal gene segments from the H1N1pdm strain was able to infect and transmit, although less efficiently than the wholly avian H9N2 virus with ferret-adapted surface genes. These results highlight that ferret-adapted mutations on the haemagglutinin of H9 subtype virus do not restrict the ability of the virus to infect swine and quail, and that the ability to transmit in these species depends on the context of the whole virus. As such, this study emphasizes the threat that H9N2 reassortant viruses pose to humans and agricultural species and the importance of the genetic constellation of the virus to its ability to replicate and transmit in natural hosts of influenza. PMID:25986634

  13. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail.

    PubMed

    Obadan, Adebimpe O; Kimble, Brian J; Rajao, Daniela; Lager, Kelly; Santos, Jefferson J S; Vincent, Amy; Perez, Daniel R

    2015-09-01

    Influenza A virus is a major pathogen of birds, swine and humans. Strains can jump between species in a process often requiring mutations and reassortment, resulting in outbreaks and, potentially, pandemics. H9N2 avian influenza is predominant in poultry across Asia and occasionally infects humans and swine. Pandemic H1N1 (H1N1pdm) is endemic in humans and swine and has a history of reassortment in pigs. Previous studies have shown the compatibility of H9N2 and H1N1pdm for reassortment in ferrets, a model for human infection and transmission. Here, the effects of ferret adaptation of H9 surface gene segments on the infectivity and transmission in at-risk natural hosts, specifically swine and quail, were analysed. Reassortant H9N1 and H9N2 viruses, carrying seven or six gene segments from H1N1pdm, showed infectivity and transmissibility in swine, unlike the wholly avian H9N2 virus with ferret-adapted surface genes. In quail, only the reassortant H9N2 with the six internal gene segments from the H1N1pdm strain was able to infect and transmit, although less efficiently than the wholly avian H9N2 virus with ferret-adapted surface genes. These results highlight that ferret-adapted mutations on the haemagglutinin of H9 subtype virus do not restrict the ability of the virus to infect swine and quail, and that the ability to transmit in these species depends on the context of the whole virus. As such, this study emphasizes the threat that H9N2 reassortant viruses pose to humans and agricultural species and the importance of the genetic constellation of the virus to its ability to replicate and transmit in natural hosts of influenza.

  14. Epidemiology and transmission dynamics of the 1918-19 pandemic influenza in Florence, Italy.

    PubMed

    Rizzo, Caterina; Ajelli, Marco; Merler, Stefano; Pugliese, Andrea; Barbetta, Ilaria; Salmaso, Stefania; Manfredi, Piero

    2011-07-22

    To investigate the 1918/19 influenza pandemic daily number of new hospitalizations in the only hospital in Florence (Central Italy) were analyzed. In order to describe the transmission dynamics of the 1918/1919 pandemic influenza a compartmental epidemic model was used. Model simulations show a high level of agreement with the observed epidemic data. By assuming both latent and infectious period equal to 1.5 days, the estimated basic reproduction number was R(0)(1) = 1.03 (95% CI: 1.00-1.08) during the summer wave and R(0)(2) = 1.38 (95% CI: 1.32-1.48) during the fall wave. Varying the length of the generation time or the estimation method, R(0)(2) ranges from 1.32 to 1.71. The hospitalization rate was found significantly different between summer and fall waves. Notably, the estimated basic reproductive numbers are lower compared to those observed in other countries, while the age distribution of deaths resulted to be consistent with the patterns generally observed during of the 1918-1919 pandemic. Our knowledge on past pandemics, as for the 1918-19 Spanish influenza, would help improving mathematical modeling accuracy and understanding the mechanisms underlying the dynamics of future pandemics.

  15. Key transmission parameters of an institutional outbreak during the 1918 influenza pandemic estimated by mathematical modelling

    PubMed Central

    Sertsou, Gabriel; Wilson, Nick; Baker, Michael; Nelson, Peter; Roberts, Mick G

    2006-01-01

    Aim To estimate the key transmission parameters associated with an outbreak of pandemic influenza in an institutional setting (New Zealand 1918). Methods Historical morbidity and mortality data were obtained from the report of the medical officer for a large military camp. A susceptible-exposed-infectious-recovered epidemiological model was solved numerically to find a range of best-fit estimates for key epidemic parameters and an incidence curve. Mortality data were subsequently modelled by performing a convolution of incidence distribution with a best-fit incidence-mortality lag distribution. Results Basic reproduction number (R0) values for three possible scenarios ranged between 1.3, and 3.1, and corresponding average latent period and infectious period estimates ranged between 0.7 and 1.3 days, and 0.2 and 0.3 days respectively. The mean and median best-estimate incidence-mortality lag periods were 6.9 and 6.6 days respectively. This delay is consistent with secondary bacterial pneumonia being a relatively important cause of death in this predominantly young male population. Conclusion These R0 estimates are broadly consistent with others made for the 1918 influenza pandemic and are not particularly large relative to some other infectious diseases. This finding suggests that if a novel influenza strain of similar virulence emerged then it could potentially be controlled through the prompt use of major public health measures. PMID:17137517

  16. Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs

    PubMed Central

    Wang, Jia; Wu, Maocai; Hong, Wenshan; Fan, Xiaohui; Chen, Rirong; Zheng, Zuoyi; Zeng, Yu; Huang, Ren; Zhang, Yu; Lam, Tommy Tsan-Yuk; Smith, David K.

    2016-01-01

    ABSTRACT The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. IMPORTANCE H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which

  17. Swine-to-human transmission of influenza A(H3N2) virus at agricultural fairs, Ohio, USA, 2012.

    PubMed

    Bowman, Andrew S; Nelson, Sarah W; Page, Shannon L; Nolting, Jacqueline M; Killian, Mary L; Sreevatsan, Srinand; Slemons, Richard D

    2014-09-01

    Agricultural fairs provide an opportunity for bidirectional transmission of influenza A viruses. We sought to determine influenza A virus activity among swine at fairs in the United States. As part of an ongoing active influenza A virus surveillance project, nasal swab samples were collected from exhibition swine at 40 selected Ohio agricultural fairs during 2012. Influenza A(H3N2) virus was isolated from swine at 10 of the fairs. According to a concurrent public health investigation, 7 of the 10 fairs were epidemiologically linked to confirmed human infections with influenza A(H3N2) variant virus. Comparison of genome sequences of the subtype H3N2 isolates recovered from humans and swine from each fair revealed nucleotide identities of >99.7%, confirming zoonotic transmission between swine and humans. All influenza A(H3N2) viruses isolated in this study, regardless of host species or fair, were >99.5% identical, indicating that 1 virus strain was widely circulating among exhibition swine in Ohio during 2012.

  18. Unexpected Interfarm Transmission Dynamics during a Highly Pathogenic Avian Influenza Epidemic

    PubMed Central

    Tassoni, Luca; Milani, Adelaide; Hughes, Joseph; Salviato, Annalisa; Massi, Paola; Zamperin, Gianpiero; Bonfanti, Lebana; Marangon, Stefano; Cattoli, Giovanni; Monne, Isabella

    2016-01-01

    ABSTRACT Next-generation sequencing technology is now being increasingly applied to study the within- and between-host population dynamics of viruses. However, information on avian influenza virus evolution and transmission during a naturally occurring epidemic is still limited. Here, we use deep-sequencing data obtained from clinical samples collected from five industrial holdings and a backyard farm infected during the 2013 highly pathogenic avian influenza (HPAI) H7N7 epidemic in Italy to unravel (i) the epidemic virus population diversity, (ii) the evolution of virus pathogenicity, and (iii) the pathways of viral transmission between different holdings and sheds. We show a high level of genetic diversity of the HPAI H7N7 viruses within a single farm as a consequence of separate bottlenecks and founder effects. In particular, we identified the cocirculation in the index case of two viral strains showing a different insertion at the hemagglutinin cleavage site, as well as nine nucleotide differences at the consensus level and 92 minority variants. To assess interfarm transmission, we combined epidemiological and genetic data and identified the index case as the major source of the virus, suggesting the spread of different viral haplotypes from the index farm to the other industrial holdings, probably at different time points. Our results revealed interfarm transmission dynamics that the epidemiological data alone could not unravel and demonstrated that delay in the disease detection and stamping out was the major cause of the emergence and the spread of the HPAI strain. IMPORTANCE The within- and between-host evolutionary dynamics of a highly pathogenic avian influenza (HPAI) strain during a naturally occurring epidemic is currently poorly understood. Here, we perform for the first time an in-depth sequence analysis of all the samples collected during a HPAI epidemic and demonstrate the importance to complement outbreak investigations with genetic data to

  19. Reconstruction of disease transmission rates: Applications to measles, dengue, and influenza.

    PubMed

    Lange, Alexander

    2016-07-07

    Transmission rates are key in understanding the spread of infectious diseases. Using the framework of compartmental models, we introduce a simple method to reconstruct time series of transmission rates directly from incidence or disease-related mortality data. The reconstruction employs differential equations, which model the time evolution of infective stages and strains. Being sensitive to initial values, the method produces asymptotically correct solutions. The computations are fast, with time complexity being quadratic. We apply the reconstruction to data of measles (England and Wales, 1948-1967), dengue (Thailand, 1982-1999), and influenza (U.S., 1910-1927). The Measles example offers comparison with earlier work. Here we re-investigate reporting corrections, include and exclude demographic information. The dengue example deals with the failure of vector-control measures in reducing dengue hemorrhagic fever (DHF) in Thailand. Two competing mechanisms have been held responsible: strain interaction and demographic transitions. Our reconstruction reveals that both explanations are possible, showing that the increase in DHF cases is consistent with decreasing transmission rates resulting from reduced vector counts. The flu example focuses on the 1918/1919 pandemic, examining the transmission rate evolution for an invading strain. Our analysis indicates that the pandemic strain could have circulated in the population for many months before the pandemic was initiated by an event of highly increased transmission.

  20. Extended transmission of two H5/H7 low pathogenic avian influenza viruses in chickens.

    PubMed

    Claes, G; Lambrecht, B; Dewulf, J; van den Berg, T; Marché, S

    2015-03-01

    Transmission experiments are useful for investigating the mechanisms of low pathogenic notifiable avian influenza virus (LPNAI) transmission. In this study, the hypothesis that inoculation-infected chickens are more infectious than contact-infected chickens was tested. To this end, extended transmission experiments with one H5N2 and one H7N1 LPAIV which had previously been characterized in a series of standard transmission experiments were conducted in specific pathogen-free (SPF) chickens. For the H5N2 LPAIV, the infectivity of contact-infected chickens was similar to the infectivity of inoculated chickens. Despite results from a previous study suggesting the H7N1 LPAIV strain to be similarly infectious to SPF chickens as the H5N2 LPAIV strain, the acquisition of contact-infected chickens proved more difficult for H7N1 LPAIV. It was assumed that this might have been a consequence of the length and timing of the exposure period. In conclusion, for LPNAIVs that first seemed equally infectious, short-term transmissibility may vary considerably.

  1. Cost-effectiveness of seasonal quadrivalent versus trivalent influenza vaccination in the United States: A dynamic transmission modeling approach

    PubMed Central

    Brogan, Anita J.; Talbird, Sandra E.; Davis, Ashley E.; Thommes, Edward W.; Meier, Genevieve

    2017-01-01

    ABSTRACT Trivalent inactivated influenza vaccines (IIV3s) protect against 2 A strains and one B lineage; quadrivalent versions (IIV4s) protect against an additional B lineage. The objective was to assess projected health and economic outcomes associated with IIV4 versus IIV3 for preventing seasonal influenza in the US. A cost-effectiveness model was developed to interact with a dynamic transmission model. The transmission model tracked vaccination, influenza cases, infection-spreading interactions, and recovery over 10 y (2012–2022). The cost-effectiveness model estimated influenza-related complications, direct and indirect costs (2013–2014 US$), health outcomes, and cost-effectiveness. Inputs were taken from published/public sources or estimated using regression or calibration. Outcomes were discounted at 3% per year. Scenario analyses tested the reliability of the results. Seasonal vaccination with IIV4 versus IIV3 is predicted to reduce annual influenza cases by 1,973,849 (discounted; 2,325,644 undiscounted), resulting in 12–13% fewer cases and influenza-related complications and deaths. These reductions are predicted to translate into 18,485 more quality-adjusted life years (QALYs) accrued annually for IIV4 versus IIV3. Increased vaccine-related costs ($599 million; 5.7%) are predicted to be more than offset by reduced influenza treatment costs ($699 million; 12.2%), resulting in direct medical cost saving annually ($100 million; 0.6%). Including indirect costs, savings with IIV4 are predicted to be $7.1 billion (5.6%). Scenario analyses predict IIV4 to be cost-saving in all scenarios tested apart from low infectivity, where IIV4 is predicted to be cost-effective. In summary, seasonal influenza vaccination in the US with IIV4 versus IIV3 is predicted to improve health outcomes and reduce costs. PMID:27780425

  2. Laboratory creation of a highly transmissible H5N1 influenza virus: balancing substantial risks and real benefits.

    PubMed

    Pavia, Andrew T

    2012-03-20

    Controversy erupted when influenza researchers announced that they had created an H5N1 influenza virus that was transmissible between ferrets. The controversy escalated when the National Science Advisory Board for Biosecurity (NSABB) recommended that the work be published but recommended significant voluntary redactions. The responses to the NSABB action and to the research itself have been polarized. A readily transmitted H5N1 virus could be extraordinarily lethal; therefore, the risk for accidental release is significant, and deliberate misuse of the data to create a biological weapon is possible. However, the knowledge gained by these and future experiments under appropriate safeguards is likely to allow critical understanding of influenza transmission and virulence. It would be irresponsible to adopt either extreme solution: to prevent and censor the research or to allow unlimited distribution without careful review by an independent group, such as the NSABB.

  3. Transmissibility of Variant Influenza From Swine to Humans: A Modeling Approach

    PubMed Central

    Wong, Karen K.; Gambhir, Manoj; Finelli, Lyn; Swerdlow, David L.; Ostroff, Stephen; Reed, Carrie

    2015-01-01

    Background Respiratory illness was reported among humans and swine at an agricultural fair in 2011; 3 human infections with an influenza A(H3N2) variant (H3N2v) virus were confirmed. Using epidemiologic investigation data, we sought to estimate H3N2v transmissibility from swine to humans. Methods We developed a model of H3N2v transmission among swine and humans and fit it to data from a cohort of 100 agricultural club members reporting swine contact to estimate transmissibility. A sensitivity analysis was performed varying H3N2v prevalence in the club cohort. Using the best-fit transmission probability, we simulated the number of swine-acquired infections among all fair attendees. Results We estimated the best-fit probability of swine-to-human H3N2v transmission per minute of swine contact. Applying this probability to 14 910 people with swine contact at the fair, we estimate that there were 80 (95% confidence interval [CI], 40–133) H3N2v infections among persons aged <20 years and 58 (95% CI, 29–96) H3N2v infections among person aged ≥20 years. Conclusions Using early data from investigation of a new virus with unclear transmission properties, we estimated the transmissibility of H3N2v from swine to humans and the burden of H3N2v among fair attendees. Although the risk of H3N2v virus infection is small for fair attendees with minimal swine contact, large populations attend agricultural events each year, and human cases will likely occur when infected swine are present. PMID:23794727

  4. Influenza A(H7N9) virus transmission between finches and poultry.

    PubMed

    Jones, Jeremy C; Sonnberg, Stephanie; Webby, Richard J; Webster, Robert G

    2015-04-01

    Low pathogenicity avian influenza A(H7N9) virus has been detected in poultry since 2013, and the virus has caused >450 infections in humans. The mode of subtype H7N9 virus transmission between avian species remains largely unknown, but various wild birds have been implicated as a source of transmission. H7N9 virus was recently detected in a wild sparrow in Shanghai, China, and passerine birds, such as finches, which share space and resources with wild migratory birds, poultry, and humans, can be productively infected with the virus. We demonstrate that interspecies transmission of H7N9 virus occurs readily between society finches and bobwhite quail but only sporadically between finches and chickens. Inoculated finches are better able to infect naive poultry than the reverse. Transmission occurs through shared water but not through the airborne route. It is therefore conceivable that passerine birds may serve as vectors for dissemination of H7N9 virus to domestic poultry.

  5. Influenza A(H7N9) Virus Transmission between Finches and Poultry

    PubMed Central

    Jones, Jeremy C.; Sonnberg, Stephanie; Webby, Richard J.

    2015-01-01

    Low pathogenicity avian influenza A(H7N9) virus has been detected in poultry since 2013, and the virus has caused >450 infections in humans. The mode of subtype H7N9 virus transmission between avian species remains largely unknown, but various wild birds have been implicated as a source of transmission. H7N9 virus was recently detected in a wild sparrow in Shanghai, China, and passerine birds, such as finches, which share space and resources with wild migratory birds, poultry, and humans, can be productively infected with the virus. We demonstrate that interspecies transmission of H7N9 virus occurs readily between society finches and bobwhite quail but only sporadically between finches and chickens. Inoculated finches are better able to infect naive poultry than the reverse. Transmission occurs through shared water but not through the airborne route. It is therefore conceivable that passerine birds may serve as vectors for dissemination of H7N9 virus to domestic poultry. PMID:25811839

  6. Nosocomial transmission of avian influenza A (H7N9) virus in China: epidemiological investigation

    PubMed Central

    Fang, Chun-Fu; Ma, Mai-Juan; Zhan, Bing-Dong; Lai, Shi-Ming; Hu, Yi; Yang, Xiao-Xian; Li, Jing; Zhou, Jing-Jing; Zhang, Jian-Min; Wang, Shuang-Qing; Hu, Xiao-Long; Li, Yin-Jun; Wang, Xiao-Xiao; Cheng, Wei; Yao, Hong-Wu; Li, Xin-Lou; Yi, Huai-Ming; Xu, Wei-Dong; Jiang, Jia-Fu; Gray, Gregory C; Fang, Li-Qun; Chen, En-Fu

    2015-01-01

    Study question Can avian influenza A (H7N9) virus be transmitted between unrelated individuals in a hospital setting? Methods An epidemiological investigation looked at two patients who shared a hospital ward in February 2015, in Quzhou, Zhejiang Province, China. Samples from the patients, close contacts, and local environments were examined by real time reverse transcriptase (rRT) polymerase chain reaction (PCR) and viral culture. Haemagglutination inhibition and microneutralisation assays were used to detect specific antibodies to the viruses. Primary outcomes were clinical data, infection source tracing, phylogenetic tree analysis, and serological results. Study answer and limitations A 49 year old man (index patient) became ill seven days after visiting a live poultry market. A 57 year old man (second patient), with a history of chronic obstructive pulmonary disease, developed influenza-like symptoms after sharing the same hospital ward as the index patient for five days. The second patient had not visited any poultry markets nor had any contact with poultry or birds within 15 days before the onset of illness. H7N9 virus was identified in the two patients, who both later died. Genome sequences of the virus isolated from both patients were nearly identical, and genetically similar to the virus isolated from the live poultry market. No specific antibodies were detected among 38 close contacts. Transmission between the patients remains unclear, owing to the lack of samples collected from their shared hospital ward. Although several environmental swabs were positive for H7N9 by rRT-PCR, no virus was cultured. Owing to delayed diagnosis and frequent hospital transfers, no serum samples were collected from the patients, and antibodies to H7N9 viruses could not be tested. What this study adds Nosocomial H7N9 transmission might be possible between two unrelated individuals. Surveillance on patients with influenza-like illness in hospitals as well as chickens in live

  7. Haemophilus influenzae isolates survive for up to 20 years at -70 °C in skim milk tryptone glucose glycerol broth (STGGB) if thawing is avoided during re-culture.

    PubMed

    Hare, K M; Smith-Vaughan, H C; Beissbarth, J; Leach, A J

    2015-12-01

    Haemophilus influenzae remains a major cause of disease worldwide requiring continued study. Recently, isolates of Streptococcus pneumoniae and Moraxella catarrhalis, but not H. influenzae, were reported to survive long-term ultra-freeze storage in STGGB. We show that nontypeable H. influenzae isolates survive for up to 20 years when thawing is avoided.

  8. Genetic tuning of the novel avian influenza A(H7N9) virus during interspecies transmission, China, 2013.

    PubMed

    Wang, D; Yang, L; Gao, R; Zhang, X; Tan, Y; Wu, A; Zhu, W; Zhou, J; Zou, S; Li, Xiyan; Sun, Y; Zhang, Y; Liu, Y; Liu, T; Xiong, Y; Xu, J; Chen, L; Weng, Y; Qi, X; Guo, J; Li, Xiaodan; Dong, J; Huang, W; Zhang, Y; Dong, L; Zhao, X; Liu, L; Lu, J; Lan, Y; Wei, H; Xin, L; Chen, Y; Xu, C; Chen, T; Zhu, Y; Jiang, T; Feng, Z; Yang, W; Wang, Y; Zhu, H; Guan, Y; Gao, G F; Li, D; Han, J; Wang, S; Wu, G; Shu, Y

    2014-06-26

    A novel avian influenza A(H7N9) virus causing human infection emerged in February 2013 in China. To elucidate the mechanism of interspecies transmission, we compared the signature amino acids of avian influenza A(H7N9) viruses from human and non-human hosts and analysed the reassortants of 146 influenza A(H7N9) viruses with full genome sequences. We propose a genetic tuning procedure with continuous amino acid substitutions and reassorting that mediates host adaptation and interspecies transmission. When the early influenza A(H7N9) virus, containing ancestor haemagglutinin (HA) and neuraminidase (NA) genes similar to A/Shanghai/05 virus, circulated in waterfowl and transmitted to terrestrial poultry, it acquired an NA stalk deletion at amino acid positions 69 to 73. Then, receptor binding preference was tuned to increase the affinity to human-like receptors through HA G186V and Q226L mutations in terrestrial poultry. Additional mammalian adaptations such as PB2 E627K were selected in humans. The continual reassortation between H7N9 and H9N2 viruses resulted in multiple genotypes for further host adaptation. When we analysed a potential association of mutations and reassortants with clinical outcome, only the PB2 E627K mutation slightly increased the case fatality rate. Genetic tuning may create opportunities for further adaptation of influenza A(H7N9) and its potential to cause a pandemic.

  9. Unseasonal transmission of H3N2 influenza A virus during the swine-origin H1N1 pandemic.

    PubMed

    Ghedin, Elodie; Wentworth, David E; Halpin, Rebecca A; Lin, Xudong; Bera, Jayati; DePasse, Jay; Fitch, Adam; Griesemer, Sara; Hine, Erin; Katzel, Daniel A; Overton, Larry; Proudfoot, Kathleen; Sitz, Jeffrey; Szczypinski, Bridget; StGeorge, Kirsten; Spiro, David J; Holmes, Edward C

    2010-06-01

    The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza "off-season," we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.

  10. Mapping risk of avian influenza transmission at the interface of domestic poultry and wild birds

    USGS Publications Warehouse

    Prosser, Diann J.; Hungerford, Laura L.; Erwin, R. Michael; Ottinger, Mary Ann; Takekawa, John Y.; Ellis, Erle C.

    2013-01-01

    Emergence of avian influenza viruses with high lethality to humans, such as the currently circulating highly pathogenic A(H5N1) (emerged in 1996) and A(H7N9) cause serious concern for the global economic and public health sectors. Understanding the spatial and temporal interface between wild and domestic populations, from which these viruses emerge, is fundamental to taking action. This information, however, is rarely considered in influenza risk models, partly due to a lack of data. We aim to identify areas of high transmission risk between domestic poultry and wild waterfowl in China, the epicenter of both viruses. Two levels of models were developed: one that predicts hotspots of novel virus emergence between domestic and wild birds, and one that incorporates H5N1 risk factors, for which input data exists. Models were produced at 1 and 30 km spatial resolution, and two temporal seasons. Patterns of risk varied between seasons with higher risk in the northeast, central-east, and western regions of China during spring and summer, and in the central and southeastern regions during winter. Monte-Carlo uncertainty analyses indicated varying levels of model confidence, with lowest errors in the densely populated regions of eastern and southern China. Applications and limitations of the models are discussed within.

  11. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks

    USGS Publications Warehouse

    Reeves, A.B.; Pearce, J.M.; Ramey, A.M.; Meixell, B.W.; Runstadler, J.A.

    2011-01-01

    The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4. years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99% identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0-10. km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0-9. days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America. ?? 2011.

  12. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks

    USGS Publications Warehouse

    Reeves, Andrew B.; Pearce, John M.; Ramey, Andy M.; Meixell, Brandt; Runstadler, Jonathan A.

    2011-01-01

    The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4 years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas Americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99 percent identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0-10 km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0-9 days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America.

  13. Possible waterborne transmission and maintenance of influenza viruses in domestic ducks.

    PubMed Central

    Markwell, D D; Shortridge, K F

    1982-01-01

    Two duck farms in Hong Kong were examined monthly for 1 year for the occurrence and persistence of influenza viruses within the duck communities. The predominant virus in one community was H3N2, a virus antigenically related to the pandemic Hong Kong strain. This virus was isolated monthly throughout the year from feces or pond water or both, indicating a cycle of waterborne transmission. Viruses of the same antigenic combination were isolated 1 and 2 years after the last sampling occasion, implying persistence in the community. Infection was asymptomatic. Maintenance of virus appeared to be dependent upon the continual introduction of ducklings susceptible to infection onto virus-contaminated water; the feces of ducks 70 to 80 days old were generally free of detectable virus despite the exposure of the ducks to virus in pond water. In the second community, in which ducklings were not introduced after the initial sampling, the prevailing viruses, H7N1 and H7N2, also present asymptomatically, ceased to be detected once the ducks were 70 to 80 days old. The normal practice of raising ducks of different ages on the same farm, wherein the water supplies are shared, as typified by the first community, appears to be instrumental in maintaining a large reservoir of influenza viruses in the duck population of southern China. PMID:7055370

  14. Evolutionary and transmission dynamics of reassortant H5N1 influenza virus in Indonesia.

    PubMed

    Lam, Tommy Tsan-Yuk; Hon, Chung-Chau; Pybus, Oliver G; Kosakovsky Pond, Sergei L; Wong, Raymond Tze-Yeung; Yip, Chi-Wai; Zeng, Fanya; Leung, Frederick Chi-Ching

    2008-08-22

    H5N1 highly pathogenic avian influenza (HPAI) viruses have seriously affected the Asian poultry industry since their recurrence in 2003. The viruses pose a threat of emergence of a global pandemic influenza through point mutation or reassortment leading to a strain that can effectively transmit among humans. In this study, we present phylogenetic evidences for the interlineage reassortment among H5N1 HPAI viruses isolated from humans, cats, and birds in Indonesia, and identify the potential genetic parents of the reassorted genome segments. Parsimony analyses of viral phylogeography suggest that the reassortant viruses may have originated from greater Jakarta and surroundings, and subsequently spread to other regions in the West Java province. In addition, Bayesian methods were used to elucidate the genetic diversity dynamics of the reassortant strain and one of its genetic parents, which revealed a more rapid initial growth of genetic diversity in the reassortant viruses relative to their genetic parent. These results demonstrate that interlineage exchange of genetic information may play a pivotal role in determining viral genetic diversity in a focal population. Moreover, our study also revealed significantly stronger diversifying selection on the M1 and PB2 genes in the lineages preceding and subsequent to the emergence of the reassortant viruses, respectively. We discuss how the corresponding mutations might drive the adaptation and onward transmission of the newly formed reassortant viruses.

  15. Modeling Insights into Haemophilus influenzae Type b Disease, Transmission, and Vaccine Programs

    PubMed Central

    Rose, Charles E.; Cohn, Amanda; Coronado, Fatima; Clark, Thomas A.; Wenger, Jay D.; Bulkow, Lisa; Bruce, Michael G.; Messonnier, Nancy E.; Hennessy, Thomas W.

    2012-01-01

    In response to the 2007–2009 Haemophilus influenzae type b (Hib) vaccine shortage in the United States, we developed a flexible model of Hib transmission and disease for optimizing Hib vaccine programs in diverse populations and situations. The model classifies population members by age, colonization/disease status, and antibody levels, with movement across categories defined by differential equations. We implemented the model for the United States as a whole, England and Wales, and the Alaska Native population. This model accurately simulated Hib incidence in all 3 populations, including the increased incidence in England/Wales beginning in 1999 and the change in Hib incidence in Alaska Natives after switching Hib vaccines in 1996. The model suggests that a vaccine shortage requiring deferral of the booster dose could last 3 years in the United States before loss of herd immunity would result in increasing rates of invasive Hib disease in children <5 years of age. PMID:22257582

  16. Modeling insights into Haemophilus influenzae type b disease, transmission, and vaccine programs.

    PubMed

    Jackson, Michael L; Rose, Charles E; Cohn, Amanda; Coronado, Fatima; Clark, Thomas A; Wenger, Jay D; Bulkow, Lisa; Bruce, Michael G; Messonnier, Nancy E; Hennessy, Thomas W

    2012-01-01

    In response to the 2007-2009 Haemophilus influenzae type b (Hib) vaccine shortage in the United States, we developed a flexible model of Hib transmission and disease for optimizing Hib vaccine programs in diverse populations and situations. The model classifies population members by age, colonization/disease status, and antibody levels, with movement across categories defined by differential equations. We implemented the model for the United States as a whole, England and Wales, and the Alaska Native population. This model accurately simulated Hib incidence in all 3 populations, including the increased incidence in England/Wales beginning in 1999 and the change in Hib incidence in Alaska Natives after switching Hib vaccines in 1996. The model suggests that a vaccine shortage requiring deferral of the booster dose could last 3 years in the United States before loss of herd immunity would result in increasing rates of invasive Hib disease in children <5 years of age.

  17. Transmission of avian influenza A viruses among species in an artificial barnyard.

    PubMed

    Achenbach, Jenna E; Bowen, Richard A

    2011-03-31

    Waterfowl and shorebirds harbor and shed all hemagglutinin and neuraminidase subtypes of influenza A viruses and interact in nature with a broad range of other avian and mammalian species to which they might transmit such viruses. Estimating the efficiency and importance of such cross-species transmission using epidemiological approaches is difficult. We therefore addressed this question by studying transmission of low pathogenic H5 and H7 viruses from infected ducks to other common animals in a quasi-natural laboratory environment designed to mimic a common barnyard. Mallards (Anas platyrhynchos) recently infected with H5N2 or H7N3 viruses were introduced into a room housing other mallards plus chickens, blackbirds, rats and pigeons, and transmission was assessed by monitoring virus shedding (ducks) or seroconversion (other species) over the following 4 weeks. Additional animals of each species were directly inoculated with virus to characterize the effect of a known exposure. In both barnyard experiments, virus accumulated to high titers in the shared water pool. The H5N2 virus was transmitted from infected ducks to other ducks and chickens in the room either directly or through environmental contamination, but not to rats or blackbirds. Ducks infected with the H7N2 virus transmitted directly or indirectly to all other species present. Chickens and blackbirds directly inoculated with these viruses shed significant amounts of virus and seroconverted; rats and pigeons developed antiviral antibodies, but, except for one pigeon, failed to shed virus.

  18. Transmission of Pandemic Influenza A (H1N1) Virus in a Train in China

    PubMed Central

    Cui, Fuqiang; Luo, Huiming; Zhou, Lei; Yin, Dapeng; Zheng, Canjun; Wang, Dingming; Gong, Jian; Fang, Gang; He, Jianfeng; McFarland, Jeffrey; Yu, Hongjie

    2011-01-01

    Background Pandemic influenza A (H1N1) virus emerged in North America in April 2009 and spread globally. We describe the epidemiology and public health response to the first known outbreak of 2009 H1N1 in a train, which occurred in June 2009 in China. Methods After 2 provinces provided initial reports of 2009 H1N1 infection in 2 persons who had travelled on the same train, we conducted a retrospective epidemiologic investigation to collect information from the passengers, crew members, contacts, and health care providers. We explored the source of infection and possible routes of transmission in the train. All cases were confirmed by real-time reverse transcription polymerase chain reaction testing. Results Train #1223 traveled 40 hours, made 28 stops in 4 Chinese provinces, and boarded 2555 passengers, who logged a total of 59 144 person-hours of travel time. Nineteen confirmed 2009 H1N1 cases were identified. Of these, 13 were infected and developed symptoms on the train and 6 occurred among contacts who developed illness during medical monitoring. In addition, 3 asymptomatic cases were identified based on RT-PCR testing of respiratory swabs from contacts. The attack rate among contacts of confirmed cases in the same car was higher than that among contacts in other cars (3.15% vs. 0%, P < 0.001). Attack rates increased with exposure time. Conclusions Close contact and long exposure may have contributed to the transmission of 2009 H1N1 virus in the train. Trains may have played an important role in the 2009 influenza pandemic. PMID:21646746

  19. The contribution of social behaviour to the transmission of influenza A in a human population.

    PubMed

    Kucharski, Adam J; Kwok, Kin O; Wei, Vivian W I; Cowling, Benjamin J; Read, Jonathan M; Lessler, Justin; Cummings, Derek A; Riley, Steven

    2014-06-01

    Variability in the risk of transmission for respiratory pathogens can result from several factors, including the intrinsic properties of the pathogen, the immune state of the host and the host's behaviour. It has been proposed that self-reported social mixing patterns can explain the behavioural component of this variability, with simulated intervention studies based on these data used routinely to inform public health policy. However, in the absence of robust studies with biological endpoints for individuals, it is unclear how age and social behaviour contribute to infection risk. To examine how the structure and nature of social contacts influenced infection risk over the course of a single epidemic, we designed a flexible disease modelling framework: the population was divided into a series of increasingly detailed age and social contact classes, with the transmissibility of each age-contact class determined by the average contacts of that class. Fitting the models to serologically confirmed infection data from the 2009 Hong Kong influenza A/H1N1p pandemic, we found that an individual's risk of infection was influenced strongly by the average reported social mixing behaviour of their age group, rather than by their personal reported contacts. We also identified the resolution of social mixing that shaped transmission: epidemic dynamics were driven by intense contacts between children, a post-childhood drop in risky contacts and a subsequent rise in contacts for individuals aged 35-50. Our results demonstrate that self-reported social contact surveys can account for age-associated heterogeneity in the transmission of a respiratory pathogen in humans, and show robustly how these individual-level behaviours manifest themselves through assortative age groups. Our results suggest it is possible to profile the social structure of different populations and to use these aggregated data to predict their inherent transmission potential.

  20. Risks of avian influenza transmission in areas of intensive free-ranging duck production with wild waterfowl

    USGS Publications Warehouse

    Cappelle, Julien; Zhao, Delong; Gilbert, Marius; Newman, Scott H.; Takekawa, John Y.; Gaidet, Nicolas; Prosser, Diann J.; Liu, Ying; Li, Peng; Shu, Yuelong; Xiao, Xiangming

    2014-01-01

    For decades, southern China has been considered to be an important source for emerging influenza viruses since key hosts live together in high densities in areas with intensive agriculture. However, the underlying conditions of emergence and spread of avian influenza viruses (AIV) have not been studied in detail, particularly the complex spatiotemporal interplay of viral transmission between wild and domestic ducks, two major actors of AIV epidemiology. In this synthesis, we examine the risks of avian influenza spread in Poyang Lake, an area of intensive free-ranging duck production and large numbers of wild waterfowl. Our synthesis shows that farming of free-grazing domestic ducks is intensive in this area and synchronized with wild duck migration. The presence of juvenile domestic ducks in harvested paddy fields prior to the arrival and departure of migrant ducks in the same fields may amplify the risk of AIV circulation and facilitate the transmission between wild and domestic populations. We provide evidence associating wild ducks migration with the spread of H5N1 in the spring of 2008 from southern China to South Korea, Russia, and Japan, supported by documented wild duck movements and phylogenetic analyses of highly pathogenic avian influenza H5N1 sequences. We suggest that prevention measures based on a modification of agricultural practices may be implemented in these areas to reduce the intensity of AIV transmission between wild and domestic ducks. This would require involving all local stakeholders to discuss feasible and acceptable solutions.

  1. Inducing Herd Immunity against Seasonal Influenza in Long-Term Care Facilities through Employee Vaccination Coverage: A Transmission Dynamics Model

    PubMed Central

    Wendelboe, Aaron M.; Grafe, Carl; McCumber, Micah; Anderson, Michael P.

    2015-01-01

    Introduction. Vaccinating healthcare workers (HCWs) in long-term care facilities (LTCFs) may effectively induce herd immunity and protect residents against influenza-related morbidity and mortality. We used influenza surveillance data from all LTCFs in New Mexico to validate a transmission dynamics model developed to investigate herd immunity induction. Material and Methods. We adjusted a previously published transmission dynamics model and used surveillance data from an active system among 76 LTCFs in New Mexico during 2006-2007 for model validation. We used a deterministic compartmental model with a stochastic component for transmission between residents and HCWs in each facility in order to simulate the random variation expected in such populations. Results. When outbreaks were defined as a dichotomous variable, our model predicted that herd immunity could be induced. When defined as an attack rate, the model demonstrated a curvilinear trend, but insufficiently strong to induce herd immunity. The model was sensitive to changes in the contact parameter β but was robust to changes in the visitor contact probability. Conclusions. These results further elucidate previous studies' findings that herd immunity may not be induced by vaccinating HCWs in LTCFs; however, increased influenza vaccination coverage among HCWs reduces the probability of influenza infection among residents. PMID:26101542

  2. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  3. Highly pathogenic avian influenza A(H5N1) mutants transmissible by air are susceptible to human and animal neutralizing antibodies.

    PubMed

    Du, Lanying; Li, Ye; Zhao, Guangyu; Wang, Lili; Zou, Peng; Lu, Lu; Zhou, Yusen; Jiang, Shibo

    2013-10-15

    A laboratory-generated reassortant H5 hemagglutinin (HA)/influenza A(H1N1) strain containing 4 mutations in influenza A(H5N1) HA has become transmissible by air among mammals. Here, we constructed 15 influenza A(H5N1) pseudoviruses containing a single mutation or a combination of mutations and showed that the pseudoviruses were susceptible to neutralizing antibodies from patients with influenza A(H5N1) infection and from mice immunized with a vaccine containing the conserved HA1 sequence of influenza A(H5N1). These results indicate that antibodies in patients currently infected by influenza A(H5N1) and antibodies induced by vaccines containing conserved sequences in HA1 of wild-type influenza A(H5N1) are highly effective in cross-neutralizing future influenza A(H5N1) mutants with airborne transmissibility, suggesting that human influenza pandemics caused by these influenza A(H5N1) variants can be prevented.

  4. Cultural Transmission and Survival in Contemporary Micmac Society

    ERIC Educational Resources Information Center

    Battiste, Marie

    1977-01-01

    The Micmacs of Canada have only had a couple of hundred years of contact with the white man and although at first glance their reserves appear acculturated, they are distinct cultural and linguistic entities who have survived the tortures, rigors, and challenges of Christianity and civilization. (JC)

  5. Tracking the Evolution of Polymerase Genes of Influenza A Viruses during Interspecies Transmission between Avian and Swine Hosts

    PubMed Central

    Karnbunchob, Nipawit; Omori, Ryosuke; Tessmer, Heidi L.; Ito, Kimihito

    2016-01-01

    Human influenza pandemics have historically been caused by reassortant influenza A viruses using genes from human and avian viruses. This genetic reassortment between human and avian viruses has been known to occur in swine during viral circulation, as swine are capable of circulating both avian and human viruses. Therefore, avian-to-swine transmission of viruses plays an important role in the emergence of new pandemic strains. The amino acids at several positions on PB2, PB1, and PA are known to determine the host range of influenza A viruses. In this paper, we track viral transmission between avian and swine to investigate the evolution on polymerase genes associated with their hosts. We traced viral transmissions between avian and swine hosts by using nucleotide sequences of avian viruses and swine viruses registered in the NCBI GenBank. Using BLAST and the reciprocal best hits technique, we found 32, 33, and 30 pairs of avian and swine nucleotide sequences that may be associated with avian-to-swine transmissions for PB2, PB1, and PA genes, respectively. Then, we examined the amino acid substitutions involved in these sporadic transmissions. On average, avian-to-swine transmission pairs had 5.47, 3.73, and 5.13 amino acid substitutions on PB2, PB1, and PA, respectively. However, amino acid substitutions were distributed over the positions, and few positions showed common substitutions in the multiple transmission events. Statistical tests on the number of repeated amino acid substitutions suggested that no specific positions on PB2 and PA may be required for avian viruses to infect swine. We also found that avian viruses that transmitted to swine tend to process I478V substitutions on PB2 before interspecies transmission events. Furthermore, most mutations occurred after the interspecies transmissions, possibly due to selective viral adaptation to swine. PMID:28082971

  6. A highly pathogenic avian influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrated increased replication and transmission in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the pathogenicity and transmissibility of a reverse-genetics derived highly pathogenic avian influenza (HPAI) H5N1 influenza A virus (IAV), A/Iraq/775/06, and a reassortant virus comprised of the HA and NA from A/Iraq/775/06 and the internal genes of a 2009 pandemic H1N1, A/N...

  7. Pandemic influenza and health system resource gaps in Bali: an analysis through a resource transmission dynamics model.

    PubMed

    Adisasmito, Wiku; Hunter, Benjamin M; Krumkamp, Ralf; Latief, Kamal; Rudge, James W; Hanvoravongchai, Piya; Coker, Richard J

    2015-03-01

    The failure to contain pandemic influenza A(H1N1) 2009 in Mexico has shifted global attention from containment to mitigation. Limited surveillance and reporting have, however, prevented detailed assessment of mitigation during the pandemic, particularly in low- and middle-income countries. To assess pandemic influenza case management capabilities in a resource-limited setting, the authors used a health system questionnaire and density-dependent, deterministic transmission model for Bali, Indonesia, determining resource gaps. The majority of health resources were focused in and around the provincial capital, Denpasar; however, gaps are found in every district for nursing staff, surgical masks, and N95 masks. A relatively low pathogenicity pandemic influenza virus would see an overall surplus for physicians, antivirals, and antimicrobials; however, a more pathogenic virus would lead to gaps in every resource except antimicrobials. Resources could be allocated more evenly across Bali. These, however, are in short supply universally and therefore redistribution would not fill resource gaps.

  8. Household Transmission of Influenza A(H1N1)pdm09 in the Pandemic and Post-Pandemic Seasons

    PubMed Central

    Casado, Itziar; Martínez-Baz, Iván; Burgui, Rosana; Irisarri, Fátima; Arriazu, Maite; Elía, Fernando; Navascués, Ana; Ezpeleta, Carmen; Aldaz, Pablo; Castilla, Jesús

    2014-01-01

    Background The transmission of influenza viruses occurs person to person and is facilitated by contacts within enclosed environments such as households. The aim of this study was to evaluate secondary attack rates and factors associated with household transmission of laboratory-confirmed influenza A(H1N1)pdm09 in the pandemic and post-pandemic seasons. Methods During the 2009–2010 and 2010–2011 influenza seasons, 76 sentinel physicians in Navarra, Spain, took nasopharyngeal and pharyngeal swabs from patients diagnosed with influenza-like illness. A trained nurse telephoned households of those patients who were laboratory-confirmed for influenza A(H1N1)pdm09 to ask about the symptoms, risk factors and vaccination status of each household member. Results In the 405 households with a patient laboratory-confirmed for influenza A(H1N1)pdm09, 977 susceptible contacts were identified; 16% of them (95% CI 14–19%) presented influenza-like illness and were considered as secondary cases. The secondary attack rate was 14% in 2009–2010 and 19% in the 2010–2011 season (p = 0.049), an increase that mainly affected persons with major chronic conditions. In the multivariate logistic regression analysis, the risk of being a secondary case was higher in the 2010–2011 season than in the 2009–2010 season (adjusted odds ratio: 1.72; 95% CI 1.17–2.54), and in children under 5 years, with a decreasing risk in older contacts. Influenza vaccination was associated with lesser incidence of influenza-like illness near to statistical significance (adjusted odds ratio: 0.29; 95% CI 0.08–1.03). Conclusion The secondary attack rate in households was higher in the second season than in the first pandemic season. Children had a greater risk of infection. Preventive measures should be maintained in the second pandemic season, especially in high-risk persons. PMID:25254376

  9. Multiple estimates of transmissibility for the 2009 influenza pandemic based on influenza-like-illness data from small US military populations.

    PubMed

    Riley, Pete; Ben-Nun, Michal; Armenta, Richard; Linker, Jon A; Eick, Angela A; Sanchez, Jose L; George, Dylan; Bacon, David P; Riley, Steven

    2013-01-01

    Rapidly characterizing the amplitude and variability in transmissibility of novel human influenza strains as they emerge is a key public health priority. However, comparison of early estimates of the basic reproduction number during the 2009 pandemic were challenging because of inconsistent data sources and methods. Here, we define and analyze influenza-like-illness (ILI) case data from 2009-2010 for the 50 largest spatially distinct US military installations (military population defined by zip code, MPZ). We used publicly available data from non-military sources to show that patterns of ILI incidence in many of these MPZs closely followed the pattern of their enclosing civilian population. After characterizing the broad patterns of incidence (e.g. single-peak, double-peak), we defined a parsimonious SIR-like model with two possible values for intrinsic transmissibility across three epochs. We fitted the parameters of this model to data from all 50 MPZs, finding them to be reasonably well clustered with a median (mean) value of 1.39 (1.57) and standard deviation of 0.41. An increasing temporal trend in transmissibility ([Formula: see text], p-value: 0.013) during the period of our study was robust to the removal of high transmissibility outliers and to the removal of the smaller 20 MPZs. Our results demonstrate the utility of rapidly available - and consistent - data from multiple populations.

  10. Multiple Estimates of Transmissibility for the 2009 Influenza Pandemic Based on Influenza-like-Illness Data from Small US Military Populations

    PubMed Central

    Riley, Pete; Ben-Nun, Michal; Armenta, Richard; Linker, Jon A.; Eick, Angela A.; Sanchez, Jose L.; George, Dylan; Bacon, David P.; Riley, Steven

    2013-01-01

    Rapidly characterizing the amplitude and variability in transmissibility of novel human influenza strains as they emerge is a key public health priority. However, comparison of early estimates of the basic reproduction number during the 2009 pandemic were challenging because of inconsistent data sources and methods. Here, we define and analyze influenza-like-illness (ILI) case data from 2009–2010 for the 50 largest spatially distinct US military installations (military population defined by zip code, MPZ). We used publicly available data from non-military sources to show that patterns of ILI incidence in many of these MPZs closely followed the pattern of their enclosing civilian population. After characterizing the broad patterns of incidence (e.g. single-peak, double-peak), we defined a parsimonious SIR-like model with two possible values for intrinsic transmissibility across three epochs. We fitted the parameters of this model to data from all 50 MPZs, finding them to be reasonably well clustered with a median (mean) value of 1.39 (1.57) and standard deviation of 0.41. An increasing temporal trend in transmissibility (, p-value: 0.013) during the period of our study was robust to the removal of high transmissibility outliers and to the removal of the smaller 20 MPZs. Our results demonstrate the utility of rapidly available – and consistent – data from multiple populations. PMID:23696723

  11. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza A is a major pathogen of birds, swine, and humans. Strains can jump from one species to another in a process that often requires genetic mutation and genome reassortment and results in outbreaks and, potentially, pandemics. H9N2 avian influenza is one of the most predominant influenza subt...

  12. Quantitative transmission characteristics of different H5 low pathogenic avian influenza viruses in Muscovy ducks.

    PubMed

    Niqueux, Éric; Picault, Jean-Paul; Amelot, Michel; Allée, Chantal; Lamandé, Josiane; Guillemoto, Carole; Pierre, Isabelle; Massin, Pascale; Blot, Guillaume; Briand, François-Xavier; Rose, Nicolas; Jestin, Véronique

    2014-01-10

    EU annual serosurveillance programs show that domestic duck flocks have the highest seroprevalence of H5 antibodies, demonstrating the circulation of notifiable avian influenza virus (AIV) according to OIE, likely low pathogenic (LP). Therefore, transmission characteristics of LPAIV within these flocks can help to understand virus circulation and possible risk of propagation. This study aimed at estimating transmission parameters of four H5 LPAIV (three field strains from French poultry and decoy ducks, and one clonal reverse-genetics strain derived from one of the former), using a SIR model to analyze data from experimental infections in SPF Muscovy ducks. The design was set up to accommodate rearing on wood shavings with a low density of 1.6 ducks/m(2): 10 inoculated ducks were housed together with 15 contact-exposed ducks. Infection was monitored by RNA detection on oropharyngeal and cloacal swabs using real-time RT-PCR with a cutoff corresponding to 2-7 EID50. Depending on the strain, the basic reproduction number (R0) varied from 5.5 to 42.7, confirming LPAIV could easily be transmitted to susceptible Muscovy ducks. The lowest R0 estimate was obtained for a H5N3 field strain, due to lower values of transmission rate and duration of infectious period, whereas reverse-genetics derived H5N1 strain had the highest R0. Frequency and intensity of clinical signs were also variable between strains, but apparently not associated with longer infectious periods. Further comparisons of quantitative transmission parameters may help to identify relevant viral genetic markers for early detection of potentially more virulent strains during surveillance of LPAIV.

  13. Adaptation and transmission of a duck-origin avian influenza virus in poultry species.

    PubMed

    Li, Jinling; zu Dohna, Heinrich; Anchell, Nichole L; Adams, Sean C; Dao, Nguyet T; Xing, Zheng; Cardona, Carol J

    2010-01-01

    A duck-origin avian influenza virus (AIV) was used to study viral adaptation and transmission patterns in chickens (Gallus gallus domesticus) and Pekin ducks (Anas platyrhynchos domesticus). Inoculated birds were housed with naïve birds of the same species and all birds were monitored for infection. The inoculating duck virus was transmitted effectively by contact in both species. Viruses recovered from infected birds showed mutations as early as 1 or 3 days after inoculation in chickens and ducks, respectively. Amino acid substitutions in hemagglutinin (HA) or deletions in neuraminidase (NA) stalk regions were identified in chicken isolates, but only substitutions in HA were identified in duck isolates. HA substitution-containing viruses replicated more efficiently than those with NA stalk deletions. NA deletion mutants were not recovered from contact chickens, suggesting inefficient transmission. Amino acid substitutions in HA proteins appeared in pairs in chickens, but were independent in ducks, indicating adaptation in chickens. In addition, our findings showed that a duck-origin virus can rapidly adapt to chickens, suggesting that the emergence of new epidemic AIV can be rapid.

  14. The impact of media coverage on the transmission dynamics of human influenza

    PubMed Central

    2011-01-01

    Background There is an urgent need to understand how the provision of information influences individual risk perception and how this in turn shapes the evolution of epidemics. Individuals are influenced by information in complex and unpredictable ways. Emerging infectious diseases, such as the recent swine flu epidemic, may be particular hotspots for a media-fueled rush to vaccination; conversely, seasonal diseases may receive little media attention, despite their high mortality rate, due to their perceived lack of newness. Methods We formulate a deterministic transmission and vaccination model to investigate the effects of media coverage on the transmission dynamics of influenza. The population is subdivided into different classes according to their disease status. The compartmental model includes the effect of media coverage on reporting the number of infections as well as the number of individuals successfully vaccinated. Results A threshold parameter (the basic reproductive ratio) is analytically derived and used to discuss the local stability of the disease-free steady state. The impact of costs that can be incurred, which include vaccination, education, implementation and campaigns on media coverage, are also investigated using optimal control theory. A simplified version of the model with pulse vaccination shows that the media can trigger a vaccinating panic if the vaccine is imperfect and simplified messages result in the vaccinated mixing with the infectives without regard to disease risk. Conclusions The effects of media on an outbreak are complex. Simplified understandings of disease epidemiology, propogated through media soundbites, may make the disease significantly worse. PMID:21356134

  15. Interspecies transmission and reassortment of influenza A viruses in pigs and turkeys in the United States.

    PubMed

    Wright, S M; Kawaoka, Y; Sharp, G B; Senne, D A; Webster, R G

    1992-08-15

    Genetic reassortment between influenza A viruses in humans and in animals and birds has been implicated in the appearance of new pandemics of human influenza. To determine whether such reassortment has occurred in the United States, the authors compared the genetic origins of gene segments of 73 swine influenza virus isolates (1976-1990), representing 11 states, and 11 turkey virus isolates (1980-1989), representing eight states. The host origin of gene segments encoding the internal proteins of H1N1 swine and turkey influenza viruses was identified by developing a dot-blot assay. All gene segments of swine influenza viruses were characteristic of influenza virus genes from that species, indicating that pigs may not be frequent participants in interspecies genetic exchange and reassortment of influenza viruses in the United States. In contrast, 73% of the turkey influenza virus isolates contained genes of swine origin. One turkey isolate was a reassortant having three genes characteristic of avian influenza virus and three of swine origin. These findings document a high degree of genetic exchange and reassortment of influenza A viruses in domestic turkeys in the United States. The molecular biologic techniques used by the authors should aid future epidemiologic studies of influenza pandemics.

