Science.gov

Sample records for influenza virus infected

  1. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection. PMID:27486731

  2. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.

  3. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Submit What's this? Submit Button Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Españ ...

  4. Immunosuppression During Influenza Virus Infection

    PubMed Central

    Kantzler, G. B.; Lauteria, S. F.; Cusumano, C. L.; Lee, J. D.; Ganguly, R.; Waldman, R. H.

    1974-01-01

    The effects of a live attenuated influenza vaccine and subsequent challenge with virulent influenza virus on the delayed hypersensitivity skin test, and the in vitro response of lymphocytes were evaluated. Volunteers were skin tested before and after administration of vaccine or placebo and challenge with PPD (a purified protein derivative of Mycobacterium tuberculosis), candida, mumps, and trichophytin, and their lymphocytes were tested for [3H]thymidine uptake in response to phytohemagglutin. Of eight volunteers who showed evidence of viral replication after administration of the attenuated vaccine, four had a significant diminution in their skin test response, whereas 8 of 13 volunteers infected with virulent influenza virus showed a diminution. Of the 21 volunteers who were infected with either attenuated or virulent influenza virus, 12 showed suppression of their phytohemagglutin response. None of the volunteers who were given placebo vaccine, or who showed no evidence for viral replication after immunization or challenge, had a suppression of their skin test or phytohemagglutin responses. Although most of the infected volunteers demonstrated suppression of their T-cell function, there was no evidence of a similar suppression of B-cell function. PMID:16558116

  5. Influenza Virus Infection of Marine Mammals.

    PubMed

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature. PMID:25231137

  6. Visualizing influenza virus infection in living mice

    PubMed Central

    Pan, Weiqi; Dong, Zhenyuan; Li, Feng; Meng, Weixu; Feng, Liqiang; Niu, Xuefeng; Li, Chufang; Luo, Qinfang; Li, Zhengfeng; Sun, Caijun; Chen, Ling

    2013-01-01

    Preventing and treating influenza virus infection remain a challenge because of incomplete understanding of the host–pathogen interactions, limited therapeutics and lack of a universal vaccine. So far, methods for monitoring the course of infection with influenza virus in real time in living animals are lacking. Here we report the visualization of influenza viral infection in living mice using an engineered replication-competent influenza A virus carrying luciferase reporter gene. After intranasal inoculation, bioluminescence can be detected in the chest and nasopharyngeal passage of living mice. The intensity of bioluminescence in the chest correlates with the dosage of infection and the viral load in the lung. Bioluminescence in the chest of infected mice diminishes on antiviral treatment. This work provides a novel approach that enables real-time study of influenza virus infection and effects of antiviral therapeutics in living animals. PMID:24022374

  7. DIESEL EXHAUST ENHANCES INFLUENZA VIRUS INFECTIONS IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Several factors, such as age and nutritional status can affect the susceptibility to influenza infections. Moreover, exposure to air pollutants, such as diesel exhaust (DE), has been shown to affect respiratory virus infections in rodent models. Influenza virus primarily infects ...

  8. Preservation of Influenza Virus Infectivity by Lyophilization

    PubMed Central

    Beardmore, W. B.; Clark, T. D.; Jones, K. V.

    1968-01-01

    A method of lyophilizing influenza virus in allantoic fluid with retention of high-titer of egg infectivity is described. Five strains of virus were lyophilized, and all were much more stable than fluid virus preparations, retaining 2 to 3 logs of infectivity after storage at 37 C for 60 to 95 days. Statistical analysis of an accelerated storage test by extrapolation of viral degradation indicates that the lyophilized viruses are stable indefinitely at or below room temperature. PMID:5645420

  9. KINETIC PROFILE OF INFLUENZA VIRUS INFECTION IN THREE RAT STRAINS

    EPA Science Inventory

    Abstract

    Influenza infection is a respiratory disease of viral origin that can cause major epidemics in man. The influenza virus infects and damages epithelial cells of the respiratory tract and causes pneumonia. Lung lesions of mice infected with influenza virus resembl...

  10. Epidemiological and Virological Characterization of Influenza B Virus Infections.

    PubMed

    Sharabi, Sivan; Drori, Yaron; Micheli, Michal; Friedman, Nehemya; Orzitzer, Sara; Bassal, Ravit; Glatman-Freedman, Aharona; Shohat, Tamar; Mendelson, Ella; Hindiyeh, Musa; Mandelboim, Michal

    2016-01-01

    While influenza A viruses comprise a heterogeneous group of clinically relevant influenza viruses, influenza B viruses form a more homogeneous cluster, divided mainly into two lineages: Victoria and Yamagata. This divergence has complicated seasonal influenza vaccine design, which traditionally contained two seasonal influenza A virus strains and one influenza B virus strain. We examined the distribution of the two influenza B virus lineages in Israel, between 2011-2014, in hospitalized and in non-hospitalized (community) influenza B virus-infected patients. We showed that influenza B virus infections can lead to hospitalization and demonstrated that during some winter seasons, both influenza B virus lineages circulated simultaneously in Israel. We further show that the influenza B virus Yamagata lineage was dominant, circulating in the county in the last few years of the study period, consistent with the anti-Yamagata influenza B virus antibodies detected in the serum samples of affected individuals residing in Israel in the year 2014. Interestingly, we found that elderly people were particularly vulnerable to Yamagata lineage influenza B virus infections. PMID:27533045

  11. Epidemiological and Virological Characterization of Influenza B Virus Infections

    PubMed Central

    Sharabi, Sivan; Drori, Yaron; Micheli, Michal; Friedman, Nehemya; Orzitzer, Sara; Bassal, Ravit; Glatman-Freedman, Aharona; Shohat, Tamar; Mendelson, Ella; Hindiyeh, Musa; Mandelboim, Michal

    2016-01-01

    While influenza A viruses comprise a heterogeneous group of clinically relevant influenza viruses, influenza B viruses form a more homogeneous cluster, divided mainly into two lineages: Victoria and Yamagata. This divergence has complicated seasonal influenza vaccine design, which traditionally contained two seasonal influenza A virus strains and one influenza B virus strain. We examined the distribution of the two influenza B virus lineages in Israel, between 2011–2014, in hospitalized and in non-hospitalized (community) influenza B virus-infected patients. We showed that influenza B virus infections can lead to hospitalization and demonstrated that during some winter seasons, both influenza B virus lineages circulated simultaneously in Israel. We further show that the influenza B virus Yamagata lineage was dominant, circulating in the county in the last few years of the study period, consistent with the anti-Yamagata influenza B virus antibodies detected in the serum samples of affected individuals residing in Israel in the year 2014. Interestingly, we found that elderly people were particularly vulnerable to Yamagata lineage influenza B virus infections. PMID:27533045

  12. Modeling Influenza Virus Infection: A Roadmap for Influenza Research

    PubMed Central

    Boianelli, Alessandro; Nguyen, Van Kinh; Ebensen, Thomas; Schulze, Kai; Wilk, Esther; Sharma, Niharika; Stegemann-Koniszewski, Sabine; Bruder, Dunja; Toapanta, Franklin R.; Guzmán, Carlos A.; Meyer-Hermann, Michael; Hernandez-Vargas, Esteban A.

    2015-01-01

    Influenza A virus (IAV) infection represents a global threat causing seasonal outbreaks and pandemics. Additionally, secondary bacterial infections, caused mainly by Streptococcus pneumoniae, are one of the main complications and responsible for the enhanced morbidity and mortality associated with IAV infections. In spite of the significant advances in our knowledge of IAV infections, holistic comprehension of the interplay between IAV and the host immune response (IR) remains largely fragmented. During the last decade, mathematical modeling has been instrumental to explain and quantify IAV dynamics. In this paper, we review not only the state of the art of mathematical models of IAV infection but also the methodologies exploited for parameter estimation. We focus on the adaptive IR control of IAV infection and the possible mechanisms that could promote a secondary bacterial coinfection. To exemplify IAV dynamics and identifiability issues, a mathematical model to explain the interactions between adaptive IR and IAV infection is considered. Furthermore, in this paper we propose a roadmap for future influenza research. The development of a mathematical modeling framework with a secondary bacterial coinfection, immunosenescence, host genetic factors and responsiveness to vaccination will be pivotal to advance IAV infection understanding and treatment optimization. PMID:26473911

  13. Current Approaches for Diagnosis of Influenza Virus Infections in Humans

    PubMed Central

    Vemula, Sai Vikram; Zhao, Jiangqin; Liu, Jikun; Wang, Xue; Biswas, Santanu; Hewlett, Indira

    2016-01-01

    Despite significant advancement in vaccine and virus research, influenza continues to be a major public health concern. Each year in the United States of America, influenza viruses are responsible for seasonal epidemics resulting in over 200,000 hospitalizations and 30,000–50,000 deaths. Accurate and early diagnosis of influenza viral infections are critical for rapid initiation of antiviral therapy to reduce influenza related morbidity and mortality both during seasonal epidemics and pandemics. Several different approaches are currently available for diagnosis of influenza infections in humans. These include viral isolation in cell culture, immunofluorescence assays, nucleic acid amplification tests, immunochromatography-based rapid diagnostic tests, etc. Newer diagnostic approaches are being developed to overcome the limitations associated with some of the conventional detection methods. This review discusses diagnostic approaches currently available for detection of influenza viruses in humans. PMID:27077877

  14. Prevention of acute otitis media by prophylaxis and treatment of influenza virus infections.

    PubMed

    Glezen, W P

    2000-12-01

    Human experimental challenge studies with influenza virus infection and controlled intervention trials have demonstrated beyond doubt the role of influenza virus infection in the pathogenesis of acute otitis media. Influenza virus infections not only disrupt eustachian tube function, but also impair recovery from infection and facilitate attachment of bacterial pathogens to respiratory epithelial cells. Immunization of young children with either inactivated or live, attenuated influenza vaccine will significantly reduce the incidence of acute otitis media. Early treatment of influenza with antiviral medication will reduce eustachian tube dysfunction that results from influenza virus infection. Influenza produces high morbidity in children that could be averted by universal immunization with attenuated nasal spray vaccine.

  15. Dissecting the Role of COPI Complexes in Influenza Virus Infection

    PubMed Central

    Sun, Eileen; He, Jiang

    2013-01-01

    As an obligate pathogen, influenza virus requires host cell factors and compartments to mediate productive infection and to produce infectious progeny virus. Recently, several small interfering RNA (siRNA) knockdown screens revealed influenza virus host dependency proteins, all of which identified at least two subunits of the coat protein I (COPI) complex. COPI proteins oligomerize to form coated vesicles that transport contents between the Golgi apparatus and the endoplasmic reticulum, and they have also been reported to mediate endosomal trafficking. However, it remains unclear which steps in the influenza virus infection cycle rely on the COPI complex. Upon systematic dissection of the influenza virus infection cycle, from entry to progeny virion production, we found that prolonged exposure to COPI complex disruption through siRNA depletion resulted in significant defects in virus internalization and trafficking to late endosomes. Acute inhibition of COPI complex recruitment to the Golgi apparatus with pharmacological compounds failed to recapitulate the same entry defects as observed with the COPI-depleted cells but did result in specific decreases in viral membrane protein expression and assembly, leading to defects in progeny virion production. Taken together, our findings suggest that COPI complexes likely function indirectly in influenza virus entry but play direct roles in viral membrane protein expression and assembly. PMID:23255804

  16. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    PubMed

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. PMID:27486732

  17. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    USGS Publications Warehouse

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  18. Heterogeneous and Dynamic Prevalence of Asymptomatic Influenza Virus Infections

    PubMed Central

    Furuya-Kanamori, Luis; Cox, Mitchell; Milinovich, Gabriel J.; Magalhaes, Ricardo J. Soares; Mackay, Ian M.

    2016-01-01

    Influenza infection manifests in a wide spectrum of severity, including symptomless pathogen carriers. We conducted a systematic review and meta-analysis of 55 studies to elucidate the proportional representation of these asymptomatic infected persons. We observed extensive heterogeneity among these studies. The prevalence of asymptomatic carriage (total absence of symptoms) ranged from 5.2% to 35.5% and subclinical cases (illness that did not meet the criteria for acute respiratory or influenza-like illness) from 25.4% to 61.8%. Statistical analysis showed that the heterogeneity could not be explained by the type of influenza, the laboratory tests used to detect the virus, the year of the study, or the location of the study. Projections of infection spread and strategies for disease control require that we identify the proportional representation of these insidious spreaders early on in the emergence of new influenza subtypes or strains and track how this rate evolves over time and space. PMID:27191967

  19. Heterogeneous and Dynamic Prevalence of Asymptomatic Influenza Virus Infections.

    PubMed

    Furuya-Kanamori, Luis; Cox, Mitchell; Milinovich, Gabriel J; Magalhaes, Ricardo J Soares; Mackay, Ian M; Yakob, Laith

    2016-06-01

    Influenza infection manifests in a wide spectrum of severity, including symptomless pathogen carriers. We conducted a systematic review and meta-analysis of 55 studies to elucidate the proportional representation of these asymptomatic infected persons. We observed extensive heterogeneity among these studies. The prevalence of asymptomatic carriage (total absence of symptoms) ranged from 5.2% to 35.5% and subclinical cases (illness that did not meet the criteria for acute respiratory or influenza-like illness) from 25.4% to 61.8%. Statistical analysis showed that the heterogeneity could not be explained by the type of influenza, the laboratory tests used to detect the virus, the year of the study, or the location of the study. Projections of infection spread and strategies for disease control require that we identify the proportional representation of these insidious spreaders early on in the emergence of new influenza subtypes or strains and track how this rate evolves over time and space. PMID:27191967

  20. In vitro evaluation of the antiviral activity of methylglyoxal against influenza B virus infection.

    PubMed

    Charyasriwong, Siriwan; Haruyama, Takahiro; Kobayashi, Nobuyuki

    2016-01-01

    Influenza A and B virus infections are serious public health concerns globally. However, the concerns regarding influenza B infection have been underestimated. The currently used anti-influenza drugs have not provided equal efficacy for both influenza A and B viruses. Susceptibility to neuraminidase (NA) inhibitors has been observed to be lower for influenza B viruses than for influenza A viruses. Moreover, the emergence of resistance to anti-influenza drugs underscores the need to develop new drugs. Recently, we reported that methylglyoxal (MGO) suppressed influenza A virus replication in a strain-independent manner. Therefore, we hypothesize that MGO exhibits anti-influenza activity against B strains. This study aimed to evaluate the anti-influenza viral activity of MGO against influenza B strains by using Madin-Darby canine kidney (MDCK) cells. Several types of influenza B viruses were used to determine the activity of MGO. The susceptibilities of influenza A and B viruses to NA inhibitors were compared. MGO inhibited influenza B virus replication, with 50% inhibitory concentrations ranging from 23-140 μM, which indicated greater sensitivity of influenza B viruses than influenza A viruses. Our results show that MGO has potent inhibitory activity against influenza B viruses, including NA inhibitor-resistant strains. PMID:27558282

  1. Bacterial sinusitis and otitis media following influenza virus infection in ferrets.

    PubMed

    Peltola, Ville T; Boyd, Kelli L; McAuley, Julie L; Rehg, Jerold E; McCullers, Jonathan A

    2006-05-01

    Streptococcus pneumoniae is the leading cause of otitis media, sinusitis, and pneumonia. Many of these infections result from antecedent influenza virus infections. In this study we sought to determine whether the frequency and character of secondary pneumococcal infections differed depending on the strain of influenza virus that preceded bacterial challenge. In young ferrets infected with influenza virus and then challenged with pneumococcus, influenza viruses of any subtype increased bacterial colonization of the nasopharynx. Nine out of 10 ferrets infected with H3N2 subtype influenza A viruses developed either sinusitis or otitis media, while only 1 out of 11 ferrets infected with either an H1N1 influenza A virus or an influenza B virus did so. These data may partially explain why bacterial complication rates are higher during seasons when H3N2 viruses predominate. This animal model will be useful for further study of the mechanisms that underlie viral-bacterial synergism.

  2. Influenza A virus and secondary bacterial infection in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza A virus (IAV) infection alone causes significant disease characterized by respiratory distress and poor growth in pigs. Endemic strains of IAV in North America pigs consist of the subtypes H1N1, H1N2, and H3N2. These circulating strains contain the triple reassortant internal gene (TRIG) c...

  3. Protective effect of dietary xylitol on influenza A virus infection.

    PubMed

    Yin, Sun Young; Kim, Hyoung Jin; Kim, Hong-Jin

    2014-01-01

    Xylitol has been used as a substitute for sugar to prevent cavity-causing bacteria, and most studies have focused on its benefits in dental care. Meanwhile, the constituents of red ginseng (RG) are known to be effective in ameliorating the symptoms of influenza virus infection when they are administered orally for 14 days. In this study, we investigated the effect of dietary xylitol on influenza A virus infection (H1N1). We designed regimens containing various fractions of RG (RGs: whole extract, water soluble fraction, saponin and polysaccharide) and xylitol, and combination of xylitol with the RG fractions. Mice received the various combinations orally for 5 days prior to lethal influenza A virus infection. Almost all the mice died post challenge when xylitol or RGs were administered separately. Survival was markedly enhanced when xylitol was administered along with RGs, pointing to a synergistic effect. The effect of xylitol plus RG fractions increased with increasing dose of xylitol. Moreover, dietary xylitol along with the RG water soluble fraction significantly reduced lung virus titers after infection. Therefore, we suggest that dietary xylitol is effective in ameliorating influenza-induced symptoms when it is administered with RG fractions, and this protective effect of xylitol should be considered in relation to other diseases.

  4. Infection with A2 Hong Kong influenza virus in domestic cats.

    PubMed

    Paniker, C K; Nair, C M

    1970-01-01

    The antigenic relationship of A2 Hong Kong influenza virus with equine influenza virus, and its ability to infect horses and baboons, have led to studies on the susceptibility of domestic animals to the virus.In this study it was found that cats could be infected with A2 Hong Kong influenza virus by intranasal inoculation or by contact with an infected cat or with a human influenza patient. There was no clinical illness, but infected animals shed the virus from the throat for 1 week and developed haemagglutination-inhibiting antibodies. A survey of normal cat sera showed that 6 out of 28 sera inhibited haemagglutination by A2 Hong Kong influenza virus.The results suggest that domestic cats may act as vectors in the transmission of influenza virus. Experimental infection in cats may be used as a laboratory model for influenza.

  5. Infection with A2 Hong Kong influenza virus in domestic cats*

    PubMed Central

    Paniker, C. K. J.; Nair, C. M. G.

    1970-01-01

    The antigenic relationship of A2 Hong Kong influenza virus with equine influenza virus, and its ability to infect horses and baboons, have led to studies on the susceptibility of domestic animals to the virus. In this study it was found that cats could be infected with A2 Hong Kong influenza virus by intranasal inoculation or by contact with an infected cat or with a human influenza patient. There was no clinical illness, but infected animals shed the virus from the throat for 1 week and developed haemagglutination-inhibiting antibodies. A survey of normal cat sera showed that 6 out of 28 sera inhibited haemagglutination by A2 Hong Kong influenza virus. The results suggest that domestic cats may act as vectors in the transmission of influenza virus. Experimental infection in cats may be used as a laboratory model for influenza. PMID:5314017

  6. Cyclophilin A protects mice against infection by influenza A virus.

    PubMed

    Li, Jing; Chen, Can; Wong, Gary; Dong, Wei; Zheng, Weinan; Li, Yun; Sun, Lei; Zhang, Lianfeng; Gao, George F; Bi, Yuhai; Liu, Wenjun

    2016-01-01

    Our previous studies indicate that Cyclophilin A (CypA) impairs the replication of influenza A virus in vitro. To further evaluate the antiviral functions of CypA and explore its mechanism, transgenic mice with overexpression of CypA by two specific promoters with SPC (CypA-SPC) or CMV (CypA-CMV) were developed. After challenge with the A/WSN/33(H1N1) influenza virus, CypA-SPC and CypA-CMV transgenic mice displayed nearly 2.5- and 3.8-fold stronger disease resistance to virus infection, respectively, compared to wild-type animals. Virus replication, pathological lesions and inflammatory cytokines were substantially reduced in both lines of transgenic mice. In addition, after infection there was an upregulation of genes associated with cell migration, immune function, and organ development; and a downregulation of genes associated with the positive regulation of immune cells and apoptosis in the peritoneal macrophages of CypA-overexpressing transgenic mice (CypA+). These results indicate that CypA is a key modulator of influenza virus resistance in mice, and that CypA+ mice constitutes an important model to study the roles of CypA in the regulation of immune responses and infections. PMID:27354005

  7. Cyclophilin A protects mice against infection by influenza A virus

    PubMed Central

    Li, Jing; Chen, Can; Wong, Gary; Dong, Wei; Zheng, Weinan; Li, Yun; Sun, Lei; Zhang, Lianfeng; Gao, George F.; Bi, Yuhai; Liu, Wenjun

    2016-01-01

    Our previous studies indicate that Cyclophilin A (CypA) impairs the replication of influenza A virus in vitro. To further evaluate the antiviral functions of CypA and explore its mechanism, transgenic mice with overexpression of CypA by two specific promoters with SPC (CypA-SPC) or CMV (CypA-CMV) were developed. After challenge with the A/WSN/33(H1N1) influenza virus, CypA-SPC and CypA-CMV transgenic mice displayed nearly 2.5- and 3.8-fold stronger disease resistance to virus infection, respectively, compared to wild-type animals. Virus replication, pathological lesions and inflammatory cytokines were substantially reduced in both lines of transgenic mice. In addition, after infection there was an upregulation of genes associated with cell migration, immune function, and organ development; and a downregulation of genes associated with the positive regulation of immune cells and apoptosis in the peritoneal macrophages of CypA-overexpressing transgenic mice (CypA+). These results indicate that CypA is a key modulator of influenza virus resistance in mice, and that CypA+ mice constitutes an important model to study the roles of CypA in the regulation of immune responses and infections. PMID:27354005

  8. Global Reprogramming of Host SUMOylation during Influenza Virus Infection

    PubMed Central

    Domingues, Patricia; Golebiowski, Filip; Tatham, Michael H.; Lopes, Antonio M.; Taggart, Aislynn; Hay, Ronald T.; Hale, Benjamin G.

    2015-01-01

    Summary Dynamic nuclear SUMO modifications play essential roles in orchestrating cellular responses to proteotoxic stress, DNA damage, and DNA virus infection. Here, we describe a non-canonical host SUMOylation response to the nuclear-replicating RNA pathogen, influenza virus, and identify viral RNA polymerase activity as a major contributor to SUMO proteome remodeling. Using quantitative proteomics to compare stress-induced SUMOylation responses, we reveal that influenza virus infection triggers unique re-targeting of SUMO to 63 host proteins involved in transcription, mRNA processing, RNA quality control, and DNA damage repair. This is paralleled by widespread host deSUMOylation. Depletion screening identified ten virus-induced SUMO targets as potential antiviral factors, including C18orf25 and the SMC5/6 and PAF1 complexes. Mechanistic studies further uncovered a role for SUMOylation of the PAF1 complex component, parafibromin (CDC73), in potentiating antiviral gene expression. Our global characterization of influenza virus-triggered SUMO redistribution provides a proteomic resource to understand host nuclear SUMOylation responses to infection. PMID:26549460

  9. Influenza A(H1N1)pdm09 virus infection in giant pandas, China.

    PubMed

    Li, Desheng; Zhu, Ling; Cui, Hengmin; Ling, Shanshan; Fan, Shengtao; Yu, Zhijun; Zhou, Yuancheng; Wang, Tiecheng; Qian, Jun; Xia, Xianzhu; Xu, Zhiwen; Gao, Yuwei; Wang, Chengdong

    2014-03-01

    We confirmed infection with influenza A(H1N1)pdm09 in giant pandas in China during 2009 by using virus isolation and serologic analysis methods. This finding extends the host range of influenza viruses and indicates a need for increased surveillance for and control of influenza viruses among giant pandas. PMID:24565026

  10. Influenza A(H1N1)pdm09 virus infection in giant pandas, China.

    PubMed

    Li, Desheng; Zhu, Ling; Cui, Hengmin; Ling, Shanshan; Fan, Shengtao; Yu, Zhijun; Zhou, Yuancheng; Wang, Tiecheng; Qian, Jun; Xia, Xianzhu; Xu, Zhiwen; Gao, Yuwei; Wang, Chengdong

    2014-03-01

    We confirmed infection with influenza A(H1N1)pdm09 in giant pandas in China during 2009 by using virus isolation and serologic analysis methods. This finding extends the host range of influenza viruses and indicates a need for increased surveillance for and control of influenza viruses among giant pandas.

  11. Previous infection with a mesogenic strain of Newcastle disease virus affects infection with highly pathogenic avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known on the interactions between these two viruses when infecting birds. In a previous study we found that infection of chickens with a mesogenic strain of...

  12. Sequential Seasonal H1N1 Influenza Virus Infections Protect Ferrets against Novel 2009 H1N1 Influenza Virus

    PubMed Central

    Carter, Donald M.; Bloom, Chalise E.; Nascimento, Eduardo J. M.; Marques, Ernesto T. A.; Craigo, Jodi K.; Cherry, Joshua L.; Lipman, David J.

    2013-01-01

    Individuals <60 years of age had the lowest incidence of infection, with ∼25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses. PMID:23115287

  13. Influenza A virus among the hospitalized young children with acute respiratory infection. Is influenza A co infected with respiratory syncytial virus?

    PubMed Central

    Alavi, Seyed Mohammad; Makvandi, Manoochehr; Najafi-Fard, Saied; Alavi, Leila

    2012-01-01

    Background: Both influenza A virus (IAV) and respiratory syncytial virus (RSV) cause acute respiratory infection (ARI) in infants and young children. This study was conducted to determine Influenza A virus and its co infection with RSV among the hospitalized children with ARI. Methods: A total of 153 throat samples of the hospitalized young children aged between below one year and 5 years with the clinical signs of ARI were collected from the different hospitals in Khuzestan from June 2009 to April 2010. The samples were tested for Influenza A viruses by real time PCR. Positive IAV samples were tested for influenza A sub type H1N1 and for RSV by the nested PCR. Results: In this study, from the total 153 samples, 35 samples (22.9%) including 15 (42.8%) females and 20 (57.2%) males were positive for influenza A viruses. From the 35 positive samples for IAV, 14 were positive for swine H1N1 subtype. All the positive samples for influenza showed negative for RSV infection which revealed no coinfection with RSV. The prevalence of influenza A among age/sex groups was not significant. Conclusion: Influenza A is a prevalent viral agent isolated from young children with ARI. Influenza A subtype H1N1 was accounted for the 40 percent all laboratory-proven diagnoses of influenza in 2009. No evidence of coinfection of influenza A and RSV has been observed in the present study. PMID:24009929

  14. An Anti-Influenza Virus Antibody Inhibits Viral Infection by Reducing Nucleus Entry of Influenza Nucleoprotein.

    PubMed

    Yoon, Aerin; Yi, Kye Sook; Chang, So Young; Kim, Sung Hwan; Song, Manki; Choi, Jung Ah; Bourgeois, Melissa; Hossain, M Jaber; Chen, Li-Mei; Donis, Ruben O; Kim, Hyori; Lee, Yujean; Hwang, Do Been; Min, Ji-Young; Chang, Shin Jae; Chung, Junho

    2015-01-01

    To date, four main mechanisms mediating inhibition of influenza infection by anti-hemagglutinin antibodies have been reported. Anti-globular-head-domain antibodies block either influenza virus receptor binding to the host cell or progeny virion release from the host cell. Anti-stem region antibodies hinder the membrane fusion process or induce antibody-dependent cytotoxicity to infected cells. In this study we identified a human monoclonal IgG1 antibody (CT302), which does not inhibit both the receptor binding and the membrane fusion process but efficiently reduced the nucleus entry of viral nucleoprotein suggesting a novel inhibition mechanism of viral infection by antibody. This antibody binds to the subtype-H3 hemagglutinin globular head domain of group-2 influenza viruses circulating throughout the population between 1997 and 2007. PMID:26512723

  15. An Anti-Influenza Virus Antibody Inhibits Viral Infection by Reducing Nucleus Entry of Influenza Nucleoprotein

    PubMed Central

    Yoon, Aerin; Yi, Kye Sook; Chang, So Young; Kim, Sung Hwan; Song, Manki; Choi, Jung Ah; Bourgeois, Melissa; Hossain, M. Jaber; Chen, Li-Mei; Donis, Ruben O.; Kim, Hyori; Lee, Yujean; Hwang, Do Been; Min, Ji-Young; Chang, Shin Jae; Chung, Junho

    2015-01-01

    To date, four main mechanisms mediating inhibition of influenza infection by anti-hemagglutinin antibodies have been reported. Anti-globular-head-domain antibodies block either influenza virus receptor binding to the host cell or progeny virion release from the host cell. Anti-stem region antibodies hinder the membrane fusion process or induce antibody-dependent cytotoxicity to infected cells. In this study we identified a human monoclonal IgG1 antibody (CT302), which does not inhibit both the receptor binding and the membrane fusion process but efficiently reduced the nucleus entry of viral nucleoprotein suggesting a novel inhibition mechanism of viral infection by antibody. This antibody binds to the subtype-H3 hemagglutinin globular head domain of group-2 influenza viruses circulating throughout the population between 1997 and 2007. PMID:26512723

  16. Influenza A virus-infected hosts boost an invasive type of Streptococcus pyogenes infection in mice.

    PubMed

    Okamoto, Shigefumi; Kawabata, Shigetada; Nakagawa, Ichiro; Okuno, Yoshinobu; Goto, Toshiyuki; Sano, Kouichi; Hamada, Shigeyuki

    2003-04-01

    The apparent worldwide resurgence of invasive Streptococcus pyogenes infection in the last two decades remains unexplained. At present, animal models in which toxic shock-like syndrome or necrotizing fasciitis is induced after S. pyogenes infection are not well developed. We demonstrate here that infection with a nonlethal dose of influenza A virus 2 days before intranasal infection with a nonlethal dose of S. pyogenes strains led to a death rate of more than 90% in mice, 10% of which showed necrotizing fasciitis. Infection of lung alveolar epithelial cells by the influenza A virus resulted in viral hemagglutinin expression on the cell surface and promoted internalization of S. pyogenes. However, treatment with monoclonal antibodies to hemagglutinin markedly decreased this internalization. Our results indicate that prior infection with influenza A virus induces a lethal synergism, resulting in the induction of invasive S. pyogenes infection in mice.

  17. Construction and Characterization of an Infectious Vaccinia Virus Recombinant That Expresses the Influenza Hemagglutinin Gene and Induces Resistance to Influenza Virus Infection in Hamsters

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Murphy, Brian R.; Moss, Bernard

    1983-12-01

    A DNA copy of the influenza virus hemagglutinin gene, derived from influenza virus A/Jap/305/57 (H2N2) was inserted into the genome of vaccinia virus under the control of an early vaccinia virus promoter. Tissue culture cells infected with the purified recombinant virus synthesized influenza hemagglutinin, which was glycosylated and transported to the cell surface where it could be cleaved with trypsin into HA1 and HA2 subunits. Rabbits and hamsters inoculated intradermally with recombinant virus produced circulating antibodies that inhibited hemagglutination by influenza virus. Furthermore, vaccinated hamsters achieved levels of antibody similar to those obtained upon primary infection with influenza virus and were protected against respiratory infection with the A/Jap/305/57 influenza virus.

  18. Effects of Aging on Influenza Virus Infection Dynamics

    PubMed Central

    Hernandez-Vargas, Esteban A.; Wilk, Esther; Canini, Laetitia; Toapanta, Franklin R.; Binder, Sebastian C.; Uvarovskii, Alexey; Ross, Ted M.; Guzmán, Carlos A.

    2014-01-01

    ABSTRACT The consequences of influenza virus infection are generally more severe in individuals over 65 years of age (the elderly). Immunosenescence enhances the susceptibility to viral infections and renders vaccination less effective. Understanding age-related changes in the immune system is crucial in order to design prophylactic and immunomodulatory strategies to reduce morbidity and mortality in the elderly. Here, we propose different mathematical models to provide a quantitative understanding of the immune strategies in the course of influenza virus infection using experimental data from young and aged mice. Simulation results suggested a central role of CD8+ T cells for adequate viral clearance kinetics in young and aged mice. Adding the removal of infected cells by natural killer cells did not improve the model fit in either young or aged animals. We separately examined the infection-resistant state of cells promoted by the cytokines alpha/beta interferon (IFN-α/β), IFN-γ, and tumor necrosis factor alpha (TNF-α). The combination of activated CD8+ T cells with any of the cytokines provided the best fits in young and aged animals. During the first 3 days after infection, the basic reproductive number for aged mice was 1.5-fold lower than that for young mice (P < 0.05). IMPORTANCE The fits of our models to the experimental data suggest that the increased levels of IFN-α/β, IFN-γ, and TNF-α (the “inflammaging” state) promote slower viral growth in aged mice, which consequently limits the stimulation of immune cells and contributes to the reported impaired responses in the elderly. A quantitative understanding of influenza virus pathogenesis and its shift in the elderly is the key contribution of this work. PMID:24478442

  19. [Improved method of determining the infectivity of the influenza virus].

    PubMed

    Zhirnov, O P; Ovcharenko, A V; Bukrinskaia, A G

    1981-01-01

    The infectious activity of influenza A virus preparations with different ratios of unsplit (HA) and split (HA1 + HA2) hemagglutinin was studied. For this purpose the virus was cultivated in chick embryos (the virus with split hemagglutinin), chick fibroblast culture (unsplit hemagglutinin) and in chick fibroblast culture to the medium of which chick embryo allantoic fluid was added (partially split hemagglutinin). Proteins were analysed by polyacrylamide gel electrophoresis followed by the scanning of the gels. An improved plaque method in cell cultures under the agar overlay was used to assay the infectious activity of the virus preparations. This method gave more accurate determinations of the infectious titre of the preparations tested. The routine titration method gave higher infectious titres of the preparations particularly for the virus with unsplit hemagglutinin. Employing the new method, a ratio of infectious and physical particles in preparations with different HA/HA1 + HA2 contents was determined and the productive activity of cells of the chorioallantoic membrane in chick embryos and chick fibroblast cell cultures infected with influenza virus was evaluated.

  20. Avian influenza virus infection risk in humans with chronic diseases.

    PubMed

    Zhong, Yaogang; Qin, Yannan; Yu, Hanjie; Yu, Jingmin; Wu, Haoxiang; Chen, Lin; Zhang, Peixin; Wang, Xiurong; Jia, Zhansheng; Guo, Yonghong; Zhang, Hua; Shan, Junjie; Wang, Yuxia; Xie, Hailong; Li, Xiaojie; Li, Zheng

    2015-01-01

    Saliva proteins may protect older people from influenza, however, it is often noted that hospitalizations and deaths after an influenza infection mainly occur in the elderly population living with chronic diseases, such as diabetes and cancer. Our objective was to investigate the expression level of the terminal α2-3- and α2-6-linked sialic acids in human saliva from type 2 diabetes mellitus (T2DM), liver disease and gastric cancer (GC) patients and assess the binding activity of these linked sialic acids against influenza A viruses (IAV). We observed that the expression level of the terminal α2-3-linked sialic acids of elderly individuals with T2DM and liver disease were down-regulated significantly, and the terminal α2-6 linked sialic acids were up-regulated slightly or had no significant alteration. However, in the saliva of patients with GC, neither sialic acid was significantly altered. These findings may reveal that elderly individuals with chronic diseases, such as diabetes and liver disease, might be more susceptible to the avian influenza virus due to the decreased expression of terminal α2-3-linked sialic acids in their saliva.

  1. Influenza A virus infections in marine mammals and terrestrial carnivores.

    PubMed

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated. PMID:24511825

  2. Influenza A virus infections in marine mammals and terrestrial carnivores.

    PubMed

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated.

  3. In ovo and in vitro susceptibility of American alligators (Alligator mississippiensis) to avian influenza virus infection.

    PubMed

    Temple, Bradley L; Finger, John W; Jones, Cheryl A; Gabbard, Jon D; Jelesijevic, Tomislav; Uhl, Elizabeth W; Hogan, Robert J; Glenn, Travis C; Tompkins, S Mark

    2015-01-01

    Avian influenza has emerged as one of the most ubiquitous viruses within our biosphere. Wild aquatic birds are believed to be the primary reservoir of all influenza viruses; however, the spillover of H5N1 highly pathogenic avian influenza (HPAI) and the recent swine-origin pandemic H1N1 viruses have sparked increased interest in identifying and understanding which and how many species can be infected. Moreover, novel influenza virus sequences were recently isolated from New World bats. Crocodilians have a slow rate of molecular evolution and are the sister group to birds; thus they are a logical reptilian group to explore susceptibility to influenza virus infection and they provide a link between birds and mammals. A primary American alligator (Alligator mississippiensis) cell line, and embryos, were infected with four, low pathogenic avian influenza (LPAI) strains to assess susceptibility to infection. Embryonated alligator eggs supported virus replication, as evidenced by the influenza virus M gene and infectious virus detected in allantoic fluid and by virus antigen staining in embryo tissues. Primary alligator cells were also inoculated with the LPAI viruses and showed susceptibility based upon antigen staining; however, the requirement for trypsin to support replication in cell culture limited replication. To assess influenza virus replication in culture, primary alligator cells were inoculated with H1N1 human influenza or H5N1 HPAI viruses that replicate independent of trypsin. Both viruses replicated efficiently in culture, even at the 30 C temperature preferred by the alligator cells. This research demonstrates the ability of wild-type influenza viruses to infect and replicate within two crocodilian substrates and suggests the need for further research to assess crocodilians as a species potentially susceptible to influenza virus infection.

  4. Pathogenesis and pathobiology of avian influenza virus infection in birds.

    PubMed

    Pantin-Jackwood, M J; Swayne, D E

    2009-04-01

    Avian influenza (AI) viruses vary in their ability to produce infection, disease and death in different bird species. Based on the pathobiological effect in chickens, AI viruses (AIV) are categorised as low pathogenic (LPAIV) or highly pathogenic (HPAIV). Typically, LPAIV cause asymptomatic infections in wild aquatic birds, but when introduced into domesticated poultry, infections may be asymptomatic or produce clinical signs and lesions reflecting pathophysiological damage to the respiratory, digestive and reproductive systems. The HPAIV have primarily been seen in gallinaceous poultry, producing high morbidity and mortality, and systemic disease with necrosis and inflammation in multiple visceral organs, nervous and cardiovascular systems, and the integument. Although HPAIV have rarely infected domestic waterfowl or wild birds, the Eurasian-African H5N1 HPAIV have evolved over the past decade with the unique capacity to infect and cause disease in domestic ducks and wild birds, producing a range of syndromes including asymptomatic respiratory and digestive tract infections; systemic disease limited to two or three critical organs, usually the brain, heart and pancreas; and severe disseminated infection and death as seen in gallinaceous poultry. Although experimental studies using intranasal inoculation have produced infection in a variety of wild bird species, the inefficiency of contact transmission in some of them, for example, passerines and Columbiformes, suggests they are unlikely to be a reservoir for the viruses, while others such as some wild Anseriformes, can be severely affected and could serve as a dissemination host over intermediate distances.

  5. Polymeric inhibitor of influenza virus attachment protects mice from experimental influenza infection.

    PubMed

    Gambaryan, A S; Tuzikov, A B; Chinarev, A A; Juneja, L R; Bovin, N V; Matrosovich, M N

    2002-07-01

    Synthetic sialic acid-containing macromolecules inhibit influenza virus attachment to target cells and suppress the virus-mediated hemagglutination and neutralize virus infectivity in cell culture. To test the protective effects of attachment inhibitors in vivo, mice were infected with mouse-adapted influenza virus A/Aichi/2/68 (H3N2) and treated with synthetic polyacrylamide-based sialylglycopolymer PAA-YDS bearing moieties of (Neu5Acalpha2-6Galbeta1-4GlcNAcbeta1-2Manalpha1)2-3,6Manbeta1-4GlcNAcbeta1-4GlcNAc. Single intranasal inoculations with PAA-YDS 30 min before or 10 min after infection increased the survival of mice (P<0.01). Multiple treatments with aerosolized PAA-YDS on days 2-5 post infection also increased survival (P<0.01), alleviated disease symptoms, and decreased lesions in the mouse lungs. These data suggest that synthetic polyvalent inhibitors of virus attachment can be used for prevention and treatment of influenza.

  6. A Novel Single Virus Infection System Reveals That Influenza Virus Preferentially Infects Cells in G1 Phase

    PubMed Central

    Ueda, Ryuta; Sugiura, Tadao; Kume, Shinichiro; Ichikawa, Akihiko; Larsen, Steven; Miyoshi, Hideaki; Hiramatsu, Hiroaki; Nagatsuka, Yasuko; Arai, Fumihito; Suzuki, Yasuo; Hirabayashi, Yoshio; Fukuda, Toshio; Honda, Ayae

    2013-01-01

    Background Influenza virus attaches to sialic acid residues on the surface of host cells via the hemagglutinin (HA), a glycoprotein expressed on the viral envelope, and enters into the cytoplasm by receptor-mediated endocytosis. The viral genome is released and transported in to the nucleus, where transcription and replication take place. However, cellular factors affecting the influenza virus infection such as the cell cycle remain uncharacterized. Methods/Results To resolve the influence of cell cycle on influenza virus infection, we performed a single-virus infection analysis using optical tweezers. Using this newly developed single-virus infection system, the fluorescence-labeled influenza virus was trapped on a microchip using a laser (1064 nm) at 0.6 W, transported, and released onto individual H292 human lung epithelial cells. Interestingly, the influenza virus attached selectively to cells in the G1-phase. To clarify the molecular differences between cells in G1- and S/G2/M-phase, we performed several physical and chemical assays. Results indicated that: 1) the membranes of cells in G1-phase contained greater amounts of sialic acids (glycoproteins) than the membranes of cells in S/G2/M-phase; 2) the membrane stiffness of cells in S/G2/M-phase is more rigid than those in G1-phase by measurement using optical tweezers; and 3) S/G2/M-phase cells contained higher content of Gb3, Gb4 and GlcCer than G1-phase cells by an assay for lipid composition. Conclusions A novel single-virus infection system was developed to characterize the difference in influenza virus susceptibility between G1- and S/G2/M-phase cells. Differences in virus binding specificity were associated with alterations in the lipid composition, sialic acid content, and membrane stiffness. This single-virus infection system will be useful for studying the infection mechanisms of other viruses. PMID:23874406

  7. Human Infection with Highly Pathogenic A(H7N7) Avian Influenza Virus, Italy, 2013

    PubMed Central

    Rossini, Giada; Facchini, Marzia; Vaccari, Gabriele; Di Trani, Livia; Di Martino, Angela; Gaibani, Paolo; Vocale, Caterina; Cattoli, Giovanni; Bennett, Michael; McCauley, John W.; Rezza, Giovanni; Moro, Maria Luisa; Rangoni, Roberto; Finarelli, Alba Carola; Landini, Maria Paola; Castrucci, Maria Rita; Donatelli, Isabella

    2014-01-01

    During an influenza A(H7N7) virus outbreak among poultry in Italy during August–September 2013, infection with a highly pathogenic A(H7N7) avian influenza virus was diagnosed for 3 poultry workers with conjunctivitis. Genetic analyses revealed that the viruses from the humans were closely related to those from chickens on affected farms. PMID:25271444

  8. Influenza virus infections in the tropics during the first year of life.

    PubMed

    Libraty, Daniel H; Zhang, Lei; Caponpon, Mercydina; Capeding, Rosario Z

    2015-08-01

    Pediatric influenza virus infections in the tropics, particularly during infancy, are not well described. We identified influenza virus infections among infants with non-dengue acute undifferentiated febrile illnesses in San Pablo, Laguna, Philippines, as part of an ongoing clinical study of dengue virus infections during infancy. We found that 31% of infants with non-dengue acute undifferentiated febrile illnesses in San Pablo, Laguna, Philippines, had influenza virus infections. The majority were influenza A virus infections and outpatient cases. The infant ages were 11.1 [9.8-13.0] months (median [95% confidence interval]), and the cases clustered between June and December. Influenza episodes are a common cause of non-dengue acute undifferentiated febrile illnesses in the tropics during the first year of life.

  9. Experimental Infection of Pigs with the 1918 Pandemic Influenza Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine influenza was first recognized as a disease during the 1918 "Spanish flu" pandemic suggesting the Spanish flu virus caused swine influenza. The objective of this study was to determine the susceptibility of swine to the Spanish flu virus. A plasmid-derived 1918 pandemic H1N1 (1918/rec) influe...

  10. Prior infection of pigs with swine influenza viruses is a barrier to infection with avian influenza viruses.

    PubMed

    De Vleeschauwer, Annebel; Van Reeth, Kristien

    2010-12-15

    Although pigs are susceptible to avian influenza viruses (AIV) of different subtypes, the incidence of AIV infections in the field appears to be low. Swine H1N1, H3N2 and H1N2 influenza viruses (SIV) are enzootic worldwide and most pigs have antibodies to 1 or more SIV subtypes. This study aimed to examine whether infection-immunity to H1N1 or H3N2 SIV may (1) protect pigs against subsequent infections with AIV of various haemagglutinin and/or neuraminidase subtypes and/or (2) interfere with the serological diagnosis of AIV infection by haemagglutination inhibition (HI) or virus neutralization (VN) tests. Pigs were inoculated intranasally with an H1N1 or H3N2 SIV or left uninoculated. Four or 6 weeks later all pigs were challenged intranasally with 1 of 3 AIV subtypes (H4N6, H5N2 or H7N1). Fifteen out of 17 challenge control pigs shed the respective AIV for 4-6 days post-inoculation and 16 developed HI and VN antibodies. In contrast, 28 of the 29 SIV-immune pigs did not have detectable AIV shedding. Only 12 SIV-immune pigs developed HI antibodies to the AIV used for challenge and 14 had VN antibodies. Antibody titres to the AIV were low in both control and SIV-immune pigs. Our data show that prior infection of pigs with SIV is a barrier to infection with AIV of unrelated subtypes. Serological screening in regions where SIV is enzootic is only useful when the AIV strain for which the pigs need to be tested is known.

  11. Swine Influenza/Variant Influenza Viruses

    MedlinePlus

    ... Humans Key Facts about Human Infections with Variant Viruses Interim Guidance for Clinicians on Human Infections Background, Risk Assessment & Reporting Reported Infections with Variant Influenza Viruses in the United States since 2005 Prevention Treatment ...

  12. Obatoclax, saliphenylhalamide, and gemcitabine inhibit influenza a virus infection.

    PubMed

    Denisova, Oxana V; Kakkola, Laura; Feng, Lin; Stenman, Jakob; Nagaraj, Ashwini; Lampe, Johanna; Yadav, Bhagwan; Aittokallio, Tero; Kaukinen, Pasi; Ahola, Tero; Kuivanen, Suvi; Vapalahti, Olli; Kantele, Anu; Tynell, Janne; Julkunen, Ilkka; Kallio-Kokko, Hannimari; Paavilainen, Henrik; Hukkanen, Veijo; Elliott, Richard M; De Brabander, Jef K; Saelens, Xavier; Kainov, Denis E

    2012-10-12

    Influenza A viruses (IAVs) infect humans and cause significant morbidity and mortality. Different treatment options have been developed; however, these were insufficient during recent IAV outbreaks. Here, we conducted a targeted chemical screen in human nonmalignant cells to validate known and search for novel host-directed antivirals. The screen validated saliphenylhalamide (SaliPhe) and identified two novel anti-IAV agents, obatoclax and gemcitabine. Further experiments demonstrated that Mcl-1 (target of obatoclax) provides a novel host target for IAV treatment. Moreover, we showed that obatoclax and SaliPhe inhibited IAV uptake and gemcitabine suppressed viral RNA transcription and replication. These compounds possess broad spectrum antiviral activity, although their antiviral efficacies were virus-, cell type-, and species-specific. Altogether, our results suggest that phase II obatoclax, investigational SaliPhe, and FDA/EMEA-approved gemcitabine represent potent antiviral agents. PMID:22910914

  13. Influenza A virus infections in land birds, People's Republic of China

    USGS Publications Warehouse

    Peterson, A.T.; Bush, S.E.; Spackman, Erica; Swayne, D.E.; Ip, H.S.

    2008-01-01

    Water birds are considered the reservoir for avian influenza viruses. We examined this assumption by sampling and real-time reverse transcription-PCR testing of 939 Asian land birds of 153 species. Influenza A infection was found, particularly among migratory species. Surveillance programs for monitoring spread of these viruses need to be redesigned.

  14. Experimental co-infection studies with avian influenza viruses and Newcastle Disease viruses in chickens, turkeys and domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Co-infections of poultry with Newcastle Disease viruses (NDVs) and Avian Influenza viruses (AIVs) present a problem both from the clinical point of view and the diagnosis of these viruses. Little has been done to understand the interactions between these two viruses when infecting poultry. Exposur...

  15. [Acute encephalitis. Neuropsychiatric manifestations as expression of influenza virus infection].

    PubMed

    Moreno-Flagge, Noris; Bayard, Vicente; Quirós, Evelia; Alonso, Tomás

    2009-01-01

    The aim is to review the encephalitis in infants and adolescents as well as its etiology, clinical manifestation, epidemiology, physiopathology, diagnostic methods and treatment, and the neuropsyquiatric signs appearing an influenza epidemy. Encephalitis is an inflammation of the central nervous system (CNS) which involves the brain. The clinical manifestations usually are: headache, fever and confusional stage. It could also be manifested as seizures, personality changes, or psiqyiatric symptoms. The clinical manifestations are related to the virus and the cell type affected in the brain. A meningitis or encephalopathy need to be ruled out. It could be present as an epidemic or isolated form, beeing this the most frequent form. It could be produced by a great variety of infections agents including virus, bacterias, fungal and parasitic. Viral causes are herpesvirus, arbovirus, rabies and enterovirus. Bacterias such as Borrelia burgdorferi, Rickettsia and Mycoplasma neumoniae. Some fungal causes are: Coccidioides immitis and Histoplasma capsulatum. More than 100 agents are related to encephalitis. The diagnosis of encephalitis is a challenge for the clinician and its infectious etiology is clear in only 40 to 70% of all cases. The diagnosis of encephalitis can be established with absolute certainty only by the microscopic examination of brain tissue. Epidemiology is related to age of the patients, geographic area, season, weather or the host immune system. Early intervention can reduce the mortality rate and sequels. We describe four patients with encephalitis and neuropsychiatric symptoms during an influenza epidemic.

  16. Correlation between Virus Replication and Antibody Responses in Macaques following Infection with Pandemic Influenza A Virus

    PubMed Central

    Koopman, Gerrit; Dekking, Liesbeth; Mortier, Daniëlla; Nieuwenhuis, Ivonne G.; van Heteren, Melanie; Kuipers, Harmjan; Remarque, Edmond J.; Radošević, Katarina; Bogers, Willy M. J. M.

    2015-01-01

    ABSTRACT Influenza virus infection of nonhuman primates is a well-established animal model for studying pathogenesis and for evaluating prophylactic and therapeutic intervention strategies. However, usually a standard dose is used for the infection, and there is no information on the relation between challenge dose and virus replication or the induction of immune responses. Such information is also very scarce for humans and largely confined to evaluation of attenuated virus strains. Here, we have compared the effect of a commonly used dose (4 × 106 50% tissue culture infective doses) versus a 100-fold-higher dose, administered by intrabronchial installation, to two groups of 6 cynomolgus macaques. Animals infected with the high virus dose showed more fever and had higher peak levels of gamma interferon in the blood. However, virus replication in the trachea was not significantly different between the groups, although in 2 out of 6 animals from the high-dose group it was present at higher levels and for a longer duration. The virus-specific antibody response was not significantly different between the groups. However, antibody enzyme-linked immunosorbent assay, virus neutralization, and hemagglutination inhibition antibody titers correlated with cumulative virus production in the trachea. In conclusion, using influenza virus infection in cynomolgus macaques as a model, we demonstrated a relationship between the level of virus production upon infection and induction of functional antibody responses against the virus. IMPORTANCE There is only very limited information on the effect of virus inoculation dose on the level of virus production and the induction of adaptive immune responses in humans or nonhuman primates. We found only a marginal and variable effect of virus dose on virus production in the trachea but a significant effect on body temperature. The induction of functional antibody responses, including virus neutralization titer, hemagglutination inhibition

  17. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    PubMed

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains.

  18. A systems approach to understanding human rhinovirus and influenza virus infection.

    PubMed

    Kim, Taek-Kyun; Bheda-Malge, Anjali; Lin, Yakang; Sreekrishna, Koti; Adams, Rachel; Robinson, Michael K; Bascom, Charles C; Tiesman, Jay P; Isfort, Robert J; Gelinas, Richard

    2015-12-01

    Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. We modeled host responses to these viral infections with time and documented the qualitative and quantitative differences in innate immune activation and regulation.

  19. Influenza A virus interacts extensively with the cellular SUMOylation system during infection.

    PubMed

    Pal, Sangita; Santos, Andres; Rosas, Juan M; Ortiz-Guzman, Joshua; Rosas-Acosta, Germán

    2011-06-01

    SUMOylation, the post-translational conjugation of the Small Ubiquitin-like MOdifier (SUMO) to a target protein, regulates a wide array of cellular processes and plays important roles for numerous viruses during infection. However, the relevance of the cellular SUMOylation system for influenza virus infection remains mostly unexplored. We previously reported that the non-structural protein of influenza A virus NS1 is a bona fide SUMO target. Here we determine that at least four additional influenza virus proteins, namely PB1, NP, M1, and NS2, are also authentic SUMO targets, and provide data supporting that PB1, NP, and M1 are SUMOylated during viral infection. The functional relevance of SUMOylation for these proteins is supported by the observation that, despite no apparent changes in the cellular levels of the E1 and E2 SUMO enzymes, influenza viral infection leads to a global increase in cellular SUMOylation. This increase, characterized by the appearance of two new SUMOylated proteins of ∼70kDa and ∼52kDa of molecular weight, is dependent upon viral replication and cannot be recreated by interferon stimulation alone. Altogether, these observations indicate that influenza A virus interacts extensively with the cellular SUMOylation system during infection and suggest that SUMOylation plays an important role during influenza virus infection, potentially contributing to the functional diversity exhibited by influenza viral proteins.

  20. Avian influenza h6 viruses productively infect and cause illness in mice and ferrets.

    PubMed

    Gillim-Ross, Laura; Santos, Celia; Chen, Zhongying; Aspelund, Amy; Yang, Chin-Fen; Ye, Dan; Jin, Hong; Kemble, George; Subbarao, Kanta

    2008-11-01

    Influenza pandemic preparedness has focused on influenza virus H5 and H7 subtypes. However, it is not possible to predict with certainty which subtype of avian influenza virus will cause the next pandemic, and it is prudent to include other avian influenza virus subtypes in pandemic preparedness efforts. An H6 influenza virus was identified as a potential progenitor of the H5N1 viruses that emerged in Hong Kong in 1997. This virus continues to circulate in the bird population in Asia, and other H6 viruses are prevalent in birds in North America and Asia. The high rate of reassortment observed in influenza viruses and the prevalence of H6 viruses in birds suggest that this subtype may pose a pandemic risk. Very little is known about the replicative capacity, immunogenicity, and correlates of protective immunity for low-pathogenicity H6 influenza viruses in mammals. We evaluated the antigenic and genetic relatedness of 14 H6 influenza viruses and their abilities to replicate and induce a cross-reactive immune response in two animal models: mice and ferrets. The different H6 viruses replicated to different levels in the respiratory tracts of mice and ferrets, causing varied degrees of morbidity and mortality in these two models. H6 virus infection induced similar patterns of neutralizing antibody responses in mice and ferrets; however, species-specific differences in the cross-reactivity of the antibody responses were observed. Overall, cross-reactivity of neutralizing antibodies in H6 virus-infected mice did not correlate well with protection against heterologous wild-type H6 viruses. However, we have identified an H6 virus that induces protective immunity against viruses in the North American and Eurasian lineages.

  1. Individual Correlates of Infectivity of Influenza A Virus Infections in Households

    PubMed Central

    Tsang, Tim K.; Fang, Vicky J.; Chan, Kwok-Hung; Ip, Dennis K. M.; Leung, Gabriel M.; Peiris, J. S. Malik; Cauchemez, Simon

    2016-01-01

    Background Identifying individual correlates of infectivity of influenza virus is important for disease control and prevention. Viral shedding is used as a proxy measure of infectivity in many studies. However, the evidence for this is limited. Methods In a detailed study of influenza virus transmission within households in 2008–12, we recruited index cases with confirmed influenza infection from outpatient clinics, and followed up their household contacts for 7–10 days to identify secondary infections. We used individual-based hazard models to characterize the relationship between individual viral shedding and individual infectivity. Results We analyzed 386 households with 1147 household contacts. Index cases were separated into 3 groups according to their estimated level of viral shedding at symptom onset. We did not find a statistically significant association of virus shedding with transmission. Index cases in medium and higher viral shedding groups were estimated to have 21% (95% CI: -29%, 113%) and 44% (CI: -16%, 167%) higher infectivity, compared with those in the lower viral shedding group. Conclusions Individual viral load measured by RT-PCR in the nose and throat was at most weakly correlated with individual infectivity in households. Other correlates of infectivity should be examined in future studies. PMID:27153194

  2. Suppression of influenza virus infection by the orf virus isolated in Taiwan

    PubMed Central

    LIN, Fong-Yuan; TSENG, Yeu-Yang; CHAN, Kun-Wei; KUO, Shu-Ting; YANG, Cheng-Hsiung; WANG, Chi-Young; TAKASU, Masaki; HSU, Wei-Li; WONG, Min-Liang

    2015-01-01

    Orf virus (ORFV), a member of parapoxvirus, is an enveloped virus with genome of double-stranded DNA. ORFV causes contagious pustular dermatitis or contagious ecthyma in sheep and goats worldwide. In general, detection of viral DNA and observing ORFV virion in tissues of afflicted animals are two methods commonly used for diagnosis of orf infection; however, isolation of the ORFV in cell culture using virus-containing tissue as inoculum is known to be difficult. In this work, the ORFV (Hoping strain) isolated in central Taiwan was successfully grown in cell culture. We further examined the biochemical characteristic of our isolate, including viral genotyping, viral mRNA and protein expression. By electron microscopy, one unique form of viral particle from ORFV infected cellular lysate was demonstrated in the negative-stained field. Moreover, immunomodulating and anti-influenza virus properties of this ORFV were investigated. ORFV stimulated human monocytes (THP-1) secreting proinflammatory cytokines IL-8 and TNF-α. And, pre-treatment of ORFV-infected cell medium prevents A549 cells from subsequent type A influenza virus (IAV) infection. Similarly, mice infected with ORFV via both intramuscular and subcutaneous routes at two days prior to IAV infection significantly decreased the replication of IAV. In summary, the results of a current study indicated our Hoping strain harbors the immune modulator property; with such a bio-adjuvanticity, we further proved that pre-exposure of ORFV protects animals from subsequent IAV infection. PMID:25855509

  3. Serological evidence of avian influenza virus and canine influenza virus infections among stray cats in live poultry markets, China.

    PubMed

    Zhou, Han; He, Shu-yi; Sun, Lingshuang; He, Huamei; Ji, Fangxiao; Sun, Yao; Jia, Kun; Ning, Zhangyong; Wang, Heng; Yuan, Liguo; Zhou, Pei; Zhang, Guihong; Li, Shoujun

    2015-02-25

    From January 2010 to January 2012, we collected sera samples from 700 stray cats living in close proximity to poultry farms or poultry markets in 4 provinces in China. A number of cats had evidence of avian and canine influenza virus infection: avian H9N2 [24 by HI ≥1:20 and 16 by microneutralization (MN) assay ≥1:80]; avian H5N1 (9 by HI ≥1:20 and 3 by MN assay ≥1:80) and canine H3N2 (32 by HI ≥1:20 and 18 by MN ≥1:80). Bivariate analyses revealed that cats sampled near live poultry markets and cats with influenza-like-illness were at increased risk of having elevated antibody titers by HI against avian H9N2, avian H5N1, or canine H3N2 viruses. Hence, cats may play a very important role in the ecology of novel influenza viruses and periodic epidemiological surveillance for novel influenza infections among stray cats could serve as an early warning system for human threats.

  4. [Study of biological characteristics of the IVpi-189 virus derived from persistent influenza A virus-infected cell line].

    PubMed

    Liu, Jing; Zhang, Lei-Ying; Na, Li-Xin; Yan, Jian-Zhong; Liu, Bei-Xing

    2011-07-01

    To investigate biological characteristics of the IVpi-189 progeny virus derived from the culture of influenza A virus as a live-attenuated vaccine candidate. Persistent infection of a cultured cell line with influenza A virus (MDCK-IVpi) was established by incubating continuously influenza virus-infected cells at a lower temperature. The infectious progeny virus derived from MDCK-IVpi cells at the 189rd subculture was designated as the IVpi-189 strain of influenza virus. The cytopathic effect induced by IVpi-189 virus was observed under different temperature conditions. The production of infectious progeny virus was examined at 38 and 32 degrees C by plaque titration of cell-associated and released virus. IVpi-189 virus showed cytopathic effect as strong as that of IVwt in infected cell line of MDCK at 32 degrees C. However, when culture temperature was raised to 38 degrees C, the cytopathic effect induced by IVpi-189 virus was delayed and less pronounced. Virus growth in IVpi-189 virus-infected cells at 38 degrees C was significantly reduced as compared with that of IVwt virus, although both viruses yielded nearly equivalent high titers of cell-associated and released virus at 32 degrees C. The reasons of the decreased proliferative ability of IVpi-189 virus at high culture temperature were unrelated with virus inactivation or the release of progeny virus, but associated with the decreased replication of infectious progeny virus in the infected cells. IVpi-189 virus derived from MDCK cells infected persistently with influenza A virus showed biological characteristics as a potential live-attenuated vaccine candidate.

  5. CT findings in viral lower respiratory tract infections caused by parainfluenza virus, influenza virus and respiratory syncytial virus

    PubMed Central

    Kim, Min-Chul; Kim, Mi Young; Lee, Hyun Joo; Lee, Sang-Oh; Choi, Sang-Ho; Kim, Yang Soo; Woo, Jun Hee; Kim, Sung-Han

    2016-01-01

    Abstract Viral lower respiratory tract infections (LRTIs) can present with a variety of computed tomography (CT) findings. However, identifying the contribution of a particular virus to CT findings is challenging due to concomitant infections and the limited data on the CT findings in viral LRTIs. We therefore investigate the CT findings in different pure viral LRTIs. All patients who underwent bronchoalveolar lavage (BAL) and were diagnosed with LRTIs caused by parainfluenza virus (PIV), influenza virus, or respiratory syncytial virus (RSV) between 1998 and 2014 were enrolled in a tertiary hospital in Seoul, South Korea. A pure viral LRTI was defined as a positive viral culture from BAL without any positive evidence from respiratory or blood cultures, or from polymerase chain reaction (PCR), or from serologic tests for bacteria, fungi, mycobacteria, or other viruses. CT images of 40 patients with viral LRTIs were analyzed: 14 with PIV, 14 with influenza virus, and 12 with RSV. Patch consolidation (≥1 cm or more than 1 segmental level) was found only in PIV (29%) (P = 0.03), by which CT findings caused by PIV could resemble those seen in bacterial LRTIs. Ground-glass opacities were seen in all cases of influenza virus and were more frequent than in PIV (71%) and RSV (67%) (P = 0.05). Bronchial wall thickening was more common in influenza virus (71%) and RSV (67%) LRTIs than PIV LRTIs (21%) (P = 0.02). With respect to anatomical distribution, PIV infections generally affected the lower lobes (69%), while influenza virus mostly caused diffuse changes throughout the lungs (57%), and RSV frequently formed localized patterns in the upper and mid lobes (44%). The CT findings in LRTIs of PIV, influenza virus, and RSV can be distinguished by certain characteristics. These differences could be useful for early differentiation of these viral LRTIs, and empirical use of appropriate antiviral agents. PMID:27368011

  6. CT findings in viral lower respiratory tract infections caused by parainfluenza virus, influenza virus and respiratory syncytial virus.

    PubMed

    Kim, Min-Chul; Kim, Mi Young; Lee, Hyun Joo; Lee, Sang-Oh; Choi, Sang-Ho; Kim, Yang Soo; Woo, Jun Hee; Kim, Sung-Han

    2016-06-01

    Viral lower respiratory tract infections (LRTIs) can present with a variety of computed tomography (CT) findings. However, identifying the contribution of a particular virus to CT findings is challenging due to concomitant infections and the limited data on the CT findings in viral LRTIs. We therefore investigate the CT findings in different pure viral LRTIs.All patients who underwent bronchoalveolar lavage (BAL) and were diagnosed with LRTIs caused by parainfluenza virus (PIV), influenza virus, or respiratory syncytial virus (RSV) between 1998 and 2014 were enrolled in a tertiary hospital in Seoul, South Korea. A pure viral LRTI was defined as a positive viral culture from BAL without any positive evidence from respiratory or blood cultures, or from polymerase chain reaction (PCR), or from serologic tests for bacteria, fungi, mycobacteria, or other viruses.CT images of 40 patients with viral LRTIs were analyzed: 14 with PIV, 14 with influenza virus, and 12 with RSV. Patch consolidation (≥1 cm or more than 1 segmental level) was found only in PIV (29%) (P = 0.03), by which CT findings caused by PIV could resemble those seen in bacterial LRTIs. Ground-glass opacities were seen in all cases of influenza virus and were more frequent than in PIV (71%) and RSV (67%) (P = 0.05). Bronchial wall thickening was more common in influenza virus (71%) and RSV (67%) LRTIs than PIV LRTIs (21%) (P = 0.02). With respect to anatomical distribution, PIV infections generally affected the lower lobes (69%), while influenza virus mostly caused diffuse changes throughout the lungs (57%), and RSV frequently formed localized patterns in the upper and mid lobes (44%).The CT findings in LRTIs of PIV, influenza virus, and RSV can be distinguished by certain characteristics. These differences could be useful for early differentiation of these viral LRTIs, and empirical use of appropriate antiviral agents. PMID:27368011

  7. Relationship between airborne detection of influenza A virus and the number of infected pigs.

    PubMed

    Corzo, Cesar A; Romagosa, Anna; Dee, Scott A; Gramer, Marie R; Morrison, Robert B; Torremorell, Montserrat

    2013-05-01

    Influenza A virus infects a wide range of species including both birds and mammals (including humans). One of the key routes by which the virus can infect populations of animals is by aerosol transmission. This study explored the relationship between number of infected pigs and the probability of detecting influenza virus RNA in bioaerosols through the course of an acute infection. Bioaerosols were collected using a cyclonic collector in two groups of 7 week-old pigs that were experimentally infected by exposure with a contact infected pig (seeder pig). After contact exposure, individual pig nasal swab samples were collected daily and air samples were collected three times per day for 8 days. All samples were tested for influenza by real-time reverse transcriptase (RRT)-PCR targeting the influenza virus matrix gene. All pigs' nasal swabs became influenza virus RRT-PCR positive upon exposure to the infected seeder pig. Airborne influenza was detected in 28/43 (65%) air samples. The temporal dynamics of influenza virus detection in air samples was in close agreement with the nasal shedding pattern in the infected pigs. First detection of positive bioaerosols happened at 1 day post contact (DPC). Positive bioaerosols were consistently detected between 3 and 6 DPC, a time when most pigs were also shedding virus in nasal secretions. Overall, the odds of detecting a positive air sample increased 2.2 times for every additional nasal swab positive pig in the group. In summary, there was a strong relationship between the number of pigs shedding influenza virus in nasal secretions and the generation of bioaerosols during the course of an acute infection.

  8. Relationship between airborne detection of influenza A virus and the number of infected pigs

    PubMed Central

    Corzo, Cesar A.; Romagosa, Anna; Dee, Scott; Gramer, Marie; Morrison, Robert B; Torremorell, Montserrat

    2012-01-01

    Influenza A virus infects a wide range of species including both birds and mammals (including humans). One of the key routes by which the virus can infect populations of animals is by aerosol transmission. This study explored the relationship between number of infected pigs and the probability of detecting influenza virus RNA in bioaerosols through the course of an acute infection. Bioaerosols were collected using a cyclonic collector in two groups of 7 week-old pigs that were experimentally infected by exposure with a contact infected pig (seeder pig). After contact exposure, individual pig nasal swab samples were collected daily and air samples were collected three times per day for 8 days. All samples were tested for influenza by real-time reverse transcriptase (RRT)-PCR targeting the influenza virus matrix gene. All pigs' nasal swabs became influenza virus RRT-PCR positive upon exposure to the infected seeder pig. Airborne influenza was detected in 28/43 (65%) air samples. The temporal dynamics of influenza virus detection in air samples was in close agreement with the nasal shedding pattern in the infected pigs. First detection of positive bioaerosols happened at 1 day post contact (DPC). Positive bioaerosols were consistently detected between 3 and 6 DPC, a time when most pigs were also shedding virus in nasal secretions. Overall, the odds of detecting a positive air sample increased 2.2 times for every additional nasal swab positive pig in the group. In summary, there was a strong relationship between the number of pigs shedding influenza virus in nasal secretions and the generation of bioaerosols during the course of an acute infection. PMID:23164957

  9. Relationship between airborne detection of influenza A virus and the number of infected pigs.

    PubMed

    Corzo, Cesar A; Romagosa, Anna; Dee, Scott A; Gramer, Marie R; Morrison, Robert B; Torremorell, Montserrat

    2013-05-01

    Influenza A virus infects a wide range of species including both birds and mammals (including humans). One of the key routes by which the virus can infect populations of animals is by aerosol transmission. This study explored the relationship between number of infected pigs and the probability of detecting influenza virus RNA in bioaerosols through the course of an acute infection. Bioaerosols were collected using a cyclonic collector in two groups of 7 week-old pigs that were experimentally infected by exposure with a contact infected pig (seeder pig). After contact exposure, individual pig nasal swab samples were collected daily and air samples were collected three times per day for 8 days. All samples were tested for influenza by real-time reverse transcriptase (RRT)-PCR targeting the influenza virus matrix gene. All pigs' nasal swabs became influenza virus RRT-PCR positive upon exposure to the infected seeder pig. Airborne influenza was detected in 28/43 (65%) air samples. The temporal dynamics of influenza virus detection in air samples was in close agreement with the nasal shedding pattern in the infected pigs. First detection of positive bioaerosols happened at 1 day post contact (DPC). Positive bioaerosols were consistently detected between 3 and 6 DPC, a time when most pigs were also shedding virus in nasal secretions. Overall, the odds of detecting a positive air sample increased 2.2 times for every additional nasal swab positive pig in the group. In summary, there was a strong relationship between the number of pigs shedding influenza virus in nasal secretions and the generation of bioaerosols during the course of an acute infection. PMID:23164957

  10. [Mechanisms underlying interferon-mediated host innate immunity during influenza A virus infection].

    PubMed

    Chen, Chao; Chi, Xiaojuan; Bai, Qingling; Chen, Jilong

    2015-12-01

    Influenza A virus can create acute respiratory infection in humans and animals throughout the world, and it is still one of the major causes of morbidity and mortality in humans worldwide. Numerous studies have shown that influenza A virus infection induces rapidly host innate immune response. Influenza A virus triggers the activation of signaling pathways that are dependent on host pattern recognition receptors (PRRs) including toll like receptors (TLRs) and RIG-I like receptors (RLRs). Using a variety of regulatory mechanisms, these signaling pathways activate downstream transcript factors that control expression of various interferons and cytokines, such as type I and type III interferons. Thus, these interferons stimulate the transcript of relevant interferon-stimulated genes (ISGs) and expression of the antiviral proteins, which are critical components of host innate immunity. In this review, we will highlight the mechanisms by which influenza A virus infection induces the interferon-mediated host innate immunity.

  11. [Dynamics of the cell cycle in human endothelial cell culture infected with influenza virus].

    PubMed

    Prochukhanova, A R; Lyublinskaya, O G; Azarenok, A A; Nazarova, A V; Zenin, V V; Zhilinskaya, I N

    2015-01-01

    Cell cycle in a culture of endothelial cells EAhy 926 infected with influenza virus was investigated. Cytometric analysis of culture, synchronized using contact inhibition, has shown that the exposure to the influenza virus in cells EAhy 926 lengthened S-phase of the cell cycle. This result has been tested and proven on culture EAhy 926 treated with nocodazole. Compared with lung carcinoma cells A549, in which influenza virus provokes the arrest of G0/G1 phase of the cycle, elongation of S-phase of cycle at a similar infection of endothelial culture EAhy 926 indicates that the influenza virus differently affects the dynamics of the cell cycle according to the origin of the infected culture.

  12. Host Genetic Background Strongly Influences the Response to Influenza A Virus Infections

    PubMed Central

    Srivastava, Barkha; Błażejewska, Paulina; Heßmann, Manuela; Bruder, Dunja; Geffers, Robert; Mauel, Susanne; Gruber, Achim D.; Schughart, Klaus

    2009-01-01

    The genetic make-up of the host has a major influence on its response to combat pathogens. For influenza A virus, several single gene mutations have been described which contribute to survival, the immune response and clearance of the pathogen by the host organism. Here, we have studied the influence of the genetic background to influenza A H1N1 (PR8) and H7N7 (SC35M) viruses. The seven inbred laboratory strains of mice analyzed exhibited different weight loss kinetics and survival rates after infection with PR8. Two strains in particular, DBA/2J and A/J, showed very high susceptibility to viral infections compared to all other strains. The LD50 to the influenza virus PR8 in DBA/2J mice was more than 1000-fold lower than in C57BL/6J mice. High susceptibility in DBA/2J mice was also observed after infection with influenza strain SC35M. In addition, infected DBA/2J mice showed a higher viral load in their lungs, elevated expression of cytokines and chemokines, and a more severe and extended lung pathology compared to infected C57BL/6J mice. These findings indicate a major contribution of the genetic background of the host to influenza A virus infections. The overall response in highly susceptible DBA/2J mice resembled the pathology described for infections with the highly virulent influenza H1N1-1918 and newly emerged H5N1 viruses. PMID:19293935

  13. Influenza virus respiratory infection and transmission following ocular inoculation in ferrets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While influenza viruses are a common respiratory pathogen, sporadic reports of conjunctivitis following human infection demonstrates the ability of this virus to cause disease outside of the respiratory tract. The ocular surface represents both a potential site of virus replication and a portal of e...

  14. Within-Host Models of High and Low Pathogenic Influenza Virus Infections: The Role of Macrophages

    PubMed Central

    Pawelek, Kasia A.; Dor, Daniel; Salmeron, Cristian; Handel, Andreas

    2016-01-01

    The World Health Organization identifies influenza as a major public health problem. While the strains commonly circulating in humans usually do not cause severe pathogenicity in healthy adults, some strains that have infected humans, such as H5N1, can cause high morbidity and mortality. Based on the severity of the disease, influenza viruses are sometimes categorized as either being highly pathogenic (HP) or having low pathogenicity (LP). The reasons why some strains are LP and others HP are not fully understood. While there are likely multiple mechanisms of interaction between the virus and the immune response that determine LP versus HP outcomes, we focus here on one component, namely macrophages (MP). There is some evidence that MP may both help fight the infection and become productively infected with HP influenza viruses. We developed mathematical models for influenza infections which explicitly included the dynamics and action of MP. We fit these models to viral load and macrophage count data from experimental infections of mice with LP and HP strains. Our results suggest that MP may not only help fight an influenza infection but may contribute to virus production in infections with HP viruses. We also explored the impact of combination therapies with antivirals and anti-inflammatory drugs on HP infections. Our study suggests a possible mechanism of MP in determining HP versus LP outcomes, and how different interventions might affect infection dynamics. PMID:26918620

  15. High doses of highly pathogenic avian influenza virus in chicken meat are required to infect ferrets

    PubMed Central

    2014-01-01

    High pathogenicity avian influenza viruses (HPAIV) have caused fatal infections in mammals through consumption of infected bird carcasses or meat, but scarce information exists on the dose of virus required and the diversity of HPAIV subtypes involved. Ferrets were exposed to different HPAIV (H5 and H7 subtypes) through consumption of infected chicken meat. The dose of virus needed to infect ferrets through consumption was much higher than via respiratory exposure and varied with the virus strain. In addition, H5N1 HPAIV produced higher titers in the meat of infected chickens and more easily infected ferrets than the H7N3 or H7N7 HPAIV. PMID:24894438

  16. Pandemic (H1N1) 2009 Influenza Virus Infection in A Survivor Who Has Recovered from Severe H7N9 Virus Infection, China

    PubMed Central

    Chen, Shan-Hui; Wu, Meng-Na; Qian, Yan-Hua; Ma, Guang-Yuan; Wang, Guo-Lin; Yang, Yang; Zhao, Teng; Lu, Bing; Ma, Mai-Juan; Cao, Wu-Chun

    2016-01-01

    We firstly report a patient who presented with severe complications after infection with influenza A(H1N1) pdm2009, more than 1 year after recovery from severe H7N9 virus infections. The population of patients who recovered from severe H7N9 infections might be at a higher risk to suffer severe complications after seasonal influenza infections, and they should be included in the high-risk populations recommended to receive seasonal influenza vaccination. PMID:27757100

  17. Rapid production of a H₉ N₂ influenza vaccine from MDCK cells for protecting chicken against influenza virus infection.

    PubMed

    Ren, Zhenghua; Lu, Zhongzheng; Wang, Lei; Huo, Zeren; Cui, Jianhua; Zheng, Tingting; Dai, Qing; Chen, Cuiling; Qin, Mengying; Chen, Meihua; Yang, Rirong

    2015-04-01

    H9N2 subtype avian influenza viruses are widespread in domestic poultry, and vaccination remains the most effective way to protect the chicken population from avian influenza pandemics. Currently, egg-based H9N2 influenza vaccine production has several disadvantages and mammalian MDCK cells are being investigated as candidates for influenza vaccine production. However, little research has been conducted on low pathogenic avian influenza viruses (LPAIV) such as H9N2 replicating in mammalian cells using microcarrier beads in a bioreactor. In this study, we present a systematic analysis of a safe H9N2 influenza vaccine derived from MDCK cells for protecting chickens against influenza virus infection. In 2008, we isolated two novel H9N2 influenza viruses from chickens raised in southern China, and these H9N2 viruses were adapted to MDCK cells. The H9N2 virus was produced in MDCK cells in a scalable bioreactor, purified, inactivated, and investigated for use as a vaccine. The MDCK-derived H9N2 vaccine was able to induce high titers of neutralizing antibodies in chickens of different ages. Histopathological examination, direct immunofluorescence, HI assay, CD4(+)/CD8(+) ratio test, and cytokine evaluation indicated that the MDCK-derived H9N2 vaccine evoked a rapid and effective immune response to protect chickens from influenza infection. High titers of H9N2-specific antibodies were maintained in chickens for 5 months, and the MDCK-derived H9N2 vaccine had no effects on chicken growth. The use of MDCK cells in bioreactors for LPAIV vaccine production is an attractive option to prevent outbreaks of LPAIV in poultry.

  18. Highly Pathogenic Avian Influenza Virus Infection of Mallards with Homo- and Heterosubtypic Immunity Induced by Low Pathogenic Avian Influenza Viruses

    PubMed Central

    Fereidouni, Sasan R.; Starick, Elke; Beer, Martin; Wilking, Hendrik; Kalthoff, Donata; Grund, Christian; Häuslaigner, Rafaela; Breithaupt, Angele; Lange, Elke; Harder, Timm C.

    2009-01-01

    The potential role of wild birds as carriers of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 is still a matter of debate. Consecutive or simultaneous infections with different subtypes of influenza viruses of low pathogenicity (LPAIV) are very common in wild duck populations. To better understand the epidemiology and pathogenesis of HPAIV H5N1 infections in natural ecosystems, we investigated the influence of prior infection of mallards with homo- (H5N2) and heterosubtypic (H4N6) LPAIV on exposure to HPAIV H5N1. In mallards with homosubtypic immunity induced by LPAIV infection, clinical disease was absent and shedding of HPAIV from respiratory and intestinal tracts was grossly reduced compared to the heterosubtypic and control groups (mean GEC/100 µl at 3 dpi: 3.0×102 vs. 2.3×104 vs. 8.7×104; p<0.05). Heterosubtypic immunity induced by an H4N6 infection mediated a similar but less pronounced effect. We conclude that the epidemiology of HPAIV H5N1 in mallards and probably other aquatic wild bird species is massively influenced by interfering immunity induced by prior homo- and heterosubtypic LPAIV infections. PMID:19693268

  19. Influenza A virus reassortment.

    PubMed

    Steel, John; Lowen, Anice C

    2014-01-01

    Reassortment is the process by which influenza viruses swap gene segments. This genetic exchange is possible due to the segmented nature of the viral genome and occurs when two differing influenza viruses co-infect a cell. The viral diversity generated through reassortment is vast and plays an important role in the evolution of influenza viruses. Herein we review recent insights into the contribution of reassortment to the natural history and epidemiology of influenza A viruses, gained through population scale phylogenic analyses. We describe methods currently used to study reassortment in the laboratory, and we summarize recent progress made using these experimental approaches to further our understanding of influenza virus reassortment and the contexts in which it occurs.

  20. Influenza Virus Infection Induces Platelet-Endothelial Adhesion Which Contributes to Lung Injury.

    PubMed

    Sugiyama, Michael G; Gamage, Asela; Zyla, Roman; Armstrong, Susan M; Advani, Suzanne; Advani, Andrew; Wang, Changsen; Lee, Warren L

    2016-02-01

    Lung injury after influenza infection is characterized by increased permeability of the lung microvasculature, culminating in acute respiratory failure. Platelets interact with activated endothelial cells and have been implicated in the pathogenesis of some forms of acute lung injury. Autopsy studies have revealed pulmonary microthrombi after influenza infection, and epidemiological studies suggest that influenza vaccination is protective against pulmonary thromboembolism; however, the effect of influenza infection on platelet-endothelial interactions is unclear. We demonstrate that endothelial infection with both laboratory and clinical strains of influenza virus increased the adhesion of human platelets to primary human lung microvascular endothelial cells. Platelets adhered to infected cells as well as to neighboring cells, suggesting a paracrine effect. Influenza infection caused the upregulation of von Willebrand factor and ICAM-1, but blocking these receptors did not prevent platelet-endothelial adhesion. Instead, platelet adhesion was inhibited by both RGDS peptide and a blocking antibody to platelet integrin α5β1, implicating endothelial fibronectin. Concordantly, lung histology from infected mice revealed viral dose-dependent colocalization of viral nucleoprotein and the endothelial marker PECAM-1, while platelet adhesion and fibronectin deposition also were observed in the lungs of influenza-infected mice. Inhibition of platelets using acetylsalicylic acid significantly improved survival, a finding confirmed using a second antiplatelet agent. Thus, influenza infection induces platelet-lung endothelial adhesion via fibronectin, contributing to mortality from acute lung injury. The inhibition of platelets may constitute a practical adjunctive strategy to the treatment of severe infections with influenza.IMPORTANCE There is growing appreciation of the involvement of the lung endothelium in the pathogenesis of severe infections with influenza virus. We have

  1. Influenza Virus Infection Induces Platelet-Endothelial Adhesion Which Contributes to Lung Injury.

    PubMed

    Sugiyama, Michael G; Gamage, Asela; Zyla, Roman; Armstrong, Susan M; Advani, Suzanne; Advani, Andrew; Wang, Changsen; Lee, Warren L

    2015-12-04

    Lung injury after influenza infection is characterized by increased permeability of the lung microvasculature, culminating in acute respiratory failure. Platelets interact with activated endothelial cells and have been implicated in the pathogenesis of some forms of acute lung injury. Autopsy studies have revealed pulmonary microthrombi after influenza infection, and epidemiological studies suggest that influenza vaccination is protective against pulmonary thromboembolism; however, the effect of influenza infection on platelet-endothelial interactions is unclear. We demonstrate that endothelial infection with both laboratory and clinical strains of influenza virus increased the adhesion of human platelets to primary human lung microvascular endothelial cells. Platelets adhered to infected cells as well as to neighboring cells, suggesting a paracrine effect. Influenza infection caused the upregulation of von Willebrand factor and ICAM-1, but blocking these receptors did not prevent platelet-endothelial adhesion. Instead, platelet adhesion was inhibited by both RGDS peptide and a blocking antibody to platelet integrin α5β1, implicating endothelial fibronectin. Concordantly, lung histology from infected mice revealed viral dose-dependent colocalization of viral nucleoprotein and the endothelial marker PECAM-1, while platelet adhesion and fibronectin deposition also were observed in the lungs of influenza-infected mice. Inhibition of platelets using acetylsalicylic acid significantly improved survival, a finding confirmed using a second antiplatelet agent. Thus, influenza infection induces platelet-lung endothelial adhesion via fibronectin, contributing to mortality from acute lung injury. The inhibition of platelets may constitute a practical adjunctive strategy to the treatment of severe infections with influenza.IMPORTANCE There is growing appreciation of the involvement of the lung endothelium in the pathogenesis of severe infections with influenza virus. We have

  2. DIESEL EXHAUST PARTICLES ENHANCE INFLUENZA VIRUS INFECTIVITY BY INCREASING VIRUS ATTACHMENT

    EPA Science Inventory

    Despite vaccination and antiviral therapies, influenza infections continue to cause large scale morbidity and mortality every year. Several factors, such as age and nutritional status can affect the incidence and severity of influenza infections. Moreover, exposure to air polluta...

  3. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    SciTech Connect

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R.

    2014-07-25

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.

  4. Sterilizing immunity to influenza virus infection requires local antigen-specific T cell response in the lungs.

    PubMed

    Dutta, Avijit; Huang, Ching-Tai; Lin, Chun-Yen; Chen, Tse-Ching; Lin, Yung-Chang; Chang, Chia-Shiang; He, Yueh-Chia

    2016-01-01

    Sterilizing immunity is a unique immune status, which prevents effective virus infection into the host. It is different from the immunity that allows infection but with subsequent successful eradication of the virus. Pre-infection induces sterilizing immunity to homologous influenza virus challenge in ferret. In our antigen-specific experimental system, mice pre-infected with PR8 influenza virus through nasal route are likewise resistant to reinfection of the same strain of virus. The virus is cleared before establishment of effective infection. Intramuscular influenza virus injection confers protection against re-infection with facilitated virus clearance but not sterilizing immunity. Pre-infection and intramuscular injection generates comparable innate immunity and antibody response, but only pre-infection induces virus receptor reduction and efficient antigen-specific T cell response in the lungs. Pre-infection with nH1N1 influenza virus induces virus receptor reduction but not PR8-specific T cell immune response in the lungs and cannot prevent infection of PR8 influenza virus. Pre-infection with PR8 virus induced PR8-specific T cell response in the lungs but cannot prevent infection of nH1N1 virus either. These results reveal that antigen-specific T cell immunity is required for sterilizing immunity. PMID:27596047

  5. Sterilizing immunity to influenza virus infection requires local antigen-specific T cell response in the lungs

    PubMed Central

    Dutta, Avijit; Huang, Ching-Tai; Lin, Chun-Yen; Chen, Tse-Ching; Lin, Yung-Chang; Chang, Chia-Shiang; He, Yueh-Chia

    2016-01-01

    Sterilizing immunity is a unique immune status, which prevents effective virus infection into the host. It is different from the immunity that allows infection but with subsequent successful eradication of the virus. Pre-infection induces sterilizing immunity to homologous influenza virus challenge in ferret. In our antigen-specific experimental system, mice pre-infected with PR8 influenza virus through nasal route are likewise resistant to reinfection of the same strain of virus. The virus is cleared before establishment of effective infection. Intramuscular influenza virus injection confers protection against re-infection with facilitated virus clearance but not sterilizing immunity. Pre-infection and intramuscular injection generates comparable innate immunity and antibody response, but only pre-infection induces virus receptor reduction and efficient antigen-specific T cell response in the lungs. Pre-infection with nH1N1 influenza virus induces virus receptor reduction but not PR8-specific T cell immune response in the lungs and cannot prevent infection of PR8 influenza virus. Pre-infection with PR8 virus induced PR8-specific T cell response in the lungs but cannot prevent infection of nH1N1 virus either. These results reveal that antigen-specific T cell immunity is required for sterilizing immunity. PMID:27596047

  6. Sterilizing immunity to influenza virus infection requires local antigen-specific T cell response in the lungs

    NASA Astrophysics Data System (ADS)

    Dutta, Avijit; Huang, Ching-Tai; Lin, Chun-Yen; Chen, Tse-Ching; Lin, Yung-Chang; Chang, Chia-Shiang; He, Yueh-Chia

    2016-09-01

    Sterilizing immunity is a unique immune status, which prevents effective virus infection into the host. It is different from the immunity that allows infection but with subsequent successful eradication of the virus. Pre-infection induces sterilizing immunity to homologous influenza virus challenge in ferret. In our antigen-specific experimental system, mice pre-infected with PR8 influenza virus through nasal route are likewise resistant to reinfection of the same strain of virus. The virus is cleared before establishment of effective infection. Intramuscular influenza virus injection confers protection against re-infection with facilitated virus clearance but not sterilizing immunity. Pre-infection and intramuscular injection generates comparable innate immunity and antibody response, but only pre-infection induces virus receptor reduction and efficient antigen-specific T cell response in the lungs. Pre-infection with nH1N1 influenza virus induces virus receptor reduction but not PR8-specific T cell immune response in the lungs and cannot prevent infection of PR8 influenza virus. Pre-infection with PR8 virus induced PR8-specific T cell response in the lungs but cannot prevent infection of nH1N1 virus either. These results reveal that antigen-specific T cell immunity is required for sterilizing immunity.

  7. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses

    PubMed Central

    Gandhale, Pradeep N.; Kumar, Himanshu; Kulkarni, Diwakar D.

    2016-01-01

    The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens. PMID:27071061

  8. Nationwide Distribution of Bovine Influenza D Virus Infection in Japan

    PubMed Central

    Horimoto, Taisuke; Hiono, Takahiro; Mekata, Hirohisa; Odagiri, Tomoha; Lei, Zhihao; Kobayashi, Tomoya; Norimine, Junzo; Inoshima, Yasuo; Hikono, Hirokazu; Murakami, Kenji; Sato, Reiichiro; Murakami, Hironobu; Sakaguchi, Masahiro; Ishii, Kazunori; Ando, Takaaki; Otomaru, Kounosuke; Ozawa, Makoto; Sakoda, Yoshihiro; Murakami, Shin

    2016-01-01

    Cattle are major reservoirs of the provisionally named influenza D virus, which is potentially involved in the bovine respiratory disease complex. Here, we conducted a serological survey for the influenza D virus in Japan, using archived bovine serum samples collected during 2010–2016 from several herds of apparently healthy cattle in various regions of the country. We found sero-positive cattle across all years and in all the prefectural regions tested, with a total positivity rate of 30.5%, although the positivity rates varied among regions (13.5–50.0%). There was no significant difference in positivity rates for Holstein and Japanese Black cattle. Positivity rates tended to increase with cattle age. The herds were clearly divided into two groups: those with a high positive rate and those with a low (or no) positive rate, indicating that horizontal transmission of the virus occurs readily within a herd. These data demonstrate that bovine influenza D viruses have been in circulation for at least 5 years countrywide, emphasizing its ubiquitous distribution in the cattle population of Japan. PMID:27682422

  9. Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses are transmitted within wild aquatic bird populations through an indirect fecal-oral route involving fecal-contaminated water. In this study, the influence of filter-feeding bivalves, Corbicula fluminea, on the infectivity of AI virus in water was examined. A single cla...