  16. Transmission characteristics of the 2009 H1N1 influenza pandemic: comparison of 8 Southern hemisphere countries.

    PubMed

    Opatowski, Lulla; Fraser, Christophe; Griffin, Jamie; de Silva, Eric; Van Kerkhove, Maria D; Lyons, Emily J; Cauchemez, Simon; Ferguson, Neil M

    2011-09-01

    While in Northern hemisphere countries, the pandemic H1N1 virus (H1N1pdm) was introduced outside of the typical influenza season, Southern hemisphere countries experienced a single wave of transmission during their 2009 winter season. This provides a unique opportunity to compare the spread of a single virus in different countries and study the factors influencing its transmission. Here, we estimate and compare transmission characteristics of H1N1pdm for eight Southern hemisphere countries/states: Argentina, Australia, Bolivia, Brazil, Chile, New Zealand, South Africa and Victoria (Australia). Weekly incidence of cases and age-distribution of cumulative cases were extracted from public reports of countries' surveillance systems. Estimates of the reproduction numbers, R(0), empirically derived from the country-epidemics' early exponential phase, were positively associated with the proportion of children in the populations (p = 0.004). To explore the role of demography in explaining differences in transmission intensity, we then fitted a dynamic age-structured model of influenza transmission to available incidence data for each country independently, and for all the countries simultaneously. Posterior median estimates of R₀ ranged 1.2-1.8 for the country-specific fits, and 1.29-1.47 for the global fits. Corresponding estimates for overall attack-rate were in the range 20-50%. All model fits indicated a significant decrease in susceptibility to infection with age. These results confirm the transmissibility of the 2009 H1N1 pandemic virus was relatively low compared with past pandemics. The pattern of age-dependent susceptibility found confirms that older populations had substantial--though partial--pre-existing immunity, presumably due to exposure to heterologous influenza strains. Our analysis indicates that between-country-differences in transmission were at least partly due to differences in population demography.

  17. Possible role of songbirds and parakeets in transmission of influenza A(H7N9) virus to humans.

    PubMed

    Jones, Jeremy C; Sonnberg, Stephanie; Koçer, Zeynep A; Shanmuganatham, Karthik; Seiler, Patrick; Shu, Yuelong; Zhu, Huachen; Guan, Yi; Peiris, Malik; Webby, Richard J; Webster, Robert G

    2014-03-01

    Avian-origin influenza A(H7N9) recently emerged in China, causing severe human disease. Several subtype H7N9 isolates contain influenza genes previously identified in viruses from finch-like birds. Because wild and domestic songbirds interact with humans and poultry, we investigated the susceptibility and transmissibility of subtype H7N9 in these species. Finches, sparrows, and parakeets supported replication of a human subtype H7N9 isolate, shed high titers through the oropharyngeal route, and showed few disease signs. Virus was shed into water troughs, and several contact animals seroconverted, although they shed little virus. Our study demonstrates that a human isolate can replicate in and be shed by such songbirds and parakeets into their environment. This finding has implications for these birds' potential as intermediate hosts with the ability to facilitate transmission and dissemination of A(H7N9) virus.

  18. A generic model of contagious disease and its application to human-to-human transmission of avian influenza.

    SciTech Connect

    Hirsch, Gary B.

    2007-03-01

    Modeling contagious diseases has taken on greater importance over the past several years as diseases such as SARS and avian influenza have raised concern about worldwide pandemics. Most models developed to consider projected outbreaks have been specific to a single disease. This paper describes a generic System Dynamics contagious disease model and its application to human-to-human transmission of a mutant version of avian influenza. The model offers the option of calculating rates of new infections over time based either on a fixed ''reproductive number'' that is traditional in contagious disease models or on contact rates for different sub-populations and likelihood of transmission per contact. The paper reports on results with various types of interventions. These results suggest the potential importance of contact tracing, limited quarantine, and targeted vaccination strategies as methods for controlling outbreaks, especially when vaccine supplies may initially be limited and the efficacy of anti-viral drugs uncertain.

  19. Molecular Evidence of Transmission of Influenza A/H1N1 2009 on a University Campus

    PubMed Central

    Virk, Ramandeep Kaur; Gunalan, Vithiagaran; Lee, Hong Kai; Inoue, Masafumi; Chua, Catherine; Tan, Boon-Huan; Tambyah, Paul Anantharajah

    2017-01-01

    Background In the recent years, the data on the molecular epidemiology of influenza viruses have expanded enormously because of the availability of cutting-edge sequencing technologies. However, much of the information is from the temperate regions with few studies from tropical regions such as South-east Asia. Despite the fact that influenza has been known to transmit rapidly within semi-closed communities, such as military camps and educational institutions, data are limited from these communities. Objectives To determine the phylogeography of influenza viruses on a university campus, we examined the spatial distribution of influenza virus on the National University of Singapore (NUS) campus. Methods Consenting students from the NUS who sought medical attention at the UHC provided two nasopharyngeal swabs and demographic data. PCR was used for detection of influenza viruses. 34 full-genomes of pH1N1/09 viruses were successfully sequenced by Sanger method and concatenated using Geneious R7. Phylogenetic analysis was conducted using these 34 sequences and 1518 global sequences. Phylogeographic analysis was done using BaTS software and Association index and Fitch parsimony scores were determined. Results Integrating whole genome sequencing data with epidemiological data, we found strong evidence of influenza transmission on campus as isolates from students residing on-campus were highly similar to each other (AI, P value = 0.009; PS, P value = 0.04). There was also evidence of multiple introductions from the community. Conclusions Such data are useful in formulating pandemic preparedness plans which can use these communities as sentinel sites for detection and monitoring of emerging respiratory viral infections. PMID:28060851

  20. Staying alive: Vibrio cholerae’s cycle of environmental survival, transmission, and dissemination

    PubMed Central

    Jones, Christopher J.; Yildiz, Fitnat H.

    2015-01-01

    Infectious diseases kill nearly 9 million people annually. Bacterial pathogens are responsible for a large proportion of these diseases and the bacterial agents of pneumonia, diarrhea, and tuberculosis are leading causes of death and disability worldwide (1). Increasingly, the crucial role of non-host environments in the life cycle of bacterial pathogens is being recognized. Heightened scrutiny has been given to the biological processes impacting pathogen dissemination and survival in the natural environment, as these processes are essential for the transmission of pathogenic bacteria to new hosts. This chapter focuses on the model environmental pathogen, Vibrio cholerae, to describe recent advances in our understanding of how pathogens survive between hosts and highlight the processes necessary to support the cycle of environmental survival, transmission, and dissemination. We describe the physiological and molecular responses of V. cholerae to changing environmental conditions, focusing on its survival in aquatic reservoirs between hosts and its entry and exit from human hosts. PMID:27227302

  1. Assessing the State of Knowledge Regarding the Effectiveness of Interventions to Contain Pandemic Influenza Transmission: A Systematic Review and Narrative Synthesis

    PubMed Central

    Reisman, Jane; Krewski, Daniel

    2016-01-01

    Background Influenza pandemics occur when a novel influenza strain, to which humans are immunologically naïve, emerges to cause infection and illness on a global scale. Differences in the viral properties of pandemic strains, relative to seasonal ones, can alter the effectiveness of interventions typically implemented to control seasonal influenza burden. As a result, annual control activities may not be sufficient to contain an influenza pandemic. Purpose This study seeks to inform pandemic policy and planning initiatives by reviewing the effectiveness of previous interventions to reduce pandemic influenza transmission and infection. Results will inform the planning and design of more focused in-depth systematic reviews for specific types of interventions, thus providing the most comprehensive and current understanding of the potential for alternative interventions to mitigate the burden of pandemic influenza. Methods A systematic review and narrative synthesis of existing systematic reviews and meta-analyses examining intervention effectiveness in containing pandemic influenza transmission was conducted using information collected from five databases (PubMed, Medline, Cochrane, Embase, and Cinahl/EBSCO). Two independent reviewers conducted study screening and quality assessment, extracting data related to intervention impact and effectiveness. Results and Discussion Most included reviews were of moderate to high quality. Although the degree of statistical heterogeneity precluded meta-analysis, the present systematic review examines the wide variety of interventions that can impact influenza transmission in different ways. While it appears that pandemic influenza vaccination provides significant protection against infection, there was insufficient evidence to conclude that antiviral prophylaxis, seasonal influenza cross-protection, or a range of non-pharmaceutical strategies would provide appreciable protection when implemented in isolation. It is likely that an

  2. Environmental role in influenza virus outbreaks.

    PubMed

    Sooryanarain, Harini; Elankumaran, Subbiah

    2015-01-01

    The environmental drivers of influenza outbreaks are largely unknown. Despite more than 50 years of research, there are conflicting lines of evidence on the role of the environment in influenza A virus (IAV) survival, stability, and transmissibility. With the increasing and looming threat of pandemic influenza, it is important to understand these factors for early intervention and long-term control strategies. The factors that dictate the severity and spread of influenza would include the virus, natural and acquired hosts, virus-host interactions, environmental persistence, virus stability and transmissibility, and anthropogenic interventions. Virus persistence in different environments is subject to minor variations in temperature, humidity, pH, salinity, air pollution, and solar radiations. Seasonality of influenza is largely dictated by temperature and humidity, with cool-dry conditions enhancing IAV survival and transmissibility in temperate climates in high latitudes, whereas humid-rainy conditions favor outbreaks in low latitudes, as seen in tropical and subtropical zones. In mid-latitudes, semiannual outbreaks result from alternating cool-dry and humid-rainy conditions. The mechanism of virus survival in the cool-dry or humid-rainy conditions is largely determined by the presence of salts and proteins in the respiratory droplets. Social determinants of heath, including health equity, vaccine acceptance, and age-related illness, may play a role in influenza occurrence and spread.

  3. Transmissibility of novel H7N9 and H9N2 avian influenza viruses between chickens and ferrets.

    PubMed

    Ku, Keun Bon; Park, Eun Hye; Yum, Jung; Kim, Heui Man; Kang, Young Myong; Kim, Jeong Cheol; Kim, Ji An; Kim, Hyun Soo; Seo, Sang Heui

    2014-02-01

    Previous studies have shown that the H7N9 avian influenza virus cannot be transmitted efficiently between ferrets via respiratory droplets. Here, we studied the infectivity of the H7N9 avian influenza virus in chickens and its transmissibility from infected to naïve chickens and ferrets. The H7N9 virus (A/Anhui/1/2013) replicated poorly in chickens and could not be transmitted efficiently from infected chickens to naïve chickens and ferrets. H7N9 virus was shed from chicken tracheae for only 2 days after infection and from chicken cloacae for only 1 day after infection, while the H9N2 avian influenza virus, which is endemic in chickens in many Asian countries, was shed from tracheae and cloacae for 8 days after infection. Taken together, our results suggest that chickens may be a poor agent of transmission for the H7N9 virus to other chickens and to mammals, including humans.

  4. Symbiont survival and host-symbiont disequilibria under differential vertical transmission.

    PubMed Central

    Sánchez, M S; Arnold, J; Asmussen, M A

    2000-01-01

    Interspecific genetic interactions in host-symbiont systems raise intriguing coevolutionary questions and may influence the effectiveness of public health and management policies. Here we present an analytical and numerical investigation of the effects of host genetic heterogeneity in the rate of vertical transmission of a symbiont. We consider the baseline case with a monomorphic symbiont and a single diallelic locus in its diploid host, where vertical transmission is the sole force. Our analysis introduces interspecific disequilibria to quantify nonrandom associations between host genotypes and alleles and symbiont presence/absence. The transient and equilibrium behavior is examined in simulations with randomly generated initial conditions and transmission parameters. Compared to the case where vertical transmission rates are uniform across host genotypes, differential transmission (i) increases average symbiont survival from 50% to almost 60%, (ii) dramatically reduces the minimum average transmission rate for symbiont survival from 0.5 to 0.008, and (iii) readily creates permanent host-symbiont disequilibria de novo, whereas uniform transmission can neither create nor maintain such associations. On average, heterozygotes are slightly more likely to carry and maintain the symbiont in the population and are more randomly associated with the symbiont. Results show that simple evolutionary forces can create substantial nonrandom associations between two species. PMID:10757775

  5. Antigenicity and transmissibility of a novel clade 2.3.2.1 avian influenza H5N1 virus.

    PubMed

    Xu, Lili; Bao, Linlin; Yuan, Jing; Li, Fengdi; Lv, Qi; Deng, Wei; Xu, Yanfeng; Yao, Yanfeng; Yu, Pin; Chen, Honglin; Yuen, Kwok-Yung; Qin, Chuan

    2013-12-01

    A genetic variant of the H5N1 influenza virus, termed subclade 2.3.2.1, was first identified in Bulgaria in 2010 and has subsequently been found in Vietnam and Laos. Several cases of human infections with this virus have been identified. Thus, it is important to understand the antigenic properties and transmissibility of this variant. Our results showed that, although it is phylogenetically closely related to other previously characterized clade 2.3 viruses, this novel 2.3.2.1 variant exhibited distinct antigenic properties and showed little cross-reactivity to sera raised against other H5N1 viruses. Like other H5N1 viruses, this variant bound preferentially to avian-type receptors, but contained substitutions at positions 190 and 158 of the haemagglutinin (HA) protein that have been postulated to facilitate HA binding to human-type receptors and to enhance viral transmissibility among mammals, respectively. However, this virus did not appear to have acquired the capacity for airborne transmission between ferrets. These findings highlight the challenges in selecting vaccine candidates for H5N1 influenza because these viruses continue to evolve rapidly in the field. It is important to note that some variants have obtained mutations that may gain transmissibility between model animals, and close surveillance of H5N1 viruses in poultry is warranted.

  6. A topology for computer networks with good survivability characteristics and low transmission delays between node computers

    NASA Technical Reports Server (NTRS)

    Kelly, G. L.; Jiang, D. P.

    1984-01-01

    Various network topologies are developed which have not appeared in the literature before which result in minimum diameter graphs for computer networks having connectivity four. The topologies presented have good survivability characteristics and result in more topologies being available for computer network designers which achieve the minimum diameter resulting in small transmission delays.

  7. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards.

    PubMed

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R; Suarez, David L; Stallknecht, David E; Swayne, David E

    2016-11-01

    Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses.

  8. Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees

    PubMed Central

    Kenah, Eben; Britton, Tom; Halloran, M. Elizabeth; Longini, Ira M.

    2016-01-01

    Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology. PMID:27070316

  9. Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees.

    PubMed

    Kenah, Eben; Britton, Tom; Halloran, M Elizabeth; Longini, Ira M

    2016-04-01

    Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology.

  10. Serial killers, spiders and cybersex: Social and survival information bias in the transmission of urban legends.

    PubMed

    Stubbersfield, Joseph M; Tehrani, Jamshid J; Flynn, Emma G

    2015-05-01

    This study uses urban legends to examine the effects of the social information bias and survival information bias on cultural transmission across three phases of transmission: the choose-to-receive phase, the encode-and-retrieve phase, and the choose-to-transmit phase. In line with previous research into content biases, a linear transmission chain design with 60 participants aged 18-52 was used to examine the encode-and-retrieve phase, while participants were asked to rank their interest in reading the story behind a headline and passing a story on for the other two phases. Legends which contained social information (Social Type), legends which contained survival information (Survival Type), and legends which contained both forms of information (Combined Type) were all recalled with significantly greater accuracy than control material, while Social and Combined Type legends were recalled with significantly greater accuracy than Survival Type legends. In another study with 30 participants aged 18-22, no significant differences were found between legend types in either the choose-to-receive phase or the choose-to-transmit phase.

  11. A Novel, Molybdenum-Containing Methionine Sulfoxide Reductase Supports Survival of Haemophilus influenzae in an In vivo Model of Infection

    PubMed Central

    Dhouib, Rabeb; Othman, Dk. Seti Maimonah Pg; Lin, Victor; Lai, Xuanjie J.; Wijesinghe, Hewa G. S.; Essilfie, Ama-Tawiah; Davis, Amanda; Nasreen, Marufa; Bernhardt, Paul V.; Hansbro, Philip M.; McEwan, Alastair G.; Kappler, Ulrike

    2016-01-01

    Haemophilus influenzae is a host adapted human mucosal pathogen involved in a variety of acute and chronic respiratory tract infections, including chronic obstructive pulmonary disease and asthma, all of which rely on its ability to efficiently establish continuing interactions with the host. Here we report the characterization of a novel molybdenum enzyme, TorZ/MtsZ that supports interactions of H. influenzae with host cells during growth in oxygen-limited environments. Strains lacking TorZ/MtsZ showed a reduced ability to survive in contact with epithelial cells as shown by immunofluorescence microscopy and adherence/invasion assays. This included a reduction in the ability of the strain to invade human epithelial cells, a trait that could be linked to the persistence of H. influenzae. The observation that in a murine model of H. influenzae infection, strains lacking TorZ/MtsZ were almost undetectable after 72 h of infection, while ∼3.6 × 103 CFU/mL of the wild type strain were measured under the same conditions is consistent with this view. To understand how TorZ/MtsZ mediates this effect we purified and characterized the enzyme, and were able to show that it is an S- and N-oxide reductase with a stereospecificity for S-sulfoxides. The enzyme converts two physiologically relevant sulfoxides, biotin sulfoxide and methionine sulfoxide (MetSO), with the kinetic parameters suggesting that MetSO is the natural substrate of this enzyme. TorZ/MtsZ was unable to repair sulfoxides in oxidized Calmodulin, suggesting that a role in cell metabolism/energy generation and not protein repair is the key function of this enzyme. Phylogenetic analyses showed that H. influenzae TorZ/MtsZ is only distantly related to the Escherichia coli TorZ TMAO reductase, but instead is a representative of a new, previously uncharacterized clade of molybdenum enzyme that is widely distributed within the Pasteurellaceae family of pathogenic bacteria. It is likely that MtsZ/TorZ has a similar

  12. Inferring patterns of influenza transmission in swine from multiple streams of surveillance data.

    PubMed

    Strelioff, Christopher C; Vijaykrishna, Dhanasekaran; Riley, Steven; Guan, Yi; Peiris, J S Malik; Lloyd-Smith, James O

    2013-07-07

    Swine populations are known to be an important source of new human strains of influenza A, including those responsible for global pandemics. Yet our knowledge of the epidemiology of influenza in swine is dismayingly poor, as highlighted by the emergence of the 2009 pandemic strain and the paucity of data describing its origins. Here, we analyse a unique dataset arising from surveillance of swine influenza at a Hong Kong abattoir from 1998 to 2010. We introduce a state-space model that estimates disease exposure histories by joint inference from multiple modes of surveillance, integrating both virological and serological data. We find that an observed decrease in virus isolation rates is not due to a reduction in the regional prevalence of influenza. Instead, a more likely explanation is increased infection of swine in production farms, creating greater immunity to disease early in life. Consistent with this, we find that the weekly risk of exposure on farms equals or exceeds the exposure risk during transport to slaughter. We discuss potential causes for these patterns, including competition between influenza strains and shifts in the Chinese pork industry, and suggest opportunities to improve knowledge and reduce prevalence of influenza in the region.

  13. Interregional transmission of the internal protein genes of H2 influenza virus in migratory ducks from North America to Eurasia.

    PubMed

    Liu, Jin-Hua; Okazaki, Katsunori; Bai, Gui-Rong; Shi, Wei-Min; Mweene, Aaron; Kida, Hiroshi

    2004-08-01

    H2 influenza virus caused a pandemic in 1957 and has the possibility to cause outbreaks in the future. To assess the evolutionary characteristics of H2 influenza viruses isolated from migratory ducks that congregate in Hokkaido, Japan, on their flyway of migration from Siberia in 2001, we investigated the phylogenetic relationships among these viruses and avian and human viruses described previously. Phylogenetic analysis showed that the PB2 gene of Dk/Hokkaido/107/01 (H2N3) and the PA gene of Dk/Hokkaido/95/01 (H2N2) belonged to the American lineage of avian virus and that the other genes of the isolates belonged to the Eurasian lineage. These results indicate that the internal protein genes might be transmitted from American to Eurasian avian host. Thus, it is further confirmed that interregional transmission of influenza viruses occurred between the North American and Eurasian birds. The fact that reassortants could be generated in the migratory ducks between North American and Eurasian avian virus lineage further stresses the importance of global surveillance among the migratory ducks.

  14. No evidence for zoonotic transmission of H3N8 canine influenza virus among US adults occupationally exposed to dogs

    PubMed Central

    Krueger, Whitney S; Heil, Gary L; Yoon, Kyoung-Jin; Gray, Gregory C

    2014-01-01

    Objectives The zoonotic potential of H3N8 canine influenza virus (CIV) has not been previously examined; yet considering the popularity of dogs as a companion animal and the zoonotic capabilities of other influenza viruses, the public health implications are great. This study aimed to determine the seroprevalence of antibodies against CIV among a US cohort. Design A cross-sectional seroepidemiological study was conducted between 2007 and 2010. Setting Recruitments primarily occurred in Iowa and Florida. Participants were enrolled at dog shows, or at their home or place of employment. Sample Three hundred and four adults occupationally exposed to dogs and 101 non-canine-exposed participants completed a questionnaire and provided a blood sample. Main outcome measures Microneutralization and neuraminidase inhibition assays were performed to detect human sera antibodies against A/Canine/Iowa/13628/2005(H3N8). An enzyme-linked lectin assay (ELLA) was adapted to detect antibodies against a recombinant N8 neuraminidase protein from A/Equine/Pennsylvania/1/2007(H3N8). Results For all assays, no significant difference in detectable antibodies was observed when comparing the canine-exposed subjects to the non-canine-exposed subjects. Conclusion While these results do not provide evidence for cross-species CIV transmission, influenza is predictably unpredictable. People frequently exposed to ill dogs should continually be monitored for novel zoonotic CIV infections. PMID:24237615

  15. A Hypothesis: Supplementation with Mushroom-Derived Active Compound Modulates Immunity and Increases Survival in Response to Influenza Virus (H1N1) Infection

    PubMed Central

    Chunchao, Han; Guo, Jian-you

    2011-01-01

    We hypothesize that the mushroom-derived active compound may be a potential strategy for increasing survival in response to influenza virus (H1N1) infection through the stimulation of host innate immune response. The validity of the hypothesis can be tested by immune response to influenza infection as seen through survival percentage, virus clearance, weight loss, natural killer cell cytotoxicity, Tumor Necrosis Factor-α (TNF-α) and Interferon-gamma (IFN-γ) levels, lytic efficiency in the spleens of mice and inducible nitric oxide synthase mRNA expressions in RAW 264.7 murine macrophage cells. The hypothesis may improve people's quality of life, reduce the medical cost of our healthcare system and eliminate people's fears of influenza outbreak. PMID:21660092

  16. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses.

    PubMed

    Yang, Huanliang; Chen, Yan; Qiao, Chuanling; He, Xijun; Zhou, Hong; Sun, Yu; Yin, Hang; Meng, Shasha; Liu, Liping; Zhang, Qianyi; Kong, Huihui; Gu, Chunyang; Li, Chengjun; Bu, Zhigao; Kawaoka, Yoshihiro; Chen, Hualan

    2016-01-12

    Pigs are important intermediate hosts for generating novel influenza viruses. The Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses (SIVs) have circulated in pigs since 1979, and human cases associated with EAH1N1 SIVs have been reported in several countries. However, the biologic properties of EAH1N1 SIVs are largely unknown. Here, we performed extensive influenza surveillance in pigs in China and isolated 228 influenza viruses from 36,417 pigs. We found that 139 of the 228 strains from pigs in 10 provinces in China belong to the EAH1N1 lineage. These viruses formed five genotypes, with two distinct antigenic groups, represented by A/swine/Guangxi/18/2011 and A/swine/Guangdong/104/2013, both of which are antigenically and genetically distinct from the current human H1N1 viruses. Importantly, the EAH1N1 SIVs preferentially bound to human-type receptors, and 9 of the 10 tested viruses transmitted in ferrets by respiratory droplet. We found that 3.6% of children (≤10 y old), 0% of adults, and 13.4% of elderly adults (≥60 y old) had neutralization antibodies (titers ≥40 in children and ≥80 in adults) against the EAH1N1 A/swine/Guangxi/18/2011 virus, but none of them had such neutralization antibodies against the EAH1N1 A/swine/Guangdong/104/2013 virus. Our study shows the potential of EAH1N1 SIVs to transmit efficiently in humans and suggests that immediate action is needed to prevent the efficient transmission of EAH1N1 SIVs to humans.

  17. Using egg production data to quantify within-flock transmission of low pathogenic avian influenza virus in commercial layer chickens.

    PubMed

    Gonzales, J L; Elbers, A R W; van der Goot, J A; Bontje, D; Koch, G; de Wit, J J; Stegeman, J A

    2012-12-01

    Even though low pathogenic avian influenza viruses (LPAIv) affect the poultry industry of several countries in the world, information about their transmission characteristics in poultry is sparse. Outbreak reports of LPAIv in layer chickens have described drops in egg production that appear to be correlated with the virus transmission dynamics. The objective of this study was to use egg production data from LPAIv infected layer flocks to quantify the within-flock transmission parameters of the virus. Egg production data from two commercial layer chicken flocks which were infected with an H7N3 LPAIv were used for this study. In addition, an isolate of the H7N3 LPAIv causing these outbreaks was used in a transmission experiment. The field and experimental estimates showed that this is a virus with high transmission characteristics. Furthermore, with the field method, the day of introduction of the virus into the flock was estimated. The method here presented uses compartmental models that assume homogeneous mixing. This method is, therefore, best suited to study transmission in commercial flocks with a litter (floor-reared) housing system. It would also perform better, when used to study transmission retrospectively, after the outbreak has finished and there is egg production data from recovered chickens. This method cannot be used when a flock was affected with a LPAIv with low transmission characteristics (R(0)<2), since the drop in egg production would be low and likely to be confounded with the expected decrease in production due to aging of the flock. Because only two flocks were used for this analysis, this study is a preliminary basis for a proof of principle that transmission parameters of LPAIv infections in layer chicken flocks could be quantified using the egg production data from affected flocks.

  18. Swine Influenza Virus (H1N2) Characterization and Transmission in Ferrets, Chile

    PubMed Central

    Bravo-Vasquez, Nicolás; Karlsson, Erik A.; Jimenez-Bluhm, Pedro; Meliopoulos, Victoria; Kaplan, Bryan; Marvin, Shauna; Cortez, Valerie; Freiden, Pamela; Beck, Melinda A.

    2017-01-01

    Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus. The virus replicated efficiently in vitro and in vivo and transmitted in ferrets by respiratory droplet. Antigenically, it was distinct from other swine viruses. Hemagglutination inhibition analysis suggested that antibody titers to the swine Chilean H1N2 virus were decreased in persons born after 1990. Further studies are needed to characterize the potential risk to humans, as well as the ecology of influenza in swine in South America. PMID:28098524

  19. A spatial-temporal transmission model and early intervention policies of 2009 A/H1N1 influenza in South Korea.

    PubMed

    Lee, Jonggul; Jung, Eunok

    2015-09-07

    We developed a spatial-temporal model of the 2009 A/H1N1 influenza pandemic in the Seoul metropolitan area (SMA), which is located in the north-west of South Korea and is the second-most complex metropolitan area worldwide. This multi-patch influenza model consists of a SEIAR influenza transmission model and flow model between two districts. This model is based on the daily confirmed cases of A/H1N1 influenza collected by the Korea Center for Disease Control and Prevention from April 27 to September 15, 2009 and the daily commuting data from 33 districts of SMA reported in the 2010 Population and Housing Census (PHC). We analyzed the spread patterns of 2009 influenza in the SMA by the reproductive numbers and geographic information systems. During the early period of novel influenza pandemics, when pharmaceutical interventions are lacking, non-pharmaceutical public health interventions will be the most critical strategies for impeding the spread of influenza and delaying an epidemic. Using the spatial-temporal model developed herein, we also investigated the impact of non-pharmaceutical public health interventions, isolation and/or commuting restrictions, on the incidence reduction in various scenarios. Our model provides scientific evidence for predicting the spread of disease and preparedness for a future pandemic.

  20. Pathogen-Mediated Inhibition of Anorexia Promotes Host Survival and Transmission.

    PubMed

    Rao, Sheila; Schieber, Alexandria M Palaferri; O'Connor, Carolyn P; Leblanc, Mathias; Michel, Daniela; Ayres, Janelle S

    2017-01-26

    Sickness-induced anorexia is a conserved behavior induced during infections. Here, we report that an intestinal pathogen, Salmonella Typhimurium, inhibits anorexia by manipulating the gut-brain axis. Inhibition of inflammasome activation by the S. Typhimurium effector, SlrP, prevented anorexia caused by IL-1β-mediated signaling to the hypothalamus via the vagus nerve. Rather than compromising host defenses, pathogen-mediated inhibition of anorexia increased host survival. SlrP-mediated inhibition of anorexia prevented invasion and systemic infection by wild-type S. Typhimurium, reducing virulence while increasing transmission to new hosts, suggesting that there are trade-offs between transmission and virulence. These results clarify the complex and contextual role of anorexia in host-pathogen interactions and suggest that microbes have evolved mechanisms to modulate sickness-induced behaviors to promote health of their host and their transmission at the expense of virulence.

  1. Failure of transmission of low-pathogenic avian influenza virus between Mallards and freshwater snails: an experimental evaluation.

    PubMed

    Oesterle, Paul T; Huyvaert, Kathryn P; Orahood, Darcy; Mooers, Nicole; Sullivan, Heather; Franklin, Alan B; Root, J Jeffrey

    2013-10-01

    In aquatic bird populations, the ability of avian influenza (AI) viruses to remain infectious in water for extended periods provides a mechanism that allows viral transmission to occur long after shedding birds have left the area. However, this also exposes other aquatic organisms, including freshwater invertebrates, to AI viruses. Previous researchers found that AI viral RNA can be sequestered in snail tissues. Using an experimental approach, we determined whether freshwater snails (Physa acuta and Physa gyrina) can infect waterfowl with AI viruses by serving as a means of transmission between infected and naïve waterfowl via ingestion. In our first experiment, we exposed 20 Physa spp. snails to an AI virus (H3N8) and inoculated embryonated specific pathogen-free (SPF) chicken eggs with the homogenized snail tissues. Sequestered AI viruses remain infectious in snail tissues; 10% of the exposed snail tissues infected SPF eggs. In a second experiment, we exposed snails to water contaminated with feces of AI virus-inoculated Mallards (Anas platyrhynchos) to evaluate whether ingestion of exposed freshwater snails was an alternate route of AI virus transmission to waterfowl. None of the immunologically naïve Mallards developed an infection, indicating that transmission via ingestion likely did not occur. Our results suggest that this particular trophic interaction may not play an important role in the transmission of AI viruses in aquatic habitats.

  2. An evaluation of transmission routes for low pathogenicity avian influenza virus among chickens sold in live bird markets.

    PubMed

    Yee, Karen S; Carpenter, Tim E; Farver, Thomas B; Cardona, Carol J

    2009-11-10

    Many theories about the modes of avian influenza virus (AIV) transmission have been proposed, but few have been quantified, and none within a flock or live bird market (LBM) setting where birds are often kept in stacked cages. We describe a novel experimental design and the results collected for the purpose of estimating transmission rates specific to the potential modes of AIV transmission within an LBM. Chickens of the strains and ages found in California LBMs were inoculated with low pathogenicity AIV H6N2. Aerosol exposure was found to be the most important route of transmission for this H6N2 AIV. The handling of infectious chickens resulted in the transmission of H6N2 AIV, though the virus was not detectible by rRT-PCR. Chickens with fecal exposure to infected birds (median=8.0 DPI) had detectable virus earlier than in those with aerosol exposure only (median=10.0 DPI). Changes in the hemagglutinin sequence were not found to be associated with oropharyngeal or cloacal shedding in this study.

  3. Analysis of spatial distribution and transmission characters for highly pathogenic avian influenza in Chinese mainland in 2004

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Wei, C. J.; Yan, L.; Chi, T. H.; Wu, X. B.; Xiao, C. S.

    2006-03-01

    After the outbreak of highly pathogenic Avian Influenza (HPAI) in South Korea in the end of year 2003, estimates of the impact of HPAI in affected countries vary greatly, the total direct losses are about 3 billion US dollars, and it caused 15 million birds and poultry flocks death. It is significant to understand the spatial distribution and transmission characters of HPAI for its prevention and control. According to 50 outbreak cases for HPAI in Chinese mainland during 2004, this paper introduces the approach of spatial distribution and transmission characters for HPAI and its results. Its approach is based on remote sensing and GIS techniques. Its supporting data set involves normalized difference vegetation index (NDVI) and land surface temperature (Ts) derived from a time-series of remote sensing data of 1 kilometer-resolution NOAA/AVHRR, birds' migration routes, topology geographic map, lake and wetland maps, and meteorological observation data. In order to analyze synthetically using these data, a supporting platform for analysis Avian Influenza epidemic situation (SPAS/AI) was developed. Supporting by SPAS/AI, the integrated information from multi-sources can be easily used to the analysis of the spatial distribution and transmission character of HPAI. The results show that the range of spatial distribution and transmission of HPAI in China during 2004 connected to environment factors NDVI, Ts and the distributions of lake and wetland, and especially to bird migration routes. To some extent, the results provide some suggestions for the macro-decision making for the prevention and control of HPAI in the areas of potential risk and reoccurrence.

  4. Assessing the impact of public health interventions on the transmission of pandemic H1N1 influenza a virus aboard a Peruvian navy ship

    PubMed Central

    Vera, Delphis M; Hora, Ricardo A; Murillo, Anarina; Wong, Juan F; Torre, Armando J; Wang, David; Boulay, Darbi; Hancock, Kathy; Katz, Jacqueline M; Ramos, Mariana; Loayza, Luis; Quispe, Jose; Reaves, Erik J; Bausch, Daniel G; Chowell, Gerardo; Montgomery, Joel M

    2014-01-01

    Background Limited data exist on transmission dynamics and effectiveness of control measures for influenza in confined settings. Objectives To investigate the transmission dynamics of a 2009 pandemic H1N1 influenza A outbreak aboard a Peruvian Navy ship and quantify the effectiveness of the implemented control measures. Methods We used surveillance data and a simple stochastic epidemic model to characterize and evaluate the effectiveness of control interventions implemented during an outbreak of 2009 pandemic H1N1 influenza A aboard a Peruvian Navy ship. Results The serological attack rate for the outbreak was 49·1%, with younger cadets and low-ranking officers at greater risk of infection than older, higher-ranking officers. Our transmission model yielded a good fit to the daily time series of new influenza cases by date of symptom onset. We estimated a reduction of 54·4% in the reproduction number during the period of intense control interventions. Conclusion Our results indicate that the patient isolation strategy and other control measures put in place during the outbreak reduced the infectiousness of isolated individuals by 86·7%. Our findings support that early implementation of control interventions can limit the spread of influenza epidemics in confined settings. PMID:24506160

  5. The ToxAvapA toxin-antitoxin locus contributes to the survival of nontypeable Haemophilus influenzae during infection.

    PubMed

    Ren, Dabin; Kordis, Alexis A; Sonenshine, Daniel E; Daines, Dayle A

    2014-01-01

    Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that is a common cause of acute and recurrent mucosal infections. One uncharacterized NTHi toxin-antitoxin (TA) module, NTHI1912-1913, is a host inhibition of growth (higBA) homologue. We hypothesized that this locus, which we designated toxAvapA, contributed to NTHi survival during infection. We deleted toxAvapA and determined that growth of the mutant in defined media was not different from the parent strain. We tested the mutant for persistence during long-term in vitro co-culture with primary human respiratory tissues, which revealed that the ΔtoxAvapA mutant was attenuated for survival. We then performed challenge studies using the chinchilla model of otitis media and determined that mutant survival was also reduced in vivo. Following purification, the toxin exhibited ribonuclease activity on RNA in vitro, while the antitoxin did not. A microarray comparison of the transcriptome revealed that the tryptophan biosynthetic regulon was significantly repressed in the mutant compared to the parent strain. HPLC studies of conditioned medium confirmed that there was no significant difference in the concentration of tryptophan remaining in the supernatant, indicating that the uptake of tryptophan by the mutant was not affected. We conclude that the role of the NTHi toxAvapA TA module in persistence following stress is multifactorial and includes effects on essential metabolic pathways.

  6. Influenza virus respiratory infection and transmission following ocular inoculation in ferrets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While influenza viruses are a common respiratory pathogen, sporadic reports of conjunctivitis following human infection demonstrates the ability of this virus to cause disease outside of the respiratory tract. The ocular surface represents both a potential site of virus replication and a portal of e...

  7. Pathogenesis and transmission studies: non-swine influenza A viruses in the swine host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract Influenza A virus (IAV) causes disease in poultry, pigs, and people with wild waterfowl being the natural reservoir. IAV strains have been periodically transmitted between swine and humans in both directions and avian IAV have also sporadically infected swine. If an individual is infected w...

  8. Airborne transmission of H5N1 high pathogenicity avian influenza viruses during simulated home slaughter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most H5N1 human infections have occurred following exposure to H5N1 high pathogenicity avian influenza (HPAI) virus-infected poultry, especially when poultry are home slaughtered or slaughtered in live poultry markets. Previous studies have demonstrated that slaughter of clade 1 isolate A/Vietnam/1...

  9. Pathogenesis and transmission of highly pathogenic avian influenza H5Nx in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Influenza A viruses (IAV) periodically transmit between pigs, people, and birds. If two IAV strains infect the same host, genes can reassort to generate progeny virus with potential to be more infectious or avoid immunity. Pigs pose a risk for such reassortment. Highly pathogenic avian ...

  10. Transmission by super-spreading event of pandemic A/H1N1 2009 influenza during road and train travel.

    PubMed

    Pestre, Vincent; Morel, Bruno; Encrenaz, Nathalie; Brunon, Amandine; Lucht, Frédéric; Pozzetto, Bruno; Berthelot, Philippe

    2012-03-01

    The investigation of clustered cases of pandemic A/H1N1 2009 influenza virus infection (21 children, 3 adults) during a summer camp, led to the identification of transportation as the circumstance of transmission. Results suggest that super-spreading of flu can occur in a confined space without sufficient air renewal.

  11. Spatial Modeling of Wild Bird Risk Factors for Highly Pathogenic A(H5N1) Avian Influenza Virus Transmission.

    PubMed

    Prosser, Diann J; Hungerford, Laura L; Erwin, R Michael; Ottinger, Mary Ann; Takekawa, John Y; Newman, Scott H; Xiao, Xiangming; Ellis, Erle C

    2016-05-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 yr, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae) are reported as secondary transmitters of HPAIV and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using geographic information software and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values and then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 to 30 km resolution for multiscale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.

  12. From Exit to Entry: Long-term Survival and Transmission of Salmonella

    PubMed Central

    Waldner, Landon L.; MacKenzie, Keith D.; Köster,, Wolfgang; White, Aaron P.

    2012-01-01

    Salmonella spp. are a leading cause of human infectious disease worldwide and pose a serious health concern. While we have an improving understanding of pathogenesis and the host-pathogen interactions underlying the infection process, comparatively little is known about the survival of pathogenic Salmonella outside their hosts. This review focuses on three areas: (1) in vitro evidence that Salmonella spp. can survive for long periods of time under harsh conditions; (2) observations and conclusions about Salmonella persistence obtained from human outbreaks; and (3) new information revealed by genomic- and population-based studies of Salmonella and related enteric pathogens. We highlight the mechanisms of Salmonella persistence and transmission as an essential part of their lifecycle and a prerequisite for their evolutionary success as human pathogens. PMID:25436767

  13. Optimal design of studies of influenza transmission in households. II: comparison between cohort and case-ascertained studies.

    PubMed

    Klick, B; Nishiura, H; Leung, G M; Cowling, B J

    2014-04-01

    Both case-ascertained household studies, in which households are recruited after an 'index case' is identified, and household cohort studies, where a household is enrolled before the start of the epidemic, may be used to test and estimate the protective effect of interventions used to prevent influenza transmission. A simulation approach parameterized with empirical data from household studies was used to evaluate and compare the statistical power of four study designs: a cohort study with routine virological testing of household contacts of infected index case, a cohort study where only household contacts with acute respiratory illness (ARI) are sampled for virological testing, a case-ascertained study with routine virological testing of household contacts, and a case-ascertained study where only household contacts with ARI are sampled for virological testing. We found that a case-ascertained study with ARI-triggered testing would be the most powerful design while a cohort design only testing household contacts with ARI was the least powerful. Sensitivity analysis demonstrated that these conclusions varied by model parameters including the serial interval and the risk of influenza virus infection from outside the household.

  14. Medfly Ceratitis capitata as Potential Vector for Fire Blight Pathogen Erwinia amylovora: Survival and Transmission.

    PubMed

    Ordax, Mónica; Piquer-Salcedo, Jaime E; Santander, Ricardo D; Sabater-Muñoz, Beatriz; Biosca, Elena G; López, María M; Marco-Noales, Ester

    2015-01-01

    Monitoring the ability of bacterial plant pathogens to survive in insects is required for elucidating unknown aspects of their epidemiology and for designing appropriate control strategies. Erwinia amylovora is a plant pathogenic bacterium that causes fire blight, a devastating disease in apple and pear commercial orchards. Studies on fire blight spread by insects have mainly focused on pollinating agents, such as honeybees. However, the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae), one of the most damaging fruit pests worldwide, is also common in pome fruit orchards. The main objective of the study was to investigate whether E. amylovora can survive and be transmitted by the medfly. Our experimental results show: i) E. amylovora can survive for at least 8 days inside the digestive tract of the medfly and until 28 days on its external surface, and ii) medflies are able to transmit the bacteria from inoculated apples to both detached shoots and pear plants, being the pathogen recovered from lesions in both cases. This is the first report on E. amylovora internalization and survival in/on C. capitata, as well as the experimental transmission of the fire blight pathogen by this insect. Our results suggest that medfly can act as a potential vector for E. amylovora, and expand our knowledge on the possible role of these and other insects in its life cycle.

  15. Transmission of H7N9 Influenza Viruses with a Polymorphism at PB2 Residue 627 in Chickens and Ferrets

    PubMed Central

    Luk, Geraldine S. M.; Leung, Connie Y. H.; Sia, Sin Fun; Choy, Ka-Tim; Zhou, Jie; Ho, Candy C. K.; Cheung, Peter P. H.; Lee, Elaine F.; Wai, Chris K. L.; Li, Pamela C. H.; Ip, Sin-Ming; Poon, Leo L. M.; Lindsley, William G.

    2015-01-01

    ABSTRACT Poultry exposure is a major risk factor for human H7N9 zoonotic infections, for which the mode of transmission remains unclear. We studied the transmission of genetically related poultry and human H7N9 influenza viruses differing by four amino acids, including the host determinant PB2 residue 627. A/Silkie chicken/HK/1772/2014 (SCk1772) and A/HK/3263/14 (HK3263) replicated to comparable titers in chickens, with superior oropharyngeal over cloacal shedding; both viruses transmitted efficiently among chickens via direct contact but inefficiently via the airborne route. Interspecies transmission via the airborne route was observed for ferrets exposed to the SCk1772- or HK3263-infected chickens, while low numbers of copies of influenza viral genome were detected in the air, predominantly at particle sizes larger than 4 μm. In ferrets, the human isolate HK3263 replicated to higher titers and transmitted more efficiently via direct contact than SCk1772. We monitored “intrahost” and “interhost” adaptive changes at PB2 residue 627 during infection and transmission of the Sck1772 that carried E627 and HK3263 that carried V/K/E polymorphism at 60%, 20%, and 20%, respectively. For SCk1772, positive selection for K627 over E627 was observed in ferrets during the chicken-to-ferret or ferret-to-ferret transmission. For HK3263 that contained V/K/E polymorphism, mixed V627 and E627 genotypes were transmitted among chickens while either V627 or K627 was transmitted to ferrets with a narrow transmission bottleneck. Overall, our results suggest direct contact as the main mode for H7N9 transmission and identify the PB2-V627 genotype with uncompromised fitness and transmissibility in both avian and mammalian species. IMPORTANCE We studied the modes of H7N9 transmission, as this information is crucial for developing effective control measures for prevention. Using chicken (SCk1772) and human (HK3263) H7N9 isolates that differed by four amino acids, including the host

  16. Avian influenza virus (H5N1); effects of physico-chemical factors on its survival.

    PubMed

    Shahid, Muhammad Akbar; Abubakar, Muhammad; Hameed, Sajid; Hassan, Shamsul

    2009-03-28

    Present study was performed to determine the effects of physical and chemical agents on infective potential of highly pathogenic avian influenza (HPAI) H5N1 (local strain) virus recently isolated in Pakistan during 2006 outbreak. H5N1 virus having titer 10(8.3) ELD(50)/ml was mixed with sterilized peptone water to get final dilution of 4HA units and then exposed to physical (temperature, pH and ultraviolet light) and chemical (formalin, phenol crystals, iodine crystals, CID 20, virkon-S, zeptin 10%, KEPCIDE 300, KEPCIDE 400, lifebuoy, surf excel and caustic soda) agents. Harvested amnio-allantoic fluid (AAF) from embryonated chicken eggs inoculated with H5N1 treated virus (0.2 ml/egg) was subjected to haemagglutination (HA) and haemagglutination inhibition (HI) tests. H5N1 virus lost infectivity after 30 min at 56 degrees C, after 1 day at 28 degrees C but remained viable for more than 100 days at 4 degrees C. Acidic pH (1, 3) and basic pH (11, 13) were virucidal after 6 h contact time; however virus retained infectivity at pH 5 (18 h), 7 and 9 (more than 24 h). UV light was proved ineffectual in inactivating virus completely even after 60 min. Soap (lifebuoy), detergent (surf excel) and alkali (caustic soda) destroyed infectivity after 5 min at 0.1, 0.2 and 0.3% dilution. All commercially available disinfectants inactivated virus at recommended concentrations. Results of present study would be helpful in implementing bio-security measures at farms/hatcheries levels in the wake of avian influenza virus (AIV) outbreak.

  17. Estimating transmission of avian influenza in wild birds from incomplete epizootic data: implications for surveillance and disease spreac

    USGS Publications Warehouse

    Viviane Henaux,; Jane Parmley,; Catherine Soos,; Samuel, Michael D.

    2013-01-01

    Synthesis and applications. Our study highlights the potential of integrating incomplete surveillance data with epizootic models to quantify disease transmission and immunity. This modelling approach provides an important tool to understand spatial and temporal epizootic dynamics and inform disease surveillance. Our findings suggest focusing highly pathogenic avian influenza virus (HPAIv) surveillance on postbreeding areas where mortality of immunologically naïve hatch-year birds is most likely to occur, and collecting serology to enhance HPAIv detection. Our modelling approach can integrate various types of disease data facilitating its use with data from other surveillance programs (as illustrated by the estimation of infection rate during an HPAIv outbreak in mute swansCygnus olor in Europe).

  18. Analysis of Influenza and RSV dynamics in the community using a ‘Local Transmission Zone’ approach

    PubMed Central

    Almogy, Gal; Stone, Lewi; Bernevig, B. Andrei; Wolf, Dana G.; Dorozko, Marina; Moses, Allon E.; Nir-Paz, Ran

    2017-01-01

    Understanding the dynamics of pathogen spread within urban areas is critical for the effective prevention and containment of communicable diseases. At these relatively small geographic scales, short-distance interactions and tightly knit sub-networks dominate the dynamics of pathogen transmission; yet, the effective boundaries of these micro-scale groups are generally not known and often ignored. Using clinical test results from hospital admitted patients we analyze the spatio-temporal distribution of Influenza Like Illness (ILI) in the city of Jerusalem over a period of three winter seasons. We demonstrate that this urban area is not a single, perfectly mixed ecology, but is in fact comprised of a set of more basic, relatively independent pathogen transmission units, which we term here Local Transmission Zones, LTZs. By identifying these LTZs, and using the dynamic pathogen-content information contained within them, we are able to differentiate between disease-causes at the individual patient level often with near-perfect predictive accuracy. PMID:28181554

  19. Analysis of Influenza and RSV dynamics in the community using a ‘Local Transmission Zone’ approach

    NASA Astrophysics Data System (ADS)

    Almogy, Gal; Stone, Lewi; Bernevig, B. Andrei; Wolf, Dana G.; Dorozko, Marina; Moses, Allon E.; Nir-Paz, Ran

    2017-02-01

    Understanding the dynamics of pathogen spread within urban areas is critical for the effective prevention and containment of communicable diseases. At these relatively small geographic scales, short-distance interactions and tightly knit sub-networks dominate the dynamics of pathogen transmission; yet, the effective boundaries of these micro-scale groups are generally not known and often ignored. Using clinical test results from hospital admitted patients we analyze the spatio-temporal distribution of Influenza Like Illness (ILI) in the city of Jerusalem over a period of three winter seasons. We demonstrate that this urban area is not a single, perfectly mixed ecology, but is in fact comprised of a set of more basic, relatively independent pathogen transmission units, which we term here Local Transmission Zones, LTZs. By identifying these LTZs, and using the dynamic pathogen-content information contained within them, we are able to differentiate between disease-causes at the individual patient level often with near-perfect predictive accuracy.

  20. Transmission of pandemic A/H1N1 2009 influenza on passenger aircraft: retrospective cohort study

    PubMed Central

    Thornley, Craig N; Mills, Clair; Roberts, Sally; Perera, Shanika; Peters, Julia; Kelso, Anne; Barr, Ian; Wilson, Nick

    2010-01-01

    Objectives To assess the risk of transmission of pandemic A/H1N1 2009 influenza (pandemic A/H1N1) from an infected high school group to other passengers on an airline flight and the effectiveness of screening and follow-up of exposed passengers. Design Retrospective cohort investigation using a questionnaire administered to passengers and laboratory investigation of those with symptoms. Setting Auckland, New Zealand, with national and international follow-up of passengers. Participants Passengers seated in the rear section of a Boeing 747-400 long haul flight that arrived on 25 April 2009, including a group of 24 students and teachers and 97 (out of 102) other passengers in the same section of the plane who agreed to be interviewed. Main outcome measures Laboratory confirmed pandemic A/H1N1 infection in susceptible passengers within 3.2 days of arrival; sensitivity and specificity of influenza symptoms for confirmed infection; and completeness and timeliness of contact tracing. Results Nine members of the school group were laboratory confirmed cases of pandemic A/H1N1 infection and had symptoms during the flight. Two other passengers developed confirmed pandemic A/H1N1 infection, 12 and 48 hours after the flight. They reported no other potential sources of infection. Their seating was within two rows of infected passengers, implying a risk of infection of about 3.5% for the 57 passengers in those rows. All but one of the confirmed pandemic A/H1N1 infected travellers reported cough, but more complex definitions of influenza cases had relatively low sensitivity. Rigorous follow-up by public health workers located 93% of passengers, but only 52% were contacted within 72 hours of arrival. Conclusions A low but measurable risk of transmission of pandemic A/H1N1 exists during modern commercial air travel. This risk is concentrated close to infected passengers with symptoms. Follow-up and screening of exposed passengers is slow and difficult once they have left the

  1. West nile virus in American white pelican chicks: transmission, immunity, and survival

    USGS Publications Warehouse

    Sovada, Marsha A.; Pietz, Pamela J.; Hofmeister, Erik K.; Bartos, Alisa J.