  10. Dietary lactosucrose suppresses influenza A (H1N1) virus infection in mice

    PubMed Central

    KISHINO, Eriko; TAKEMURA, Naho; MASAKI, Hisaharu; ITO, Tetsuya; NAKAZAWA, Masatoshi

    2015-01-01

    This study examined the effects of lactosucrose (4G-β-D-galactosylsucrose) on influenza A virus infections in mice. First, the effects of lactosucrose on fermentation in the cecum and on immune function were investigated. In female BALB/c mice, lactosucrose supplementation for 6 weeks promoted cecal fermentation and increased both secretory IgA (SIgA) levels in feces and total IgA and IgG2a concentrations in serum. Both the percentage of CD4+ T cells in Peyer’s patches and the cytotoxic activity of splenic natural killer (NK) cells increased significantly in response to lactosucrose. Next, we examined the effects of lactosucrose on low-dose influenza A virus infection in mice. After 2 weeks of dietary supplementation with lactosucrose, the mice were infected with low-dose influenza A virus. At 7 days post infection, a comparison with control mice showed that weight loss was suppressed, as were viral titers in the lungs. In the spleens of lactosucrose-fed mice, there was an increase in the percentage of NK cells. Lastly, mice fed lactosucrose were challenged with a lethal dose of influenza A virus. The survival rate of these mice was significantly higher than that of mice fed a control diet. These results suggested that lactosucrose supplementation suppresses influenza A virus infection by augmenting innate immune responses and enhancing cellular and mucosal immunity. PMID:26594606

  11. Pathogenesis of respiratory infections due to influenza virus: Implications for developing countries

    SciTech Connect

    Leigh, M.W.; Carson, J.L.; Denny, F.W. Jr. )

    1991-05-01

    The influenza viruses have an important and distinctive place among respiratory viruses: they change antigenic character at irregular intervals, infect individuals of all ages, cause illnesses characterized by constitutional symptoms and tracheobronchitis, produce yearly epidemics associated frequently with excess morbidity and mortality, and predispose the host to bacterial superinfections. Much is known about influenza viruses, but their role in respiratory infections among children in developing countries is poorly understood, and the risk factors that lead to the excess morbidity and mortality have not been identified clearly. Among the many risk factors that may be important are alterations in host immunity, malnutrition, prior or coincident infections with other microorganisms, inhaled pollutants, and lack of access to medical care. There is a great need for research that can establish more precisely the role these and other unidentified factors play in the pathogenesis of influenza infections in children in the developing world. 37 references.

  12. Peripheral Leukocyte Migration in Ferrets in Response to Infection with Seasonal Influenza Virus

    PubMed Central

    Kim, Jin Hyang; York, Ian A.

    2016-01-01

    In order to better understand inflammation associated with influenza virus infection, we measured cell trafficking, via flow cytometry, to various tissues in the ferret model following infection with an A(H3N2) human seasonal influenza virus (A/Perth/16/2009). Changes in immune cells were observed in the blood, bronchoalveolar lavage fluid, and spleen, as well as lymph nodes associated with the site of infection or distant from the respiratory system. Nevertheless clinical symptoms were mild, with circulating leukocytes exhibiting rapid, dynamic, and profound changes in response to infection. Each of the biological compartments examined responded differently to influenza infection. Two days after infection, when infected ferrets showed peak fever, a marked, transient lymphopenia and granulocytosis were apparent in all infected animals. Both draining and distal lymph nodes demonstrated significant accumulation of T cells, B cells, and granulocytes at days 2 and 5 post-infection. CD8+ T cells significantly increased in spleen at days 2 and 5 post-infection; CD4+ T cells, B cells and granulocytes significantly increased at day 5. We interpret our findings as showing that lymphocytes exit the peripheral blood and differentially home to lymph nodes and tissues based on cell type and proximity to the site of infection. Monitoring leukocyte homing and trafficking will aid in providing a more detailed view of the inflammatory impact of influenza virus infection. PMID:27315117

  13. Peripheral Leukocyte Migration in Ferrets in Response to Infection with Seasonal Influenza Virus.

    PubMed

    Music, Nedzad; Reber, Adrian J; Kim, Jin Hyang; York, Ian A

    2016-01-01

    In order to better understand inflammation associated with influenza virus infection, we measured cell trafficking, via flow cytometry, to various tissues in the ferret model following infection with an A(H3N2) human seasonal influenza virus (A/Perth/16/2009). Changes in immune cells were observed in the blood, bronchoalveolar lavage fluid, and spleen, as well as lymph nodes associated with the site of infection or distant from the respiratory system. Nevertheless clinical symptoms were mild, with circulating leukocytes exhibiting rapid, dynamic, and profound changes in response to infection. Each of the biological compartments examined responded differently to influenza infection. Two days after infection, when infected ferrets showed peak fever, a marked, transient lymphopenia and granulocytosis were apparent in all infected animals. Both draining and distal lymph nodes demonstrated significant accumulation of T cells, B cells, and granulocytes at days 2 and 5 post-infection. CD8+ T cells significantly increased in spleen at days 2 and 5 post-infection; CD4+ T cells, B cells and granulocytes significantly increased at day 5. We interpret our findings as showing that lymphocytes exit the peripheral blood and differentially home to lymph nodes and tissues based on cell type and proximity to the site of infection. Monitoring leukocyte homing and trafficking will aid in providing a more detailed view of the inflammatory impact of influenza virus infection. PMID:27315117

  14. Cross-Reactive, Cell-Mediated Immunity and Protection of Chickens from Lethal H5N1 Influenza Virus Infection in Hong Kong Poultry Markets

    PubMed Central

    Seo, Sang Heui; Webster, Robert G.

    2001-01-01

    In 1997, avian H5N1 influenza virus transmitted from chickens to humans resulted in 18 confirmed infections. Despite harboring lethal H5N1 influenza viruses, most chickens in the Hong Kong poultry markets showed no disease signs. At this time, H9N2 influenza viruses were cocirculating in the markets. We investigated the role of H9N2 influenza viruses in protecting chickens from lethal H5N1 influenza virus infections. Sera from chickens infected with an H9N2 influenza virus did not cross-react with an H5N1 influenza virus in neutralization or hemagglutination inhibition assays. Most chickens primed with an H9N2 influenza virus 3 to 70 days earlier survived the lethal challenge of an H5N1 influenza virus, but infected birds shed H5N1 influenza virus in their feces. Adoptive transfer of T lymphocytes or CD8+ T cells from inbred chickens (B2/B2) infected with an H9N2 influenza virus to naive inbred chickens (B2/B2) protected them from lethal H5N1 influenza virus. In vitro cytotoxicity assays showed that T lymphocytes or CD8+ T cells from chickens infected with an H9N2 influenza virus recognized target cells infected with either an H5N1 or H9N2 influenza virus in a dose-dependent manner. Our findings indicate that cross-reactive cellular immunity induced by H9N2 influenza viruses protected chickens from lethal infection with H5N1 influenza viruses in the Hong Kong markets in 1997 but permitted virus shedding in the feces. Our findings are the first to suggest that cross-reactive cellular immunity can change the outcome of avian influenza virus infection in birds in live markets and create a situation for the perpetuation of H5N1 influenza viruses. PMID:11222674

  15. Cross-reactive, cell-mediated immunity and protection of chickens from lethal H5N1 influenza virus infection in Hong Kong poultry markets.

    PubMed

    Seo, S H; Webster, R G

    2001-03-01

    In 1997, avian H5N1 influenza virus transmitted from chickens to humans resulted in 18 confirmed infections. Despite harboring lethal H5N1 influenza viruses, most chickens in the Hong Kong poultry markets showed no disease signs. At this time, H9N2 influenza viruses were cocirculating in the markets. We investigated the role of H9N2 influenza viruses in protecting chickens from lethal H5N1 influenza virus infections. Sera from chickens infected with an H9N2 influenza virus did not cross-react with an H5N1 influenza virus in neutralization or hemagglutination inhibition assays. Most chickens primed with an H9N2 influenza virus 3 to 70 days earlier survived the lethal challenge of an H5N1 influenza virus, but infected birds shed H5N1 influenza virus in their feces. Adoptive transfer of T lymphocytes or CD8(+) T cells from inbred chickens (B(2)/B(2)) infected with an H9N2 influenza virus to naive inbred chickens (B(2)/B(2)) protected them from lethal H5N1 influenza virus. In vitro cytotoxicity assays showed that T lymphocytes or CD8(+) T cells from chickens infected with an H9N2 influenza virus recognized target cells infected with either an H5N1 or H9N2 influenza virus in a dose-dependent manner. Our findings indicate that cross-reactive cellular immunity induced by H9N2 influenza viruses protected chickens from lethal infection with H5N1 influenza viruses in the Hong Kong markets in 1997 but permitted virus shedding in the feces. Our findings are the first to suggest that cross-reactive cellular immunity can change the outcome of avian influenza virus infection in birds in live markets and create a situation for the perpetuation of H5N1 influenza viruses.

  16. Serological report of pandemic and seasonal human influenza virus infection in dogs in southern China.

    PubMed

    Yin, Xin; Zhao, Fu-Rong; Zhou, Dong-Hui; Wei, Ping; Chang, Hui-Yun

    2014-11-01

    From January to July 2012, we looked for evidence of subclinical A (H1N1) pdm09 and seasonal human influenza viruses infections in healthy dogs in China. Sera from a total of 1920 dogs were collected from Guangdong, Guangxi, Fujian and Jiangxi provinces. We also examined archived sera from 66 dogs and cats that were collected during 2008 from these provinces. Using hemagglutination inhibition (HI) and microneutralization (MN) assays, we found that only the dogs sampled in 2012 had elevated antibodies (≥ 1:32) against A(H1N1)pdm09 virus and seasonal human influenza viruses: Of the 1920 dog sera, 20.5 % (n = 393) had elevated antibodies against influenza A(H1N1) pdm09 by the HI assay, 1.1 % (n = 22), and 4.7 % (n = 91) of the 1920 dogs sera had elevated antibodies against human seasonal H1N1 influenza virus and human seasonal H3N2 influenza virus by the HI assay. Compared with dogs that were raised on farms, dogs that were raised as pets were more likely to have elevated antibodies against A(H1N1)pdm09 and seasonal human influenza viruses. Seropositivity was highest among pet dogs, which likely had more diverse and frequent exposures to humans than farm dogs. These findings will help us better understand which influenza A viruses are present in dogs and will contribute to the prevention and control of influenza A virus. Moreover, further in-depth study is necessary for us to understand what roles dogs play in the ecology of influenza A.

  17. Akt inhibitor MK2206 prevents influenza pH1N1 virus infection in vitro.

    PubMed

    Denisova, Oxana V; Söderholm, Sandra; Virtanen, Salla; Von Schantz, Carina; Bychkov, Dmitrii; Vashchinkina, Elena; Desloovere, Jens; Tynell, Janne; Ikonen, Niina; Theisen, Linda L; Nyman, Tuula A; Matikainen, Sampsa; Kallioniemi, Olli; Julkunen, Ilkka; Muller, Claude P; Saelens, Xavier; Verkhusha, Vladislav V; Kainov, Denis E

    2014-07-01

    The influenza pH1N1 virus caused a global flu pandemic in 2009 and continues manifestation as a seasonal virus. Better understanding of the virus-host cell interaction could result in development of better prevention and treatment options. Here we show that the Akt inhibitor MK2206 blocks influenza pH1N1 virus infection in vitro. In particular, at noncytotoxic concentrations, MK2206 alters Akt signaling and inhibits endocytic uptake of the virus. Interestingly, MK2206 is unable to inhibit H3N2, H7N9, and H5N1 viruses, indicating that pH1N1 evolved specific requirements for efficient infection. Thus, Akt signaling could be exploited further for development of better therapeutics against pH1N1 virus. PMID:24752266

  18. A quantitative comet infection assay for influenza virus.

    PubMed

    Lindsay, Stephen M; Timm, Andrea; Yin, John

    2012-02-01

    The virus comet assay is a cell-based virulence assay used to evaluate an antiviral drug or antibody against a target virus. The comet assay differs from the plaque assay in allowing spontaneous flows in 6-well plates to spread virus. When implemented quantitatively the comet assay has been shown to have an order-of-magnitude greater sensitivity to antivirals than the plaque assay. In this study, a quantitative comet assay for influenza virus is demonstrated, and is shown to have a 13-fold increase in sensitivity to ribavirin. AX4 cells (MDCK cells with increased surface concentration of α2-6 sialic acid, the influenza virus receptor) have reduced the comet size variability relative to MDCK cells, making them a better host cell for use in this assay. Because of enhanced antiviral sensitivity in flow-based assays, less drug is required, which could lead to lower reagent costs, reduced cytotoxicity, and fewer false-negative drug screen results. The comet assay also serves as a readout of flow conditions in the well. Observations from comets formed at varying humidity levels indicate a role for evaporation in the mechanism of spontaneous fluid flow in wells.

  19. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers

    PubMed Central

    Gomaa, Mokhtar R.; Kandeil, Ahmed; Kayed, Ahmed S.; Elabd, Mona A.; Zaki, Shaimaa A.; Abu Zeid, Dina; El Rifay, Amira S.; Mousa, Adel A.; Farag, Mohamed M.; McKenzie, Pamela P.; Webby, Richard J.; Ali, Mohamed A.; Kayali, Ghazi

    2016-01-01

    Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80) among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses. PMID:27258357

  20. Inhibition of Influenza A Virus Infection In Vitro by Peptides Designed In Silico

    PubMed Central

    López-Martínez, Rogelio; Ramírez-Salinas, G. Lizbeth; Correa-Basurto, José; Barrón, Blanca L.

    2013-01-01

    Influenza A viruses are enveloped, segmented negative single-stranded RNA viruses, capable of causing severe human respiratory infections. Currently, only two types of drugs are used to treat influenza A infections, the M2 H+ ion channel blockers (amantadine and rimantadine) and the neuraminidase inhibitors (NAI) (oseltamivir and zanamivir). Moreover, the emergence of drug-resistant influenza A virus strains has emphasized the need to develop new antiviral agents to complement or replace the existing drugs. Influenza A virus has on the surface a glycoprotein named hemagglutinin (HA) which due to its important role in the initial stage of infection: receptor binding and fusion activities of viral and endosomal membranes, is a potential target for new antiviral drugs. In this work we designed nine peptides using several bioinformatics tools. These peptides were derived from the HA1 and HA2 subunits of influenza A HA with the aim to inhibit influenza A virus infection. The peptides were synthetized and their antiviral activity was tested in vitro against several influenza A viral strains: Puerto Rico/916/34 (H1N1), (H1N1)pdm09, swine (H1N1) and avian (H5N2). We found these peptides were able to inhibit the influenza A viral strains tested, without showing any cytotoxic effect. By docking studies we found evidence that all the peptides were capable to bind to the viral HA, principally to important regions on the viral HA stalk, thus could prevent the HA conformational changes required to carry out its membranes fusion activity. PMID:24146939

  1. Effect of quercetin supplementation on lung antioxidants after experimental influenza virus infection.

    PubMed

    Kumar, Pankaj; Khanna, Madhu; Srivastava, Vikram; Tyagi, Yogesh Kumar; Raj, Hanumanthrao G; Ravi, K

    2005-06-01

    In the mice, instillation of influenza virus A/Udorn/317/72(H3N2) intranasally resulted in a significant decrease in the pulmonary concentrations of catalase, reduced glutathione, and superoxide dismutase. There was a decrease in vitamin E level also. These effects were observed on the 5th day after viral instillation. Oral supplementation with quercetin simultaneous with viral instillation produced significant increases in the pulmonary concentrations of catalase, reduced glutathione, and superoxide dismutase. However, quercetin did not reverse the fall in vitamin E level associated with the viral infection. It is concluded that during influenza virus infection, there is "oxidative stress." Because quercetin restored the concentrations of many antioxidants, it is proposed that it may be useful as a drug in protecting the lung from the deleterious effects of oxygen derived free radicals released during influenza virus infection.

  2. Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs

    PubMed Central

    Wang, Jia; Wu, Maocai; Hong, Wenshan; Fan, Xiaohui; Chen, Rirong; Zheng, Zuoyi; Zeng, Yu; Huang, Ren; Zhang, Yu; Lam, Tommy Tsan-Yuk; Smith, David K.

    2016-01-01

    ABSTRACT The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. IMPORTANCE H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which

  3. Variant (Swine Origin) Influenza Viruses in Humans

    MedlinePlus

    ... What's this? Submit Button Past Newsletters Variant Influenza Viruses: Background and CDC Risk Assessment and Reporting Language: ... Background CDC Assessment Reporting Background On Variant Influenza Viruses Swine flu viruses do not normally infect humans. ...

  4. Pulmonary Immunostimulation with MALP-2 in Influenza Virus-Infected Mice Increases Survival after Pneumococcal Superinfection

    PubMed Central

    Reppe, Katrin; Radünzel, Peter; Dietert, Kristina; Tschernig, Thomas; Wolff, Thorsten; Hammerschmidt, Sven; Gruber, Achim D.; Suttorp, Norbert

    2015-01-01

    Pulmonary infection with influenza virus is frequently complicated by bacterial superinfection, with Streptococcus pneumoniae being the most prevalent causal pathogen and hence often associated with high morbidity and mortality rates. Local immunosuppression due to pulmonary influenza virus infection has been identified as a major cause of the pathogenesis of secondary bacterial lung infection. Thus, specific local stimulation of the pulmonary innate immune system in subjects with influenza virus infection might improve the host defense against secondary bacterial pathogens. In the present study, we examined the effect of pulmonary immunostimulation with Toll-like receptor 2 (TLR-2)-stimulating macrophage-activating lipopeptide 2 (MALP-2) in influenza A virus (IAV)-infected mice on the course of subsequent pneumococcal superinfection. Female C57BL/6N mice infected with IAV were treated with MALP-2 on day 5 and challenged with S. pneumoniae on day 6. Intratracheal MALP-2 application increased proinflammatory cytokine and chemokine release and enhanced the recruitment of leukocytes, mainly neutrophils, into the alveolar space of IAV-infected mice, without detectable systemic side effects. Local pulmonary instillation of MALP-2 in IAV-infected mice 24 h before transnasal pneumococcal infection considerably reduced the bacterial number in the lung tissue without inducing exaggerated inflammation. The pulmonary viral load was not altered by MALP-2. Clinically, MALP-2 treatment of IAV-infected mice increased survival rates and reduced hypothermia and body weight loss after pneumococcal superinfection compared to those of untreated coinfected mice. In conclusion, local immunostimulation with MALP-2 in influenza virus-infected mice improved pulmonary bacterial elimination and increased survival after subsequent pneumococcal superinfection. PMID:26371127

  5. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection

    PubMed Central

    Vereecke, Lars; Mc Guire, Conor; Sze, Mozes; Schuijs, Martijn J.; Willart, Monique; Itati Ibañez, Lorena; Hammad, Hamida; Lambrecht, Bart N.; Beyaert, Rudi; Saelens, Xavier; van Loo, Geert

    2016-01-01

    A20 negatively regulates multiple inflammatory signalling pathways. We here addressed the role of A20 in club cells (also known as Clara cells) of the bronchial epithelium in their response to influenza A virus infection. Club cells provide a niche for influenza virus replication, but little is known about the functions of these cells in antiviral immunity. Using airway epithelial cell-specific A20 knockout (A20AEC-KO) mice, we show that A20 in club cells critically controls innate immune responses upon TNF or double stranded RNA stimulation. Surprisingly, A20AEC-KO mice are better protected against influenza A virus challenge than their wild type littermates. This phenotype is not due to decreased viral replication. Instead host innate and adaptive immune responses and lung damage are reduced in A20AEC-KO mice. These attenuated responses correlate with a dampened cytotoxic T cell (CTL) response at later stages during infection, indicating that A20AEC-KO mice are better equipped to tolerate Influenza A virus infection. Expression of the chemokine CCL2 (also named MCP-1) is particularly suppressed in the lungs of A20AEC-KO mice during later stages of infection. When A20AEC-KO mice were treated with recombinant CCL2 the protective effect was abrogated demonstrating the crucial contribution of this chemokine to the protection of A20AEC-KO mice to Influenza A virus infection. Taken together, we propose a mechanism of action by which A20 expression in club cells controls inflammation and antiviral CTL responses in response to influenza virus infection. PMID:26815999

  6. Ionizing air affects influenza virus infectivity and prevents airborne-transmission.

    PubMed

    Hagbom, Marie; Nordgren, Johan; Nybom, Rolf; Hedlund, Kjell-Olof; Wigzell, Hans; Svensson, Lennart

    2015-01-01

    By the use of a modified ionizer device we describe effective prevention of airborne transmitted influenza A (strain Panama 99) virus infection between animals and inactivation of virus (>97%). Active ionizer prevented 100% (4/4) of guinea pigs from infection. Moreover, the device effectively captured airborne transmitted calicivirus, rotavirus and influenza virus, with recovery rates up to 21% after 40 min in a 19 m(3) room. The ionizer generates negative ions, rendering airborne particles/aerosol droplets negatively charged and electrostatically attracts them to a positively charged collector plate. Trapped viruses are then identified by reverse transcription quantitative real-time PCR. The device enables unique possibilities for rapid and simple removal of virus from air and offers possibilities to simultaneously identify and prevent airborne transmission of viruses. PMID:26101102

  7. Ionizing air affects influenza virus infectivity and prevents airborne-transmission

    PubMed Central

    Hagbom, Marie; Nordgren, Johan; Nybom, Rolf; Hedlund, Kjell-Olof; Wigzell, Hans; Svensson, Lennart

    2015-01-01

    By the use of a modified ionizer device we describe effective prevention of airborne transmitted influenza A (strain Panama 99) virus infection between animals and inactivation of virus (>97%). Active ionizer prevented 100% (4/4) of guinea pigs from infection. Moreover, the device effectively captured airborne transmitted calicivirus, rotavirus and influenza virus, with recovery rates up to 21% after 40 min in a 19 m3 room. The ionizer generates negative ions, rendering airborne particles/aerosol droplets negatively charged and electrostatically attracts them to a positively charged collector plate. Trapped viruses are then identified by reverse transcription quantitative real-time PCR. The device enables unique possibilities for rapid and simple removal of virus from air and offers possibilities to simultaneously identify and prevent airborne transmission of viruses. PMID:26101102

  8. Differential Sensitivity of Bat Cells to Infection by Enveloped RNA Viruses: Coronaviruses, Paramyxoviruses, Filoviruses, and Influenza Viruses

    PubMed Central

    Hoffmann, Markus; Müller, Marcel Alexander; Drexler, Jan Felix; Glende, Jörg; Erdt, Meike; Gützkow, Tim; Losemann, Christoph; Binger, Tabea; Deng, Hongkui; Schwegmann-Weßels, Christel; Esser, Karl-Heinz; Drosten, Christian; Herrler, Georg

    2013-01-01

    Bats (Chiroptera) host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat) or Yangochiroptera (genera Carollia and Tadarida) for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV), a porcine coronavirus, or to infection mediated by the Spike (S) protein of SARS-coronavirus (SARS-CoV) incorporated into pseudotypes based on vesicular stomatitis virus (VSV). The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3) were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus) and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed. PMID:24023659

  9. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    PubMed

    Hoffmann, Markus; Müller, Marcel Alexander; Drexler, Jan Felix; Glende, Jörg; Erdt, Meike; Gützkow, Tim; Losemann, Christoph; Binger, Tabea; Deng, Hongkui; Schwegmann-Weßels, Christel; Esser, Karl-Heinz; Drosten, Christian; Herrler, Georg

    2013-01-01

    Bats (Chiroptera) host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat) or Yangochiroptera (genera Carollia and Tadarida) for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV), a porcine coronavirus, or to infection mediated by the Spike (S) protein of SARS-coronavirus (SARS-CoV) incorporated into pseudotypes based on vesicular stomatitis virus (VSV). The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3) were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus) and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed. PMID:24023659

  10. Visualizing real-time influenza virus infection, transmission and protection in ferrets

    PubMed Central

    Karlsson, Erik A.; Meliopoulos, Victoria A.; Savage, Chandra; Livingston, Brandi; Mehle, Andrew; Schultz-Cherry, Stacey

    2015-01-01

    Influenza transmission efficiency in ferrets is vital for risk-assessment studies. However, the inability to monitor viral infection and transmission dynamics in real time only provides a glimpse into transmissibility. Here we exploit a replication-competent influenza reporter virus to investigate dynamics of infection/transmission in ferrets. Bioluminescent imaging of ferrets infected with A/California/04/2009 H1N1 virus (CA/09) encoding NanoLuc (NLuc) luciferase provides the first real-time snapshot of influenza infection/transmission. Luminescence in the respiratory tract and in less well-characterized extra-pulmonary sites is observed, and imaging identifies infections in animals that would have otherwise been missed by traditional methods. Finally, the reporter virus significantly increases the speed and sensitivity of virological and serological assays. Thus, bioluminescent imaging of influenza infections rapidly determines intra-host dissemination, inter-host transmission and viral load, revealing infection dynamics and pandemic potential of the virus. These results have important implications for antiviral drug susceptibility, vaccine efficacy, transmissibility and pathogenicity studies. PMID:25744559

  11. The TLR4-TRIF Pathway Protects against H5N1 Influenza Virus Infection

    PubMed Central

    Shinya, Kyoko; Ito, Mutsumi; Makino, Akiko; Tanaka, Motoko; Miyake, Kensuke; Eisfeld, Amie J.

    2012-01-01

    Prestimulation of the TLR4 pathway with lipopolysaccharide (LPS) protects mice from lethal infection with H5N1 influenza virus. Here, we reveal that the TLR4-TRIF pathway is required for this protective effect by using mice whose TLR4-related molecules were knocked out. Microarray analysis of primary mouse lung culture cells that were LPS pretreated and infected with an H5N1 virus indicated that TLR3 mRNA was upregulated. Primary lung culture cells of TLR3 knockout mice showed no response to LPS pretreatment against H5N1 virus infection, suggesting that TLR3 is also involved in the preventive effect of LPS. Our data suggest that the TLR4-TRIF axis has an important role in stimulating protective innate immunity against H5N1 influenza A virus infection and that TLR3 signaling is involved in this pathway. PMID:22031950

  12. Repurposed Transcriptomic Data Reveal Small Viral RNA Produced by Influenza Virus during Infection in Mice

    PubMed Central

    Koire, Amanda; Gilbert, Brian E.; Sucgang, Richard

    2016-01-01

    Influenza virus, a highly infectious ssRNA virus, replicates in the nucleus of host cells. This unusual feature brings the possibility that the virus may hijack host small noncoding RNA metabolism. Influenza small viral RNA production has been examined in vitro but has not yet been studied in an in vivo setting. We assessed small RNA species from influenza virus during mouse infection by mining publicly available mouse small RNA transcriptome data. We uncovered 26 nt reads corresponding to svRNA, a small viral RNA previously detected in vitro that regulates the transition from transcription to replication during infection, and found a strong positive correlation between svRNA production and host susceptibility to influenza virus infection. We also detected significant overrepresentation of a non-coding 23 nt sequence that we speculate may behave like a miRNA and work with influenza protein NS1 to prevent the transcription and maturation of interferon-stimulated mRNAs. PMID:27788253

  13. Influenza A Virus Alters Pneumococcal Nasal Colonization and Middle Ear Infection Independently of Phase Variation

    PubMed Central

    Wren, John T.; Blevins, Lance K.; Pang, Bing; King, Lauren B.; Perez, Antonia C.; Murrah, Kyle A.; Reimche, Jennifer L.; Alexander-Miller, Martha A.

    2014-01-01

    Streptococcus pneumoniae (pneumococcus) is both a widespread nasal colonizer and a leading cause of otitis media, one of the most common diseases of childhood. Pneumococcal phase variation influences both colonization and disease and thus has been linked to the bacteria's transition from colonizer to otopathogen. Further contributing to this transition, coinfection with influenza A virus has been strongly associated epidemiologically with the dissemination of pneumococci from the nasopharynx to the middle ear. Using a mouse infection model, we demonstrated that coinfection with influenza virus and pneumococci enhanced both colonization and inflammatory responses within the nasopharynx and middle ear chamber. Coinfection studies were also performed using pneumococcal populations enriched for opaque or transparent phase variants. As shown previously, opaque variants were less able to colonize the nasopharynx. In vitro, this phase also demonstrated diminished biofilm viability and epithelial adherence. However, coinfection with influenza virus ameliorated this colonization defect in vivo. Further, viral coinfection ultimately induced a similar magnitude of middle ear infection by both phase variants. These data indicate that despite inherent differences in colonization, the influenza A virus exacerbation of experimental middle ear infection is independent of the pneumococcal phase. These findings provide new insights into the synergistic link between pneumococcus and influenza virus in the context of otitis media. PMID:25156728

  14. Influenza A virus alters pneumococcal nasal colonization and middle ear infection independently of phase variation.

    PubMed

    Wren, John T; Blevins, Lance K; Pang, Bing; King, Lauren B; Perez, Antonia C; Murrah, Kyle A; Reimche, Jennifer L; Alexander-Miller, Martha A; Swords, W Edward

    2014-11-01

    Streptococcus pneumoniae (pneumococcus) is both a widespread nasal colonizer and a leading cause of otitis media, one of the most common diseases of childhood. Pneumococcal phase variation influences both colonization and disease and thus has been linked to the bacteria's transition from colonizer to otopathogen. Further contributing to this transition, coinfection with influenza A virus has been strongly associated epidemiologically with the dissemination of pneumococci from the nasopharynx to the middle ear. Using a mouse infection model, we demonstrated that coinfection with influenza virus and pneumococci enhanced both colonization and inflammatory responses within the nasopharynx and middle ear chamber. Coinfection studies were also performed using pneumococcal populations enriched for opaque or transparent phase variants. As shown previously, opaque variants were less able to colonize the nasopharynx. In vitro, this phase also demonstrated diminished biofilm viability and epithelial adherence. However, coinfection with influenza virus ameliorated this colonization defect in vivo. Further, viral coinfection ultimately induced a similar magnitude of middle ear infection by both phase variants. These data indicate that despite inherent differences in colonization, the influenza A virus exacerbation of experimental middle ear infection is independent of the pneumococcal phase. These findings provide new insights into the synergistic link between pneumococcus and influenza virus in the context of otitis media.

  15. Sustained live poultry market surveillance contributes to early warnings for human infection with avian influenza viruses

    PubMed Central

    Fang, Shisong; Bai, Tian; Yang, Lei; Wang, Xin; Peng, Bo; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Zhu, Wenfei; Wang, Dayan; Cheng, Jinquan; Shu, Yuelong

    2016-01-01

    Sporadic human infections with the highly pathogenic avian influenza (HPAI) A (H5N6) virus have been reported in different provinces in China since April 2014. From June 2015 to January 2016, routine live poultry market (LPM) surveillance was conducted in Shenzhen, Guangdong Province. H5N6 viruses were not detected until November 2015. The H5N6 virus-positive rate increased markedly beginning in December 2015, and viruses were detected in LPMs in all districts of the city. Coincidently, two human cases with histories of poultry exposure developed symptoms and were diagnosed as H5N6-positive in Shenzhen during late December 2015 and early January 2016. Similar viruses were identified in environmental samples collected in the LPMs and the patients. In contrast to previously reported H5N6 viruses, viruses with six internal genes derived from the H9N2 or H7N9 viruses were detected in the present study. The increased H5N6 virus-positive rate in the LPMs and the subsequent human infections demonstrated that sustained LPM surveillance for avian influenza viruses provides an early warning for human infections. Interventions, such as LPM closures, should be immediately implemented to reduce the risk of human infection with the H5N6 virus when the virus is widely detected during LPM surveillance. PMID:27485495

  16. Sustained live poultry market surveillance contributes to early warnings for human infection with avian influenza viruses.

    PubMed

    Fang, Shisong; Bai, Tian; Yang, Lei; Wang, Xin; Peng, Bo; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Zhu, Wenfei; Wang, Dayan; Cheng, Jinquan; Shu, Yuelong

    2016-01-01

    Sporadic human infections with the highly pathogenic avian influenza (HPAI) A (H5N6) virus have been reported in different provinces in China since April 2014. From June 2015 to January 2016, routine live poultry market (LPM) surveillance was conducted in Shenzhen, Guangdong Province. H5N6 viruses were not detected until November 2015. The H5N6 virus-positive rate increased markedly beginning in December 2015, and viruses were detected in LPMs in all districts of the city. Coincidently, two human cases with histories of poultry exposure developed symptoms and were diagnosed as H5N6-positive in Shenzhen during late December 2015 and early January 2016. Similar viruses were identified in environmental samples collected in the LPMs and the patients. In contrast to previously reported H5N6 viruses, viruses with six internal genes derived from the H9N2 or H7N9 viruses were detected in the present study. The increased H5N6 virus-positive rate in the LPMs and the subsequent human infections demonstrated that sustained LPM surveillance for avian influenza viruses provides an early warning for human infections. Interventions, such as LPM closures, should be immediately implemented to reduce the risk of human infection with the H5N6 virus when the virus is widely detected during LPM surveillance. PMID:27485495

  17. Influenza D virus infection in Mississippi beef cattle.

    PubMed

    Ferguson, Lucas; Eckard, Laura; Epperson, William B; Long, Li-Ping; Smith, David; Huston, Carla; Genova, Suzanne; Webby, Richard; Wan, Xiu-Feng

    2015-12-01

    A new member of the Orthomyxoviridae family, influenza D virus (IDV), was first reported in swine in the Midwest region of the United States. This study aims to extend our knowledge on the IDV epidemiology and to determine the impact of bovine production systems on virus spread. A total of 15 isolates were recovered from surveillance of bovine herds in Mississippi, and two genetic clades of viruses co-circulated in the same herd. Serologic assessment from neonatal beef cattle showed 94% seropositive, and presumed maternal antibody levels were substantially lower in animals over six months of age. Active IDV transmission was shown to occur at locations where young, weaned, and comingled calves were maintained. Serological characterization of archived sera suggested that IDV has been circulating in the Mississippi cattle populations since at least 2004. Continuous surveillance is needed to monitor the evolution and epidemiology of IDV in the bovine population.

  18. Influenza D virus infection in Mississippi beef cattle.

    PubMed

    Ferguson, Lucas; Eckard, Laura; Epperson, William B; Long, Li-Ping; Smith, David; Huston, Carla; Genova, Suzanne; Webby, Richard; Wan, Xiu-Feng

    2015-12-01

    A new member of the Orthomyxoviridae family, influenza D virus (IDV), was first reported in swine in the Midwest region of the United States. This study aims to extend our knowledge on the IDV epidemiology and to determine the impact of bovine production systems on virus spread. A total of 15 isolates were recovered from surveillance of bovine herds in Mississippi, and two genetic clades of viruses co-circulated in the same herd. Serologic assessment from neonatal beef cattle showed 94% seropositive, and presumed maternal antibody levels were substantially lower in animals over six months of age. Active IDV transmission was shown to occur at locations where young, weaned, and comingled calves were maintained. Serological characterization of archived sera suggested that IDV has been circulating in the Mississippi cattle populations since at least 2004. Continuous surveillance is needed to monitor the evolution and epidemiology of IDV in the bovine population. PMID:26386554

  19. Why is co-infection with influenza virus and bacteria so difficult to control?

    PubMed Central

    Cauley, Linda S.; Vella, Anthony T.

    2015-01-01

    Influenza viruses are genetically labile pathogens which avoid immune detection by constantly changing their coat proteins. Most human infections are caused by mildly pathogenic viruses which rarely cause life-threatening disease in healthy people, but some individuals with a weakened immune system can experience severe complications. Widespread infections with highly pathogenic strains of influenza virus are less common, but have the potential to cause enormous death tolls among healthy adults if infection rates reach pandemic proportions. Increased virulence has been attributed to a variety of factors, including enhanced susceptibility to co-infection with common strains of bacteria. The mechanisms that facilitate dual infection are a major focus of current research, as preventative measures are needed to avert future pandemics PMID:25636959

  20. Sublingual administration of bacteria-expressed influenza virus hemagglutinin 1 (HA1) induces protection against infection with 2009 pandemic H1N1 influenza virus.

    PubMed

    Shim, Byoung-Shik; Choi, Jung-Ah; Song, Ho-Hyun; Park, Sung-Moo; Cheon, In Su; Jang, Ji-Eun; Woo, Sun Je; Cho, Chung Hwan; Song, Min-Suk; Kim, Hyemi; Song, Kyung Joo; Lee, Jae Myun; Kim, Suhng Wook; Song, Dae Sub; Choi, Young Ki; Kim, Jae-Ouk; Nguyen, Huan Huu; Kim, Dong Wook; Bahk, Young Yil; Yun, Cheol-Heui; Song, Man Ki

    2013-02-01

    Influenza viruses are respiratory pathogens that continue to pose a significantly high risk of morbidity and mortality of humans worldwide. Vaccination is one of the most effective strategies for minimizing damages by influenza outbreaks. In addition, rapid development and production of efficient vaccine with convenient administration is required in case of influenza pandemic. In this study, we generated recombinant influenza virus hemagglutinin protein 1 (sHA1) of 2009 pandemic influenza virus as a vaccine candidate using a well-established bacterial expression system and administered it into mice via sublingual (s.l.) route. We found that s.l. immunization with the recombinant sHA1 plus cholera toxin (CT) induced mucosal antibodies as well as systemic antibodies including neutralizing Abs and provided complete protection against infection with pandemic influenza virus A/CA/04/09 (H1N1) in mice. Indeed, the protection efficacy was comparable with that induced by intramuscular (i.m.) immunization route utilized as general administration route of influenza vaccine. These results suggest that s.l. vaccination with the recombinant non-glycosylated HA1 protein offers an alternative strategy to control influenza outbreaks including pandemics. PMID:23456722

  1. Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles.

    PubMed

    Bimbo, Luis M; Denisova, Oxana V; Mäkilä, Ermei; Kaasalainen, Martti; De Brabander, Jef K; Hirvonen, Jouni; Salonen, Jarno; Kakkola, Laura; Kainov, Denis; Santos, Hélder A

    2013-08-27

    Influenza A viruses (IAVs) cause recurrent epidemics in humans, with serious threat of lethal worldwide pandemics. The occurrence of antiviral-resistant virus strains and the emergence of highly pathogenic influenza viruses have triggered an urgent need to develop new anti-IAV treatments. One compound found to inhibit IAV, and other virus infections, is saliphenylhalamide (SaliPhe). SaliPhe targets host vacuolar-ATPase and inhibits acidification of endosomes, a process needed for productive virus infection. The major obstacle for the further development of SaliPhe as antiviral drug has been its poor solubility. Here, we investigated the possibility to increase SaliPhe solubility by loading the compound in thermally hydrocarbonized porous silicon (THCPSi) nanoparticles. SaliPhe-loaded nanoparticles were further investigated for the ability to inhibit influenza A infection in human retinal pigment epithelium and Madin-Darby canine kidney cells, and we show that upon release from THCPSi, SaliPhe inhibited IAV infection in vitro and reduced the amount of progeny virus in IAV-infected cells. Overall, the PSi-based nanosystem exhibited increased dissolution of the investigated anti-IAV drug SaliPhe and displayed excellent in vitro stability, low cytotoxicity, and remarkable reduction of viral load in the absence of organic solvents. This proof-of-principle study indicates that PSi nanoparticles could be used for efficient delivery of antivirals to infected cells.

  2. Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles.

    PubMed

    Bimbo, Luis M; Denisova, Oxana V; Mäkilä, Ermei; Kaasalainen, Martti; De Brabander, Jef K; Hirvonen, Jouni; Salonen, Jarno; Kakkola, Laura; Kainov, Denis; Santos, Hélder A

    2013-08-27

    Influenza A viruses (IAVs) cause recurrent epidemics in humans, with serious threat of lethal worldwide pandemics. The occurrence of antiviral-resistant virus strains and the emergence of highly pathogenic influenza viruses have triggered an urgent need to develop new anti-IAV treatments. One compound found to inhibit IAV, and other virus infections, is saliphenylhalamide (SaliPhe). SaliPhe targets host vacuolar-ATPase and inhibits acidification of endosomes, a process needed for productive virus infection. The major obstacle for the further development of SaliPhe as antiviral drug has been its poor solubility. Here, we investigated the possibility to increase SaliPhe solubility by loading the compound in thermally hydrocarbonized porous silicon (THCPSi) nanoparticles. SaliPhe-loaded nanoparticles were further investigated for the ability to inhibit influenza A infection in human retinal pigment epithelium and Madin-Darby canine kidney cells, and we show that upon release from THCPSi, SaliPhe inhibited IAV infection in vitro and reduced the amount of progeny virus in IAV-infected cells. Overall, the PSi-based nanosystem exhibited increased dissolution of the investigated anti-IAV drug SaliPhe and displayed excellent in vitro stability, low cytotoxicity, and remarkable reduction of viral load in the absence of organic solvents. This proof-of-principle study indicates that PSi nanoparticles could be used for efficient delivery of antivirals to infected cells. PMID:23889734

  3. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection.

    PubMed

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-06-06

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles.

  4. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection

    PubMed Central

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-01-01

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles. PMID:27275830

  5. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection.

    PubMed

    Lee, Ji-Hye; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Lee, Dan Bi; Bae, Garam; Bae, Hae-In; Bae, Seon Young; Hong, Young-Min; Kwon, Sang-Oh; Lee, Dong-Hun; Song, Chang-Seon; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-01-01

    Influenza is a serious public health concern worldwide, as it causes significant morbidity and mortality. The emergence of drug-resistant viral strains requires new approaches for the treatment of influenza. In this study, Rubus coreanus seed (RCS) that is left over from the production of wine or juice was found to show antiviral activities against influenza type A and B viruses. Using the time-of-addition plaque assay, viral replication was almost completely abolished by simultaneous treatment with the RCS fraction of less than a 1-kDa molecular weight (RCSF1). One of the polyphenols derived from RCSF1, gallic acid (GA), identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against both influenza type A and B viruses, albeit at relatively high concentrations. RCSF1 was bound to hemagglutinin protein, inhibited hemagglutination significantly and disrupted viral particles, whereas GA was found to only disrupt the viral particles by using transmission electron microscopy. In BALB/c mice infected with influenza virus, oral administration of RCSF1 significantly improved the survival rate and reduced the viral titers in the lungs. Our results demonstrate that RCSF1 and GA show potent and broad antiviral activity against influenza A and B type viruses and are promising sources of agents that target virus particles. PMID:27275830

  6. Use of influenza A viruses expressing reporter genes to assess the frequency of double infections in vitro.

    PubMed

    Bodewes, R; Nieuwkoop, N J; Verburgh, R J; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2012-08-01

    Exchange of gene segments between mammalian and avian influenza A viruses may lead to the emergence of potential pandemic influenza viruses. Since co-infection of single cells with two viruses is a prerequisite for reassortment to take place, we assessed frequencies of double-infection in vitro using influenza A/H5N1 and A/H1N1 viruses expressing the reporter genes eGFP or mCherry. Double-infected A549 and Madin-Darby canine kidney cells were detected by confocal microscopy and flow cytometry. PMID:22535774

  7. Influenza infection in wild raccoons

    USGS Publications Warehouse

    Hall, J.S.; Bentler, K.T.; Landolt, G.; Elmore, S.A.; Minnis, R.B.; Campbell, T.A.; Barras, S.C.; Root, J.J.; Pilon, J.; Pabilonia, K.; Driscoll, C.; Slate, D.; Sullivan, H.; McLean, R.G.

    2008-01-01

    Raccoons (Procyon lotor) are common, widely distributed animals that frequently come into contact with wild waterfowl, agricultural operations, and humans. Serosurveys showed that raccoons are exposed to avian influenza virus. We found antibodies to a variety of influenza virus subtypes (H10N7, H4N6, H4N2, H3, and H1) with wide geographic variation in seroprevalence. Experimental infection studies showed that raccoons become infected with avian and human influenza A viruses, shed and transmit virus to virus-free animals, and seroconvert. Analyses of cellular receptors showed that raccoons have avian and human type receptors with a similar distribution as found in human respiratory tracts. The potential exists for co-infection of multiple subtypes of influenza virus with genetic reassortment and creation of novel strains of influenza virus. Experimental and field data indicate that raccoons may play an important role in influenza disease ecology and pose risks to agriculture and human health.

  8. Defective interfering influenza viruses and host cells: establishment and maintenance of persistent influenza virus infection in MDBK and HeLa cells.

    PubMed

    De, B K; Nayak, D P

    1980-12-01

    WSN (H0N1) influenza virus upon undiluted passages in different species of cells, namely, bovine kidney (MDBK), chicken embryo (CEF), and HeLa cells, produced a varying amount of defective interfering (DI) virus which correlated well with the ability of the species of cell to produce infectious virus. However, the nature of the influenza DI viral RNA produced from a single clonal stock was essentially identical in all three cells types, suggesting that these cells do not exert a great selective pressure in the amplification of specific DI viral RNAs either at early or late passages. DI viruses produced from one subtype (H0N1) could interfere with the replication of infectious viruses belonging to other subtypes (H1N1, H3N2). DI viral RNAs could also replicate with the helper function of other subtype viruses. The persistent infection of MDBK and HeLa cells could be initiated by coinfecting cells with both temperature-sensitive mutants (ts-) and DI influenza viruses. Persistently infected cultures cultures at early passages (up to passage 7) showed a cyclical pattern of cell lysis and virus production (crisis), whereas, at later passages (after passage 20), they produced little or no virus and were resistant to infection by homologous virus but not by heterologous virus. The majority of persistently infected cells, however, contained the complete viral genome since they expressed viral antigens and produced infectious centers. Selection of a slow-growing temperature-sensitive variant rather than the presence of DI virus or interferon appears to be critical in maintaining persistent influenza infection in these cells.