    2013-01-01

    West Nile virus (WNV) causes significant mortality of American White Pelican chicks at northern plains colonies. We tested oropharyngeal/cloacal swabs from moribund chicks for shed WNV. Such shedding could enable chick-to-chick transmission and help explain why WNV spreads rapidly in colonies. WNV was detected on swabs from 11% of chicks in 2006 and 52% of chicks in 2007; however, viral titers were low. Before onset of WNV mortality, we tested blood from < 3-week-old chicks for antibodies to WNV; 5% of chicks were seropositive, suggesting passive transfer of maternal antibodies. Among near-fledged chicks, 41% tested positive for anti-WNV antibodies, indicating that they survived infection. Among years and colonies, cumulative incidence of WNV in chicks varied from 28% to 81%, whereas the proportion of chicks surviving WNV (i.e., seropositive) was 64–75%. Our data revealed that WNV kills chicks that likely would fledge in the absence of WNV, that infection of chicks is pervasive, and that significant numbers of chicks survive infection.

  2. Efficacy of inactivated and live-attenuated influenza virus vaccines in pigs against infection and transmission of emerging H3N2 similar to the 2011-2012 H3N2v

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines provide a primary means to limit disease but may not be effective at blocking infection and pathogen transmission. The objective of the current study was to evaluate the efficacy of commercial inactivated swine influenza A virus (IAV) vaccines and experimental live-attenuated influenza viru...

  3. Equine influenza virus.

    PubMed

    Landolt, Gabriele A

    2014-12-01

    For decades the horse has been viewed as an isolated or "dead-end" host for influenza A viruses, with equine influenza virus being considered as relatively stable genetically. Although equine influenza viruses are genetically more stable than those of human lineage, they are by no means in evolutionary stasis. Moreover, recent transmission of equine-lineage influenza viruses to dogs also challenges the horse's status as a dead-end host. This article reviews recent developments in the epidemiology and evolution of equine influenza virus. In addition, the clinical presentation of equine influenza infection, diagnostic techniques, and vaccine recommendations are briefly summarized.

  4. D701N mutation in the PB2 protein contributes to the pathogenicity of H5N1 avian influenza viruses but not transmissibility in guinea pigs.

    PubMed

    Jiao, Peirong; Wei, Liangmeng; Song, Yafen; Cui, Jin; Song, Hui; Cao, Lan; Yuan, Runyu; Luo, Kaijian; Liao, Ming

    2014-01-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) of clade 2.3.2 has been circulating in waterfowl in Southern China since 2003. Our previous studies showed that certain H5N1 HPAIV isolates within clade 2.3.2 from Southern China had high pathogenicity in different birds. Guinea pigs have been successfully used as models to evaluate the transmissibility of AIVs and other species of influenza viruses in mammalian hosts. However, few studies have reported pathogenicity and transmissibility of H5N1 HPAIVs of this clade in guinea pigs. In this study, we selected an H5N1 HPAIV isolate, A/duck/Guangdong/357/2008, to investigate the pathogenicity and transmissibility of the virus in guinea pigs. The virus had high pathogenicity in mice; additionally, it only replicated in some tissues of the guinea pigs without production of clinical signs, but was transmissible among guinea pigs. Interestingly, virus isolates from co-caged guinea pigs had the D701N mutation in the PB2 protein. These mutant viruses showed higher pathogenicity in mice and higher replication capability in guinea pigs but did not demonstrate enhanced the transmissibility among guinea pigs. These findings indicate the transmission of the H5N1 virus between mammals could induce virus mutations, and the mutant viruses might have higher pathogenicity in mammals without higher transmissibility. Therefore, the continued evaluation of the pathogenicity and transmissibility of avian influenza virus (AIVs) in mammals is critical to the understanding of the evolutionary characteristics of AIVs and the emergence of potential pandemic strains.

  5. Pathogenesis and transmission of triple-reassortant swine H1N1 influenza viruses isolated before the 2009 H1N1 pandemic.

    PubMed

    Belser, Jessica A; Gustin, Kortney M; Maines, Taronna R; Blau, Dianna M; Zaki, Sherif R; Katz, Jacqueline M; Tumpey, Terrence M

    2011-02-01

    The 2009 H1N1 pandemic influenza virus represents the greatest incidence of human infection with an influenza virus of swine origin to date. Moreover, triple-reassortant swine (TRS) H1N1 viruses, which share similar host and lineage origins with 2009 H1N1 viruses, have been responsible for sporadic human cases since 2005. Similar to 2009 H1N1 viruses, TRS viruses are capable of causing severe disease in previously healthy individuals and frequently manifest with gastrointestinal symptoms; however, their ability to cause severe disease has not been extensively studied. Here, we evaluated the pathogenicity and transmissibility of two TRS viruses associated with disease in humans in the ferret model. TRS and 2009 H1N1 viruses exhibited comparable viral titers and histopathologies following virus infection and were similarly unable to transmit efficiently via respiratory droplets in the ferret model. Utilizing TRS and 2009 H1N1 viruses, we conducted extensive hematologic and blood serum analyses on infected ferrets to identify lymphohematopoietic parameters associated with mild to severe influenza virus infection. Following H1N1 or H5N1 influenza virus infection, ferrets were found to recapitulate several laboratory abnormalities previously documented with human disease, furthering the utility of the ferret model for the assessment of influenza virus pathogenicity.

  6. Genetics, Receptor Binding, Replication, and Mammalian Transmission of H4 Avian Influenza Viruses Isolated from Live Poultry Markets in China

    PubMed Central

    Liang, Libin; Deng, Guohua; Shi, Jianzhong; Wang, Shuai; Zhang, Qianyi; Kong, Huihui; Gu, Chunyang; Guan, Yuntao; Suzuki, Yasuo; Li, Yanbing; Jiang, Yongping; Tian, Guobin; Liu, Liling

    2015-01-01

    ABSTRACT H4 avian influenza virus (AIV) is one of the most prevalent influenza virus subtypes in the world. However, whether H4 AIVs pose a threat to public health remains largely unclear. Here, we analyzed the phylogenetic relationships, receptor binding properties, replication, and transmissibility in mammals of H4 AIVs isolated from live poultry markets in China between 2009 and 2012. Genomic sequence analysis of 36 representative H4 viruses revealed 32 different genotypes, indicating that these viruses are undergoing complex and frequent reassortment events. All 32 viruses tested could replicate in the respiratory organs of infected mice without prior adaptation. Receptor binding analysis demonstrated that the H4 AIVs bound to α-2,6-linked glycans, although they retained the binding preference for α-2,3-linked glycans. When we tested the direct-contact transmission of 10 H4 viruses in guinea pigs, we found that three viruses did not transmit to any of the contact animals, one virus transmitted to one of three contact animals, and six viruses transmitted to all three contact animals. When we further tested the respiratory droplet transmissibility of four of the viruses that transmitted efficiently via direct contact, we found that three of them could transmit to one or two of the five exposed animals. Our study demonstrates that the current circulating H4 AIVs can infect, replicate in, and transmit to mammalian hosts, thereby posing a potential threat to human health. These findings emphasize the continual need for enhanced surveillance of H4 AIVs. IMPORTANCE Numerous surveillance studies have documented the wide distribution of H4 AIVs throughout the world, yet the biological properties of H4 viruses have not been well studied. In this study, we found that multiple genotypes of H4 viruses are cocirculating in the live poultry markets of China and that H4 viruses can replicate in mice, possess human-type receptor binding specificity, and transmit between

  7. Mammalian Pathogenesis and Transmission of H7N9 Influenza Viruses from Three Waves, 2013-2015

    PubMed Central

    Belser, Jessica A.; Creager, Hannah M.; Sun, Xiangjie; Gustin, Kortney M.; Jones, Tara; Shieh, Wun-Ju; Maines, Taronna R.

    2016-01-01

    ABSTRACT Three waves of human infection with H7N9 influenza viruses have concluded to date, but only viruses within the first wave (isolated between March and September 2013) have been extensively studied in mammalian models. While second- and third-wave viruses remain closely linked phylogenetically and antigenically, even subtle molecular changes can impart critical shifts in mammalian virulence. To determine if H7N9 viruses isolated from humans during 2013 to 2015 have maintained the phenotype first identified among 2013 isolates, we assessed the ability of first-, second-, and third-wave H7N9 viruses isolated from humans to cause disease in mice and ferrets and to transmit among ferrets. Similar to first-wave viruses, H7N9 viruses from 2013 to 2015 were highly infectious in mice, with lethality comparable to that of the well-studied A/Anhui/1/2013 virus. Second- and third-wave viruses caused moderate disease in ferrets, transmitted efficiently to cohoused, naive contact animals, and demonstrated limited transmissibility by respiratory droplets. All H7N9 viruses replicated efficiently in human bronchial epithelial cells, with subtle changes in pH fusion threshold identified between H7N9 viruses examined. Our results indicate that despite increased genetic diversity and geographical distribution since their initial detection in 2013, H7N9 viruses have maintained a pathogenic phenotype in mammals and continue to represent an immediate threat to public health. IMPORTANCE H7N9 influenza viruses, first isolated in 2013, continue to cause human infection and represent an ongoing public health threat. Now entering the fourth wave of human infection, H7N9 viruses continue to exhibit genetic diversity in avian hosts, necessitating continuous efforts to monitor their pandemic potential. However, viruses isolated post-2013 have not been extensively studied, limiting our understanding of potential changes in virus-host adaptation. In order to ensure that current research

  8. When fur and feather occur together: interclass transmission of avian influenza A virus from mammals to birds through common resources

    PubMed Central

    Jeffrey Root, J.; Shriner, Susan A.; Ellis, Jeremy W.; VanDalen, Kaci K.; Sullivan, Heather J.; Franklin, Alan B.

    2015-01-01

    The potential role of wild mammals in avian influenza A virus (IAV) transmission cycles has received some attention in recent years and cases where birds have transmitted IAV to mammals have been documented. However, the contrasting cycle, wherein a mammal could transmit an avian IAV to birds, has been largely overlooked. We experimentally tested the abilities of two mammalian species to transmit avian IAV to mallards (Anas platyrhynchos) in simulated natural environments. Results suggested that striped skunks (Mephitis mephitis) can successfully transmit avian IAV to mallards through indirect contact with shared resources, as transmission was noted in 1 of 4 of the mallards tested. Cottontail rabbits (Sylvilagus sp.) exhibited a similar pattern, as one of five cottontail rabbits successfully transmitted IAV to a mallard, likely through environmental contamination. For each mammalian species tested, the mallards that became infected were those paired with the individual mammals with the lowest shedding levels but were anecdotally observed to be the most active animals. Mammals associated with and around poultry rearing facilities should be taken into consideration in biosecurity plans. PMID:26400374

  9. Introduction of 2009 Pandemic Influenza A Virus Subtype H1N1 Into South Africa: Clinical Presentation, Epidemiology, and Transmissibility of the First 100 Cases

    PubMed Central

    Archer, Brett N.; Timothy, Geraldine A.; Cohen, Cheryl; Tempia, Stefano; Huma, Mmampedi; Blumberg, Lucille; Naidoo, Dhamari; Cengimbo, Ayanda; Schoub, Barry D.

    2012-01-01

    Background. We documented the introduction of 2009 pandemic influenza A virus subtype H1N1 (A[H1N1]pdm09) into South Africa and describe its clinical presentation, epidemiology, and transmissibility. Methods. We conducted a prospective descriptive study of the first 100 laboratory-confirmed cases of A(H1N1)pdm09 infections identified through active case finding and surveillance. Infected patients and the attending clinicians were interviewed, and close contacts were followed up to investigate household transmission. Findings. The first case was confirmed on 14 June 2009, and by 15 July 2009, 100 cases were diagnosed. Forty-two percent of patients reported international travel within 7 days prior to onset of illness. Patients ranged in age from 4 to 70 years (median age, 21.5 years). Seventeen percent of household contacts developed influenza-like illness, and 10% of household contacts had laboratory-confirmed A(H1N1)pdm09 infection. We found a mean serial interval (± SD) of 2.3 ± 1.3 days (range, 1–5 days) between successive laboratory-confirmed cases in the transmission chain. Conclusions. A(H1N1)pdm09 established itself rapidly in South Africa. Transmissibility of the virus was comparable to observations from outside of Africa and to seasonal influenza virus strains. PMID:23169962

  10. The origin of novel avian influenza A (H7N9) and mutation dynamics for its human-to-human transmissible capacity.

    PubMed

    Peng, Jin; Yang, Hao; Jiang, Hua; Lin, Yi-xiao; Lu, Charles Damien; Xu, Ya-wei; Zeng, Jun

    2014-01-01

    In February 2013, H7N9 (A/H7N9/2013_China), a novel avian influenza virus, broke out in eastern China and caused human death. It is a global priority to discover its origin and the point in time at which it will become transmittable between humans. We present here an interdisciplinary method to track the origin of H7N9 virus in China and to establish an evolutionary dynamics model for its human-to-human transmission via mutations. After comparing influenza viruses from China since 1983, we established an A/H7N9/2013_China virus evolutionary phylogenetic tree and found that the human instances of virus infection were of avian origin and clustered into an independent line. Comparing hemagglutinin (HA) and neuraminidase (NA) gene sequences of A/H7N9/2013_China viruses with all human-to-human, avian, and swine influenza viruses in China in the past 30 years, we found that A/H7N9/2013_China viruses originated from Baer's Pochard H7N1 virus of Hu Nan Province 2010 (HA gene, EPI: 370846, similarity with H7N9 is 95.5%) and duck influenza viruses of Nanchang city 2000 (NA gene, EPI: 387555, similarity with H7N9 is 97%) through genetic re-assortment. HA and NA gene sequence comparison indicated that A/H7N9/2013_China virus was not similar to human-to-human transmittable influenza viruses. To simulate the evolution dynamics required for human-to-human transmission mutations of H7N9 virus, we employed the Markov model. The result of this calculation indicated that the virus would acquire properties for human-to-human transmission in 11.3 years (95% confidence interval (CI): 11.2-11.3, HA gene).

  11. Lack of transmission of a human influenza virus with avian receptor specificity between ferrets is not due to decreased virus shedding but rather a lower infectivity in vivo.

    PubMed

    Roberts, Kim L; Shelton, Holly; Scull, Margaret; Pickles, Raymond; Barclay, Wendy S

    2011-08-01

    Influenza virus attaches to host cells by sialic acid (SA). Human influenza viruses show preferential affinity for α2,6-linked SA, whereas avian influenza viruses bind α2,3-linked SA. In this study, mutation of the haemagglutinin receptor-binding site of a human H3N2 influenza A virus to switch binding to α2,3-linked SA did not eliminate infection of ferrets but prevented transmission, even in a co-housed model. The mutant virus was shed from the noses of ferrets directly inoculated with virus in the same amounts and for the same length of time as wild-type virus. Mutant virus infection was localized to the same anatomical regions of the upper respiratory tract of directly inoculated animals. Interestingly, wild-type virus was more readily neutralized than the mutant virus in vitro by ferret nasal washes containing mucus. Moreover after inoculation of equal doses, the mutant virus grew poorly in ex vivo ferret nasal turbinate tissue compared with wild-type virus. The dose of mutant virus required to establish infection in the directly inoculated ferrets was 40-fold higher than for wild-type virus. It was concluded that minimum infectious dose is a predictor of virus transmissibility and it is suggested that, as virus passes from one host to another through stringent environmental conditions, viruses with a preference for α2,3-linked SA are unlikely to inoculate a new mammalian host in sufficient quantities to initiate a productive infection.

  12. Climate change and avian influenza

    PubMed Central

    Slingenbergh, J.; Xiao, X.

    2009-01-01

    Summary This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in water bird populations will continue with endless adaptation and evolution. In domestic poultry, too little is known about the direct effect of environmental factors on highly pathogenic avian influenza transmission and persistence to allow inference about the possible effect of climate change. However, possible indirect links through changes in the distribution of duck-crop farming are discussed. PMID:18819672

  13. Frequent inter-species transmission and geographic subdivision in avian influenza viruses from wild birds.

    PubMed

    Chen, Rubing; Holmes, Edward C

    2009-01-05

    Revealing the factors that shape the genetic structure of avian influenza viruses (AIVs) in wild bird populations is essential to understanding their evolution. However, the relationship between epidemiological dynamics and patterns of genetic diversity in AIV is not well understood, especially at the continental scale. To address this question, we undertook a phylogeographic analysis of complete genome sequences of AIV sampled from wild birds in North America. In particular, we asked whether host species, geographic location or sampling time played the major role in shaping patterns of viral genetic diversity. Strikingly, our analysis revealed no strong species effect, yet a significant viral clustering by time and place of sampling, as well as the circulation of multiple viral lineages in single locations. These results suggest that AIVs can readily infect many of the bird species that share breeding/feeding areas.

  14. Bayesian uncertainty quantification for transmissibility of influenza, norovirus and Ebola using information geometry

    PubMed Central

    Ford, Ashley; Lan, Shiwei; Bilson, Samuel; Buckingham-Jeffery, Elizabeth; Girolami, Mark

    2016-01-01

    Infectious diseases exert a large and in many contexts growing burden on human health, but violate most of the assumptions of classical epidemiological statistics and hence require a mathematically sophisticated approach. Viral shedding data are collected during human studies—either where volunteers are infected with a disease or where existing cases are recruited—in which the levels of live virus produced over time are measured. These have traditionally been difficult to analyse due to strong, complex correlations between parameters. Here, we show how a Bayesian approach to the inverse problem together with modern Markov chain Monte Carlo algorithms based on information geometry can overcome these difficulties and yield insights into the disease dynamics of two of the most prevalent human pathogens—influenza and norovirus—as well as Ebola virus disease. PMID:27558850

  15. Poultry food products--a source of avian influenza virus transmission to humans?

    PubMed

    Harder, T C; Buda, S; Hengel, H; Beer, M; Mettenleiter, T C

    2016-02-01

    Global human mobility and intercontinental connectivity, expansion of livestock production and encroachment of wildlife habitats by invasive agricultural land use contribute to shape the complexity of influenza epidemiology. The OneHealth approach integrates these and further elements into considerations to improve disease control and prevention. Food of animal origin for human consumption is another integral aspect; if produced from infected livestock such items may act as vehicles of spread of animal pathogens, and, in case of zoonotic agents, as a potential human health hazard. Notifiable zoonotic avian influenza viruses (AIV) have become entrenched in poultry populations in several Asian and northern African countries since 2003. Highly pathogenic (HP) AIV (e.g. H5N1) cause extensive poultry mortality and severe economic losses. HPAIV and low pathogenic AIV (e.g. H7N9) with zoonotic propensities pose risks for human health. More than 1500 human cases of AIV infection have been reported, mainly from regions with endemically infected poultry. Intense human exposure to AIV-infected poultry, e.g. during rearing, slaughtering or processing of poultry, is a major risk factor for acquiring AIV infection. In contrast, human infections through consumption of AIV-contaminated food have not been substantiated. Heating poultry products according to kitchen standards (core temperatures ≥70°C, ≥10 s) rapidly inactivates AIV infectivity and renders fully cooked products safe. Nevertheless, concerted efforts must ensure that poultry products potentially contaminated with zoonotic AIV do not reach the food chain. Stringent and sustained OneHealth measures are required to better control and eventually eradicate, HPAIV from endemic regions.

  16. Continuing evolution and interspecies transmission of influenza viruses in live bird markets in Korea.

    PubMed

    Lee, Hyun-Jeong; Kwon, Ji-Sun; Lee, Dong-Hun; Lee, Yu-Na; Youn, Ha-Na; Lee, Youn-Jeong; Kim, Min-Chul; Jeong, Ok-Mi; Kang, Hyun-Mi; Kwon, Jun-Hun; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2010-03-01

    Live bird markets (LBMs) provide an ideal environment for the evolution and interspecies transfer of avian influenza viruses (AIVs). In this study, we analyzed AIVs present in LBMs in Korea during the winter seasons of 2006-08. Sixty-five AIVs that belong to four hemagglutination (HA) subtypes ofAIV (H3, H4, H6, and H9) were isolated from 644 pooled tissue or swab samples collected in LBMs. Most H9 subtypes of AIVs were isolated from Galliformes (chickens, silky fowls, pheasants, and guinea fowls), and other subtypes were isolated from Anseriformes (Pekin ducks and mallards). In addition, we obtained a single H3N2 virus from nasal swabs of dogs sold in LBMs, and the virus was genetically identical to the canine influenza virus (CIV) isolated from pet dogs in Korea. Phylogenetic analysis suggests that the Korean H9N2 viruses prevalent in chickens have provided their gene segments to AIVs circulating in ducks. These gene transfers facilitated reassortment events among AIVs and likely generated the ancestors of CIV in Korea. An animal challenge study using chickens, quail, mice, and dogs had shown that the H4 and H6 subtypes could replicate in mice and that some H4 and H6 viruses could replicate in chickens without preadaptation. In addition, two H3 subtype viruses (H3N2 and H3N8) induced interstitial pneumonia that accompanied clinical signs and seroconversion in dogs. Our findings indicate that the newly evolved AIVs have been continuously generated by reassortment in ducks, and these reassortments could result in expanding the host range of AIVs.

  17. Molecular signatures associated with Mx-1 mediated resistance to highlyl pathogenic influenza virus infections: mechanisms of survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the role of host factors during lethal influenza virus infection is critical to deciphering the events that will determine the fate of the host. One such factor is encoded by the Mx1 gene, which confers resistance to influenza virus infection. Here, we compared pathology and global g...

  18. Impact of live poultry market closure in reducing bird-to-human transmission of avian influenza A(H7N9) virus: an ecological study

    PubMed Central

    Yu, Hongjie; Wu, Joseph T.; Cowling, Benjamin J.; Liao, Qiaohong; Fang, Vicky J.; Zhou, Sheng; Wu, Peng; Zhou, Hang; Lau, Eric H. Y.; Guo, Danhuai; Ni, Michael Y.; Peng, Zhibin; Feng, Luzhao; Jiang, Hui; Luo, Huiming; Li, Qun; Feng, Zijian; Wang, Yu; Yang, Weizhong; Leung, Gabriel M.

    2014-01-01

    Background A novel influenza A(H7N9) virus has emerged in China during the past few months. Inter-species zoonotic transmission appears to be the predominant route of spread. Live poultry markets (LPMs) in the major cities of Shanghai, Hangzhou, Huzhou and Nanjing, where the majority of cases have occurred, were swiftly closed as a precautionary public health measure. Our objective was to quantify the impact of LPM closure in reducing bird-to-human transmission of avian influenza A(H7N9) virus. Methods We used data on the illness onset dates and geographical locations of laboratory-confirmed influenza A(H7N9) cases that were officially announced by 7 June 2013. We constructed a statistical model to explain the patterns in incident cases reported in each city based on the assumption of a constant force of infection prior to closure, and a different constant force of infection after closure. We fitted the model using Markov chain Monte Carlo methods. Findings There were 85 confirmed influenza A(H7N9) cases in Shanghai, Hangzhou, Huzhou and Nanjing out of a total of 130 confirmed cases in mainland China by 7 June 2013. Closure of LPMs in those four cities reduced the risk of human infections by 97%–99% (range 68%–100%) in each city. Given that LPMs were the predominant source of influenza A(H7N9) exposure in those locations, we estimated the mean incubation period to be 3.3 days. Interpretation LPM closures were extremely effective in controlling human risk of influenza A(H7N9). If the influenza A(H7N9) epizootic/epidemic continues, LPM closure should be sustained in at-risk areas and implemented in any urban areas where influenza A(H7N9) reappears in future. In the longer term, evidence-based discussions and deliberations about the role of central slaughtering of all live poultry should be renewed. Funding Ministry of Science and Technology, China; Research Fund for the Control of Infectious Disease and University Grants Committee, Hong Kong Special

  19. Influenza Transmission in the Mother-Infant Dyad Leads to Severe Disease, Mammary Gland Infection, and Pathogenesis by Regulating Host Responses

    PubMed Central

    Huang, Stephen S. H.; Almansa, Raquel; Leon, Alberto; Xu, Luoling; Bartoszko, Jessica; Kelvin, David J.; Kelvin, Alyson A.

    2015-01-01

    Seasonal influenza viruses are typically restricted to the human upper respiratory tract whereas influenza viruses with greater pathogenic potential often also target extra-pulmonary organs. Infants, pregnant women, and breastfeeding mothers are highly susceptible to severe respiratory disease following influenza virus infection but the mechanisms of disease severity in the mother-infant dyad are poorly understood. Here we investigated 2009 H1N1 influenza virus infection and transmission in breastfeeding mothers and infants utilizing our developed infant-mother ferret influenza model. Infants acquired severe disease and mortality following infection. Transmission of the virus from infants to mother ferrets led to infection in the lungs and mother mortality. Live virus was also found in mammary gland tissue and expressed milk of the mothers which eventually led to milk cessation. Histopathology showed destruction of acini glandular architecture with the absence of milk. The virus was localized in mammary epithelial cells of positive glands. To understand the molecular mechanisms of mammary gland infection, we performed global transcript analysis which showed downregulation of milk production genes such as Prolactin and increased breast involution pathways indicated by a STAT5 to STAT3 signaling shift. Genes associated with cancer development were also significantly increased including JUN, FOS and M2 macrophage markers. Immune responses within the mammary gland were characterized by decreased lymphocyte-associated genes CD3e, IL2Ra, CD4 with IL1β upregulation. Direct inoculation of H1N1 into the mammary gland led to infant respiratory infection and infant mortality suggesting the influenza virus was able to replicate in mammary tissue and transmission is possible through breastfeeding. In vitro infection studies with human breast cells showed susceptibility to H1N1 virus infection. Together, we have shown that the host-pathogen interactions of influenza virus

  20. Influenza Transmission in the Mother-Infant Dyad Leads to Severe Disease, Mammary Gland Infection, and Pathogenesis by Regulating Host Responses.

    PubMed

    Paquette, Stéphane G; Banner, David; Huang, Stephen S H; Almansa, Raquel; Leon, Alberto; Xu, Luoling; Bartoszko, Jessica; Kelvin, David J; Kelvin, Alyson A

    2015-10-01

    Seasonal influenza viruses are typically restricted to the human upper respiratory tract whereas influenza viruses with greater pathogenic potential often also target extra-pulmonary organs. Infants, pregnant women, and breastfeeding mothers are highly susceptible to severe respiratory disease following influenza virus infection but the mechanisms of disease severity in the mother-infant dyad are poorly understood. Here we investigated 2009 H1N1 influenza virus infection and transmission in breastfeeding mothers and infants utilizing our developed infant-mother ferret influenza model. Infants acquired severe disease and mortality following infection. Transmission of the virus from infants to mother ferrets led to infection in the lungs and mother mortality. Live virus was also found in mammary gland tissue and expressed milk of the mothers which eventually led to milk cessation. Histopathology showed destruction of acini glandular architecture with the absence of milk. The virus was localized in mammary epithelial cells of positive glands. To understand the molecular mechanisms of mammary gland infection, we performed global transcript analysis which showed downregulation of milk production genes such as Prolactin and increased breast involution pathways indicated by a STAT5 to STAT3 signaling shift. Genes associated with cancer development were also significantly increased including JUN, FOS and M2 macrophage markers. Immune responses within the mammary gland were characterized by decreased lymphocyte-associated genes CD3e, IL2Ra, CD4 with IL1β upregulation. Direct inoculation of H1N1 into the mammary gland led to infant respiratory infection and infant mortality suggesting the influenza virus was able to replicate in mammary tissue and transmission is possible through breastfeeding. In vitro infection studies with human breast cells showed susceptibility to H1N1 virus infection. Together, we have shown that the host-pathogen interactions of influenza virus

  1. Scavenging ducks and transmission of highly pathogenic avian influenza, Java, Indonesia.

    PubMed

    Henning, Joerg; Wibawa, Hendra; Morton, John; Usman, Tri Bhakti; Junaidi, Akhmad; Meers, Joanne

    2010-08-01

    In Java, Indonesia, during March 2007-March 2008, 96 farms with scavenging ducks that were not vaccinated against highly pathogenic avian influenza (HPAI) were monitored bimonthly. Bird-level (prevalence among individual birds) H5 seroprevalence was 2.6% for ducks and 0.5% for chickens in contact with ducks. At least 1 seropositive bird was detected during 19.5% and 2.0% of duck- and chicken-flock visits, respectively. Duck flocks were 12.4x more likely than chicken flocks to have seropositive birds. During 21.4% of farm visits,

  2. Highly pathogenic avian influenza (H7N7): vaccination of zoo birds and transmission to non-poultry species.

    PubMed

    Philippa, Joost D W; Munster, Vincent J; Bolhuis, Hester van; Bestebroer, Theo M; Schaftenaar, Willem; Beyer, Walter E P; Fouchier, Ron A M; Kuiken, Thijs; Osterhaus, Albert D M E

    2005-12-30

    In 2003 an outbreak of highly pathogenic avian influenza virus (H7N7) struck poultry in The Netherlands. A European Commission directive made vaccination of valuable species in zoo collections possible under strict conditions. We determined pre- and post-vaccination antibody titres in 211 birds by haemagglutination inhibition test as a measure of vaccine efficacy. After booster vaccination, 81.5% of vaccinated birds developed a titre of > or =40, while overall geometric mean titre (GMT) was 190 (95% CI: 144-251). Birds of the orders Anseriformes, Galliformes and Phoenicopteriformes showed higher GMT, and larger percentages developed titres > or =40 than those of the other orders. Antibody response decreased with increasing mean body weight in birds > or =1.5 kg body weight. In the vicinity of the outbreak, H7N7 was detected by RT-PCR in wild species (mallards and mute swans) kept in captivity together with infected poultry, illustrating the potential threat of transmission from poultry into other avian species, and the importance of protecting valuable avian species by means of vaccination.

  3. Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus.

    PubMed

    Qiao, Chuanling; Liu, Qinfang; Bawa, Bhupinder; Shen, Huigang; Qi, Wenbao; Chen, Ying; Mok, Chris Ka Pun; García-Sastre, Adolfo; Richt, Jürgen A; Ma, Wenjun

    2012-11-01

    Both H9N2 avian influenza and 2009 pandemic H1N1 viruses (pH1N1) are able to infect humans and swine, which has raised concerns that novel reassortant H9 viruses with pH1N1 genes might be generated in these hosts by reassortment. Although previous studies have demonstrated that reassortant H9 viruses with pH1N1 genes show increased virulence in mice and transmissibility in ferrets, the virulence and transmissibility of reassortant H9 viruses in natural hosts such as chickens and swine remain unknown. This study generated two reassortant H9 viruses (H9N2/CA09 and H9N1/CA09) in the background of the pH1N1 A/California/04/2009 (CA09) virus by replacing either both the haemagglutinin (HA) and neuraminidase (NA) genes or only the HA gene with the respective genes from the A/quail/Hong Kong/G1/1997 (H9N2) virus and evaluated their replication, pathogenicity and transmission in chickens and pigs compared with the parental viruses. Chickens that were infected with the parental H9N2 and reassortant H9 viruses seroconverted. The parental H9N2 and reassortant H9N2/CA09 viruses were transmitted to sentinel chickens, but H9N1/CA09 virus was not. The parental H9N2 replicated poorly and was not transmitted in pigs, whereas both H9N2/CA09 and H9N1/CA09 viruses replicated and were transmitted efficiently in pigs, similar to the pH1N1 virus. These results demonstrated that reassortant H9 viruses with pH1N1 genes show enhanced replication and transmissibility in pigs compared with the parental H9N2 virus, indicating that they may pose a threat for humans if such reassortants arise in swine.

  4. Early Characterization of the Severity and Transmissibility of Pandemic Influenza Using Clinical Episode Data from Multiple Populations

    PubMed Central

    Riley, Pete; Ben-Nun, Michal; Linker, Jon A.; Cost, Angelia A.; Sanchez, Jose L.; George, Dylan; Bacon, David P.; Riley, Steven

    2015-01-01

    The potential rapid availability of large-scale clinical episode data during the next influenza pandemic suggests an opportunity for increasing the speed with which novel respiratory pathogens can be characterized. Key intervention decisions will be determined by both the transmissibility of the novel strain (measured by the basic reproductive number R 0) and its individual-level severity. The 2009 pandemic illustrated that estimating individual-level severity, as described by the proportion p C of infections that result in clinical cases, can remain uncertain for a prolonged period of time. Here, we use 50 distinct US military populations during 2009 as a retrospective cohort to test the hypothesis that real-time encounter data combined with disease dynamic models can be used to bridge this uncertainty gap. Effectively, we estimated the total number of infections in multiple early-affected communities using the model and divided that number by the known number of clinical cases. Joint estimates of severity and transmissibility clustered within a relatively small region of parameter space, with 40 of the 50 populations bounded by: p C, 0.0133–0.150 and R 0, 1.09–2.16. These fits were obtained despite widely varying incidence profiles: some with spring waves, some with fall waves and some with both. To illustrate the benefit of specific pairing of rapidly available data and infectious disease models, we simulated a future moderate pandemic strain with p C approximately ×10 that of 2009; the results demonstrating that even before the peak had passed in the first affected population, R 0 and p C could be well estimated. This study provides a clear reference in this two-dimensional space against which future novel respiratory pathogens can be rapidly assessed and compared with previous pandemics. PMID:26402446

  5. Evolution of 2009 H1N1 influenza viruses during the pandemic correlates with increased viral pathogenicity and transmissibility in the ferret model

    PubMed Central

    Otte, Anna; Marriott, Anthony C.; Dreier, Carola; Dove, Brian; Mooren, Kyra; Klingen, Thorsten R.; Sauter, Martina; Thompson, Katy-Anne; Bennett, Allan; Klingel, Karin; van Riel, Debby; McHardy, Alice C.; Carroll, Miles W.; Gabriel, Gülsah

    2016-01-01

    There is increasing evidence that 2009 pandemic H1N1 influenza viruses have evolved after pandemic onset giving rise to severe epidemics in subsequent waves. However, it still remains unclear which viral determinants might have contributed to disease severity after pandemic initiation. Here, we show that distinct mutations in the 2009 pandemic H1N1 virus genome have occurred with increased frequency after pandemic declaration. Among those, a mutation in the viral hemagglutinin was identified that increases 2009 pandemic H1N1 virus binding to human-like α2,6-linked sialic acids. Moreover, these mutations conferred increased viral replication in the respiratory tract and elevated respiratory droplet transmission between ferrets. Thus, our data show that 2009 H1N1 influenza viruses have evolved after pandemic onset giving rise to novel virus variants that enhance viral replicative fitness and respiratory droplet transmission in a mammalian animal model. These findings might help to improve surveillance efforts to assess the pandemic risk by emerging influenza viruses. PMID:27339001

  6. Different transmission patterns in the early stages of the influenza A(H1N1)v pandemic: a comparative analysis of 12 European countries.

    PubMed

    Flasche, Stefan; Hens, Niel; Boëlle, Pierre-Yves; Mossong, Joël; van Ballegooijen, W Marijn; Nunes, Baltazar; Rizzo, Caterina; Popovici, Florin; Santa-Olalla, Patricia; Hrubá, Frantiska; Parmakova, Kremena; Baguelin, Marc; van Hoek, Albert Jan; Desenclos, Jean-Claude; Bernillon, Pascale; Cámara, Amparro Larrauri; Wallinga, Jacco; Asikainen, Tommi; White, Peter J; Edmunds, W John

    2011-06-01

    Following the emergence of a novel strain of influenza A(H1N1) in Mexico and the United States in April 2009, its epidemiology in Europe during the summer was limited to sporadic and localised outbreaks. Only the United Kingdom experienced widespread transmission declining with school holidays in late July. Using statistical modelling where applicable we explored the following causes that could explain this surprising difference in transmission dynamics: extinction by chance, differences in the susceptibility profile, age distribution of the imported cases, differences in contact patterns, mitigation strategies, school holidays and weather patterns. No single factor was able to explain the differences sufficiently. Hence an additive mixed model was used to model the country-specific weekly estimates of the effective reproductive number using the extinction probability, school holidays and weather patterns as explanatory variables. The average extinction probability, its trend and the trend in absolute humidity were found to be significantly negatively correlated with the effective reproduction number - although they could only explain about 3% of the variability in the model. By comparing the initial epidemiology of influenza A (H1N1) across different European countries, our analysis was able to uncover a possible role for the timing of importations (extinction probability), mixing patterns and the absolute humidity as underlying factors. However, much uncertainty remains. With better information on the role of these epidemiological factors, the control of influenza could be improved.

  7. Transmission dynamics of the 2009 influenza A (H1N1) pandemic in India: The impact of holiday-related school closure

    PubMed Central

    Taslim Ali, Sheikh; Kadi, A. S.; Ferguson, Neil M.

    2014-01-01

    The role of social-distancing measures, such as school closures, is a controversial aspect of pandemic mitigation planning. However, the timing of 2009 pandemic provides a natural experiment for evaluating the impact of school closure during holidays on influenza transmission. To quantify the transmission intensity of the influenza A (H1N1) pdm’09 in India, by estimating the time varying reproduction number (Rt) and correlating the temporal changes in the estimates of Rt for different regions of India with the timing of school holidays. We used daily lab-confirmed case reports of influenza A (H1N1) pdm’09 in India (during 17 May’09 to 17 May’10), stratified by regions. We estimated the transmissibility of the pandemic for different regions from these time-series, using Bayesian methods applied to a branching process model of disease spread and correlated the resulting estimates with the timing of school holidays in each region. The North-west region experienced two notable waves, with the peak of the first wave coinciding with the start of a 4 week school holiday (September-October’09). In the southern region the two waves were less clear cut, though again the first peak of the first wave coincided with the start of school holidays – albeit of less than 2 weeks duration (August’09). Our analysis suggests that the school holidays had a significant influence on the epidemiology of the 2009 pandemic in India. We estimate that school holidays reduced the reproduction number by 14%–27% in different regions of India, relative to levels seen outside holiday periods. The estimates of the reproduction number obtained (with peak R values below 1.5) are compatible with those reported from other regions of the world. This work reinforces past studies showing the significant impact of school holidays on spread of 2009 pandemic virus, and by inference the role of contact patterns in children on transmission. PMID:24267871

  8. Transmission dynamics of the 2009 influenza A (H1N1) pandemic in India: the impact of holiday-related school closure.

    PubMed

    Ali, Sheikh Taslim; Kadi, A S; Ferguson, Neil M

    2013-12-01

    The role of social-distancing measures, such as school closures, is a controversial aspect of pandemic mitigation planning. However, the timing of 2009 pandemic provides a natural experiment for evaluating the impact of school closure during holidays on influenza transmission. To quantify the transmission intensity of the influenza A (H1N1) pdm'09 in India, by estimating the time varying reproduction number (Rt) and correlating the temporal changes in the estimates of Rt for different regions of India with the timing of school holidays. We used daily lab-confirmed case reports of influenza A (H1N1) pdm'09 in India (during 17 May'09 to 17 May'10), stratified by regions. We estimated the transmissibility of the pandemic for different regions from these time-series, using Bayesian methods applied to a branching process model of disease spread and correlated the resulting estimates with the timing of school holidays in each region. The North-west region experienced two notable waves, with the peak of the first wave coinciding with the start of a 4 week school holiday (September-October'09). In the southern region the two waves were less clear cut, though again the first peak of the first wave coincided with the start of school holidays--albeit of less than 2 weeks duration (August'09). Our analysis suggests that the school holidays had a significant influence on the epidemiology of the 2009 pandemic in India. We estimate that school holidays reduced the reproduction number by 14-27% in different regions of India, relative to levels seen outside holiday periods. The estimates of the reproduction number obtained (with peak R values below 1.5) are compatible with those reported from other regions of the world. This work reinforces past studies showing the significant impact of school holidays on spread of 2009 pandemic virus, and by inference the role of contact patterns in children on transmission.

  9. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2.

    PubMed

    Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Faria, Nuno; Bielejec, Filip; Baele, Guy; Russell, Colin A; Smith, Derek J; Pybus, Oliver G; Brockmann, Dirk; Suchard, Marc A

    2014-02-01

    Information on global human movement patterns is central to spatial epidemiological models used to predict the behavior of influenza and other infectious diseases. Yet it remains difficult to test which modes of dispersal drive pathogen spread at various geographic scales using standard epidemiological data alone. Evolutionary analyses of pathogen genome sequences increasingly provide insights into the spatial dynamics of influenza viruses, but to date they have largely neglected the wealth of information on human mobility, mainly because no statistical framework exists within which viral gene sequences and empirical data on host movement can be combined. Here, we address this problem by applying a phylogeographic approach to elucidate the global spread of human influenza subtype H3N2 and assess its ability to predict the spatial spread of human influenza A viruses worldwide. Using a framework that estimates the migration history of human influenza while simultaneously testing and quantifying a range of potential predictive variables of spatial spread, we show that the global dynamics of influenza H3N2 are driven by air passenger flows, whereas at more local scales spread is also determined by processes that correlate with geographic distance. Our analyses further confirm a central role for mainland China and Southeast Asia in maintaining a source population for global influenza diversity. By comparing model output with the known pandemic expansion of H1N1 during 2009, we demonstrate that predictions of influenza spatial spread are most accurate when data on human mobility and viral evolution are integrated. In conclusion, the global dynamics of influenza viruses are best explained by combining human mobility data with the spatial information inherent in sampled viral genomes. The integrated approach introduced here offers great potential for epidemiological surveillance through phylogeographic reconstructions and for improving predictive models of disease control.

  10. Genetic evidence for avian influenza H5N1 viral transmission along the Black Sea-Mediterranean Flyway.

    PubMed

    Zhou, Sen; Tian, Huaiyu; Wu, Xiaoxu; Xu, Bo; Yang, Jing; Chan, Karen Kie Yan; Huang, Shanqian; Dong, Lu; Brownstein, John; Xu, Bing

    2016-09-01

    The current epidemic of highly pathogenic avian influenza H5N1 virus is considered to pose a significant threat to the health of wild and domestic avian species, and even to human beings. The Black Sea-Mediterranean Flyway is one of the most important epidemic areas of H5N1. However, the epidemic along this flyway has not been fully explored. To better understand the role of hosts in the spread and evolution of H5N1 virus along the flyway, a phylogeographic study was conducted using haemagglutinin (HA) gene sequences obtained during 2005-2013. To infer phylodynamic spread in time and space, we used a flexible Bayesian statistical framework and modelled viral spatial diffusion as a continuous-time Markov-chain process along time-measured genealogies. Our results revealed that H5N1 virus isolated from wild birds showed an increase in genetic variation of HA gene from 2005-2007. The mean genetic distance of viruses isolated from poultry reached its peak in 2010, and dropped in 2011, increasing again in 2012-2013. The reconstruction of virus circulation revealed a different viral-migration network of H5N1 virus by different hosts. Western Russia constituted a link in viral migration from Russia to Europe and Africa. Cross-species transmission of H5N1 viruses predominated in the migration network of the Black Sea-Mediterranean Flyway. This might be due to the migration of birds across long distances and interaction between local poultry and migratory birds. Additionally, the short-distance spread of H5N1 viruses among poultry followed local transportation networks. Such findings will aid in developing effective disease control and prevention strategies.

  11. Plant viruses in aqueous environment - survival, water mediated transmission and detection.

    PubMed

    Mehle, Nataša; Ravnikar, Maja

    2012-10-15

    The presence of plant viruses outside their plant host or insect vectors has not been studied intensively. This is due, in part, to the lack of effective detection methods that would enable their detection in difficult matrixes and in low titres, and support the search for unknown viruses. Recently, new and sensitive methods for detecting viruses have resulted in a deeper insight into plant virus movement through, and transmission between, plants. In this review, we have focused on plant viruses found in environmental waters and their detection. Infectious plant pathogenic viruses from at least 7 different genera have been found in aqueous environment. The majority of the plant pathogenic viruses so far recovered from environmental waters are very stable, they can infect plants via the roots without the aid of a vector and often have a wide host range. The release of such viruses from plants can lead to their dissemination in streams, lakes, and rivers, thereby ensuring the long-distance spread of viruses that otherwise, under natural conditions, would remain restricted to limited areas. The possible sources and survival of plant viruses in waters are therefore discussed. Due to the widespread use of hydroponic systems and intensive irrigation in horticulture, the review is focused on the possibility and importance of spreading viral infection by water, together with measures for preventing the spread of viruses. The development of new methods for detecting multiple plant viruses at the same time, like microarrays or new generation sequencing, will facilitate the monitoring of environmental waters and waters used for irrigation and in hydroponic systems. It is reasonable to expect that the list of plant viruses found in waters will thereby be expanded considerably. This will emphasize the need for further studies to determine the biological significance of water-mediated transport.

  12. On avian influenza epidemic models with time delay.

    PubMed

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  13. Prospective of Genomics in Revealing Transmission, Reassortment and Evolution of Wildlife-Borne Avian Influenza A (H5N1) Viruses

    PubMed Central

    Lei, Fumin; Shi, Weifeng

    2011-01-01

    The outbreak of highly pathogenic avian influenza (HPAI) H5N1 disease has led to significant loss of poultry and wild life and case fatality rates in humans of 60%. Wild birds are natural hosts for all avian influenza virus subtypes and over120 bird species have been reported with evidence of H5N1 infection. Influenza A viruses possess a segmented RNA genome and are characterized by frequently occurring genetic reassortment events, which play a very important role in virus evolution and the spread of novel gene constellations in immunologically naïve human and animal populations. Phylogenetic analysis of whole genome or sub-genomic sequences is a standard means for delineating genetic variation, novel reassortment events, and surveillance to trace the global transmission pathways. In this paper, special emphasis is given to the transmission and circulation of H5N1 among wild life populations, and to the reassortment events that are associated with inter-host transmission of the H5N1 viruses when they infect different hosts, such as birds, pigs and humans. In addition, we review the inter-subtype reassortment of the viral segments encoding inner proteins between the H5N1 viruses and viruses of other subtypes, such as H9N2 and H6N1. Finally, we highlight the usefulness of genomic sequences in molecular epidemiological analysis of HPAI H5N1 and the technical limitations in existing analytical methods that hinder them from playing a greater role in virological research. PMID:22547954

  14. Influenza in Children.

    PubMed

    Kumar, Virendra

    2017-02-01

    In children, influenza is one among the commonest causes of acute respiratory illness and loss of school days. Influenza A, B, and C are 3 types of viruses responsible for illness. Type A virus has many subtypes based on antigens but Type B and Type C viruses have no known subtypes. Currently, influenza A/H1N1, A/H3N2, and influenza type B viruses are circulating in humans. Transmission of influenza occurs through droplets from infected person or through direct contact with person or fomites. Clinically, influenza is characterized by acute onset fever, chills, running nose, cough, sore throat, headache and myalgia. Mostly, febrile illness lasts for 3-4 d with resolution of disease in 7-10 d. Confirmation of influenza can be done either by virus culture, RT-PCR or specific neutralizing antibodies in blood. Basic principles of management include prompt institution of infection control measures, early identification of children at higher risk, supportive care and antiviral drugs. Vaccine and chemoprophylaxis are two commonly used methods for prevention of influenza. Currently, inactivated influenza vaccine (IIV) and live attenuated influenza vaccine (LAIV) are available for use with good efficacy. Cough etiquette, use of face masks and hand hygiene are the most important measures to reduce the risk of infection transmission from person to person.

  15. Avian influenza virus.

    PubMed

    Lee, Chang-Won; Saif, Yehia M

    2009-07-01

    Avian influenza viruses do not typically replicate efficiently in humans, indicating direct transmission of avian influenza virus to humans is unlikely. However, since 1997, several cases of human infections with different subtypes (H5N1, H7N7, and H9N2) of avian influenza viruses have been identified and raised the pandemic potential of avian influenza virus in humans. Although circumstantial evidence of human to human transmission exists, the novel avian-origin influenza viruses isolated from humans lack the ability to transmit efficiently from person-to-person. However, the on-going human infection with avian-origin H5N1 viruses increases the likelihood of the generation of human-adapted avian influenza virus with pandemic potential. Thus, a better understanding of the biological and genetic basis of host restriction of influenza viruses is a critical factor in determining whether the introduction of a novel influenza virus into the human population will result in a pandemic. In this article, we review current knowledge of type A influenza virus in which all avian influenza viruses are categorized.

  16. Phylogenetic Exploration of Nosocomial Transmission Chains of 2009 Influenza A/H1N1 among Children Admitted at Red Cross War Memorial Children's Hospital, Cape Town, South Africa in 2011.

    PubMed

    Valley-Omar, Ziyaad; Nindo, Fredrick; Mudau, Maanda; Hsiao, Marvin; Martin, Darren Patrick

    2015-01-01

    Traditional modes of investigating influenza nosocomial transmission have entailed a combination of confirmatory molecular diagnostic testing and epidemiological investigation. Common hospital-acquired infections like influenza require a discerning ability to distinguish between viral isolates to accurately identify patient transmission chains. We assessed whether influenza hemagglutinin sequence phylogenies can be used to enrich epidemiological data when investigating the extent of nosocomial transmission over a four-month period within a paediatric Hospital in Cape Town South Africa. Possible transmission chains/channels were initially determined through basic patient admission data combined with Maximum likelihood and time-scaled Bayesian phylogenetic analyses. These analyses suggested that most instances of potential hospital-acquired infections resulted from multiple introductions of Influenza A into the hospital, which included instances where virus hemagglutinin sequences were identical between different patients. Furthermore, a general inability to establish epidemiological transmission linkage of patients/viral isolates implied that identified isolates could have originated from asymptomatic hospital patients, visitors or hospital staff. In contrast, a traditional epidemiological investigation that used no viral phylogenetic analyses, based on patient co-admission into specific wards during a particular time-frame, suggested that multiple hospital acquired infection instances may have stemmed from a limited number of identifiable index viral isolates/patients. This traditional epidemiological analysis by itself could incorrectly suggest linkage between unrelated cases, underestimate the number of unique infections and may overlook the possible diffuse nature of hospital transmission, which was suggested by sequencing data to be caused by multiple unique introductions of influenza A isolates into individual hospital wards. We have demonstrated a functional

  17. Phylogenetic Exploration of Nosocomial Transmission Chains of 2009 Influenza A/H1N1 among Children Admitted at Red Cross War Memorial Children’s Hospital, Cape Town, South Africa in 2011

    PubMed Central

    Hsiao, Marvin; Martin, Darren Patrick

    2015-01-01

    Traditional modes of investigating influenza nosocomial transmission have entailed a combination of confirmatory molecular diagnostic testing and epidemiological investigation. Common hospital-acquired infections like influenza require a discerning ability to distinguish between viral isolates to accurately identify patient transmission chains. We assessed whether influenza hemagglutinin sequence phylogenies can be used to enrich epidemiological data when investigating the extent of nosocomial transmission over a four-month period within a paediatric Hospital in Cape Town South Africa. Possible transmission chains/channels were initially determined through basic patient admission data combined with Maximum likelihood and time-scaled Bayesian phylogenetic analyses. These analyses suggested that most instances of potential hospital-acquired infections resulted from multiple introductions of Influenza A into the hospital, which included instances where virus hemagglutinin sequences were identical between different patients. Furthermore, a general inability to establish epidemiological transmission linkage of patients/viral isolates implied that identified isolates could have originated from asymptomatic hospital patients, visitors or hospital staff. In contrast, a traditional epidemiological investigation that used no viral phylogenetic analyses, based on patient co-admission into specific wards during a particular time-frame, suggested that multiple hospital acquired infection instances may have stemmed from a limited number of identifiable index viral isolates/patients. This traditional epidemiological analysis by itself could incorrectly suggest linkage between unrelated cases, underestimate the number of unique infections and may overlook the possible diffuse nature of hospital transmission, which was suggested by sequencing data to be caused by multiple unique introductions of influenza A isolates into individual hospital wards. We have demonstrated a functional

  18. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    NASA Astrophysics Data System (ADS)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-08-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration.

  19. Household transmissibility of avian influenza A (H7N9) virus, China, February to May 2013 and October 2013 to March 2014.

    PubMed

    Yang, Y; Zhang, Y; Fang, L; Halloran, M E; Ma, M; Liang, S; Kenah, E; Britton, T; Chen, E; Hu, J; Tang, F; Cao, W; Feng, Z; Longini, I M

    2015-03-12

    To study human-to-human transmissibility of the avian influenza A (H7N9) virus in China, household contact information was collected for 125 index cases during the spring wave (February to May 2013), and for 187 index cases during the winter wave (October 2013 to March 2014). Using a statistical model, we found evidence for human-to-human transmission, but such transmission is not sustainable. Under plausible assumptions about the natural history of disease and the relative transmission frequencies in settings other than household, we estimate the household secondary attack rate (SAR) among humans to be 1.4% (95% CI: 0.8 to 2.3), and the basic reproductive number R0 to be 0.08 (95% CI: 0.05 to 0.13). The estimates range from 1.3% to 2.2% for SAR and from 0.07 to 0.12 for R0 with reasonable changes in the assumptions. There was no significant change in the human-to-human transmissibility of the virus between the two waves, although a minor increase was observed in the winter wave. No sex or age difference in the risk of infection from a human source was found. Human-to-human transmissibility of H7N9 continues to be limited, but it needs to be closely monitored for potential increase via genetic reassortment or mutation.

  20. Household transmissibility of avian influenza A (H7N9) virus, China, February to May 2013 and October 2013 to March 2014

    PubMed Central

    Yang, Y; Zhang, Y; Fang, L; Halloran, M E; Ma, M; Liang, S; Kenah, E; Britton, T; Chen, E; Hu, J; Tang, F; Cao, W; Feng, Z; Longini, I M

    2015-01-01

    To study human-to-human transmissibility of the avian influenza A (H7N9) virus in China, household contact information was collected for 125 index cases during the spring wave (February to May 2013), and for 187 index cases during the winter wave (October 2013 to March 2014). Using a statistical model, we found evidence for human-to-human transmission, but such transmission is not sustainable. Under plausible assumptions about the natural history of disease and the relative transmission frequencies in settings other than household, we estimate the household secondary attack rate (SAR) among humans to be 1.4% (95% CI: 0.8 to 2.3), and the basic reproductive number R0 to be 0.08 (95% CI: 0.05 to 0.13). The estimates range from 1.3% to 2.2% for SAR and from 0.07 to 0.12 for R0 with reasonable changes in the assumptions. There was no significant change in the human-to-human transmissibility of the virus between the two waves, although a minor increase was observed in the winter wave. No sex or age difference in the risk of infection from a human source was found. Human-to-human transmissibility of H7N9 continues to be limited, but it needs to be closely monitored for potential increase via genetic reassortment or mutation. PMID:25788253

  1. Amino acid substitutions in the neuraminidase protein of an H9N2 avian influenza virus affect its airborne transmission in chickens.

    PubMed

    Lv, Jing; Wei, Liangmeng; Yang, Yan; Wang, Bingxiao; Liang, Wei; Gao, Yuwei; Xia, Xianzhu; Gao, Lili; Cai, Yumei; Hou, Peiqiang; Yang, Huili; Wang, Airong; Huang, Rong; Gao, Jing; Chai, Tongjie

    2015-04-18

    Cases of H9N2 avian influenza virus (AIV) in poultry are increasing throughout many Eurasian countries, and co-infections with other pathogens have resulted in high morbidity and mortality in poultry. Few studies have investigated the genetic factors of virus airborne transmission which determine the scope of this epidemic. In this study, we used specific-pathogen-free chickens housed in isolators to investigate the airborne transmissibility of five recombinant H9N2 AIV rescued by reverse genetic technology. The results show that airborne transmission of A/Chicken/Shandong/01/2008 (SD01) virus was related to the neuraminidase (NA) gene, and four amino acid mutations (D368E, S370L, E313K and G381D) within the head region of the SD01 NA, reduced virus replication in the respiratory tract of chickens, reduced virus NA activity, and resulted in a loss of airborne transmission ability in chickens. Similarly, reverse mutations of these four amino acids in the NA protein of r01/NASS virus, conferred an airborne transmission ability to the recombinant virus. We conclude that these four NA residues may be significant genetic markers for evaluating potential disease outbreak of H9N2 AIV, and propose that immediate attention should be paid to the airborne transmission of this virus.

  2. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    PubMed Central

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-01-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration. PMID:27507581

  3. A Small Community Model for the Transmission of Infectious Diseases: Comparison of School Closure as an Intervention in Individual-Based Models of an Influenza Pandemic

    PubMed Central

    Milne, George J.; Kelso, Joel K.; Kelly, Heath A.; Huband, Simon T.; McVernon, Jodie

    2008-01-01

    Background In the absence of other evidence, modelling has been used extensively to help policy makers plan for a potential future influenza pandemic. Method We have constructed an individual based model of a small community in the developed world with detail down to exact household structure obtained from census collection datasets and precise simulation of household demographics, movement within the community and individual contact patterns. We modelled the spread of pandemic influenza in this community and the effect on daily and final attack rates of four social distancing measures: school closure, increased case isolation, workplace non-attendance and community contact reduction. We compared the modelled results of final attack rates in the absence of any interventions and the effect of school closure as a single intervention with other published individual based models of pandemic influenza in the developed world. Results We showed that published individual based models estimate similar final attack rates over a range of values for R0 in a pandemic where no interventions have been implemented; that multiple social distancing measures applied early and continuously can be very effective in interrupting transmission of the pandemic virus for R0 values up to 2.5; and that different conclusions reached on the simulated benefit of school closure in published models appear to result from differences in assumptions about the timing and duration of school closure and flow-on effects on other social contacts resulting from school closure. Conclusion Models of the spread and control of pandemic influenza have the potential to assist policy makers with decisions about which control strategies to adopt. However, attention needs to be given by policy makers to the assumptions underpinning both the models and the control strategies examined. PMID:19104659

  4. Seasonal Influenza Epidemics and El Niños.

    PubMed

    Oluwole, Olusegun Steven Ayodele

    2015-01-01

    Seasonal influenza epidemics occur annually during the winter in the northern and southern hemispheres, but timing of peaks and severity vary seasonally. Low humidity, which enhances survival and transmission of influenza virus, is the major risk factor. Both El Niño and La Niña phases of El Niño-southern oscillation (ENSO), which determine inter-annual variation of precipitation, are putative risk factors. This study was done to determine if seasonality, timing of peak, and severity of influenza epidemics are coupled to phases of ENSO. Monthly time series of positive specimens for influenza viruses and of multivariate El Niño-Southern Oscillation Index from January 2000 to August 2015 were analyzed. Seasonality, wavelet spectra, and cross-wavelet spectra analyses were performed. Of 31 countries in the dataset, 21 were in the northern hemisphere and 10 in the southern hemisphere. The highest number of influenza cases occurred in January in the northern hemisphere, but in July in the southern hemisphere, p < 0.0001. Seasonal influenza epidemic was coupled to El Niño, while low occurrence was coupled to La Niña. The moderate La Niña of 2010-2011 was followed by weak seasonal influenza epidemic. The influenza pandemic of 2009-2010 followed the moderate El Niño of 2009-2010, which had three peaks. Spectrograms showed time-varying periodicities of 6-48 months for ENSO, 6-24 months for influenza in the northern hemisphere, and 6-12 months for influenza in the southern hemisphere. Cross spectrograms showed time-varying periodicities at 6-36 months for ENSO and influenza in both hemispheres, p < 0.0001. Phase plots showed that influenza time series lagged ENSO in both hemispheres. Severity of seasonal influenza increases during El Niño, but decreases during La Niña. Coupling of seasonality, timing, and severity of influenza epidemics to the strength and waveform of ENSO indicate that forecast models of El Niño should be integrated into

  5. Seasonal Influenza Epidemics and El Niños

    PubMed Central

    Oluwole, Olusegun Steven Ayodele

    2015-01-01

    Seasonal influenza epidemics occur annually during the winter in the northern and southern hemispheres, but timing of peaks and severity vary seasonally. Low humidity, which enhances survival and transmission of influenza virus, is the major risk factor. Both El Niño and La Niña phases of El Niño-southern oscillation (ENSO), which determine inter-annual variation of precipitation, are putative risk factors. This study was done to determine if seasonality, timing of peak, and severity of influenza epidemics are coupled to phases of ENSO. Monthly time series of positive specimens for influenza viruses and of multivariate El Niño-Southern Oscillation Index from January 2000 to August 2015 were analyzed. Seasonality, wavelet spectra, and cross-wavelet spectra analyses were performed. Of 31 countries in the dataset, 21 were in the northern hemisphere and 10 in the southern hemisphere. The highest number of influenza cases occurred in January in the northern hemisphere, but in July in the southern hemisphere, p < 0.0001. Seasonal influenza epidemic was coupled to El Niño, while low occurrence was coupled to La Niña. The moderate La Niña of 2010–2011 was followed by weak seasonal influenza epidemic. The influenza pandemic of 2009–2010 followed the moderate El Niño of 2009–2010, which had three peaks. Spectrograms showed time-varying periodicities of 6–48 months for ENSO, 6–24 months for influenza in the northern hemisphere, and 6–12 months for influenza in the southern hemisphere. Cross spectrograms showed time-varying periodicities at 6–36 months for ENSO and influenza in both hemispheres, p < 0.0001. Phase plots showed that influenza time series lagged ENSO in both hemispheres. Severity of seasonal influenza increases during El Niño, but decreases during La Niña. Coupling of seasonality, timing, and severity of influenza epidemics to the strength and waveform of ENSO indicate that forecast models of El Niño should be integrated

  6. Modelling the transmission dynamics and control of the novel 2009 swine influenza (H1N1) pandemic.

    PubMed

    Sharomi, O; Podder, C N; Gumel, A B; Mahmud, S M; Rubinstein, E

    2011-03-01

    The paper presents a deterministic compartmental model for the transmission dynamics of swine influenza (H1N1) pandemic in a population in the presence of an imperfect vaccine and use of drug therapy for confirmed cases. Rigorous analysis of the model, which stratifies the infected population in terms of their risk of developing severe illness, reveals that it exhibits a vaccine-induced backward bifurcation when the associated reproduction number is less than unity. The epidemiological consequence of this result is that the effective control of H1N1, when the reproduction number is less than unity, in the population would then be dependent on the initial sizes of the subpopulations of the model. For the case where the vaccine is perfect, it is shown that having the reproduction number less than unity is necessary and sufficient for effective control of H1N1 in the population (in such a case, the associated disease-free equilibrium is globally asymptotically stable). The model has a unique endemic equilibrium when the reproduction number exceeds unity. Numerical simulations of the model, using data relevant to the province of Manitoba, Canada, show that it reasonably mimics the observed H1N1 pandemic data for Manitoba during the first (Spring) wave of the pandemic. Further, it is shown that the timely implementation of a mass vaccination program together with the size of the Manitoban population that have preexisting infection-acquired immunity (from the first wave) are crucial to the magnitude of the expected burden of disease associated with the second wave of the H1N1 pandemic. With an estimated vaccine efficacy of approximately 80%, it is projected that at least 60% of Manitobans need to be vaccinated in order for the effective control or elimination of the H1N1 pandemic in the province to be feasible. Finally, it is shown that the burden of the second wave of H1N1 is expected to be at least three times that of the first wave, and that the second wave would last

  7. Insight into live bird markets of Bangladesh: an overview of the dynamics of transmission of H5N1 and H9N2 avian influenza viruses.

    PubMed

    Turner, Jasmine C M; Feeroz, Mohammed M; Hasan, M Kamrul; Akhtar, Sharmin; Walker, David; Seiler, Patrick; Barman, Subrata; Franks, John; Jones-Engel, Lisa; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Kayali, Ghazi; Webster, Robert G

    2017-03-08

    Highly pathogenic avian influenza (HPAI) H5N1 and low pathogenic avian influenza (LPAI) H9N2 viruses have been recognized as threats to public health in Bangladesh since 2007. Although live bird markets (LBMs) have been implicated in the transmission, dissemination, and circulation of these viruses, an in-depth analysis of the dynamics of avian transmission of H5N1 and H9N2 viruses at the human-animal interface has been lacking. Here we present and evaluate epidemiological findings from active surveillance conducted among poultry in various production sectors in Bangladesh from 2008 to 2016. Overall, the prevalence of avian influenza viruses (AIVs) in collected samples was 24%. Our data show that AIVs are more prevalent in domestic birds within LBMs (30.4%) than in farms (9.6%). Quail, chickens and ducks showed a high prevalence of AIVs (>20%). The vast majority of AIVs detected (99.7%) have come from apparently healthy birds and poultry drinking water served as a reservoir of AIVs with a prevalence of 32.5% in collected samples. HPAI H5N1 was more frequently detected in ducks while H9N2 was more common in chickens and quail. LBMs, particularly wholesale markets, have become a potential reservoir for various types of AIVs, including HPAI H5N1 and LPAI H9N2. The persistence of AIVs in LBMs is of great concern to public health, and this study highlights the importance of regularly reviewing and implementing infection control procedures as a means of reducing the exposure of the general public to AIVs.Emerging Microbes & Infections (2017) 6, e12; doi:10.1038/emi.2016.142; published online 8 March 2017.

  8. Virulence and transmissibility of H1N2 influenza virus in ferrets imply the continuing threat of triple-reassortant swine viruses.

    PubMed

    Pascua, Philippe Noriel Q; Song, Min-Suk; Lee, Jun Han; Baek, Yun Hee; Kwon, Hyeok-il; Park, Su-Jin; Choi, Eun Hye; Lim, Gyo-Jin; Lee, Ok-Jun; Kim, Si-Wook; Kim, Chul-Joong; Sung, Moon Hee; Kim, Myung Hee; Yoon, Sun-Woo; Govorkova, Elena A; Webby, Richard J; Webster, Robert G; Choi, Young-Ki

    2012-09-25

    Efficient worldwide swine surveillance for influenza A viruses is urgently needed; the emergence of a novel reassortant pandemic H1N1 (pH1N1) virus in 2009 demonstrated that swine can be the direct source of pandemic influenza and that the pandemic potential of viruses prevalent in swine populations must be monitored. We used the ferret model to assess the pathogenicity and transmissibility of predominant Korean triple-reassortant swine (TRSw) H1N2 and H3N2 influenza viruses genetically related to North American strains. Although most of the TRSw viruses were moderately pathogenic, one [A/Swine/Korea/1204/2009; Sw/1204 (H1N2)] was virulent in ferrets, causing death within 10 d of inoculation, and was efficiently transmitted to naive contact ferrets via respiratory droplets. Although molecular analysis did not reveal known virulence markers, the Sw/1204 virus acquired mutations in hemagglutinin (HA) (Asp-225-Gly) and neuraminidase (NA) (Ser-315-Asn) proteins during the single ferret passage. The contact-Sw/1204 virus became more virulent in mice, replicated efficiently in vitro, extensively infected human lung tissues ex vivo, and maintained its ability to replicate and transmit in swine. Reverse-genetics studies further indicated that the HA(225G) and NA(315N) substitutions contributed substantially in altering virulence and transmissibility. These findings support the continuing threat of some field TRSw viruses to human and animal health, reviving concerns on the capacity of pigs to create future pandemic viruses. Apart from warranting continued and enhanced global surveillance, this study also provides evidence on the emerging roles of HA(225G) and NA(315N) as potential virulence markers in mammals.

  9. The neuraminidase and matrix genes of the 2009 pandemic influenza H1N1 virus cooperate functionally to facilitate efficient replication and transmissibility in pigs

    PubMed Central

    Liu, Qinfang; Bawa, Bhupinder; Qiao, Chuanling; Qi, Wenbao; Shen, Huigang; Chen, Ying; Ma, Jingqun; Li, Xi; Webby, Richard J.; García-Sastre, Adolfo

    2012-01-01

    The 2009 pandemic H1N1 virus (pH1N1) contains neuraminidase (NA) and matrix (M) genes from Eurasian avian-like swine influenza viruses (SIVs), with the remaining six genes from North American triple-reassortant SIVs. To characterize the role of the pH1N1 NA and M genes in pathogenesis and transmission, their impact was evaluated in the background of an H1N1 triple-reassortant (tr1930) SIV in which the HA (H3) and NA (N2) of influenza A/swine/Texas/4199-2/98 virus were replaced with those from the classical H1N1 A/swine/Iowa/15/30 (1930) virus. The laboratory-adapted 1930 virus did not shed nor transmit in pigs, but tr1930 was able to shed in infected pigs. The NA, M or both genes of the tr1930 virus were then substituted by those of pH1N1. The resulting virus with both NA and M from pH1N1 grew to significantly higher titre in cell cultures than the viruses with single NA or M from pH1N1. In a pig model, only the virus containing both NA and M from pH1N1 was transmitted to and infected sentinels, whereas the viruses with single NA or M from pH1N1 did not. These results demonstrate that the right combination of NA and M genes is critical for the replication and transmissibility of influenza viruses in pigs. PMID:22337640

  10. Detection of Oseltamivir-Resistant Pandemic Influenza A(H1N1)pdm2009 in Brazil: Can Community Transmission Be Ruled Out?

    PubMed Central

    Souza, Thiago Moreno L.; Resende, Paola C.; Fintelman-Rodrigues, Natalia; Gregianini, Tatiana Schaffer; Ikuta, Nilo; Fernandes, Sandra Bianchini; Cury, Ana Luisa Furtado; Rosa, Maria do Carmo Debur; Siqueira, Marilda M.

    2013-01-01

    Although surveillance efforts that monitor the emergence of drug-resistant strains of influenza are critical, systematic analysis is overlooked in most developing countries. We report on the occurrence of strains of pandemic influenza A(H1N1)pdm09 with resistance and decreased susceptibility to oseltamivir (OST) in Brazil in 2009, 2011 and 2012. We found 7 mutant viruses, 2 with the mutation S247N and other 5 with the mutation H275Y. Most of these viruses were from samples concentrated in the southern region of Brazil. Some of these resistant viruses were detected prior to the initiation of OST treatment, suggesting that community transmission of mutant viruses may exist. Moreover, we show that one of these OST-resistant (H275Y) strains of A(H1N1)pdm09 was discovered in the tri-border region between Brazil, Argentina and Paraguay, highlighting that this strain could also be found in other Latin American countries. Our findings reinforce the importance of enhanced antiviral resistance surveillance in Brazil and in other Latin American countries to confirm or rule out the community transmission of OST-resistant strains of A(H1N1)pdm09. PMID:24244615

  11. HIV prevention is not enough: child survival in the context of prevention of mother to child HIV transmission

    PubMed Central

    2009-01-01

    Clinical and epidemiologic research has identified increasingly effective interventions to reduce mother to child HIV transmission in resource-limited settings These scientific breakthroughs have been implemented in some programmes, although much remains to be done to improve coverage and quality of these programmes. But prevention of HIV transmission is not enough. It is necessary also to consider ways to improve maternal health and protect child survival. A win-win approach is to ensure that all pregnant and lactating women with CD4 counts of <350 cells/mm3 have access to antiretroviral therapy. On its own, this approach will substantially improve maternal health and markedly reduce mother to child HIV transmission during pregnancy and delivery and through breastfeeding. This approach can be combined with additional interventions for women with higher CD4 counts, either extended prophylaxis to infants or extended regimens of antiretroviral drugs to women, to reduce transmission even further. Attempts to encourage women to abstain from all breastfeeding or to shorten the optimal duration of breastfeeding have led to increases in mortality among both uninfected and infected children. A better approach is to support breastfeeding while strengthening programmes to provide antiretroviral therapy for pregnant and lactating women who need it and offering antiretroviral drug interventions through the duration of breastfeeding. This will lead to reduced HIV transmission and will protect the health of women without compromising the health and well-being of infants and young children. PMID:20015345

  12. Oral Administration of Lactobacillus plantarum Strain AYA Enhances IgA Secretion and Provides Survival Protection against Influenza Virus Infection in Mice

    PubMed Central

    Kikuchi, Yosuke; Kunitoh-Asari, Ayami; Hayakawa, Katsuyuki; Imai, Shinjiro; Kasuya, Kenji; Abe, Kimio; Adachi, Yu; Fukudome, Shin-ichi; Takahashi, Yoshimasa; Hachimura, Satoshi

    2014-01-01

    The mucosal immune system provides the first line of defense against inhaled and ingested pathogenic microbacteria and viruses. This defense system, to a large extent, is mediated by the actions of secretory IgA. In this study, we screened 140 strains of lactic acid bacteria for induction of IgA production by murine Peyer’s patch cells. We selected one strain and named it Lactobacillus plantarum AYA. We found that L. plantarum AYA-induced production of IL-6 in Peyer’s patch dendritic cells, with this production promoting IgA+ B cells to differentiate into IgA-secreting plasma cells. We also observed that oral administration of L. plantarum AYA in mice caused an increase in IgA production in the small intestine and lung. This production of IgA correlated strongly with protective ability, with the treated mice surviving longer than the control mice after lethal influenza virus infection. Our data therefore reveals a novel immunoregulatory role of the L. plantarum AYA strain which enhances mucosal IgA production and provides protection against respiratory influenza virus infection. PMID:24466081

  13. Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice.

    PubMed

    Kikuchi, Yosuke; Kunitoh-Asari, Ayami; Hayakawa, Katsuyuki; Imai, Shinjiro; Kasuya, Kenji; Abe, Kimio; Adachi, Yu; Fukudome, Shin-Ichi; Takahashi, Yoshimasa; Hachimura, Satoshi

    2014-01-01

    The mucosal immune system provides the first line of defense against inhaled and ingested pathogenic microbacteria and viruses. This defense system, to a large extent, is mediated by the actions of secretory IgA. In this study, we screened 140 strains of lactic acid bacteria for induction of IgA production by murine Peyer's patch cells. We selected one strain and named it Lactobacillus plantarum AYA. We found that L. plantarum AYA-induced production of IL-6 in Peyer's patch dendritic cells, with this production promoting IgA(+) B cells to differentiate into IgA-secreting plasma cells. We also observed that oral administration of L. plantarum AYA in mice caused an increase in IgA production in the small intestine and lung. This production of IgA correlated strongly with protective ability, with the treated mice surviving longer than the control mice after lethal influenza virus infection. Our data therefore reveals a novel immunoregulatory role of the L. plantarum AYA strain which enhances mucosal IgA production and provides protection against respiratory influenza virus infection.

  14. Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin.

    PubMed

    Schaar, Viveka; Nordström, Therése; Mörgelin, Matthias; Riesbeck, Kristian

    2011-08-01

    Moraxella catarrhalis is a common pathogen found in children with upper respiratory tract infections and in patients with chronic obstructive pulmonary disease during exacerbations. The bacterial species is often isolated together with Streptococcus pneumoniae and Haemophilus influenzae. Outer membrane vesicles (OMVs) are released by M. catarrhalis and contain phospholipids, adhesins, and immunomodulatory compounds such as lipooligosaccharide. We have recently shown that M. catarrhalis OMVs exist in patients upon nasopharyngeal colonization. As virtually all M. catarrhalis isolates are β-lactamase positive, the goal of this study was to investigate whether M. catarrhalis OMVs carry β-lactamase and to analyze if OMV consequently can prevent amoxicillin-induced killing. Recombinant β-lactamase was produced and antibodies were raised in rabbits. Transmission electron microscopy, flow cytometry, and Western blotting verified that OMVs carried β-lactamase. Moreover, enzyme assays revealed that M. catarrhalis OMVs contained active β-lactamase. OMVs (25 μg/ml) incubated with amoxicillin for 1 h completely hydrolyzed amoxicillin at concentrations up to 2.5 μg/ml. In functional experiments, preincubation of amoxicillin (10× MIC) with M. catarrhalis OMVs fully rescued amoxicillin-susceptible M. catarrhalis, S. pneumoniae, and type b or nontypeable H. influenzae from β-lactam-induced killing. Our results suggest that the presence of amoxicillin-resistant M. catarrhalis originating from β-lactamase-containing OMVs may pave the way for respiratory pathogens that by definition are susceptible to β-lactam antibiotics.

  15. Seroepidemiological evidence of avian H4, H5, and H9 influenza A virus transmission to pigs in southeastern China.

    PubMed

    Ninomiya, Ai; Takada, Ayato; Okazaki, Katsunori; Shortridge, Kennedy F; Kida, Hiroshi

    2002-08-25

    Pig serum samples collected in southeastern China were examined for antibodies to influenza A viruses. Since the hemagglutination inhibition (HI) test does not accurately detect antibodies to the hemagglutinins (HAs) of "avian" influenza viruses, we utilized the neutralization (NT) test to detect subtype-specific antibodies to the HA of avian viruses in pig sera. Neutralizing antibodies to H1, H3, H4, and H5 influenza viruses were detected in the serum samples collected in 1977-1982 and 1998, suggesting that pigs in China have been sporadically infected with avian H4 and H5 viruses in addition to swine and human H1 and H3 viruses. Antibodies to H9 virus, on the other hand, were found only in the sera collected in 1998, not in those collected in 1977-1982, correlating with the recent spread in poultry and subsequent isolation of H9N2 viruses from pigs and humans in 1998. The present results indicate that avian influenza viruses have been transmitted to pig populations in southeastern China.

  16. Differences in transmissibility and pathogenicity of reassortants between H9N2 and 2009 pandemic H1N1 influenza A viruses from humans and swine.

    PubMed

    He, Liang; Wu, Qiwen; Jiang, Kaijun; Duan, Zhiqiang; Liu, Jingjing; Xu, Haixu; Cui, Zhu; Gu, Min; Wang, Xiaoquan; Liu, Xiaowen; Liu, Xiufan

    2014-07-01

    Both H9N2 subtype avian influenza and 2009 pandemic H1N1 viruses (pH1N1) can infect humans and pigs, which provides the opportunity for virus reassortment, leading to the genesis of new strains with potential pandemic risk. In this study, we generated six reassortant H9 viruses in the background of three pH1N1 strains from different hosts (A/California/04/2009 [CA04], A/Swine/Jiangsu/48/2010 [JS48] and A/Swine/Jiangsu/285/2010 [JS285]) by replacing either the HA (H9N1-pH1N1) or both the HA and NA genes (H9N2-pH1N1) from an h9.4.2.5-lineage H9N2 subtype influenza virus, A/Swine/Taizhou/5/08 (TZ5). The reassortant H9 viruses replicated to higher titers in vitro and in vivo and gained both efficient transmissibility in guinea pigs and increased pathogenicity in mice compared with the parental H9N2 virus. In addition, differences in transmissibility and pathogenicity were observed among these reassortant H9 viruses. The H9N2-pH1N1viruses were transmitted more efficiently than the corresponding H9N1-pH1N1 viruses but showed significantly decreased pathogenicity. One of the reassortant H9 viruses that were generated, H9N-JS48, showed the highest virulence in mice and acquired respiratory droplet transmissibility between guinea pigs. These results indicate that coinfection of swine with H9N2 and pH1N1viruses may pose a threat for humans if reassortment occurs, emphasizing the importance of surveillance of these viruses in their natural hosts.

  17. Role of vaccination-induced immunity and antigenic distance in the transmission dynamics of highly pathogenic avian influenza H5N1.

    PubMed

    Sitaras, Ioannis; Rousou, Xanthoula; Kalthoff, Donata; Beer, Martin; Peeters, Ben; de Jong, Mart C M

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 epidemics in poultry cause huge economic losses as well as sporadic human morbidity and mortality. Vaccination in poultry has often been reported as being ineffective in preventing transmission and as a potential driving force in the selection of immune escape mutants. We conducted transmission experiments to evaluate the transmission dynamics of HPAI H5N1 strains in chickens vaccinated with high and low doses of immune escape mutants we have previously selected, and analysed the data using mathematical models. Remarkably, we demonstrate that the effect of antigenic distances between the vaccine and challenge strains used in this study is too small to influence the transmission dynamics of the strains used. This is because the effect of a sufficient vaccine dose on antibody levels against the challenge viruses is large enough to compensate for any decrease in antibody titres due to antigenic differences between vaccine and challenge strains. Our results show that at least under experimental conditions, vaccination will remain effective even after antigenic changes as may be caused by the initial selection in vaccinated birds.

  18. Role of vaccination-induced immunity and antigenic distance in the transmission dynamics of highly pathogenic avian influenza H5N1

    PubMed Central

    Rousou, Xanthoula; Kalthoff, Donata; Beer, Martin

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 epidemics in poultry cause huge economic losses as well as sporadic human morbidity and mortality. Vaccination in poultry has often been reported as being ineffective in preventing transmission and as a potential driving force in the selection of immune escape mutants. We conducted transmission experiments to evaluate the transmission dynamics of HPAI H5N1 strains in chickens vaccinated with high and low doses of immune escape mutants we have previously selected, and analysed the data using mathematical models. Remarkably, we demonstrate that the effect of antigenic distances between the vaccine and challenge strains used in this study is too small to influence the transmission dynamics of the strains used. This is because the effect of a sufficient vaccine dose on antibody levels against the challenge viruses is large enough to compensate for any decrease in antibody titres due to antigenic differences between vaccine and challenge strains. Our results show that at least under experimental conditions, vaccination will remain effective even after antigenic changes as may be caused by the initial selection in vaccinated birds. PMID:26763336

  19. Experimental infection of highly and low pathogenic avian influenza viruses to chickens, ducks, tree sparrows, jungle crows, and black rats for the evaluation of their roles in virus transmission.

    PubMed

    Hiono, Takahiro; Okamatsu, Masatoshi; Yamamoto, Naoki; Ogasawara, Kohei; Endo, Mayumi; Kuribayashi, Saya; Shichinohe, Shintaro; Motohashi, Yurie; Chu, Duc-Huy; Suzuki, Mizuho; Ichikawa, Takaya; Nishi, Tatsuya; Abe, Yuri; Matsuno, Keita; Tanaka, Kazuyuki; Tanigawa, Tsutomu; Kida, Hiroshi; Sakoda, Yoshihiro

    2016-01-01

    Highly pathogenic avian influenza viruses (HPAIVs) have spread in both poultry and wild birds. Determining transmission routes of these viruses during an outbreak is essential for the control of avian influenza. It has been widely postulated that migratory ducks play crucial roles in the widespread dissemination of HPAIVs in poultry by carrying viruses along with their migrations; however close contacts between wild migratory ducks and poultry are less likely in modern industrial poultry farming settings. Therefore, we conducted experimental infections of HPAIVs and low pathogenic avian influenza viruses (LPAIVs) to chickens, domestic ducks, tree sparrows, jungle crows, and black rats to evaluate their roles in virus transmission. The results showed that chickens, ducks, sparrows, and crows were highly susceptible to HPAIV infection. Significant titers of virus were recovered from the sparrows and crows infected with HPAIVs, which suggests that they potentially play roles of transmission of HPAIVs to poultry. In contrast, the growth of LPAIVs was limited in each of the animals tested compared with that of HPAIVs. The present results indicate that these common synanthropes play some roles in influenza virus transmission from wild birds to poultry.

  20. Spatial modeling of wild bird risk factors to investigate highly pathogenic A(H5N1) avian influenza virus transmission

    USGS Publications Warehouse

    Prosser, Diann J.; Hungerford, Laura L.; Erwin, R. Michael; Ottinger, Mary Ann; Takekawa, John Y.; Newman, Scott H.; Xiao, Xianming; Ellis, Erie C.

    2016-01-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 years, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae), are reported as secondary transmitters of HPAIV, and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using GIS and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 km to 30 km resolution for multi-scale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.

  1. A NON-TRANSMISSIBLE CYTOPATHOGENIC EFFECT OF INFLUENZA VIRUS IN TISSUE CULTURE ACCOMPANIED BY FORMATION OF NON-INFECTIOUS HEMAGGLUTININS

    PubMed Central

    Henle, Gertrude; Girardi, Anthony; Henle, Werner

    1955-01-01

    Various strains of influenza virus produce a cytopathogenic effect in cultures of HeLa cells. The virus could not be passed in series. Virus partially or even completely inactivated with respect to infectivity by exposure to 37°C. or ultraviolet light retained some of its cytopathogenic effect. No evidence has been obtained of an increase in infectious virus in HeLa cultures, but an increase in hemagglutinins and in both viral and soluble complement-fixing antigens became detectable during incubation. These virus materials apparently were not released from these cells prior to their destruction. These results suggested that HeLa cells are capable of supporting an incomplete reproductive cycle of influenza virus. The fact that radioactive phosphorus was readily incorporated into the hemagglutinin supplies strong evidence for this interpretation. PMID:13211925

  2. Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites

    PubMed Central

    Rajendran, Esther; Hapuarachchi, Sanduni V.; Miller, Catherine M.; Fairweather, Stephen J.; Cai, Yeping; Smith, Nicholas C.; Cockburn, Ian A.; Bröer, Stefan; Kirk, Kiaran; van Dooren, Giel G.

    2017-01-01

    Apicomplexans are obligate intracellular parasites that scavenge essential nutrients from their hosts via transporter proteins on their plasma membrane. The identities of the transporters that mediate amino acid uptake into apicomplexans are unknown. Here we demonstrate that members of an apicomplexan-specific protein family—the Novel Putative Transporters (NPTs)—play key roles in the uptake of cationic amino acids. We show that an NPT from Toxoplasma gondii (TgNPT1) is a selective arginine transporter that is essential for parasite survival and virulence. We also demonstrate that a homologue of TgNPT1 from the malaria parasite Plasmodium berghei (PbNPT1), shown previously to be essential for the sexual gametocyte stage of the parasite, is a cationic amino acid transporter. This reveals a role for cationic amino acid scavenging in gametocyte biology. Our study demonstrates a critical role for amino acid transporters in the survival, virulence and life cycle progression of these parasites. PMID:28205520

  3. Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites.

    PubMed

    Rajendran, Esther; Hapuarachchi, Sanduni V; Miller, Catherine M; Fairweather, Stephen J; Cai, Yeping; Smith, Nicholas C; Cockburn, Ian A; Bröer, Stefan; Kirk, Kiaran; van Dooren, Giel G

    2017-02-16

    Apicomplexans are obligate intracellular parasites that scavenge essential nutrients from their hosts via transporter proteins on their plasma membrane. The identities of the transporters that mediate amino acid uptake into apicomplexans are unknown. Here we demonstrate that members of an apicomplexan-specific protein family-the Novel Putative Transporters (NPTs)-play key roles in the uptake of cationic amino acids. We show that an NPT from Toxoplasma gondii (TgNPT1) is a selective arginine transporter that is essential for parasite survival and virulence. We also demonstrate that a homologue of TgNPT1 from the malaria parasite Plasmodium berghei (PbNPT1), shown previously to be essential for the sexual gametocyte stage of the parasite, is a cationic amino acid transporter. This reveals a role for cationic amino acid scavenging in gametocyte biology. Our study demonstrates a critical role for amino acid transporters in the survival, virulence and life cycle progression of these parasites.

  4. Peroxiredoxin-glutaredoxin and catalase promote resistance of nontypeable Haemophilus influenzae 86-028NP to oxidants and survival within neutrophil extracellular traps.

    PubMed

    Juneau, Richard A; Pang, Bing; Armbruster, Chelsie E; Murrah, Kyle A; Perez, Antonia C; Swords, W Edward

    2015-01-01

    Nontypeable Haemophilus influenzae (NTHI) is a common commensal and opportunistic pathogen of the human airways. For example, NTHI is a leading cause of otitis media and is the most common cause of airway infections associated with chronic obstructive pulmonary disease (COPD). These infections are often chronic/recurrent in nature and involve bacterial persistence within biofilm communities that are highly resistant to host clearance. Our previous work has shown that NTHI within biofilms has increased expression of factors associated with oxidative stress responses. The goal of this study was to define the roles of catalase (encoded by hktE) and a bifunctional peroxiredoxin-glutaredoxin (encoded by pdgX) in resistance of NTHI to oxidants and persistence in vivo. Isogenic NTHI strain 86-028NP mutants lacking hktE and pdgX had increased susceptibility to peroxide. Moreover, these strains had persistence defects in the chinchilla infection model for otitis media, as well as in a murine model for COPD. Additional work showed that pdgX and hktE were important determinants of NTHI survival within neutrophil extracellular traps (NETs), which we have shown to be an integral part of NTHI biofilms in vivo. Based on these data, we conclude that catalase and peroxiredoxin-glutaredoxin are determinants of bacterial persistence during chronic/recurrent NTHI infections that promote bacterial survival within NETs.

  5. Asparagine substitution at PB2 residue 701 enhances the replication, pathogenicity, and transmission of the 2009 pandemic H1N1 influenza A virus.

    PubMed

    Zhou, Bin; Pearce, Melissa B; Li, Yan; Wang, Jieru; Mason, Robert J; Tumpey, Terrence M; Wentworth, David E

    2013-01-01

    The 2009/2010 pandemic influenza virus (H1N1pdm) contains an avian-lineage PB2 gene that lacks E627K and D701N substitutions important in the pathogenesis and transmission of avian-origin viruses in humans or other mammals. Previous studies have shown that PB2-627K is not necessary because of a compensatory Q591R substitution. The role that PB2-701N plays in the H1N1pdm phenotype is not well understood. Therefore, PB2-D701N was introduced into an H1N1pdm virus (A/New York/1682/2009 (NY1682)) and analyzed in vitro and in vivo. Mini-genome replication assay, in vitro replication characteristics in cell lines, and analysis in the mouse and ferret models demonstrated that PB2-D701N increased virus replication rates and resulted in more severe pathogenicity in mice and more efficient transmission in ferrets. In addition, compared to the NY1682-WT virus, the NY1682-D701N mutant virus induced less IFN-λ and replicated to a higher titer in primary human alveolar epithelial cells. These findings suggest that the acquisition of the PB2-701N substitution by H1N1pdm viruses may result in more severe disease or increase transmission in humans.

  6. Susceptibility to and transmission of H5N1 and H7N1 highly pathogenic avian influenza viruses in bank voles (Myodes glareolus).

    PubMed

    Romero Tejeda, Aurora; Aiello, Roberta; Salomoni, Angela; Berton, Valeria; Vascellari, Marta; Cattoli, Giovanni

    2015-05-13

    The study of influenza type A (IA) infections in wild mammals populations is a critical gap in our knowledge of how IA viruses evolve in novel hosts that could be in close contact with avian reservoir species and other wild animals. The aim of this study was to evaluate the susceptibility to infection, the nasal shedding and the transmissibility of the H7N1 and H5N1 highly pathogenic avian influenza (HPAI) viruses in the bank vole (Myodes glareolus), a wild rodent common throughout Europe and Asia. Two out of 24 H5N1-infected voles displayed evident respiratory distress, while H7N1-infected voles remained asymptomatic. Viable virus was isolated from nasal washes collected from animals infected with both HPAI viruses, and extra-pulmonary infection was confirmed in both experimental groups. Histopathological lesions were evident in the respiratory tract of infected animals, although immunohistochemistry positivity was only detected in lungs and trachea of two H7N1-infected voles. Both HPAI viruses were transmitted by direct contact, and seroconversion was confirmed in 50% and 12.5% of the asymptomatic sentinels in the H7N1 and H5N1 groups, respectively. Interestingly, viable virus was isolated from lungs and nasal washes collected from contact sentinels of both groups. The present study demonstrated that two non-rodent adapted HPAI viruses caused asymptomatic infection in bank voles, which shed high amounts of the viruses and were able to infect contact voles. Further investigations are needed to determine whether bank voles could be involved as silent hosts in the transmission of HPAI viruses to other mammals and domestic poultry.

  7. g-FLUA2H: a web-based application to study the dynamics of animal-to-human mutation transmission for influenza viruses

    PubMed Central

    2015-01-01

    g-FLUA2H is a web-based application focused on the analysis of the dynamics of influenza virus animal-to-human (A2H) mutation transmissions. The application only requires the viral protein sequences from both the animal and human host populations as input datasets. The comparative analyses between the co-aligned sequences of the two viral populations is based on a sliding window approach of size nine for statistical significance and data application to the major histocompatibility complex (MHC) and T-cell receptor (TCR) immune response mechanisms. The sequences at each of the aligned overlapping nonamer positions for the respective virus hosts are classified as four patterns of characteristic diversity motifs, as a basis for quantitative analyses: (i) "index", the most prevalent sequence; (ii) "major" variant, the second most common sequence and the single most prevalent variant of the index, with at least one amino acid mutation; (iii) "minor" variants, multiple different sequences, each with an incidence (percent occurrence) less than that of the major variant; and (iv) "unique" variants, each with only one occurrence in the alignment. The diversity motifs and their incidences at each of the nonamer positions allow evaluation of the mutation transmission dynamics and selectivity of the viral sequences in relation to the animal and the human hosts. g-FLUA2H is facilitated by a grid back-end for parallel processing of large sequence datasets. The web-application is publicly available at http://bioinfo.perdanauniversity.edu.my/g-FLUA2H. It can be used for a detailed characterization of the composition and incidence of mutations present in the proteomes of influenza viruses from animal and human host populations, for a better understanding of host tropism. PMID:26680743

  8. Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission.

    PubMed

    Herfst, Sander; Chutinimitkul, Salin; Ye, Jianqiang; de Wit, Emmie; Munster, Vincent J; Schrauwen, Eefje J A; Bestebroer, Theo M; Jonges, Marcel; Meijer, Adam; Koopmans, Marion; Rimmelzwaan, Guus F; Osterhaus, Albert D M E; Perez, Daniel R; Fouchier, Ron A M

    2010-04-01

    In the first 6 months of the H1N1 swine-origin influenza virus (S-OIV) pandemic, the vast majority of infections were relatively mild. It has been postulated that mutations in the viral genome could result in more virulent viruses, leading to a more severe pandemic. Mutations E627K and D701N in the PB2 protein have previously been identified as determinants of avian and pandemic influenza virus virulence in mammals. These mutations were absent in S-OIVs detected early in the 2009 pandemic. Here, using reverse genetics, mutations E627K, D701N, and E677G were introduced into the prototype S-OIV A/Netherlands/602/2009, and their effects on virus replication, virulence, and transmission were investigated. Mutations E627K and D701N caused increased reporter gene expression driven by the S-OIV polymerase complex. None of the three mutations affected virus replication in vitro. The mutations had no major impact on virus replication in the respiratory tracts of mice and ferrets or on pathogenesis. All three mutant viruses were transmitted via aerosols or respiratory droplets in ferrets. Thus, the impact of key known virulence markers in PB2 in the context of current S-OIVs was surprisingly small. This study does not exclude the possibility of emergence of S-OIVs with other virulence-associated mutations in the future. We conclude that surveillance studies aimed at detecting S-OIVs with increased virulence or transmission should not rely solely on virulence markers identified in the past but should include detailed characterization of virus phenotypes, guided by genetic signatures of viruses detected in severe cases of disease in humans.

  9. Preferential transmission of the MTHFR 677 T allele to infants with Down syndrome: implications for a survival advantage.

    PubMed

    Hobbs, Charlotte A; Cleves, Mario A; Lauer, Ronald M; Burns, Trudy L; James, S Jill

    2002-11-15

    We have examined the transmission frequencies of the methylenetetrahydrofolate reductase (MTHFR) 677 T and C alleles from heterozygous parents to children with Down syndrome (trisomy 21) in 202 Caucasian families. Our results indicated that the MTHFR 677T allele was transmitted to children with Down syndrome at a significantly higher rate than would be expected based on Mendelian inheritance patterns, and the C allele was transmitted at a significantly lower rate (P < 0.009). Transmission frequencies were also examined independently for maternally and paternally transmitted alleles to assess potential parent-of-origin effects. Because the vast majority of conceptions with trisomy 21 end in pregnancy loss, we questioned whether the observed preferential transmission of the T allele to this population of liveborn infants with Down syndrome could reflect a survival advantage. A plausible biochemical interpretation of these results is presented based on a maternal-fetal MTHFR 677T allele interaction in the context of the constitutive overexpression of three copies of the cystathionine beta synthase gene in the trisomy 21 fetus. Published 2002 Wiley-Liss, Inc.

  10. Influenza Virus Infection of Marine Mammals.

    PubMed

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature.

  11. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates.

    PubMed

    Tamerius, James D; Shaman, Jeffrey; Alonso, Wladimir J; Alonso, Wladmir J; Bloom-Feshbach, Kimberly; Uejio, Christopher K; Comrie, Andrew; Viboud, Cécile

    2013-03-01

    Human influenza infections exhibit a strong seasonal cycle in temperate regions. Recent laboratory and epidemiological evidence suggests that low specific humidity conditions facilitate the airborne survival and transmission of the influenza virus in temperate regions, resulting in annual winter epidemics. However, this relationship is unlikely to account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: "cold-dry" and "humid-rainy". For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11-12 g/kg and 18-21°C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. These findings provide a simple climate-based model rooted in empirical data that accounts for the diversity of seasonal influenza patterns observed across temperate, subtropical and tropical climates.

  12. Meteorological Influence on the 2009 Influenza A (H1N1) Pandemic in Mainland China.

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Cai, J.; Feng, D.; Bai, Y.; Xu, B.

    2015-12-01

    Since May 2009, a novel influenza A (H1N1) pandemic has spread rapidly in mainland China from Mexico. Although there has been substantial analysis of this influenza, reliable work estimating its spatial dynamics and determinants remain scarce. The survival and transmission of this pandemic virus not only depends on its biological properties, but also a correlation with external environmental factors. In this study, we collected daily influenza A (H1N1) cases and corresponding annual meteorological factors in mainland China from May 2009 to April 2010. By analyzing these data at county-level, a similarity index, which considered the spatio-temporal characteristics of the disease, was proposed to evaluate the role and lag time of meteorological factors in the influenza transmission. The results indicated that the influenza spanned a large geographical area, following an overall trend from east to west across the country. The spatio-temporal transmission of the disease was affected by a series of meteorological variables, especially absolute humidity with a 3-week lag. These findings confirmed that the absolute humidity and other meteorological variables contributed to the local occurrence and dispersal of influenza A (H1N1). The impact of meteorological variables and their lag effects could be involved in the improvement of effective strategies to control and prevent disease outbreaks.

  13. Thermal inactivation of avian influenza virus and Newcastle disease virus in a fat-free egg product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) and Avian Paramyxovirus Type-1 (AMPV-1) viruses can survive on the carcasses, in organ tissue of infected birds, on fomites, and have the potential for egg transmission and egg product contamination. With the increase in global trade, there are concerns that egg products could ...

  14. Optimizing influenza vaccine distribution.

    PubMed

    Medlock, Jan; Galvani, Alison P

    2009-09-25

    The criteria to assess public health policies are fundamental to policy optimization. Using a model parametrized with survey-based contact data and mortality data from influenza pandemics, we determined optimal vaccine allocation for five outcome measures: deaths, infections, years of life lost, contingent valuation, and economic costs. We find that optimal vaccination is achieved by prioritization of schoolchildren and adults aged 30 to 39 years. Schoolchildren are most responsible for transmission, and their parents serve as bridges to the rest of the population. Our results indicate that consideration of age-specific transmission dynamics is paramount to the optimal allocation of influenza vaccines. We also found that previous and new recommendations from the U.S. Centers for Disease Control and Prevention both for the novel swine-origin influenza and, particularly, for seasonal influenza, are suboptimal for all outcome measures.

  15. Ecological Meta-Analysis of Density-Dependent Processes in the Transmission of Lymphatic Filariasis: Survival of Infected Vectors

    PubMed Central

    Michael, Edwin; Snow, lucy c.; Bockarie, Moses J.

    2009-01-01

    The survival rate of infected vectors represents one of the fundamental components that influence the transmission dynamics of mosquito-borne diseases. Despite the occurrence of a number of studies investigating mosquito survival after infection with filarial worms, there remains conflicting evidence from both laboratory and field experiments as to the existence and mechanism for parasite-induced mortality among filarial mosquitoes. Here, we used a mixed effects meta-analytical framework to combine the data from all available vector–human host blood feeding experiments to evaluate the evidence for the impact of parasite load on the mortality rates of the three major lymphatic filariasis transmitting mosquito genera, Culex, Aedes, and Anopheles mosquitoes, over the extrinsic incubation period of parasitic infection. The results show that, despite the application of this approach, or in the case of Anopheles using a convention fixed effects logistic regression analysis supplemented with additional survival analysis of longitudinal data, no strong association between mortality rate and microfilariae (mf) uptake for either of the three mosquito genera is apparent in the combined data. Instead, a key finding is that study effects played a more crucial role in determining the levels of mortality observed in these experimental studies. This was most revealing in the case of Culex, given that the largest single study in terms of both the number of data points and range of mf intensities, in contrast to smaller studies, showed a significant positive association between mf intensity and mortality, indicating that in this genus at least, the detrimental effect of infection may be manifested only at the highest mf intakes. Although no density dependence in vector mortality was also observed for Aedes, possibly because of the use of restricted human mf intensity range in previous studies, an intriguing finding was that a significantly higher overall mortality was observed for

  16. Epidemiological and Evolutionary Inference of the Transmission Network of the 2014 Highly Pathogenic Avian Influenza H5N2 Outbreak in British Columbia, Canada

    PubMed Central

    Xu, Wanhong; Berhane, Yohannes; Dubé, Caroline; Liang, Binhua; Pasick, John; VanDomselaar, Gary; Alexandersen, Soren

    2016-01-01

    The first North American outbreak of highly pathogenic avian influenza (HPAI) involving a virus of Eurasian A/goose/Guangdong/1/1996 (H5N1) lineage began in the Fraser Valley of British Columbia, Canada in late November 2014. A total of 11 commercial and 1 non-commercial (backyard) operations were infected before the outbreak was terminated. Control measures included movement restrictions that were placed on a total of 404 individual premises, 150 of which were located within a 3 km radius of an infected premise(s) (IP). A complete epidemiological investigation revealed that the source of this HPAI H5N2 virus for 4 of the commercial IPs and the single non-commercial IP likely involved indirect contact with wild birds. Three IPs were associated with the movement of birds or service providers and localized/environmental spread was suspected as the source of infection for the remaining 4 IPs. Viral phylogenies, as determined by Bayesian Inference and Maximum Likelihood methods, were used to validate the epidemiologically inferred transmission network. The phylogenetic clustering of concatenated viral genomes and the median-joining phylogenetic network of the viruses supported, for the most part, the transmission network that was inferred by the epidemiologic analysis. PMID:27489095

  17. Migratory movements of waterfowl in Central Asia and avian influenza emergence: sporadic transmission of H5N1 from east to west

    USGS Publications Warehouse

    Iverson, Samuel A.; Gavrilov, Andrei; Katzner, Todd E.; Takekawa, John Y.; Miller, Tricia A.; Hagemeijer, Ward; Mundkur, Taej; Sivananinthaperumal, Balachandran; DeMattos, Carlos C.; Ahmed, Lu'ay S.; Newman, Scott H.