  9. Sialylated immunoglobulin G can neutralize influenza virus infection through receptor mimicry.

    PubMed

    Huang, Tao; Chen, Xueling; Zhao, Conghui; Liu, Xingmu; Zhang, Zaiping; Li, Tongfei; Sun, Ruiman; Gu, Huan; Gu, Jiang

    2016-03-29

    Influenza viruses possess a great threat to human health, but there is still no effective drug to deal with the outbreak of possible new influenza subtypes. In this study, we first fractionated sialylated immunoglobulin G (IgG), mainly Fab sialylated fraction, with sambucus nigra agglutinin affinity chromatography. We then demonstrated that sialylated IgG possessed more effective neutralizing activity against 2009 A (H1N1) subtype than that of IgG mixture, and sialosides on the Fab is crucial in this neutralization reaction as when such residues were removed with neuraminidase A digestion the blocking effect was significantly reduced. It appears that sialic acid residues attached to Fab could serve as binding moieties to receptor binding site of influenza virus. These findings indicate that sialylated IgG probably is an effective anti-influenza broad-spectrum drug utilizing its receptor mimicry to competitively inhibit the attachment of influenza viruses with sialic acid receptors on target cells. This property would be particularly useful if it can be applied to prevent newly emerged influenza virus strain infections in future epidemics.

  10. Influence of body condition on influenza a virus infection in mallard ducks: Experimental infection data

    USGS Publications Warehouse

    Arsnoe, D.M.; Ip, H.S.; Owen, J.C.

    2011-01-01

    Migrating waterfowl are implicated in the global spread of influenza A viruses (IAVs), and mallards (Anas platyrhynchos) are considered a particularly important IAV reservoir. Prevalence of IAV infection in waterfowl peaks during autumn pre-migration staging and then declines as birds reach wintering areas. Migration is energetically costly and birds often experience declines in body condition that may suppress immune function. We assessed how body condition affects susceptibility to infection, viral shedding and antibody production in wild-caught and captive-bred juvenile mallards challenged with low pathogenic avian influenza virus (LPAIV) H5N9. Wild mallards (n = 30) were separated into three experimental groups; each manipulated through food availability to a different condition level (-20%, -10%, and normal ??5% original body condition), and captive-bred mallards (n = 10) were maintained at normal condition. We found that wild mallards in normal condition were more susceptible to LPAIV infection, shed higher peak viral loads and shed viral RNA more frequently compared to birds in poor condition. Antibody production did not differ according to condition. We found that wild mallards did not differ from captive-bred mallards in viral intensity and duration of infection, but they did exhibit lower antibody titers and greater variation in viral load. Our findings suggest that reduced body condition negatively influences waterfowl host competence to LPAIV infection. This observation is contradictory to the recently proposed condition-dependent hypothesis, according to which birds in reduced condition would be more susceptible to IAV infection. The mechanisms responsible for reducing host competency among birds in poor condition remain unknown. Our research indicates body condition may influence the maintenance and spread of LPAIV by migrating waterfowl. ?? 2011 Arsnoe et al.

  11. Influence of body condition on influenza A virus infection in mallard ducks: Experimental infection data

    USGS Publications Warehouse

    Arsnoe, Dustin M.; Ip, Hon S.; Owen, Jennifer C.

    2011-01-01

    Migrating waterfowl are implicated in the global spread of influenza A viruses (IAVs), and mallards (Anas platyrhynchos) are considered a particularly important IAV reservoir. Prevalence of IAV infection in waterfowl peaks during autumn pre-migration staging and then declines as birds reach wintering areas. Migration is energetically costly and birds often experience declines in body condition that may suppress immune function. We assessed how body condition affects susceptibility to infection, viral shedding and antibody production in wild-caught and captive-bred juvenile mallards challenged with low pathogenic avian influenza virus (LPAIV) H5N9. Wild mallards (n = 30) were separated into three experimental groups; each manipulated through food availability to a different condition level (-20%, -10%, and normal ±5% original body condition), and captive-bred mallards (n = 10) were maintained at normal condition. We found that wild mallards in normal condition were more susceptible to LPAIV infection, shed higher peak viral loads and shed viral RNA more frequently compared to birds in poor condition. Antibody production did not differ according to condition. We found that wild mallards did not differ from captive-bred mallards in viral intensity and duration of infection, but they did exhibit lower antibody titers and greater variation in viral load. Our findings suggest that reduced body condition negatively influences waterfowl host competence to LPAIV infection. This observation is contradictory to the recently proposed condition-dependent hypothesis, according to which birds in reduced condition would be more susceptible to IAV infection. The mechanisms responsible for reducing host competency among birds in poor condition remain unknown. Our research indicates body condition may influence the maintenance and spread of LPAIV by migrating waterfowl.

  12. Avian influenza A (H7N9) virus infection in humans: epidemiology, evolution, and pathogenesis.

    PubMed

    Husain, Matloob

    2014-12-01

    New human influenza A virus strains regularly emerge causing seasonal epidemics and occasional pandemics. Lately, several zoonotic avian influenza A strains have been reported to directly infect humans. In early 2013, a novel avian influenza A virus (H7N9) strain was discovered in China to cause severe respiratory disease in humans. Since then, over 450 human cases of H7N9 infection have been discovered and 165 of them have died. Multiple epidemiological, phylogenetic, in vivo, and in vitro studies have been done to determine the origin and pathogenesis of novel H7N9 strain. This article reviews the literature related to the epidemiology, evolution, and pathogenesis of the H7N9 strain since its discovery in February 2013 till August 2014. The data available so far indicate that H7N9 was originated by a two-step reassortment process in birds and transmitted to humans through direct contact with live-bird markets. H7N9 is a low-pathogenic avian virus and contains several molecular signatures for adaptation in mammals. The severity of the respiratory disease caused by novel H7N9 virus in humans can be partly attributed to the age, sex, and underlying medical conditions of the patients. A universal influenza vaccine is not available, though several strain-specific H7N9 candidate vaccine viruses have been developed. Further, novel H7N9 virus is resistant to antiviral drug amantadine and some H7N9 isolates have acquired the resistance to neuraminidase-inhibitors. Therefore, constant surveillance and prompt control measures combined with novel research approaches to develop alternative and effective anti-influenza strategies are needed to overcome influenza A virus.

  13. Human influenza A(H7N9) virus infection associated with poultry farm, Northeastern China.

    PubMed

    Fan, Ming; Huang, Biao; Wang, Ao; Deng, Liquan; Wu, Donglin; Lu, Xinrong; Zhao, Qinglong; Xu, Shuang; Havers, Fiona; Wang, Yanhui; Wu, Jing; Yin, Yuan; Sun, Bingxin; Yao, Jianyi; Xiang, Nijuan

    2014-11-01

    We report on a case of human infection with influenza A(H7N9) virus in Jilin Province in northeastern China. This case was associated with a poultry farm rather than a live bird market, which may point to a new focus for public health surveillance and interventions in this evolving outbreak.

  14. Inhibition of influenza virus infection with chitosan-sialyloligosaccharides ionic complex.

    PubMed

    Cheng, Shuihong; Zhao, Huiqin; Xu, Yaozu; Yang, Yawei; Lv, Xun; Wu, Peixing; Li, Xuebing

    2014-07-17

    With the recent emergence of drug-resistant influenza viruses, effective means of preventing and treating these contagious pathogens have become imperative. The binding receptors of influenza virus are sialyloligosaccharides (SOS), which are present on the surfaces of host cells, and are therefore attractive targets for antiviral development. We report the preparation and identification of a novel influenza virus entry inhibitor, designated chitosan-SOS complex (CS complex). The CS complex was formed through noncovalent adsorption between cationic chitosan and anionic SOS, the latter derived from bovine colostrum. The preparation was accomplished in gram quantities from chitosan and bovine colostrum oligosaccharides by a one-step dialysis process. The inhibitory activity of the complex against influenza virus infection was determined by cytotoxicity inhibition assay (IC50=42 μM). This simple preparation, combined with efficient anti-infective activity and the rich natural availability of chitosan and SOS, highlights the potential of the CS complex as a safe, practical agent for influenza prevention and control. PMID:24702928

  15. Possible repurposing of seasonal influenza vaccine for prevention of Zika virus infection.

    PubMed

    Veljkovic, Veljko; Paessler, Slobodan

    2016-01-01

    The in silico analysis shows that the envelope glycoproteins E of Zika viruses (ZIKV) isolated in Asia, Africa and South and Central America encode highly conserved information determining their interacting profile and immunological properties. Previously it was shown that the same information is encoded in the primary structure of the hemagglutinin subunit 1 (HA1) from pdmH1N1 influenza A virus.  This similarity suggests possible repurposing of the seasonal influenza vaccine containing pdmH1N1 component for prevention of the ZIKV infection.

  16. Possible repurposing of seasonal influenza vaccine for prevention of Zika virus infection.

    PubMed

    Veljkovic, Veljko; Paessler, Slobodan

    2016-01-01

    The in silico analysis shows that the envelope glycoproteins E of Zika viruses (ZIKV) isolated in Asia, Africa and South and Central America encode highly conserved information determining their interacting profile and immunological properties. Previously it was shown that the same information is encoded in the primary structure of the hemagglutinin subunit 1 (HA1) from pdmH1N1 influenza A virus.  This similarity suggests possible repurposing of the seasonal influenza vaccine containing pdmH1N1 component for prevention of the ZIKV infection. PMID:27158449

  17. Preliminary Proteomic Analysis of A549 Cells Infected with Avian Influenza Virus H7N9 and Influenza A Virus H1N1

    PubMed Central

    Ding, Xiaoman; Lu, Jiahai; Yu, Ruoxi; Wang, Xin; Wang, Ting; Dong, Fangyuan; Peng, Bo; Wu, Weihua; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Cheng, Jinquan; Yu, Muhua; Fang, Shisong

    2016-01-01

    A newly emerged H7N9 influenza virus poses high risk to human beings. However, the pathogenic mechanism of the virus remains unclear. The temporal response of primary human alveolar adenocarcinoma epithelial cells (A549) infected with H7N9 influenza virus and H1N1 influenza A virus (H1N1, pdm09) were evaluated using the proteomics approaches (2D-DIGE combined with MALDI-TOF-MS/MS) at 24, 48 and 72 hours post of the infection (hpi). There were 11, 12 and 33 proteins with significant different expressions (P<0.05) at 24, 48 and 72hpi, especially F-actin-capping protein subunit alpha-1 (CAPZA1), Ornithine aminotransferase (OAT), Poly(rC)-binding protein 1 (PCBP1), Eukaryotic translation initiation factor 5A-1 (EIF5A) and Platelet-activating factor acetylhydrolaseⅠb subunit beta (PAFAH1B2) were validated by western-blot analysis. The functional analysis revealed that the differential proteins in A549 cells involved in regulating cytopathic effect. Among them, the down-regulation of CAPZA1, OAT, PCBP1, EIF5A are related to the death of cells infected by H7N9 influenza virus. This is the first time show that the down-regulation of PAFAH1B2 is related to the later clinical symptoms of patients infected by H7N9 influenza virus. These findings may improve our understanding of pathogenic mechanism of H7N9 influenza virus in proteomics. PMID:27223893

  18. Preliminary Proteomic Analysis of A549 Cells Infected with Avian Influenza Virus H7N9 and Influenza A Virus H1N1.

    PubMed

    Ding, Xiaoman; Lu, Jiahai; Yu, Ruoxi; Wang, Xin; Wang, Ting; Dong, Fangyuan; Peng, Bo; Wu, Weihua; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Cheng, Jinquan; Yu, Muhua; Fang, Shisong

    2016-01-01

    A newly emerged H7N9 influenza virus poses high risk to human beings. However, the pathogenic mechanism of the virus remains unclear. The temporal response of primary human alveolar adenocarcinoma epithelial cells (A549) infected with H7N9 influenza virus and H1N1 influenza A virus (H1N1, pdm09) were evaluated using the proteomics approaches (2D-DIGE combined with MALDI-TOF-MS/MS) at 24, 48 and 72 hours post of the infection (hpi). There were 11, 12 and 33 proteins with significant different expressions (P<0.05) at 24, 48 and 72hpi, especially F-actin-capping protein subunit alpha-1 (CAPZA1), Ornithine aminotransferase (OAT), Poly(rC)-binding protein 1 (PCBP1), Eukaryotic translation initiation factor 5A-1 (EIF5A) and Platelet-activating factor acetylhydrolaseⅠb subunit beta (PAFAH1B2) were validated by western-blot analysis. The functional analysis revealed that the differential proteins in A549 cells involved in regulating cytopathic effect. Among them, the down-regulation of CAPZA1, OAT, PCBP1, EIF5A are related to the death of cells infected by H7N9 influenza virus. This is the first time show that the down-regulation of PAFAH1B2 is related to the later clinical symptoms of patients infected by H7N9 influenza virus. These findings may improve our understanding of pathogenic mechanism of H7N9 influenza virus in proteomics. PMID:27223893

  19. Simultaneous influenza and respiratory syncytial virus infection in human respiratory tract

    NASA Astrophysics Data System (ADS)

    Pinky, Lubna Jahan Rashid; Dobrovolny, Hana

    2015-03-01

    Studies have shown that simultaneous infection of the respiratory tract with at least two viruses is not uncommon in hospitalized patients, although it is not clear whether these infections are more or less severe than single infections. We use mathematical models to study the dynamics of simultaneous influenza (flu) and respiratory syncytial virus (RSV) infection, two of the more common respiratory viruses, in an effort to understand simultaneous infections. We examine the roles of initial viral inoculum, relative starting time, and cell regeneration on the severity of the infection. We also study the effect of antiviral treatment on the course of the infection. This study shows that, unless treated with antivirals, flu always takes over the infection no matter how small the initial dose and how delayed it starts with respect to RSV.

  20. Dynamics of virus shedding and antibody responses in influenza A virus-infected feral swine.

    PubMed

    Sun, Hailiang; Cunningham, Fred L; Harris, Jillian; Xu, Yifei; Long, Li-Ping; Hanson-Dorr, Katie; Baroch, John A; Fioranelli, Paul; Lutman, Mark W; Li, Tao; Pedersen, Kerri; Schmit, Brandon S; Cooley, Jim; Lin, Xiaoxu; Jarman, Richard G; DeLiberto, Thomas J; Wan, Xiu-Feng

    2015-09-01

    Given their free-ranging habits, feral swine could serve as reservoirs or spatially dynamic 'mixing vessels' for influenza A virus (IAV). To better understand virus shedding patterns and antibody response dynamics in the context of IAV surveillance amongst feral swine, we used IAV of feral swine origin to perform infection experiments. The virus was highly infectious and transmissible in feral swine, and virus shedding patterns and antibody response dynamics were similar to those in domestic swine. In the virus-inoculated and sentinel groups, virus shedding lasted ≤ 6 and ≤ 9 days, respectively. Antibody titres in inoculated swine peaked at 1 : 840 on day 11 post-inoculation (p.i.), remained there until 21 days p.i. and dropped to < 1 : 220 at 42 days p.i. Genomic sequencing identified changes in wildtype (WT) viruses and isolates from sentinel swine, most notably an amino acid divergence in nucleoprotein position 473. Using data from cell culture as a benchmark, sensitivity and specificity of a matrix gene-based quantitative reverse transcription-PCR method using nasal swab samples for detection of IAV in feral swine were 78.9 and 78.1 %, respectively. Using data from haemagglutination inhibition assays as a benchmark, sensitivity and specificity of an ELISA for detection of IAV-specific antibody were 95.4 and 95.0 %, respectively. Serological surveillance from 2009 to 2014 showed that ∼7.58 % of feral swine in the USA were positive for IAV. Our findings confirm the susceptibility of IAV infection and the high transmission ability of IAV amongst feral swine, and also suggest the need for continued surveillance of IAVs in feral swine populations. PMID:26297148

  1. Dynamics of virus shedding and antibody responses in influenza A virus-infected feral swine

    PubMed Central

    Sun, Hailiang; Cunningham, Fred L.; Harris, Jillian; Xu, Yifei; Long, Li-Ping; Hanson-Dorr, Katie; Baroch, John A.; Fioranelli, Paul; Lutman, Mark W.; Li, Tao; Pedersen, Kerri; Schmit, Brandon S.; Cooley, Jim; Lin, Xiaoxu; Jarman, Richard G.; DeLiberto, Thomas J.

    2015-01-01

    Given their free-ranging habits, feral swine could serve as reservoirs or spatially dynamic ‘mixing vessels’ for influenza A virus (IAV). To better understand virus shedding patterns and antibody response dynamics in the context of IAV surveillance amongst feral swine, we used IAV of feral swine origin to perform infection experiments. The virus was highly infectious and transmissible in feral swine, and virus shedding patterns and antibody response dynamics were similar to those in domestic swine. In the virus-inoculated and sentinel groups, virus shedding lasted ≤ 6 and ≤ 9 days, respectively. Antibody titres in inoculated swine peaked at 1 : 840 on day 11 post-inoculation (p.i.), remained there until 21 days p.i. and dropped to < 1 : 220 at 42 days p.i. Genomic sequencing identified changes in wildtype (WT) viruses and isolates from sentinel swine, most notably an amino acid divergence in nucleoprotein position 473. Using data from cell culture as a benchmark, sensitivity and specificity of a matrix gene-based quantitative reverse transcription-PCR method using nasal swab samples for detection of IAV in feral swine were 78.9 and 78.1 %, respectively. Using data from haemagglutination inhibition assays as a benchmark, sensitivity and specificity of an ELISA for detection of IAV-specific antibody were 95.4 and 95.0 %, respectively. Serological surveillance from 2009 to 2014 showed that ∼7.58 % of feral swine in the USA were positive for IAV. Our findings confirm the susceptibility of IAV infection and the high transmission ability of IAV amongst feral swine, and also suggest the need for continued surveillance of IAVs in feral swine populations. PMID:26297148

  2. Detection of airborne influenza a virus in experimentally infected pigs with maternally derived antibodies.

    PubMed

    Corzo, C A; Allerson, M; Gramer, M; Morrison, R B; Torremorell, M

    2014-02-01

    This study assessed whether recently weaned piglets with maternally derived antibodies were able to generate infectious influenza aerosols. Three groups of piglets were assembled based on the vaccination status of the dam. Sows were either non-vaccinated (CTRL) or vaccinated with the same (VAC-HOM) strain or a different (VAC-HET) strain to the one used for challenge. Piglets acquired the maternally derived antibodies by directly suckling colostrum from their respective dams. At weaning, pigs were challenged with influenza virus by direct contact with an infected pig (seeder pig) and clinical signs evaluated. Air samples, collected using a liquid cyclonic air collector, and individual nasal swabs were collected daily for 10 days from each group and tested by matrix real-time reverse transcriptase polymerase chain reaction (RRT-PCR) assay. Virus isolation and titration were attempted for air samples on Madin-Darby canine kidney cells. All individual pigs from both VAC-HET and CTRL groups tested positive during the study but only one pig in the VAC-HOM group was positive by nasal swab RRT-PCR. Influenza virus could not be detected or isolated from air samples from the VAC-HOM group. Influenza A virus was isolated from 3.2% and 6.4% air samples from both the VAC-HET and CTRL groups, respectively. Positive RRT-PCR air samples were only detected in VAC-HET and CTRL groups on day 7 post-exposure. Overall, this study provides evidence that recently weaned pigs with maternally derived immunity without obvious clinical signs of influenza infection can generate influenza infectious aerosols which is relevant to the transmission and the ecology of influenza virus in pigs.

  3. Detection of airborne influenza a virus in experimentally infected pigs with maternally derived antibodies.

    PubMed

    Corzo, C A; Allerson, M; Gramer, M; Morrison, R B; Torremorell, M

    2014-02-01

    This study assessed whether recently weaned piglets with maternally derived antibodies were able to generate infectious influenza aerosols. Three groups of piglets were assembled based on the vaccination status of the dam. Sows were either non-vaccinated (CTRL) or vaccinated with the same (VAC-HOM) strain or a different (VAC-HET) strain to the one used for challenge. Piglets acquired the maternally derived antibodies by directly suckling colostrum from their respective dams. At weaning, pigs were challenged with influenza virus by direct contact with an infected pig (seeder pig) and clinical signs evaluated. Air samples, collected using a liquid cyclonic air collector, and individual nasal swabs were collected daily for 10 days from each group and tested by matrix real-time reverse transcriptase polymerase chain reaction (RRT-PCR) assay. Virus isolation and titration were attempted for air samples on Madin-Darby canine kidney cells. All individual pigs from both VAC-HET and CTRL groups tested positive during the study but only one pig in the VAC-HOM group was positive by nasal swab RRT-PCR. Influenza virus could not be detected or isolated from air samples from the VAC-HOM group. Influenza A virus was isolated from 3.2% and 6.4% air samples from both the VAC-HET and CTRL groups, respectively. Positive RRT-PCR air samples were only detected in VAC-HET and CTRL groups on day 7 post-exposure. Overall, this study provides evidence that recently weaned pigs with maternally derived immunity without obvious clinical signs of influenza infection can generate influenza infectious aerosols which is relevant to the transmission and the ecology of influenza virus in pigs. PMID:22827737

  4. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    SciTech Connect

    Pan, Yang; Sasaki, Tadahiro; Du, Anariwa; and others

    2014-07-18

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.

  5. Subclinical Infection with Avian Influenza A H5N1 Virus in Cats

    PubMed Central

    Weikel, Joachim; Möstl, Karin; Revilla-Fernández, Sandra; Wodak, Eveline; Bagó, Zoltan; Vanek, Elisabeth; Benetka, Viviane; Hess, Michael; Thalhammer, Johann G.

    2007-01-01

    Avian influenza A virus subtype H5N1 was transmitted to domestic cats by close contact with infected birds. Virus-specific nucleic acids were detected in pharyngeal swabs from 3 of 40 randomly sampled cats from a group of 194 animals (day 8 after contact with an infected swan). All cats were transferred to a quarantine station and monitored for clinical signs, virus shedding, and antibody production until day 50. Despite unfamiliar handling, social distress and the presence of other viral and nonviral pathogens that caused illness and poor health and compromised the immune systems, none of the cats developed clinical signs of influenza. There was no evidence of horizontal transmission to other cats because only 2 cats developed antibodies against H5N1 virus. PMID:17479886

  6. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenzaviruses.

    PubMed

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenzaviruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  7. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenzaviruses.

    PubMed

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenzaviruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population. PMID:26104333

  8. Influenza Virus-Associated Fatal Acute Necrotizing Encephalopathy: Role of Nonpermissive Viral Infection?

    PubMed Central

    Mungaomklang, Anek; Chomcheoy, Jiraruj; Wacharapluesadee, Supaporn; Joyjinda, Yutthana; Jittmittraphap, Akanitt; Rodpan, Apaporn; Ghai, Siriporn; Saraya, Abhinbhen; Hemachudha, Thiravat

    2016-01-01

    In 2014, two unusual peaks of H1N1 influenza outbreak occurred in Nakhon Ratchasima Province, in Thailand. Among 2,406 cases, one of the 22 deaths in the province included a 6-year-old boy, who initially presented with acute necrotizing encephalopathy. On the other hand, his sibling was mildly affected by the same influenza virus strain, confirmed by whole-genome sequencing, with one silent mutation. Absence of acute necrotizing encephalopathy and other neurological illnesses in the family and the whole province, with near identical whole viral genomic sequences from the two siblings, and an absence of concomitant severe lung infection (cytokine storm) at onset suggest nonpermissive infection as an alternative pathogenetic mechanism of influenza virus. PMID:27812294

  9. Protection Against H7 Subtype Influenza Virus Infection in Mice by Passive Transfer of Neutralizing Monoclonal Antibody.

    PubMed

    Zhang, Zhuo; Liu, Ming; Zheng, Shimin

    2015-10-01

    H7 subtype influenza viruses pose serious threats to both the poultry industry and public health. Recent human infections of avian H7N9 influenza viruses with substantial morbidity and mortality have raised concerns about this virus becoming a potential pandemic pathogen. Neutralizing antibodies have been proven to be highly effective in blocking influenza virus infections. In this study, in order to develop an antibody-based immunoprophylaxis against H7 subtype influenza virus, we first generated a neutralizing monoclonal antibody (MAb) by using a pseudotyped lentiviral vector carrying the hemagglutinin protein of H7 subtype influenza virus. In vitro studies demonstrated that this neutralizing MAb completely inhibited the infection of an H7 subtype influenza virus to cells. The protective efficacy of this MAb was then further tested in a mouse model. It was shown that passive immunization of this MAb protected mice from local virus challenge. Results of the current study lay a foundation for the development of neutralizing MAb-mediated prophylactic strategies to combat human H7 influenza virus infections. PMID:26492625

  10. Targeting the host or the virus: current and novel concepts for antiviral approaches against influenza virus infection.

    PubMed

    Lee, Suki Man-Yan; Yen, Hui-Ling

    2012-12-01

    Influenza epidemics and pandemics are constant threats to human health. The application of antiviral drugs provides an immediate and direct control of influenza virus infection. At present, the major strategy for managing patients with influenza is through targeting conserved viral proteins critical for viral replication. Two classes of conventional antiviral drugs, the M2 ion channel blockers and the neuraminidase inhibitors, are frequently used. In recent years, increasing levels of resistance to both drug classes has become a major public health concern, highlighting the urgent need for the development of alternative treatments. Novel classes of antiviral compounds or biomolecules targeting viral replication mechanism are under development, using approaches including high-throughput small-molecule screening platforms and structure-based designs. In response to influenza virus infection, host cellular mechanisms are triggered to defend against the invaders. At the same time, viruses as obligate intracellular pathogens have evolved to exploit cellular responses in support of their efficient replication, including antagonizing the host type I interferon response as well as activation of specific cellular pathways at different stages of the replication cycle. Numerous studies have highlighted the possibility of targeting virus-host interactions and host cellular mechanisms to develop new treatment regimens. This review aims to give an overview of current and novel concepts targeting the virus and the host for managing influenza.

  11. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock.

    PubMed

    Edgar, Rachel S; Stangherlin, Alessandra; Nagy, Andras D; Nicoll, Michael P; Efstathiou, Stacey; O'Neill, John S; Reddy, Akhilesh B

    2016-09-01

    Viruses are intracellular pathogens that hijack host cell machinery and resources to replicate. Rather than being constant, host physiology is rhythmic, undergoing circadian (∼24 h) oscillations in many virus-relevant pathways, but whether daily rhythms impact on viral replication is unknown. We find that the time of day of host infection regulates virus progression in live mice and individual cells. Furthermore, we demonstrate that herpes and influenza A virus infections are enhanced when host circadian rhythms are abolished by disrupting the key clock gene transcription factor Bmal1. Intracellular trafficking, biosynthetic processes, protein synthesis, and chromatin assembly all contribute to circadian regulation of virus infection. Moreover, herpesviruses differentially target components of the molecular circadian clockwork. Our work demonstrates that viruses exploit the clockwork for their own gain and that the clock represents a novel target for modulating viral replication that extends beyond any single family of these ubiquitous pathogens.

  12. Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine

    PubMed Central

    Solórzano, Alicia; Foni, Emanuela; Córdoba, Lorena; Baratelli, Massimiliano; Razzuoli, Elisabetta; Bilato, Dania; Martín del Burgo, María Ángeles; Perlin, David S.; Martínez, Jorge; Martínez-Orellana, Pamela; Fraile, Lorenzo; Chiapponi, Chiara; Amadori, Massimo; del Real, Gustavo

    2015-01-01

    ABSTRACT Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. IMPORTANCE Although natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation

  13. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  14. Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons.

    PubMed

    Deriu, Elisa; Boxx, Gayle M; He, Xuesong; Pan, Calvin; Benavidez, Sammy David; Cen, Lujia; Rozengurt, Nora; Shi, Wenyuan; Cheng, Genhong

    2016-05-01

    Human influenza viruses replicate almost exclusively in the respiratory tract, yet infected individuals may also develop gastrointestinal symptoms, such as vomiting and diarrhea. However, the molecular mechanisms remain incompletely defined. Using an influenza mouse model, we found that influenza pulmonary infection can significantly alter the intestinal microbiota profile through a mechanism dependent on type I interferons (IFN-Is). Notably, influenza-induced IFN-Is produced in the lungs promote the depletion of obligate anaerobic bacteria and the enrichment of Proteobacteria in the gut, leading to a "dysbiotic" microenvironment. Additionally, we provide evidence that IFN-Is induced in the lungs during influenza pulmonary infection inhibit the antimicrobial and inflammatory responses in the gut during Salmonella-induced colitis, further enhancing Salmonella intestinal colonization and systemic dissemination. Thus, our studies demonstrate a systemic role for IFN-Is in regulating the host immune response in the gut during Salmonella-induced colitis and in altering the intestinal microbial balance after influenza infection. PMID:27149619

  15. CCR5 deficiency predisposes to fatal outcome in influenza virus infection.

    PubMed

    Falcon, A; Cuevas, M T; Rodriguez-Frandsen, A; Reyes, N; Pozo, F; Moreno, S; Ledesma, J; Martínez-Alarcón, J; Nieto, A; Casas, I

    2015-08-01

    Influenza epidemics affect all age groups, although children, the elderly and those with underlying medical conditions are the most severely affected. Whereas co-morbidities are present in 50% of fatal cases, 25-50% of deaths are in apparently healthy individuals. This suggests underlying genetic determinants that govern infection severity. Although some viral factors that contribute to influenza disease are known, the role of host genetic factors remains undetermined. Data for small cohorts of influenza-infected patients are contradictory regarding the potential role of chemokine receptor 5 deficiency (CCR5-Δ32 mutation, a 32 bp deletion in the CCR5 gene) in the outcome of influenza virus infection. We tested 171 respiratory samples from influenza patients (2009 pandemic) for CCR5-Δ32 and evaluated its correlation with patient mortality. CCR5-Δ32 patients (17.4%) showed a higher mortality rate than WT individuals (4.7%; P = 0.021), which indicates that CCR5-Δ32 patients are at higher risk than the normal population of a fatal outcome in influenza infection.

  16. Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons

    PubMed Central

    Deriu, Elisa; Boxx, Gayle M.; He, Xuesong; Pan, Calvin; Benavidez, Sammy David; Cen, Lujia; Rozengurt, Nora; Shi, Wenyuan; Cheng, Genhong

    2016-01-01

    Human influenza viruses replicate almost exclusively in the respiratory tract, yet infected individuals may also develop gastrointestinal symptoms, such as vomiting and diarrhea. However, the molecular mechanisms remain incompletely defined. Using an influenza mouse model, we found that influenza pulmonary infection can significantly alter the intestinal microbiota profile through a mechanism dependent on type I interferons (IFN-Is). Notably, influenza-induced IFN-Is produced in the lungs promote the depletion of obligate anaerobic bacteria and the enrichment of Proteobacteria in the gut, leading to a “dysbiotic” microenvironment. Additionally, we provide evidence that IFN-Is induced in the lungs during influenza pulmonary infection inhibit the antimicrobial and inflammatory responses in the gut during Salmonella-induced colitis, further enhancing Salmonella intestinal colonization and systemic dissemination. Thus, our studies demonstrate a systemic role for IFN-Is in regulating the host immune response in the gut during Salmonella-induced colitis and in altering the intestinal microbial balance after influenza infection. PMID:27149619

  17. Protection from Severe Influenza Virus Infections in Mice Carrying the Mx1 Influenza Virus Resistance Gene Strongly Depends on Genetic Background

    PubMed Central

    Shin, Dai-Lun; Hatesuer, Bastian; Bergmann, Silke; Nedelko, Tatiana

    2015-01-01

    ABSTRACT Influenza virus infections represent a serious threat to human health. Both extrinsic and intrinsic factors determine the severity of influenza. The MX dynamin-like GTPase 1 (Mx1) gene has been shown to confer strong resistance to influenza A virus infections in mice. Most laboratory mouse strains, including C57BL/6J, carry nonsense or deletion mutations in Mx1 and thus a nonfunctional allele, whereas wild-derived mouse strains carry a wild-type Mx1 allele. Congenic C57BL/6J (B6-Mx1r/r) mice expressing a wild-type allele from the A2G mouse strain are highly resistant to influenza A virus infections, to both mono- and polybasic subtypes. Furthermore, in genetic mapping studies, Mx1 was identified as the major locus of resistance to influenza virus infections. Here, we investigated whether the Mx1 protective function is influenced by the genetic background. For this, we generated a congenic mouse strain carrying the A2G wild-type Mx1 resistance allele on a DBA/2J background (D2-Mx1r/r). Most remarkably, congenic D2-Mx1r/r mice expressing a functional Mx1 wild-type allele are still highly susceptible to H1N1 virus. However, pretreatment of D2-Mx1r/r mice with alpha interferon protected them from lethal infections. Our results showed, for the first time, that the presence of an Mx1 wild-type allele from A2G as such does not fully protect mice from lethal influenza A virus infections. These observations are also highly relevant for susceptibility to influenza virus infections in humans. IMPORTANCE Influenza A virus represents a major health threat to humans. Seasonal influenza epidemics cause high economic loss, morbidity, and deaths each year. Genetic factors of the host strongly influence susceptibility and resistance to virus infections. The Mx1 (MX dynamin-like GTPase 1) gene has been described as a major resistance gene in mice and humans. Most inbred laboratory mouse strains are deficient in Mx1, but congenic B6-Mx1r/r mice that carry the wild-type Mx1

  18. Serological evidence for avian H9N2 influenza virus infections among Romanian agriculture workers.

    PubMed

    Coman, Alexandru; Maftei, Daniel N; Krueger, Whitney S; Heil, Gary L; Friary, John A; Chereches, Razvan M; Sirlincan, Emanuela; Bria, Paul; Dragnea, Claudiu; Kasler, Iosif; Gray, Gregory C

    2013-12-01

    In recent years, wild birds have introduced multiple highly pathogenic avian influenza (HPAI) H5N1 virus infections in Romanian poultry. In 2005 HPAI infections were widespread among domestic poultry and anecdotal reports suggested domestic pigs may also have been exposed. We sought to examine evidence for zoonotic influenza infections among Romanian agriculture workers. Between 2009 and 2010, 363 adult participants were enrolled in a cross-sectional, seroepidemiological study. Confined animal feeding operation (CAFO) swine workers in Tulcea and small, traditional backyard farmers in Cluj-Napoca were enrolled, as well as a non-animal exposed control group from Cluj-Napoca. Enrollment sera were examined for serological evidence of previous infection with 9 avian and 3 human influenza virus strains. Serologic assays showed no evidence of previous infection with 7 low pathogenic avian influenza viruses or with HPAI H5N1. However, 33 participants (9.1%) had elevated microneutralization antibody titers against avian-like A/Hong Kong/1073/1999(H9N2), 5 with titers ≥ 1:80 whom all reported exposure to poultry. Moderate poultry exposure was significantly associated with elevated titers after controlling for the subjects' age (adjusted OR = 3.6; 95% CI, 1.1-12.1). There was no evidence that previous infection with human H3N2 or H2N2 viruses were confounding the H9N2 seroreactivity. These data suggest that H9N2 virus may have circulated in Romanian poultry and occasionally infected man. PMID:23999337

  19. Impaired Wound Healing Predisposes Obese Mice to Severe Influenza Virus Infection

    PubMed Central

    O’Brien, Kevin B.; Vogel, Peter; Duan, Susu; Govorkova, Elena A.; Webby, Richard J.; McCullers, Jonathan A.

    2012-01-01

    (See the editorial commentary by Beck, on pages 172–3, and the article by Kim et al, on pages 244–51.) For the first time, obesity appeared as a risk factor for developing severe 2009 pandemic influenza infection. Given the increase in obesity, there is a need to understand the mechanisms underlying poor outcomes in this population. In these studies, we examined the severity of pandemic influenza virus in obese mice and evaluated antiviral effectiveness. We found that genetically and diet-induced obese mice challenged with either 2009 influenza A virus subtype H1N1 or 1968 subtype H3N2 strains were more likely to have increased mortality and lung pathology associated with impaired wound repair and subsequent pulmonary edema. Antiviral treatment with oseltamivir enhanced survival of obese mice. Overall, these studies demonstrate that impaired wound lung repair in the lungs of obese animals may result in severe influenza virus infection. Alternative approaches to prevention and control of influenza may be needed in the setting of obesity. PMID:22147799

  20. Seroepidemiological Evidence of Subtype H3N8 Influenza Virus Infection among Pet Dogs in China.

    PubMed

    Zhou, Pei; Huang, San; Zeng, Weijie; Zhang, Xin; Wang, Lifang; Fu, Xinliang; Li, Shoujun

    2016-01-01

    The H3N8 virus and the H3N2 virus are the main subtypes of canine influenza virus (CIV). H3N8 CIV mainly circulates in America, and H3N2 CIV mainly circulates in Asia. However, there was an outbreak of the Asian H3N2 virus in the United States (US) in 2015. Thus, it is important to evaluate the presence of subtype H3N8 virus in dogs in China. From May 2015 to November 2015, 600 sera from pet dogs were collected from Guangzhou, Shanghai, Beijing and Shenzhen for hemagglutination inhibition (HI) assays and microneutralization (MN) assays. Fifty-two (8.66%) of the 600 sera were positive for the subtype H3N2 virus, which matched the previous reports. Five (0.83%) of 600 sera were positive for the subtype H3N8 virus (H3N8 EIV or H3N8 AIV or H3N8 CIV), which is the first report of subtype H3N8 virus infection among dogs in China and remind us to play more attention to this subtype virus. Therefore, further serological and virological surveillance of influenza virus infection among dogs in China is imperative. PMID:27414031

  1. Seroepidemiological Evidence of Subtype H3N8 Influenza Virus Infection among Pet Dogs in China

    PubMed Central

    Zhou, Pei; Huang, San; Zeng, Weijie; Zhang, Xin; Wang, Lifang; Fu, Xinliang; Li, Shoujun

    2016-01-01

    The H3N8 virus and the H3N2 virus are the main subtypes of canine influenza virus (CIV). H3N8 CIV mainly circulates in America, and H3N2 CIV mainly circulates in Asia. However, there was an outbreak of the Asian H3N2 virus in the United States (US) in 2015. Thus, it is important to evaluate the presence of subtype H3N8 virus in dogs in China. From May 2015 to November 2015, 600 sera from pet dogs were collected from Guangzhou, Shanghai, Beijing and Shenzhen for hemagglutination inhibition (HI) assays and microneutralization (MN) assays. Fifty-two (8.66%) of the 600 sera were positive for the subtype H3N2 virus, which matched the previous reports. Five (0.83%) of 600 sera were positive for the subtype H3N8 virus (H3N8 EIV or H3N8 AIV or H3N8 CIV), which is the first report of subtype H3N8 virus infection among dogs in China and remind us to play more attention to this subtype virus. Therefore, further serological and virological surveillance of influenza virus infection among dogs in China is imperative. PMID:27414031

  2. [Influenza virus].

    PubMed

    Juozapaitis, Mindaugas; Antoniukas, Linas

    2007-01-01

    Every year, especially during the cold season, many people catch an acute respiratory disease, namely flu. It is easy to catch this disease; therefore, it spreads very rapidly and often becomes an epidemic or a global pandemic. Airway inflammation and other body ailments, which form in a very short period, torment the patient several weeks. After that, the symptoms of the disease usually disappear as quickly as they emerged. The great epidemics of flu have rather unique characteristics; therefore, it is possible to identify descriptions of such epidemics in historic sources. Already in the 4th century bc, Hippocrates himself wrote about one of them. It is known now that flu epidemics emerge rather frequently, but there are no regular intervals between those events. The epidemics can differ in their consequences, but usually they cause an increased mortality of elderly people. The great flu epidemics of the last century took millions of human lives. In 1918-19, during "The Spanish" pandemic of flu, there were around 40-50 millions of deaths all over the world; "Pandemic of Asia" in 1957 took up to one million lives, etc. Influenza virus can cause various disorders of the respiratory system: from mild inflammations of upper airways to acute pneumonia that finally results in the patient's death. Scientist Richard E. Shope, who investigated swine flu in 1920, had a suspicion that the cause of this disease might be a virus. Already in 1933, scientists from the National Institute for Medical Research in London - Wilson Smith, Sir Christopher Andrewes, and Sir Patrick Laidlaw - for the first time isolated the virus, which caused human flu. Then scientific community started the exhaustive research of influenza virus, and the great interest in this virus and its unique features is still active even today.

  3. Review: influenza virus in pigs.

    PubMed

    Crisci, Elisa; Mussá, Tufária; Fraile, Lorenzo; Montoya, Maria

    2013-10-01

    Influenza virus disease still remains one of the major threats to human health, involving a wide range of animal species and pigs play an important role in influenza ecology. Pigs were labeled as "mixing vessels" since they are susceptible to infection with avian, human and swine influenza viruses and genetic reassortment between these viruses can occur. After the H1N1 influenza pandemic of 2009 with a swine origin virus, the most recent research in "influenzology" is directed at improving knowledge of porcine influenza virus infection. This tendency is probably due to the fact that domestic pigs are closely related to humans and represent an excellent animal model to study various microbial infectious diseases. In spite of the role of the pig in influenza virus ecology, swine immune responses against influenza viruses are not fully understood. Considering these premises, the aim of this review is to focus on the in vitro studies performed with porcine cells and influenza virus and on the immune responses of pigs against human, avian and swine influenza viruses in vivo. The increased acceptance of pigs as suitable and valuable models in the scientific community may stimulate the development of new tools to assess porcine immune responses, paving the way for their consideration as the future "gold standard" large-animal model in immunology.

  4. Experimental Infection of Chickens with Intercontinental Reassortant H9N2 Influenza Viruses from Wild Birds.

    PubMed

    Lee, Dong-Hun; Kwon, Jung-Hoon; Park, Jae-Keun; Yuk, Seong-Su; Tseren-Ochir, Erdene-Ochir; Noh, Jin-Yong; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-06-01

    The H9N2 subtype of low pathogenic avian influenza (LPAI) virus is the most prevalent LPAI in domestic poultry. We previously reported the natural reassortant H9N2 viruses between North American and Eurasian lineages isolated from wild birds in Korea. These viruses were identified in China and Alaska, providing evidence of intercontinental dispersal. In this study, we evaluated the infectivity, transmissibility, and pathogenic potential of these H9N2 viruses and Eurasian H9N2 virus identified from wild birds using specific-pathogen-free chickens. Three-week-old chickens were infected intranasally. All of these reassortant H9N2 viruses could not be replicated and transmitted in chickens. On the other hand, three out of eight chickens inoculated with the Eurasian H9N2 virus shed detectable levels of virus and showed seroconversion but did not show contact transmission of the virus. Although all reassortant H9N2 viruses could not be replicated and transmitted in chickens, and although there are no reports on reassortant H9N2 virus infection in poultry farms until now, monitoring of reassortant H9N2 viruses should be continued to prepare for the advent and evolution of these viruses. PMID:27309293

  5. Experimental Infection of Chickens with Intercontinental Reassortant H9N2 Influenza Viruses from Wild Birds.

    PubMed

    Lee, Dong-Hun; Kwon, Jung-Hoon; Park, Jae-Keun; Yuk, Seong-Su; Tseren-Ochir, Erdene-Ochir; Noh, Jin-Yong; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-06-01

    The H9N2 subtype of low pathogenic avian influenza (LPAI) virus is the most prevalent LPAI in domestic poultry. We previously reported the natural reassortant H9N2 viruses between North American and Eurasian lineages isolated from wild birds in Korea. These viruses were identified in China and Alaska, providing evidence of intercontinental dispersal. In this study, we evaluated the infectivity, transmissibility, and pathogenic potential of these H9N2 viruses and Eurasian H9N2 virus identified from wild birds using specific-pathogen-free chickens. Three-week-old chickens were infected intranasally. All of these reassortant H9N2 viruses could not be replicated and transmitted in chickens. On the other hand, three out of eight chickens inoculated with the Eurasian H9N2 virus shed detectable levels of virus and showed seroconversion but did not show contact transmission of the virus. Although all reassortant H9N2 viruses could not be replicated and transmitted in chickens, and although there are no reports on reassortant H9N2 virus infection in poultry farms until now, monitoring of reassortant H9N2 viruses should be continued to prepare for the advent and evolution of these viruses.

  6. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known about the interaction between these two viruses when simultaneously co-infecting the same host, especially in areas of the world where both viruses are...