    2011-01-01

    Waterfowl in the genera Anas and Tadorna are suspected as vectors in the long-distance transmission of highly pathogenic avian influenza H5N1. The former Soviet Republics of Central Asia are situated at an important migratory crossroads for these and other species of birds that bridges regions where the disease is prevalent. However, waterfowl movements through Central Asia are poorly quantified. In this study, historical data derived from over 80 years of bird ringing are combined with recent satellite tracking data to delineate migration routes, movement chronology and habitat use patterns of waterfowl in relation to H5N1 outbreak locations. Results confirm migratory linkage between breeding and moulting areas in northern Kazakhstan and southern Siberia, with nonbreeding areas in the Caspian, Black and eastern Mediterranean Sea basins, as well as with South Asia. However, unlike the situation in neighbouring regions, most notably western China, H5N1 outbreaks have not been recurrent in Central Asia after they were first reported during summer 2005 and spring 2006. These findings have implications in relation to potential sampling biases, species-specific variation in migratory behaviour and continuing regional H5N1 transmission risks.

  18. Characteristics of commercial and traditional village poultry farming in Mali with a focus on practices influencing the risk of transmission of avian influenza and Newcastle disease.

    PubMed

    Molia, Sophie; Traoré, Idrissa; Kamissoko, Badian; Diakité, Adama; Sidibé, Maimouna Sanogo; Sissoko, Kadiatou Diarra; Pfeiffer, Dirk Udo

    2015-10-01

    We aimed at characterizing commercial and traditional village poultry farming in Mali, with a focus on practices influencing the risk of transmission of avian influenza and Newcastle disease. Surveys were conducted in 2009-2011 in a study area covering approximately 98% of the Malian poultry population. Among the 282 commercial farms investigated, of which 64 had not been known by the government authorities, 83% were located within a 50km radius from the capitals of the country and regions and 54% had low biosecurity standard. Among the 152 randomly selected village household flocks investigated, characteristics were overall similar to those in other African countries but some differences were notable including a large flock size (median 44 poultry), a low presence of ducks and geese (11% and 1.1% of flocks, respectively), vaccination against Newcastle disease being common (49% of flocks), a low proportion of households selling sick and dead birds (0.7% and 0%, respectively) and limited cohabitation between poultry and humans at night. Our recommendations to limit the risk of disease transmission include (1) for commercial farms, to introduce compulsory farm registration and accreditation, to increase technical proficiency and access to credit for farms with low biosecurity, and to support poultry producer associations; (2) for village poultry, to promote better quarantine and management of sick and dead birds. Such detailed knowledge of country-specific characteristics of poultry production systems is essential to be able to develop more efficient disease risk management policies.

  19. Spillback transmission of European H1N1 avian-like swine influenza viruses to turkeys: A strain-dependent possibility?

    PubMed

    Bonfante, Francesco; Fusaro, Alice; Tassoni, Luca; Patrono, Livia Victoria; Milani, Adelaide; Maniero, Silvia; Salviato, Annalisa; Terregino, Calogero

    2016-04-15

    In 1979, an avian influenza virus of the H1N1 subtype began to circulate in European swine herds, rapidly replacing classical swine H1N1 viruses. Spill-back transmissions to turkeys were recorded occasionally, but they might have been underreported due to the asymptomatic nature of the infection and the lack of specific surveillance. In our study, we evaluated the infectivity and transmissibility in turkeys of seven strains of H1N1 avian-like swine viruses isolated from 1979 to 2006, and compared them with their closest progenitor A/duck/Bavaria/1/77 (H1N1), to establish whether the adaptation to pigs has gradually decreased their fitness in turkeys. Our data indicate that the circulation of European H1N1 in pigs might have impaired the possibility of infecting turkeys. Nevertheless, the two swine-origin strains, which showed the ability to replicate and transmit in turkeys, possess typical swine-like genetic traits, not different from the rest of the tested isolates, suggesting replication of avian-like swine H1N1 viruses in turkeys as a strain-dependent polygenic feature.

  20. Limited human-to-human transmission of avian influenza A(H7N9) virus, Shanghai, China, March to April 2013.

    PubMed

    Hu, J; Zhu, Y; Zhao, B; Li, J; Liu, L; Gu, K; Zhang, W; Su, H; Teng, Z; Tang, S; Yuan, Z; Feng, Z; Wu, F

    2014-06-26

    In April 2013, two members of one family were successively confirmed as cases of avian influenza A(H7N9) virus infection in Shanghai, China. Respiratory specimens from the two cases and their close contacts were tested using real-time reverse-transcription (RT)-PCR. Paired serum specimens from contacts were tested by haemagglutination inhibition assay and microneutralisation test. The index patient developed severe pneumonia. Her husband presented with pneumonia shortly thereafter. Both cases had highly similar clinical features and infection with A(H7N9) virus was confirmed in both cases by genetic analysis. Phylogenetic analysis revealed a high level of similarity between the sequences from the two patients and environmental samples collected from wet markets in Minhang and Changning districts. Six samples from the Changning wet market were confirmed as A(H7N9) positive. Of 27 close contacts, one developed mild respiratory symptoms and another tested positive for A(H7N9) antibodies, but both were negative by real-time RT-PCR. The other 25 close contacts of both cases were A(H7N9) negative. Limited human-to-human transmission of the virus most likely occurred in the family cluster. However, other close contacts did not test positive for the virus, suggesting limited potential for extensive human-to-human transmission of the virus.

  1. A Single Amino Acid in the HA of pH1N1 2009 Influenza Virus Affects Cell Tropism in Human Airway Epithelium, but Not Transmission in Ferrets

    PubMed Central

    van Doremalen, Neeltje; Shelton, Holly; Roberts, Kim L.; Jones, Ian M.; Pickles, Ray J.; Thompson, Catherine I.; Barclay, Wendy S.

    2011-01-01

    The first pandemic of the 21st century, pandemic H1N1 2009 (pH1N1 2009), emerged from a swine-origin source. Although human infections with swine-origin influenza have been reported previously, none went on to cause a pandemic or indeed any sustained human transmission. In previous pandemics, specific residues in the receptor binding site of the haemagglutinin (HA) protein of influenza have been associated with the ability of the virus to transmit between humans. In the present study we investigated the effect of residue 227 in HA on cell tropism and transmission of pH1N1 2009. In pH1N1 2009 and recent seasonal H1N1 viruses this residue is glutamic acid, whereas in swine influenza it is alanine. Using human airway epithelium, we show a differential cell tropism of pH1N1 2009 compared to pH1N1 2009 E227A and swine influenza suggesting this residue may alter the sialic acid conformer binding preference of the HA. Furthermore, both pH1N1 2009 E227A and swine influenza multi-cycle viral growth was found to be attenuated in comparison to pH1N1 2009 in human airway epithelium. However this altered tropism and viral growth in human airway epithelium did not abrogate respiratory droplet transmission of pH1N1 2009 E227A in ferrets. Thus, acquisition of E at residue 227 was not solely responsible for the ability of pH1N1 2009 to transmit between humans. PMID:21998692

  2. Seroprevalence of antibodies to influenza A/H1N1/2009 among transmission risk groups after the second wave in Mexico, by a virus-free ELISA method

    PubMed Central

    Elizondo-Montemayor, Leticia; Alvarez, Mario M.; Hernández-Torre, Martín; Ugalde-Casas, Patricia A.; Lam-Franco, Lorena; Bustamante-Careaga, Humberto; Castilleja-Leal, Fernando; Contreras-Castillo, Julio; Moreno-Sánchez, Héctor; Tamargo-Barrera, Daniela; López-Pacheco, Felipe; Freiden, Pamela J.; Schultz-Cherry, Stacey

    2014-01-01

    Summary Objective No serological studies have been performed in Mexico to assess the seroprevalence of influenza A/H1N1/2009 in groups of people according to the potential risk of transmission. The aim of this study was to determine the seroprevalence of antibodies against influenza A/H1N1/2009 in subjects in Mexico grouped by risk of transmission. Methods Two thousand two hundred and twenty-two subjects were categorized into one of five occupation groups according to the potential risk of transmission: (1) students, (2) teachers, (3) healthcare workers, (4) institutional home residents aged >60 years, and (5) general population. Seroprevalence by potential transmission group and by age grouped into decades was determined by a virus-free ELISA method based on the recombinant receptor-binding domain of the hemagglutinin of influenza A/H1N1/2009 virus as antigen (85% sensitivity; 95% specificity). The Wilson score, Chi-square test, and logistic regression models were used for the statistical analyses. Results Seroprevalence for students was 47.3%, for teachers was 33.9%, for older adults was 36.5%, and for the general population was 33.0%, however it was only 24.6% for healthcare workers (p = 0.011). Of the students, 56.6% of those at middle school, 56.4% of those at high school, 52.7% of those at elementary school, and 31.1% of college students showed positive antibodies (p < 0.001). Seroprevalence was 44.6% for college teachers, 31.6% for middle school teachers, and 29.8% for elementary school teachers, but was only 20.3% for high school teachers (p = 0.002). Conclusions The student group was the group most affected by influenza A/H1N1/2009, while the healthcare worker group showed the lowest prevalence. Students represent a key target for preventive measures. PMID:21855383

  3. Pathogenicity and transmission in pigs of the novel A(H3N2)v influenza virus isolated from humans and characterization of swine H3N2 viruses isolated in 2010-2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in U.S. since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the U.S. was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotype...

  4. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets

    PubMed Central

    Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan

    2016-01-01

    ABSTRACT Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. IMPORTANCE Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. PMID:27122581

  5. High genetic and antigenic similarity between a swine H3N2 influenza A virus and a prior human influenza vaccine virus: a possible immune pressure-driven cross-species transmission.

    PubMed

    Pan, Chungen; Wang, Guiping; Liao, Ming; Zhang, Gui-Hong; Jiang, Shibo

    2009-07-31

    In late April of 2009, a global outbreak of human influenza was reported. The causative agent is a highly unusual reassortant H1N1 influenza virus carrying genetic segments derived from swine, human and avian influenza viruses. In this study, we compared the HA, NA and other gene segments of a swine H3N2 influenza A virus, A/Swine/Guangdong/z5/2003, which was isolated from pigs in 2003 in Guangdong Province, China, to the predominant human and swine H3N2 viruses. We found that the similarity of gene segments of A/Swine/Guangdong/z5/2003 was closer to Moscow/99-like human H3N2 virus than Europe swine H3N2 viruses during 1999-2002. These results suggest that A/Swine/Guangdong/z5/2003 may be porcine in origin, possibly being driven by human immune pressure induced by either natural H3N2 virus infection or use of A/Moscow/10/99 (H3N2)-based human influenza vaccine. The results further confirm that swine may play a dual role as a "shelter" for hosting influenza virus from humans or birds and as a "mixing vessel" for generating reassortant influenza viruses, such as the one causing current influenza pandemic.

  6. Decreased Na+ influx lowers hippocampal neuronal excitability in a mouse model of neonatal influenza infection

    PubMed Central

    Park, Hoyong; Eun Yu, Ji; Kim, Sungmin; Nahm, Sang-Soep; Chung, ChiHye

    2015-01-01

    Influenza virus infection is one of common infectious diseases occurring worldwide. The human influenza virus can infect the central nervous system and cause brain dysfunctions affecting cognition and spatial memory. It has been previously shown that infection with the influenza viral protein within the hippocampus decreases Ca2+ influx and reduces excitatory postsynaptic currents. However, the neuronal properties of animals surviving neonatal infection have not been investigated. Using a mouse model of neonatal influenza infection, we performed thorough electrophysiological analyses of hippocampal neurotransmission. We found that animals surviving the infection exhibited reduced spontaneous transmission with no significant defects in evoked neurotransmission. Interestingly, the hippocampus of the infected group conducted synaptic transmission with less fidelity upon repeated stimulations and failed to generate action potentials faithfully upon step current injections primarily due to reduced Na+ influx. The reversal potential for the Na+ current was hyperpolarized and the activation of Na+ channels was slower in the infected group while the inactivation process was minimally disturbed. Taken together, our observations suggest that neonatally infected offsprings exhibit noticeable deficits at rest and severe failures when higher activity is required. This study provides insight into understanding the cellular mechanisms of influenza infection-associated functional changes in the brain. PMID:26310542

  7. Transmission

    SciTech Connect

    Sugano, K.

    1988-12-27

    A transmission is described which consists of: an input shaft; an output shaft; a first planetary gear set including a first sun gear selectively connectable by a first clutch to the input shaft, a first carrier selectively connectable by a second clutch to the input shaft and a first ring gear connected to the output shaft. The first sun gear selectively held stationary by a first brake, the first carrier is allowed to rotate in the same forward direction as the input shaft when the second clutch is engaged, but prevented from rotating in a reverse direction opposite to the forward direction by a first one-way clutch, the first carrier being selectively held stationary by a second brake; a second planetary gear set including a second sun gear connected to the input shaft, a second carrier connected to the first ring gear and also the the output shaft, and a second ring gear.

  8. Tracking domestic ducks: A novel approach for documenting poultry market chains in the context of avian influenza transmission

    USGS Publications Warehouse

    Choi, Chang-Yong; Takekawa, John Y.; Xiong, Yue; Wikelski, Martin; Heine, George; Prosser, Diann J.; Newman, Scott H.; Edwards, John; Guo, Fusheng; Xiao, Xiangming

    2016-01-01

    Agro-ecological conditions associated with the spread and persistence of highly pathogenic avian influenza (HPAI) are not well understood, but the trade of live poultry is suspected to be a major pathway. Although market chains of live bird trade have been studied through indirect means including interviews and questionnaires, direct methods have not been used to identify movements of individual poultry. To bridge the knowledge gap on quantitative movement and transportation of poultry, we introduced a novel approach for applying telemetry to document domestic duck movements from source farms at Poyang Lake, China. We deployed recently developed transmitters that record Global Positioning System (GPS) locations and send them through the Groupe Spécial Mobile (GSM) cellular telephone system. For the first time, we were able to track individually marked ducks from 3 to 396 km from their origin to other farms, distribution facilities, or live bird markets. Our proof of concept test showed that the use of GPS-GSM transmitters may provide direct, quantitative information to document the movement of poultry and reveal their market chains. Our findings provide an initial indication of the complexity of source-market network connectivity and highlight the great potential for future telemetry studies in poultry network analyses.

  9. Assessing the risk of highly pathogenic avian influenza H5N1 transmission through poultry movements in Bali, Indonesia.

    PubMed

    Roche, Sharon E; Cogger, Naomi; Garner, M Graeme; Putra, Anak Agung Gde; Toribio, Jenny-Ann L M L

    2014-03-01

    Indonesia continues to report the highest number of human and poultry cases of highly pathogenic avian influenza H5N1. The disease is considered to be endemic on the island of Bali. Live bird markets are integral in the poultry supply chain on Bali and are important, nutritionally and culturally, for the rural and urban human populations. Due to the lack of biosecurity practiced along the supply chain from producer to live bird markets, there is a need to understand the risks associated with the spread of H5N1 through live bird movements for effective control. Resources to control H5N1 in Indonesia are very limited and cost effective strategies are needed. We assessed the probability a live bird market is infected through live poultry movements and assessed the effects of implementing two simple and low cost control measures on this risk. Results suggest there is a high risk a live bird market is infected (0.78), and risk mitigation strategies such as detecting and removing infected poultry from markets reduce this risk somewhat (range 0.67-0.76). The study demonstrates the key role live poultry movements play in transmitting H5N1 and the need to implement a variety of control measures to reduce disease spread.

  10. Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice

    PubMed Central

    Pulit-Penaloza, Joanna A.; Sun, Xiangjie; Creager, Hannah M.; Zeng, Hui; Belser, Jessica A.; Maines, Taronna R.

    2015-01-01

    ABSTRACT A novel highly pathogenic avian influenza (HPAI) H5N8 virus, first detected in January 2014 in poultry and wild birds in South Korea, has spread throughout Asia and Europe and caused outbreaks in Canada and the United States by the end of the year. The spread of H5N8 and the novel reassortant viruses, H5N2 and H5N1 (H5Nx), in domestic poultry across multiple states in the United States pose a potential public health risk. To evaluate the potential of cross-species infection, we determined the pathogenicity and transmissibility of two Asian-origin H5Nx viruses in mammalian animal models. The newly isolated H5N2 and H5N8 viruses were able to cause severe disease in mice only at high doses. Both viruses replicated efficiently in the upper and lower respiratory tracts of ferrets; however, the clinical symptoms were generally mild, and there was no evidence of systemic dissemination of virus to multiple organs. Moreover, these influenza H5Nx viruses lacked the ability to transmit between ferrets in a direct contact setting. We further assessed viral replication kinetics of the novel H5Nx viruses in a human bronchial epithelium cell line, Calu-3. Both H5Nx viruses replicated to a level comparable to a human seasonal H1N1 virus, but significantly lower than a virulent Asian-lineage H5N1 HPAI virus. Although the recently isolated H5N2 and H5N8 viruses displayed moderate pathogenicity in mammalian models, their ability to rapidly spread among avian species, reassort, and generate novel strains underscores the need for continued risk assessment in mammals. IMPORTANCE In 2015, highly pathogenic avian influenza (HPAI) H5 viruses have caused outbreaks in domestic poultry in multiple U.S. states. The economic losses incurred with H5N8 and H5N2 subtype virus infection have raised serious concerns for the poultry industry and the general public due to the potential risk of human infection. This recent outbreak underscores the need to better understand the pathogenesis and

  11. Pandemic influenza: certain uncertainties

    PubMed Central

    Morens, David M.; Taubenberger, Jeffery K.

    2011-01-01

    SUMMARY For at least five centuries, major epidemics and pandemics of influenza have occurred unexpectedly and at irregular intervals. Despite the modern notion that pandemic influenza is a distinct phenomenon obeying such constant (if incompletely understood) rules such as dramatic genetic change, cyclicity, “wave” patterning, virus replacement, and predictable epidemic behavior, much evidence suggests the opposite. Although there is much that we know about pandemic influenza, there appears to be much more that we do not know. Pandemics arise as a result of various genetic mechanisms, have no predictable patterns of mortality among different age groups, and vary greatly in how and when they arise and recur. Some are followed by new pandemics, whereas others fade gradually or abruptly into long-term endemicity. Human influenza pandemics have been caused by viruses that evolved singly or in co-circulation with other pandemic virus descendants and often have involved significant transmission between, or establishment of, viral reservoirs within other animal hosts. In recent decades, pandemic influenza has continued to produce numerous unanticipated events that expose fundamental gaps in scientific knowledge. Influenza pandemics appear to be not a single phenomenon but a heterogeneous collection of viral evolutionary events whose similarities are overshadowed by important differences, the determinants of which remain poorly understood. These uncertainties make it difficult to predict influenza pandemics and, therefore, to adequately plan to prevent them. PMID:21706672

  12. Living in "survival mode:" Intergenerational transmission of trauma from the Holodomor genocide of 1932-1933 in Ukraine.

    PubMed

    Bezo, Brent; Maggi, Stefania

    2015-06-01

    Qualitative methodology was used to investigate the intergenerational impact of the 1932-1933 Holodomor genocide on three generations in 15 Ukrainian families. Each family, residing in Ukraine, consisted of a first generation survivor, a second generation adult child and a third generation adult grandchild of the same line. The findings show that the Holodomor, a genocide that claimed millions of lives by forced starvation, still exerts substantial effects on generations born decades later. Specifically, thematic analysis of the 45 semi-structured, in-depth interviews, done between July and November 2010, revealed that a constellation of emotions, inner states and trauma-based coping strategies emerged in the survivors during the genocide period and were subsequently transmitted into the second and third generations. This constellation, summarized by participants as living in "survival mode," included horror, fear, mistrust, sadness, shame, anger, stress and anxiety, decreased self-worth, stockpiling of food, reverence for food, overemphasis on food and overeating, inability to discard unneeded items, an indifference toward others, social hostility and risky health behaviours. Since both the family and community-society were found to be involved in trauma transmission, the findings highlight the importance of multi-framework approaches for studying and healing collective trauma.

  13. Surviving the crisis: Adaptive wisdom, coping mechanisms and local responses to avian influenza threats in Haining, China.

    PubMed

    Zhang, Letian; Pan, Tianshu

    2008-04-01

    Based on ethnographic research conducted in the summer of 2006, this paper examines local responses to the imminent threat of avian flu in Haining County of Zhejiang Province. During our field investigation, we conducted interviews with officials from local medical institutions (including the hospitals, the animal husbandry and veterinary station, and health clinics), to bureaus of public health and agro-economy. We also visited chicken farms, restaurants and farming households. We address the following factors that commonly structured the perceptions and actions of different social actors in the area of study: The changing mode of information-sharing and communication practices in the local communities; the official drive to professionalize the emergency response management system in the county; and the coping mechanisms that helped the villagers and town residents to weather the storm of avian flu. Our field research suggests that collective survival consciousness was translated into a spirit of voluntarism during the crisis. One important practical lesson we have learned from this study is that the adaptive wisdom embedded in local memories demonstrated its operational worth as a resourceful knowledge base for ordinary farmers to deal with food shortage, famine, plague and future pandemics.

  14. Nicotinamide ribosyl uptake mutants in Haemophilus influenzae.

    PubMed

    Herbert, Mark; Sauer, Elizabeta; Smethurst, Graeme; Kraiss, Anita; Hilpert, Anna-Karina; Reidl, Joachim

    2003-09-01

    The gene for the nicotinamide riboside (NR) transporter (pnuC) was identified in Haemophilus influenzae. A pnuC mutant had only residual NR uptake and could survive in vitro with high concentrations of NR, but could not survive in vivo. PnuC may represent a target for the development of inhibitors for preventing H. influenzae disease.

  15. Low temperature and dust favour in vitro survival of Mycoplasma hyopneumoniae: time to revisit indirect transmission in pig housing.

    PubMed

    Browne, C; Loeffler, A; Holt, H R; Chang, Y M; Lloyd, D H; Nevel, A

    2017-01-01

    Porcine enzootic pneumonia (EP) caused by Mycoplasma hyopneumoniae adversely affects pig welfare and is associated with major economic losses in the pig industry worldwide. Transmission is predominantly by direct contact, but the role of indirect transmission remains poorly understood. This study examined survival of six M. hyopneumoniae isolates dried onto five different surfaces encountered in pig units and exposed to temperatures of 4, 25 and 37°C for up to 12 days. Survival of the organisms was determined by recovering the organism from the surface material and culturing in Friis broth. Data were analysed by logistic regression to identify factors influencing survival of M. hyopneumoniae. Maximum survival was 8 days for all isolates on at least one surface (except stainless steel) at 4°C and was limited to 2 days at 25 and 37°C. Overall, dust and polypropylene copolymer supported M. hyopneumoniae survival the longest when compared with other surface materials. In conclusion, we have demonstrated that M. hyopneumoniae can survive outside the host for at least 8 days.

  16. Attenuated influenza A vaccine (Alice) in an adult population: vaccine-related illness, serum and nasal antibody production, and intrafamily transmission.

    PubMed Central

    Minor, T E; Dick, E C; Dick, C R; Inhorn, S L

    1975-01-01

    Ninety-five healthy adults, ages 18 to 56 years, received two intranasal doses, 2 weeks apart, of a live, attenuated, influenza type A (H3N2) vaccine (an inhibitor-resistant recombinant strain of A/England/42/72 named "Alice"). Ninety-two persons were given placebos similarly. Ninety-three percent of 68 subjects with initial serum hemagglutination-inhibition (HI) titers of greater than or equal to 1:40 to influenza A (H3N2) had a fourfold or greater antibody increase in postvaccination sera. Forty-four percent of 27 subjects with an initial HI titer of greater than or equal to 1:80 had similar increases. Overall, 77% of vaccinees had fourfold or greater antibody titer increases. Vaccinees had geometric mean serum HI titers (GMT) of 1:26, 1:123, and 1:166 at 0, 14, and 30 days, respectively. The GMTs for placebos were 1:21, 1:22, and 1:21. Thirty-five vaccinees were examined for both serum and nasal antibody; 89% had significant increases in one or both. Nasal antibody response was directly related to the level of initial serum HI titer in that 83% of 12 persons with prevaccination HI titers of 1:80 greater than or equal to 1:80 showed significant nasal antibody rises, whereas only 61% of the remaining 23 subjects with prevaccination HI titers of less than or equal to 1:40 did so. The number and severity of clinical signs and symptoms reported by vaccinees and placebos did not differ significantly. The greatest differences noted between groups were for nasal congestion on days 0 to 6 (8.3%) and rhinitis on days 14 to 20 (5.9%). Four vaccinees shed Alice after primary vaccination, but viral titers were low (10 to 100 tissue culture-infective doses/ml). One member in each of 15 cohabiting male-female couples received Alice while the other received a placebo; one of the placebo members had significant increases in serum and nasal antibody, indicating a possible transmission. PMID:1104655

  17. Towards multiscale modeling of influenza infection

    PubMed Central

    Murillo, Lisa N.; Murillo, Michael S.; Perelson, Alan S.

    2013-01-01

    Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately. PMID:23608630

  18. Viral Reassortment and Transmission after Coinfection of Pigs with Classical H1N1 and Triple Reassortant H3N2 Swine Influenza Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triple reassortant swine influenza viruses circulating in North American pigs contain the internal genes derived from swine (NP, M, NS), human (PB1) and avian (PA and PB2) influenza viruses forming a constellation of genes that is well conserved and called the triple reassortant internal gene (TRIG)...

  19. Benefits and Risks of Influenza Research: Lessons Learned

    PubMed Central

    Fauci, Anthony S.; Collins, Francis S.

    2012-01-01

    Given the yearly challenge of seasonal influenza and the potential catastrophic consequences of future pandemics, the need for intensive basic and clinical influenza research is unquestionable. Although the fruits of decades of research have enabled dramatic improvements in our ability to prevent and treat influenza, many fundamental questions remain, including those related to the complex factors associated with host switching and transmission of influenza viruses. Recent public concern over two H5N1 influenza manuscripts that studied the transmissibility of influenza viruses has triggered intense discussion on dual-use research and the way forward. PMID:22723407

  20. Public perceptions of the transmission of pandemic influenza A/H1N1 2009 from pigs and pork products in Australia.

    PubMed

    Dhand, Navneet K; Hernandez-Jover, Marta; Taylor, Melanie; Holyoake, Patricia

    2011-02-01

    A cross-sectional study was conducted at the height of the pandemic influenza H1N1/09 outbreak in Australia in 2009. The objectives of the study were to evaluate public perceptions about transmission and prevention of the disease, to understand their concerns and preparedness to cope with the disease, and to investigate drivers influencing their behaviour. A questionnaire was designed and administered to 510 customers visiting 15 butcher shops in the Greater Sydney region between 26th June and 2nd August 2009. Data were analysed to estimate the proportion of people with certain perceptions and to evaluate the influence of these perceptions on two binary outcome variables: (1) whether or not people believed that avoiding pork would protect them from contracting H1N1/09, and (2) whether or not they actually made some changes to pork consumption after the outbreak. A majority of the respondents had perceptions based on fact about transmission and prevention of H1N1/09. As many as 96.8% of the respondents believed that washing their hands frequently was likely to protect them from contracting H1N1/09. Similarly, most believed that they could contract H1N1/09 by travelling on public transport with a sick person present (94.1%), by shaking hands with a sick person (89.2%), or by attending a community gathering (73.7%). Women were more likely than men to have factual perceptions about protective behaviours. Misconceptions regarding transmission of the disease were evident, with 21.7% believing that avoiding eating pork could protect them against H1N1/09, 11.1% believing that they could contract H1N1/09 by drinking tap water, 22.8% by handling uncooked pork meat and 15.6% by eating cooked pork. Approximately one third of respondents believed that working in a pig farm or an abattoir increased their likelihood of contracting H1N1/09 (36.9% and 32.3%, respectively). Younger people (<35 years old) were more likely to have these misconceptions than older people. Reduction in

  1. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution.

    PubMed

    Ghedin, Elodie; Sengamalay, Naomi A; Shumway, Martin; Zaborsky, Jennifer; Feldblyum, Tamara; Subbu, Vik; Spiro, David J; Sitz, Jeff; Koo, Hean; Bolotov, Pavel; Dernovoy, Dmitry; Tatusova, Tatiana; Bao, Yiming; St George, Kirsten; Taylor, Jill; Lipman, David J; Fraser, Claire M; Taubenberger, Jeffery K; Salzberg, Steven L

    2005-10-20

    Influenza viruses are remarkably adept at surviving in the human population over a long timescale. The human influenza A virus continues to thrive even among populations with widespread access to vaccines, and continues to be a major cause of morbidity and mortality. The virus mutates from year to year, making the existing vaccines ineffective on a regular basis, and requiring that new strains be chosen for a new vaccine. Less-frequent major changes, known as antigenic shift, create new strains against which the human population has little protective immunity, thereby causing worldwide pandemics. The most recent pandemics include the 1918 'Spanish' flu, one of the most deadly outbreaks in recorded history, which killed 30-50 million people worldwide, the 1957 'Asian' flu, and the 1968 'Hong Kong' flu. Motivated by the need for a better understanding of influenza evolution, we have developed flexible protocols that make it possible to apply large-scale sequencing techniques to the highly variable influenza genome. Here we report the results of sequencing 209 complete genomes of the human influenza A virus, encompassing a total of 2,821,103 nucleotides. In addition to increasing markedly the number of publicly available, complete influenza virus genomes, we have discovered several anomalies in these first 209 genomes that demonstrate the dynamic nature of influenza transmission and evolution. This new, large-scale sequencing effort promises to provide a more comprehensive picture of the evolution of influenza viruses and of their pattern of transmission through human and animal populations. All data from this project are being deposited, without delay, in public archives.

  2. Meningitis - H. influenzae

    MedlinePlus

    ... influenzae meningitis; H. flu meningitis; Haemophilus influenzae type b meningitis ... influenzae meningitis is caused by Haemophilus influenzae type b bacteria. This illness is not the same as ...

  3. SWINE INFLUENZA

    PubMed Central

    Shope, Richard E.

    1931-01-01

    1. It has been possible to demonstrate, in Berkefeld filtrates of infectious material from experimental cases of swine influenza, a virus which when administered intranasally to susceptible swine induced a mild, usually afebrile illness of short duration. The changes in the respiratory tract resembled those in swine influenza but were usually much less extensive. When the filtrable virus was mixed with pure cultures of H. influenzae suis and administered to swine a disease identical clinically and pathologically with swine influenza was induced. The data presented indicate that the filtrable virus of swine influenza and H. influenzae suis act in concert to produce swine influenza and that neither alone is capable of inducing the disease. 2. One attack of swine influenza usually renders an animal immune to reinfection. Blood serum from an animal made immune in this way neutralizes infectious material from swine influenza in vitro, as shown by the failure of the mixture to produce disease in a susceptible animal. 3. The virus can be stored in a dried state or in glycerol for several weeks at least. In one instance dried material apparently retained both the virus and H. influenzas suis in viable form for a period of 54 days. 4. Fatal cases of experimental swine influenza have been observed in which H. influenzae suis was the only organism that could be cultivated from the respiratory tract. 5. Attention has been called to some features of marked similarity between epizootic swine influenzae and epidemic influenzae in man. PMID:19869924

  4. The T160A hemagglutinin substitution affects not only receptor binding property but also transmissibility of H5N1 clade 2.3.4 avian influenza virus in guinea pigs.

    PubMed

    Gu, Min; Li, Qunhui; Gao, Ruyi; He, Dongchang; Xu, Yunpeng; Xu, Haixu; Xu, Lijun; Wang, Xiaoquan; Hu, Jiao; Liu, Xiaowen; Hu, Shunlin; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2017-02-06

    We generated and characterized site-directed HA mutants on the genetic backbone of H5N1 clade 2.3.4 virus preferentially binding to α-2,3 receptors in order to identify the key determinants in hemagglutinin rendering the dual affinity to both α-2,3 (avian-type) and α-2,6 (human-type) linked sialic acid receptors of the current clade 2.3.4.4 H5NX subtype avian influenza reassortants. The results show that the T160A substitution resulted in the loss of a glycosylation site at 158N and led not only to enhanced binding specificity for human-type receptors but also transmissibility among guinea pigs, which could be considered as an important molecular marker for assessing pandemic potential of H5 subtype avian influenza isolates.

  5. A retrospective description of a highly pathogenic avian influenza A virus (H7N1/Carduelis/Germany/72) in a free-living siskin (Carduelis spinus Linnaeus, 1758) and its accidental transmission to yellow canaries (Serinus canaria Linnaeus, 1758).

    PubMed

    Kaleta, E F; Hönicke, A

    2005-01-01

    A haemagglutinating virus was isolated in summer 1972 from a single free-living siskin (Carduelis spinus Linnaeus, 1758) in embryonated chicken eggs. Additional cases of morbidity or mortality were not observed in the area were the sick siskin was found. The virus was characterized as an avian influenza A virus of the subtype H7N1 and designated H7N1/Carduelis/Germany/72. The virus induced following experimental inoculation of chicken embryos a high rate mortality (mean death time approximately 24 hours), formed plaques in chicken embryo fibroblast cultures without addition of trypsin and has an intracerebral pathogenicity index (ICPI) of 1.80. Therefore, this virus is considered as a highly pathogenic avian influenza A virus. Canaries (Serinus canarius Linnaeus, 1758), that were housed in the same room with the siskin were accidentially exposed by contact to the sick siskin which resulted in virus transmission followed by conjunctivitis, apathy, anorexia and a high rate mortality.

  6. Incidence of Avian Influenza in Adamawa State, Nigeria: The Epidemiology, Economic Losses and the Possible Role of Wild Birds in the Transmission of the Disease

    NASA Astrophysics Data System (ADS)

    Ja`Afar-Furo, M. R.; Balla, H. G.; Tahir, A. S.; Haskainu, C.

    Reducing the huge economic losses due to diseases in poultry as the second largest industry in Nigeria after oil means improving the protein intake of the majority. Similarly, this will also promotes a steady income for the teeming farmers. This study investigated the incidence of the lethal avian influenza in Adamawa State, Nigeria, with particular emphasis on the socio-economic and cultural activities of the poultry farmers, economic losses and the possible role of wild birds in the transmission of the disease. Data were collected from 316 and 458 direct and indirect respondents, respectively, from 6 affected villages and a town in 2 Local Government Areas (LGAs): Girei and Yola-North. Results revealed that a larger (25.71%) proportion of the respondents fell within the age range of 31-40 years, with majority (54.91%) as females. While the bulk (54.65%) of the respondents were illiterates, 95.47% of the direct respondents derived their incomes from crop production, whereas 59.17% of the indirect respondents from livestock rearing. About 26,049 birds worth N13, 454,800.00 was cumulative economic loss incurred by the poultry farmers, whereas that of the government was put at N1, 119,781.10. Of the mortalities experienced in the wildlife before the outbreak of the disease, Bubulcus ibis (64.29) and Tadarida nigeriae (86.36) were the highest. The study recommends a massive rural extension on Poultry Production with absolute biosecurity, involving all stakeholders (Veterinary Surgeons, Animal Scientists/health workers, wildlife specialists, Agricultural Economists, Information Officers etc.) in a collaborative form for high synergistic effects.

  7. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection

    PubMed Central

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-01-01

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles. PMID:27275830

  8. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection.

    PubMed

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-06-06

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles.

  9. Development of live attenuated influenza vaccines against pandemic influenza strains.

    PubMed

    Coelingh, Kathleen L; Luke, Catherine J; Jin, Hong; Talaat, Kawsar R

    2014-07-01

    Avian and animal influenza viruses can sporadically transmit to humans, causing outbreaks of varying severity. In some cases, further human-to-human virus transmission does not occur, and the outbreak in humans is limited. In other cases, sustained human-to-human transmission occurs, resulting in worldwide influenza pandemics. Preparation for future pandemics is an important global public health goal. A key objective of preparedness is to gain an understanding of how to design, test, and manufacture effective vaccines that could be stockpiled for use in a pandemic. This review summarizes results of an ongoing collaboration to produce, characterize, and clinically test a library of live attenuated influenza vaccine strains (based on Ann Arbor attenuated Type A strain) containing protective antigens from influenza viruses considered to be of high pandemic potential.

  10. Revealing the True Incidence of Pandemic A(H1N1)pdm09 Influenza in Finland during the First Two Seasons - An Analysis Based on a Dynamic Transmission Model.

    PubMed

    Shubin, Mikhail; Lebedev, Artem; Lyytikäinen, Outi; Auranen, Kari

    2016-03-01

    The threat of the new pandemic influenza A(H1N1)pdm09 imposed a heavy burden on the public health system in Finland in 2009-2010. An extensive vaccination campaign was set up in the middle of the first pandemic season. However, the true number of infected individuals remains uncertain as the surveillance missed a large portion of mild infections. We constructed a transmission model to simulate the spread of influenza in the Finnish population. We used the model to analyse the two first years (2009-2011) of A(H1N1)pdm09 in Finland. Using data from the national surveillance of influenza and data on close person-to-person (social) contacts in the population, we estimated that 6% (90% credible interval 5.1 - 6.7%) of the population was infected with A(H1N1)pdm09 in the first pandemic season (2009/2010) and an additional 3% (2.5 - 3.5%) in the second season (2010/2011). Vaccination had a substantial impact in mitigating the second season. The dynamic approach allowed us to discover how the proportion of detected cases changed over the course of the epidemic. The role of time-varying reproduction number, capturing the effects of weather and changes in behaviour, was important in shaping the epidemic.

  11. Swine Influenza/Variant Influenza Viruses

    MedlinePlus

    ... Past Newsletters Information on Swine Influenza/Variant Influenza Virus Language: English Español Recommend on Facebook Tweet ... disease of pigs caused by type A influenza viruses that regularly cause outbreaks of influenza in pigs. ...

  12. On-farm study of human contact networks to document potential pathways for avian influenza transmission between commercial poultry farms in Ontario, Canada.

    PubMed

    Burns, T E; Guerin, M T; Kelton, D; Ribble, C; Stephen, C

    2011-12-01

    Human movements associated with poultry farming create contact networks that might facilitate transmission of avian influenza (AI) between farms during outbreaks. In Canada, no information is available about how these networks connect poultry farms. The purpose of this study was to document human contacts between commercial poultry farms in Ontario, Canada, to learn how AI might be transmitted during outbreaks. We used face-to-face interviews with people entering the farm biosecurity perimeter on four layer, one turkey and three broiler breeder poultry farms in Ontario to collect information on between-farm contacts and biosecurity practices. Over a four-day study period on each farm, a median of 10.5 people entered the farm biosecurity perimeter (range 2-31). Ninety-six per cent (111/118) of people consented to be interviewed. Of these, fifty-three per cent (59/111) had contact with one or more (median 2, degree range 1-14) other poultry farms within 72 h. A median of 25 (range 7-65) human contacts linked study farms to other poultry farms. The mean distance of between-farm contacts was 53 km. Eighty-six per cent of people who answered the biosecurity questions (94/109) reported using one or more biosecurity practices. However, on 7/8 farms, at least one person reported that they did not use any biosecurity practices. Fifty per cent of social visitors used biosecurity, whereas 96% of all other people used biosecurity. Ninety-two per cent of people that entered the poultry barns (46/50) used one or more biosecurity practices, whereas 81% of people (48/59) that did not enter the poultry barns used one or more biosecurity practices. Because our study documented farm visitors who did not use any biosecurity practices and moved between commercial poultry farms, we suggest that rapid trace-out of human movements is as important as containment zoning to limiting disease spread during an outbreak of highly pathogenic AI in Ontario.

  13. Comparison against 186 canid whole-genome sequences reveals survival strategies of an ancient clonally transmissible canine tumor.

    PubMed

    Decker, Brennan; Davis, Brian W; Rimbault, Maud; Long, Adrienne H; Karlins, Eric; Jagannathan, Vidhya; Reiman, Rebecca; Parker, Heidi G; Drögemüller, Cord; Corneveaux, Jason J; Chapman, Erica S; Trent, Jeffery M; Leeb, Tosso; Huentelman, Matthew J; Wayne, Robert K; Karyadi, Danielle M; Ostrander, Elaine A

    2015-11-01

    Canine transmissible venereal tumor (CTVT) is a parasitic cancer clone that has propagated for thousands of years via sexual transfer of malignant cells. Little is understood about the mechanisms that converted an ancient tumor into the world's oldest known continuously propagating somatic cell lineage. We created the largest existing catalog of canine genome-wide variation and compared it against two CTVT genome sequences, thereby separating alleles derived from the founder's genome from somatic mutations that must drive clonal transmissibility. We show that CTVT has undergone continuous adaptation to its transmissible allograft niche, with overlapping mutations at every step of immunosurveillance, particularly self-antigen presentation and apoptosis. We also identified chronologically early somatic mutations in oncogenesis- and immune-related genes that may represent key initiators of clonal transmissibility. Thus, we provide the first insights into the specific genomic aberrations that underlie CTVT's dogged perseverance in canids around the world.

  14. Reverse zoonosis of influenza to swine: new perspectives on the human–animal interface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to sw...

  15. Pandemic influenza: a zoonosis?

    PubMed

    Shortridge, K F

    1992-03-01

    In the last two decades, influenza A viruses have been found to occur throughout the animal kingdom, mainly in birds, notably aquatic ones, in which infection is largely intestinal, waterborne, and asymptomatic. The domestic duck of southern China, raised in countless numbers all year round mainly as an adjunct to rice farming, is the principal host of influenza A viruses. Studies based on Hong Kong H3N2 viruses from southern China suggest that pandemic strains originate from the domestic duck there and are transmitted to humans via the domestic pig, which acts as a "mixing vessel" for two-way transmission of viruses. This provides further support for the hypothesis that the region is a hypothetical influenza epicenter. Rural dwellers in the epicenter show serological evidence of contact with non-human influenza A viruses. Two hypotheses are advanced for the range of hemagglutinin (HA) subtypes of viruses that can cause pandemics (1) circle or cycle limited to H1, H2, and H3 subtypes, thereby implying that a virus of the H2 subtype will cause the next pandemic; and (2) spiral, by which any one of the 14 HA subtypes recorded to date may be involved. Consideration is given to the temporal and geographical factors and range of hosts, namely the duck, pig, and human, that need to be submitted to virus surveillance in China and beyond to attempt to anticipate a future pandemic. Evidence is presented that points strongly to pandemic influenza being a zoonosis.

  16. Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals

    PubMed Central

    Kaplan, Bryan S.; Russier, Marion; Jeevan, Trushar; Marathe, Bindumadhav; Govorkova, Elena A.; Russell, Charles J.; Kim-Torchetti, Mia; Choi, Young Ki; Brown, Ian; Saito, Takehiko; Stallknecht, David E.; Krauss, Scott

    2016-01-01

    ABSTRACT Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes

  17. Cluster of new influenza A(H1N1) cases in travellers returning from Scotland to Greece - community transmission within the European Union?

    PubMed

    Panagiotopoulos, T; Bonovas, S; Danis, K; Iliopoulos, D; Dedoukou, X; Pavli, A; Smeti, P; Mentis, A; Kossivakis, A; Melidou, A; Diza, E; Chatzidimitriou, D; Koratzanis, E; Michailides, S; Passalidou, E; Kollaras, P; Nikolaides, P; Tsiodras, S

    2009-05-28

    On 26 and 27 May, the Hellenic Centre for Disease Control and Prevention in Greece reported two confirmed cases of new influenza A(H1N1) virus infection in travellers returning from Scotland. The two cases had no apparent traceable links to an infectious source. Herein we report details of the two cases and potential public health implications.

  18. Use of Nonpharmaceutical Interventions to Reduce Transmission of 2009 Pandemic Influenza A (pH1N1) in Pennsylvania Public Schools

    ERIC Educational Resources Information Center

    Miller, Jeffrey R.; Short, Vanessa L.; Wu, Henry M.; Waller, Kirsten; Mead, Paul; Kahn, Emily; Bahn, Beth A; Dale, Jon W.; Nasrullah, Muazzam; Walton, Sabrina E.; Urdaneta, Veronica; Ostroff, Stephen; Averhoff, Francisco

    2013-01-01

    Background: School-based recommendations for nonpharmaceutical interventions (NPIs) were issued in response to the threat of 2009 pandemic influenza A (pH1N1). The implementation and effectiveness of these recommendations has not been assessed. Methods: In November 2009, a Web-based survey of all Pennsylvania public schools was conducted to assess…

  19. The controversy over H5N1 transmissibility research: an opportunity to define a practical response to a global threat.

    PubMed

    Fedson, David S; Opal, Steven M

    2013-05-01

    Since December 2011, influenza virologists and biosecurity experts have been engaged in a controversial debate over research on the transmissibility of H5N1 influenza viruses. Influenza virologists disagreed with the NSABB's recommendation not to publish experimental details of their findings, whereas biosecurity experts wanted the details to be withheld and future research restricted. The virologists initially declared a voluntary moratorium on their work, but later the NSABB allowed their articles to be published, and soon transmissibility research will resume. Throughout the debate, both sides have had understandable views, but both have overlooked the more important question of whether anything could be done if one of these experimentally derived viruses or a naturally occurring and highly virulent influenza virus should emerge and cause a global pandemic. This is a crucial question, because during the 2009 H1N1 influenza pandemic, more than 90% of the world's people had no access to timely supplies of affordable vaccines and antiviral agents. Observational studies suggest that inpatient statin treatment reduces mortality in patients with laboratory-confirmed seasonal influenza. Other immunomodulatory agents (glitazones, fibrates and AMPK agonists) improve survival in mice infected with influenza viruses. These agents are produced as inexpensive generics in developing countries. If they were shown to be effective, they could be used immediately to treat patients in any country with a basic health care system. For this reason alone, influenza virologists and biosecurity experts need to join with public health officials to develop an agenda for laboratory and clinical research on these agents. This is the only approach that could yield practical measures for a global response to the next influenza pandemic.

  20. [An overview on swine influenza viruses].

    PubMed

    Yang, Shuai; Zhu, Wen-Fei; Shu, Yue-Long

    2013-05-01

    Swine influenza viruses (SIVs) are respiratory pathogens of pigs. They cause both economic bur den in livestock-dependent industries and serious global public health concerns in humans. Because of their dual susceptibility to human and avian influenza viruses, pigs are recognized as intermediate hosts for genetic reassortment and interspecies transmission. Subtypes H1N1, H1N2, and H3N2 circulate in swine populations around the world, with varied origin and genetic characteristics among different continents and regions. In this review, the role of pigs in evolution of influenza A viruses, the genetic evolution of SIVs and interspecies transmission of SIVs are described. Considering the possibility that pigs might produce novel influenza viruses causing more outbreaks and pandemics, routine epidemiological surveillance of influenza viruses in pig populations is highly recommended.

  1. Influenza and humidity--Why a bit more damp may be good for you!

    PubMed

    Metz, Jane A; Finn, Adam

    2015-06-01

    Influenza viruses cause much winter-time morbidity and death in temperate regions. We still do not understand why 'flu is more common in winter. Since the 1960s, investigators have studied the role of relative humidity and temperature on viral survival, transmission and infection rates but results have demonstrated only inconclusive trends. Over the past few years however, a series of exciting studies have instead focussed on absolute humidity and demonstrated highly significant correlations with viral survival and transmission rates in both laboratory and epidemiological models. Here we review the evidence for a causal association between absolute humidity and 'flu transmission and outline how this could lead to a new approach to curbing this and perhaps other viral epidemics in the winter months.

  2. Seroprevalence and Transmission of Human Influenza A(H5N1) Virus before and after Virus Reassortment, Cambodia, 2006–2014

    PubMed Central

    Ly, Sowath; Horwood, Paul; Chan, Malen; Rith, Sareth; Sorn, Sopheak; Oeung, Kunthea; Nguon, Kunthy; Chan, Siam; Y, Phalla; Parry, Amy; Tsuyuoka, Reiko; Ly, Sovann; Richner, Beat; Laurent, Denis; Vong, Sirenda; Dussart, Philippe; Buchy, Philippe

    2017-01-01

    Thirty-five human influenza A(H5N1) cases were reported in Cambodia during 2013–2014 after emergence of a clade 1.1.2 reassortant virus. We tested 881 villagers and found 2 cases of pauci- or asymptomatic infection. Seroprevalence after emergence of the reassortant strain (0.2%) was lower than the aggregate seroprevalence of 1.3% reported in earlier studies. PMID:28098551

  3. Experimental Transmission of African Swine Fever (ASF) Low Virulent Isolate NH/P68 by Surviving Pigs.

    PubMed

    Gallardo, C; Soler, A; Nieto, R; Sánchez, M A; Martins, C; Pelayo, V; Carrascosa, A; Revilla, Y; Simón, A; Briones, V; Sánchez-Vizcaíno, J M; Arias, M

    2015-12-01

    African swine fever (ASF) has persisted in Eastern Europe since 2007, and two endemic zones have been identified in the central and southern parts of the Russian Federation. Moderate- to low-virulent ASF virus isolates are known to circulate in endemic ASF-affected regions. To improve our knowledge of virus transmission in animals recovered from ASF virus infection, an experimental in vivo study was carried out. Four domestic pigs were inoculated with the NH/P68 ASF virus, previously characterized to develop a chronic form of ASF. Two additional in-contact pigs were introduced at 72 days post-inoculation (dpi) in the same box for virus exposure. The inoculated pigs developed a mild form of the disease, and the virus was isolated from tissues in the inoculated pigs up to 99 dpi (pigs were euthanized at 36, 65, 99 and 134 dpi). In-contact pigs showed mild or no clinical signs, but did become seropositive, and a transient viraemia was detected at 28 days post-exposure (dpe), thereby confirming late virus transmission from the inoculated pigs. Virus transmission to in-contact pigs occurred at four weeks post-exposure, over three months after the primary infection. These results highlight the potential role of survivor pigs in disease maintenance and dissemination in areas where moderate- to low-virulent viruses may be circulating undetected. This study will help design better and more effective control programmes to fight against this disease.

  4. Evolution and ecology of influenza A viruses.

    PubMed Central

    Webster, R G; Bean, W J; Gorman, O T; Chambers, T M; Kawaoka, Y

    1992-01-01

    In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii

  5. Evolution and ecology of influenza A viruses.

    PubMed

    Webster, R G; Bean, W J; Gorman, O T; Chambers, T M; Kawaoka, Y

    1992-03-01

    In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii

  6. The influence of climatic conditions on the transmission dynamics of the 2009 A/H1N1 influenza pandemic in Chile

    PubMed Central

    2012-01-01

    Background The role of demographic factors, climatic conditions, school cycles, and connectivity patterns in shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the spatial, age and temporal evolution of the 2009 A/H1N1 influenza pandemic in Chile, a southern hemisphere country covering a long and narrow strip comprising latitudes 17°S to 56°S. Methods We analyzed the dissemination patterns of the 2009 A/H1N1 pandemic across 15 regions of Chile based on daily hospitalizations for severe acute respiratory disease and laboratory confirmed A/H1N1 influenza infection from 01-May to 31-December, 2009. We explored the association between timing of pandemic onset and peak pandemic activity and several geographical and demographic indicators, school vacations, climatic factors, and international passengers. We also estimated the reproduction number (R) based on the growth rate of the exponential pandemic phase by date of symptoms onset, estimated using maximum likelihood methods. Results While earlier pandemic onset was associated with larger population size, there was no association with connectivity, demographic, school or climatic factors. In contrast, there was a latitudinal gradient in peak pandemic timing, representing a 16-39-day lag in disease activity from the southern regions relative to the northernmost region (P < 0.001). Geographical differences in latitude of Chilean regions, maximum temperature and specific humidity explained 68.5% of the variability in peak timing (P = 0.01). In addition, there was a decreasing gradient in reproduction number from south to north Chile (P < 0.0001). The regional mean R estimates were 1.6-2.0, 1.3-1.5, and 1.2-1.3 for southern, central and northern regions, respectively, which were not affected by the winter vacation period. Conclusions There was a lag in the period of most intense 2009 pandemic influenza activity following a South to North traveling pattern across regions

  7. A spatial individual-based model predicting a great impact of copious sugar sources and resting sites on survival of Anopheles gambiae and malaria parasite transmission

    USGS Publications Warehouse

    Zhu, Lin; Qualls, Whitney A.; Marshall, John M; Arheart, Kris L.; DeAngelis, Don; McManus, John W.; Traore, Sekou F.; Doumbia, Seydou; Schlein, Yosef; Muller, Gunter C.; Beier, John C.

    2015-01-01

    distributed in the whole village compared to clustering around outdoor resting sites or houses.ConclusionsIncreases in densities of sugar sources or outdoor resting sites significantly increase the survival and human biting rates of An. gambiae mosquitoes. Survival of An. gambiae is more supported by random distribution of sugar sources than clustering of sugar sources around resting sites or houses. Density and spatial distribution of natural sugar sources and outdoor resting sites modulate vector populations and human biting rates, and thus malaria parasite transmission.

  8. Influenza surveillance

    PubMed Central

    Pereira, M.; Assaad, F. A.; Delon, P. J.

    1978-01-01

    The main objectives of influenza surveillance are: to measure the impact of the disease by collection and analysis of epidemiological information on morbidity and mortality, and to anticipate future epidemics and pandemics by the collection and analysis of influenza viruses. The World Health Organization's influenza programme is based on the collaboration of 98 national influenza centres in 70 countries and the 2 WHO Collaborating Centres in Atlanta and London. Epidemiological information may be based on morbidity figures derived from a variety of sources such as returns from physicians or hospitals; mortality statistics or new claims for sickness benefit; school or industrial absenteeism, etc. The laboratory aspects of influenza epidemiology are certainly more uniformly covered than the statistical aspects. Since the advent of the A/Hong Kong/1/68 (H3N2) influenza virus A subtype there have been a number of variants with antigenic ”drift” but only three succeeded in causing widespread epidemics: A/England/42/72, A/Port Chalmers/1/73, and A/Victoria/3/75. In 1972, the influenza B virus also showed some antigenic ”drift”, the new variants being characterized by B/Hong Kong/5/72. Whenever a new variant appears, the degree of protection afforded to the population by the available vaccine is assessed. In the light of these data, WHO publishes annually in the Weekly epidemiological record recommendations formulated by the WHO Collaborating Centres on vaccine composition. PMID:78771

  9. How Ambient Humidity May Affect the Transmission of Viral Infectious Diseases

    NASA Astrophysics Data System (ADS)

    Yang, Wan; Marr, Linsey; Elankumaran, Subbiah

    2013-04-01

    Viral infectious diseases such as influenza have been a great burden to public health. The airborne transmission route is an important venue for the spread of many respiratory viral diseases. Many airborne viruses have been shown to be sensitive to ambient humidity, yet the mechanisms responsible for this phenomenon remain elusive. A thorough understanding of this phenomenon may provide insight into the temporal and spatial distribution of diseases. For instance, studies have repeatedly suggested ambient humidity as an important environmental determinant in the transmission of influenza in temperate regions. Further, knowing how to optimize humidity so as to minimize virus survival may have practical implications for disease prevention. In this talk, we will discuss multiple mechanisms that may account for the association between humidity and viability of viruses in aerosols, including water activity, surface inactivation, salt toxicity, and conformational changes to the virus in response to varying pH. As a case study, we will discuss our work on the effect of relative humidity (RH) on survival of influenza A virus (IAV) and how it may contribute to the transmission patterns of seasonal flu around the world. We measured the change in viability of IAV in droplets at various RHs. Results suggest three potential regimes defined by humidity: physiological (~100% RH) with high viability, concentrated (~50% to near 100% RH) with lower viability, and dry (<~50% RH) with high viability. Based on these results, we propose a mechanistic basis for the dependence of IAV's transmission on humidity. In temperate regions, the increase in influenza activity in winter may be due to enhanced transmission via the aerosol route thanks to IAV's higher viability in droplets at low RH. In tropical regions, transmission could be enhanced due to high viability of IAV at extremely high RH (rainy season), as observed in our study, possibly through both the aerosol route and the contact

  10. Lessons learned from reconstructing the 1918 influenza pandemic.

    PubMed

    Garcia-Sastre, Adolfo; Whitley, Richard J

    2006-11-01

    The "Spanish influenza" pandemic of 1918 was the most devastating influenza epidemic reported in history and killed >30 million people worldwide. The factors contributing to the severe pathogenicity of this influenza virus are of great interest, because avian influenza viruses circulating today pose the threat of a new pandemic if they develop sustained human-to-human transmissibility. Recent characterization of the 1918 virus has illuminated which determinants may be the cause of virulence. Here, we wish to shed light on what has been learned to date about the 1918 virus with regard to pathogenicity and transmissibility, to supplement our understanding of the determinants of human virulence and transmission of pandemic influenza viruses. Monitoring the sequences of avian influenza viruses for genetic changes and diversity may help us to predict the risks that these viruses pose of causing a new pandemic.

  11. Reverse Genetics Approaches for the Development of Influenza Vaccines

    PubMed Central

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  12. Managing influenza: amantadine, rimantadine and beyond.

    PubMed

    Fleming, D M

    2001-04-01

    Amantadine and rimantadine are effective in the treatment and prophylaxis of influenza A. Neither drug, however, has achieved widespread acceptance because of the rapid development of viral resistance, their lack of activity against influenza B and, in the case of amantadine, adverse events. Complete cross-resistance occurs with these compounds and is associated with a single nucleotide change in the M2 protein. Resistant variants are transmissible and fully pathogenic. Zanamivir is the first widely approved neuraminidase inhibitor for the treatment of influenza. It is delivered directly to the primary site of viral replication, the respiratory tract, and is well tolerated and effective in the treatment of both influenza A and B. Data in prophylaxis are also encouraging. During the extensive clinical programme no evidence for the emergence of drug-resistant strains with acute therapy was found. Zanamivir represents a significant advance over older agents in the management of influenza A and B.

  13. Avian influenza A viruses in birds of the order Psittaciformes: reports on virus isolations, transmission experiments and vaccinations and initial studies on innocuity and efficacy of oseltamivir in ovo.

    PubMed

    Kaleta, E F; Blanco Peña, K M; Yilmaz, A; Redmann, T; Hofheinz, S

    2007-07-01

    Birds of the order Psittaciformes are - besides chickens, turkeys and other birds - also susceptible to infection with avian influenza A viruses (AIV) and succumb following severe disease within one week. Published data prove that various parakeets, amazons, cockatoos, African grey parrots and budgerigars (genera Barnardius, Psittacula, Cacatua, Eolophus, Amazona, Myiopsitta, Psittacus and Melopsittacus) were found dead following natural infections. Natural infections of highly pathogenic avian influenza viruses (HPAIV) of the haemagglutinin subtypes H5 and H7 cause severe disease and high rates of mortality. Experimental transmission studies with AlVs of the subtypes H5 and H7 confirm these data. Viruses of the subtypes H3N8, H4N6, H4N8, H11N6 and H11N8 may cause also clinical signs and occasionally losses in naturally infected psittacine birds. Clinical signs and losses were also noted following experimental infection of budgerigars with a H4N6 virus. In the EU and in other countries, vaccination of exposed exotic and rare birds and poultry is a possible and an acceptable measure to provide protection. Currently, the EU Commission accepts inactivated adjuvanted vaccines whereas in some other countries recently developed vector vaccines are applied. However, birds remain susceptible during the time interval between application of any vaccine and the development of immunity. This critical period can be bridged with antiviral drugs. Our in ovo studies demonstrate that the neuraminidase inhibitor oseltamivir is non-toxic for chicken embryos at concentrations of 0.1, 1.0 and 10.0 mg/kg body weight. These dosages prevented entirely the replication of a HPAIV of the subtype H7N1 when this drug is given shortly prior to, simultaneously or soon after inoculation of chicken embryos with this AIV. Thus, we speculate that exposed valuable birds such as psittacines at risk can be successfully treated.

  14. Hypothesis on the source, transmission and characteristics of infection of avian influenza A (H7N9) virus--based on analysis of field epidemiological investigation and gene sequence analysis.

    PubMed

    Ling, F; Chen, E; Liu, Q; Miao, Z; Gong, Z

    2015-02-01

    On 31 March 2013, the National Health and Family Planning Commission announced that human infections with influenza A (H7N9) virus had occurred in Shanghai and Anhui provinces, China. H7N9 cases were later detected in Jiangsu and Zhejiang provinces. It was estimated that the virus first spread northward along the route taken by migratory birds and then spread to neighbouring provinces with the sale of poultry. Epidemiological studies were carried out on samples from the external environment of infected cases, transmission routes, farmers markets and live poultry markets. Phylogenetic study of viral sequences from human and avian infections in Zhejiang showed that those from Shanghai and Jiangsu provinces along Taihu Lake were highly homologous with those from the external environment. This suggests that avian viruses carried by waterfowl combined with the virus carried by migratory birds, giving rise to avian influenza virus H7N9, which is highly pathogenic to humans. It is possible that the virus was transmitted by local wildfowl to domestic poultry and then to humans, or spread further by means of trading in wholesale poultry markets. As the weather has turned warm, and with measures adopted to terminate poultry trade and facilitate health communication, the epidemic in the first half of the year has been kept under control. However, the infection source in the triangular area around Taihu Lake still remains. The H7N9 epidemic will probably hit the area later in the year and next spring when the migratory birds return and may even spread to other areas. Great importance should therefore be attached to the wildfowl in Taihu Lake as the repository and disseminator of the virus: investigation and study of this population is essential.

  15. Nonlinear dynamics of avian influenza epidemic models.

    PubMed

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2017-01-01

    Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results.

  16. Avian Influenza.

    PubMed

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  17. Avian influenza.

    PubMed

    Zeitlin, Gary A; Maslow, Melanie J

    2006-03-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004 alone, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate over 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantines, and disinfection. To prepare for and prevent increased human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short, interfering RNAs and new vaccine strategies that use plasmid-based genetic systems offer promise, should a pandemic occur.

  18. Pathogenesis of avian influenza A (H5N1) viruses in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Genetic reassortment of avian influenza H5N1 viruses with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian influenza A viruses are o...

  19. Avian flu to human influenza.

    PubMed

    Lewis, David B

    2006-01-01

    Influenza A viral infection causes substantial annual morbidity and mortality worldwide, particularly for infants, the elderly, and the immunocompromised. The virus mainly replicates in the respiratory tract and is spread by respiratory secretions. A growing concern is the recent identification of H5N1 strains of avian influenza A in Asia that were previously thought to infect only wild birds and poultry, but have now infected humans, cats, pigs, and other mammals, often with fatal results, in an ongoing outbreak. A human pandemic with H5N1 virus could potentially be catastrophic because most human populations have negligible antibody-mediated immunity to the H5 surface protein and this viral subtype is highly virulent. Whether an H5N1 influenza pandemic will occur is likely to hinge on whether the viral strains involved in the current outbreak acquire additional mutations that facilitate efficient human-to-human transfer of infection. Although there is no historical precedent for an H5N1 avian strain causing widespread human-to-human transmission, some type of influenza A pandemic is very likely in the near future. The possibility of an H5N1 influenza pandemic has highlighted the many current limitations of treatment with antiviral agents and of vaccine production and immunogenicity. Future vaccine strategies that may include more robust induction of T-cell responses, such as cytotoxic T lymphocytes, may provide better protection than is offered by current vaccines, which rely solely or mainly on antibody neutralization of infection.

  20. A Comprehensive Breath Plume Model for Disease Transmission via Expiratory Aerosols

    NASA Astrophysics Data System (ADS)

    Halloran, S. K.; Wexler, A. S.; Ristenpart, W. D.

    2012-11-01

    The peak in influenza incidence during wintertime represents a longstanding unresolved scientific question. One hypothesis is that the efficacy of airborne transmission via aerosols is increased at low humidity and temperature, conditions that prevail in wintertime. Recent experiments with guinea pigs suggest that transmission is indeed maximized at low humidity and temperature, a finding which has been widely interpreted in terms of airborne influenza virus survivability. This interpretation, however, neglects the effect of the airflow on the transmission probability. Here we provide a comprehensive model for assessing the probability of disease transmission via expiratory aerosols between test animals in laboratory conditions. The spread of aerosols emitted from an infected animal is modeled using dispersion theory for a homogeneous turbulent airflow. The concentration and size distribution of the evaporating droplets in the resulting ``Gaussian breath plume'' are calculated as functions of downstream position. We demonstrate that the breath plume model is broadly consistent with the guinea pig experiments, without invoking airborne virus survivability. Moreover, the results highlight the need for careful characterization of the airflow in airborne transmission experiments.

  1. Influenza Photos

    MedlinePlus

    ... Forces Institute of Pathology, Washington, D.C., Image Smith 18 "Convalescing, 1918 influenza epidemic" www.vaccineinformation.org/ ... Forces Institute of Pathology, Washington, D.C., Image Smith 3 About • Contact • A-Z Index • Site Map • ...

  2. The effect of healthcare environments on a pandemic influenza outbreak.

    SciTech Connect

    Cannon, Daniel C.; Davey, Victoria J.; Glass, Robert John, Jr.

    2010-12-01

    The objectives of this presentation are: (1) To determine if healthcare settings serve as intensive transmission environments for influenza epidemics, increasing effects on communities; (2) To determine which mitigation strategies are best for use in healthcare settings and in communities to limit influenza epidemic effects; and (3) To determine which mitigation strategies are best to prevent illness in healthcare workers.

  3. The 2009 Influenza A(H1N1) "Swine Flu" Outbreak: An Overview

    DTIC Science & Technology

    2009-05-05

    Table 1. WHO Influenza Pandemic Phases (Current alert level is highlighted) Phase Description Phase 1 No animal influenza virus circulating among... animals has been reported to cause infection in humans. Phase 2 An animal influenza virus circulating in domesticated or wild animals is known to have...community-level outbreaks. Phase 4 Human-to-human transmission of an animal or human- animal influenza reassortant a virus able to sustain community

  4. Nosocomial Co-Transmission of Avian Influenza A(H7N9) and A(H1N1)pdm09 Viruses between 2 Patients with Hematologic Disorders

    PubMed Central

    Chen, Huazhong; Liu, Shelan; Liu, Jun; Chai, Chengliang; Mao, Haiyan; Yu, Zhao; Tang, Yuming; Zhu, Geqin; Chen, Haixiao X.; Zhu, Chengchu; Shao, Hui; Tan, Shuguang; Wang, Qianli; Bi, Yuhai; Zou, Zhen; Liu, Guang; Jin, Tao; Jiang, Chengyu; Gao, George F.; Peiris, Malik

    2016-01-01

    A nosocomial cluster induced by co-infections with avian influenza A(H7N9) and A(H1N1)pdm09 (pH1N1) viruses occurred in 2 patients at a hospital in Zhejiang Province, China, in January 2014. The index case-patient was a 57-year-old man with chronic lymphocytic leukemia who had been occupationally exposed to poultry. He had co-infection with H7N9 and pH1N1 viruses. A 71-year-old man with polycythemia vera who was in the same ward as the index case-patient for 6 days acquired infection with H7N9 and pH1N1 viruses. The incubation period for the second case-patient was estimated to be <4 days. Both case-patients died of multiple organ failure. Virus genetic sequences from the 2 case-patients were identical. Of 103 close contacts, none had acute respiratory symptoms; all were negative for H7N9 virus. Serum samples from both case-patients demonstrated strong proinflammatory cytokine secretion but incompetent protective immune responses. These findings strongly suggest limited nosocomial co-transmission of H7N9 and pH1N1 viruses from 1 immunocompromised patient to another. PMID:26982379

  5. Nosocomial Co-Transmission of Avian Influenza A(H7N9) and A(H1N1)pdm09 Viruses between 2 Patients with Hematologic Disorders.

    PubMed

    Chen, Huazhong; Liu, Shelan; Liu, Jun; Chai, Chengliang; Mao, Haiyan; Yu, Zhao; Tang, Yuming; Zhu, Geqin; Chen, Haixiao X; Zhu, Chengchu; Shao, Hui; Tan, Shuguang; Wang, Qianli; Bi, Yuhai; Zou, Zhen; Liu, Guang; Jin, Tao; Jiang, Chengyu; Gao, George F; Peiris, Malik; Yu, Hongjie; Chen, Enfu

    2016-04-01

    A nosocomial cluster induced by co-infections with avian influenza A(H7N9) and A(H1N1)pdm09 (pH1N1) viruses occurred in 2 patients at a hospital in Zhejiang Province, China, in January 2014. The index case-patient was a 57-year-old man with chronic lymphocytic leukemia who had been occupationally exposed to poultry. He had co-infection with H7N9 and pH1N1 viruses. A 71-year-old man with polycythemia vera who was in the same ward as the index case-patient for 6 days acquired infection with H7N9 and pH1N1 viruses. The incubation period for the second case-patient was estimated to be <4 days. Both case-patients died of multiple organ failure. Virus genetic sequences from the 2 case-patients were identical. Of 103 close contacts, none had acute respiratory symptoms; all were negative for H7N9 virus. Serum samples from both case-patients demonstrated strong proinflammatory cytokine secretion but incompetent protective immune responses. These findings strongly suggest limited nosocomial co-transmission of H7N9 and pH1N1 viruses from 1 immunocompromised patient to another.

  6. Impaired Haemophilus influenzae Type b Transplacental Antibody Transmission and Declining Antibody Avidity through the First Year of Life Represent Potential Vulnerabilities for HIV-Exposed but -Uninfected Infants

    PubMed Central

    Rakhola, Jeremy T.; Onyango-Makumbi, Carolyne; Mubiru, Michael; Westcott, Jamie E.; Krebs, Nancy F.; Asturias, Edwin J.; Fowler, Mary Glenn; McFarland, Elizabeth; Janoff, Edward N.

    2014-01-01

    To determine whether immune function is impaired among HIV-exposed but -uninfected (HEU) infants born to HIV-infected mothers and to identify potential vulnerabilities to vaccine-preventable infection, we characterized the mother-to-infant placental transfer of Haemophilus influenzae type b-specific IgG (Hib-IgG) and its levels and avidity after vaccination in Ugandan HEU infants and in HIV-unexposed U.S. infants. Hib-IgG was measured by enzyme-linked immunosorbent assay in 57 Ugandan HIV-infected mothers prenatally and in their vaccinated HEU infants and 14 HIV-unexposed U.S. infants at birth and 12, 24, and 48 weeks of age. Antibody avidity at birth and 48 weeks of age was determined with 1 M ammonium thiocyanate. A median of 43% of maternal Hib-IgG was transferred to HEU infants. Although its level was lower in HEU infants than in U.S. infants at birth (P < 0.001), Hib-IgG was present at protective levels (>1.0 μg/ml) at birth in 90% of HEU infants and all U.S. infants. HEU infants had robust Hib-IgG responses to a primary vaccination. Although Hib-IgG levels declined from 24 to 48 weeks of age in HEU infants, they were higher than those in U.S. infants (P = 0.002). Antibody avidity, comparable at birth, declined by 48 weeks of age in both populations. Early vaccination of HEU infants may limit an initial vulnerability to Hib disease resulting from impaired transplacental antibody transfer. While initial Hib vaccine responses appeared adequate, the confluence of lower antibody avidity and declining Hib-IgG levels in HEU infants by 12 months support Hib booster vaccination at 1 year. Potential immunologic impairments of HEU infants should be considered in the development of vaccine platforms for populations with high maternal HIV prevalence. PMID:25298109

  7. The Effect of School Dismissal on Rates of Influenza-Like Illness in New York City Schools during the Spring 2009 Novel H1N1 Outbreak

    ERIC Educational Resources Information Center

    Egger, Joseph R.; Konty, Kevin J.; Wilson, Elisha; Karpati, Adam; Matte, Thomas; Weiss, Don; Barbot, Oxiris

    2012-01-01

    Background: The effects of individual school dismissal on influenza transmission have not been well studied. During the spring 2009 novel H1N1 outbreak, New York City implemented an individual school dismissal policy intended to limit influenza transmission at schools with high rates of influenza-like illness (ILI). Methods: Active disease…

  8. Pathogenicity and transmission of H5 highly pathogenic avian influenza clade 2.3.4.4 viruses (H5N8 and H5N2) in domestic waterfowl (Pekin ducks and Chinese geese)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic ducks and geese are common backyard poultry in many countries, frequently in contact with wild waterfowl, which are natural reservoirs of avian influenza viruses and have played a key role in the spread of Asian-lineage H5N1 highly pathogenic avian influenza (HPAI). In late 2014, a reassor...

  9. Pathogenesis and transmission of H7 and H5 highly pathogenic avian influenza viruses in mallards including the recent intercontinental H5 viruses (H5N8 and H5N2)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of Asian lineage H5N1, and recently H5N8, HPAIVs, which can cause moderate to sev...

  10. Global Seasonal Influenza Epidemics and Climate

    NASA Astrophysics Data System (ADS)

    Tamerius, James

    2013-04-01

    Recent evidence suggests that low specific humidity conditions facilitate the transmission of the influenza virus in temperate regions and result in annual winter epidemics. However, this relationship does not account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: "cold-dry" and "humid-rainy". For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11-12 g/kg and 18-21 °C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. Based on these findings, we develop Susceptible-Exposed-Infected-Recovered-Susceptible (SEIRS) models forced by daily weather observations of specific humidity and precipitation that simulate the diversity of seasonal influenza signals worldwide.

  11. Geographic prioritization of distributing pandemic influenza vaccines.

    PubMed

    Araz, Ozgur M; Galvani, Alison; Meyers, Lauren A

    2012-09-01

    Pandemic influenza is an international public health concern. In light of the persistent threat of H5N1 avian influenza and the recent pandemic of A/H1N1swine influenza outbreak, public health agencies around the globe are continuously revising their preparedness plans. The A/H1N1 pandemic of 2009 demonstrated that influenza activity and severity might vary considerably among age groups and locations, and the distribution of an effective influenza vaccine may be significantly delayed and staggered. Thus, pandemic influenza vaccine distribution policies should be tailored to the demographic and spatial structures of communities. Here, we introduce a bi-criteria decision-making framework for vaccine distribution policies that is based on a geospatial and demographically-structured model of pandemic influenza transmission within and between counties of Arizona in the Unites States. Based on data from the 2009-2010 H1N1 pandemic, the policy predicted to reduce overall attack rate most effectively is prioritizing counties expected to experience the latest epidemic waves (a policy that may be politically untenable). However, when we consider reductions in both the attack rate and the waiting period for those seeking vaccines, the widely adopted pro rata policy (distributing according to population size) is also predicted to be an effective strategy.

  12. Increasing herd immunity with influenza revaccination.

    PubMed

    Mooring, E Q; Bansal, S

    2016-04-01

    Seasonal influenza is a significant public health concern globally. While influenza vaccines are the single most effective intervention to reduce influenza morbidity and mortality, there is considerable debate surrounding the merits and consequences of repeated seasonal vaccination. Here, we describe a two-season influenza epidemic contact network model and use it to demonstrate that increasing the level of continuity in vaccination across seasons reduces the burden on public health. We show that revaccination reduces the influenza attack rate not only because it reduces the overall number of susceptible individuals, but also because it better protects highly connected individuals, who would otherwise make a disproportionately large contribution to influenza transmission. We also demonstrate that our results hold on an empirical contact network, in the presence of assortativity in vaccination status, and are robust for a range of vaccine coverage and efficacy levels. Our work contributes a population-level perspective to debates about the merits of repeated influenza vaccination and advocates for public health policy to incorporate individual vaccine histories.

  13. PRIORITIZATION OF DELAYED VACCINATION FOR PANDEMIC INFLUENZA

    PubMed Central

    Shim, Eunha

    2013-01-01

    Limited production capacity and delays in vaccine development are major obstacles to vaccination programs that are designed to mitigate a pandemic influenza. In order to evaluate and compare the impact of various vaccination strategies during a pandemic influenza, we developed an age/risk-structured model of influenza transmission, and parameterized it with epidemiological data from the 2009 H1N1 influenza A pandemic. Our model predicts that the impact of vaccination would be considerably diminished by delays in vaccination and staggered vaccine supply. Nonetheless, prioritizing limited H1N1 vaccine to individuals with a high risk of complications, followed by school-age children, and then preschool-age children, would minimize an over-all attack rate as well as hospitalizations and deaths. This vaccination scheme would maximize the benefits of vaccination by protecting the high-risk people directly, and generating indirect protection by vaccinating children who are most likely to transmit the disease. PMID:21361402

  14. Influenza virus vaccine for neglected hosts: horses and dogs

    PubMed Central

    2016-01-01

    This study provides information regarding vaccine research and the epidemiology of influenza virus in neglected hosts (horses and dogs). Equine influenza virus (EIV) causes a highly contagious disease in horses and other equids, and outbreaks have occurred worldwide. EIV has resulted in costly damage to the horse industry and has the ability of cross the host species barrier from horses to dogs. Canine influenza is a virus of equine or avian origin and infects companion animals that live in close contact with humans; this results in possible exposure to the seasonal epizootic influenza virus. There have been case reports of genetic reassortment between human and canine influenza viruses, which results in high virulence and the ability of transmission to ferrets. This emphasizes the need for vaccine research on neglected hosts to update knowledge on current strains and to advance technology for controlling influenza outbreaks for public health. PMID:27489801

  15. Secondary bacterial infections in influenza virus infection pathogenesis.

    PubMed

    Smith, Amber M; McCullers, Jonathan A

    2014-01-01

    Influenza is often complicated by bacterial pathogens that colonize the nasopharynx and invade the middle ear and/or lung epithelium. Incidence and pathogenicity of influenza-bacterial coinfections are multifactorial processes that involve various pathogenic virulence factors and host responses with distinct site- and strain-specific differences. Animal models and kinetic models have improved our understanding of how influenza viruses interact with their bacterial co-pathogens and the accompanying immune responses. Data from these models indicate that considerable alterations in epithelial surfaces and aberrant immune responses lead to severe inflammation, a key driver of bacterial acquisition and infection severity following influenza. However, further experimental and analytical studies are essential to determining the full mechanistic spectrum of different viral and bacterial strains and species and to finding new ways to prevent and treat influenza-associated bacterial coinfections. Here, we review recent advances regarding transmission and disease potential of influenza-associated bacterial infections and discuss the current gaps in knowledge.

  16. Influenza virus vaccine for neglected hosts: horses and dogs.

    PubMed

    Na, Woonsung; Yeom, Minjoo; Yuk, Huijoon; Moon, Hyoungjoon; Kang, Bokyu; Song, Daesub

    2016-07-01

    This study provides information regarding vaccine research and the epidemiology of influenza virus in neglected hosts (horses and dogs). Equine influenza virus (EIV) causes a highly contagious disease in horses and other equids, and outbreaks have occurred worldwide. EIV has resulted in costly damage to the horse industry and has the ability of cross the host species barrier from horses to dogs. Canine influenza is a virus of equine or avian origin and infects companion animals that live in close contact with humans; this results in possible exposure to the seasonal epizootic influenza virus. There have been case reports of genetic reassortment between human and canine influenza viruses, which results in high virulence and the ability of transmission to ferrets. This emphasizes the need for vaccine research on neglected hosts to update knowledge on current strains and to advance technology for controlling influenza outbreaks for public health.

  17. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    PubMed

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  18. Transmission and pathogenicity of novel reassortants derived from Eurasian avian-like and 2009 pandemic H1N1 influenza viruses in mice and guinea pigs.

    PubMed

    Kong, Weili; Liu, Qinfang; Sun, Yipeng; Wang, Yu; Gao, Huijie; Liu, Lirong; Qin, Zhihua; He, Qiming; Sun, Honglei; Pu, Juan; Wang, Dayan; Guo, Xin; Yang, Hanchun; Chang, Kin-Chow; Shu, Yuelong; Liu, Jinhua

    2016-06-02

    Given the present extensive co-circulation in pigs of Eurasian avian-like (EA) swine H1N1 and 2009 pandemic (pdm/09) H1N1 viruses, reassortment between them is highly plausible but largely uncharacterized. Here, experimentally co-infected pigs with a representative EA virus and a pdm/09 virus yielded 55 novel reassortant viruses that could be categorized into 17 genotypes from Gt1 to Gt17 based on segment segregation. Majority of novel reassortants were isolated from the lower respiratory tract. Most of reassortant viruses were more pathogenic and contagious than the parental EA viruses in mice and guinea pigs. The most transmissible reassortant genotypes demonstrated in guinea pigs (Gt2, Gt3, Gt7, Gt10 and Gt13) were also the most lethal in mice. Notably, nearly all these highly virulent reassortants (all except Gt13) were characterized with possession of EA H1 and full complement of pdm/09 ribonucleoprotein genes. Compositionally, we demonstrated that EA H1-222G contributed to virulence by its ability to bind avian-type sialic acid receptors, and that pdm/09 RNP conferred the most robust polymerase activity to reassortants. The present study revealed high reassortment compatibility between EA and pdm/09 viruses in pigs, which could give rise to progeny reassortant viruses with enhanced virulence and transmissibility in mice and guinea pig models.

  19. Susceptibility of Swine to Low Pathogenic H5 and H7 Avian Influenza Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: The emergence of the 2009 pandemic H1N1 influenza virus from swine origin viruses (1) reinforced the concern about transmission of animal influenza viruses to man. This follows the transmission of highly pathogenic H5N1 viruses from birds to people identified in the late 1990s and cont...

  20. Pathogenicity and transmission in pigs of the novel A(H3N2)v influenza virus isolated from humans and characterization of swine H3N2 viruses isolated in 2010-2011.

    PubMed

    Kitikoon, Pravina; Vincent, Amy L; Gauger, Phillip C; Schlink, Sarah N; Bayles, Darrell O; Gramer, Marie R; Darnell, Daniel; Webby, Richard J; Lager, Kelly M; Swenson, Sabrina L; Klimov, Alexander

    2012-06-01

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in Unites States since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the United States was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotypes (rH3N2p). Between July and December 2011, 12 cases of human infections with swine-lineage H3N2 viruses containing the pandemic matrix (pM) gene [A(H3N2)v] were detected. Whole-genome analysis of H3N2 viruses isolated from pigs from 2009 to 2011 sequenced in this study and other available H3N2 sequences showed six different rH3N2p genotypes present in the U.S. swine population since 2009. The presence of the pM gene was a common feature among all rH3N2p genotypes, but no specific genotype appeared to predominate in the swine population. We compared the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2)v isolate and two swine H3N2 isolates, H3N2-TRIG and rH3N2p. Our in vivo study detected no increased virulence in A(H3N2)v or rH3N2p viruses compared to endemic H3N2-TRIG virus. Antibodies to cluster IV H3N2-TRIG and rH3N2p viruses had reduced cross-reactivity to A(H3N2)v compared to other cluster IV H3N2-TRIG and rH3N2p viruses. Genetic analysis of the hemagglutinin gene indicated that although rH3N2p and A(H3N2)v are related to cluster IV of H3N2-TRIG, some recent rH3N2p isolates appeared to be forming a separate cluster along with the human isolates of A(H3N2)v. Continued monitoring of these H3N2 viruses is necessary to evaluate the evolution and potential loss of population immunity in swine and humans.

  1. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection.

    PubMed

    Driskell, Elizabeth A; Jones, Cheryl A; Stallknecht, David E; Howerth, Elizabeth W; Tompkins, S Mark

    2010-04-10

    The direct transmission of highly pathogenic avian influenza (HPAI) viruses to humans in Eurasia and subsequent disease has sparked research efforts leading to better understanding of HPAI virus transmission and pathogenicity in mammals. There has been minimal focus on examining the capacity of circulating low pathogenic wild bird avian influenza viruses to infect mammals. We have utilized a mouse model for influenza virus infection to examine 28 North American wild bird avian influenza virus isolates that include the hemagglutinin subtypes H2, H3, H4, H6, H7, and H11. We demonstrate that many wild bird avian influenza viruses of several different hemagglutinin types replicate in this mouse model without adaptation and induce histopathologic lesions similar to other influenza virus infections but cause minimal morbidity. These findings demonstrate the potential of wild avian influenza viruses to directly infect mice without prior adaptation and support their potential role in emergence of pandemic influenza.

  2. Sparse evidence for equine or avian influenza virus infections among Mongolian adults with animal exposures.

    PubMed

    Khurelbaatar, Nyamdavaa; Krueger, Whitney S; Heil, Gary L; Darmaa, Badarchiin; Ulziimaa, Daramragchaa; Tserennorov, Damdindorj; Baterdene, Ariungerel; Anderson, Benjamin D; Gray, Gregory C

    2013-11-01

    In recent years, Mongolia has experienced recurrent epizootics of equine influenza virus (EIV) among its 2·1 million horses and multiple incursions of highly pathogenic avian influenza (HPAI) virus via migrating birds. No human EIV or HPAI infections have been reported. In 2009, 439 adults in Mongolia were enrolled in a population-based study of zoonotic influenza transmission. Enrollment sera were examined for serological evidence of infection with nine avian, three human, and one equine influenza virus strains. Seroreactivity was sparse among participants suggesting little human risk of zoonotic influenza infection.

  3. Recent progress in designing inhibitors that target the drug-resistant M2 proton channels from the influenza A viruses.

    PubMed

    Wang, Jun; Li, Fang; Ma, Chunlong

    2015-07-01

    Influenza viruses are the causative agents for seasonal influenza, which results in thousands of deaths and millions of hospitalizations each year. Moreover, sporadic transmission of avian or swan influenza viruses to humans often leads to an influenza pandemic, as there is no preimmunity in the human body to fight against such novel strains. The metastable genome of the influenza viruses, coupled with the reassortment of different strains from a wide range of host origins, leads to the continuous evolution of the influenza virus diversity. Such characteristics of influenza viruses present a grand challenge in devising therapeutic strategies to combat influenza virus infection. This review summarizes recent progress in designing small molecule inhibitors that target the drug-resistant influenza A virus M2 proton channels and highlights the contribution of mechanistic studies of proton conductance to drug discovery. The lessons learned throughout the course of M2 drug discovery might provide insights for designing inhibitors that target other therapeutically important ion channels.

  4. Inactivated and live, attenuated influenza vaccines protect mice against influenza: Streptococcus pyogenes super-infections.

    PubMed

    Chaussee, Michael S; Sandbulte, Heather R; Schuneman, Margaret J; Depaula, Frank P; Addengast, Leslie A; Schlenker, Evelyn H; Huber, Victor C

    2011-05-12

    Mortality associated with influenza virus super-infections is frequently due to secondary bacterial complications. To date, super-infections with Streptococcus pyogenes have been studied less extensively than those associated with Streptococcus pneumoniae. This is significant because a vaccine for S. pyogenes is not clinically available, leaving vaccination against influenza virus as our only means for preventing these super-infections. In this study, we directly compared immunity induced by two types of influenza vaccine, either inactivated influenza virus (IIV) or live, attenuated influenza virus (LAIV), for the ability to prevent super-infections. Our data demonstrate that both IIV and LAIV vaccines induce similar levels of serum antibodies, and that LAIV alone induces IgA expression at mucosal surfaces. Upon super-infection, both vaccines have the ability to limit the induction of pro-inflammatory cytokines within the lung, including IFN-γ which has been shown to contribute to mortality in previous models of super-infection. Limiting expression of these pro-inflammatory cytokines within the lungs subsequently limits recruitment of macrophages and neutrophils to pulmonary surfaces, and ultimately protects both IIV- and LAIV-vaccinated mice from mortality. Despite their overall survival, both IIV- and LAIV-vaccinated mice demonstrated levels of bacteria within the lung tissue that are similar to those seen in unvaccinated mice. Thus, influenza virus:bacteria super-infections can be limited by vaccine-induced immunity against influenza virus, but the ability to prevent morbidity is not complete.

  5. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    USGS Publications Warehouse

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  6. Pandemic influenza and hospital resources.

    PubMed

    Nap, Raoul E; Andriessen, Maarten P H M; Meessen, Nico E L; van der Werf, Tjip S

    2007-11-01

    Using estimates from the Centers for Disease Control and Prevention, the World Health Organization, and published models of the expected evolution of pandemic influenza, we modeled the surge capacity of healthcare facility and intensive care unit (ICU) requirements over time in northern Netherlands (approximately 1.7 million population). We compared the demands of various scenarios with estimates of maximum ICU capacity, factoring in healthcare worker absenteeism as well as reported and realistic estimates derived from semistructured telephone interviews with key management in ICUs in the study area. We show that even during the peak of the pandemic, most patients requiring ICU admission may be served, even those who have non-influenza-related conditions, provided that strong indications and decision-making rules are maintained for admission as well as for continuation (or discontinuation) of life support. Such a model should be integral to a preparedness plan for a pandemic with a new human-transmissible agent.

  7. IL-6 ameliorates acute lung injury in influenza virus infection

    PubMed Central

    Yang, Mei-Lin; Wang, Chung-Teng; Yang, Shiu-Ju; Leu, Chia-Hsing; Chen, Shun-Hua; Wu, Chao-Liang; Shiau, Ai-Li

    2017-01-01

    Interleukin 6 (IL-6) is involved in innate and adaptive immune responses to defend against pathogens. It also participates in the process of influenza infection by affecting viral clearance and immune cell responses. However, whether IL-6 impacts lung repair in influenza pathogenesis remains unclear. Here, we studied the role of IL-6 in acute influenza infection in mice. IL-6-deficient mice infected with influenza virus exhibited higher lethality, lost more body weight and had higher fibroblast accumulation and lower extracellular matrix (ECM) turnover in the lung than their wild-type counterparts. Deficiency in IL-6 enhanced proliferation, migration and survival of lung fibroblasts, as well as increased virus-induced apoptosis of lung epithelial cells. IL-6-deficient lung fibroblasts produced elevated levels of TGF-β, which may contribute to their survival. Furthermore, macrophage recruitment to the lung and phagocytic activities of macrophages during influenza infection were reduced in IL-6-deficient mice. Collectively, our results indicate that IL-6 is crucial for lung repair after influenza-induced lung injury through reducing fibroblast accumulation, promoting epithelial cell survival, increasing macrophage recruitment to the lung and enhancing phagocytosis of viruses by macrophages. This study suggests that IL-6 may be exploited for lung repair during influenza infection. PMID:28262742

  8. Avian Influenza (Bird Flu)

    MedlinePlus

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine/Variant Pandemic Other Get ... this? Submit Button Past Newsletters Information on Avian Influenza Language: English Español Recommend on Facebook Tweet ...

  9. FastStats: Influenza

    MedlinePlus

    ... this? Submit What's this? Submit Button NCHS Home Influenza Recommend on Facebook Tweet Share Compartir Data are ... 6 months to 17 years who received an influenza vaccination during the past 12 months: 49.6% ...

  10. About Haemophilus influenzae Disease

    MedlinePlus

    ... Hib Vaccination Hib Vaccination Meningitis Pneumonia Sepsis About Haemophilus influenzae Disease Recommend on Facebook Tweet Share Compartir H. ... severe, such as a bloodstream infection. Types of Haemophilus influenzae Infections Infections caused by these bacteria... Causes, How ...

  11. Haemophilus Influenzae Type b

    MedlinePlus

    ... Text Size Email Print Share Haemophilus Influenzae type b Page Content Article Body If you’re like ... may have been unfamiliar with Haemophilus influenzae type b (Hib) infections until your pediatrician recommended a vaccine ...

  12. Influenza Vaccine, Live Intranasal

    MedlinePlus

    ... the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should NOT ... to your doctor or pharmacist about the best flu vaccine option for you or your family.

  13. Diagnosis of 2009 Pandemic Influenza A (pH1N1) and Seasonal Influenza Using Rapid Influenza Antigen Tests, San Antonio, Texas, April-June 2009

    DTIC Science & Technology

    2009-01-01

    CDC Atlanta US. CDC protocol of realtime RTPCR for influenza A(H1N1) revision 1. 30 April 2009. Available at: http://www.who.int/ csr / resources...2009; 325:483–7. 24. Munster VJ, de Wit E, van den Brand JM, et al. Pathogenesis and Transmission of Swine-Origin 2009 A(H1N1) Influenza Virus in Fer

  14. [Influenza virus].

    PubMed

    Juozapaitis, Mindaugas; Antoniukas, Linas

    2007-01-01

    Every year, especially during the cold season, many people catch an acute respiratory disease, namely flu. It is easy to catch this disease; therefore, it spreads very rapidly and often becomes an epidemic or a global pandemic. Airway inflammation and other body ailments, which form in a very short period, torment the patient several weeks. After that, the symptoms of the disease usually disappear as quickly as they emerged. The great epidemics of flu have rather unique characteristics; therefore, it is possible to identify descriptions of such epidemics in historic sources. Already in the 4th century bc, Hippocrates himself wrote about one of them. It is known now that flu epidemics emerge rather frequently, but there are no regular intervals between those events. The epidemics can differ in their consequences, but usually they cause an increased mortality of elderly people. The great flu epidemics of the last century took millions of human lives. In 1918-19, during "The Spanish" pandemic of flu, there were around 40-50 millions of deaths all over the world; "Pandemic of Asia" in 1957 took up to one million lives, etc. Influenza virus can cause various disorders of the respiratory system: from mild inflammations of upper airways to acute pneumonia that finally results in the patient's death. Scientist Richard E. Shope, who investigated swine flu in 1920, had a suspicion that the cause of this disease might be a virus. Already in 1933, scientists from the National Institute for Medical Research in London - Wilson Smith, Sir Christopher Andrewes, and Sir Patrick Laidlaw - for the first time isolated the virus, which caused human flu. Then scientific community started the exhaustive research of influenza virus, and the great interest in this virus and its unique features is still active even today.

  15. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  16. Influenza, Winter Olympiad, 2002

    PubMed Central

    Rubin, Michael A.; Samore, Matthew H.; Lopansri, Bert; Lahey, Timothy; McGuire, Heather L.; Winthrop, Kevin L.; Dunn, James J.; Willick, Stuart E.; Vosters, Randal L.; Waeckerle, Joseph F.; Carroll, Karen C.; Gwaltney, Jack M.; Hayden, Frederick G.; Elstad, Mark R.; Sande, Merle A.

    2006-01-01

    Prospective surveillance for influenza was performed during the 2002 Salt Lake City Winter Olympics. Oseltamivir was administered to patients with influenzalike illness and confirmed influenza, while their close contacts were given oseltamivir prophylactically. Influenza A/B was diagnosed in 36 of 188 patients, including 13 athletes. Prompt management limited the spread of this outbreak. PMID:16494733

  17. Strategies for pandemic and seasonal influenza vaccination of schoolchildren in the United States.

    PubMed

    Basta, Nicole E; Chao, Dennis L; Halloran, M Elizabeth; Matrajt, Laura; Longini, Ira M

    2009-09-15

    Vaccinating school-aged children against influenza can reduce age-specific and population-level illness attack rates. Using a stochastic simulation model of influenza transmission, the authors assessed strategies for vaccinating children in the United States, varying the vaccine type, coverage level, and reproductive number R (average number of secondary cases produced by a typical primary case). Results indicated that vaccinating children can substantially reduce population-level illness attack rates over a wide range of scenarios. The greatest absolute reduction in influenza illness cases per season occurred at R values ranging from 1.2 to 1.6 for a given vaccine coverage level. The indirect, total, and overall effects of vaccinating children were strong when transmission intensity was low to intermediate. The indirect effects declined rapidly as transmission intensity increased. In a mild influenza season (R = 1.1), approximately 19 million influenza cases could be prevented by vaccinating 70% of children. At most, nearly 100 million cases of influenza illness could be prevented, depending on the proportion of children vaccinated and the transmission intensity. Given the current worldwide threat of novel influenza A (H1N1), with an estimated R of 1.4-1.6, health officials should consider strategies for vaccinating children against novel influenza A (H1N1) as well as seasonal influenza.

  18. Conserved and host-specific features of influenza virion architecture.

    PubMed

    Hutchinson, Edward C; Charles, Philip D; Hester, Svenja S; Thomas, Benjamin; Trudgian, David; Martínez-Alonso, Mónica; Fodor, Ervin

    2014-09-16

    Viruses use virions to spread between hosts, and virion composition is therefore the primary determinant of viral transmissibility and immunogenicity. However, the virions of many viruses are complex and pleomorphic, making them difficult to analyse in detail. Here we address this by identifying and quantifying virion proteins with mass spectrometry, producing a complete and quantified model of the hundreds of host-encoded and viral proteins that make up the pleomorphic virions of influenza viruses. We show that a conserved influenza virion architecture is maintained across diverse combinations of virus and host. This 'core' architecture, which includes substantial quantities of host proteins as well as the viral protein NS1, is elaborated with abundant host-dependent features. As a result, influenza virions produced by mammalian and avian hosts have distinct protein compositions. Finally, we note that influenza virions share an underlying protein composition with exosomes, suggesting that influenza virions form by subverting microvesicle production.

  19. The contrasting phylodynamics of human influenza B viruses.

    PubMed

    Vijaykrishna, Dhanasekaran; Holmes, Edward C; Joseph, Udayan; Fourment, Mathieu; Su, Yvonne C F; Halpin, Rebecca; Lee, Raphael T C; Deng, Yi-Mo; Gunalan, Vithiagaran; Lin, Xudong; Stockwell, Timothy B; Fedorova, Nadia B; Zhou, Bin; Spirason, Natalie; Kühnert, Denise; Bošková, Veronika; Stadler, Tanja; Costa, Anna-Maria; Dwyer, Dominic E; Huang, Q Sue; Jennings, Lance C; Rawlinson, William; Sullivan, Sheena G; Hurt, Aeron C; Maurer-Stroh, Sebastian; Wentworth, David E; Smith, Gavin J D; Barr, Ian G

    2015-01-16

    A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.

  20. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a surrogate for humans in influenza pathogenicity a...

  1. Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health.

    PubMed

    Kong, Weili; Wang, Feibing; Dong, Bin; Ou, Changbo; Meng, Demei; Liu, Jinhua; Fan, Zhen-Chuan

    2015-12-01

    Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens.

  2. Perforin and Fas cytolytic pathways coordinately shape the selection and diversity of CD8+-T-cell escape variants of influenza virus.

    PubMed

    Price, Graeme E; Huang, Lei; Ou, Rong; Zhang, Menghua; Moskophidis, Demetrius

    2005-07-01

    Antigenic variation is a viral strategy exploited to promote survival in the face of the host immune response and represents a major challenge for efficient vaccine development. Influenza viruses are pathogens with high transmissibility and mutation rates, enabling viral escape from immunity induced by prior infection or vaccination. Intense selection from neutralizing antibody drives antigenic changes in the surface glycoproteins, resulting in emergence of new strains able to reinfect hosts immune to previously circulating viruses. CD8+ cytotoxic T cells (CTLs) also provide protective immunity from influenza virus infection and may contribute to the antigenic evolution of influenza viruses. Utilizing mice transgenic for an influenza virus NP366-374 peptide-specific T-cell receptor, we demonstrated that the respiratory tract is a suitable site for generation of escape variants of influenza virus selected by CTL in vivo. In this report the contributions of the perforin and Fas pathways utilized by influenza virus-specific CTLs in viral clearance and selection of CTL escape variants have been evaluated. While transgenic CTLs deficient in either perforin- or Fas-mediated pathways are efficient in initial pulmonary viral control, variant virus emergence was observed in all the mice studied, although the spectrum of viral CTL escape variants selected varied profoundly. Thus, a less-restricted repertoire of escape variants was observed in mice with an intact perforin cytotoxic pathway compared with a limited variant diversity in perforin pathway-deficient mice, although maximal variant diversity was observed in mice having both Fas and perforin pathways intact. We conclude that selection of viral CTL escape variants reflects coordinate action between the tightly controlled perforin/granzyme pathway and the more promiscuous Fas/FasL pathway.

  3. (Highly pathogenic) avian influenza as a zoonotic agent.

    PubMed

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential.

  4. Real-Time Influenza Forecasts during the 2012–2013 Season

    PubMed Central

    Shaman, Jeffrey; Karspeck, Alicia; Yang, Wan; Tamerius, James; Lipsitch, Marc

    2013-01-01

    Recently, we developed a seasonal influenza prediction system that uses an advanced data assimilation technique and real-time estimates of influenza incidence to optimize and initialize a population-based mathematical model of influenza transmission dynamics. This system was used to generate and evaluate retrospective forecasts of influenza peak timing in New York City. Here we present weekly forecasts of seasonal influenza developed and run in real time for 108 cites in the United States during the recent 2012–2013 season. Reliable ensemble forecasts of influenza outbreak peak timing with leads of up to 9 weeks were produced. Forecast accuracy increased as the season progressed, and the forecasts significantly outperformed alternate, analog prediction methods. By Week 52, prior to peak for the majority of cities, 63% of all ensemble forecasts were accurate. To our knowledge, this is the first time predictions of seasonal influenza have been made in real time and with demonstrated accuracy. PMID:24302074

  5. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential.

    PubMed

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C; Smith, Derek J; Kawaoka, Yoshihiro

    2014-06-11

    Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited pathogenicity in mice and ferrets higher than that in an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential.

  6. Sampling and detection of airborne influenza virus towards point-of-care applications

    PubMed Central

    Ladhani, Laila; Meeuws, Hanne; van Wesenbeeck, Liesbeth; Schmidt, Kristiane; Stuyver, Lieven; van der Wijngaart, Wouter

    2017-01-01

    Airborne transmission of the influenza virus contributes significantly to the spread of this infectious pathogen, particularly over large distances when carried by aerosol droplets with long survival times. Efficient sampling of virus-loaded aerosol in combination with a low limit of detection of the collected virus could enable rapid and early detection of airborne influenza virus at the point-of-care setting. Here, we demonstrate a successful sampling and detection of airborne influenza virus using a system specifically developed for such applications. Our system consists of a custom-made electrostatic precipitation (ESP)-based bioaerosol sampler that is coupled with downstream quantitative polymerase chain reaction (qPCR) analysis. Aerosolized viruses are sampled directly into a miniaturized collector with liquid volume of 150 μL, which constitutes a simple and direct interface with subsequent biological assays. This approach reduces sample dilution by at least one order of magnitude when compared to other liquid-based aerosol bio-samplers. Performance of our ESP-based sampler was evaluated using influenza virus-loaded sub-micron aerosols generated from both cultured and clinical samples. Despite the miniaturized collection volume, we demonstrate a collection efficiency of at least 10% and sensitive detection of a minimum of 3721 RNA copies. Furthermore, we show that an improved extraction protocol can allow viral recovery of down to 303 RNA copies and a maximum sampler collection efficiency of 47%. A device with such a performance would reduce sampling times dramatically, from a few hours with current sampling methods down to a couple of minutes with our ESP-based bioaerosol sampler. PMID:28350811

  7. Research update on avian influenza viruses and H1N1 influenza virus in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Southeast Poultry Research Laboratory conducts research on many areas related to AI including pathogenesis and transmission studies, use of vaccination, virus ...

  8. Continuing challenges in influenza

    PubMed Central

    Webster, Robert G.; Govorkova, Elena A.