  7. Zoonotic infections with avian influenza A viruses and vaccine preparedness: a game of "mix and match"

    PubMed Central

    2014-01-01

    Various direct avian-to-human transmissions of influenza A virus subtypes upon exposure to infected poultry have been previously observed in the past decades. Although some of these strains caused lethal infections, the lack of sustained person-to-person transmission has been the major factor that prevented these viruses from causing new pandemics. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) yet again breached the animal-human host species barrier in Asia. Notably, roughly 20% of the A/H7N9-infected patients succumbed to the zoonotic infection whereas two of three A/H10N8 human infections were also lethal. Thus, these events revived the concerns of potential pandemic threats by AIVs in the horizon. This article reviews the various human incursions with AIV variants and provides insight on how continued circulation of these viruses poses perpetual challenge to global public health. As the world anticipates for the next human pandemic, constant vigilance for newly emerging viruses in nature is highly encouraged. With the various numbers of AIVs demonstrating their capacity to breach the animal-human host interface and apparent limitations of current antivirals, there is a need to broaden the selection of pre-pandemic vaccine candidate viruses and development of novel alternative therapeutic strategies. PMID:25003087

  8. Review on the impact of pregnancy and obesity on influenza virus infection

    PubMed Central

    Karlsson, Erik A.; Marcelin, Glendie; Webby, Richard J.; Schultz‐Cherry, Stacey

    2012-01-01

    Please cite this paper as: Karlsson et al. (2012) Review on the impact of pregnancy and obesity on influenza virus infection. Influenza and Other Respiratory Viruses 6(6), 449–460. A myriad of risk factors have been linked to an increase in the severity of the pandemic H1N1 2009 influenza A virus [A(H1N1)pdm09] including pregnancy and obesity where death rates can be elevated as compared to the general population. The goal of this review is to provide an overview of the influence of pregnancy and obesity on the reported cases of A(H1N1)pdm09 virus infection and of how the concurrent presence of these factors may have an exacerbating effect on infection outcome. Also, the hypothesized immunologic mechanisms that contribute to A(H1N1)pdm09 virus severity during pregnant or obese states are outlined. Identifying the mechanisms underlying the increased disease severity in these populations may result in improved therapeutic approaches and future pandemic preparedness. PMID:22335790

  9. Influenza A Virus Infection in Pigs Attracts Multifunctional and Cross-Reactive T Cells to the Lung

    PubMed Central

    Talker, Stephanie C.; Stadler, Maria; Koinig, Hanna C.; Mair, Kerstin H.; Rodríguez-Gómez, Irene M.; Graage, Robert; Zell, Roland; Dürrwald, Ralf; Starick, Elke; Harder, Timm; Weissenböck, Herbert; Lamp, Benjamin; Hammer, Sabine E.; Ladinig, Andrea; Saalmüller, Armin

    2016-01-01

    ABSTRACT Pigs are natural hosts for influenza A viruses and play a critical role in influenza epidemiology. However, little is known about their influenza-evoked T-cell response. We performed a thorough analysis of both the local and systemic T-cell response in influenza virus-infected pigs, addressing kinetics and phenotype as well as multifunctionality (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]) and cross-reactivity. A total of 31 pigs were intratracheally infected with an H1N2 swine influenza A virus (FLUAVsw) and consecutively euthanized. Lungs, tracheobronchial lymph nodes, and blood were sampled during the first 15 days postinfection (p.i.) and at 6 weeks p.i. Ex vivo flow cytometry of lung lymphocytes revealed an increase in proliferating (Ki-67+) CD8+ T cells with an early effector phenotype (perforin+ CD27+) at day 6 p.i. Low frequencies of influenza virus-specific IFN-γ-producing CD4+ and CD8+ T cells could be detected in the lung as early as 4 days p.i. On consecutive days, influenza virus-specific CD4+ and CD8+ T cells produced mainly IFN-γ and/or TNF-α, reaching peak frequencies around day 9 p.i., which were up to 30-fold higher in the lung than in tracheobronchial lymph nodes or blood. At 6 weeks p.i., CD4+ and CD8+ memory T cells had accumulated in lung tissue. These cells showed diverse cytokine profiles and in vitro reactivity against heterologous influenza virus strains, all of which supports their potential to combat heterologous influenza virus infections in pigs. IMPORTANCE Pigs not only are a suitable large-animal model for human influenza virus infection and vaccine development but also play a central role in the emergence of new pandemic strains. Although promising candidate universal vaccines are tested in pigs and local T cells are the major correlate of heterologous control, detailed and targeted analyses of T-cell responses at the site of infection are scarce. With the present study, we

  10. LGP2 Downregulates Interferon Production during Infection with Seasonal Human Influenza A Viruses That Activate Interferon Regulatory Factor 3

    PubMed Central

    Malur, Meghana; Gale, Michael

    2012-01-01

    LGP2, a member of the RIG-I-like receptor family, lacks the amino-terminal caspase activation recruitment domains (CARDs) required for initiating the activation of interferon regulatory factor 3 (IRF3) and interferon (IFN) transcription. The role of LGP2 in virus infection is controversial, and the only LGP2 experiments previously carried out with mammalian influenza A viruses employed an attenuated, mouse-adapted H1N1 A/PR/8/34 (PR8) virus that does not encode the NS1 protein. Here we determine whether LGP2 has a role during infection with wild-type, nonattenuated influenza A viruses that have circulated in the human population, specifically two types of seasonal influenza A viruses: (i) H3N2 and H1N1 viruses that activate IRF3 and IFN transcription and (ii) recent H1N1 viruses that block these two activations. In human cells infected with an H3N2 virus that activates IRF3, overexpression of LGP2 or its repressor domain decreased STAT1 activation and IFN-β transcription approximately 10-fold. Overexpression of LGP2 also caused a 10-fold decrease of STAT1 activation during infection with other seasonal influenza A viruses that activate IRF3. Using LGP2+/+ and LGP2−/− mouse cells, we show that endogenous LGP2 decreased IFN production during H3N2 virus infection 3- to 4-fold. In contrast, in both mouse and human cells infected with H1N1 viruses that do not activate IRF3, LGP2 had no detectable role. These results demonstrate that LGP2 downregulates IFN production during infection by seasonal influenza A viruses that activate IRF3 and IFN transcription. It is intriguing that LGP2, a host protein induced during influenza A virus infection, downregulates the host antiviral IFN response. PMID:22837208

  11. LGP2 downregulates interferon production during infection with seasonal human influenza A viruses that activate interferon regulatory factor 3.

    PubMed

    Malur, Meghana; Gale, Michael; Krug, Robert M

    2012-10-01

    LGP2, a member of the RIG-I-like receptor family, lacks the amino-terminal caspase activation recruitment domains (CARDs) required for initiating the activation of interferon regulatory factor 3 (IRF3) and interferon (IFN) transcription. The role of LGP2 in virus infection is controversial, and the only LGP2 experiments previously carried out with mammalian influenza A viruses employed an attenuated, mouse-adapted H1N1 A/PR/8/34 (PR8) virus that does not encode the NS1 protein. Here we determine whether LGP2 has a role during infection with wild-type, nonattenuated influenza A viruses that have circulated in the human population, specifically two types of seasonal influenza A viruses: (i) H3N2 and H1N1 viruses that activate IRF3 and IFN transcription and (ii) recent H1N1 viruses that block these two activations. In human cells infected with an H3N2 virus that activates IRF3, overexpression of LGP2 or its repressor domain decreased STAT1 activation and IFN-β transcription approximately 10-fold. Overexpression of LGP2 also caused a 10-fold decrease of STAT1 activation during infection with other seasonal influenza A viruses that activate IRF3. Using LGP2(+/+) and LGP2(-/-) mouse cells, we show that endogenous LGP2 decreased IFN production during H3N2 virus infection 3- to 4-fold. In contrast, in both mouse and human cells infected with H1N1 viruses that do not activate IRF3, LGP2 had no detectable role. These results demonstrate that LGP2 downregulates IFN production during infection by seasonal influenza A viruses that activate IRF3 and IFN transcription. It is intriguing that LGP2, a host protein induced during influenza A virus infection, downregulates the host antiviral IFN response.

  12. Pigeons are resistant to experimental infection with H7N9 avian influenza virus.

    PubMed

    Liu, Yuehuan; Yang, Zhiyuan; Wang, Xiuqing; Chen, Jiming; Yao, Jiezhang; Song, Yanjun; Lin, Jian; Han, Chunhua; Duan, Huijuan; Zhao, Jicheng; Pan, Jie; Xie, Jia

    2015-10-01

    To determine the susceptibility of pigeons to the newly emerged avian influenza virus subtype H7N9, we experimentally infected three different types of pigeons (meat, town, and racing) with two different doses (2 × 10(4) or 2 × 10(5) EID50) of H7N9 avian influenza virus A/Chicken/China/2013 by either intranasal and intraocular inoculation (IN + IO) or intravenous injection (IV). In addition, the potential transmission of H7N9 to pigeons by direct close contact with experimentally infected pigeons and chickens was assessed. Results showed that none of the experimentally infected pigeons exhibited any clinical signs regardless of the infection route and dose. Of the 12 racing pigeons that were randomly selected and necropsied, none of them had any gross lesions. In agreement with this finding, virus was not isolated from all pigeons. No detectable H7-specific antibodies were found in any pigeon. In contrast, 11 of 31 chickens that were either directly infected with H7N9 by IN + IO inoculation or by contact with IN + IO-infected chickens had conjunctivitis. Virus was isolated from all 31 chickens and H7-specific antibodies were detected in these chickens. However, none of the IV-infected chickens or chickens in direct contact with IV-infected chickens had any clinical signs. No virus was isolated from these chickens and no H7-specific antibody was detected. Overall, we conclude that pigeons are less or not susceptible to the H7N9 virus at the doses used and are not likely to serve as a reservoir for the virus. However, the virus does cause conjunctivitis in chickens and can transmit to susceptible hosts by direct contact.

  13. Effect of Infection with a Mesogenic Strain of Newcastle Disease Virus on Infection with Highly Pathogenic Avian Influenza Virus in Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known on the interactions between avian influenza virus (AIV) and Newcastle disease virus (NDV) when coinfecting the same poultry host. In a previous study we found that infection of chickens with a mesogenic strain of NDV (mNDV) can reduce highly pathogenic AIV (HPAIV) replication, clinic...

  14. Maintenance of influenza virus infectivity on the surfaces of personal protective equipment and clothing used in healthcare settings

    PubMed Central

    Sakaguchi, Hiroko; Kajioka, Jitsuo; Watanabe, Mayumi; Nakano, Ryuichi; Hirose, Tatsuko; Ohta, Hiroshi; Aizawa, Yoshiharu

    2010-01-01

    Objectives The maintenance of infectivity of influenza viruses on the surfaces of personal protective equipment and clothing is an important factor in terms of controlling viral cross-infection in the environment and preventing contact infection. The aim of this study was to determine if laboratory-grown influenza A (H1N1) virus maintained infectivity on the surfaces of personal protective equipment and clothing used in healthcare settings. Methods Influenza A virus (0.5 mL) was deposited on the surface of a rubber glove, an N95 particulate respirator, a surgical mask made of non-woven fabric, a gown made of Dupont Tyvek, a coated wooden desk, and stainless steel. Each sample was left for 1, 8, and 24 h, and hemagglutination (HA) and 50% tissue culture infective dose (TCID50)/mL were measured. Results The HA titer of this influenza A virus did not decrease in any of the materials tested even after 24 h. The infectivity of influenza A virus measured by TCID50 was maintained for 8 h on the surface of all materials, with the exception of the rubber glove for which virus infectivity was maintained for 24 h. Conclusions Our results indicate that the replacement/renewal of personal protective equipment and clothing by healthcare professionals in cases of exposure to secretions and droplets containing viruses spread by patients is an appropriate procedure to prevent cross-infection. PMID:21432565

  15. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    PubMed

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses.

  16. Human H7N9 avian influenza virus infection: a review and pandemic risk assessment

    PubMed Central

    Yiu Lai, Kang; Wing Yiu Ng, George; Fai Wong, Kit; Fan Ngai Hung, Ivan; Kam Fai Hong, Jeffrey; Fan Cheng, Fanny; Kwok Cheung Chan, John

    2013-01-01

    China is undergoing a recent outbreak of a novel H7N9 avian influenza virus (nH7N9) infection that has thus far involved 132 human patients, including 37 deaths. The nH7N9 virus is a reassortant virus originating from the H7N3, H7N9 and H9N2 avian influenza viruses. nH7N9 isolated from humans contains features related to adaptation to humans, including a Q226L mutation in the hemagglutinin cleavage site and E627K and D701N mutations in the PB2 protein. Live poultry markets provide an environment for the emergence, spread and maintenance of nH7N9 as well as for the selection of mutants that facilitate nH7N9 binding to and replication in the human upper respiratory tract. Innate immune suppression conferred by the internal genes of H9N2 may contribute to the virulence of nH7N9. The quail may serve as the intermediate host during the adaptation of avian influenza viruses from domestic waterfowl to gallinaceous poultry, such as chickens and related terrestrial-based species, due to the selection of viral mutants with a short neuraminidase stalk. Infections in chickens, common quails, red-legged partridges and turkeys may select for mutants with human receptor specificity. Infection in Ratitae species may lead to the selection of PB2-E627K and PB2-D701N mutants and the conversion of nH7N9 to a highly pathogenic avian influenza virus. PMID:26038484

  17. Human infections with influenza A(H3N2) variant virus in the United States, 2011-2012.

    PubMed

    Epperson, Scott; Jhung, Michael; Richards, Shawn; Quinlisk, Patricia; Ball, Lauren; Moll, Mària; Boulton, Rachelle; Haddy, Loretta; Biggerstaff, Matthew; Brammer, Lynnette; Trock, Susan; Burns, Erin; Gomez, Thomas; Wong, Karen K; Katz, Jackie; Lindstrom, Stephen; Klimov, Alexander; Bresee, Joseph S; Jernigan, Daniel B; Cox, Nancy; Finelli, Lyn

    2013-07-01

    BACKGROUND. During August 2011-April 2012, 13 human infections with influenza A(H3N2) variant (H3N2v) virus were identified in the United States; 8 occurred in the prior 2 years. This virus differs from previous variant influenza viruses in that it contains the matrix (M) gene from the Influenza A(H1N1)pdm09 pandemic influenza virus. METHODS. A case was defined as a person with laboratory-confirmed H3N2v virus infection. Cases and contacts were interviewed to determine exposure to swine and other animals and to assess potential person-to-person transmission. RESULTS. Median age of cases was 4 years, and 12 of 13 (92%) were children. Pig exposure was identified in 7 (54%) cases. Six of 7 cases with swine exposure (86%) touched pigs, and 1 (14%) was close to pigs without known direct contact. Six cases had no swine exposure, including 2 clusters of suspected person-to-person transmission. All cases had fever; 12 (92%) had respiratory symptoms, and 3 (23%) were hospitalized for influenza. All 13 cases recovered. CONCLUSIONS. H3N2v virus infections were identified at a high rate from August 2011 to April 2012, and cases without swine exposure were identified in influenza-like illness outbreaks, indicating that limited person-to-person transmission likely occurred. Variant influenza viruses rarely result in sustained person-to-person transmission; however, the potential for this H3N2v virus to transmit efficiently is of concern. With minimal preexisting immunity in children and the limited cross-protective effect from seasonal influenza vaccine, the majority of children are susceptible to infection with this novel influenza virus.

  18. Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding

    PubMed Central

    Nita-Lazar, Mihai; Banerjee, Aditi; Feng, Chiguang; Amin, Mohammed N.; Frieman, Matthew B.; Chen, Wilbur H.; Cross, Alan S.; Wang, Lai-Xi; Vasta, Gerardo R.

    2015-01-01

    The continued threat of worldwide influenza pandemics, together with the yearly emergence of antigenically drifted influenza A virus (IAV) strains, underscore the urgent need to elucidate not only the mechanisms of influenza virulence, but also those mechanisms that predispose influenza patients to increased susceptibility to subsequent infection with Streptococcus pneumoniae. Glycans displayed on the surface of epithelia that are exposed to the external environment play important roles in microbial recognition, adhesion, and invasion. It is well established that the IAV hemagglutinin and pneumococcal adhesins enable their attachment to the host epithelia. Reciprocally, the recognition of microbial glycans by host carbohydrate-binding proteins (lectins) can initiate innate immune responses, but their relevance in influenza or pneumococcal infections is poorly understood. Galectins are evolutionarily conserved lectins characterized by affinity for β-galactosides and a unique sequence motif, with critical regulatory roles in development and immune homeostasis. In this study, we examined the possibility that galectins expressed in the airway epithelial cells might play a significant role in viral or pneumococcal adhesion to airway epithelial cells. Our results in a mouse model for influenza and pneumococcal infection revealed that the murine lung expresses a diverse galectin repertoire, from which selected galectins, including galectin 1 (Gal1) and galectin 3 (Gal3), are released to the bronchoalveolar space. Further, the results showed that influenza and subsequent S. pneumoniae infections significantly alter the glycosylation patterns of the airway epithelial surface and modulate galectin expression. In vitro studies on the human airway epithelial cell line A549 were consistent with the observations made in the mouse model, and further revealed that both Gal1 and Gal3 bind strongly to IAV and S. pneumoniae, and that exposure of the cells to viral neuraminidase or

  19. Lack of transmission of a human influenza virus with avian receptor specificity between ferrets is not due to decreased virus shedding but rather a lower infectivity in vivo.

    PubMed

    Roberts, Kim L; Shelton, Holly; Scull, Margaret; Pickles, Raymond; Barclay, Wendy S

    2011-08-01

    Influenza virus attaches to host cells by sialic acid (SA). Human influenza viruses show preferential affinity for α2,6-linked SA, whereas avian influenza viruses bind α2,3-linked SA. In this study, mutation of the haemagglutinin receptor-binding site of a human H3N2 influenza A virus to switch binding to α2,3-linked SA did not eliminate infection of ferrets but prevented transmission, even in a co-housed model. The mutant virus was shed from the noses of ferrets directly inoculated with virus in the same amounts and for the same length of time as wild-type virus. Mutant virus infection was localized to the same anatomical regions of the upper respiratory tract of directly inoculated animals. Interestingly, wild-type virus was more readily neutralized than the mutant virus in vitro by ferret nasal washes containing mucus. Moreover after inoculation of equal doses, the mutant virus grew poorly in ex vivo ferret nasal turbinate tissue compared with wild-type virus. The dose of mutant virus required to establish infection in the directly inoculated ferrets was 40-fold higher than for wild-type virus. It was concluded that minimum infectious dose is a predictor of virus transmissibility and it is suggested that, as virus passes from one host to another through stringent environmental conditions, viruses with a preference for α2,3-linked SA are unlikely to inoculate a new mammalian host in sufficient quantities to initiate a productive infection.

  20. Multiple gene mutations identified in patients infected with influenza A (H7N9) virus.

    PubMed

    Chen, Cuicui; Wang, Mingbang; Zhu, Zhaoqin; Qu, Jieming; Xi, Xiuhong; Tang, Xinjun; Lao, Xiangda; Seeley, Eric; Li, Tao; Fan, Xiaomei; Du, Chunling; Wang, Qin; Yang, Lin; Hu, Yunwen; Bai, Chunxue; Zhang, Zhiyong; Lu, Shuihua; Song, Yuanlin; Zhou, Wenhao

    2016-01-01

    Influenza A (H7N9) virus induced high mortality since 2013. It is important to elucidate the potential genetic variations that contribute to virus infection susceptibilities. In order to identify genetic mutations that might increase host susceptibility to infection, we performed exon sequencing and validated the SNPS by Sanger sequencing on 18 H7N9 patients. Blood samples were collected from 18 confirmed H7N9 patients. The genomic DNA was captured with the Agilent SureSelect Human All Exon kit, sequenced on the Illumina Hiseq 2000, and the resulting data processed and annotated with Genome analysis Tool. SNPs were verified by independent Sanger sequencing. The DAVID database and the DAPPLE database were used to do bioinformatics analysis. Through exon sequencing and Sanger sequencing, we identified 21 genes that were highly associated with H7N9 influenza infection. Protein-protein interaction analysis showed that direct interactions among genetic products were significantly higher than expected (p = 0.004), and DAVID analysis confirmed the defense-related functions of these genes. Gene mutation profiles of survived and non-survived patients were similar, suggesting some of genes identified in this study may be associated with H7N9 influenza susceptibility. Host specific genetic determinants of disease severity identified by this approach may provide new targets for the treatment of H7N9 influenza.

  1. Multiple gene mutations identified in patients infected with influenza A (H7N9) virus.

    PubMed

    Chen, Cuicui; Wang, Mingbang; Zhu, Zhaoqin; Qu, Jieming; Xi, Xiuhong; Tang, Xinjun; Lao, Xiangda; Seeley, Eric; Li, Tao; Fan, Xiaomei; Du, Chunling; Wang, Qin; Yang, Lin; Hu, Yunwen; Bai, Chunxue; Zhang, Zhiyong; Lu, Shuihua; Song, Yuanlin; Zhou, Wenhao

    2016-01-01

    Influenza A (H7N9) virus induced high mortality since 2013. It is important to elucidate the potential genetic variations that contribute to virus infection susceptibilities. In order to identify genetic mutations that might increase host susceptibility to infection, we performed exon sequencing and validated the SNPS by Sanger sequencing on 18 H7N9 patients. Blood samples were collected from 18 confirmed H7N9 patients. The genomic DNA was captured with the Agilent SureSelect Human All Exon kit, sequenced on the Illumina Hiseq 2000, and the resulting data processed and annotated with Genome analysis Tool. SNPs were verified by independent Sanger sequencing. The DAVID database and the DAPPLE database were used to do bioinformatics analysis. Through exon sequencing and Sanger sequencing, we identified 21 genes that were highly associated with H7N9 influenza infection. Protein-protein interaction analysis showed that direct interactions among genetic products were significantly higher than expected (p = 0.004), and DAVID analysis confirmed the defense-related functions of these genes. Gene mutation profiles of survived and non-survived patients were similar, suggesting some of genes identified in this study may be associated with H7N9 influenza susceptibility. Host specific genetic determinants of disease severity identified by this approach may provide new targets for the treatment of H7N9 influenza. PMID:27156515

  2. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infections with Avian influenza viruses (AIV) of low and high pathogenicity (LP and HP), and Newcastle disease virus (NDV) are commonly reported in domestic ducks in parts of the world. However, it’s not clear if co-infections with these viruses affect the severity of the diseases they produce, the ...

  3. Protection of mice from lethal influenza virus infection with high dose-short duration ribavirin aerosol.

    PubMed Central

    Wyde, P R; Wilson, S Z; Gilbert, B E; Smith, R H

    1986-01-01

    An aerosol generated from a reservoir containing 60 mg of ribavirin per ml given for 2 h twice daily for 4 days afforded the same high level of protection against lethal influenza virus infection of mice as a longer, conventional treatment schedule (20 mg/ml given for 11 h daily for 4 days). Incremental decreases in ribavirin concentration made while maintaining the 2-h intermittent schedule provided progressively less protection of mice. Mice exposed to the 60-mg/ml doses had significantly increased pulmonary and serum drug levels when compared with mice given 20 mg of drug per ml, these increases were transient, and no evidence of pulmonary intolerance was detected. These studies suggest that protective effects of ribavirin against influenza virus infection can be achieved without untoward effects if higher doses and shorter periods of administration are used. PMID:3813516

  4. NADPH Oxidase 1 Is Associated with Altered Host Survival and T Cell Phenotypes after Influenza A Virus Infection in Mice.

    PubMed

    Hofstetter, Amelia R; De La Cruz, Juan A; Cao, Weiping; Patel, Jenish; Belser, Jessica A; McCoy, James; Liepkalns, Justine S; Amoah, Samuel; Cheng, Guangjie; Ranjan, Priya; Diebold, Becky A; Shieh, Wun-Ju; Zaki, Sherif; Katz, Jacqueline M; Sambhara, Suryaprakash; Lambeth, J David; Gangappa, Shivaprakash

    2016-01-01

    The role of the reactive oxygen species-producing NADPH oxidase family of enzymes in the pathology of influenza A virus infection remains enigmatic. Previous reports implicated NADPH oxidase 2 in influenza A virus-induced inflammation. In contrast, NADPH oxidase 1 (Nox1) was reported to decrease inflammation in mice within 7 days post-influenza A virus infection. However, the effect of NADPH oxidase 1 on lethality and adaptive immunity after influenza A virus challenge has not been explored. Here we report improved survival and decreased morbidity in mice with catalytically inactive NADPH oxidase 1 (Nox1*/Y) compared with controls after challenge with A/PR/8/34 influenza A virus. While changes in lung inflammation were not obvious between Nox1*/Y and control mice, we observed alterations in the T cell response to influenza A virus by day 15 post-infection, including increased interleukin-7 receptor-expressing virus-specific CD8+ T cells in lungs and draining lymph nodes of Nox1*/Y, and increased cytokine-producing T cells in lungs and spleen. Furthermore, a greater percentage of conventional and interstitial dendritic cells from Nox1*/Y draining lymph nodes expressed the co-stimulatory ligand CD40 within 6 days post-infection. Results indicate that NADPH oxidase 1 modulates the innate and adaptive cellular immune response to influenza virus infection, while also playing a role in host survival. Results suggest that NADPH oxidase 1 inhibitors may be beneficial as adjunct therapeutics during acute influenza infection.

  5. NADPH Oxidase 1 Is Associated with Altered Host Survival and T Cell Phenotypes after Influenza A Virus Infection in Mice

    PubMed Central

    Hofstetter, Amelia R.; De La Cruz, Juan A.; Cao, Weiping; Patel, Jenish; Belser, Jessica A.; McCoy, James; Liepkalns, Justine S.; Amoah, Samuel; Cheng, Guangjie; Ranjan, Priya; Diebold, Becky A.; Shieh, Wun-Ju; Zaki, Sherif; Katz, Jacqueline M.; Sambhara, Suryaprakash; Lambeth, J. David; Gangappa, Shivaprakash

    2016-01-01

    The role of the reactive oxygen species-producing NADPH oxidase family of enzymes in the pathology of influenza A virus infection remains enigmatic. Previous reports implicated NADPH oxidase 2 in influenza A virus-induced inflammation. In contrast, NADPH oxidase 1 (Nox1) was reported to decrease inflammation in mice within 7 days post-influenza A virus infection. However, the effect of NADPH oxidase 1 on lethality and adaptive immunity after influenza A virus challenge has not been explored. Here we report improved survival and decreased morbidity in mice with catalytically inactive NADPH oxidase 1 (Nox1*/Y) compared with controls after challenge with A/PR/8/34 influenza A virus. While changes in lung inflammation were not obvious between Nox1*/Y and control mice, we observed alterations in the T cell response to influenza A virus by day 15 post-infection, including increased interleukin-7 receptor-expressing virus-specific CD8+ T cells in lungs and draining lymph nodes of Nox1*/Y, and increased cytokine-producing T cells in lungs and spleen. Furthermore, a greater percentage of conventional and interstitial dendritic cells from Nox1*/Y draining lymph nodes expressed the co-stimulatory ligand CD40 within 6 days post-infection. Results indicate that NADPH oxidase 1 modulates the innate and adaptive cellular immune response to influenza virus infection, while also playing a role in host survival. Results suggest that NADPH oxidase 1 inhibitors may be beneficial as adjunct therapeutics during acute influenza infection. PMID:26910342

  6. Inhibition of host protein synthesis and degradation of cellular mRNAs during infection by influenza and herpes simplex virus

    SciTech Connect

    Inglis, S.C.

    1982-12-01

    Cloned DNA copies of two cellular genes were used to monitor, by blot hybridization, the stability of particular cell mRNAs after infection by influenza virus and herpes virus. The results indicated that the inhibition of host cell protein synthesis that accompanied infection by each virus could be explained by a reduction in the amounts of cellular mRN As in the cytoplasm, and they suggested that this decrease was due to virus-mediated mRNA degradation.

  7. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses

    SciTech Connect

    Terrier, Olivier; Moules, Vincent; Carron, Coralie; Cartet, Gaeelle; Frobert, Emilie; Yver, Matthieu; Traversier, Aurelien; Wolff, Thorsten; Naffakh, Nadia; and others

    2012-10-10

    Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus-host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.

  8. Experimental co-infection of chickens with lentogenic, mesogenic and velogenic strains of Newcastle disease viruses and highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most economically important viruses affecting poultry worldwide. Co-infections of poultry with AIV and NDV are a problem from the clinical point of view and diagnosis of these viruses, but little is known on t...

  9. Host antiviral defenses induced by a mesogenic strain of Newcastle disease virus prevents infection with a highly pathogenic avian influenza virus in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide. Co-infections of poultry with AIV and NDV are a problem from both the clinical point of view and the diagnosis of these viruses. To evaluate the dynamics of AIV-NDV co-i...

  10. EFFECTS OF ALLERGIC AIRWAYS DISEASE ON INFLUENZA VIRUS INFECTION IN BROWN NORWAY RATS

    EPA Science Inventory

    EFFECTS OF ALLERGIC AIRWAYS DISEASE ON INFLUENZA VIRUS INFECTION IN BROWN NORWAY RATS (P. Singhl, D.W. Winsett2, M.J. Daniels2,
    C.A.J. Dick', K.B. Adlerl and M.I. Gilmour2, INCSU, Raleigh, N.C., 2NHEERL/ORD/ USEPA, RTP, N.C. and 3UNC, Chapel Hill, N.C.)The interaction between ...

  11. Effect of nitrogen dioxide exposure on susceptibility to influenza A virus infection in healthy adults

    SciTech Connect

    Goings, S.A.; Kulle, T.J.; Bascom, R.; Sauder, L.R.; Green, D.J.; Hebel, J.R.; Clements, M.L.

    1989-05-01

    The effect of NO/sub 2/ exposure and human susceptibility to respiratory virus infection was investigated in a placebo-controlled, randomized, double-blind trial conducted in an environmentally controlled research chamber over 3 yr. Healthy, nonsmoking, young adult volunteers who were seronegative to influenza A/Korea/82 (H/sub 3/N/sub 2/) virus were randomly assigned to breathe either filtered clean air (control group) or NO/sub 2/ for 2 h/day for 3 consecutive days. The NO/sub 2/ concentrations were 2 ppm (Year 1), 3 ppm (Year 2), and 1 or 2 ppm (Year 3). Live, attenuated cold-adapted (ca) influenza A/Korea/82 reassortant virus was administered intranasally to all subjects immediately after the second exposure. Only one of the 152 volunteers had any symptoms; this person had a low grade fever. Pulmonary function measurements and nonspecific airway reactivity to methacholine were unchanged after NO/sub 2/ exposure, virus infection, or both. Infection was determined by virus recovery, a fourfold or greater increase in serum or nasal wash influenza-specific antibody titers, or both. The infection rates of the groups were 12/21 (2 ppm NO/sub 2/) versus 15/23 (clean air) in Year 1, 17/22 (3 ppm NO/sub 2/) versus 15/21 (clean air) in Year 2, and 20/22 (2 ppm) and 20/22 (1 ppm) versus 15/21 (clean air) in Year 3. Each group exposed to 1 or 2 ppm NO2 in the last year became infected more often (91%) than did the control group (71%), but the differences were not statistically significant.

  12. Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity

    PubMed Central

    Faust, Christina; Stallknecht, David; Swayne, David; Brown, Justin

    2009-01-01

    Avian influenza (AI) viruses are believed to be transmitted within wild aquatic bird populations through an indirect faecal–oral route involving contaminated water. This study examined the influence of filter-feeding bivalves, Corbicula fluminea, on the infectivity of AI virus in water. Clams were placed into individual flasks with distilled water inoculated 1:100 with a low pathogenic (LP) AI virus (A/Mallard/MN/190/99 (H3N8)). Viral titres in water with clams were significantly lower at 24 and 48 h post-inoculation compared to LPAI-infected water without clams. To determine whether clams affected the infectivity of AI viruses, 18 wood ducks (Aix sponsa) were divided into test groups and inoculated with a variety of treatments of clam supernatants, whole clams and water exposed to a high pathogenic (HP) AI (A/whooper swan/Mongolia/244/05 (H5N1)). None of the wood ducks inoculated with HPAI-infected water that was filtered by clams or that was inoculated with or fed tissue from these clams exhibited morbidity or mortality. All wood ducks exposed to either HPAI-infected water without clams or the original viral inoculum died. These results indicate that filter-feeding bivalves can remove and reduce the infectivity of AI viruses in water and demonstrate the need to examine biotic environmental factors that can influence AI virus transmission. PMID:19656788

  13. Protein synthesis shut-off induced by influenza virus infection is independent of PKR activity.

    PubMed

    Zürcher, T; Marión, R M; Ortín, J

    2000-09-01

    The role of PKR activity in influenza virus-induced cell shut-off was studied by infection of PKR(+) or PKR(-) cell cultures and metabolic labeling in vivo. No differences in the synthesis of viral proteins or the decay of cellular protein synthesis were observed. To investigate the relevance of the inhibition of cellular pre-mRNA polyadenylation and nucleocytoplasmic transport in virus-induced shut-off, we carried out similar experiments with mutant viruses lacking C-terminal sequences of NS1 protein. No differences in the shut-off induced by mutant versus wild-type viruses were observed, indicating that these nuclear events are not relevant for shut-off. The analysis of cytoplasmic mRNA stability indicated that the accumulation of viral mRNA during the infection correlated with the progressive decay of cellular mRNA, in both the wild type and an NS1 deletion mutant.

  14. Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency

    PubMed Central

    Jolmes, Fabian; Welke, Robert-William; Klipp, Edda; Herrmann, Andreas; Flöttmann, Max

    2016-01-01

    After endocytic uptake, influenza viruses transit early endosomal compartments and eventually reach late endosomes. There, the viral glycoprotein hemagglutinin (HA) triggers fusion between endosomal and viral membrane, a critical step that leads to release of the viral segmented genome destined to reach the cell nucleus. Endosomal maturation is a complex process involving acidification of the endosomal lumen as well as endosome motility along microtubules. While the pH drop is clearly critical for the conformational change and membrane fusion activity of HA, the effect of intracellular transport dynamics on the progress of infection remains largely unclear. In this study, we developed a comprehensive mathematical model accounting for the first steps of influenza virus infection. We calibrated our model with experimental data and challenged its predictions using recombinant viruses with altered pH sensitivity of HA. We identified the time point of virus-endosome fusion and thereby the diffusion distance of the released viral genome to the nucleus as a critical bottleneck for efficient virus infection. Further, we concluded and supported experimentally that the viral RNA is subjected to cytosolic degradation strongly limiting the probability of a successful genome import into the nucleus. PMID:27780209

  15. Vaccination against the M protein of Streptococcus pyogenes prevents death after influenza virus: S. pyogenes super-infection.

    PubMed

    Klonoski, Joshua M; Hurtig, Heather R; Juber, Brian A; Schuneman, Margaret J; Bickett, Thomas E; Svendsen, Joshua M; Burum, Brandon; Penfound, Thomas A; Sereda, Grigoriy; Dale, James B; Chaussee, Michael S; Huber, Victor C

    2014-09-01

    Influenza virus infections are associated with a significant number of illnesses and deaths on an annual basis. Many of the deaths are due to complications from secondary bacterial invaders, including Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Streptococcus pyogenes. The β-hemolytic bacteria S. pyogenes colonizes both skin and respiratory surfaces, and frequently presents clinically as strep throat or impetigo. However, when these bacteria gain access to normally sterile sites, they can cause deadly diseases including sepsis, necrotizing fasciitis, and pneumonia. We previously developed a model of influenza virus:S. pyogenes super-infection, which we used to demonstrate that vaccination against influenza virus can limit deaths associated with a secondary bacterial infection, but this protection was not complete. In the current study, we evaluated the efficacy of a vaccine that targets the M protein of S. pyogenes to determine whether immunity toward the bacteria alone would allow the host to survive an influenza virus:S. pyogenes super-infection. Our data demonstrate that vaccination against the M protein induces IgG antibodies, in particular those of the IgG1 and IgG2a isotypes, and that these antibodies can interact with macrophages. Ultimately, this vaccine-induced immunity eliminated death within our influenza virus:S. pyogenes super-infection model, despite the fact that all M protein-vaccinated mice showed signs of illness following influenza virus inoculation. These findings identify immunity against bacteria as an important component of protection against influenza virus:bacteria super-infection. PMID:25077423

  16. Vaccination against the M protein of Streptococcus pyogenes prevents death after influenza virus: S. pyogenes super-infection.

    PubMed

    Klonoski, Joshua M; Hurtig, Heather R; Juber, Brian A; Schuneman, Margaret J; Bickett, Thomas E; Svendsen, Joshua M; Burum, Brandon; Penfound, Thomas A; Sereda, Grigoriy; Dale, James B; Chaussee, Michael S; Huber, Victor C

    2014-09-01

    Influenza virus infections are associated with a significant number of illnesses and deaths on an annual basis. Many of the deaths are due to complications from secondary bacterial invaders, including Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Streptococcus pyogenes. The β-hemolytic bacteria S. pyogenes colonizes both skin and respiratory surfaces, and frequently presents clinically as strep throat or impetigo. However, when these bacteria gain access to normally sterile sites, they can cause deadly diseases including sepsis, necrotizing fasciitis, and pneumonia. We previously developed a model of influenza virus:S. pyogenes super-infection, which we used to demonstrate that vaccination against influenza virus can limit deaths associated with a secondary bacterial infection, but this protection was not complete. In the current study, we evaluated the efficacy of a vaccine that targets the M protein of S. pyogenes to determine whether immunity toward the bacteria alone would allow the host to survive an influenza virus:S. pyogenes super-infection. Our data demonstrate that vaccination against the M protein induces IgG antibodies, in particular those of the IgG1 and IgG2a isotypes, and that these antibodies can interact with macrophages. Ultimately, this vaccine-induced immunity eliminated death within our influenza virus:S. pyogenes super-infection model, despite the fact that all M protein-vaccinated mice showed signs of illness following influenza virus inoculation. These findings identify immunity against bacteria as an important component of protection against influenza virus:bacteria super-infection.

  17. Vaccination against the M protein of Streptococcus pyogenes prevents death after influenza virus:S. pyogenes super-infection

    PubMed Central

    Klonoski, Joshua M.; Hurtig, Heather R.; Juber, Brian A.; Schuneman, Margaret J.; Bickett, Thomas E.; Svendsen, Joshua M.; Burum, Brandon; Penfound, Thomas A.; Sereda, Grigoriy; Dale, James B.; Chaussee, Michael S.; Huber, Victor C.

    2014-01-01

    Influenza virus infections are associated with a significant number of illnesses and deaths on an annual basis. Many of the deaths are due to complications from secondary bacterial invaders, including Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Streptococcus pyogenes. The β-hemolytic bacteria S. pyogenes colonizes both skin and respiratory surfaces, and frequently presents clinically as strep throat or impetigo. However, when these bacteria gain access to normally sterile sites, they can cause deadly diseases including sepsis, necrotizing fasciitis, and pneumonia. We previously developed a model of influenza virus:S. pyogenes super-infection, which we used to demonstrate that vaccination against influenza virus can limit deaths associated with a secondary bacterial infection, but this protection was not complete. In the current study, we evaluated the efficacy of a vaccine that targets the M protein of S. pyogenes to determine whether immunity toward the bacteria alone would allow the host to survive an influenza virus:S. pyogenes super-infection. Our data demonstrate that vaccination against the M protein induces IgG antibodies, in particular those of the IgG1 and IgG2a isotypes, and that these antibodies can interact with macrophages. Ultimately, this vaccine-induced immunity eliminated death within our influenza virus:S. pyogenes super-infection model, despite the fact that all M protein-vaccinated mice showed signs of illness following influenza virus inoculation. These findings identify immunity against bacteria as an important component of protection against influenza virus:bacteria super-infection. PMID:25077423

  18. Visualizing the beta interferon response in mice during infection with influenza A viruses expressing or lacking nonstructural protein 1.

    PubMed

    Kallfass, Carsten; Lienenklaus, Stefan; Weiss, Siegfried; Staeheli, Peter

    2013-06-01

    The innate host defense against influenza virus is largely dependent on the type I interferon (IFN) system. However, surprisingly little is known about the cellular source of IFN in the infected lung. To clarify this question, we employed a reporter mouse that contains the firefly luciferase gene in place of the IFN-β-coding region. IFN-β-producing cells were identified either by simultaneous immunostaining of lungs for luciferase and cellular markers or by generating conditional reporter mice that express luciferase exclusively in defined cell types. Two different strains of influenza A virus were employed that either do or do not code for nonstructural protein 1 (NS1), which strongly suppresses innate immune responses of infected cells. We found that epithelial cells and lung macrophages, which represent the prime host cells for influenza viruses, showed vigorous IFN-β responses which, however, were severely reduced and delayed if the infecting virus was able to produce NS1. Interestingly, CD11c(+) cell populations that were either expressing or lacking macrophage markers produced the bulk of IFN-β at 48 h after infection with wild-type influenza A virus. Our results demonstrate that the virus-encoded IFN-antagonistic factor NS1 disarms specifically epithelial cells and lung macrophages, which otherwise would serve as main mediators of the early response against infection by influenza virus.

  19. Influenza A Virus Challenge Models in Cynomolgus Macaques Using the Authentic Inhaled Aerosol and Intra-Nasal Routes of Infection.

    PubMed

    Marriott, Anthony C; Dennis, Mike; Kane, Jennifer A; Gooch, Karen E; Hatch, Graham; Sharpe, Sally; Prevosto, Claudia; Leeming, Gail; Zekeng, Elsa-Gayle; Staples, Karl J; Hall, Graham; Ryan, Kathryn A; Bate, Simon; Moyo, Nathifa; Whittaker, Catherine J; Hallis, Bassam; Silman, Nigel J; Lalvani, Ajit; Wilkinson, Tom M; Hiscox, Julian A; Stewart, James P; Carroll, Miles W

    2016-01-01

    Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. Evidence of virus replication and sero-conversion were detected in all four challenge groups, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes was detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models will be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections. PMID

  20. Influenza A Virus Challenge Models in Cynomolgus Macaques Using the Authentic Inhaled Aerosol and Intra-Nasal Routes of Infection.

    PubMed

    Marriott, Anthony C; Dennis, Mike; Kane, Jennifer A; Gooch, Karen E; Hatch, Graham; Sharpe, Sally; Prevosto, Claudia; Leeming, Gail; Zekeng, Elsa-Gayle; Staples, Karl J; Hall, Graham; Ryan, Kathryn A; Bate, Simon; Moyo, Nathifa; Whittaker, Catherine J; Hallis, Bassam; Silman, Nigel J; Lalvani, Ajit; Wilkinson, Tom M; Hiscox, Julian A; Stewart, James P; Carroll, Miles W

    2016-01-01

    Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. Evidence of virus replication and sero-conversion were detected in all four challenge groups, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes was detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models will be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections.

  1. Influenza A Virus Challenge Models in Cynomolgus Macaques Using the Authentic Inhaled Aerosol and Intra-Nasal Routes of Infection

    PubMed Central

    Marriott, Anthony C.; Dennis, Mike; Kane, Jennifer A.; Gooch, Karen E.; Hatch, Graham; Sharpe, Sally; Prevosto, Claudia; Leeming, Gail; Zekeng, Elsa-Gayle; Staples, Karl J.; Hall, Graham; Ryan, Kathryn A.; Bate, Simon; Moyo, Nathifa; Whittaker, Catherine J.; Hallis, Bassam; Silman, Nigel J.; Lalvani, Ajit; Wilkinson, Tom M.; Hiscox, Julian A.; Stewart, James P.; Carroll, Miles W.

    2016-01-01

    Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. Evidence of virus replication and sero-conversion were detected in all four challenge groups, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes was detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models will be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections. PMID

  2. Does influenza A virus infection affect movement behaviour during stopover in its wild reservoir host?

    PubMed

    Bengtsson, Daniel; Safi, Kamran; Avril, Alexis; Fiedler, Wolfgang; Wikelski, Martin; Gunnarsson, Gunnar; Elmberg, Johan; Tolf, Conny; Olsen, Björn; Waldenström, Jonas

    2016-02-01

    The last decade has seen a surge in research on avian influenza A viruses (IAVs), in part fuelled by the emergence, spread and potential zoonotic importance of highly pathogenic virus subtypes. The mallard (Anas platyrhynchos) is the most numerous and widespread dabbling duck in the world, and one of the most important natural hosts for studying IAV transmission dynamics. In order to predict the likelihood of IAV transmission between individual ducks and to other hosts, as well as between geographical regions, it is important to understand how IAV infection affects the host. In this study, we analysed the movements of 40 mallards equipped with GPS transmitters and three-dimensional accelerometers, of which 20 were naturally infected with low pathogenic avian influenza virus (LPAIV), at a major stopover site in the Northwest European flyway. Movements differed substantially between day and night, as well as between mallards returning to the capture site and those feeding in natural habitats. However, movement patterns did not differ between LPAIV infected and uninfected birds. Hence, LPAIV infection probably does not affect mallard movements during stopover, with high possibility of virus spread along the migration route as a consequence.

  3. Does influenza A virus infection affect movement behaviour during stopover in its wild reservoir host?

    PubMed Central

    Bengtsson, Daniel; Safi, Kamran; Avril, Alexis; Fiedler, Wolfgang; Wikelski, Martin; Gunnarsson, Gunnar; Elmberg, Johan; Tolf, Conny; Olsen, Björn; Waldenström, Jonas

    2016-01-01

    The last decade has seen a surge in research on avian influenza A viruses (IAVs), in part fuelled by the emergence, spread and potential zoonotic importance of highly pathogenic virus subtypes. The mallard (Anas platyrhynchos) is the most numerous and widespread dabbling duck in the world, and one of the most important natural hosts for studying IAV transmission dynamics. In order to predict the likelihood of IAV transmission between individual ducks and to other hosts, as well as between geographical regions, it is important to understand how IAV infection affects the host. In this study, we analysed the movements of 40 mallards equipped with GPS transmitters and three-dimensional accelerometers, of which 20 were naturally infected with low pathogenic avian influenza virus (LPAIV), at a major stopover site in the Northwest European flyway. Movements differed substantially between day and night, as well as between mallards returning to the capture site and those feeding in natural habitats. However, movement patterns did not differ between LPAIV infected and uninfected birds. Hence, LPAIV infection probably does not affect mallard movements during stopover, with high possibility of virus spread along the migration route as a consequence. PMID:26998334

  4. Model of influenza A virus infection: dynamics of viral antagonism and innate immune response.

    PubMed

    Fribourg, M; Hartmann, B; Schmolke, M; Marjanovic, N; Albrecht, R A; García-Sastre, A; Sealfon, S C; Jayaprakash, C; Hayot, F

    2014-06-21

    Viral antagonism of host responses is an essential component of virus pathogenicity. The study of the interplay between immune response and viral antagonism is challenging due to the involvement of many processes acting at multiple time scales. Here we develop an ordinary differential equation model to investigate the early, experimentally measured, responses of human monocyte-derived dendritic cells to infection by two H1N1 influenza A viruses of different clinical outcomes: pandemic A/California/4/2009 and seasonal A/New Caledonia/20/1999. Our results reveal how the strength of virus antagonism, and the time scale over which it acts to thwart the innate immune response, differs significantly between the two viruses, as is made clear by their impact on the temporal behavior of a number of measured genes. The model thus sheds light on the mechanisms that underlie the variability of innate immune responses to different H1N1 viruses.

  5. Comparison of the Levels of Infectious Virus in Respirable Aerosols Exhaled by Ferrets Infected with Influenza Viruses Exhibiting Diverse Transmissibility Phenotypes

    PubMed Central

    Gustin, Kortney M.; Katz, Jacqueline M.; Tumpey, Terrence M.