    2014-01-01

    Influenza is an acute respiratory disease in mammals and domestic poultry that emerges from zoonotic reservoirs in aquatic birds and bats. Although influenza viruses are among the most intensively studied pathogens, existing control options require further improvement. Influenza vaccines must be regularly updated because of continuous antigenic drift and sporadic antigenic shifts in the viral surface glycoproteins. Currently, influenza therapeutics are limited to neuraminidase inhibitors; novel drugs and vaccine approaches are therefore urgently needed. Advances in vaccinology and structural analysis have revealed common antigenic epitopes on hemagglutinins across all influenza viruses and suggest that a universal influenza vaccine is possible. In addition, various immunomodulatory agents and signaling pathway inhibitors are undergoing preclinical development. Continuing challenges in influenza include the emergence of pandemic H1N1 influenza in 2009, human infections with avian H7N9 influenza in 2013, and sporadic human cases of highly pathogenic avian H5N1 influenza. Here, we review the challenges facing influenza scientists and veterinary and human public health officials; we also discuss the exciting possibility of achieving the ultimate goal of controlling influenza’s ability to change its antigenicity. PMID:24891213

  9. Influenza virus reservoirs and intermediate hosts: dogs, horses, and new possibilities for influenza virus exposure of humans.

    PubMed

    Parrish, Colin R; Murcia, Pablo R; Holmes, Edward C

    2015-03-01

    Influenza A virus (IAV) infections in hosts outside the main aquatic bird reservoirs occur periodically. Although most such cross-species transmission events result in limited onward transmission in the new host, sustained influenza outbreaks have occurred in poultry and in a number of mammalian species, including humans, pigs, horses, seals, and mink. Recently, two distinct strains of IAV have emerged in domestic dogs, with each circulating widely for several years. Here, we briefly outline what is known about the role of intermediate hosts in influenza emergence, summarize our knowledge of the new canine influenza viruses (CIVs) and how they provide key new information on the process of host adaptation, and assess the risk these viruses pose to human populations.

  10. Influenza infection in humans and pigs in southeastern China.

    PubMed

    Zhou, N; He, S; Zhang, T; Zou, W; Shu, L; Sharp, G B; Webster, R G

    1996-01-01

    The three last pandemic strains of influenza A virus-Asian/57, Hong Kong/68 and Russian/77-are believed to have originated in China. The strains responsible for the 1957 and 1968 human pandemics were reassortants incorporating both human and avian influenza viruses, which may have arisen in pigs. We therefore undertook a population-based study in the Nanchang region of Central China to establish the prevalence, types and seasonal pattern of human influenza infection and to screen serum samples from animals and humans for evidence of interspecies transmission of influenza viruses. Two definite influenza seasons were demonstrated, one extending from November to March and the other July to September. The profile of antibodies to commonly circulating human influenza viruses was no different in Nanchang and neighboring rural communities than in Memphis, Tennessee, USA. In particular, Chinese women who raised pigs in their homes were no more likely to have been exposed to influenza virus than were subjects who seldom or never had contact with pigs. However, we did obtain evidence using isolated H7 protein in an enzyme-linked immunoabsorbent assay for infection of pig farmers by an avian H7 influenza virus suggesting that influenza. A viruses may have been transmitted directly from ducks to humans. The results of the serological survey also indicated that pigs in or near Nanchang were infected by human H1N1 and H3N2 influenza viruses, but not with typical swine viruses. We found no serological evidence for H2 influenza viruses in humans after 1968.

  11. Ecology of avian influenza viruses in a changing world

    PubMed Central

    Vandegrift, Kurt J.; Sokolow, Susanne H.; Daszak, Peter; Kilpatrick, A. Marm

    2010-01-01

    Influenza A virus infections result in ~500,000 human deaths per year and many more sub-lethal infections. Wild birds are recognized as the ancestral host of influenza A viruses, and avian viruses have contributed genetic material to most human viruses, including subtypes H5N1 and H1N1. Thus, influenza virus transmission in wild and domestic animals and humans is intimately connected. Here we review how anthropogenic change, including human population growth, land use, climate change, globalization of trade, agricultural intensification, and changes in vaccine technology may alter the evolution and transmission of influenza viruses. Evidence suggests that viral transmission in domestic poultry, spillover to other domestic animals, wild birds and humans, and the potential for subsequent pandemic spread, are all increasing. We highlight four areas in need of research: drivers of viral subtype dynamics; ecological and evolutionary determinants of transmissibility and virulence in birds and humans; the impact of changing land use and climate on hosts, viruses, and transmission; and the impact of influenza viruses on wild bird hosts, including their ability to migrate while shedding virus. PMID:20536820

  12. Avian influenza and human health.

    PubMed

    Capua, Ilaria; Alexander, Dennis J

    2002-07-01

    Natural infections with influenza A viruses have been reported in a variety of animal species including humans, pigs, horses, sea mammals, mustelids and birds. Occasionally devastating pandemics occur in humans. Although viruses of relatively few HA and NA subtype combinations have been isolated from mammalian species, all 15 HA subtypes and all 9 NA subtypes, in most combinations, have been isolated from birds. In the 20th century the sudden emergence of antigenically different strains transmissible in humans, termed antigenic shift, has occurred on four occasions, 1918 (H1N1), 1957 (H2N2), 1968 (H3N2) and 1977 (H1N1), each time resulting in a pandemic. Genetic analysis of the isolates demonstrated that 'new' strains most certainly emerged after reassortment of genes of viruses of avian and human origin in a permissive host. The leading theory is that the pig represents the 'mixing vessel' where this genetic reassortment may occur. In 1996, an H7N7 influenza virus of avian origin was isolated from a woman with a self-limiting conjunctivitis. During 1997 in Hong Kong, an H5N1 avian influenza virus was recognised as the cause of death of 6 of 18 infected patients. Genetic analysis revealed these human isolates of H5N1 subtype to be indistinguishable from a highly pathogenic avian influenza virus that was endemic in the local poultry population. More recently, in March 1999, two independent isolations of influenza virus subtype H9N2 were made from girls aged one to four who recovered from flu-like illnesses in Hong Kong. Subsequently, five isolations of H9N2 virus from humans on mainland China in August 1998 were reported. H9N2 viruses were known to be widespread in poultry in China and other Asian countries. In all these cases there was no evidence of human to human spread except with the H5N1 infections where there was evidence of very limited spread. This is in keeping with the finding that all these viruses possessed all eight genes of avian origin. It may well

  13. Reduced experimental infectivity and transmissibility of intercontinental H5 (H5N8 and H5N2) compared to Eurasian H5N1 highly pathogenic avian influenza viruses for chickens, turkeys, and Japanese quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N1 high pathogenicity avian influenza (HPAI) virus (HPAIV) emerged in 1996 in Guangdong China and has since spread to infect and cause deaths in wild birds, poultry and humans in over 63 countries in Asia, Europe and Africa; and more recently a reassortant H5N8 clade 2.3.4.4 HPAI virus has spread ...

  14. Nasal commensal Staphylococcus epidermidis counteracts influenza virus.

    PubMed

    Chen, Hui-Wen; Liu, Pei-Feng; Liu, Yu-Tsueng; Kuo, Sherwin; Zhang, Xing-Quan; Schooley, Robert T; Rohde, Holger; Gallo, Richard L; Huang, Chun-Ming

    2016-06-16

    Several microbes, including Staphylococcus epidermidis (S. epidermidis), a Gram-positive bacterium, live inside the human nasal cavity as commensals. The role of these nasal commensals in host innate immunity is largely unknown, although bacterial interference in the nasal microbiome may promote ecological competition between commensal bacteria and pathogenic species. We demonstrate here that S. epidermidis culture supernatants significantly suppressed the infectivity of various influenza viruses. Using high-performance liquid chromatography together with mass spectrometry, we identified a giant extracellular matrix-binding protein (Embp) as the major component involved in the anti-influenza effect of S. epidermidis. This anti-influenza activity was abrogated when Embp was mutated, confirming that Embp is essential for S. epidermidis activity against viral infection. We also showed that both S. epidermidis bacterial particles and Embp can directly bind to influenza virus. Furthermore, the injection of a recombinant Embp fragment containing a fibronectin-binding domain into embryonated eggs increased the survival rate of virus-infected chicken embryos. For an in vivo challenge study, prior Embp intranasal inoculation in chickens suppressed the viral titres and induced the expression of antiviral cytokines in the nasal tissues. These results suggest that S. epidermidis in the nasal cavity may serve as a defence mechanism against influenza virus infection.

  15. Nasal commensal Staphylococcus epidermidis counteracts influenza virus

    PubMed Central

    Chen, Hui-Wen; Liu, Pei-Feng; Liu, Yu-Tsueng; Kuo, Sherwin; Zhang, Xing-Quan; Schooley, Robert T.; Rohde, Holger; Gallo, Richard L.; Huang, Chun-Ming

    2016-01-01

    Several microbes, including Staphylococcus epidermidis (S. epidermidis), a Gram-positive bacterium, live inside the human nasal cavity as commensals. The role of these nasal commensals in host innate immunity is largely unknown, although bacterial interference in the nasal microbiome may promote ecological competition between commensal bacteria and pathogenic species. We demonstrate here that S. epidermidis culture supernatants significantly suppressed the infectivity of various influenza viruses. Using high-performance liquid chromatography together with mass spectrometry, we identified a giant extracellular matrix-binding protein (Embp) as the major component involved in the anti-influenza effect of S. epidermidis. This anti-influenza activity was abrogated when Embp was mutated, confirming that Embp is essential for S. epidermidis activity against viral infection. We also showed that both S. epidermidis bacterial particles and Embp can directly bind to influenza virus. Furthermore, the injection of a recombinant Embp fragment containing a fibronectin-binding domain into embryonated eggs increased the survival rate of virus-infected chicken embryos. For an in vivo challenge study, prior Embp intranasal inoculation in chickens suppressed the viral titres and induced the expression of antiviral cytokines in the nasal tissues. These results suggest that S. epidermidis in the nasal cavity may serve as a defence mechanism against influenza virus infection. PMID:27306590

  16. Viral factors in influenza pandemic risk assessment

    PubMed Central

    Lipsitch, Marc; Barclay, Wendy; Raman, Rahul; Russell, Charles J; Belser, Jessica A; Cobey, Sarah; Kasson, Peter M; Lloyd-Smith, James O; Maurer-Stroh, Sebastian; Riley, Steven; Beauchemin, Catherine AA; Bedford, Trevor; Friedrich, Thomas C; Handel, Andreas; Herfst, Sander; Murcia, Pablo R; Roche, Benjamin; Wilke, Claus O; Russell, Colin A

    2016-01-01

    The threat of an influenza A virus pandemic stems from continual virus spillovers from reservoir species, a tiny fraction of which spark sustained transmission in humans. To date, no pandemic emergence of a new influenza strain has been preceded by detection of a closely related precursor in an animal or human. Nonetheless, influenza surveillance efforts are expanding, prompting a need for tools to assess the pandemic risk posed by a detected virus. The goal would be to use genetic sequence and/or biological assays of viral traits to identify those non-human influenza viruses with the greatest risk of evolving into pandemic threats, and/or to understand drivers of such evolution, to prioritize pandemic prevention or response measures. We describe such efforts, identify progress and ongoing challenges, and discuss three specific traits of influenza viruses (hemagglutinin receptor binding specificity, hemagglutinin pH of activation, and polymerase complex efficiency) that contribute to pandemic risk. DOI: http://dx.doi.org/10.7554/eLife.18491.001 PMID:27834632

  17. Sickness Absenteeism Rate in Iranian Schools during the 2009 Epidemic of Type a Influenza

    ERIC Educational Resources Information Center

    Pourabbasi, Ata; Shirvani, Mahbubeh Ebrahimnegad; Khashayar, Patricia

    2012-01-01

    Influenza pandemic was a global event in 2009 and intraschool transmission was its main spread method. The present study was designed to evaluate the absenteeism rate during the type A influenza epidemic. Four hundred and eight students from both a guidance school and high school in the Iranian capital were recruited in this retrospective study.…

  18. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian ...

  19. Influenza B-cells protective epitope characterization: a passkey for the rational design of new broad-range anti-influenza vaccines.

    PubMed

    Clementi, Nicola; Criscuolo, Elena; Castelli, Matteo; Mancini, Nicasio; Clementi, Massimo; Burioni, Roberto

    2012-11-14

    The emergence of new influenza strains causing pandemics represents a serious threat to human health. From 1918, four influenza pandemics occurred, caused by H1N1, H2N2 and H3N2 subtypes. Moreover, in 1997 a novel influenza avian strain belonging to the H5N1 subtype infected humans. Nowadays, even if its transmission is still circumscribed to avian species, the capability of the virus to infect humans directly from avian reservoirs can result in fatalities. Moreover, the risk that this or novel avian strains could adapt to inter-human transmission, the development of resistance to anti-viral drugs and the lack of an effective prevention are all incumbent problems for the world population. In this scenario, the identification of broadly neutralizing monoclonal antibodies (mAbs) directed against conserved regions shared among influenza isolates has raised hopes for the development of monoclonal antibody-based immunotherapy and "universal" anti-influenza vaccines.

  20. Clinical review: Update of avian influenza A infections in humans

    PubMed Central

    Sandrock, Christian; Kelly, Terra

    2007-01-01

    Influenza A viruses have a wide host range for infection, from wild waterfowl to poultry to humans. Recently, the cross-species transmission of avian influenza A, particularly subtype H5N1, has highlighted the importance of the non-human subtypes and their incidence in the human population has increased over the past decade. During cross-species transmission, human disease can range from the asymptomatic to mild conjunctivitis to fulminant pneumonia and death. With these cases, however, the risk for genetic change and development of a novel virus increases, heightening the need for public health and hospital measures. This review discusses the epidemiology, host range, human disease, outcome, treatment, and prevention of cross-transmission of avian influenza A into humans. PMID:17419881

  1. Global geno-proteomic analysis reveals cross-continental sequence conservation and druggable sites among influenza virus polymerases.

    PubMed

    Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf; Tahir, Muhammad

    2014-12-01

    Influenza virus is one of the major causes of mortality and morbidity associated with respiratory diseases. The high rate of mutation in the viral proteome provides it with the ability to survive in a variety of host species. This property helps it in maintaining and developing its pathogenicity, transmission and drug resistance. Alternate drug targets, particularly the internal proteins, can potentially be exploited for addressing the resistance issues. In the current analysis, the degree of conservation of influenza virus polymerases has been studied as one of the essential elements for establishing its candidature as a potential target of antiviral therapy. We analyzed more than 130,000 nucleotide and amino acid sequences by classifying them on the basis of continental presence of host organisms. Computational analyses including genetic polymorphism study, mutation pattern determination, molecular evolution and geophylogenetic analysis were performed to establish the high degree of conservation among the sequences. These studies lead to establishing the polymerases, in particular PB1, as highly conserved proteins. Moreover, we mapped the conservation percentage on the tertiary structures of proteins to identify the conserved, druggable sites. The research study, hence, revealed that the influenza virus polymerases are highly conserved (95-99%) proteins with a very slow mutation rate. Potential drug binding sites on various polymerases have also been reported. A scheme for drug target candidate development that can be employed to rapidly mutating proteins has been presented. Moreover, the research output can help in designing new therapeutic molecules against the identified targets.

  2. Filamentous Influenza Viruses

    PubMed Central

    Badham, Matthew D.; Rossman, Jeremy S.

    2016-01-01

    Influenza A virus is a pathogen of global medical importance causing significant health and socio-economic costs every year. Influenza virus is an unusual pathogen in that it is pleomorphic, capable of forming virions ranging in shape from spherical to filamentous. Despite decades of research on the influenza virus, much remains unknown about the formation of filamentous influenza viruses and their role in the viral replication cycle. Here, we discuss what is known about influenza virus assembly and budding, focusing on the viral and host factors that are involved in the determination of viral morphology. Whilst the biological function of the filamentous morphology remains unknown, recent results suggest a role in facilitating viral spread in vivo. We discuss these results and speculate on the consequences of viral morphology during influenza virus infection of the human respiratory tract. PMID:28042529

  3. Establishing seasonal and alert influenza thresholds in Cambodia using the WHO method: implications for effective utilization of influenza surveillance in the tropics and subtropics

    PubMed Central

    Ly, Sovann; Arashiro, Takeshi; Ieng, Vanra; Tsuyuoka, Reiko; Parry, Amy; Horwood, Paul; Heng, Seng; Hamid, Sarah; Vandemaele, Katelijn; Chin, Savuth; Sar, Borann

    2017-01-01

    Objective To establish seasonal and alert thresholds and transmission intensity categories for influenza to provide timely triggers for preventive measures or upscaling control measures in Cambodia. Methods Using Cambodia’s influenza-like illness (ILI) and laboratory-confirmed influenza surveillance data from 2009 to 2015, three parameters were assessed to monitor influenza activity: the proportion of ILI patients among all outpatients, proportion of ILI samples positive for influenza and the product of the two. With these parameters, four threshold levels (seasonal, moderate, high and alert) were established and transmission intensity was categorized based on a World Health Organization alignment method. Parameters were compared against their respective thresholds. Results Distinct seasonality was observed using the two parameters that incorporated laboratory data. Thresholds established using the composite parameter, combining syndromic and laboratory data, had the least number of false alarms in declaring season onset and were most useful in monitoring intensity. Unlike in temperate regions, the syndromic parameter was less useful in monitoring influenza activity or for setting thresholds. Conclusion Influenza thresholds based on appropriate parameters have the potential to provide timely triggers for public health measures in a tropical country where monitoring and assessing influenza activity has been challenging. Based on these findings, the Ministry of Health plans to raise general awareness regarding influenza among the medical community and the general public. Our findings have important implications for countries in the tropics/subtropics and in resource-limited settings, and categorized transmission intensity can be used to assess severity of potential pandemic influenza as well as seasonal influenza.

  4. Linking influenza virus tissue tropism to population-level reproductive fitness.

    PubMed

    Reperant, Leslie A; Kuiken, Thijs; Grenfell, Bryan T; Osterhaus, Albert D M E; Dobson, Andrew P

    2012-01-01

    Influenza virus tissue tropism defines the host cells and tissues that support viral replication and contributes to determining which regions of the respiratory tract are infected in humans. The location of influenza virus infection along the respiratory tract is a key determinant of virus pathogenicity and transmissibility, which are at the basis of influenza burdens in the human population. As the pathogenicity and transmissibility of influenza virus ultimately determine its reproductive fitness at the population level, strong selective pressures will shape influenza virus tissue tropisms that maximize fitness. At present, the relationships between influenza virus tissue tropism within hosts and reproductive fitness at the population level are poorly understood. The selective pressures and constraints that shape tissue tropism and thereby influence the location of influenza virus infection along the respiratory tract are not well characterized. We use mathematical models that link within-host infection dynamics in a spatially-structured human respiratory tract to between-host transmission dynamics, with the aim of characterizing the possible selective pressures on influenza virus tissue tropism. The results indicate that spatial heterogeneities in virus clearance, virus pathogenicity or both, resulting from the unique structure of the respiratory tract, may drive optimal receptor binding affinity--that maximizes influenza virus reproductive fitness at the population level--towards sialic acids with α2,6 linkage to galactose. The expanding cell pool deeper down the respiratory tract, in association with lower clearance rates, may result in optimal infectivity rates--that likewise maximize influenza virus reproductive fitness at the population level--to exhibit a decreasing trend towards deeper regions of the respiratory tract. Lastly, pre-existing immunity may drive influenza virus tissue tropism towards upper regions of the respiratory tract. The proposed

  5. Avian influenza virus infections in humans.

    PubMed

    Wong, Samson S Y; Yuen, Kwok-Yung

    2006-01-01

    Seroepidemiologic and virologic studies since 1889 suggested that human influenza pandemics were caused by H1, H2, and H3 subtypes of influenza A viruses. If not for the 1997 avian A/H5N1 outbreak in Hong Kong of China, subtype H2 is the likely candidate for the next pandemic. However, unlike previous poultry outbreaks of highly pathogenic avian influenza due to H5 that were controlled by depopulation with or without vaccination, the presently circulating A/H5N1 genotype Z virus has since been spreading from Southern China to other parts of the world. Migratory birds and, less likely, bird trafficking are believed to be globalizing the avian influenza A/H5N1 epidemic in poultry. More than 200 human cases of avian influenza virus infection due to A/H5, A/H7, and A/H9 subtypes mainly as a result of poultry-to-human transmission have been reported with a > 50% case fatality rate for A/H5N1 infections. A mutant or reassortant virus capable of efficient human-to-human transmission could trigger another influenza pandemic. The recent isolation of this virus in extrapulmonary sites of human diseases suggests that the high fatality of this infection may be more than just the result of a cytokine storm triggered by the pulmonary disease. The emergence of resistance to adamantanes (amantadine and rimantadine) and recently oseltamivir while H5N1 vaccines are still at the developmental stage of phase I clinical trial are causes for grave concern. Moreover, the to-be pandemic strain may have little cross immunogenicity to the presently tested vaccine strain. The relative importance and usefulness of airborne, droplet, or contact precautions in infection control are still uncertain. Laboratory-acquired avian influenza H7N7 has been reported, and the laboratory strains of human influenza H2N2 could also be the cause of another pandemic. The control of this impending disaster requires more research in addition to national and international preparedness at various levels. The

  6. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory birds into North America mixing with low pathogenicity AI viruses to produce a H5N2 HPAI virus. The H5N8 and H5N2 HPAI viruses were detected initially in wild waterfowl and backyard birds, and lat...

  7. Reflections on the influenza vaccination of healthcare workers.

    PubMed

    McLennan, Stuart; Wicker, Sabine

    2010-11-29

    Despite all that is known about the dangers of nosocomial transmission of influenza to the vulnerable patient populations in our healthcare facilities, and the benefits of the influenza vaccination, the low rates of influenza vaccination among healthcare workers (HCWs) internationally shows no sign of significant improvement. With the current voluntary 'opt-in' programmes clearly failing to adequately address this issue, the time has undoubtedly come for a new approach to vaccination to be implemented. Two different approaches to vaccination delivery have been suggested to rectify this situation, mandatory vaccination and 'opt-out' declination forms. It is suggested, however, that these two approaches are inadequate when used by themselves. In order to protect the most vulnerable patients in our healthcare facilities as best we can from serious harm or death caused by nosocomial transmission of influenza, while at the same time respecting HCWs autonomy, and in many jurisdictions, the related legal right to refuse medical treatment, it is recommended that 'op-out' declination forms should be used in conjunction with restricted mandatory vaccination. This 'combined' approach would allow any HCW to refuse the influenza vaccination, but would make the influenza vaccination a mandatory requirement for working in areas where the most vulnerable patients are cared for. Those HCWs not willing to be vaccinated should be required to work in other areas of healthcare.

  8. Imperfection works: Survival, transmission and persistence in the system of Heliothis virescens ascovirus 3h (HvAV-3h), Microplitis similis and Spodoptera exigua

    PubMed Central

    Li, Shun-Ji; Hopkins, Richard J.; Zhao, Yi-Pei; Zhang, Yun-Xuan; Hu, Jue; Chen, Xu-Yang; Xu, Zhi; Huang, Guo-Hua

    2016-01-01

    Ascoviruses are insect-specific large DNA viruses that mainly infect noctuid larvae, and are transmitted by parasitoids in the fields. Heliothis virescens ascovirus 3h (HvAV-3h) has been recently isolated from Spodoptera exigua, without parasitoid vector identified previously. Here we report that Microplitis similis, a solitary endoparasitoid wasp, could transmit HvAV-3h between S. exigua larvae in the laboratory. When the female parasitoid wasp acquired the virus and served as a vector, the period of virion viability on the ovipositor was 4.1 ± 1.4 days. Infected host larvae were still acceptable for egg laying by parasitoids, and the parasitoids thereafter transmitted virus to healthy hosts. Virus acquisition occurred only from donor hosts between 3 and 9 days post infection. The peak of virus acquisition (80.9 ± 6.3%) was found when M. similis wasps oviposited in larvae that had been inoculated with the virus 7 days previously. When virus infection of the host took place during the life cycle of the parasitoid wasp, it caused 1- to 4-day-old immature parasitoids death in the host, whilst a small proportion of 5- to 6-day-old and the majority of 7-day-old parasitoids larvae survived from the virus-infected hosts. Viral contamination did not reduce the life span or fecundity of female M. similis. PMID:26878829

  9. Epidemiology of the 2009 influenza pandemic in Spain. The Spanish Influenza Surveillance System.

    PubMed

    Larrauri Cámara, Amparo; Jiménez-Jorge, Silvia; Mateo Ontañón, Salvador de; Pozo Sánchez, Francisco; Ledesma Moreno, Juan; Casas Flecha, Inmaculada

    2012-10-01

    In accordance with European Centre for Disease Prevention and Control recommendations, the Spanish Influenza Surveillance System (SISS) maintained its activity during the summer of 2009, and since July 2009 the pandemic virus activity was monitored by the SISS. In this paper, we describe the epidemiological and virological characteristics of the 2009 pandemic in the Spain through the SISS. Spain experienced a transmission of the new A(H1N1)pdm09 influenza virus during the summer of 2009, which gradually increased, resulting in the pandemic wave in early autumn of that year. The reproductive number R0, estimated during the growth phase of the pandemic wave (1.32; 95% confidence interval [95%CI], 1.29-1.36), showed a transmissibility comparable to preceding pandemics. There was an almost complete replacement of the previous seasonal A(H1N1) influenza virus by the pandemic virus A(H1N1)pdm09. The pandemic virus produced a greater burden of illness than seasonal influenza in children younger than 15 years old, while the incidence in those older than 64 years was lower compared with previous inter-pandemic seasons. Nevertheless, in Spain the 2009 pandemic was characterized as mild, considering the duration of the pandemic period and the influenza detection rate, both in the range of those observed in previous inter-pandemic seasons. Also, the case fatality ratio (CFR) was estimated at 0.58 deaths/1,000 confirmed ILI cases (95%CI, 0.52-0.64), in the range of the two previous pandemics of 1957 and 1968, with the highest CFR observed in the older than 64 years age group. In the 2009 pandemic there was a higher percentage of pandemic confirmed deaths in the younger ages, compared to seasonal influenza, since only 28% of the reported deaths occurred in persons aged 64 years and older.

  10. Seasonal Influenza: An Overview

    ERIC Educational Resources Information Center

    Li, Christina; Freedman, Marian

    2009-01-01

    Seasonal influenza is a major cause of morbidity and mortality in the United States. It also has major social and economic consequences in the form of high rates of absenteeism from school and work as well as significant treatment and hospitalization costs. In fact, annual influenza epidemics and the resulting deaths and lost days of productivity…

  11. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  12. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is caused by type A influenza virus, a member of the Orthomyxoviridae family. AI viruses are serologically categorized into 16 hemagglutinin (H1-H16) and 9 neuraminidase (N1-N9) subtypes. All subtypes have been identified in birds. Infections by AI viruses have been reported in ...

  13. [Anti-influenza virus agent].

    PubMed

    Nakamura, Shigeki; Kohno, Shigeru

    2012-04-01

    The necessity of newly anti-influenza agents is increasing rapidly after the prevalence of pandemic influenza A (H1N1) 2009. In addition to the existing anti-influenza drugs, novel neuraminidase inhibitors such as peramivir (a first intravenous anti-influenza agent) and laninamivir (long acting inhaled anti-influenza agent) can be available. Moreover favipiravir, which shows a novel anti-influenza mechanism acting as RNA polymerase inhibitor, has been developing. These drugs are expected to improve the prognosis of severe cases caused by not only seasonal influenza but pandemic influenza A (H1N1) 2009 virus and H5N1 avian influenza, and also treat oseltamivir-resistant influenza effectively.

  14. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface.

    PubMed

    Nelson, Martha I; Vincent, Amy L

    2015-03-01

    The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest 'reverse zoonosis' of a pathogen documented to date. Overcoming the bias towards perceiving swine as sources of human viruses, rather than recipients, is key to understanding how the bidirectional nature of the human-animal interface produces influenza threats to both hosts.

  15. Intra- and interhost evolutionary dynamics of equine influenza virus.

    PubMed

    Murcia, Pablo R; Baillie, Gregory J; Daly, Janet; Elton, Debra; Jervis, Carley; Mumford, Jennifer A; Newton, Richard; Parrish, Colin R; Hoelzer, Karin; Dougan, Gordon; Parkhill, Julian; Lennard, Nicola; Ormond, Doug; Moule, Sharon; Whitwham, Andrew; McCauley, John W; McKinley, Trevelyan J; Holmes, Edward C; Grenfell, Bryan T; Wood, James L N

    2010-07-01

    Determining the evolutionary basis of cross-species transmission and immune evasion is key to understanding the mechanisms that control the emergence of either new viruses or novel antigenic variants with pandemic potential. The hemagglutinin glycoprotein of influenza A viruses is a critical host range determinant and a major target of neutralizing antibodies. Equine influenza virus (EIV) is a significant pathogen of the horse that causes periodical outbreaks of disease even in populations with high vaccination coverage. EIV has also jumped the species barrier and emerged as a novel respiratory pathogen in dogs, canine influenza virus. We studied the dynamics of equine influenza virus evolution in horses at the intrahost level and how this evolutionary process is affected by interhost transmission in a natural setting. To this end, we performed clonal sequencing of the hemagglutinin 1 gene derived from individual animals at different times postinfection. Our results show that despite the population consensus sequence remaining invariant, genetically distinct subpopulations persist during the course of infection and are also transmitted, with some variants likely to change antigenicity. We also detected a natural case of mixed infection in an animal infected during an outbreak of equine influenza, raising the possibility of reassortment between different strains of virus. In sum, our data suggest that transmission bottlenecks may not be as narrow as originally perceived and that the genetic diversity required to adapt to new host species may be partially present in the donor host and potentially transmitted to the recipient host.

  16. Pandemic influenza A (H1N1) virus infection and avian influenza A (H5N1) virus infection: a comparative analysis.

    PubMed

    Korteweg, Christine; Gu, Jiang

    2010-08-01

    The 2009 H1N1 and H5N1 influenza viruses are newly (re-) emerged influenza A viruses (2009 A(H1N1) and A(H5N1), respectively) that have recently posed tremendous health threats in many regions worldwide. With the 2009 outbreak of H1N1 influenza A, the world witnessed the first influenza pandemic of the 21st century. The disease has rapidly spread across the entire globe, and has resulted in hundreds of thousands of cases with confirmed infection. Although characterized by high transmissibility, the virulence and fatality of the 2009 A(H1N1) influenza virus have thus far remained relatively low. The reverse holds true for A(H5N1) influenza; at a fatality rate that exceeds 60%, it is known to cause severe damage to the human respiratory system, but is not presently capable of efficient transmission from human to human. Apart from the clear differences between the two types of influenza, there are some significant similarities that warrant attention. In particular, the more severe and fatal 2009 A(H1N1) influenza cases have shown symptoms similar to those reported in cases of A(H5N1) influenza. Histopathological findings for these cases, to the extent available, also appear to have similarities for both diseases in terms of damage and severity. Here we review important recent publications in this area, and we discuss some of the key commonalities and contrasts between the two influenza A types in terms of their biology, origins, clinical features, pathology and pathogenesis, and receptors and transmissibility.

  17. Evaluating the Impact of Zimbabwe’s Prevention of Mother-to-Child HIV Transmission Program: Population-Level Estimates of HIV-Free Infant Survival Pre-Option A

    PubMed Central

    Buzdugan, Raluca; McCoy, Sandra I.; Watadzaushe, Constancia; Kang Dufour, Mi-Suk; Petersen, Maya; Dirawo, Jeffrey; Mushavi, Angela; Mujuru, Hilda Angela; Mahomva, Agnes; Musarandega, Reuben; Hakobyan, Anna; Mugurungi, Owen; Cowan, Frances M.; Padian, Nancy S.

    2015-01-01

    Objective We estimated HIV-free infant survival and mother-to-child HIV transmission (MTCT) rates in Zimbabwe, some of the first community-based estimates from a UNAIDS priority country. Methods In 2012 we surveyed mother-infant pairs residing in the catchment areas of 157 health facilities randomly selected from 5 of 10 provinces in Zimbabwe. Enrolled infants were born 9–18 months before the survey. We collected questionnaires, blood samples for HIV testing, and verbal autopsies for deceased mothers/infants. Estimates were assessed among i) all HIV-exposed infants, as part of an impact evaluation of Option A of the 2010 WHO guidelines (rolled out in Zimbabwe in 2011), and ii) the subgroup of infants unexposed to Option A. We compared province-level MTCT rates measured among women in the community with MTCT rates measured using program monitoring data from facilities serving those communities. Findings Among 8568 women with known HIV serostatus, 1107 (12.9%) were HIV-infected. Among all HIV-exposed infants, HIV-free infant survival was 90.9% (95% confidence interval (CI): 88.7–92.7) and MTCT was 8.8% (95% CI: 6.9–11.1). Sixty-six percent of HIV-exposed infants were still breastfeeding. Among the 762 infants born before Option A was implemented, 90.5% (95% CI: 88.1–92.5) were alive and HIV-uninfected at 9–18 months of age, and 9.1% (95%CI: 7.1–11.7) were HIV-infected. In four provinces, the community-based MTCT rate was higher than the facility-based MTCT rate. In Harare, the community and facility-based rates were 6.0% and 9.1%, respectively. Conclusion By 2012 Zimbabwe had made substantial progress towards the elimination of MTCT. Our HIV-free infant survival and MTCT estimates capture HIV transmissions during pregnancy, delivery and breastfeeding regardless of whether or not mothers accessed health services. These estimates also provide a baseline against which to measure the impact of Option A guidelines (and subsequently Option B+). PMID:26248197

  18. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... this? Submit Button Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Español Recommend ... with Avian Influenza A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses ...

  19. Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality.

    PubMed

    Yang, Wan; Elankumaran, Subbiah; Marr, Linsey C

    2012-01-01

    Humidity has been associated with influenza's seasonality, but the mechanisms underlying the relationship remain unclear. There is no consistent explanation for influenza's transmission patterns that applies to both temperate and tropical regions. This study aimed to determine the relationship between ambient humidity and viability of the influenza A virus (IAV) during transmission between hosts and to explain the mechanisms underlying it. We measured the viability of IAV in droplets consisting of various model media, chosen to isolate effects of salts and proteins found in respiratory fluid, and in human mucus, at relative humidities (RH) ranging from 17% to 100%. In all media and mucus, viability was highest when RH was either close to 100% or below ∼50%. When RH decreased from 84% to 50%, the relationship between viability and RH depended on droplet composition: viability decreased in saline solutions, did not change significantly in solutions supplemented with proteins, and increased dramatically in mucus. Additionally, viral decay increased linearly with salt concentration in saline solutions but not when they were supplemented with proteins. There appear to be three regimes of IAV viability in droplets, defined by humidity: physiological conditions (∼100% RH) with high viability, concentrated conditions (50% to near 100% RH) with lower viability depending on the composition of media, and dry conditions (<50% RH) with high viability. This paradigm could help resolve conflicting findings in the literature on the relationship between IAV viability in aerosols and humidity, and results in human mucus could help explain influenza's seasonality in different regions.

  20. Low-Pathogenic Avian Influenza Viruses in Wild House Mice

    PubMed Central

    Shriner, Susan A.; VanDalen, Kaci K.; Mooers, Nicole L.; Ellis, Jeremy W.; Sullivan, Heather J.; Root, J. Jeffrey; Pelzel, Angela M.; Franklin, Alan B.

    2012-01-01

    Background Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. Methodology/Principal Findings We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID50 equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 103.89 (H3N6) to 105.06 (H4N6) for the wild bird viruses and 102.08 (H6N2) to 102.85 (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Conclusions/Significance Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics. PMID:22720076

  1. Surveillance of influenza in Iceland during the 2009 pandemic.

    PubMed

    Sigmundsdottir, G; Gudnason, T; Ólafsson, Ö; Baldvinsdottir, G E; Atladottir, A; Löve, A; Danon, L; Briem, H

    2010-12-09

    In a pandemic setting, surveillance is essential to monitor the spread of the disease and assess its impact. Appropriate mitigation and healthcare preparedness strategies depend on fast and accurate epidemic surveillance data. During the 2009 influenza A(H1N1) pandemic, rapid improvements in influenza surveillance were made in Iceland. Here, we describe the improvements made in influenza surveillance during the pandemic , which could also be of great value in outbreaks caused by other pathogens. Following the raised level of pandemic influenza alert in April 2009, influenza surveillance was intensified. A comprehensive automatic surveillance system for influenza-like illness was developed, surveillance of influenza-related deaths was established and laboratory surveillance for influenza was strengthened. School absenteeism reports were also collected and compared with results from the automatic surveillance system. The first case of 2009 pandemic influenza A(H1N1) was diagnosed in Iceland in May 2009, but sustained community transmission was not confirmed until mid-August. The pandemic virus circulated during the summer and early autumn before an abrupt increase in the number of cases was observed in October. There were large outbreaks in elementary schools for children aged 6–15 years throughout the country that peaked in late October. School absenteeism reports from all elementary schools in Iceland gave a similar epidemiological curve as that from data from the healthcare system. Estimates of the proportion of the population infected with the pandemic virus ranged from 10% to 22%. This study shows how the sudden need for improved surveillance in the pandemic led to rapid improvements in data collection in Iceland. This reporting system will be improved upon and expanded to include other notifiable diseases, to ensure accurate and timely collection of epidemiological data.

  2. Survivable Local Area Network.

    DTIC Science & Technology

    Enhanced availability and survivability of communications between geographically remote locations with a minimum of redundancy of transmission...isolate bus segements on either side of a connection so that if a fault occurs only the segment containing the fault will be affected. The first type

  3. Swine influenza viruses: an Asian perspective.

    PubMed

    Choi, Young-Ki; Pascua, Phillippe Noriel Q; Song, Min-Suk

    2013-01-01

    Swine influenza viruses (SIVs) are respiratory viral pathogens of pigs that are capable of causing serious global public health concerns in human. Because of their dual susceptibility to mammalian and avian influenza A viruses, pigs are the leading intermediate hosts for genetic reassortment and interspecies transmission and serve as reservoirs of antigenically divergent human viruses from which zoonotic stains with pandemic potential may arise. Pandemic influenza viruses emerging after the 1918 Spanish flu have originated in asia. Although distinct lineages of North American and European SIVs of the H1N1, H3N2, and HiN2 subtypes have been widely studied, less is known about the porcine viruses that are circulating among pig populations throughout Asia. The current review understanding of Contemporary viruses, human infection with SIVs, and the potential threat of novel pandemic strains are described, Furthermore, to best use the limited resources that are available for comprehensive genetic assessment of influenza, consensus efforts among Asian nations to increase epidemiosurveillance of swine herds is also strongly promoted.

  4. Stability of influenza vaccine coated onto microneedles

    PubMed Central

    Choi, Hyo-Jick; Yoo, Dae-Goon; Bondy, Brian J.; Quan, Fu-Shi; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2012-01-01

    A microneedle patch coated with vaccine simplifies vaccination by using a patch-based delivery method and targets vaccination to the skin for superior immunogenicity compared to intramuscular injection. Previous studies of microneedles have demonstrated effective vaccination using freshly prepared microneedles, but the issue of long-term vaccine stability has received only limited attention. Here, we studied the long-term stability of microneedles coated with whole inactivated influenza vaccine guided by the hypothesis that crystallization and phase separation of the microneedle coating matrix damages influenza vaccine coated onto microneedles. In vitro showed that the vaccine lost stability as measured by hemagglutination activity in proportion to the degree of coating matrix crystallization and phase separation. Transmission electron microscopy similarly showed damaged morphology of the inactivated virus vaccine associated with crystallization. In vivo assessment of immune response and protective efficacy in mice further showed reduced vaccine immunogenicity after influenza vaccination using microneedles with crystallized or phase-separated coatings. This work shows that crystallization and phase separation of the dried coating matrix are important factors affecting long-term stability of influenza vaccine-coated microneedles. PMID:22361098

  5. Influenza vaccines and vaccination strategies in birds.

    PubMed

    van den Berg, Thierry; Lambrecht, Bénédicte; Marché, Sylvie; Steensels, Mieke; Van Borm, Steven; Bublot, Michel

    2008-03-01

    Although it is well accepted that the present Asian H5N1 panzootic is predominantly an animal health problem, the human health implications and the risk of human pandemic have highlighted the need for more information and collaboration in the field of veterinary and human health. H5 and H7 avian influenza (AI) viruses have the unique property of becoming highly pathogenic (HPAI) during circulation in poultry. Therefore, the final objective of poultry vaccination against AI must be eradication of the virus and the disease. Actually, important differences exist in the control of avian and human influenza viruses. Firstly, unlike human vaccines that must be adapted to the circulating strain to provide adequate protection, avian influenza vaccination provides broader protection against HPAI viruses. Secondly, although clinical protection is the primary goal of human vaccines, poultry vaccination must also stop transmission to achieve efficient control of the disease. This paper addresses these differences by reviewing the current and future influenza vaccines and vaccination strategies in birds.

  6. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus.

    PubMed

    Hendricks, Gabriel L; Weirich, Kim L; Viswanathan, Karthik; Li, Jing; Shriver, Zachary H; Ashour, Joseph; Ploegh, Hidde L; Kurt-Jones, Evelyn A; Fygenson, Deborah K; Finberg, Robert W; Comolli, James C; Wang, Jennifer P

    2013-03-22

    Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains.

  7. Sialylneolacto-N-tetraose c (LSTc)-bearing Liposomal Decoys Capture Influenza A Virus*

    PubMed Central

    Hendricks, Gabriel L.; Weirich, Kim L.; Viswanathan, Karthik; Li, Jing; Shriver, Zachary H.; Ashour, Joseph; Ploegh, Hidde L.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Finberg, Robert W.; Comolli, James C.; Wang, Jennifer P.

    2013-01-01

    Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains. PMID:23362274

  8. Estimated influenza illnesses and hospitalizations averted by influenza vaccination - United States, 2012-13 influenza season.

    PubMed

    2013-12-13

    Influenza is associated with substantial morbidity and mortality each year in the United States. From 1976 to 2007, annual deaths from influenza ranged from approximately 3,300 to 49,000. Vaccination against influenza has been recommended to prevent illness and related complications, and since 2010, the Advisory Committee on Immunization Practices has recommended that all persons aged ≥6 months be vaccinated against influenza each year. In 2013, CDC published a model to quantify the annual number of influenza-associated illnesses and hospitalizations averted by influenza vaccination during the 2006-11 influenza seasons. Using that model with 2012-13 influenza season vaccination coverage rates, influenza vaccine effectiveness, and influenza hospitalization rates, CDC estimated that vaccination resulted in 79,000 (17%) fewer hospitalizations during the 2012-13 influenza season than otherwise might have occurred. Based on estimates of the percentage of influenza illnesses that involve hospitalization or medical attention, vaccination also prevented approximately 6.6 million influenza illnesses and 3.2 million medically attended illnesses. Influenza vaccination during the 2012-13 season produced a substantial reduction in influenza-associated illness. However, fewer than half of persons aged ≥6 months were vaccinated. Higher vaccination rates would have resulted in prevention of a substantial number of additional cases and hospitalizations.

  9. Influenza A Virus in Backyard Pigs and Poultry in Rural Cambodia.

    PubMed

    Osbjer, K; Berg, M; Sokerya, S; Chheng, K; San, S; Davun, H; Magnusson, U; Olsen, B; Zohari, S

    2016-08-02

    Surveillance of influenza virus in humans and livestock is critical, given the worldwide public health threats and livestock production losses. Livestock farming involving close proximity between humans, pigs and poultry is often practised by smallholders in low-income countries and is considered an important driver of influenza virus evolution. This study determined the prevalence and genetic characteristics of influenza A virus (IAV) in backyard pigs and poultry in Cambodia. A total of 751 animals were tested by matrix gene-based rRT-PCR, and influenza virus was detected in 1.5% of sampled pigs, 1.4% of chickens and 1.0% of ducks, but not in pigeons. Full-length genome sequencing confirmed triple reassortant H3N2 in all IAV-positive pigs and various low pathogenic avian influenza subtypes in poultry. Phylogenetic analysis of the swine influenza viruses revealed that these had haemagglutinin and neuraminidase genes originating from human H3N2 viruses previously isolated in South-East Asia. Phylogenetic analysis also revealed that several of the avian influenza subtypes detected were closely related to internal viral genes from highly pathogenic H5N1 and H9N2 formerly sequenced in the region. High sequence homology was likewise found with influenza A viruses circulating in pigs, poultry and wild birds in China and Vietnam, suggesting transboundary introduction and cocirculation of the various influenza subtypes. In conclusion, highly pathogenic subtypes of influenza virus seem rare in backyard poultry, but virus reassortment, involving potentially zoonotic and pandemic subtypes, appears to occur frequently in smallholder pigs and poultry. Increased targeted surveillance and monitoring of influenza circulation on smallholdings would further improve understanding of the transmission dynamics and evolution of influenza viruses in humans, pigs and poultry in the Mekong subregion and could contribute to limit the influenza burden.

  10. Lab-in-a-tube: Real-time molecular point-of-care diagnostics for influenza A and B using the cobas® Liat® system.

    PubMed

    Melchers, Willem J G; Kuijpers, Judith; Sickler, Joanna Jackson; Rahamat-Langendoen, Janette

    2017-02-18

    Rapid diagnosis of influenza A and B is important for direct treatment decisions in patient care and for the reduction of in-hospital transmissions. The new real-time PCR based molecular point-of-care (POC) assay, the cobas(®) Influenza A/B test on the cobas(®) Liat(®) System (cobas(®) Liat(®) Influenza A/B assay), generated a PCR result in less than 20 min, was evaluated for the detection of influenza A and B. One hundred twenty-one retrospectively collected respiratory specimens, previously analyzed with a routine influenza A/B test (Diagenode) were tested using the cobas(®) Liat(®) Influenza A/B assay. The cobas(®) Liat(®) Influenza A/B assay allows influenza A and B testing by RT-PCR within 20 min. This assay detected influenza A in 51 of 56 samples positive by the Diagenode test. The five discrepant results were retested with the Cepheid Influenza A/B test, confirming two positive cases. All 30 influenza B Diagenode positive samples were found positive by the cobas(®) Liat(®) Influenza A/B assay. Control samples (viral negative and non-influenza pathogens) were all negative by the cobas(®) Liat(®) Influenza A/B assay. The cobas(®) Liat(®) Influenza A/B assay showed a sensitivity for influenza A/B of 96% and 100%, respectively, and 100% specificity for both targets. The cobas(®) Liat(®) Influenza A/B assay is a useful tool for accurate, rapid, and sensitive detection of influenza A and B, offering timely and personalized patient management and infection control when implemented at the point-of-care.

  11. Seasonal influenza vaccines.

    PubMed

    Fiore, Anthony E; Bridges, Carolyn B; Cox, Nancy J

    2009-01-01

    Influenza vaccines are the mainstay of efforts to reduce the substantial health burden from seasonal influenza. Inactivated influenza vaccines have been available since the 1940s and are administered via intramuscular injection. Inactivated vaccines can be given to anyone six months of age or older. Live attenuated, cold-adapted influenza vaccines (LAIV) were developed in the 1960s but were not licensed in the United States until 2003, and are administered via nasal spray. Both vaccines are trivalent preparations grown in eggs and do not contain adjuvants. LAIV is licensed for use in the United States for healthy nonpregnant persons 2-49 years of age.Influenza vaccination induces antibodies primarily against the major surface glycoproteins hemagglutinin (HA) and neuraminidase (NA); antibodies directed against the HA are most important for protection against illness. The immune response peaks at 2-4 weeks after one dose in primed individuals. In previously unvaccinated children <9 years of age, two doses of influenza vaccine are recommended, as some children in this age group have limited or no prior infections from circulating types and subtypes of seasonal influenza. These children require both an initial priming dose and a subsequent booster dose of vaccine to mount a protective antibody response.The most common adverse events associated with inactivated vaccines are sore arm and redness at the injection site; systemic symptoms such as fever or malaise are less commonly reported. Guillian-Barré Syndrome (GBS) was identified among approximately 1 per 100,000 recipients of the 1976 swine influenza vaccine. The risk of influenza vaccine-associated GBS from seasonal influenza vaccine is thought to be at most approximately 1-2 cases per 1 million vaccinees, based on a few studies that have found an association; other studies have found no association.The most common adverse events associated with LAIV are nasal congestion, headache, myalgias or fever. Studies of the

  12. Neonatal Haemophilus influenzae infections.

    PubMed Central

    Takala, A K; Pekkanen, E; Eskola, J

    1991-01-01

    Nine cases of neonatal Haemophilus influenzae septicaemia were recorded in Finland during 1985-9; incidence was 2.8/100,000 live births, and 1.6% of all cases of neonatal septicaemia. The onset of the disease was early in all cases, ranging from 0-6 hours after delivery. Seven of the infants were preterm and three died (overall mortality 33%). H influenzae was isolated from blood in seven of the cases, and in two neonates with clinical signs of septicaemia it was found on several surface sites and the placenta. One of the eight strains of H influenzae was capsular type b and biotype I, the rest being non-typable--a distribution similar to those previously reported. Four of the uncapsulated strains were of biotype III, and three were of biotype II. None of the strains of H influenzae was of biotype IV, which has been reported to be characteristic of neonatal and genital isolates of H influenzae. All nine mothers had some sign of infection at the time of or shortly after delivery. H influenzae was isolated from five mothers: from the blood (n = 1) or from the placenta or cervix (n = 4). The use of intrauterine devices may be a possible risk factor for neonatal H influenzae infections; two of the mothers had such devices in place during their pregnancies. PMID:2025040

  13. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.

  14. New treatments for influenza

    PubMed Central

    2012-01-01

    Influenza has a long history of causing morbidity and mortality in the human population through routine seasonal spread and global pandemics. The high mutation rate of the RNA genome of the influenza virus, combined with assortment of its multiple genomic segments, promote antigenic diversity and new subtypes, allowing the virus to evade vaccines and become resistant to antiviral drugs. There is thus a continuing need for new anti-influenza therapy using novel targets and creative strategies. In this review, we summarize prospective future therapeutic regimens based on recent molecular and genomic discoveries. PMID:22973873

  15. Conducting influenza virus pathogenesis studies in avian species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian infection studies with influenza A are an important means of assessing host susceptibility, viral pathogenesis, host responses to infection, mechanisms of transmission and viral pathotype. Complex systems and natural settings may also be explored with carefully designed infection studies. In ...

  16. Continual re-introduction of human pandemic H1N1 influenza A viruses into US swine, 2009-2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human-to-swine transmission of pandemic H1N1 influenza viruses (pH1N1) increased the genetic diversity of influenza A viruses in swine (swIAVs) globally and is linked to the emergence of new pandemic threats, including H3N2v variants. Through phylogenetic analysis of contemporary swIAVs in the Unit...

  17. Cyclic di-GMP Modulates Gene Expression in Lyme Disease Spirochetes at the Tick-Mammal Interface To Promote Spirochete Survival during the Blood Meal and Tick-to-Mammal Transmission

    PubMed Central

    Dunham-Ems, Star; Allard, Anna M.; Cassera, Maria B.; Kenedy, Melisha; Radolf, Justin D.