    2013-01-01

    Influenza viruses pose a major public health burden to communities around the world by causing respiratory infections that can be highly contagious and spread rapidly through the population. Despite extensive research on influenza viruses, the modes of transmission occurring most often among humans are not entirely clear. Contributing to this knowledge gap is the lack of an understanding of the levels of infectious virus present in respirable aerosols exhaled from infected hosts. Here, we used the ferret model to evaluate aerosol shedding patterns and measure the amount of infectious virus present in exhaled respirable aerosols. By comparing these parameters among a panel of human and avian influenza viruses exhibiting diverse respiratory droplet transmission efficiencies, we are able to report that ferrets infected by highly transmissible influenza viruses exhale a greater number of aerosol particles and more infectious virus within respirable aerosols than ferrets infected by influenza viruses that do not readily transmit. Our findings improve our understanding of the ferret transmission model and provide support for the potential for influenza virus aerosol transmission. PMID:23658443

  6. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  7. Infection of Mouse Macrophages by Seasonal Influenza Viruses Can Be Restricted at the Level of Virus Entry and at a Late Stage in the Virus Life Cycle

    PubMed Central

    Londrigan, Sarah L.; Short, Kirsty R.; Ma, Joel; Gillespie, Leah; Rockman, Steven P.; Brooks, Andrew G.

    2015-01-01

    ABSTRACT Airway epithelial cells are susceptible to infection with seasonal influenza A viruses (IAV), resulting in productive virus replication and release. Macrophages (MΦ) are also permissive to IAV infection; however, virus replication is abortive. Currently, it is unclear how productive infection of MΦ is impaired or the extent to which seasonal IAV replicate in MΦ. Herein, we compared mouse MΦ and epithelial cells for their ability to support genomic replication and transcription, synthesis of viral proteins, assembly of virions, and release of infectious progeny following exposure to genetically defined IAV. We confirm that seasonal IAV differ in their ability to utilize cell surface receptors for infectious entry and that this represents one level of virus restriction. Following virus entry, we demonstrate synthesis of all eight segments of genomic viral RNA (vRNA) and mRNA, as well as seven distinct IAV proteins, in IAV-infected mouse MΦ. Although newly synthesized hemagglutinin (HA) and neuraminidase (NA) glycoproteins are incorporated into the plasma membrane and expressed at the cell surface, electron microscopy confirmed that virus assembly was defective in IAV-infected MΦ, defining a second level of restriction late in the virus life cycle. IMPORTANCE Seasonal influenza A viruses (IAV) and highly pathogenic avian influenza viruses (HPAI) infect macrophages, but only HPAI replicate productively in these cells. Herein, we demonstrate that impaired virus uptake into macrophages represents one level of restriction limiting infection by seasonal IAV. Following uptake, seasonal IAV do not complete productive replication in macrophages, representing a second level of restriction. Using murine macrophages, we demonstrate that productive infection is blocked late in the virus life cycle, such that virus assembly is defective and newly synthesized virions are not released. These studies represent an important step toward identifying host-encoded factors

  8. Live Attenuated Influenza Vaccine Strains Elicit a Greater Innate Immune Response than Antigenically-Matched Seasonal Influenza Viruses during Infection of Human Nasal Epithelial Cell Cultures

    PubMed Central

    Fischer, William A.; Brighton, Missy; Jaspers, Ilona

    2014-01-01

    Influenza viruses are global pathogens that infect approximately 10–20% of the world’s population each year. Vaccines, including the live attenuated influenza vaccine (LAIV), are the best defense against influenza infections. The LAIV is a novel vaccine that actively replicates in the human nasal epithelium and elicits both mucosal and systemic protective immune responses. The differences in replication and innate immune responses following infection of human nasal epithelium with influenza seasonal wild type (WT) and LAIV viruses remain unknown. Using a model of primary differentiated human nasal epithelial cell (hNECs) cultures, we compared influenza WT and antigenically-matched cold adapted (CA) LAIV virus replication and the subsequent innate immune response including host cellular pattern recognition protein expression, host innate immune gene expression, secreted pro-inflammatory cytokine production, and intracellular viral RNA levels. Growth curves comparing virus replication between WT and LAIV strains revealed significantly less infectious virus production during LAIV compared with WT infection. Despite this disparity in infectious virus production the LAIV strains elicited a more robust innate immune response with increased expression of RIG-I, TLR-3, IFNβ, STAT-1, IRF-7, MxA, and IP-10. There were no differences in cytotoxicity between hNEC cultures infected with WT and LAIV strains as measured by basolateral levels of LDH. Elevated levels of intracellular viral RNA during LAIV as compared with WT virus infection of hNEC cultures at 33°C may explain the augmented innate immune response via the up-regulation of pattern recognition receptors and down-stream type I IFN expression. Taken together our results suggest that the decreased replication of LAIV strains in human nasal epithelial cells is associated with a robust innate immune response that differs from infection with seasonal influenza viruses, limits LAIV shedding and plays a role in the

  9. Live attenuated influenza vaccine strains elicit a greater innate immune response than antigenically-matched seasonal influenza viruses during infection of human nasal epithelial cell cultures.

    PubMed

    Fischer, William A; Chason, Kelly D; Brighton, Missy; Jaspers, Ilona

    2014-03-26

    Influenza viruses are global pathogens that infect approximately 10-20% of the world's population each year. Vaccines, including the live attenuated influenza vaccine (LAIV), are the best defense against influenza infections. The LAIV is a novel vaccine that actively replicates in the human nasal epithelium and elicits both mucosal and systemic protective immune responses. The differences in replication and innate immune responses following infection of human nasal epithelium with influenza seasonal wild type (WT) and LAIV viruses remain unknown. Using a model of primary differentiated human nasal epithelial cell (hNECs) cultures, we compared influenza WT and antigenically-matched cold adapted (CA) LAIV virus replication and the subsequent innate immune response including host cellular pattern recognition protein expression, host innate immune gene expression, secreted pro-inflammatory cytokine production, and intracellular viral RNA levels. Growth curves comparing virus replication between WT and LAIV strains revealed significantly less infectious virus production during LAIV compared with WT infection. Despite this disparity in infectious virus production the LAIV strains elicited a more robust innate immune response with increased expression of RIG-I, TLR-3, IFNβ, STAT-1, IRF-7, MxA, and IP-10. There were no differences in cytotoxicity between hNEC cultures infected with WT and LAIV strains as measured by basolateral levels of LDH. Elevated levels of intracellular viral RNA during LAIV as compared with WT virus infection of hNEC cultures at 33°C may explain the augmented innate immune response via the up-regulation of pattern recognition receptors and down-stream type I IFN expression. Taken together our results suggest that the decreased replication of LAIV strains in human nasal epithelial cells is associated with a robust innate immune response that differs from infection with seasonal influenza viruses, limits LAIV shedding and plays a role in the silent

  10. Are Swine Workers in the United States at Increased Risk of Infection with Zoonotic Influenza Virus?

    PubMed Central

    Myers, Kendall P.; Olsen, Christopher W.; Setterquist, Sharon F.; Capuano, Ana W.; Donham, Kelley J.; Thacker, Eileen L.; Merchant, James A.; Gray, Gregory C.

    2006-01-01

    Background Pandemic influenza strains originate in nonhuman species. Pigs have an important role in interspecies transmission of the virus. We examined multiple swine-exposed human populations in the nation's number 1 swine-producing state for evidence of previous swine influenza virus infection. Methods We performed controlled, cross-sectional seroprevalence studies among 111 farmers, 97 meat processing workers, 65 veterinarians, and 79 control subjects using serum samples collected during the period of 2002–2004. Serum samples were tested using a hemagglutination inhibition assay against the following 6 influenza A virus isolates collected recently from pigs and humans: A/Swine/WI/238/97 (H1N1), A/Swine/WI/R33F/01 (H1N2), A/Swine/Minnesota/593/99 (H3N2), A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2), and A/Nanchang/933/95 (H3N2). Results Using multivariable proportional odds modeling, all 3 exposed study groups demonstrated markedly elevated titers against the H1N1 and H1N2 swine influenza virus isolates, compared with control subjects. Farmers had the strongest indication of exposure to swine H1N1 virus infection (odds ratio [OR], 35.3; 95% confidence interval [CI], 7.7–161.8), followed by veterinarians (OR, 17.8; 95% CI, 3.8–82.7), and meat processing workers (OR, 6.5; 95% CI, 1.4–29.5). Similarly, farmers had the highest odds for exposure to swine H1N2 virus (OR, 13.8; 95% CI, 5.4–35.4), followed by veterinarians (OR, 9.5; 95% CI, 3.6–24.6) and meat processing workers (OR, 2.7; 95% CI, 1.1–6.7). Conclusions Occupational exposure to pigs greatly increases workers' risk of swine influenza virus infection. Swine workers should be included in pandemic surveillance and in antiviral and immunization strategies. PMID:16323086

  11. Antimicrobial peptides alter early immune response to influenza A virus infection in C57BL/6 mice.

    PubMed

    LeMessurier, Kim S; Lin, Yanyan; McCullers, Jonathan A; Samarasinghe, Amali E

    2016-09-01

    Influenza is a disease of the respiratory system caused by single stranded RNA viruses with varying genotypes. Immunopathogenesis to influenza viruses differs based on virus strain, dose, and mouse strain used in laboratory models. Although effective mucosal immune defenses are important in early host defense against influenza, information on the kinetics of these immune defense mechanisms during the course of influenza infection is limited. We investigated changes to antimicrobial peptides and primary innate immune cells at early time points after infection and compared these variables between two prominent H1N1 influenza A virus (IAV) strains, A/CA/04/2009 and A/PR/08/1934 in C57BL/6 mice. Alveolar and parenchymal macrophage ratios were altered after IAV infection and pro-inflammatory cytokine production in macrophages was induced after IAV infection. Genes encoding antimicrobial peptides, β-defensin (Defb4), bactericidal-permeability increasing protein (Bpifa1), and cathelicidin antimicrobial peptide (Camp), were differentially regulated after IAV infection and the kinetics of Defb4 expression differed in response to each virus strain. Beta-defensin reduced infectivity of A/CA/04/2009 virus but not A/PR/08/1934. Beta defensins also changed the innate immune cell profile wherein mice pre-treated with β-defensin had increased alveolar macrophages and CD103(+) dendritic cells, and reduced CD11b(+) dendritic cells and neutrophils. In addition to highlighting that immune responses may vary based on influenza virus strain used, our data suggest an important role for antimicrobial peptides in host defense against influenza virus. PMID:27531368

  12. Antimicrobial peptides alter early immune response to influenza A virus infection in C57BL/6 mice.

    PubMed

    LeMessurier, Kim S; Lin, Yanyan; McCullers, Jonathan A; Samarasinghe, Amali E

    2016-09-01

    Influenza is a disease of the respiratory system caused by single stranded RNA viruses with varying genotypes. Immunopathogenesis to influenza viruses differs based on virus strain, dose, and mouse strain used in laboratory models. Although effective mucosal immune defenses are important in early host defense against influenza, information on the kinetics of these immune defense mechanisms during the course of influenza infection is limited. We investigated changes to antimicrobial peptides and primary innate immune cells at early time points after infection and compared these variables between two prominent H1N1 influenza A virus (IAV) strains, A/CA/04/2009 and A/PR/08/1934 in C57BL/6 mice. Alveolar and parenchymal macrophage ratios were altered after IAV infection and pro-inflammatory cytokine production in macrophages was induced after IAV infection. Genes encoding antimicrobial peptides, β-defensin (Defb4), bactericidal-permeability increasing protein (Bpifa1), and cathelicidin antimicrobial peptide (Camp), were differentially regulated after IAV infection and the kinetics of Defb4 expression differed in response to each virus strain. Beta-defensin reduced infectivity of A/CA/04/2009 virus but not A/PR/08/1934. Beta defensins also changed the innate immune cell profile wherein mice pre-treated with β-defensin had increased alveolar macrophages and CD103(+) dendritic cells, and reduced CD11b(+) dendritic cells and neutrophils. In addition to highlighting that immune responses may vary based on influenza virus strain used, our data suggest an important role for antimicrobial peptides in host defense against influenza virus.

  13. In Vivo Bioluminescent Imaging of Influenza A Virus Infection and Characterization of Novel Cross-Protective Monoclonal Antibodies

    PubMed Central

    Heaton, Nicholas S.; Leyva-Grado, Victor H.; Tan, Gene S.; Eggink, Dirk; Hai, Rong

    2013-01-01

    Influenza A virus is a major human pathogen responsible for seasonal epidemics as well as pandemic outbreaks. Due to the continuing burden on human health, the need for new tools to study influenza virus pathogenesis as well as to evaluate new therapeutics is paramount. We report the development of a stable, replication-competent luciferase reporter influenza A virus that can be used for in vivo imaging of viral replication. This imaging is noninvasive and allows for the longitudinal monitoring of infection in living animals. We used this tool to characterize novel monoclonal antibodies that bind the conserved stalk domain of the viral hemagglutinin of H1 and H5 subtypes and protect mice from lethal disease. The use of luciferase reporter influenza viruses allows for new mechanistic studies to expand our knowledge of virus-induced disease and provides a new quantitative method to evaluate future antiviral therapies. PMID:23698304

  14. Avian Influenza A(H7N9) Virus Infection in 2 Travelers Returning from China to Canada, January 20151

    PubMed Central

    Chambers, Catharine; Gustafson, Reka; Purych, Dale B.; Tang, Patrick; Bastien, Nathalie; Krajden, Mel; Li, Yan

    2016-01-01

    In January 2015, British Columbia, Canada, reported avian influenza A(H7N9) virus infection in 2 travelers returning from China who sought outpatient care for typical influenza-like illness. There was no further spread, but serosurvey findings showed broad population susceptibility to H7N9 virus. Travel history and timely notification are critical to emerging pathogen detection and response. PMID:26689320

  15. Sequential Infection in Ferrets with Antigenically Distinct Seasonal H1N1 Influenza Viruses Boosts Hemagglutinin Stalk-Specific Antibodies

    PubMed Central

    Kirchenbaum, Greg A.; Carter, Donald M.

    2015-01-01

    ABSTRACT Broadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus. IMPORTANCE The influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses

  16. Clinical features of hospitalised children with 2009 H1N1 influenza virus infection.

    PubMed

    Calitri, Carmelina; Gabiano, Clara; Garazzino, Silvia; Pinon, Michele; Zoppo, Marisa; Cuozzo, Margherita; Scolfaro, Carlo; Tovo, Pier-Angelo

    2010-12-01

    Clinical features and outcome of 2009 H1N1 influenza virus in the paediatric setting is ill-defined. The epidemiologic and clinical features of children with confirmed H1N1 influenza virus infection admitted to an Italian tertiary paediatric hospital from August through December 2009 were evaluated. A total of 63 children (mean age 4.3 years) were studied; of these, 29 (46%) had chronic underlying diseases. The most frequent symptoms and signs at admission were fever (97%), cough (60%) and respiratory disturbances (24%). Forty patients (63.5%) had H1N1-related complications: 32 (51%) pulmonary diseases, three (5%) neurological disorders, such as acute encephalitis or acute disseminated encephalomyelitis, and two (3%) haematological alterations. Three patients were admitted to the Intensive Care Unit. Most children (81%) were treated with oseltamivir: one developed rash during treatment; no other adverse events were noticed. All children survived without sequelae. In conclusions, 2009 H1N1 influenza virus infection in children is associated with a wide spectrum of clinical manifestations. Neurological disorders are not exceptional complications. Oseltamivir therapy seems safe also in infants. PMID:20652313

  17. Characterization of the Localized Immune Response in the Respiratory Tract of Ferrets following Infection with Influenza A and B Viruses

    PubMed Central

    Carolan, Louise A.; Rockman, Steve; Borg, Kathryn; Guarnaccia, Teagan; Reading, Patrick; Mosse, Jennifer; Kelso, Anne; Barr, Ian

    2015-01-01

    ABSTRACT The burden of infection with seasonal influenza viruses is significant. Each year is typically characterized by the dominance of one (sub)type or lineage of influenza A or B virus, respectively. The incidence of disease varies annually, and while this may be attributed to a particular virus strain or subtype, the impacts of prior immunity, population differences, and variations in clinical assessment are also important. To improve our understanding of the impacts of seasonal influenza viruses, we directly compared clinical symptoms, virus shedding, and expression of cytokines, chemokines, and immune mediators in the upper respiratory tract (URT) of ferrets infected with contemporary A(H1N1)pdm09, A(H3N2), or influenza B virus. Gene expression in the lower respiratory tract (LRT) was also assessed. Clinical symptoms were minimal. Overall cytokine/chemokine profiles in the URT were consistent in pattern and magnitude between animals infected with influenza A and B viruses, and peak expression levels of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12p40, alpha interferon (IFN-α), IFN-β, and tumor necrosis factor alpha (TNF-α) mRNAs correlated with peak levels of viral shedding. MCP1 and IFN-γ were expressed after the virus peak. Granzymes A and B and IL-10 reached peak expression as the virus was cleared and seroconversion was detected. Cytokine/chemokine gene expression in the LRT following A(H1N1)pdm09 virus infection reflected the observations seen for the URT but was delayed 2 or 3 days, as was virus replication. These data indicate that disease severities and localized immune responses following infection with seasonal influenza A and B viruses are similar, suggesting that other factors are likely to modulate the incidence and impact of seasonal influenza. IMPORTANCE Both influenza A and B viruses cocirculate in the human population, and annual influenza seasons are typically dominated by an influenza A virus subtype or an influenza B virus lineage

  18. Detection and typing of human-infecting influenza viruses in China by using a multiplex DNA biochip assay.

    PubMed

    Wang, Yongqiang; Qu, Jiuxin; Ba, Qi; Dong, Jiuhong; Zhang, Liang; Zhang, Hong; Wu, Aiping; Wang, Dayan; Xia, Zanxian; Peng, Daxin; Shu, Yuelong; Cao, Bin; Jiang, Taijiao

    2016-08-01

    Rapid identification of the infections of specific subtypes of influenza viruses is critical for patient treatment and pandemic control. Here we report the application of multiplex reverse transcription polymerase chain reaction (RT-PCR) coupled with membrane-based DNA biochip to the detection and discrimination of the type (A and B) and subtype (human H1N1, human H3N2, avian H5N1 and avian H7N9) of influenza viruses in circulation in China. A multiplex one-step RT-PCR assay was designed to simultaneously amplify the HA and NA genes of the four subtypes of influenza A viruses and NS genes to discriminate type A and B viruses. PCR products were analyzed by a membrane-based biochip. The analytical sensitivity of the assay was determined at a range of 2-100 copies/reactions for each of the gene transcripts. Eighty one clinical samples, containing 66 positive samples with evident seasonal influenza virus infections, were tested, which gives the clinical sensitivity and specificity of 95.5% and 100% respectively. For the avian influenza samples, 3 out of 4 H5N1 samples and 2 out of 2 H7N9 avian samples were correctly identified. We argue this method could allow a rapid, reliable and inexpensive detection and differentiation of human-infecting influenza viruses. PMID:27150046

  19. Molecular Signatures Associated with Mx1-Mediated Resistance to Highly Pathogenic Influenza Virus Infection: Mechanisms of Survival

    PubMed Central

    Cilloniz, Cristian; Pantin-Jackwood, Mary J.; Ni, Chester; Carter, Victoria S.; Korth, Marcus J.; Swayne, David E.; Tumpey, Terrence M.

    2012-01-01

    Understanding the role of host factors during lethal influenza virus infection is critical to deciphering the events that determine the fate of the host. One such factor is encoded by the Mx1 gene, which confers resistance to influenza virus infection. Here, we compared pathology and global gene expression profiles in lung tissue from BALB/c (Mx1−) and BALB · A2G-Mx1 mice (Mx1+/+) infected with the fully reconstructed 1918 pandemic influenza virus. Mx1+/+ mice showed less tissue damage than Mx− animals, and pathology and mortality were further reduced by treating the mice with interferon prior to infection. Using global transcriptional profiling, we identified distinct molecular signatures associated with partial protection, complete protection, and the contribution of interferon to the host response. In the absence of interferon treatment, partial protection was characterized by the generation of an acute response with the upregulation of genes associated with apoptosis, reactive oxygen species, and cell migration. Complete protection was characterized by the downregulation of cytokine and chemokine genes previously associated with influenza virus pathogenesis. The contribution of interferon treatment to total protection in virus-infected Mx1+/+ mice was characterized by the altered regulation of cell cycle genes. These genes were upregulated in Mx1+/+ mice treated with interferon but downregulated in the absence of interferon treatment. Our results suggest that Mx1+/+ mice generate a protective antiviral response by controlling the expression of key modulator molecules associated with influenza virus lethality. PMID:22190720

  20. Identification of the IFN-β response in H3N2 canine influenza virus infection.

    PubMed

    Su, Shuo; Huang, San; Fu, Cheng; Wang, Lifang; Zheng, Yun; Zhou, Pei; Li, Shoujun

    2016-01-01

    Canine influenza viruses (CIVs) circulate continuously in the dog population, providing opportunities for exposure to humans and other species. Although the dog genome has been sequenced, innate immunity in dogs is not well characterized, which limits the understanding of H3N2 canine influenza virus pathogenesis. Equally, how this virus evades the canine host innate immune response to successfully establish infection remains unclear. To analyse the IFN-β response to CIV infection in Madin-Darby canine kidney cells, the canine IFN-β promoter sequence and its positive regulatory domain motifs were first cloned and identified using a luciferase reporter system. Next, we found that infection with the CIV strain GD/12 blocked the IFN-β response primarily by inhibiting the NF-κB and IFN regulatory factor 3 (IRF3) signalling pathways. Expression of GD/12 non-structural protein 1 alone was sufficient to inhibit Sendai virus-induced NF-κB and IRF3 activation by suppressing p65 and IRF3 phosphorylation, suggesting the important role of this protein in the CIV-mediated inhibition of the IFN-β response. These results suggest that inhibition of the IFN-β signalling pathway may have played a role in CIV establishment and spread in dog populations. PMID:26490006

  1. Identification of the IFN-β response in H3N2 canine influenza virus infection.

    PubMed

    Su, Shuo; Huang, San; Fu, Cheng; Wang, Lifang; Zheng, Yun; Zhou, Pei; Li, Shoujun

    2016-01-01

    Canine influenza viruses (CIVs) circulate continuously in the dog population, providing opportunities for exposure to humans and other species. Although the dog genome has been sequenced, innate immunity in dogs is not well characterized, which limits the understanding of H3N2 canine influenza virus pathogenesis. Equally, how this virus evades the canine host innate immune response to successfully establish infection remains unclear. To analyse the IFN-β response to CIV infection in Madin-Darby canine kidney cells, the canine IFN-β promoter sequence and its positive regulatory domain motifs were first cloned and identified using a luciferase reporter system. Next, we found that infection with the CIV strain GD/12 blocked the IFN-β response primarily by inhibiting the NF-κB and IFN regulatory factor 3 (IRF3) signalling pathways. Expression of GD/12 non-structural protein 1 alone was sufficient to inhibit Sendai virus-induced NF-κB and IRF3 activation by suppressing p65 and IRF3 phosphorylation, suggesting the important role of this protein in the CIV-mediated inhibition of the IFN-β response. These results suggest that inhibition of the IFN-β signalling pathway may have played a role in CIV establishment and spread in dog populations.

  2. Antiviral activity of acidic polysaccharides from Coccomyxa gloeobotrydiformi, a green alga, against an in vitro human influenza A virus infection.

    PubMed

    Komatsu, Takayuki; Kido, Nobuo; Sugiyama, Tsuyoshi; Yokochi, Takashi

    2013-02-01

    The extracts prepared from green algae are reported to possess a variety of biological activities including antioxidant, antitumor and antiviral activities. The acidic polysaccharide fraction from a green alga Coccomyxa gloeobotrydiformi (CmAPS) was isolated and the antiviral action on an in vitro infection of influenza A virus was examined. CmAPS inhibited the growth and yield of all influenza A virus strains tested, such as A/H1N1, A/H2N2, A/H3N2 and A/H1N1 pandemic strains. The 50% inhibitory concentration of CmAPS on the infection of human influenza A virus strains ranged from 26 to 70 µg/mL and the antiviral activity of CmAPS against influenza A/USSR90/77 (H1N1) was the strongest. The antiviral activity of CmAPS was not due to the cytotoxicity against host cells. The antiviral activity of CmAPS required its presence in the inoculation of virus onto MDCK cells. Pretreatment and post-treatment with CmAPS was ineffective for the antiviral activity. CmAPS inhibited influenza A virus-induced erythrocyte hemagglutination and hemolysis. Taken together, CmAPS was suggested to exhibit the anti-influenza virus activity through preventing the interaction of virus and host cells. The detailed antiviral activity of CmAPS is discussed.

  3. Restricted Infectivity of a Human-Lineage H3N2 Influenza A Virus in Pigs Is Hemagglutinin and Neuraminidase Gene Dependent

    PubMed Central

    Landolt, Gabriele A.; Karasin, Alexander I.; Schutten, Melissa M.; Olsen, Christopher W.

    2006-01-01

    Influenza A viruses cause pandemics at sporadic intervals. Pandemic viruses can potentially be introduced into the human population through in toto transfer of an avian influenza virus or through reassortment between avian and human strains. Pigs are believed to play a central role in the creation of pandemic viruses through reassortment because of their susceptibility to infection with both avian and human influenza viruses. However, we recently found that a human-lineage H3N2 influenza virus was highly restricted in its ability to infect pigs after intranasal inoculation. We hypothesized that this restricted infectivity phenotype was controlled by the hemagglutinin (HA) and neuraminidase (NA). To test this, we infected pigs with reverse genetics-created HA plus NA reassortant viruses. Specifically, introduction of the HA and NA genes of a contemporary H3N2 swine virus into the genetic background of the wholly human virus resulted in a significant increase in virus shedding and pathogenicity. These data indicate that the HA/NA can play important roles in controlling human influenza virus infectivity in pigs. The results further support the premise that a barrier exists to human influenza virus infection in pigs, which may limit the role of pigs in pandemic virus creation through reassortment of human and avian influenza viruses. PMID:16455873

  4. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    SciTech Connect

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-04-11

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism.

  5. Effects of rutin and quercetin on monooxygenase activities in experimental influenza virus infection.

    PubMed

    Savov, Varban M; Galabov, Angel S; Tantcheva, Lyubka P; Mileva, Milka M; Pavlova, Elitsa L; Stoeva, Emilia S; Braykova, Ana A

    2006-08-01

    The aim of this work is to study the effect of the flavonoids rutin and quercetin on hepatic monooxygenase activities in experimental influenza virus infection (EIVI). EIVI causes oxidative stress in the whole organism. This is confirmed by the rapidly increased concentrations of thiobarbituric reactive substances in influenza-infected mice: lungs - 290%; blood plasma - more than 320%; liver - 230%; brain - 50%. Although known for their antioxidant activities, rutin and quercetin exhibit prooxidant effect in healthy and antioxidant activity in influenza-infected animals. The pretreatment with both flavonoids (20 mg/kg b.w.) restores oxidative damage mostly in the target organ of the infection as well as in the liver of all infected mice (lungs: rutin - 30%, quercetin - 40%, combination - 45%; liver: rutin - 12%; quercetin - 40%; combination - 50%). As far as EIVI causes oxidative stress, toxicosis and inhibition of the hepatic monooxygenase activity, it is important to study the effects of rutin and quercetin on these systems. Both flavonoids induce the level of cytochrome P-450 (rutin - 13%, quercetin - 30%, combination - 22%) but inactivate NADPH-cytochrome c reductase, aminopyrine N-demethylase and analgin N-demethylase on the 5th day of EIVI. Probably, these flavonoids affect different components of the monooxygenase system. These effects could be explained with oxidative hepatic intoxication on the 5th critical day of EIVI as well as higher dose treatment. More data are needed on the antioxidant/prooxidant effects of rutin and quercetin, probably due to specific metabolic and physiological activities, chemical structure, etc.

  6. Genetic and pathobiologic characterization of pandemic H1N1 2009 influenza viruses from a naturally infected swine herd.

    PubMed

    Weingartl, Hana M; Berhane, Yohannes; Hisanaga, Tamiko; Neufeld, James; Kehler, Helen; Emburry-Hyatt, Carissa; Hooper-McGreevy, Kathleen; Kasloff, Samantha; Dalman, Brett; Bystrom, Jan; Alexandersen, Soren; Li, Yan; Pasick, John

    2010-03-01

    Since its initial identification in Mexico and the United States, concerns have been raised that the novel H1N1 influenza virus might cause a pandemic of severity comparable to that of the 1918 pandemic. In late April 2009, viruses phylogenetically related to pandemic H1N1 influenza virus were isolated from an outbreak on a Canadian pig farm. This outbreak also had epidemiological links to a suspected human case. Experimental infections carried out in pigs using one of the swine isolates from this outbreak and the human isolate A/Mexico/InDRE4487/2009 showed differences in virus recovery from the lower respiratory tract. Virus was consistently isolated from the lungs of pigs infected with A/Mexico/InDRE4487/2009, while only one pig infected with A/swine/Alberta/OTH-33-8/2008 yielded live virus from the lung, despite comparable amounts of viral RNA and antigen in both groups of pigs. Clinical disease resembled other influenza virus infections in swine, albeit with somewhat prolonged virus antigen detection and delayed viral-RNA clearance from the lungs. There was also a noteworthy amount of genotypic variability among the viruses isolated from the pigs on the farm. This, along with the somewhat irregular pathobiological characteristics observed in experimentally infected animals, suggests that although the virus may be of swine origin, significant viral evolution may still be ongoing.

  7. H7N9 Influenza Virus Is More Virulent in Ferrets than 2009 Pandemic H1N1 Influenza Virus.

    PubMed

    Yum, Jung; Ku, Keun Bon; Kim, Hyun Soo; Seo, Sang Heui

    2015-12-01

    The novel H7N9 influenza virus has been infecting humans in China since February 2013 and with a mortality rate of about 40%. This study compared the pathogenicity of the H7N9 and 2009 pandemic H1N1 influenza viruses in a ferret model, which shows similar symptoms to those of humans infected with influenza viruses. The H7N9 influenza virus caused a more severe disease than did the 2009 pandemic H1N1 influenza virus. All of the ferrets infected with the H7N9 influenza virus had died by 6 days after infection, while none of those infected with the 2009 pandemic H1N1 influenza virus died. Ferrets infected with the H7N9 influenza virus had higher viral titers in their lungs than did those infected with the 2009 pandemic H1N1 influenza virus. Histological findings indicated that hemorrhagic pneumonia was caused by infection with the H7N9 influenza virus, but not with the 2009 pandemic H1N1 influenza virus. In addition, the lung tissues of ferrets infected with the H7N9 influenza virus contained higher levels of chemokines than did those of ferrets infected with the 2009 pandemic H1N1 influenza virus. This study suggests that close monitoring is needed to prevent human infection by the lethal H7N9 influenza virus.

  8. Prevalence and risk factors for H1N1 and H3N2 influenza A virus infections in Minnesota turkey premises.

    PubMed

    Corzo, Cesar A; Gramer, Marie; Lauer, Dale; Davies, Peter R

    2012-09-01

    Influenza virus infections can cause respiratory and systemic disease of variable severity and also result in economic losses for the turkey industry. Several subtypes of influenza can infect turkeys, causing diverse clinical signs. Influenza subtypes of swine origin have been diagnosed in turkey premises; however, it is not known how common these infections are nor the likely routes of transmission. We conducted a cross-sectional study to estimate the prevalence of influenza viruses and examine factors associated with infection on Minnesota turkey premises. Results from influenza diagnostic tests and turkey and pig premise location data were obtained from the Minnesota Poultry Testing Laboratory and the Minnesota Board of Animal Health, respectively, from January 2007 to September 2008. Diagnostic data from 356 premises were obtained, of which 17 premises tested positive for antibodies to influenza A virus by agar gel immunodiffusion assay and were confirmed as either H1N1 or H3N2 influenza viruses by hemagglutination and neuraminidase inhibition assays. Influenza infection status was associated with proximity to pig premises and flock size. The latter had a sparing effect on influenza status. This study suggests that H1N1 and H3N2 influenza virus infections of turkey premises in Minnesota are an uncommon event. The route of influenza virus transmission could not be determined; however, the findings suggest that airborne transmission should be considered in future studies.

  9. Humans and Ferrets with Prior H1N1 Influenza Virus Infections Do Not Exhibit Evidence of Original Antigenic Sin after Infection or Vaccination with the 2009 Pandemic H1N1 Influenza Virus

    PubMed Central

    O'Donnell, Christopher D.; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J.

    2014-01-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus. PMID:24648486

  10. Chemoenzymatic synthesis of sialoglycopolypeptides as glycomimetics to block infection by avian and human influenza viruses.

    PubMed

    Ogata, Makoto; Hidari, Kazuya I P J; Murata, Takeomi; Shimada, Shizumi; Kozaki, Wataru; Park, Enoch Y; Suzuki, Takashi; Usui, Taichi

    2009-03-18

    We designed a series of gamma-polyglutamic acid (gamma-PGA)-based glycopolypeptides carrying long/short alpha2,3/6 sialylated glycans to act inhibitors of the influenza virus. As an alternative design, sialoglycopolypeptides carrying long-spacer linked glycans were engineered by replacement of the N-acetyllactosamine (LN) unit by an alkyl chain. The structure-activity relationship of the resulting sialoglycopolypeptides with different glycans in the array has been investigated by in vitro and in vivo infection experiments. The avian viruses specifically bound to glycopolypeptides carrying a short sialoglycan with higher affinity than to a long glycan. In contrast, human viruses, preferentially bound not only to long alpha2,3/6 sialylated glycan with LN repeats in the receptors, but also to more spacer-linked glycan in which the inner sugar has been replaced by a nonsugar structural unit such as a pentylamido group. Taken together, our results indicate that a spaced tandem/triplet pentylamido repeat is a good mimetic of a tandem/triplet LN repeat. Our strategy provides a facile way to design strong polymeric inhibitors of infection by avian and human influenza viruses.

  11. Metabolism and expression of RNA polymerase II transcripts in Influenza virus-infected cells

    SciTech Connect

    Katze, M.G.; Krug, R.M.

    1984-10-01

    Influenza virus infection has adverse effects on the metabolism of two representative RNA polymerase II transcripts in chicken embryo fibroblasts, those coding for BETA-actin and for avian leukosis virus (ALV) proteins. Proviral ALV DNA was integrated into host cell DNA by prior infection with ALV. By S1 endonuclease assay, it was confirmed that nuclear ALV transcripts disappeared very early after infection, already decreasing ca. 80% by 1 h postinfection. A plausible explanation for this nuclear degradation is that the viral cap-dependent endonuclease in the nucleas cleaves the 5' ends of new polymerase II transcripts, rendering the resulting decapped RNAs susceptible to hydrolysis by cellular nucleases. Similar stability of cytoplasmic host cell mRNAs was observed in infected HeLa cells, in which the levels of actin mRNA and two HeLa cell mRNAs (pHe 7 and pHe 28) remained at undiminished levels for 3 h of infection and decreased only slightly by 4.5 h postinfection. The cytoplamic actin and pHe 7 mRNAs isolated from infected HeLa cells were shown to be translated in reticulocyte extracts in biro, indicating that host mRNAs were not inactivated by a virus-induced modification. Despite the continued presence of high levels of functional host cell mRNAs, host cell protein synthesis was effectively shut off by about 3 h postinfection in both chicken embryo fibroblasts and HeLa cells. These results are consistent with the establishment of an influenza virus-specific translational system that selectively translates viral and not host mRNAs.

  12. STUDIES ON THE NASAL HISTOLOGY OF EPIDEMIC INFLUENZA VIRUS INFECTION IN THE FERRET

    PubMed Central

    Francis, Thomas; Stuart-Harris, C. H.

    1938-01-01

    A study has been made of the nasal histology in normal ferrets and in ferrets during and after infection with epidemic influenza virus. During the acute stage of infection the respiratory epithelium of the nasal mucous membrane undergoes necrosis with desquamation of the superficial cells and exudation into the air passages, and an inflammatory reaction occurs in the submucosa. Repair begins on the 4th day after infection, and from the 6th to the 14th day the respiratory area is covered successively by a transitional, a stratified squamous, and finally a stratified columnar epithelium. By the 21st day after infection the epithelium has been largely restored to normal but repair in the submucosa and cartilage is still in progress. The respiratory mucosa is substantially normal in structure 1 month after infection although minor abnormalities of cellular arrangement and type can still be distinguished. PMID:19870817

  13. Transmission of influenza A viruses.

    PubMed

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-05-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  14. Transmission of Influenza A Viruses

    PubMed Central

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  15. Serological Evidence of Pandemic H1N1 Influenza Virus Infections in Greek Swine.

    PubMed

    Kyriakis, C S; Papatsiros, V G; Athanasiou, L V; Valiakos, G; Brown, I H; Simon, G; Van Reeth, K; Tsiodras, S; Spyrou, V; Billinis, C

    2016-08-01

    The introduction of the 2009 pandemic H1N1 (pH1N1) influenza virus in pigs changed the epidemiology of influenza A viruses (IAVs) in swine in Europe and the rest of the world. Previously, three IAV subtypes were found in the European pig population: an avian-like H1N1 and two reassortant H1N2 and H3N2 viruses with human-origin haemagglutinin (HA) and neuraminidase proteins and internal genes of avian decent. These viruses pose antigenically distinct HAs, which allow the retrospective diagnosis of infection in serological investigations. However, cross-reactions between the HA of pH1N1 and the HAs of the other circulating H1 IAVs complicate serological diagnosis. The prevalence of IAVs in Greek swine has been poorly investigated. In this study, we examined and compared haemagglutination inhibition (HI) antibody titres against previously established IAVs and pH1N1 in 908 swine sera from 88 herds, collected before and after the 2009 pandemic. While we confirmed the historic presence of the three IAVs established in European swine, we also found that 4% of the pig sera examined after 2009 had HI antibodies only against the pH1N1 virus. Our results indicate that pH1N1 is circulating in Greek pigs and stress out the importance of a vigorous virological surveillance programme. PMID:26477456

  16. Serological Evidence of Pandemic H1N1 Influenza Virus Infections in Greek Swine.

    PubMed

    Kyriakis, C S; Papatsiros, V G; Athanasiou, L V; Valiakos, G; Brown, I H; Simon, G; Van Reeth, K; Tsiodras, S; Spyrou, V; Billinis, C

    2016-08-01

    The introduction of the 2009 pandemic H1N1 (pH1N1) influenza virus in pigs changed the epidemiology of influenza A viruses (IAVs) in swine in Europe and the rest of the world. Previously, three IAV subtypes were found in the European pig population: an avian-like H1N1 and two reassortant H1N2 and H3N2 viruses with human-origin haemagglutinin (HA) and neuraminidase proteins and internal genes of avian decent. These viruses pose antigenically distinct HAs, which allow the retrospective diagnosis of infection in serological investigations. However, cross-reactions between the HA of pH1N1 and the HAs of the other circulating H1 IAVs complicate serological diagnosis. The prevalence of IAVs in Greek swine has been poorly investigated. In this study, we examined and compared haemagglutination inhibition (HI) antibody titres against previously established IAVs and pH1N1 in 908 swine sera from 88 herds, collected before and after the 2009 pandemic. While we confirmed the historic presence of the three IAVs established in European swine, we also found that 4% of the pig sera examined after 2009 had HI antibodies only against the pH1N1 virus. Our results indicate that pH1N1 is circulating in Greek pigs and stress out the importance of a vigorous virological surveillance programme.

  17. New aspects of influenza viruses.

    PubMed Central

    Shaw, M W; Arden, N H; Maassab, H F

    1992-01-01

    Influenza virus infections continue to cause substantial morbidity and mortality with a worldwide social and economic impact. The past five years have seen dramatic advances in our understanding of viral replication, evolution, and antigenic variation. Genetic analyses have clarified relationships between human and animal influenza virus strains, demonstrating the potential for the appearance of new pandemic reassortants as hemagglutinin and neuraminidase genes are exchanged in an intermediate host. Clinical trials of candidate live attenuated influenza virus vaccines have shown the cold-adapted reassortants to be a promising alternative to the currently available inactivated virus preparations. Modern molecular techniques have allowed serious consideration of new approaches to the development of antiviral agents and vaccines as the functions of the viral genes and proteins are further elucidated. The development of techniques whereby the genes of influenza viruses can be specifically altered to investigate those functions will undoubtedly accelerate the pace at which our knowledge expands. PMID:1310439

  18. Effect of a plant polyphenol-rich extract on the lung protease activities of influenza-virus-infected mice.

    PubMed

    Serkedjieva, Julia; Toshkova, Reneta; Antonova-Nikolova, Stefka; Stefanova, Tsvetanka; Teodosieva, Ani; Ivanova, Iskra

    2007-01-01

    Influenza infection was induced in white mice by intranasal inoculation of the virus A/Aichi/2/68 (H3N2). The lung protease and the protease-inhibitory activities were followed for 9 days after infection. The intranasal application of a polyphenol-rich extract (PC) isolated from Geranium sanguineum L. induced a continuous rise in the anti-protease activity but did not cause substantial changes in the lung protease activity of healthy mice. Influenza virus infection triggered a slight reduction in protease activity in the lungs at 5 and 48 h post infection (p.i.) and a marked increase at 24 h and 6 day p.i.. Protease inhibition in the lungs was reduced at 24 and 48 h p.i. and an increase was observed at 5 h and 6 and 9 days p.i.. PC treatment brought both activities to normal levels. The restoration of the examined parameters was consistent with a prolongation of mean survival time and reduction of mortality rate, infectious virus titre and lung consolidation. PC reinstated superoxide production by alveolar macrophages and increased their number in virus-infected mice. The favourable effect on the protease and the protease-inhibitory activities in the lungs of influenza-virus-infected mice apparently contributes to the overall protective effect of PC in the murine experimental influenza A/Aichi infection. The antiviral effect of the individual constituents was evaluated. PMID:17542152

  19. Pathology of highly pathogenic avian influenza virus (H5N1) infection in Canada geese (Branta canadensis): preliminary studies.

    PubMed

    Neufeld, J L; Embury-Hyatt, C; Berhane, Y; Manning, L; Ganske, S; Pasick, J

    2009-09-01

    Susceptibility of Canada geese (Branta canadensis) to highly pathogenic avian influenza (HPAI) virus (H5N1) infection was studied by inoculating 10 naïve (antibody-negative) animals (5 adults and 5 juveniles) with A/chicken/Vietnam/14/05 (H5N1) virus. In the adults, 1 of 5 became infected, and 4 of 5 remained normal; in the juvenile group, 5 of 5 became infected. The pathology observed in the affected animals was similar to that reported in natural occurrences. Peripheral and parasympathetic nervous systems were examined and found infected, as well as cerebrospinal fluid-contacting neurons. In some locations with significant virus infection in cells, the expected inflammatory reaction was absent or very mild. Immunohistochemistry was used to locate influenza A virus nucleoprotein in brain, spinal cord, respiratory and digestive systems, pancreas, heart, and peripheral and parasympathetic nervous systems. Further studies are needed to explain age-related differences in susceptibility.

  20. Characterization of human influenza A (H5N1) virus infection in mice: neuro-, pneumo- and adipotropic infection.

    PubMed

    Nishimura, H; Itamura, S; Iwasaki, T; Kurata, T; Tashiro, M

    2000-10-01

    Mice (ddY strain, 4 weeks old) were infected intranasally with the H5N1 influenza viruses A/Hong Kong/156/97 (HK156) and A/Hong Kong/483/97 (HK483) isolated from humans. HK156 and HK483 required 200 and 5 p.f.u. of virus, respectively, to give a 50% lethal dose to the mice when the volume of inoculum was set at 10 microl. Both viruses caused encephalitis and severe bronchopneumonia in infected mice. The severity of lung lesions caused by the viruses was essentially similar, whereas HK483 caused more extensive lesions in the brain than did HK156. This was supported by the results of virus titration of organ homogenates, which showed that the virus titres in brains of HK483-infected mice were more than 100-fold higher than those of HK156-infected mice, while those in lungs were almost equivalent. Both viruses were detected in homogenates of the heart, liver, spleen and kidney and blood of the infected mice. Virus antigen was detected by immunohistology in the heart and liver, albeit sporadically, but caused no degenerative change in these organs. The antigen was not detected in the thymus, spleen, pancreas, kidney or gastrointestinal tract. In contrast, virus antigen was found frequently in adipose tissues attached to those organs. The adipose tissues showed severe degenerative change and the virus titres in the tissues were high and comparable to those in lungs. Thus, infection of HK156 and HK483 in our mouse model was pneumo-, neuro- and adipotropic, but not pantropic. Furthermore, HK483 showed higher neurotropism than HK156, which may account for its higher lethality.

  1. Persistence of avian influenza virus (H5N1) in feathers detached from bodies of infected domestic ducks.

    PubMed

    Yamamoto, Yu; Nakamura, Kikuyasu; Yamada, Manabu; Mase, Masaji

    2010-08-01

    Asian lineage highly pathogenic avian influenza virus (H5N1) continues to cause mortality in poultry and wild bird populations at a panzootic scale. However, little is known about its persistence in contaminated tissues derived from infected birds. We investigated avian influenza virus (H5N1) persistence in feathers detached from bodies of infected ducks to evaluate their potential risk for environmental contamination. Four-week-old domestic ducks were inoculated with different clades of avian influenza virus (H5N1). Feathers, drinking water, and feces were collected on day 3 postinoculation and stored at 4 degrees C or 20 degrees C. Viral persistence in samples was investigated for 360 days by virus isolation and reverse transcription-PCR. Infectious viruses persisted for the longest period in feathers, compared with drinking water and feces, at both 4 degrees C and 20 degrees C. Viral infectivity persisted in the feathers for 160 days at 4 degrees C and for 15 days at 20 degrees C. Viral titers of 10(4.3) 50% egg infectious doses/ml or greater were detected for 120 days in feathers stored at 4 degrees C. Viral RNA in feathers was more stable than the infectivity. These results indicate that feathers detached from domestic ducks infected with highly pathogenic avian influenza virus (H5N1) can be a source of environmental contamination and may function as fomites with high viral loads in the environment.

  2. Increased Number of Human Cases of Influenza Virus A(H5N1) Infection, Egypt, 2014-15.

    PubMed

    Refaey, Samir; Azziz-Baumgartner, Eduardo; Amin, Marwa Mohamed; Fahim, Manal; Roguski, Katherine; Elaziz, Hanaa Abu Elsood Abd; Iuliano, A Danielle; Salah, Noha; Uyeki, Timothy M; Lindstrom, Steven; Davis, Charles Todd; Eid, Alaa; Genedy, Mohamed; Kandeel, Amr

    2015-12-01

    During November 2014-April 2015, a total of 165 case-patients with influenza virus A(H5N1) infection, including 6 clusters and 51 deaths, were identified in Egypt. Among infected persons, 99% reported poultry exposure: 19% to ill poultry and 35% to dead poultry. Only 1 person reported wearing personal protective equipment while working with poultry. PMID:26584397

  3. Increased Number of Human Cases of Influenza Virus A(H5N1) Infection, Egypt, 2014-15.

    PubMed

    Refaey, Samir; Azziz-Baumgartner, Eduardo; Amin, Marwa Mohamed; Fahim, Manal; Roguski, Katherine; Elaziz, Hanaa Abu Elsood Abd; Iuliano, A Danielle; Salah, Noha; Uyeki, Timothy M; Lindstrom, Steven; Davis, Charles Todd; Eid, Alaa; Genedy, Mohamed; Kandeel, Amr

    2015-12-01

    During November 2014-April 2015, a total of 165 case-patients with influenza virus A(H5N1) infection, including 6 clusters and 51 deaths, were identified in Egypt. Among infected persons, 99% reported poultry exposure: 19% to ill poultry and 35% to dead poultry. Only 1 person reported wearing personal protective equipment while working with poultry.

  4. Transmission of Avian Influenza A Viruses Between Animals and People

    MedlinePlus

    ... many different animals, including ducks, chickens, pigs, whales, horses, and seals. However, certain subtypes of influenza A ... pigs, and H7N7 and H3N8 virus infections of horses. Influenza A viruses that typically infect and transmit ...

  5. Influenza A Virus Dysregulates Host Histone Deacetylase 1 That Inhibits Viral Infection in Lung Epithelial Cells

    PubMed Central

    Nagesh, Prashanth Thevkar

    2016-01-01

    ABSTRACT Viruses dysregulate the host factors that inhibit virus infection. Here, we demonstrate that human enzyme, histone deacetylase 1 (HDAC1) is a new class of host factor that inhibits influenza A virus (IAV) infection, and IAV dysregulates HDAC1 to efficiently replicate in epithelial cells. A time-dependent decrease in HDAC1 polypeptide level was observed in IAV-infected cells, reducing to <50% by 24 h of infection. A further depletion (97%) of HDAC1 expression by RNA interference increased the IAV growth kinetics, increasing it by >3-fold by 24 h and by >6-fold by 48 h of infection. Conversely, overexpression of HDAC1 decreased the IAV infection by >2-fold. Likewise, a time-dependent decrease in HDAC1 activity, albeit with slightly different kinetics to HDAC1 polypeptide reduction, was observed in infected cells. Nevertheless, a further inhibition of deacetylase activity increased IAV infection in a dose-dependent manner. HDAC1 is an important host deacetylase and, in addition to its role as a transcription repressor, HDAC1 has been lately described as a coactivator of type I interferon response. Consistent with this property, we found that inhibition of deacetylase activity either decreased or abolished the phosphorylation of signal transducer and activator of transcription I (STAT1) and expression of interferon-stimulated genes, IFITM3, ISG15, and viperin in IAV-infected cells. Furthermore, the knockdown of HDAC1 expression in infected cells decreased viperin expression by 58% and, conversely, the overexpression of HDAC1 increased it by 55%, indicating that HDAC1 is a component of IAV-induced host type I interferon antiviral response. IMPORTANCE Influenza A virus (IAV) continues to significantly impact global public health by causing regular seasonal epidemics, occasional pandemics, and zoonotic outbreaks. IAV is among the successful human viral pathogens that has evolved various strategies to evade host defenses, prevent the development of a universal

  6. Effect of Quercetin on lipid peroxidation and changes in lung morphology in experimental influenza virus infection.

    PubMed

    Kumar, Pankaj; Sharma, Sonal; Khanna, MadhU; Raj, Hanumantharao Guru

    2003-06-01

    Influenza virus infection, induced experimentally in mice, was associated with marked changes in lung morphology viz. epithelial damage with focal areas of reactive papillary hyperplasia, infiltration of leukocytes and development of oxidative stress, as evidenced by increased superoxide radical production and lipid peroxidation (LPO) products by alveolar macrophages. These effects were observed on the 5th day after virus instillation. The levels of superoxide and LPO were measured spectrophotometrically by the nitroblue tetrazolium (NBT) assay and thiobarbituric acid reactive species (TBARS) assay, respectively. The former increased by 1.5-2 fold and the latter was raised by 85% when compared with normal control. Supplementation of intranasal viral instillation with the anti-oxidant, Quercetin, given orally, resulted in a significant decrease in the levels of both superoxide radicals and LPO products. There was also a significant decrease in the number of infiltrating cells. A mild to moderate protective effect was observed in lung morphology. Thus, Quercetin may be useful as a drug in reducing the oxidative stress induced by influenza virus infection in the lung, and protect it from the toxic effects of the free radicals.

  7. H1N1, but Not H3N2, Influenza A Virus Infection Protects Ferrets from H5N1 Encephalitis

    PubMed Central

    Wang, Guoji; Carter, Donald M.; Crevar, Corey J.; Ross, Ted M.; Wiley, Clayton A.

    2014-01-01

    ABSTRACT Seasonal influenza causes substantial morbidity and mortality because of efficient human-to-human spread. Rarely, zoonotic strains of influenza virus spread to humans, where they have the potential to mediate new pandemics with high mortality. We studied systemic viral spread after intranasal infection with highly pathogenic avian influenza virus (H5N1 [A/Viet Nam/1203/2004]) in ferrets with or without prior pandemic H1N1pdm09 (A/Mexico/4108/2009) or H3N2 (A/Victoria/361/2011) infection. After intranasal challenge with H5N1 influenza virus, naive ferrets rapidly succumbed to systemic infection. Animals challenged with H5N1 influenza virus greater than 3 months after recovering from an initial H1N1pdm09 infection survived H5N1 virus challenge and cleared virus from the respiratory tract 4 days after infection. However, a prolonged low-level infection of hematopoietic elements in the small bowel lamina propria, liver, and spleen was present for greater than 2 weeks postinfection, raising the potential for reassortment of influenza genes in a host infected with multiple strains of influenza. Animals previously infected with an H3N2 influenza virus succumbed to systemic disease and encephalitis after H5N1 virus challenge. These results indicate prior infection with different seasonal influenza strains leads to radically different protection from H5N1 challenge and fatal encephalitis. IMPORTANCE Seasonal influenza is efficiently transmitted from human to human, causing substantial morbidity and mortality. Rarely, zoonotic strains of influenza virus spread to humans, where they have the potential to mediate new pandemics with high mortality. Infection of naive ferrets with H5N1 avian influenza virus causes a rapid and lethal systemic disease. We studied systemic H5N1 viral spread after infection of ferrets with or without prior exposure to either of two seasonal influenza virus strains, H1N1 and H3N2. Ferrets previously infected with H1N1 survive H5N1 challenge

  8. Production of lipopolysaccharide-induced tumour necrosis factor during influenza virus infection in mice coincides with viral replication and respiratory oxidative burst

    PubMed Central

    Hintelmann, H.; Madaj, K.; Gast, G.

    1995-01-01

    Increased morbidity and mortality occur regularly during influenza epidemics. The exact mechanisms involved are not well defined but bacterial superinfection of influenza virus infected patients is considered to play an important role. In the present study, the effect of influenza virus infection on in vivo production of turnout necrosis factor (TNF) in response to bacterial stimuli was investigated. Release of TNF in mice infected by an aerosol of influenza virus was significant after administration of bacterial lipopolysaccharide (LPS) at 72 h, whereas administration of homologous influenza virus produced only modest amounts of TNF at 96 h. Significant production of TNF was observed 48 h after intravenous administration of infectious influenza in response to LPS but not with the homologous virus. TNF induced after influenza virus infection could be blocked by a specific murine anti-TNF monoclonal antibody. Higher TNF production following aerosol influenza infection correlated with peak titres of influenza virus in the lungs of infected mice and with enhanced generation of luminoldependent chemiluminscence. PMID:18475636

  9. Molecular mechanism of complex infection by bacteria and virus analyzed by a model using serratial protease and influenza virus in mice.

    PubMed

    Akaike, T; Molla, A; Ando, M; Araki, S; Maeda, H

    1989-05-01

    We examined the effect of a serratial exoprotease on the pathogenesis of influenza virus infection in mice as a model of complicated respiratory infection by bacteria and virus in humans. The 56-kilodalton (56-kDa) protease from Serratia marcescens was administrated intranasally to mice at a dose of 10, 20, or 40 micrograms from day 0 to day 3 after inoculation of the influenza virus. Administration of the protease resulted in remarkable enhancement of the lethal effect of the virus and enhancement of pathological changes in the lungs. Influenza virus replication, determined by plaque-forming assay, was accelerated by the protease. Namely, we found a 100-fold increase in virus yield by day 2. The 56-kDa protease caused generation of plasmin activity in the lungs. In vitro experiments showed that plasmin greatly enhanced the yield of influenza virus, although the effect of the 56-kDa protease by itself was much lower than that of plasmin. Furthermore, the 56-kDa protease could induce plasmin production indirectly via activation of plasminogen by the Hageman factor-dependent cascade in the in vitro system. We conclude that this major serratial exoprotease has a deleterious effect on mice infected with influenza virus and that this effect seems to result from enhancement of viral growth by indirect acceleration of plasmin generation induced by the protease.

  10. Avian influenza virus and Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) severely impact poultry egg production. Decreased egg yield and hatchability, as well as misshapen eggs, are often observed during infection with AIV and NDV, even with low-virulence strains or in vaccinated flocks. Data suggest that in...

  11. Mutational changes in the hemagglutinin of equine H3 influenza viruses result in the introduction of a glycosylation site which enhances the infectivity of the viruses.

    PubMed

    Adeyefa, C A; McCauley, J W; Tomori, O

    1997-01-01

    The complete amino acid sequences of the hemagglutinin (HA) glycoprotein of three equine-2 influenza viruses from tropical Africa are presented in comparison with that of a well characterized European equine-2 virus (Suffolk/89) and a consensus sequence from the database. The sequences of the tropical African viruses were deduced from the complete nucleotide sequences of their HA genes reported earlier. Mutational changes in the nucleotide sequences resulted in amino acid changes in the HA which led to the introduction of a new asparagine-linked (N-linked) glycosylation site in two viruses. This new glycosylation site enhanced the infectivity of these viruses as investigated by plaque assay, virus titration in embryonated chicken eggs and tunicamycin treatment. The role of N-linked glycosylation of influenza virus HA glycoprotein in virus infectivity, antigenicity and immunogenicity is discussed in the light of the results of our previous and present investigations.

  12. Novel hemagglutinin-based influenza virus inhibitors

    PubMed Central

    Shen, Xintian; Zhang, Xuanxuan

    2013-01-01

    Influenza virus has caused seasonal epidemics and worldwide pandemics, which caused tremendous loss of human lives and socioeconomics. Nowadays, only two classes of anti-influenza drugs, M2 ion channel inhibitors and neuraminidase inhibitors respectively, are used for prophylaxis and treatment of influenza virus infection. Unfortunately, influenza virus strains resistant to one or all of those drugs emerge frequently. Hemagglutinin (HA), the glycoprotein in influenza virus envelope, plays a critical role in viral binding, fusion and entry processes. Therefore, HA is a promising target for developing anti-influenza drugs, which block the initial entry step of viral life cycle. Here we reviewed recent understanding of conformational changes of HA in protein folding and fusion processes, and the discovery of HA-based influenza entry inhibitors, which may provide more choices for preventing and controlling potential pandemics caused by multi-resistant influenza viruses. PMID:23977436

  13. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China

    PubMed Central

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-01-01

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c. PMID:27162026

  14. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-01-01

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c. PMID:27162026

  15. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-05-10

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c.

  16. Can Preening Contribute to Influenza A Virus Infection in Wild Waterbirds?

    PubMed Central

    Delogu, Mauro; De Marco, Maria A.; Di Trani, Livia; Raffini, Elisabetta; Cotti, Claudia; Puzelli, Simona; Ostanello, Fabio; Webster, Robert G.; Cassone, Antonio; Donatelli, Isabella

    2010-01-01

    Wild aquatic birds in the Orders Anseriformes and Charadriiformes are the main reservoir hosts perpetuating the genetic pool of all influenza A viruses, including pandemic viruses. High viral loads in feces of infected birds permit a fecal-oral route of transmission. Numerous studies have reported the isolation of avian influenza viruses (AIVs) from surface water at aquatic bird habitats. These isolations indicate aquatic environments have an important role in the transmission of AIV among wild aquatic birds. However, the progressive dilution of infectious feces in water could decrease the likelihood of virus/host interactions. To evaluate whether alternate mechanisms facilitate AIV transmission in aquatic bird populations, we investigated whether the preen oil gland secretions by which all aquatic birds make their feathers waterproof could support a natural mechanism that concentrates AIVs from water onto birds' bodies, thus, representing a possible source of infection by preening activity. We consistently detected both viral RNA and infectious AIVs on swabs of preened feathers of 345 wild mallards by using reverse transcription–polymerase chain reaction (RT-PCR) and virus-isolation (VI) assays. Additionally, in two laboratory experiments using a quantitative real-time (qR) RT-PCR assay, we demonstrated that feather samples (n = 5) and cotton swabs (n = 24) experimentally impregnated with preen oil, when soaked in AIV-contaminated waters, attracted and concentrated AIVs on their surfaces. The data presented herein provide information that expands our understanding of AIV ecology in the wild bird reservoir system. PMID:20593026

  17. Development of a reverse transcription loop-mediated isothermal amplification assay for the rapid diagnosis of avian influenza A (H7N9) virus infection.

    PubMed

    Nakauchi, Mina; Takayama, Ikuyo; Takahashi, Hitoshi; Tashiro, Masato; Kageyama, Tsutomu

    2014-08-01

    A genetic diagnosis system for detecting avian influenza A (H7N9) virus infection using reverse transcription-loop-mediated isothermal amplification (RT-LAMP) technology was developed. The RT-LAMP assay showed no cross-reactivity with seasonal influenza A (H3N2 and H1N1pdm09) or influenza B viruses circulating in humans or with avian influenza A (H5N1) viruses. The sensitivity of the RT-LAMP assay was 42.47 copies/reaction. Considering the high specificity and sensitivity of the assay for detecting the avian influenza A (H7N9) virus and that the reaction was completed within 30 min, the RT-LAMP assay developed in this study is a promising rapid diagnostic tool for avian influenza A (H7N9) virus infection.

  18. Evidence that life history characteristics of wild birds influence infection and exposure to influenza A viruses.

    PubMed

    Ely, Craig R; Hall, Jeffrey S; Schmutz, Joel A; Pearce, John M; Terenzi, John; Sedinger, James S; Ip, Hon S

    2013-01-01

    We report on life history characteristics, temporal, and age-related effects influencing the frequency of occurrence of avian influenza (AI) viruses in four species of migratory geese breeding on the Yukon-Kuskokwim Delta, Alaska. Emperor geese (Chen canagica), cackling geese (Branta hutchinsii), greater white-fronted geese (Anser albifrons), and black brant (Branta bernicla), were all tested for active infection of AI viruses upon arrival in early May, during nesting in June, and while molting in July and August, 2006-2010 (n = 14,323). Additionally, prior exposure to AI viruses was assessed via prevalence of antibodies from sera samples collected during late summer in 2009 and 2010. Results suggest that geese are uncommonly infected by low pathogenic AI viruses while in Alaska. The percent of birds actively shedding AI viruses varied annually, and was highest in 2006 and 2010 (1-3%) and lowest in 2007, 2008, and 2009 (<0.70%). Contrary to findings in ducks, the highest incidence of infected birds was in late spring when birds first arrived from staging and wintering areas. Despite low prevalence, most geese were previously exposed to AI viruses, as indicated by high levels of seroprevalence during late summer (47%-96% across species; n = 541). Seroprevalence was >95% for emperor geese, a species that spends part of its life cycle in Asia and is endemic to Alaska and the Bering Sea region, compared to 40-60% for the other three species, whose entire life cycles are within the western hemisphere. Birds <45 days of age showed little past exposure to AI viruses, although antibodies were detected in samples from 5-week old birds in 2009. Seroprevalence of known age black brant revealed that no birds <4 years old had seroconverted, compared to 49% of birds ≥4 years of age. PMID:23469210

  19. Club cells surviving influenza A virus infection induce temporary nonspecific antiviral immunity.

    PubMed

    Hamilton, Jennifer R; Sachs, David; Lim, Jean K; Langlois, Ryan A; Palese, Peter; Heaton, Nicholas S

    2016-04-01

    A brief window of antigen-nonspecific protection has been observed after influenza A virus (IAV) infection. Although this temporary immunity has been assumed to be the result of residual nonspecific inflammation, this period of induced immunity has not been fully studied. Because IAV has long been characterized as a cytopathic virus (based on its ability to rapidly lyse most cell types in culture), it has been a forgone conclusion that directly infected cells could not be contributing to this effect. Using a Cre recombinase-expressing IAV, we have previously shown that club cells can survive direct viral infection. We show here not only that these cells can eliminate all traces of the virus and survive but also that they acquire a heightened antiviral response phenotype after surviving. Moreover, we experimentally demonstrate temporary nonspecific viral immunity after IAV infection and show that surviving cells are required for this phenotype. This work characterizes a virally induced modulation of the innate immune response that may represent a new mechanism to prevent viral diseases.

  20. Susceptibility And Adaptation Of A Mallard H5N2 Low Pathogenic Influenza Virus In Chickens Infected With Infectious Bursal Disease Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influenza A/Mallard/Pennsylvania/12180/1984 (H5N2) virus is unable to replicate in 2 to 4-week old normal, immunocompetent specific-pathogen-free (SPF) chickens. In contrast, this mallard virus shows limited replication in chickens that had been previously infected with the immunosuppressive age...

  1. Spatiotemporal quantification of cell dynamics in the lung following influenza virus infection

    NASA Astrophysics Data System (ADS)

    Yin, Lu; Xu, Shuoyu; Cheng, Jierong; Zheng, Dahai; Limmon, Gino V.; Leung, Nicola H. N.; Rajapakse, Jagath C.; Chow, Vincent T. K.; Chen, Jianzhu; Yu, Hanry

    2013-04-01

    Lung injury caused by influenza virus infection is widespread. Understanding lung damage and repair progression post infection requires quantitative spatiotemporal information on various cell types mapping into the tissue structure. Based on high content images acquired from an automatic slide scanner, we have developed algorithms to quantify cell infiltration in the lung, loss and recovery of Clara cells in the damaged bronchioles and alveolar type II cells (AT2s) in the damaged alveolar areas, and induction of pro-surfactant protein C (pro-SPC)-expressing bronchiolar epithelial cells (SBECs). These quantitative analyses reveal: prolonged immune cell infiltration into the lung that persisted long after the influenza virus was cleared and paralleled with Clara cell recovery; more rapid loss and recovery of Clara cells as compared to AT2s; and two stages of SBECs from Scgb1a1+ to Scgb1a1-. These results provide evidence supporting a new mechanism of alveolar repair where Clara cells give rise to AT2s through the SBEC intermediates and shed light on the understanding of the lung damage and repair process. The approach and algorithms in quantifying cell-level changes in the tissue context (cell-based tissue informatics) to gain mechanistic insights into the damage and repair process can be expanded and adapted in studying other disease models.

  2. Pandemic Influenza A (H1N1) Virus Infection Increases Apoptosis and HIV-1 Replication in HIV-1 Infected Jurkat Cells.

    PubMed

    Wang, Xue; Tan, Jiying; Biswas, Santanu; Zhao, Jiangqin; Devadas, Krishnakumar; Ye, Zhiping; Hewlett, Indira

    2016-02-02

    Influenza virus infection has a significant impact on public health, since it is a major cause of morbidity and mortality. It is not well-known whether influenza virus infection affects cell death and human immunodeficiency virus (HIV)-1 replication in HIV-1-infected patients. Using a lymphoma cell line, Jurkat, we examined the in vitro effects of pandemic influenza A (H1N1) virus (pH1N1) infection on cell death and HIV-1 RNA production in infected cells. We found that pH1N1 infection increased apoptotic cell death through Fas and Bax-mediated pathways in HIV-1-infected Jurkat cells. Infection with pH1N1 virus could promote HIV-1 RNA production by activating host transcription factors including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), nuclear factor of activated T-cells (NFAT) and activator protein 1 (AP-1) through mitogen-activated protein kinases (MAPK) pathways and T-cell antigen receptor (TCR)-related pathways. The replication of HIV-1 latent infection could be reactivated by pH1N1 infection through TCR and apoptotic pathways. These data indicate that HIV-1 replication can be activated by pH1N1 virus in HIV-1-infected cells resulting in induction of cell death through apoptotic pathways.

  3. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3

    PubMed Central

    Chesarino, Nicholas M.; McMichael, Temet M.; Yount, Jacob S.

    2015-01-01

    Interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cell-intrinsic factor that limits influenza virus infections. We previously showed that IFITM3 degradation is increased by its ubiquitination, though the ubiquitin ligase responsible for this modification remained elusive. Here, we demonstrate that the E3 ubiquitin ligase NEDD4 ubiquitinates IFITM3 in cells and in vitro. This IFITM3 ubiquitination is dependent upon the presence of a PPxY motif within IFITM3 and the WW domain-containing region of NEDD4. In NEDD4 knockout mouse embryonic fibroblasts, we observed defective IFITM3 ubiquitination and accumulation of high levels of basal IFITM3 as compared to wild type cells. Heightened IFITM3 levels significantly protected NEDD4 knockout cells from infection by influenza A and B viruses. Similarly, knockdown of NEDD4 in human lung cells resulted in an increase in steady state IFITM3 and a decrease in influenza virus infection, demonstrating a conservation of this NEDD4-dependent IFITM3 regulatory mechanism in mouse and human cells. Consistent with the known association of NEDD4 with lysosomes, we demonstrate for the first time that steady state turnover of IFITM3 occurs through the lysosomal degradation pathway. Overall, this work identifies the enzyme NEDD4 as a new therapeutic target for the prevention of influenza virus infections, and introduces a new paradigm for up-regulating cellular levels of IFITM3 independently of IFN or infection. PMID:26263374

  4. Co-infection of classic swine H1N1 influenza virus in pigs persistently infected with porcine rubulavirus.

    PubMed

    Rivera-Benitez, José Francisco; De la Luz-Armendáriz, Jazmín; Saavedra-Montañez, Manuel; Jasso-Escutia, Miguel Ángel; Sánchez-Betancourt, Ivan; Pérez-Torres, Armando; Reyes-Leyva, Julio; Hernández, Jesús; Martínez-Lara, Atalo; Ramírez-Mendoza, Humberto

    2016-02-29

    Porcine rubulavirus (PorPV) and swine influenza virus infection causes respiratory disease in pigs. PorPV persistent infection could facilitate the establishment of secondary infections. The aim of this study was to analyse the pathogenicity of classic swine H1N1 influenza virus (swH1N1) in growing pigs persistently infected with porcine rubulavirus. Conventional six-week-old pigs were intranasally inoculated with PorPV, swH1N1, or PorPV/swH1N1. A mock-infected group was included. The co-infection with swH1N1 was at 44 days post-infection (DPI), right after clinical signs of PorPV infection had stopped. The pigs of the co-infection group presented an increase of clinical signs compared to the simple infection groups. In all infected groups, the most recurrent lung lesion was hyperplasia of the bronchiolar-associated lymphoid tissue and interstitial pneumonia. By means of immunohistochemical evaluation it was possible to demonstrate the presence of the two viral agents infecting simultaneously the bronchiolar epithelium. Viral excretion of PorPV in nasal and oral fluid was recorded at 28 and 52 DPI, respectively. PorPV persisted in several samples from respiratory tissues (RT), secondary lymphoid organs (SLO), and bronchoalveolar lavage fluid (BALF). For swH1N1, the viral excretion in nasal fluids was significantly higher in single-infected swH1N1 pigs than in the co-infected group. However, the co-infection group exhibited an increase in the presence of swH1N1 in RT, SLO, and BALF at two days after co-infection. In conclusion, the results obtained confirm an increase in the clinical signs of infection, and PorPV was observed to impact the spread of swH1N1 in analysed tissues in the early stage of co-infection, although viral shedding was not enhanced. In the present study, the interaction of swH1N1 infection is demonstrated in pigs persistently infected with PorPV.

  5. [In vitro and in vivo effects of ingavirin on the ultrastructure and infectivity of influenza virus].

    PubMed

    Zarubaev, V V; Beliaevskaia, S V; Sirotkin, A K; Anfimov, P M; Nebol'sin, V E; Kiselev, O I; Reĭkhart, D V

    2011-01-01

    The aim of this investigation was to study the effect of ingavirin on the structure and properties of influenza virions forming in its presence. The infectious activity of the virus and the morphology of the virions were analyzed by titration in cell culture and electron microscopy, respectively. The use of ingavirin was shown to reduce the proportion of morphologically intact virions and to increase that of filamentous and giant particles. No defects of surface glycoproteins were observed. The effect of the drug did not depend on the chosen model of virus replication and it was similarly shown in both cultured human cells and laboratory animals. In MDCK and A549 cells and in the mouse lungs, viral infectious activity was decreased by 1-2 orders of magnitude in relation to a model. The findings suggest that Ingavirin is able to impair the processes of viral morphogenesis, which in turn leads to a reduction in the infectivity of progeny virions.

  6. NLRC5 interacts with RIG-I to induce a robust antiviral response against influenza virus infection.

    PubMed

    Ranjan, Priya; Singh, Neetu; Kumar, Amrita; Neerincx, Andreas; Kremmer, Elisabeth; Cao, Weiping; Davis, William G; Katz, Jacqueline M; Gangappa, Shivaprakash; Lin, Rongtuan; Kufer, Thomas A; Sambhara, Suryaprakash

    2015-03-01

    The NLR protein, NLRC5 is an important regulator of MHC class I gene expression, however, the role of NLRC5 in other innate immune responses is less well defined. In the present study, we report that NLRC5 binds RIG-I and that this interaction is critical for robust antiviral responses against influenza virus. Overexpression of NLRC5 in the human lung epithelial cell line, A549, and normal human bronchial epithelial cells resulted in impaired replication of influenza virus A/Puerto Rico/8/34 virus (PR8) and enhanced IFN-β expression. Influenza virus leads to induction of IFN-β that drives RIG-I and NLRC5 expression in host cells. Our results suggest that NLRC5 extends and stabilizes influenza virus induced RIG-I expression and delays expression of the viral inhibitor protein NS1. We show that NS1 binds to NLRC5 to suppress its function. Interaction domain mapping revealed that NLRC5 interacts with RIG-I via its N-terminal death domain and that NLRC5 enhanced antiviral activity in an leucine-rich repeat domain independent manner. Taken together, our findings identify a novel role for NLRC5 in RIG-I-mediated antiviral host responses against influenza virus infection, distinguished from the role of NLRC5 in MHC class I gene regulation.

  7. Effect of 1918 PB1-F2 expression on influenza A virus infection kinetics

    SciTech Connect

    Ribeiro, Ruy; Perelson, Alan S; Smith, Amber M; Adler, Frederick R; Mcauley, Julie L; Mccullers, Jonathan A

    2009-01-01

    Relatively little is known about the viral factors contributing to the lethality of the 1918 pandemic, although its unparalleled virulence was likely due in part to the newly discovered PB1-F2 protein. This protein, while unnecessary for replication, increases apoptosis in monocytes, alters viral polymerase activity in vitro, and produces enhanced inflammation and increased secondary pneumonia in vivo. However, the effects the PB1-F2 protein have in vivo remain unclear. To address the mechanisms involved, we intranasally infected groups of mice with either influenza A virus PR8 or a genetically engineered virus that expresses the 1918 PB1-F2 protein on a PR8 background, PR8-PB1-F2(1918). Mice inoculated with PR8 had viral concentrations peaking at 72 hours, while those infected with PR8-PB1-F2(1918) reached peak concentrations earlier, 48 hours. Mice given PR8-PB1-F2(1918) also showed a faster decline in viral loads. We fit a mathematical model to these data to estimate parameter values and select the best model. This model supports a lower viral clearance rate and higher infected cell death rate with the PR8-PB1-F2(1918) virus, although the viral production rate may also be higher. We hypothesize that the higher PR8-PB1-F2(1918) viral titers early in an infection are due to both an increase in viral production with decreased viral clearance, and that the faster decline in the later stages of infection result from elevated cell death rates. We discuss the implications these mechanisms have during an infection with a virus expressing a virulent PBI-F2 on the possibility of a pandemic and on the importance of antiviral treatments.

  8. Pathogenesis of 1918 Pandemic and H5N1 Influenza Virus Infections in a Guinea Pig Model: Antiviral Potential of Exogenous Alpha Interferon To Reduce Virus Shedding▿

    PubMed Central

    Van Hoeven, Neal; Belser, Jessica A.; Szretter, Kristy J.; Zeng, Hui; Staeheli, Peter; Swayne, David E.; Katz, Jacqueline M.; Tumpey, Terrence M.

    2009-01-01

    Although highly pathogenic avian influenza H5N1 viruses have yet to acquire the ability to transmit efficiently among humans, the increasing genetic diversity among these viruses and continued outbreaks in avian species underscore the need for more effective measures for the control and prevention of human H5N1 virus infection. Additional small animal models with which therapeutic approaches against virulent influenza viruses can be evaluated are needed. In this study, we used the guinea pig model to evaluate the relative virulence of selected avian and human influenza A viruses. We demonstrate that guinea pigs can be infected with avian and human influenza viruses, resulting in high titers of virus shedding in nasal washes for up to 5 days postinoculation (p.i.) and in lung tissue of inoculated animals. However, other physiologic indicators typically associated with virulent influenza virus strains were absent in this species. We evaluated the ability of intranasal treatment with human alpha interferon (α-IFN) to reduce lung and nasal wash titers in guinea pigs challenged with the reconstructed 1918 pandemic H1N1 virus or a contemporary H5N1 virus. IFN treatment initiated 1 day prior to challenge significantly reduced or prevented infection of guinea pigs by both viruses, as measured by virus titer determination and seroconversion. The expression of the antiviral Mx protein in lung tissue correlated with the reduction of virus titers. We propose that the guinea pig may serve as a useful small animal model for testing the efficacy of antiviral compounds and that α-IFN treatment may be a useful antiviral strategy against highly virulent strains with pandemic potential. PMID:19144714

  9. Pulmonary ultrasonographic abnormalities associated with naturally occurring equine influenza virus infection in standardbred racehorses.

    PubMed

    Gross, Diane K; Morley, Paul S; Hinchcliff, Kenneth W; Reichle, Jean K; Slemons, Richard D

    2004-01-01

    The purpose of this investigation was to determine if naturally occurring acute infectious upper respiratory disease (IRD) caused by equine influenza virus is associated with ultrasonographically detectable pleural and pulmonary abnormalities in horses. Standardbred racehorses were evaluated for signs of IRD, defined as acute coughing or mucopurulent nasal discharge. For every horse with IRD (n = 16), 1 or 2 horses with no signs of IRD and the same owner or trainer (n = 30) were included. Thoracic ultrasonography was performed within 5-10 days of the onset of clinical disease in horses with IRD. Horses without IRD were examined at the same time as the horses with IRD with which they were enrolled. The rank of the ultrasound scores of horses with IRD was compared to that of horses without IRD. Equine influenza virus was identified as the primary etiologic agent associated with IRD in this study. Mild lung consolidation and peripheral pulmonary irregularities were found in 11 (69%) of 16 of the horses with IRD and 11 (37%) of 30 of control horses. Lung consolidation (median score = 1) and peripheral irregularities scores (median score = 1) were greater in horses with IRD compared to horses without IRD (median score = 0; P < .05). Pleural effusion was not observed. Equine influenza virus infection can result in abnormalities of the equine lower respiratory tract. Despite the mild nature of IRD observed in this study, lung consolidation and peripheral pulmonary irregularities were more commonly observed in horses with clinical signs of IRD. Further work is needed to determine the clinical significance of these ultrasonographic abnormalities. PMID:15515590

  10. Age at vaccination and timing of infection do not alter vaccine-associated enhanced respiratory disease in influenza A virus infected pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole inactivated virus (WIV) vaccines are widely used in the swine industry to reduce clinical disease against homologous influenza A virus (IAV) infection. In pigs experimentally challenged with antigenically distinct heterologous IAV of the same hemagglutinin subtype, WIV vaccinates have been sho...

  11. Swine-origin influenza A (H3N2) virus infection in two children--Indiana and Pennsylvania, July-August 2011.

    PubMed

    2011-09-01

    Influenza A viruses are endemic in many animal species, including humans, swine, and wild birds, and sporadic cases of transmission of influenza A viruses between humans and animals do occur, including human infections with avian-origin influenza A viruses (i.e., H5N1 and H7N7) and swine-origin influenza A viruses (i.e., H1N1, H1N2, and H3N2). Genetic analysis can distinguish animal origin influenza viruses from the seasonal human influenza viruses that circulate widely and cause annual epidemics. This report describes two cases of febrile respiratory illness caused by swine-origin influenza A (H3N2) viruses identified on August 19 and August 26, 2011, and the current investigations. No epidemiologic link between the two cases has been identified, and although investigations are ongoing, no additional confirmed human infections with this virus have been detected. These viruses are similar to eight other swine-origin influenza A (H3N2) viruses identified from previous human infections over the past 2 years, but are unique in that one of the eight gene segments (matrix [M] gene) is from the 2009 influenza A (H1N1) virus. The acquisition of the M gene in these two swine-origin influenza A (H3N2) viruses indicates that they are "reassortants" because they contain genes of the swine-origin influenza A (H3N2) virus circulating in North American pigs since 1998 and the 2009 influenza A (H1N1) virus that might have been transmitted to pigs from humans during the 2009 H1N1 pandemic. However, reassortments of the 2009 influenza A (H1N1) virus with other swine influenza A viruses have been reported previously in swine. Clinicians who suspect influenza virus infection in humans with recent exposure to swine should obtain a nasopharyngeal swab from the patient for timely diagnosis at a state public health laboratory and consider empiric neuraminidase inhibitor antiviral treatment to quickly limit potential human transmission.

  12. Influenza A virus infection in dogs: Epizootiology, evolution and prevention - A review.

    PubMed

    Xie, Xing; Ma, Ke; Liu, Yongjie

    2016-03-01

    Canine influenza virus (CIV) is an enveloped virus belonging to the genus Influenza virus A within the family Orthomyxoviridae. Prior to 2004, only sporadic outbreaks of canine influenza had been observed in dog populations around the world. However, in 2004 an H3N8 influenza virus of equine origin caused severe respiratory disease in racing greyhounds in Florida; subsequently, cases of dogs affected with various subtypes of CIV have been reported in many countries. Here, we performed a structured review of CIV, including its emergence, evolution and epizootiology. Although CIV causes a disease of low mortality, the potential public health threat it poses due to close contact between dogs and humans highlights the necessity of promoting surveillance for this virus. PMID:26919150

  13. 1H NMR-Based Profiling Reveals Differential Immune-Metabolic Networks during Influenza Virus Infection in Obese Mice

    PubMed Central

    Milner, J. Justin; Wang, Jue; Sheridan, Patricia A.; Ebbels, Tim; Beck, Melinda A.; Saric, Jasmina

    2014-01-01

    Obese individuals are at greater risk for death from influenza virus infection. Paralleling human evidence, obese mice are also more susceptible to influenza infection mortality. However, the underlying mechanisms driving greater influenza severity in the obese remain unclear. Metabolic profiling has been utilized in infectious disease models to enhance prognostic or diagnostic methods, and to gain insight into disease pathogenesis by providing a more global picture of dynamic infection responses. Herein, metabolic profiling was used to develop a deeper understanding of the complex processes contributing to impaired influenza protection in obese mice and to facilitate generation of new explanatory hypotheses. Diet-induced obese and lean mice were infected with influenza A/Puerto Rico/8/34. 1H nuclear magnetic resonance-based metabolic profiling of urine, feces, lung, liver, mesenteric white adipose tissue, bronchoalveolar lavage fluid and serum revealed distinct metabolic signatures in infected obese mice, including perturbations in nucleotide, vitamin, ketone body, amino acid, carbohydrate, choline and lipid metabolic pathways. Further, metabolic data was integrated with immune analyses to obtain a more comprehensive understanding of potential immune-metabolic interactions. Of interest, uncovered metabolic signatures in urine and feces allowed for discrimination of infection status in both lean and obese mice at an early influenza time point, which holds prognostic and diagnostic implications for this methodology. These results confirm that obesity causes distinct metabolic perturbations during influenza infection and provide a basis for generation of new hypotheses and use of this methodology in detection of putative biomarkers and metabolic patterns to predict influenza infection outcome. PMID:24844920

  14. Serological survey of avian influenza virus infection in non-avian wildlife in Xinjiang, China.

    PubMed

    Wei, Yu-Rong; Yang, Xue-Yun; Li, Yuan-Guo; Wei, Jie; Ma, Wen-Ge; Ren, Zhi-Guang; Guo, Hui-Ling; Wang, Tie-Cheng; Mi, Xiao-Yun; Adili, Gulizhati; Miao, Shu-Kui; Shaha, Ayiqiaolifan; Gao, Yu-Wei; Huang, Jiong; Xia, Xian-Zhu

    2016-04-01

    We conducted a serological survey to detect antibodies against avian influenza virus (AIV) in Gazella subgutturosa, Canis lupus, Capreolus pygargus, Sus scrofa, Cervus elaphus, Capra ibex, Ovis ammon, Bos grunniens and Pseudois nayaur in Xinjiang, China. Two hundred forty-six sera collected from 2009 to 2013 were assayed for antibodies against H5, H7 and H9 AIVs using hemagglutination inhibition (HI) tests and a pan-influenza competitive ELISA. Across all tested wildlife species, 4.47 % harbored anti-AIV antibodies that were detected by the HI assay. The seroprevalence for each AIV subtype across all species evaluated was 0 % for H5 AIV, 0.81 % for H7 AIV, and 3.66 % for H9 AIV. H7-reactive antibodies were found in Canis lupus (9.09 %) and Ovis ammon (4.55 %). H9-reactive antibodies were found in Gazella subgutturosa (4.55 %), Canis lupus (27.27 %), Pseudois nayaur (23.08 %), and Ovis ammon (4.55 %). The pan-influenza competitive ELISA results closely corresponded to the cumulative prevalence of AIV exposure as measured by subtype-specific HI assays, suggesting that H7 and H9 AIV subtypes predominate in the wildlife species evaluated. These data provide evidence of prior infection with H7 and H9 AIVs in non-avian wildlife in Xinjiang, China.

  15. Serological survey of avian influenza virus infection in non-avian wildlife in Xinjiang, China.

    PubMed

    Wei, Yu-Rong; Yang, Xue-Yun; Li, Yuan-Guo; Wei, Jie; Ma, Wen-Ge; Ren, Zhi-Guang; Guo, Hui-Ling; Wang, Tie-Cheng; Mi, Xiao-Yun; Adili, Gulizhati; Miao, Shu-Kui; Shaha, Ayiqiaolifan; Gao, Yu-Wei; Huang, Jiong; Xia, Xian-Zhu

    2016-04-01

    We conducted a serological survey to detect antibodies against avian influenza virus (AIV) in Gazella subgutturosa, Canis lupus, Capreolus pygargus, Sus scrofa, Cervus elaphus, Capra ibex, Ovis ammon, Bos grunniens and Pseudois nayaur in Xinjiang, China. Two hundred forty-six sera collected from 2009 to 2013 were assayed for antibodies against H5, H7 and H9 AIVs using hemagglutination inhibition (HI) tests and a pan-influenza competitive ELISA. Across all tested wildlife species, 4.47 % harbored anti-AIV antibodies that were detected by the HI assay. The seroprevalence for each AIV subtype across all species evaluated was 0 % for H5 AIV, 0.81 % for H7 AIV, and 3.66 % for H9 AIV. H7-reactive antibodies were found in Canis lupus (9.09 %) and Ovis ammon (4.55 %). H9-reactive antibodies were found in Gazella subgutturosa (4.55 %), Canis lupus (27.27 %), Pseudois nayaur (23.08 %), and Ovis ammon (4.55 %). The pan-influenza competitive ELISA results closely corresponded to the cumulative prevalence of AIV exposure as measured by subtype-specific HI assays, suggesting that H7 and H9 AIV subtypes predominate in the wildlife species evaluated. These data provide evidence of prior infection with H7 and H9 AIVs in non-avian wildlife in Xinjiang, China. PMID:26733295

  16. Cross-Protection of Influenza A Virus Infection by a DNA Aptamer Targeting the PA Endonuclease Domain

    PubMed Central

    Yuan, Shuofeng; Zhang, Naru; Singh, Kailash; Shuai, Huiping; Chu, Hin; Zhou, Jie; Chow, Billy K. C.

    2015-01-01

    Amino acid residues in the N-terminal of the PA subunit (PAN) of the influenza A virus polymerase play critical roles in endonuclease activity, protein stability, and viral RNA (vRNA) promoter binding. In addition, PAN is highly conserved among different subtypes of influenza virus, which suggests PAN to be a desired target in the development of anti-influenza agents. We selected DNA aptamers targeting the intact PA protein or the PAN domain of an H5N1 virus strain using systematic evolution of ligands by exponential enrichment (SELEX). The binding affinities of selected aptamers were measured, followed by an evaluation of in vitro endonuclease inhibitory activity. Next, the antiviral effects of enriched aptamers against influenza A virus infections were examined. A total of three aptamers targeting PA and six aptamers targeting PAN were selected. Our data demonstrated that all three PA-selected aptamers neither inhibited endonuclease activity nor exhibited antiviral efficacy, whereas four of the six PAN-selected aptamers inhibited both endonuclease activity and H5N1 virus infection. Among the four effective aptamers, one exhibited cross-protection against infections of H1N1, H5N1, H7N7, and H7N9 influenza viruses, with a 50% inhibitory concentration (IC50) of around 10 nM. Notably, this aptamer was identified at the 5th round but disappeared after the 10th round of selection, suggesting that the identification and evaluation of aptamers at early rounds of selection may be highly helpful for screening effective aptamers. Overall, our study provides novel insights for screening and developing effective aptamers for use as anti-influenza drugs. PMID:25918143

  17. In vivo and in vitro studies on the antiviral activities of viperin against influenza H1N1 virus infection.

    PubMed

    Tan, Kai Sen; Olfat, Farzad; Phoon, Meng Chee; Hsu, Jung Pu; Howe, Josephine L C; Seet, Ju Ee; Chin, Keh Chuang; Chow, Vincent T K

    2012-06-01

    Influenza A virus has caused a number of pandemics in past decades, including the recent H1N1-2009 pandemic. Viperin is an interferon (IFN)-inducible protein of innate immunity, and acts as a broad-spectrum antiviral protein. We explored the antiviral activities and mechanisms of viperin during influenza virus (IFV) infection in vitro and in vivo. Wild-type (WT) HeLa and viperin-expressing HeLa cells were infected with influenza A/WSN/33/H1N1 (WSN33) virus, and subjected to virological, light and electron microscopic analyses. Viperin expression reduced virus replication and titres, and restricted viral budding. Young and old viperin-knockout (KO) mice and WT control animals were challenged with influenza WSN33 at lethal doses of 10(3) and 10(4) p.f.u. via the intratracheal route. Lungs were subjected to histopathological, virological and molecular studies. Upon lethal IFV challenge, both WT and KO mice revealed similar trends of infection and recovery with similar mortality rates. Viral quantification assay and histopathological evaluation of lungs from different time points showed no significant difference in viral loads and lung damage scores between the two groups of mice. Although the in vitro studies demonstrated the ability of viperin to restrict influenza H1N1 virus replication, the viperin-deficient mouse model indicated that absence of viperin enhanced neither the viral load nor pulmonary damage in the lungs of infected mice. This may be due to the compensation of IFN-stimulated genes in the lungs and/or the influenza non-structural protein 1-mediated IFN antagonism dampening the IFN response, thereby rendering the loss of viperin insignificant. Nevertheless, further investigations that exploit the antiviral mechanisms of viperin as prophylaxis are still warranted.

  18. Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets.

    PubMed

    Liu, Ye V; Massare, Michael J; Pearce, Melissa B; Sun, Xiangjie; Belser, Jessica A; Maines, Taronna R; Creager, Hannah M; Glenn, Gregory M; Pushko, Peter; Smith, Gale E; Tumpey, Terrence M

    2015-04-27

    In March 2013, diagnosis of the first reported case of human infection with a novel avian-origin influenza A(H7N9) virus occurred in eastern China. Most human cases have resulted in severe respiratory illness and, in some instances, death. Currently there are no licensed vaccines against H7N9 virus, which continues to cause sporadic human infections. Recombinant virus-like particles (VLPs) have been previously shown to be safe and effective vaccines for influenza. In this study, we evaluated the immunogenicity and protective efficacy of a H7N9 VLP vaccine in the ferret challenge model. Purified recombinant H7N9 VLPs morphologically resembled influenza virions and elicited high-titer serum hemagglutination inhibition (HI) and neutralizing antibodies specific for A/Anhui/1/2013 (H7N9) virus. H7N9 VLP-immunized ferrets subsequently challenged with homologous virus displayed reductions in fever, weight loss, and virus shedding compared to these parameters in unimmunized control ferrets. H7N9 VLP was also effective in protecting against lung and tracheal infection. The addition of either ISCOMATRIX or Matrix-M1 adjuvant improved immunogenicity and protection of the VLP vaccine against H7N9 virus. These results provide support for the development of a safe and effective human VLP vaccine with potent adjuvants against avian influenza H7N9 virus with pandemic potential. PMID:25772674

  19. OBSERVATIONS WITH THE ELECTRON MICROSCOPE ON CELLS OF THE CHICK CHORIO-ALLANTOIC MEMBRANE INFECTED WITH INFLUENZA VIRUS

    PubMed Central

    Murphy, J. S.; Bang, F. B.