    2015-01-01

    Borrelia burgdorferi, the Lyme disease spirochete, couples environmental sensing and gene regulation primarily via the Hk1/Rrp1 two-component system (TCS) and Rrp2/RpoN/RpoS pathways. Beginning with acquisition, we reevaluated the contribution of these pathways to spirochete survival and gene regulation throughout the enzootic cycle. Live imaging of B. burgdorferi caught in the act of being acquired revealed that the absence of RpoS and the consequent derepression of tick-phase genes impart a Stay signal required for midgut colonization. In addition to the behavioral changes brought on by the RpoS-off state, acquisition requires activation of cyclic di-GMP (c-di-GMP) synthesis by the Hk1/Rrp1 TCS; B. burgdorferi lacking either component is destroyed during the blood meal. Prior studies attributed this dramatic phenotype to a metabolic lesion stemming from reduced glycerol uptake and utilization. In a head-to-head comparison, however, the B. burgdorferi Δglp mutant had a markedly greater capacity to survive tick feeding than B. burgdorferi Δhk1 or Δrrp1 mutants, establishing unequivocally that glycerol metabolism is only one component of the protection afforded by c-di-GMP. Data presented herein suggest that the protective response mediated by c-di-GMP is multifactorial, involving chemotactic responses, utilization of alternate substrates for energy generation and intermediary metabolism, and remodeling of the cell envelope as a means of defending spirochetes against threats engendered during the blood meal. Expression profiling of c-di-GMP-regulated genes through the enzootic cycle supports our contention that the Hk1/Rrp1 TCS functions primarily, if not exclusively, in ticks. These data also raise the possibility that c-di-GMP enhances the expression of a subset of RpoS-dependent genes during nymphal transmission. PMID:25987708

  18. Impact of the flu mask regulation on health care personnel influenza vaccine acceptance rates.

    PubMed

    Edwards, Frances; Masick, Kevin D; Armellino, Donna

    2016-10-01

    Achieving high vaccination rates of health care personnel (HCP) is critical in preventing influenza transmission from HCP to patients and from patients to HCP; however, acceptance rates remain low. In 2013, New York State adopted the flu mask regulation, requiring unvaccinated HCP to wear a mask when in areas where patients are present. The purpose of this study assessed the impact of the flu mask regulation on the HCP influenza vaccination rate. A 13-question survey was distributed electronically and manually to the HCP to examine their knowledge of influenza transmission and the influenza vaccine and their personal vaccine acceptance history and perception about the use of the mask while working if not vaccinated. There were 1,905 respondents; 87% accepted the influenza vaccine, and 63% were first-time recipients who agreed the regulation influenced their vaccination decision. Of the respondents who declined the vaccine, 72% acknowledge HCP are at risk for transmitting influenza to patients, and 56% reported they did not receive enough information to make an educated decision. The flu mask protocol may have influenced HCP's choice to be vaccinated versus wearing a mask. The study findings supported that HCP may not have adequate knowledge on the morbidity and mortality associated with influenza. Regulatory agencies need to consider an alternative approach to increase HCP vaccination, such as mandating the influenza vaccine for HCP.

  19. Surveillance of feral cats for influenza A virus in North Central Florida

    PubMed Central

    Gordy, James T.; Jones, Cheryl A.; Rue, Joanne; Crawford, Patti Cynda; Levy, Julie K.; Stallknecht, David E.; Tripp, Ralph A.; Tompkins, Stephen M.

    2011-01-01

    Please cite this paper as: Gordy JT et al. (2012) Surveillance of feral cats for influenza A virus in North Central Florida. Influenza and Other Respiratory Viruses 6(5), 341–347. Background  Transmission of highly pathogenic avian influenza and the recent pandemic H1N1 viruses to domestic cats and other felids creates concern because of the morbidity and mortality associated with human infections as well as disease in the infected animals. Experimental infections have demonstrated transmission of influenza viruses in cats. Objectives  An epidemiologic survey of feral cats was conducted to determine their exposure to influenza A virus. Methods  Feral cat sera and oropharyngeal and rectal swabs were collected from November 2008 through July 2010 in Alachua County, FL and were tested for evidence of influenza A virus infection by virus isolation, PCR, and serological assay. Results and conclusions  No virus was isolated from any of 927 cats examined using MDCK cell or embryonated chicken egg culture methods, nor was viral RNA detected by RT‐PCR in 200 samples tested. However, 0.43% of cats tested antibody positive for influenza A by commercial ELISA. These results suggest feral cats in this region are at minimal risk for influenza A virus infection. PMID:22212818

  20. Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice

    PubMed Central

    Cummins, Nathan W.; Weaver, Eric A.; May, Shannon M.; Croatt, Anthony J.; Foreman, Oded; Kennedy, Richard B.; Poland, Gregory A.; Barry, Michael A.; Nath, Karl A.; Badley, Andrew D.

    2012-01-01

    Underlying mechanisms of individual variation in severity of influenza infection and response to vaccination are poorly understood. We investigated the effect of reduced heme oxygenase-1 (HO-1) expression on vaccine response and outcome of influenza infection. HO-1-deficient and wild-type (WT) mice (kingdom, Animalia; phylum, Chordata; genus/species, Mus musculus) were infected with influenza virus A/PR/8/34 with or without prior vaccination with an adenoviral-based influenza vaccine. A genome-wide association study evaluated the expression of single-nucleotide polymorphisms (SNPs) in the HO-1 gene and the response to influenza vaccination in healthy humans. HO-1-deficient mice had decreased survival after influenza infection compared to WT mice (median survival 5.5 vs. 6.5 d, P=0.016). HO-1-deficient mice had impaired production of antibody following influenza vaccination compared to WT mice (mean antibody titer 869 vs. 1698, P=0.02). One SNP in HO-1 and one SNP in the constitutively expressed isoform HO-2 were independently associated with decreased antibody production after influenza vaccination in healthy human volunteers (P=0.017 and 0.014, respectively). HO-1 deficient mice were paired with sex- and age-matched WT controls. HO-1 affects the immune response to both influenza infection and vaccination, suggesting that therapeutic induction of HO-1 expression may represent a novel adjuvant to enhance influenza vaccine effectiveness.—Cummins, N. W., Weaver, E. A., May, S. M., Croatt, A. J., Foreman, O., Kennedy, R. B., Poland, G. A., Barry, M. A., Nath, K. A., Badley, A. D. Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice. PMID:22490782

  1. Influenza virus neuraminidase (NA): a target for antivirals and vaccines.

    PubMed

    Jagadesh, Anitha; Salam, Abdul Ajees Abdul; Mudgal, Piya Paul; Arunkumar, Govindakarnavar

    2016-08-01

    Influenza, the most common infectious disease, poses a great threat to human health because of its highly contagious nature and fast transmissibility, often leading to high morbidity and mortality. Effective vaccination strategies may aid in the prevention and control of recurring epidemics and pandemics associated with this infectious disease. However, antigenic shifts and drifts are major concerns with influenza virus, requiring effective global monitoring and updating of vaccines. Current vaccines are standardized primarily based on the amount of hemagglutinin, a major surface antigen, which chiefly constitutes these preparations along with the varying amounts of neuraminidase (NA). Anti-influenza drugs targeting the active site of NA have been in use for more than a decade now. However, NA has not been approved as an effective antigenic component of the influenza vaccine because of standardization issues. Although some studies have suggested that NA antibodies are able to reduce the severity of the disease and induce a long-term and cross-protective immunity, a few major scientific issues need to be addressed prior to launching NA-based vaccines. Interestingly, an increasing number of studies have shown NA to be a promising target for future influenza vaccines. This review is an attempt to consolidate studies that reflect the strength of NA as a suitable vaccine target. The studies discussed in this article highlight NA as a potential influenza vaccine candidate and support taking the process of developing NA vaccines to the next stage.

  2. Avian Influenza in Birds

    MedlinePlus

    ... National Wildlife Health Center website . Avian Influenza in Poultry (Domesticated Birds) Domesticated birds (chickens, turkeys, etc.) may ... direct contact with infected waterfowl or other infected poultry, or through contact with surfaces that have been ...

  3. First Aid: Influenza (Flu)

    MedlinePlus

    ... of Flu Vaccine Does My Child Need? Your Child's Immunizations: Influenza Vaccine Immunization Schedule Tips for Treating the Flu Too Late for the Flu Vaccine? Vomiting Fever and Taking Your Child's Temperature Flu Center Who Needs a Flu Shot? ...

  4. The Dilemma of Influenza

    NASA Astrophysics Data System (ADS)

    Hoyle, Fred; Wickramasinghe, Chandra

    With the many major advances in medical and biological sciences that have taken place in recent years it would seem remarkable that we are still unable to come to grips with the problem of influenza. In spite of our ability to produce detail sequences of bacterial and viral genomes, the emergence of new epidemic or pandemic strains of the influenza virus is still shrouded in mystery. To resolve this mystery we may need to turn to space.

  5. The quest of influenza A viruses for new hosts.

    PubMed

    Liu, M; Guan, Y; Peiris, M; He, S; Webby, R J; Perez, D; Webster, R G

    2003-01-01

    There is increasing evidence that stable lineages of influenza viruses are being established in chickens. H9N2 viruses are established in chickens in Eurasia, and there are increasing reports of H3N2, H6N1, and H6N2 influenza viruses in chickens both in Asia and North America. Surveillance in a live poultry market in Nanchang, South Central China, reveals that influenza viruses were isolated form 1% of fecal samples taken from healthy poultry over the course of 16 months. The highest isolation rates were from chickens (1.3%) and ducks (1.2%), followed by quail (0.8%), then pigeon (0.5%). H3N6, H9N2, H2N9, and H4N6 viruses were isolated from multiple samples, while single isolates of H1N1, H3N2, and H3N3 viruses were made. Representatives of each virus subtype were experimentally inoculated into both quail and chickens. All the viruses replicated in the trachea of quail, but efficient replication in chickens was confined to 25% of the tested isolates. In quail, these viruses were shed primarily by the aerosol route, raising the possibility that quail may be the "route modulator" that changes the route of transmission of influenza viruses from fecal-oral to aerosol transmission. Thus, quail may play an important role in the natural history of influenza viruses. The pros and cons of the use of inactivated and recombinant fowl pox-influenza vaccines to control the spread of avian influenza are also evaluated.

  6. A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations.

    PubMed

    Dorjee, S; Poljak, Z; Revie, C W; Bridgland, J; McNab, B; Leger, E; Sanchez, J

    2013-09-01

    Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of 'One-Health/One-Medicine' has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal-human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal-human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct

  7. Vaccination strategies against influenza.

    PubMed

    Hanon, E

    2009-01-01

    Every year, Influenza virus infection is at the origin of substantial excess in morbidity and mortality in developed as well as developing countries. Influenza viruses undergo antigenic drift which cause annual replacement of strain included in classical trivalent vaccines. Less frequently, this virus can also undergo antigenic shift, which corresponds to a major antigenic change and can lead to an extra medical burden. Several vaccines have been made available to immunize individuals against seasonal as well as pandemic influenza viruses. For seasonal Influenza vaccines, live attenuated and classical inactivated trivalent vaccines have been licensed and are widely used. Additionally, several strategies are under investigations to improve further the efficacy of existing seasonal vaccines in children and elderly. These include the use of adjuvant, increase in antigen content, or alternative route of delivery. Similarly, several approaches have been licensed to address additional challenge posed by pandemic viruses. The different vaccination strategies used to maximise protection against seasonal as well as pandemic influenza will be reviewed and discussed in the perspective the current threat posed by the H1N1v pandemic Influenza.

  8. Influenza virus isolation.

    PubMed

    Krauss, Scott; Walker, David; Webster, Robert G

    2012-01-01

    The isolation of influenza viruses is important for the diagnosis of respiratory diseases in lower animals and humans, for the detection of the infecting agent in surveillance programs, and is an essential element in the development and production of vaccine. Since influenza is caused by a zoonotic virus it is necessary to do surveillance in the reservoir species (aquatic waterfowls), intermediate hosts (quails, pigs), and in affected mammals including humans. Two of the hemagglutinin (HA) subtypes of influenza A viruses (H5 and H7) can evolve into highly pathogenic (HP) strains for gallinaceous poultry; some HP H5 and H7 strains cause lethal infection of humans. In waterfowls, low pathogenic avian influenza (LPAI) isolates are obtained primarily from the cloaca (or feces); in domestic poultry, the virus is more often recovered from the respiratory tract than from cloacal samples; in mammals, the virus is most often isolated from the respiratory tract, and in cases of high pathogenic avian influenza (HPAI) from the blood and internal organs of infected birds. Virus isolation procedures are performed by inoculation of clinical specimens into embryonated eggs (primarily chicken eggs) or onto a variety of primary or continuous tissue culture systems. Successful isolation of influenza virus depends on the quality of the sample and matching the appropriate culture method to the sample type.

  9. Exploring Secondary Students' Knowledge and Misconceptions about Influenza: Development, validation, and implementation of a multiple-choice influenza knowledge scale

    NASA Astrophysics Data System (ADS)

    Romine, William L.; Barrow, Lloyd H.; Folk, William R.

    2013-07-01

    Understanding infectious diseases such as influenza is an important element of health literacy. We present a fully validated knowledge instrument called the Assessment of Knowledge of Influenza (AKI) and use it to evaluate knowledge of influenza, with a focus on misconceptions, in Midwestern United States high-school students. A two-phase validation process was used. In phase 1, an initial factor structure was calculated based on 205 students of grades 9-12 at a rural school. In phase 2, one- and two-dimensional factor structures were analyzed from the perspectives of classical test theory and the Rasch model using structural equation modeling and principal components analysis (PCA) on Rasch residuals, respectively. Rasch knowledge measures were calculated for 410 students from 6 school districts in the Midwest, and misconceptions were verified through the χ 2 test. Eight items measured knowledge of flu transmission, and seven measured knowledge of flu management. While alpha reliability measures for the subscales were acceptable, Rasch person reliability measures and PCA on residuals advocated for a single-factor scale. Four misconceptions were found, which have not been previously documented in high-school students. The AKI is the first validated influenza knowledge assessment, and can be used by schools and health agencies to provide a quantitative measure of impact of interventions aimed at increasing understanding of influenza. This study also adds significantly to the literature on misconceptions about influenza in high-school students, a necessary step toward strategic development of educational interventions for these students.

  10. [Pandemic influenza A(H1N1): the experience of the Spanish Laboratories of Influenza Network (ReLEG)].

    PubMed

    Cuevas González-Nicolás, María Teresa; Ledesma Moreno, Juan; Pozo Sánchez, Francisco; Casas Flecha, Inmaculada; Pérez-Breña, Pilar

    2010-01-01

    There are three types of influenza viruses: A, B, C. These viruses evolves constantly due to two main characteristics: the first one is the lack of the correction ability of the viral polymerase which causes the accumulation of single nucleotide mutations in the viral genes introduced by an error-prone viral RNA polymerase, (antigenic shift). The second one is the nature of their genome, formed by eight segments, which allows the interchange of genes between two different viral strains (antigenic drift). This viral plasticity, has allowed to the influenza A viruses to infect new host species and to cause infections with a pandemic characteristics. The Spanish influenza surveillance system, SVGE (its Spanish acronym), arises as a response to the possibility of facing a pandemic situation, especially after the transmission of avian influenza viruses to humans. This surveillance system is formed by sixteen physician and paediatrics network, nineteen epidemiological services coordinated by the National Epidemiological Centre (CNE) and eighteen laboratories , the Spanish Laboratories of Influenza network (ReLEG), coordinated by the National Centre of Microbiology. The aim of this article is to show the action of the ReLEG, in the pandemic caused by the influenza virus A(H1N1) during the season 2009-2010. The main objective of this network is the surveillance of the circulating viruses by means of their detection and their subsequent antigenic and genetic characterization, including the detection of resistance mutations against the main drugs, such as Oseltamivir.

  11. Evaluating the effectiveness, impact and safety of live attenuated and seasonal inactivated influenza vaccination: protocol for the Seasonal Influenza Vaccination Effectiveness II (SIVE II) study

    PubMed Central

    Lone, Nazir I; Kavanagh, Kimberley; Robertson, Chris; McMenamin, Jim; von Wissmann, Beatrix; Vasileiou, Eleftheria; Butler, Chris; Ritchie, Lewis D; Gunson, Rory; Schwarze, Jürgen; Sheikh, Aziz

    2017-01-01

    Introduction Seasonal (inactivated) influenza vaccination is recommended for all individuals aged 65+ and in individuals under 65 who are at an increased risk of complications of influenza infection, for example, people with asthma. Live attenuated influenza vaccine (LAIV) was recommended for children as they are thought to be responsible for much of the transmission of influenza to the populations at risk of serious complications from influenza. A phased roll-out of the LAIV pilot programme began in 2013/2014. There is limited evidence for vaccine effectiveness (VE) in the populations targeted for influenza vaccination. The aim of this study is to examine the safety and effectiveness of the live attenuated seasonal influenza vaccine programme in children and the inactivated seasonal influenza vaccination programme among different age and at-risk groups of people. Methods and analysis Test negative and cohort study designs will be used to estimate VE. A primary care database covering 1.25 million people in Scotland for the period 2000/2001 to 2015/2016 will be linked to the Scottish Immunisation Recall Service (SIRS), Health Protection Scotland virology database, admissions to Scottish hospitals and the Scottish death register. Vaccination status (including LAIV uptake) will be determined from the primary care and SIRS database. The primary outcome will be influenza-positive real-time PCR tests carried out in sentinel general practices and other healthcare settings. Secondary outcomes include influenza-like illness and asthma-related general practice consultations, hospitalisations and death. An instrumental variable analysis will be carried out to account for confounding. Self-controlled study designs will be used to estimate the risk of adverse events associated with influenza vaccination. Ethics and dissemination We obtained approval from the National Research Ethics Service Committee, West Midlands—Edgbaston. The study findings will be presented at

  12. THE EFFECT OF HEMOPHILUS INFLUENZAE SUIS VACCINES ON SWINE INFLUENZA

    PubMed Central

    Shope, Richard E.

    1937-01-01

    Either living or heat-killed H. influenzae suis vaccines, given intramuscularly to swine, elicit an immune response capable of modifying the course of a later swine influenza infection. The protection afforded is only partial and is in no way comparable to the complete immunity afforded by swine influenza virus vaccines. PMID:19870654

  13. Updated preparedness and response framework for influenza pandemics.

    PubMed

    Holloway, Rachel; Rasmussen, Sonja A; Zaza, Stephanie; Cox, Nancy J; Jernigan, Daniel B

    2014-09-26

    The complexities of planning for and responding to the emergence of novel influenza viruses emphasize the need for systematic frameworks to describe the progression of the event; weigh the risk of emergence and potential public health impact; evaluate transmissibility, antiviral resistance, and severity; and make decisions about interventions. On the basis of experience from recent influenza responses, CDC has updated its framework to describe influenza pandemic progression using six intervals (two prepandemic and four pandemic intervals) and eight domains. This updated framework can be used for influenza pandemic planning and serves as recommendations for risk assessment, decision-making, and action in the United States. The updated framework replaces the U.S. federal government stages from the 2006 implementation plan for the National Strategy for Pandemic Influenza (US Homeland Security Council. National strategy for pandemic influenza: implementation plan. Washington, DC: US Homeland Security Council; 2006. Available at http://www.flu.gov/planning-preparedness/federal/pandemic-influenza-implementation.pdf). The six intervals of the updated framework are as follows: 1) investigation of cases of novel influenza, 2) recognition of increased potential for ongoing transmission, 3) initiation of a pandemic wave, 4) acceleration of a pandemic wave, 5) deceleration of a pandemic wave, and 6) preparation for future pandemic waves. The following eight domains are used to organize response efforts within each interval: incident management, surveillance and epidemiology, laboratory, community mitigation, medical care and countermeasures, vaccine, risk communications, and state/local coordination. Compared with the previous U.S. government stages, this updated framework provides greater detail and clarity regarding the potential timing of key decisions and actions aimed at slowing the spread and mitigating the impact of an emerging pandemic. Use of this updated framework is

  14. Influenza Vaccines: Challenges and Solutions

    PubMed Central

    Houser, Katherine; Subbarao, Kanta

    2015-01-01

    Vaccination is the best method for the prevention and control of influenza. Vaccination can reduce illness and lessen severity of infection. This review focuses on how currently licensed influenza vaccines are generated in the U.S., why the biology of influenza poses vaccine challenges, and vaccine approaches on the horizon that address these challenges. PMID:25766291

  15. Improving pandemic influenza risk assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessing the pandemic risk posed by specific non-human influenza A viruses remains a complex challenge. As influenza virus genome sequencing becomes cheaper, faster and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk asses...

  16. Pandemic potential of H7N9 influenza viruses

    PubMed Central

    Watanabe, Tokiko; Watanabe, Shinji; Maher, Eileen A.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2014-01-01

    Avian influenza viruses rarely infect humans, but the recently emerged avian H7N9 influenza viruses have caused sporadic infections in humans in China, resulting in 440 confirmed cases with 122 fatalities as of May 16, 2014. In addition, epidemiologic surveys suggest that there have been asymptomatic or mild human infections with H7N9 viruses. These viruses replicate efficiently in mammals, show limited transmissibility in ferrets and guinea pigs, and possess mammalian-adapting amino acid changes that likely contribute to their ability to infect mammals. Here, we summarize the characteristic features of the novel H7N9 viruses and assess their pandemic potential. PMID:25264312

  17. School illness absenteeism during 2009 influenza A (H1N1) pandemic--South Dakota, 2009-2010.

    PubMed

    Kightlinger, Lon; Horan, Vickie

    2013-05-01

    Schools are important amplification settings of influenza virus transmission. We demonstrated correlation of school absenteeism (due to any illness) with other influenza A (H1N1) activity surveillance data during the 2009 pandemic. We collected nonspecific illness student absenteeism data from August 17, 2009 through April 3, 2010 from 187 voluntarily participating South Dakota schools using weekly online surveys. Relative risks (RR) were calculated as the ratio of the probability of absenteeism during elevated weeks versus the probability of absenteeism during the baseline weeks (RR = 1.89). We used Pearson correlation to associate absenteeism with laboratory-confirmed influenza cases, influenza cases diagnosed by rapid tests, influenza-associated hospitalizations and deaths reported in South Dakota during the 2009 H1N1 pandemic period. School-absenteeism data correlated strongly with data from these other influenza surveillance sources.

  18. Hand hygiene and risk of influenza virus infections in the community: A systematic review and meta-analysis

    PubMed Central

    Wong, Valerie W. Y.; Cowling, Benjamin J.; Aiello, Alison E.

    2016-01-01

    Community-based prevention strategies for seasonal and pandemic influenza are essential to minimize their potential threat to public health. Our aim was to evaluate the efficacy of hand hygiene interventions in reducing influenza transmission in the community and to investigate the possible modifying effects of latitude, temperature and humidity on hand hygiene efficacy. We identified 979 articles in the initial search and 10 randomized controlled trials met our inclusion criteria. The combination of hand hygiene with facemasks was found to have statistically significant efficacy against laboratory-confirmed influenza while hand hygiene alone did not. Our meta-regression model did not identify statistically significant effects of latitude, temperature or humidity on the efficacy of hand hygiene. Our findings highlight the potential importance of interventions that protect against multiple modes of influenza transmission, and the modest efficacy of hand hygiene suggests that additional measures besides hand hygiene may also be important to control influenza. PMID:24572643

  19. Mandatory influenza vaccination programs for health care personnel in NACHRI-associated children's hospitals vs. non-children's hospitals.

    PubMed

    Danziger, Phoebe; Davis, Matthew M

    2012-06-01

    We conducted a national study of children's hospitals and neighboring general medical-surgical hospitals to examine their employee vaccination policies. Survey questions addressed health care personnel (HCP) influenza vaccination policies for the 2009-2010 (seasonal, H1N1) and 2010-2011 (H1N1 + seasonal = combined) influenza seasons at each hospital, assessment of primary objectives behind hospitals' influenza vaccination policies, and information about influenza vaccination policies for inpatient children. We conducted standard univariate and bivariate statistical analyses. The study sample included 136 hospitals: 71 children's hospitals (response rate = 59%) and 65 matched non-children's hospitals (39%). Children's hospitals were significantly more likely than non-children's institutions to have mandatory H1N1 influenza vaccination policies for their HCP in 2009-10 (27% vs. 13%, p = 0.03). There were no differences in HCP influenza vaccination policies otherwise: 25% in both groups with mandatory seasonal vaccination programs in 2009-10, and 19% in both groups with mandatory combined influenza programs in 2010-11. Children's hospitals were significantly more likely to have policies in place strongly encouraging inpatient children to have influenza vaccination than were non-children's hospitals (47% vs 5%; p < 0.001). Among children's and non-children's hospitals alike, the primary intentions of HCP influenza vaccination policies were to reduce transmission of influenza from employees to patients (89% overall) and to reduce transmission of influenza from patients to employees (70%). This study--the first known national assessment of hospitals' policies regarding influenza--suggests that HCP mandatory vaccination is uncommon, even in child-focused hospitals where the patient population is known to be at disproportionately high risk for complications from the illness.

  20. Personalized medicine in severe influenza.

    PubMed

    Valenzuela-Sánchez, F; Valenzuela-Méndez, B; Rodríguez-Gutiérrez, J F; Rello, J

    2016-06-01

    Existing therapies against infectious diseases may only be effective in limited subpopulations during specific phases of diseases, incorporating theranostics, and there is a clear need to individualize different therapeutic approaches depending on the host. Influenza A virus infection evolves into a severe respiratory failure in some young adult patients, related to an exaggerated inflammatory response. Mortality rates remain high despite antiviral treatment and aggressive respiratory support. The influenza A virus (IAV) infection will induce a proinflammatory innate immune response through recognition of viral RNA by Toll-like receptor (TLR) 7 and retinoic acid-inducible gene 1 (RIG-I) molecules by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB route). Anti-inflammatory therapies focused on modulating this inflammatory response to "all patients" have not been satisfactory. Steroids should be avoided because they do not improve survival and promote superinfections. Since clinical judgment has often been proven inadequate, interest in the use of biomarkers to monitor host response and to assess severity and complications is growing. It is well known that, if used appropriately, these can be helpful tools to predict not only severity but also mortality. We need more biomarkers that predict host response: it is time to change lactate measurement to proteomics and transcriptomics. Theranostics describes an approach covering both diagnosis and coupled therapy. Death is usually a fatal complication of a dysregulated immune response more than the acute virulence of the infectious agent. Future research demonstrating the usefulness of adjunctive therapy in a subset of critically ill patients with IAV pneumonia is an unmet clinical need.

  1. Fitness of Pandemic H1N1 and Seasonal influenza A viruses during Co-infection: Evidence of competitive advantage of pandemic H1N1 influenza versus seasonal influenza.

    PubMed

    Perez, Daniel Roberto; Sorrell, Erin; Angel, Matthew; Ye, Jianqiang; Hickman, Danielle; Pena, Lindomar; Ramirez-Nieto, Gloria; Kimble, Brian; Araya, Yonas

    2009-08-24

    On June 11, 2009 the World Health Organization (WHO) declared a new H1N1 influenza pandemic. This pandemic strain is as transmissible as seasonal H1N1 and H3N2 influenza A viruses. Major concerns facing this pandemic are whether the new virus will replace, co-circulate and/or reassort with seasonal H1N1 and/or H3N2 human strains. Using the ferret model, we investigated which of these three possibilities were most likely favored. Our studies showed that the current pandemic virus is more transmissible than, and has a biological advantage over, prototypical seasonal H1 or H3 strains.

  2. Dynamically correlated mutations drive human Influenza A evolution.

    PubMed

    Tria, F; Pompei, S; Loreto, V

    2013-01-01

    Human Influenza A virus undergoes recurrent changes in the hemagglutinin (HA) surface protein, primarily involved in the human antibody recognition. Relevant antigenic changes, enabling the virus to evade host immune response, have been recognized to occur in parallel to multiple mutations at antigenic sites in HA. Yet, the role of correlated mutations (epistasis) in driving the molecular evolution of the virus still represents a challenging puzzle. Further, though circulation at a global geographic level is key for the survival of Influenza A, its role in shaping the viral phylodynamics remains largely unexplored. Here we show, through a sequence based epidemiological model, that epistatic effects between amino acids substitutions, coupled with a reservoir that mimics worldwide circulating viruses, are key determinants that drive human Influenza A evolution. Our approach explains all the up-to-date observations characterizing the evolution of H3N2 subtype, including phylogenetic properties, nucleotide fixation patterns, and composition of antigenic clusters.

  3. [Influenza: Whats new?

    PubMed

    Salzberger, Bernd; Schmidt, Barbara

    2016-09-01

    The burden of disease of influenza in Germany has been dominated by high rates of complications in elderly patients in years with high circulation of H3N2 viruses after the introduction of the new H1N1 strain in 2009. Human infections with avian influenza viruses occur mostly in China. Due to the potential of reassortment with human strains these cases are monitored closely. The efficacy of neuraminidase inhibitors (NI) has been newly rated. In randomized studies effects on reduction of complications could not be found, although large cohort studies have demonstrated a reduction of mortality in patients treated with vs. without neuraminidase inhibitors.The administration and acceptance of influenza vaccine is low in Germany in general and in risk populations. New vaccines have been introduced with quadrivalent vaccines covering both circulating B-types simultaneously and high dose vaccines for elder patients.

  4. Mass Commuting and Influenza Vaccination Prevalence in New York City: Protection in a Mixing Environment

    PubMed Central

    Levine, Burton; Wilcosky, Tim; Wagener, Diane; Cooley, Phillip

    2010-01-01

    Objective Assess influenza vaccination among commuters using mass transit in New York City (NYC). Methods We used the 2006 NYC Community Health Survey (CHS) to analyze the prevalence of influenza immunization by commuting behaviors and to understand what socioeconomic and geographic factors may explain any differences found. Results Vaccination prevalence is significantly lower for New Yorkers who commute on public transportation compared to other New Yorkers. This difference is largely attenuated after adjusting for socio-demographic characteristics and neighborhood of residence. Conclusions The analysis identified a low prevalence of immunization among commuters, and given the transmissibility in that setting, targeting commuters for vaccination campaigns may impede influenza spread. PMID:21218159

  5. Recent discoveries of influenza A drug target sites to combat virus replication.

    PubMed

    Patel, Hershna; Kukol, Andreas

    2016-06-15

    Sequence variations in the binding sites of influenza A proteins are known to limit the effectiveness of current antiviral drugs. Clinically, this leads to increased rates of virus transmission and pathogenicity. Potential influenza A inhibitors are continually being discovered as a result of high-throughput cell based screening studies, whereas the application of computational tools to aid drug discovery has further increased the number of predicted inhibitors reported. This review brings together the aspects that relate to the identification of influenza A drug target sites and the findings from recent antiviral drug discovery strategies.

  6. What influences elderly peoples' decisions about whether to accept the influenza vaccination? A qualitative study.

    PubMed

    Telford, Rosie; Rogers, Anne

    2003-12-01

    Influenza and its related illnesses remain a major cause of preventable morbidity and mortality in the elderly worldwide. The current influenza vaccine campaign in the UK is only a partial success despite annual costly publicity campaigns. The aim of this study was to explore the influences on decision making by elderly people for influenza vaccine uptake. Twenty patients age 75 years and over were purposively selected from those eligible for influenza vaccination in an inner city general practice in England. In-depth qualitative interviews were conducted with 10 patients who accepted and 10 who refused the vaccine. Those interviewed were concerned about maintaining their health, and had a good understanding of influenza, its transmission and prevention. The decision whether to accept or refuse the influenza vaccination was influenced by trust or mistrust of modern medicine, prior experience of vaccination and perceived risk from influenza. Newly acquired lay experience and personal perceived risk from influenza seemed to be more important catalysts for the change in vaccination uptake than professional recommendation or advertising by official government health agencies. In order to improve uptake rates, the official message promoting vaccine uptake needs to take more account of lay knowledge and the subjective assessment of risk.

  7. Zanamivir-resistant influenza viruses with a novel neuraminidase mutation.

    PubMed

    Hurt, Aeron C; Holien, Jessica K; Parker, Michael; Kelso, Anne; Barr, Ian G

    2009-10-01

    The neuraminidase inhibitors zanamivir and oseltamivir are marketed for the treatment and prophylaxis of influenza and have been stockpiled by many countries for use in a pandemic. Although recent surveillance has identified a striking increase in the frequency of oseltamivir-resistant seasonal influenza A (H1N1) viruses in Europe, the United States, Oceania, and South Africa, to date there have been no reports of significant zanamivir resistance among influenza A (H1N1) viruses or any other human influenza viruses. We investigated the frequency of oseltamivir and zanamivir resistance in circulating seasonal influenza A (H1N1) viruses in Australasia and Southeast Asia. Analysis of 391 influenza A (H1N1) viruses isolated between 2006 and early 2008 from Australasia and Southeast Asia revealed nine viruses (2.3%) that demonstrated markedly reduced zanamivir susceptibility and contained a previously undescribed Gln136Lys (Q136K) neuraminidase mutation. The mutation had no effect on oseltamivir susceptibility but caused approximately a 300-fold and a 70-fold reduction in zanamivir and peramivir susceptibility, respectively. The role of the Q136K mutation in conferring zanamivir resistance was confirmed using reverse genetics. Interestingly, the mutation was not detected in the primary clinical specimens from which these mutant isolates were grown, suggesting that the resistant viruses either occurred in very low proportions in the primary clinical specimens or arose during MDCK cell culture passage. Compared to susceptible influenza A (H1N1) viruses, the Q136K mutant strains displayed greater viral fitness than the wild-type virus in MDCK cells but equivalent infectivity and transmissibility in a ferret model.

  8. Estimating Direct and Indirect Protective Effect of Influenza Vaccination in the United States.

    PubMed

    Arinaminpathy, Nimalan; Kim, Inkyu Kevin; Gargiullo, Paul; Haber, Michael; Foppa, Ivo M; Gambhir, Manoj; Bresee, Joseph

    2017-03-25

    With influenza vaccination rates in the United States recently exceeding 45% of the population, it is important to understand the impact that vaccination is having on influenza transmission. In this study, we used a Bayesian modeling approach, combined with a simple dynamical model of influenza transmission, to estimate this impact. The combined framework synthesized evidence from a range of data sources relating to influenza transmission and vaccination in the United States. We found that, for seasonal epidemics, the number of infections averted ranged from 9.6 million in the 2006-2007 season (95% credible interval (CI): 8.7, 10.9) to 37.2 million (95% CI: 34.1, 39.6) in the 2012-2013 season. Expressed in relative terms, the proportion averted ranged from 20.8% (95% CI: 16.8, 24.3) of potential infections in the 2011-2012 season to 47.5% (95% CI: 43.7, 50.8) in the 2008-2009 season. The percentage averted was only 1.04% (95% CI: 0.15, 3.2) for the 2009 H1N1 pandemic, owing to the late timing of the vaccination program in relation to the pandemic in the Northern hemisphere. In the future, further vaccination coverage, as well as improved influenza vaccines (especially those offering better protection in the elderly), could have an even stronger effect on annual influenza epidemics.

  9. Universal influenza vaccine: the holy grail?

    PubMed

    Shaw, Alan R

    2012-08-01

    Influenza vaccines have been available since the 1950s and have seen increasingly wide use as public health authorities expanded recommendations. Recent events including shortages and avian influenza outbreaks have renewed interest in influenza vaccines, particularly improved vaccines.

  10. Evolutionary Dynamics of Influenza A Viruses in US Exhibition Swine.

    PubMed

    Nelson, Martha I; Wentworth, David E; Das, Suman R; Sreevatsan, Srinand; Killian, Mary L; Nolting, Jacqueline M; Slemons, Richard D; Bowman, Andrew S

    2016-01-15

    The role of exhibition swine in influenza A virus transmission was recently demonstrated by >300 infections with influenza A(H3N2) variant viruses among individuals who attended agricultural fairs. Through active influenza A virus surveillance in US exhibition swine and whole-genome sequencing of 380 isolates, we demonstrate that exhibition swine are actively involved in the evolution of influenza A viruses, including zoonotic strains. First, frequent introduction of influenza A viruses from commercial swine populations provides new genetic diversity in exhibition pigs each year locally. Second, genomic reassortment between viruses cocirculating in exhibition swine increases viral diversity. Third, viral migration between exhibition swine in neighboring states demonstrates that movements of exhibition pigs contributes to the spread of genetic diversity. The unexpected frequency of viral exchange between commercial and exhibition swine raises questions about the understudied interface between these populations. Overall, the complexity of viral evolution in exhibition swine indicates that novel viruses are likely to continually reemerge, presenting threats to humans.

  11. Global dynamics of avian influenza epidemic models with psychological effect.

    PubMed

    Liu, Sanhong; Pang, Liuyong; Ruan, Shigui; Zhang, Xinan

    2015-01-01

    Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  12. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China

    PubMed Central

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are “mixing vessels,” and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses. PMID:27458456

  13. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

    PubMed

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

  14. Selective Bottlenecks Shape Evolutionary Pathways Taken during Mammalian Adaptation of a 1918-like Avian Influenza Virus.

    PubMed

    Moncla, Louise H; Zhong, Gongxun; Nelson, Chase W; Dinis, Jorge M; Mutschler, James; Hughes, Austin L; Watanabe, Tokiko; Kawaoka, Yoshihiro; Friedrich, Thomas C

    2016-02-10

    Avian influenza virus reassortants resembling the 1918 human pandemic virus can become transmissible among mammals by acquiring mutations in hemagglutinin (HA) and polymerase. Using the ferret model, we trace the evolutionary pathway by which an avian-like virus evolves the capacity for mammalian replication and airborne transmission. During initial infection, within-host HA diversity increased drastically. Then, airborne transmission fixed two polymerase mutations that do not confer a detectable replication advantage. In later transmissions, selection fixed advantageous HA1 variants. Transmission initially involved a "loose" bottleneck, which became strongly selective after additional HA mutations emerged. The stringency and evolutionary forces governing between-host bottlenecks may therefore change throughout host adaptation. Mutations occurred in multiple combinations in transmitted viruses, suggesting that mammalian transmissibility can evolve through multiple genetic pathways despite phenotypic constraints. Our data provide a glimpse into avian influenza virus adaptation in mammals, with broad implications for surveillance on potentially zoonotic viruses.

  15. Acute Murine H5N1 Influenza A Encephalitis

    PubMed Central

    Bissel, Stephanie J; Giles, Brendan M; Wang, Guoji; Olevian, Dane C.; Ross, Ted M.; Wiley, Clayton A.

    2011-01-01

    Avian influenza A virus H5N1 has the proven capacity to infect humans through cross-species transmission, but to date efficient human-to-human transmission is limited. In natural avian hosts, animal models, and sporadic human outbreaks, H5N1 infection has been associated with neurological disease. We infected BALB/c mice intranasally with H5N1 influenza A/Viet Nam/1203/2004 to study the immune response during acute encephalitis. Using immunohistochemistry and in situ hybridization, we compared the time course of viral infection with activation of immunity. By 5 days post infection (DPI), mice had lost substantial body weight and required sacrifice by 7 DPI. H5N1 influenza was detected in the lung as early as 1 DPI, while infected neurons were not observed until 4 DPI. H5N1 infection of BALB/c mice developed into severe acute panencephalitis. Infected neurons lacked evidence of a perineuronal net and exhibited signs of apoptosis. While lung influenza infection was associated with an early type I interferon response followed by a reduction in viral burden concordant with appearance of IFN-γ, the CNS environment exhibited a blunted type I interferon response. PMID:21714828

  16. A mathematical framework for estimating pathogen transmission fitness and inoculum size using data from a competitive mixtures animal model.

    PubMed

    McCaw, James M; Arinaminpathy, Nimalan; Hurt, Aeron C; McVernon, Jodie; McLean, Angela R

    2011-04-01

    We present a method to measure the relative transmissibility ("transmission fitness") of one strain of a pathogen compared to another. The model is applied to data from "competitive mixtures" experiments in which animals are co-infected with a mixture of two strains. We observe the mixture in each animal over time and over multiple generations of transmission. We use data from influenza experiments in ferrets to demonstrate the approach. Assessment of the relative transmissibility between two strains of influenza is important in at least three contexts: 1) Within the human population antigenically novel strains of influenza arise and compete for susceptible hosts. 2) During a pandemic event, a novel sub-type of influenza competes with the existing seasonal strain(s). The unfolding epidemiological dynamics are dependent upon both the population's susceptibility profile and the inherent transmissibility of the novel strain compared to the existing strain(s). 3) Neuraminidase inhibitors (NAIs), while providing significant potential to reduce transmission of influenza, exert selective pressure on the virus and so promote the emergence of drug-resistant strains. Any adverse outcome due to selection and subsequent spread of an NAI-resistant strain is exquisitely dependent upon the transmission fitness of that strain. Measurement of the transmission fitness of two competing strains of influenza is thus of critical importance in determining the likely time-course and epidemiology of an influenza outbreak, or the potential impact of an intervention measure such as NAI distribution. The mathematical framework introduced here also provides an estimate for the size of the transmitted inoculum. We demonstrate the framework's behaviour using data from ferret transmission studies, and through simulation suggest how to optimise experimental design for assessment of transmissibility. The method introduced here for assessment of mixed transmission events has applicability beyond

  17. Avian influenza control strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control strategies for avian influenza in poultry vary depending on whether the goal is prevention, management, or eradication. Components used in control programs include: 1) education which includes communication, public awareness, and behavioral change, 2) changes to production and marketing sys...

  18. Avian influenza (fowl plague)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; ...

  19. Using quantitative disease dynamics as a tool for guiding response to avian influenza in poultry in the United States of America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild birds are the primary source of genetic diversity for influenza A viruses that eventually emerge in poultry and humans. Much progress has been made in the descriptive ecology of avian influenza viruses (AIVs), but contributions from quantitative studies are less evident. Transmission between ho...

  20. Development of a cross protective high growth reasssortant H7N7/PR8 virus for clinical evaluation as an inactivated pre-pandemic influenza vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interspecies transmission of high pathogenicity (HP) H7N7 subtype avian influenza viruses in the Netherlands in 2003 caused zoonotic infections in 89 people, including one fatal case of acute respiratory distress syndrome. Public health preparedness approaches against emerging HP H7N7 influenza vir...

  1. Network analysis of global influenza spread.

    PubMed

    Chan, Joseph; Holmes, Antony; Rabadan, Raul

    2010-11-18

    Although vaccines pose the best means of preventing influenza infection, strain selection and optimal implementation remain difficult due to antigenic drift and a lack of understanding global spread. Detecting viral movement by sequence analysis is complicated by skewed geographic and seasonal distributions in viral isolates. We propose a probabilistic method that accounts for sampling bias through spatiotemporal clustering and modeling regional and seasonal transmission as a binomial process. Analysis of H3N2 not only confirmed East-Southeast Asia as a source of new seasonal variants, but also increased the resolution of observed transmission to a country level. H1N1 data revealed similar viral spread from the tropics. Network analysis suggested China and Hong Kong as the origins of new seasonal H3N2 strains and the United States as a region where increased vaccination would maximally disrupt global spread of the virus. These techniques provide a promising methodology for the analysis of any seasonal virus, as well as for the continued surveillance of influenza.

  2. Analysis of the influenza virus gene pool of avian species from southern China.

    PubMed

    Lin, Y P; Shu, L L; Wright, S; Bean, W J; Sharp, G B; Shortridge, K F; Webster, R G

    1994-02-01

    Although Southern China has been considered the epicenter of human influenza pandemics, little is known about the genetic composition of influenza viruses in lower mammals or birds in that region. To provide information on the molecular epidemiology of these viruses, we used dot blot hybridization and phylogenetic methods to study the internal genes (PB1, PB2, PA, NP, M, and NS) of 106 avian influenza A viruses isolated from a total of 11,798 domestic ducks, chickens, and geese raised in Southern China including Hong Kong. All 636 genes examined were characteristic of avian influenza viruses; no human or swine influenza genes were detected. Thus, influenza virus reassortants do not appear to be maintained in the domesticated birds of Southeast Asia, eliminating opportunities for further gene reassortment. Phylogenetic analysis showed that the internal genes of these viruses belong to the Eurasian avian lineage, supporting geographical separation of the major avian lineages. The PB1 genes were most similar to A/Singapore/57 (H2N2) and Hong Kong (H3N2) viral genes, supporting an avian origin for the recent human H2N2 and H3N2 pandemic strains. The majority of internal genes from avian influenza viruses in Southern China belong to the Eurasian lineage and are similar to viruses that have recently been transmitted to humans, swine, and horses. This study provides evidence that the transmission of avian influenza viruses and their genes to other species is unidirectional and that the transmission of mammalian influenza virus strains to domestic poultry is probably not a factor in the generation of new pandemic strains.

  3. Replication of swine and human influenza viruses in juvenile and layer turkey hens.

    PubMed

    Ali, Ahmed; Yassine, Hadi; Awe, Olusegun O; Ibrahim, Mahmoud; Saif, Yehia M; Lee, Chang-Won

    2013-04-12

    Since the first reported isolation of swine influenza viruses (SIVs) in turkeys in the 1980s, transmission of SIVs to turkeys was frequently documented. Recently, the 2009 pandemic H1N1 virus, that was thought to be of swine origin, was detected in turkeys with a severe drop in egg production. In this study, we assessed the infectivity of different mammalian influenza viruses including swine, pandemic H1N1 and seasonal human influenza viruses in both juvenile and layer turkeys. In addition, we investigated the potential influenza virus dissemination in the semen of experimentally infected turkey toms. Results showed that all mammalian origin influenza viruses tested can infect turkeys. SIVs were detected in respiratory and digestive tracts of both juvenile and layer turkeys. Variations in replication efficiencies among SIVs were observed especially in the reproductive tract of layer turkeys. Compared to SIVs, limited replication of seasonal human H1N1 and no detectable replication of recent human-like swine H1N2, pandemic H1N1 and seasonal human H3N2 viruses was noticed. All birds seroconverted to all tested viruses regardless of their replication level. In turkey toms, we were able to detect swine H3N2 virus in semen and reproductive tract of infected toms by real-time RT-PCR although virus isolation was not successful. These data suggest that turkey hens could be affected by diverse influenza strains especially SIVs. Moreover, the differences in the replication efficiency we demonstrated among SIVs and between SIV and human influenza viruses in layer turkeys suggest a possible use of turkeys as an animal model to study host tropism and pathogenesis of influenza viruses. Our results also indicate a potential risk of venereal transmission of influenza viruses in turkeys.

  4. Mapping the Risks of Malaria, Dengue and Influenza Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Kiang, R. K.; Soebiyanto, R. P.

    2012-07-01

    It has long been recognized that environment and climate may affect the transmission of infectious diseases. The effects are most obvious for vector-borne infectious diseases, such as malaria and dengue, but less so for airborne and contact diseases, such as seasonal influenza. In this paper, we examined the meteorological and environmental parameters that influence the transmission of malaria, dengue and seasonal influenza. Remotely sensed parameters that provide such parameters were discussed. Both statistical and biologically inspired, processed based models can be used to model the transmission of these diseases utilizing the remotely sensed parameters as input. Examples were given for modelling malaria in Thailand, dengue in Indonesia, and seasonal influenza in Hong Kong.

  5. Influenza Infection in Wild Raccoons

    PubMed Central

    Bentler, Kevin T.; Landolt, Gabrielle; Elmore, Stacey A.; Minnis, Richard B.; Campbell, Tyler A.; Barras, Scott C.; Root, J. Jeffrey; Pilon, John; Pabilonia, Kristy; Driscoll, Cindy; Slate, Dennis; Sullivan, Heather; McLean, Robert G.

    2008-01-01

    Raccoons (Procyon lotor) are common, widely distributed animals that frequently come into contact with wild waterfowl, agricultural operations, and humans. Serosurveys showed that raccoons are exposed to avian influenza virus. We found antibodies to a variety of influenza virus subtypes (H10N7, H4N6, H4N2, H3, and H1) with wide geographic variation in seroprevalence. Experimental infection studies showed that raccoons become infected with avian and human influenza A viruses, shed and transmit virus to virus-free animals, and seroconvert. Analyses of cellular receptors showed that raccoons have avian and human type receptors with a similar distribution as found in human respiratory tracts. The potential exists for co-infection of multiple subtypes of influenza virus with genetic reassortment and creation of novel strains of influenza virus. Experimental and field data indicate that raccoons may play an important role in influenza disease ecology and pose risks to agriculture and human health. PMID:19046505

  6. Influenza infection in wild raccoons

    USGS Publications Warehouse

    Hall, J.S.; Bentler, K.T.; Landolt, G.; Elmore, S.A.; Minnis, R.B.; Campbell, T.A.; Barras, S.C.; Root, J.J.; Pilon, J.; Pabilonia, K.; Driscoll, C.; Slate, D.; Sullivan, H.; McLean, R.G.

    2008-01-01

    Raccoons (Procyon lotor) are common, widely distributed animals that frequently come into contact with wild waterfowl, agricultural operations, and humans. Serosurveys showed that raccoons are exposed to avian influenza virus. We found antibodies to a variety of influenza virus subtypes (H10N7, H4N6, H4N2, H3, and H1) with wide geographic variation in seroprevalence. Experimental infection studies showed that raccoons become infected with avian and human influenza A viruses, shed and transmit virus to virus-free animals, and seroconvert. Analyses of cellular receptors showed that raccoons have avian and human type receptors with a similar distribution as found in human respiratory tracts. The potential exists for co-infection of multiple subtypes of influenza virus with genetic reassortment and creation of novel strains of influenza virus. Experimental and field data indicate that raccoons may play an important role in influenza disease ecology and pose risks to agriculture and human health.

  7. Inference and forecast of H7N9 influenza in China, 2013 to 2015

    PubMed Central

    Li, Ruiyun; Bai, Yuqi; Heaney, Alex; Kandula, Sasikiran; Cai, Jun; Zhao, Xuyi; Xu, Bing; Shaman, Jeffrey

    2017-01-01

    The recent emergence of A(H7N9) avian influenza poses a significant challenge to public health in China and around the world; however, understanding of the transmission dynamics and progression of influenza A(H7N9) infection in domestic poultry, as well as spillover transmission to humans, remains limited. Here, we develop a mathematical model–Bayesian inference system which combines a simple epidemic model and data assimilation method, and use it in conjunction with data on observed human influenza A(H7N9) cases from 19 February 2013 to 19 September 2015 to estimate key epidemiological parameters and to forecast infection in both poultry and humans. Our findings indicate a high outbreak attack rate of 33% among poultry but a low rate of chicken-to-human spillover transmission. In addition, we generated accurate forecasts of the peak timing and magnitude of human influenza A(H7N9) cases. This work demonstrates that transmission dynamics within an avian reservoir can be estimated and that real-time forecast of spillover avian influenza in humans is possible. PMID:28230525

  8. Evolution of canine and equine influenza (H3N8) viruses co-circulating between 2005 and 2008

    SciTech Connect

    Rivailler, Pierre; Perry, Ijeoma A.; Jang Yunho; Davis, C. Todd; Chen Limei; Dubovi, Edward J.; Donis, Ruben O.

    2010-12-05

    Influenza virus, subtype H3N8, was transmitted from horses to greyhound dogs in 2004 and subsequently spread to pet dog populations. The co-circulation of H3N8 viruses in dogs and horses makes bi-directional virus transmission between these animal species possible. To understand the dynamics of viral transmission, we performed virologic surveillance in dogs and horses between 2005 and 2008 in the United States. The genomes of influenza A H3N8 viruses isolated from 36 dogs and horses were sequenced to determine their origin and evolution. Phylogenetic analyses revealed that H3N8 influenza viruses from horses and dogs were monophyletic and distinct. There was no evidence of canine influenza virus infection in horses with respiratory disease or new introductions of equine influenza viruses into dogs in the United States. Analysis of a limited number of equine influenza viruses suggested substantial separation in the transmission of viruses causing clinically apparent influenza in dogs and horses.

  9. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets.

    PubMed

    Xu, Lili; Bao, Linlin; Deng, Wei; Dong, Libo; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Li, Xiyan; Huang, Weijuan; Zhao, Xiang; Lan, Yu; Guo, Junfeng; Yong, Weidong; Wei, Qiang; Chen, Honglin; Zhang, Lianfeng; Qin, Chuan

    2014-02-15

    The outbreak of human infections caused by novel avian-origin influenza A(H7N9) in China since March 2013 underscores the need to better understand the pathogenicity and transmissibility of these viruses in mammals. In a ferret model, the pathogenicity of