    1952-01-01

    Preparations of influenza-infected chick chorio-allantoic membrane made by two types of tissue culture and by sectioning, have been studied in the electron microscope. Comparisons have been made of influenza A' (FM1), influenza A (PR8), and swine influenza (V15), three strains which produce different relative numbers of filaments. Normal surface projections which may be confused with influenza filaments are described. Extruded products of degenerating cells, usually bleb-shaped, may also be found both in uninfected allantoic fluid and tissue cultures. It appears that the filaments and spheres of influenza virus, concurrently projecting from the free cell surface, represent the only visible change in the cells until late in the infection,—how late the present work does not tell. No definite evidence of a generalized infection throughout the cytoplasm or of inclusions was found. Additional evidence is presented for the assumption that the filaments have a significant role in the final development of the free virus. PMID:14927791

  20. Characterization of cytokine expression induced by avian influenza virus infection with real-time RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of how birds react to infection from avian influenza virus is critical to understanding disease pathogenesis and host response. The use of real-time (R), reverse-transcriptase (RT), PCR to measure innate immunity, including cytokine and interferon gene expression, has become a standard tec...

  1. Evaluation of cytokine gene expression after avian influenza virus infection in avian cell lines and primary cell cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The innate immune responses elicited by avian influenza virus (AIV) infection has been studied by measuring cytokine gene expression by relative real time PCR (rRT-PCR) in vitro, using both cell lines and primary cell cultures. Continuous cell lines offer advantages over the use of primary cell cult...

  2. Investigation of the Function of the Influenza A Virus PB1-F2 Protein During Infection of Swine and Human Cells with a Predominant Circulating Swine Virus Isolate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years a protein referred to as PB1-F2 was discovered in a second open reading frame of the PB1 gene of many influenza A viruses. Studies have indicated that PB1-F2 may induce apoptosis of infected cells, increase susceptibility to secondary bacterial infection in mice, increase macrophage ...

  3. DIVA vaccination strategies for avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination for both low pathogenic and highly pathogenic avian influenza is commonly used for countries that have been endemic for avian influenza influenza virus, but stamping out policies are common for countries that are normally free of the disease. Stamping out policies of euthanizing infecte...

  4. Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2.

    PubMed

    Liniger, Matthias; Summerfield, Artur; Zimmer, Gert; McCullough, Kenneth C; Ruggli, Nicolas

    2012-01-01

    Avian influenza viruses (AIV) raise worldwide veterinary and public health concerns due to their potential for zoonotic transmission. While infection with highly pathogenic AIV results in high mortality in chickens, this is not necessarily the case in wild birds and ducks. It is known that innate immune factors can contribute to the outcome of infection. In this context, retinoic acid-inducible gene I (RIG-I) is the main cytosolic pattern recognition receptor known for detecting influenza A virus infection in mammalian cells. Chickens, unlike ducks, lack RIG-I, yet chicken cells do produce type I interferon (IFN) in response to AIV infection. Consequently, we sought to identify the cytosolic recognition elements in chicken cells. Chicken mRNA encoding the putative chicken analogs of CARDIF and LGP2 (chCARDIF and chLGP2, respectively) were identified. HT7-tagged chCARDIF was observed to associate with mitochondria in chicken DF-1 fibroblasts. The exogenous expression of chCARDIF, as well as of the caspase activation and recruitment domains (CARDs) of the chicken melanoma differentiation-associated protein 5 (chMDA5), strongly activated the chicken IFN-β (chIFN-β) promoter. The silencing of chMDA5, chCARDIF, and chIRF3 reduced chIFN-β levels induced by AIV, indicating their involvement in AIV sensing. As with mammalian cells, chLGP2 had opposing effects. While overexpression decreased the activation of the chIFN-β promoter, the silencing of endogenous chLGP2 reduced chIFN-β induced by AIV. We finally demonstrate that the chMDA5 signaling pathway is inhibited by the viral nonstructural protein 1. In conclusion, chicken cells, including DF-1 fibroblasts and HD-11 macrophage-like cells, employ chMDA5 for sensing AIV.

  5. Highly Pathological Influenza A Virus Infection Is Associated with Augmented Expression of PD-1 by Functionally Compromised Virus-Specific CD8+ T Cells

    PubMed Central

    Rutigliano, John A.; Sharma, Shalini; Morris, Melissa Y.; Oguin, Thomas H.; McClaren, Jennifer L.; Doherty, Peter C.

    2014-01-01

    ABSTRACT One question that continues to challenge influenza A research is why some strains of virus are so devastating compared to their more mild counterparts. We approached this question from an immunological perspective, investigating the CD8+ T cell response in a mouse model system comparing high- and low-pathological influenza virus infections. Our findings reveal that the early (day 0 to 5) viral titer was not the determining factor in the outcome of disease. Instead, increased numbers of antigen-specific CD8+ T cells and elevated effector function on a per-cell basis were found in the low-pathological infection and correlated with reduced illness and later-time-point (day 6 to 10) viral titer. High-pathological infection was associated with increased PD-1 expression on influenza virus-specific CD8+ T cells, and blockade of PD-L1 in vivo led to reduced virus titers and increased CD8+ T cell numbers in high- but not low-pathological infection, though T cell functionality was not restored. These data show that high-pathological acute influenza virus infection is associated with a dysregulated CD8+ T cell response, which is likely caused by the more highly inflamed airway microenvironment during the early days of infection. Therapeutic approaches specifically aimed at modulating innate airway inflammation may therefore promote efficient CD8+ T cell activity. IMPORTANCE PMID:24257598

  6. Oral administration of Bifidobacterium longum ameliorates influenza virus infection in mice.

    PubMed

    Iwabuchi, Noriyuki; Xiao, Jin-Zhong; Yaeshima, Tomoko; Iwatsuki, Keiji

    2011-01-01

    We investigated whether the oral administration of Bifidobacterium longum BB536 could ameliorate influenza virus (IFV) infection in a mice model. Mice were orally administrated BB536 or saline for 2 weeks and then infected with IFV. Orally administered BB536 significantly alleviated symptoms, reduced the loss of body weight, and inhibited viral proliferation in the lungs relative to the control group findings. Histopathological findings in the lungs were improved in the BB536 group compared to control group findings. There was no significant difference in the levels of interleukin-6 (IL-6), interferon-γ (IFN-γ), IL-10 and IL-12p40 in the lungs between the groups, but the levels of IL-6 and IFN-γ were lower (p=0.076, 0.103, respectively) in the BB536 group compared with those of control group. The levels of IL-6 and IL-10 correlated significantly with the values of weight loss, and the levels of IFN-γ correlated with the virus titers in the lungs. These results suggested the potential of the oral administration of BB536 in ameliorating IFV infection and the possible involvement of anti-inflammatory effects of BB536 in the anti-infection effects against IFV.

  7. Fatal H5N6 Avian Influenza Virus Infection in a Domestic Cat and Wild Birds in China.

    PubMed

    Yu, Zhijun; Gao, Xiaolong; Wang, Tiecheng; Li, Yanbing; Li, Yongcheng; Xu, Yu; Chu, Dong; Sun, Heting; Wu, Changjiang; Li, Shengnan; Wang, Haijun; Li, Yuanguo; Xia, Zhiping; Lin, Weishi; Qian, Jun; Chen, Hualan; Xia, Xianzhu; Gao, Yuwei

    2015-01-01

    H5N6 avian influenza viruses (AIVs) may pose a potential human risk as suggested by the first documented naturally-acquired human H5N6 virus infection in 2014. Here, we report the first cases of fatal H5N6 avian influenza virus (AIV) infection in a domestic cat and wild birds. These cases followed human H5N6 infections in China and preceded an H5N6 outbreak in chickens. The extensive migration routes of wild birds may contribute to the geographic spread of H5N6 AIVs and pose a risk to humans and susceptible domesticated animals, and the H5N6 AIVs may spread from southern China to northern China by wild birds. Additional surveillance is required to better understand the threat of zoonotic transmission of AIVs.

  8. The genesis and source of the H7N9 influenza viruses causing human infections in China.

    PubMed

    Lam, Tommy Tsan-Yuk; Wang, Jia; Shen, Yongyi; Zhou, Boping; Duan, Lian; Cheung, Chung-Lam; Ma, Chi; Lycett, Samantha J; Leung, Connie Yin-Hung; Chen, Xinchun; Li, Lifeng; Hong, Wenshan; Chai, Yujuan; Zhou, Linlin; Liang, Huyi; Ou, Zhihua; Liu, Yongmei; Farooqui, Amber; Kelvin, David J; Poon, Leo L M; Smith, David K; Pybus, Oliver G; Leung, Gabriel M; Shu, Yuelong; Webster, Robert G; Webby, Richard J; Peiris, Joseph S M; Rambaut, Andrew; Zhu, Huachen; Guan, Yi

    2013-10-10

    A novel H7N9 influenza A virus first detected in March 2013 has since caused more than 130 human infections in China, resulting in 40 deaths. Preliminary analyses suggest that the virus is a reassortant of H7, N9 and H9N2 avian influenza viruses, and carries some amino acids associated with mammalian receptor binding, raising concerns of a new pandemic. However, neither the source populations of the H7N9 outbreak lineage nor the conditions for its genesis are fully known. Using a combination of active surveillance, screening of virus archives, and evolutionary analyses, here we show that H7 viruses probably transferred from domestic duck to chicken populations in China on at least two independent occasions. We show that the H7 viruses subsequently reassorted with enzootic H9N2 viruses to generate the H7N9 outbreak lineage, and a related previously unrecognized H7N7 lineage. The H7N9 outbreak lineage has spread over a large geographic region and is prevalent in chickens at live poultry markets, which are thought to be the immediate source of human infections. Whether the H7N9 outbreak lineage has, or will, become enzootic in China and neighbouring regions requires further investigation. The discovery here of a related H7N7 influenza virus in chickens that has the ability to infect mammals experimentally, suggests that H7 viruses may pose threats beyond the current outbreak. The continuing prevalence of H7 viruses in poultry could lead to the generation of highly pathogenic variants and further sporadic human infections, with a continued risk of the virus acquiring human-to-human transmissibility.

  9. Corticosteroids for the treatment of human infection with influenza virus: a systematic review and meta-analysis.

    PubMed

    Yang, J-W; Fan, L-C; Miao, X-Y; Mao, B; Li, M-H; Lu, H-W; Liang, S; Xu, J-F

    2015-10-01

    Administration of corticosteroids to patients affected by influenza virus, especially pandemic avian influenza virus, although relatively common, remains controversial. A systematic review and meta-analysis was performed to assess the impact of corticosteroid treatment on outcomes of patients with influenza virus infection. The PubMed, EMBASE, Web of Science and Cochrane Library databases were searched up to February, 2015. Studies comparing corticosteroid treatment with no corticosteroid treatment in patients with influenza virus infection were included. The primary outcomes assessed were the association of mortality and nosocomial infection with corticosteroid treatment. Two authors independently extracted the data. ORs and weighted mean differences (WMDs) were used to describe dichotomous data and continuous data, respectively. Nineteen studies with 4916 patients were included in this meta-analysis. The results showed that corticosteroid treatment was significantly associated with mortality (OR 1.98, 95% CI 1.62-2.43, p < 0.00001) and nosocomial infection (OR 3.16, 95% CI 2.09-4.78, p < 0.00001). The durations of mechanical ventilation (WMD 3.82, 95% CI 1.49-6.15, p 0.001) and intensive-care unit stay (WMD 4.78, 95% CI 2.27-7.29, p 0.0002) were both markedly longer in the corticosteroid treatment group than in the control group. These findings suggest that routine steroid use may not be ideal for influenza virus infection. However, these results are derived from observational studies, with some important biases. They should be examined in future sufficiently powered randomized trials.

  10. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys

    PubMed Central

    2014-01-01

    Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart. No clinical signs were observed in chickens co-infected with the lNDV and LPAIV or in chickens infected with the viruses individually. However, the pattern of virus shed was different with co-infected chickens, which excreted lower titers of lNDV and LPAIV at 2 and 3 days post inoculation (dpi) and higher titers at subsequent time points. All turkeys inoculated with the LPAIV, whether or not they were exposed to lNDV, presented mild clinical signs. Co-infection effects were more pronounced in turkeys than in chickens with reduction in the number of birds shedding virus and in virus titers, especially when LPAIV was followed by lNDV. In conclusion, co-infection of chickens or turkeys with lNDV and LPAIV affected the replication dynamics of these viruses but did not affect clinical signs. The effect on virus replication was different depending on the species and on the time of infection. These results suggest that infection with a heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated, which decreases with time. PMID:24393488

  11. Towards multiscale modeling of influenza infection

    PubMed Central

    Murillo, Lisa N.; Murillo, Michael S.; Perelson, Alan S.

    2013-01-01

    Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately. PMID:23608630

  12. Productive Infection of Human Skeletal Muscle Cells by Pandemic and Seasonal Influenza A(H1N1) Viruses

    PubMed Central

    Desdouits, Marion; Munier, Sandie; Prevost, Marie-Christine; Jeannin, Patricia; Butler-Browne, Gillian; Ozden, Simona; Gessain, Antoine; Van Der Werf, Sylvie; Naffakh, Nadia; Ceccaldi, Pierre-Emmanuel

    2013-01-01

    Besides the classical respiratory and systemic symptoms, unusual complications of influenza A infection in humans involve the skeletal muscles. Numerous cases of acute myopathy and/or rhabdomyolysis have been reported, particularly following the outbreak of pandemic influenza A(H1N1) in 2009. The pathogenesis of these influenza-associated myopathies (IAM) remains unkown, although the direct infection of muscle cells is suspected. Here, we studied the susceptibility of cultured human primary muscle cells to a 2009 pandemic and a 2008 seasonal influenza A(H1N1) isolate. Using cells from different donors, we found that differentiated muscle cells (i. e. myotubes) were highly susceptible to infection by both influenza A(H1N1) isolates, whereas undifferentiated cells (i. e. myoblasts) were partially resistant. The receptors for influenza viruses, α2-6 and α2-3 linked sialic acids, were detected on the surface of myotubes and myoblasts. Time line of viral nucleoprotein (NP) expression and nuclear export showed that the first steps of the viral replication cycle could take place in muscle cells. Infected myotubes and myoblasts exhibited budding virions and nuclear inclusions as observed by transmission electron microscopy and correlative light and electron microscopy. Myotubes, but not myoblasts, yielded infectious virus progeny that could further infect naive muscle cells after proteolytic treatment. Infection led to a cytopathic effect with the lysis of muscle cells, as characterized by the release of lactate dehydrogenase. The secretion of proinflammatory cytokines by muscle cells was not affected following infection. Our results are compatible with the hypothesis of a direct muscle infection causing rhabdomyolysis in IAM patients. PMID:24223983

  13. MicroRNA expression profiles and networks in mouse lung infected with H1N1 influenza virus.

    PubMed

    Bao, Yanyan; Gao, Yingjie; Jin, Yahong; Cong, Weihong; Pan, Xin; Cui, Xiaolan

    2015-10-01

    Influenza A viruses can cause localized outbreaks and worldwide pandemics, owing to their high transmissibility and wide host range. As such, they are among the major diseases that cause human death. However, the molecular changes induced by influenza A virus infection in lung tissue are not entirely clear. Changes in microRNA (miRNA) expression occur in many pathological and physiological processes, and influenza A virus infection has been shown to alter miRNA expression in cultured cells and animal models. In this study, we mined key miRNAs closely related to influenza A virus infection and explored cellular regulatory mechanisms against influenza A virus infection, by building networks among miRNAs and genes, gene ontologies (GOs), and pathways. In this study, miRNAs and mRNAs induced by H1N1 influenza virus infection were measured by gene chips, and we found that 82 miRNAs and 3371 mRNAs were differentially expressed. The 82 miRNAs were further analyzed with the series test of cluster (STC) analysis. Three of the 16 cluster profiles identified by STC, which include 46 miRNAs in the three profiles, changed significantly. Using potential target genes of the 46 miRNAs, we looked for intersections of these genes with 3371 differentially expressed mRNAs; 719 intersection genes were identified. Based on the GO or KEGG databases, we attained GOs or pathways for all of the above intersection genes. Fisher's and χ (2) test were used to calculate p value and false discovery rate (FDR), and according to the standard of p < 0.001, 241 GOs and 76 pathways were filtered. Based on these data, miRNA-gene, miRNA-GO, and miRNA-pathway networks were built. We then extracted three classes of GOs (related to inflammatory and immune response, cell cycle, proliferation and apoptosis, and signal transduction) to build three subgraphs, and pathways strictly related with H1N1 influenza virus infection were filtered to extract a subgraph of the miRNA-pathway network. Last, according

  14. Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan

    PubMed Central

    MORIGUCHI, Sachiko; ONUMA, Manabu; GOKA, Koichi

    2016-01-01

    Avian influenza A, a highly pathogenic avian influenza, is a lethal infection in certain species of wild birds, including some endangered species. Raptors are susceptible to avian influenza, and spatial risk assessment of such species may be valuable for conservation planning. We used the maximum entropy approach to generate potential distribution models of three raptor species from presence-only data for the mountain hawk-eagle Nisaetus nipalensis, northern goshawk Accipiter gentilis and peregrine falcon Falco peregrinus, surveyed during the winter from 1996 to 2001. These potential distribution maps for raptors were superimposed on avian influenza A risk maps of Japan, created from data on incidence of the virus in wild birds throughout Japan from October 2010 to March 2011. The avian influenza A risk map for the mountain hawk-eagle showed that most regions of Japan had a low risk for avian influenza A. In contrast, the maps for the northern goshawk and peregrine falcon showed that their high-risk areas were distributed on the plains along the Sea of Japan and Pacific coast. We recommend enhanced surveillance for each raptor species in high-risk areas and immediate establishment of inspection systems. At the same time, ecological risk assessments that determine factors, such as the composition of prey species, and differential sensitivity of avian influenza A virus between bird species should provide multifaceted insights into the total risk assessment of endangered species. PMID:26972333

  15. Quantifying the Early Immune Response and Adaptive Immune Response Kinetics in Mice Infected with Influenza A Virus

    PubMed Central

    Miao, Hongyu; Hollenbaugh, Joseph A.; Zand, Martin S.; Holden-Wiltse, Jeanne; Mosmann, Tim R.; Perelson, Alan S.; Wu, Hulin; Topham, David J.

    2010-01-01

    Seasonal and pandemic influenza A virus (IAV) continues to be a public health threat. However, we lack a detailed and quantitative understanding of the immune response kinetics to IAV infection and which biological parameters most strongly influence infection outcomes. To address these issues, we use modeling approaches combined with experimental data to quantitatively investigate the innate and adaptive immune responses to primary IAV infection. Mathematical models were developed to describe the dynamic interactions between target (epithelial) cells, influenza virus, cytotoxic T lymphocytes (CTLs), and virus-specific IgG and IgM. IAV and immune kinetic parameters were estimated by fitting models to a large data set obtained from primary H3N2 IAV infection of 340 mice. Prior to a detectable virus-specific immune response (before day 5), the estimated half-life of infected epithelial cells is ∼1.2 days, and the half-life of free infectious IAV is ∼4 h. During the adaptive immune response (after day 5), the average half-life of infected epithelial cells is ∼0.5 days, and the average half-life of free infectious virus is ∼1.8 min. During the adaptive phase, model fitting confirms that CD8+ CTLs are crucial for limiting infected cells, while virus-specific IgM regulates free IAV levels. This may imply that CD4 T cells and class-switched IgG antibodies are more relevant for generating IAV-specific memory and preventing future infection via a more rapid secondary immune response. Also, simulation studies were performed to understand the relative contributions of biological parameters to IAV clearance. This study provides a basis to better understand and predict influenza virus immunity. PMID:20410284

  16. Clinical utility of a near patient care microarray based diagnostic test for influenza and respiratory syncytial virus infections

    PubMed Central

    Chen, Xiu-Hong; Wang, Ji-Hua; Yao, Xiao-Hong

    2015-01-01

    In primary care medicine, establishing a diagnosis of influenza and respiratory syncytial virus (RSV) infections is usually based on clinical history and physical examination as well as a consideration of time of the year and circulating respiratory viruses in the community. Methods: We tested the potential clinical samples using the automated molecular assay which included rapid influenza diagnostic test, Rapid Immunochromatographic Antigen Test, Verigene Respiratory Virus Plus Nucleic Acid Test, BD VeritorTM System for Rapid Detection of RSV in the paediatric setting for diagnosis of influenza and respiratory syntactical virus infections when testing was done by the paediatrician seeing the patient. Results: Principally, with respect influenza virus specificity and sensitivity for RIAT were 100% and 68.8%; compared to 100% and 100%, respectively for RV+. The specificity and sensitivity for 92.23% and 98% for BD VeritorTM System for Rapid Detection of RSV as compared to 96.6% and 98.42% for RIDT. Conclusion: Therefore, this study confirms the clinical utility of RV+ in the pediatric setting. PMID:26629177

  17. Avian Influenza A (H7N9) Virus

    MedlinePlus

    ... this page: About CDC.gov . Avian Influenza H5 Viruses in the United States Updates and Publications Information ... Humans Examples of Human Infections with Avian Influenza Viruses Outbreaks Health Care and Laboratorian Guidance HPAI A ...

  18. Gene Expression and Antiviral Activity of Interleukin-35 in Response to Influenza A Virus Infection.

    PubMed

    Wang, Li; Zhu, Shengli; Xu, Gang; Feng, Jian; Han, Tao; Zhao, Fanpeng; She, Ying-Long; Liu, Shi; Ye, Linbai; Zhu, Ying

    2016-08-01

    Interleukin-35 (IL-35) is a newly described member of the IL-12 family. It has been reported to inhibit inflammation and autoimmune inflammatory disease and can increase apoptotic sensitivity. Little is known about the role of IL-35 during viral infection. Herein, high levels of IL-35 were found in peripheral blood mononuclear cells and throat swabs from patients with seasonal influenza A virus (IAV) relative to healthy individuals. IAV infection of human lung epithelial and primary cells increased levels of IL-35 mRNA and protein. Further studies demonstrated that IAV-induced IL-35 transcription is regulated by NF-κB. IL-35 expression was significantly suppressed by selective inhibitors of cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase, indicating their involvement in IL-35 expression. Interestingly, IL-35 production may have suppressed IAV RNA replication and viral protein synthesis via induction of type I and III interferons (IFN), leading to activation of downstream IFN effectors, including double-stranded RNA-dependent protein kinase, 2',5'-oligoadenylate synthetase, and myxovirus resistance protein. IL-35 exhibited extensive antiviral activity against the hepatitis B virus, enterovirus 71, and vesicular stomatitis virus. Our results demonstrate that IL-35 is a novel IAV-inducible cytokine, and its production elicits antiviral activity. PMID:27307042

  19. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl

    USGS Publications Warehouse

    Gaidet, N.; Cattoli, G.; Hammoumi, S.; Newman, S.H.; Hagemeijer, W.; Takekawa, J.Y.; Cappelle, J.; Dodman, T.; Joannis, T.; Gil, P.; Monne, I.; Fusaro, A.; Capua, I.; Manu, S.; Micheloni, P.; Ottosson, U.; Mshelbwala, J.H.; Lubroth, J.; Domenech, J.; Monicat, F.

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.

  20. Quantitative detection of Staphylococcus aureus, Streptococcus pneumoniae and Haemophilus influenzae in patients with new influenza A (H1N1)/2009 and influenza A/2010 virus infection

    PubMed Central

    Safaeyan, Firouzeh; Nahaei, Mohammad Reza; Seifi, Sirus Jedary; Kafil, Hossein Samadi; Sadeghi, Javid

    2015-01-01

    Introduction: Viral influenza is a seasonal infection associated with significant morbidity and mortality. In the United States more than 35,000 deaths and 200,000 hospitalizations are recorded annually due to influenza. Secondary bacterial infections or co-infections associated with cases of influenza are a leading cause of severe morbidity and mortality, especially among high-risk groups such as the elderly and young children. Aim: The aim of the present study was the quantitative detection of S. aureus, S. pneumoniae and H. influenzae in a group of patients with seasonal influenza A, influenza A (H1N1) pandemic 2009, and patients with symptoms of respiratory infection, but the negative for H1N1 serving as control group. Method: In total, 625 patients suspected respiratory infection from April 2009 to April 2010 were studied. There were 58 patients with influenza A H1N1 and 567 patients negative for influenza A H1N1. From November 2010 to February 2011, 158 patients with respiratory symptoms were analyzed for seasonal influenza A. There were 25 patients with seasonal influenza A. To check the colonization status among the healthy individuals 62 healthy persons were further investigated. Individual were screened in parallel. The choices of special genes were amplified from clinical specimens using real-time PCR with a cutoff of 104 CFU/mL to differentiate colonization from infection in respiratory tract. Results: S. aureus, S. pneumoniae and H. influenzae were detected in 12%, 26% and 33% of patients with H1N1, while the corresponding figures were 9%, 19%, and 31% for H1N1 negative patients. Among patients with seasonal influenza A 12% S. aureus, 24% S. pneumoniae, and 32% H. influenzae co-infections were detected, while influenza negative control group yielded 5% S. aureus, 11% S. pneumoniae, and 10% H. influenzae, respectively. Conclusion: The results of this study indicated that the serotype of pandemic H1N1 2009 did not increase incidence of secondary

  1. Unusual Influenza A Viruses in Bats

    PubMed Central

    Mehle, Andrew

    2014-01-01

    Influenza A viruses infect a remarkably diverse number of hosts. Two completely new influenza A virus subtypes were recently discovered in bats, dramatically expanding the host range of the virus. These bat viruses are extremely divergent from all other known strains and likely have unique replication cycles. Phylogenetic analysis indicates long-term, isolated evolution in bats. This is supported by a high seroprevalence in sampled bat populations. As bats represent ~20% of all classified mammals, these findings suggests the presence of a massive cryptic reservoir of poorly characterized influenza A viruses. Here, we review the exciting progress made on understanding these newly discovered viruses, and discuss their zoonotic potential. PMID:25256392

  2. Thoracic computerized tomographic (CT) findings in 2009 influenza A (H1N1) virus infection in Isfahan, Iran

    PubMed Central

    Rostami, Mojtaba; Javadi, Abbas-Ali; Khorvash, Farzin; Mostafavizadeh, Kamyar; Adibi, Atoosa; Babak, Anahita; Ataei, Behrooz; Meidani, Mohsen; Naeini, Alireza Emami; Salehi, Hasan; Avijgan, Majid; Yazdani, Mohammad Reza; Rezaei, Farshid

    2011-01-01

    BACKGROUND: Pandemic 2009 H1N1 influenza A virus arrived at Isfahan in August 2009. The virus is still circulating in the world. The abnormal thoracic computerized tomographic (CT) scan findings vary widely among the studies of 2009 H1N1 influenza. We evaluated the thoracic CT findings in patients with 2009 H1N1 virus infection to describe findings compared to previously reported findings, and to suggest patterns that may be suggestive for 2009 influenza A (H1N1) in an appropriate clinical setting. METHODS: Retrospectively, the archive of all patients with a diagnosis of 2009 H1N1 influenza A were reviewed, in Al-Zahra Hospital in Isfahan, central Iran, between September 23rd 2009 to February 20th 2010. Out of 216 patients with confirmed 2009 influenza A (H1N1) virus, 26 cases with abnormal CT were enrolled in the study. Radiologic findings were characterized by the type and pattern of opacities and zonal distribution. RESULTS: Patchy infiltration (34.6%), lobar consolidation (30.8%), and interstitial infiltration (26.9%) with airbronchogram (38.5%) were the predominant findings in our patients. Bilateral distribution was seen in 80.8% of the patients. Only one patient (3.8%) showed ground-glass opacity, predominant radiographic finding in the previous reports and severe acute respiratory syndrome (SARS). CONCLUSIONS: The most common thoracic CT findings in pandemic H1N1 were patchy infiltration, lobar consolidation, and interstitial infiltration with airbronchogram and bilateral distribution. While these findings can be associated with other infections; they may be suggestive to 2009 influenza A (H1N1) in the appropriate clinical setting. Various radiographic patterns can be seen in thoracic CT scans of the influenza patients. Imaging findings are nonspecific. PMID:22091280

  3. Human infection with an avian influenza A (H9N2) virus in the middle region of China.

    PubMed

    Huang, Yiwei; Li, Xiaodan; Zhang, Hong; Chen, Bozhong; Jiang, Yonglin; Yang, Lei; Zhu, Wenfei; Hu, Shixiong; Zhou, Siyu; Tang, Yunli; Xiang, Xingyu; Li, Fangcai; Li, Wenchao; Gao, Lidong

    2015-10-01

    During the epidemic period of the novel H7N9 viruses, an influenza A (H9N2) virus was isolated from a 7-year-old boy with influenza-like illness in Yongzhou city of Hunan province in November 2013. To identify the possible source of infection, environmental specimens collected from local live poultry markets epidemiologically linked to the human case in Yongzhou city were tested for influenza type A and its subtypes H5, H7, and H9 using real-time RT-PCR methods as well as virus isolation, and four other H9N2 viruses were isolated. The real-time RT-PCR results showed that the environment was highly contaminated with avian influenza H9 subtype viruses (18.0%). Sequencing analyses revealed that the virus isolated from the patient, which was highly similar (98.5-99.8%) to one of isolates from environment in complete genome sequences, was of avian origin. Based on phylogenetic and antigenic analyses, it belonged to genotype S and Y280 lineage. In addition, the virus exhibited high homology (95.7-99.5%) of all six internal gene lineages with the novel H7N9 and H10N8 viruses which caused epidemic and endemic in China. Meanwhile, it carried several mammalian adapted molecular residues including Q226L in HA protein, L13P in PB1 protein, K356R, S409N in PA protein, V15I in M1 protein, I28V, L55F in M2 protein, and E227K in NS protein. These findings reinforce the significance of continuous surveillance of H9N2 influenza viruses. PMID:25965534

  4. Human infection with an avian influenza A (H9N2) virus in the middle region of China.

    PubMed

    Huang, Yiwei; Li, Xiaodan; Zhang, Hong; Chen, Bozhong; Jiang, Yonglin; Yang, Lei; Zhu, Wenfei; Hu, Shixiong; Zhou, Siyu; Tang, Yunli; Xiang, Xingyu; Li, Fangcai; Li, Wenchao; Gao, Lidong

    2015-10-01

    During the epidemic period of the novel H7N9 viruses, an influenza A (H9N2) virus was isolated from a 7-year-old boy with influenza-like illness in Yongzhou city of Hunan province in November 2013. To identify the possible source of infection, environmental specimens collected from local live poultry markets epidemiologically linked to the human case in Yongzhou city were tested for influenza type A and its subtypes H5, H7, and H9 using real-time RT-PCR methods as well as virus isolation, and four other H9N2 viruses were isolated. The real-time RT-PCR results showed that the environment was highly contaminated with avian influenza H9 subtype viruses (18.0%). Sequencing analyses revealed that the virus isolated from the patient, which was highly similar (98.5-99.8%) to one of isolates from environment in complete genome sequences, was of avian origin. Based on phylogenetic and antigenic analyses, it belonged to genotype S and Y280 lineage. In addition, the virus exhibited high homology (95.7-99.5%) of all six internal gene lineages with the novel H7N9 and H10N8 viruses which caused epidemic and endemic in China. Meanwhile, it carried several mammalian adapted molecular residues including Q226L in HA protein, L13P in PB1 protein, K356R, S409N in PA protein, V15I in M1 protein, I28V, L55F in M2 protein, and E227K in NS protein. These findings reinforce the significance of continuous surveillance of H9N2 influenza viruses.

  5. The Human Antimicrobial Protein Bactericidal/Permeability-Increasing Protein (BPI) Inhibits the Infectivity of Influenza A Virus

    PubMed Central

    Pinkenburg, Olaf; Meyer, Torben; Bannert, Norbert; Norley, Steven; Bolte, Kathrin; Czudai-Matwich, Volker; Herold, Susanne; Gessner, André; Schnare, Markus

    2016-01-01

    In addition to their well-known antibacterial activity some antimicrobial peptides and proteins (AMPs) display also antiviral effects. A 27 aa peptide from the N-terminal part of human bactericidal/permeability-increasing protein (BPI) previously shown to harbour antibacterial activity inhibits the infectivity of multiple Influenza A virus strains (H1N1, H3N2 and H5N1) the causing agent of the Influenza pneumonia. In contrast, the homologous murine BPI-peptide did not show activity against Influenza A virus. In addition human BPI-peptide inhibits the activation of immune cells mediated by Influenza A virus. By changing the human BPI-peptide to the sequence of the mouse homologous peptide the antiviral activity was completely abolished. Furthermore, the human BPI-peptide also inhibited the pathogenicity of the Vesicular Stomatitis Virus but failed to interfere with HIV and measles virus. Electron microscopy indicate that the human BPI-peptide interferes with the virus envelope and at high concentrations was able to destroy the particles completely. PMID:27273104

  6. The Effect of Probiotic Treatment on Patients Infected with the H7N9 Influenza Virus

    PubMed Central

    Lu, Haifeng; Qian, Guirong; Lv, Longxian; Zhang, Chunxia; Guo, Jing; Jiang, Haiyin; Zheng, Beiwen; Yang, Fengling; Gu, Silan; Chen, Yuanting; Bao, Qiongling; Yu, Liang; Jiang, Xiawei; Hu, Qian; Shi, Haiyan; Gao, Hainv; Li, Lanjuan

    2016-01-01

    Background A novel avian-origin influenza A (H7N9) virus emerged and spread among humans in Eastern China in 2013. Prophylactic treatment with antibiotics and probiotics for secondary infection is as important as antiviral treatment. This study aims to assess the ability of probiotic treatment to restore internal homeostasis under antibiotic pressure and to reduce/ameliorate the risk of secondary infections resulting from infection with the H7N9 virus. Methods This is a retrospective study in archival samples. Between April 1 and May 10, 2013, 113 stool, sputum, and blood specimens were collected and analyzed by denaturing gradient gel electrophoresis (DGGE) to determine the composition of the patient microbiomes. Microbial diversity was calculated using Gel-Pro analyzer and Past software. Cluster analysis of DGGE pattern profiles was employed to create a phylogenetic tree for each patient, and multidimensional scaling (MDS) and principal component analysis (PCA) were performed to visualize relationships between individual lanes. Results Five patients had secondary infections, including Klebsiella pneumonia, Acinetobacter baumanii and Candida albicans infection. The DGGE profiles of fecal samples obtained at different time points from the same individual were clearly different, particularly for patients with secondary infections. Shannon’s diversity index and evenness index were lower in all infected groups compared to the control group. After B. subtilis and E. faecium or C. butyricum administration, the fecal bacterial profiles of patients who had not been treated with antibiotics displayed a trend of increasing diversity and evenness. C. butyricum failed to reduce/ameliorate secondary infection in H7N9-infected patients, but administration of B. subtilis and E. faecium appeared to reduce/ameliorate secondary infection in one patient. Conclusion H7N9 infection might decrease intestinal microbial diversity and species richness in humans. C. butyricum failed to

  7. Intranasal Administration of Chitosan Against Influenza A (H7N9) Virus Infection in a Mouse Model

    PubMed Central

    Zheng, Mei; Qu, Di; Wang, Haiming; Sun, Zhiping; Liu, Xueying; Chen, Jianjun; Li, Changgui; Li, Xuguang; Chen, Ze

    2016-01-01

    Influenza virus evolves constantly in an unpredictable fashion, making it necessary to vaccinate people annually for effective prevention and control of influenza. In general, however, during the first wave of an influenza outbreak caused by a newly emerging virus strain, influenza morbidity and mortality have been observed to rise sharply due to the lack of a matching vaccine. This necessitates the exploration of novel intervention approaches, particularly those prophylactic or therapeutic agents that have a broad range of antiviral activities and are also proven to be non-toxic. Here, we reported that stimulation of the innate immune system by intranasal administration of chitosan as a single agent was sufficient to completely protect BALB/c mice from lethal infection by H7N9 virus, a newly emerged viral strain that is highly pathogenic to humans. Remarkably, animals could still be protected against lethal challenge by H7N9 (10×LD50), even ten days after the intranasal chitosan administration. The significantly enhanced infiltration of leukocytes in the bronchoalveolar lavage and elevated levels of proinflammatory cytokines in the bronchia/lung tissues revealed the potent activation of mucosal immune responses by intranasally delivered chitosan. We also observed that chitosan can protect mice from three other virus strains. The marked breadth and magnitude of protection against diverse viral strains makes chitosan an attractive candidate as a universal anti-influenza agent. PMID:27353250

  8. Intranasal Administration of Chitosan Against Influenza A (H7N9) Virus Infection in a Mouse Model.

    PubMed

    Zheng, Mei; Qu, Di; Wang, Haiming; Sun, Zhiping; Liu, Xueying; Chen, Jianjun; Li, Changgui; Li, Xuguang; Chen, Ze

    2016-01-01

    Influenza virus evolves constantly in an unpredictable fashion, making it necessary to vaccinate people annually for effective prevention and control of influenza. In general, however, during the first wave of an influenza outbreak caused by a newly emerging virus strain, influenza morbidity and mortality have been observed to rise sharply due to the lack of a matching vaccine. This necessitates the exploration of novel intervention approaches, particularly those prophylactic or therapeutic agents that have a broad range of antiviral activities and are also proven to be non-toxic. Here, we reported that stimulation of the innate immune system by intranasal administration of chitosan as a single agent was sufficient to completely protect BALB/c mice from lethal infection by H7N9 virus, a newly emerged viral strain that is highly pathogenic to humans. Remarkably, animals could still be protected against lethal challenge by H7N9 (10×LD50), even ten days after the intranasal chitosan administration. The significantly enhanced infiltration of leukocytes in the bronchoalveolar lavage and elevated levels of proinflammatory cytokines in the bronchia/lung tissues revealed the potent activation of mucosal immune responses by intranasally delivered chitosan. We also observed that chitosan can protect mice from three other virus strains. The marked breadth and magnitude of protection against diverse viral strains makes chitosan an attractive candidate as a universal anti-influenza agent. PMID:27353250

  9. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity

    PubMed Central

    DeFeo, Christopher J.; Alvarado-Facundo, Esmeralda; Vassell, Russell

    2015-01-01

    ABSTRACT Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. IMPORTANCE Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well

  10. Infection of mice with influenza A/WSN/33 (H1N1) virus alters alveolar type II cell phenotype

    PubMed Central

    Hofer, Christian C.; Woods, Parker S.

    2015-01-01

    Influenza viruses cause acute respiratory disease of great importance to public health. Alveolar type II (ATII) respiratory epithelial cells are central to normal lung function and are a site of influenza A virus replication in the distal lung. However, the consequences of infection for ATII cell function are poorly understood. To determine the impact of influenza infection on ATII cells we used C57BL/6-congenic SP-CGFP mice that express green fluorescent protein (GFP) under the control of the surfactant protein-C (SP-C) promoter, which is only active in ATII cells. Most cells isolated from the lungs of uninfected SP-CGFP mice were GFP+ but did not express the alveolar type I (ATI) antigen podoplanin (PODO). ATII cells were also EpCAM+ and α2,3-linked sialosaccharide+. Infection with influenza A/WSN/33 virus caused severe hypoxemia and pulmonary edema. This was accompanied by loss of whole lung GFP fluorescence, reduced ATII cell yields, increased ATII cell apoptosis, reduced SP-C gene and protein expression in ATII cell lysates, and increased PODO gene and protein levels. Flow cytometry indicated that infection decreased GFP+/PODO− cells and increased GFP−/PODO+ and GFP−/PODO− cells. Very few GFP+/PODO+ cells were detectable. Finally, infection resulted in a significant decline in EpCAM expression by PODO+ cells, but had limited effects on α2,3-linked sialosaccharides. Our findings indicate that influenza infection results in a progressive differentiation of ATII cells into ATI-like cells, possibly via an SP-C−/PODO− intermediate, to replace dying or dead ATI cells. However, impaired SP-C synthesis is likely to contribute significantly to reduced lung compliance in infected mice. PMID:25595651

  11. Influenza A virus infection of healthy piglets in an abattoir in Brazil: animal-human interface and risk for interspecies transmission

    PubMed Central

    Amorim, Ariane Ribeiro; Fornells, Luz Alba Maria Garcete; Reis, Felicidade da Costa; Rezende, Daiana Jacinto; Mendes, Gabriella da Silva; Couceiro, José Nelson dos Santos Silva; Santos, Norma Suely de Oliveira

    2013-01-01

    Asymptomatic influenza virus infections in pigs are frequent and the lack of measures for controlling viral spread facilitates the circulation of different virus strains between pigs. The goal of this study was to demonstrate the circulation of influenza A virus strains among asymptomatic piglets in an abattoir in Brazil and discuss the potential public health impacts. Tracheal samples (n = 330) were collected from asymptomatic animals by a veterinarian that also performed visual lung tissue examinations. No slaughtered animals presented with any noticeable macroscopic signs of influenza infection following examination of lung tissues. Samples were then analysed by reverse transcription-polymerase chain reaction that resulted in the identification of 30 (9%) influenza A positive samples. The presence of asymptomatic pig infections suggested that these animals could facilitate virus dissemination and act as a source of infection for the herd, thereby enabling the emergence of influenza outbreaks associated with significant economic losses. Furthermore, the continuous exposure of the farm and abattoir workers to the virus increases the risk for interspecies transmission. Monitoring measures of swine influenza virus infections and vaccination and monitoring of employees for influenza infection should also be considered. In addition regulatory agencies should consider the public health ramifications regarding the potential zoonotic viral transmission between humans and pigs. PMID:23903968

  12. Risk for infection with highly pathogenic influenza A virus (H5N1) in chickens, Hong Kong, 2002.

    PubMed

    Kung, Nina Y; Morris, Roger S; Perkins, Nigel R; Sims, Les D; Ellis, Trevor M; Bissett, Lucy; Chow, Mary; Shortridge, Ken F; Guan, Yi; Peiris, Malik J S

    2007-03-01

    We used epidemiologic evaluation, molecular epidemiology, and a case-control study to identify possible risk factors for the spread of highly pathogenic avian influenza A virus (subtype H5N1) in chicken farms during the first quarter of 2002 in Hong Kong. Farm profiles, including stock sources, farm management, and biosecurity measures, were collected from 16 case and 46 control chicken farms by using a pretested questionnaire and personal interviews. The risk for influenza A (H5N1) infection was assessed by using adjusted odds ratios based on multivariate logistic regression analysis. Retail marketing of live poultry was implicated as the main source of exposure to infection on chicken farms in Hong Kong during this period. Infection control measures should be reviewed and upgraded as necessary to reduce the spread of influenza A (H5N1) related to live poultry markets, which are commonplace across Asia.

  13. Secretion of bioactive interleukin-6 and tumor necrosis factor-alpha proteins from primary cultured human fetal membrane chorion cells infected with influenza virus.

    PubMed

    Uchide, N; Suzuki, A; Ohyama, K; Bessho, T; Toyoda, H

    2006-01-01

    Influenza virus infection during pregnancy is implicated in one of the causes of premature delivery, abortion and stillbirth. Pro-inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha produced by fetal membranes, are postulated to facilitate premature delivery. We investigated the secretion of IL-6 and TNF-alpha from primary cultured human fetal membrane chorion and amnion cells infected with influenza virus at protein and bioactivity levels in order to understand the pathology of premature delivery during influenza virus infection. Concentrations of IL-6 and TNF-alpha proteins were significantly increased in culture supernatants of chorion cells by influenza virus infection. Culture supernatants of the virus-infected chorion cells stimulated the proliferation of IL-6-sensitive 7-TD-1 cells and induced the cytolysis of TNF-alpha-sensitive L929 cells, both activities of which were inhibited by the addition of respective antibody, whereas no such phenomena were observed in amnion cells. The results demonstrated that only chorion cells secreted significant amounts of bioactive IL-6 and TNF-alpha proteins responding to influenza virus infection. The present study suggests a possibility that the secretion of bioactive IL-6 and TNF-alpha proteins from fetal membrane chorion cells is implicated in the pathogenesis of premature delivery during influenza virus infection. PMID:16122792

  14. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biological outcome of H5N1 high pathogenicity avian influenza (HPAI) virus infection in wild waterfowl is poorly understood. This study examined infectivity and pathobiology of A/chicken/Korea/IS/06 (H5N1) HPAI virus infection in Mute swans (Cygnus olor), Greylag geese (Anser anser), Ruddy Sheld...

  15. Environment: a potential source of animal and human infection with influenza A (H5N1) virus

    PubMed Central

    Horm, Srey V.; Gutiérrez, Ramona A.; Sorn, San; Buchy, Philippe

    2012-01-01

    Please cite this paper as: Horm et al. (2012) Environment: a potential source of animal and human infection with influenza A (H5N1) virus. Influenza and Other Respiratory Viruses 6(6), 442–448. Background  Very little is known regarding the persistence of highly pathogenic avian influenza H5N1 viruses in natural settings during outbreaks in tropical countries, although environmental factors may well play a role in the persistence and in the transmission of H5N1 virus. Objective  To investigate various environmental compartments surrounding outbreak areas as potential sources for H5N1 virus transmission. Methods  Environmental specimens were collected following outbreaks of avian influenza in Cambodia between April 2007 and February 2010. The methods used to concentrate H5N1 virus from water samples were based either on agglutination of the virus with chicken red blood cells or on adsorption on glass wool, followed by an elution‐concentration step. An elution‐concentration method was used for mud specimens. All samples that tested positive by real‐time RT‐PCRs (qRT‐PCRs) targeting the HA5, M and NA1 genes were inoculated into embryonated hen eggs for virus isolation. Results  Of a total of 246 samples, 46 (19%) tested positive for H5N1 by qRT‐PCRs. Viral RNA was frequently detected in dust, mud and soil samples from the farms’ environment (respectively, 46%, 31% and 15%). Samples collected from ponds gave a lower proportion of positive samples (6%) as compared to those collected from the farms (24%). In only one sample, infectious virus particles were successfully isolated. Conclusion  During H5N1 virus outbreaks, numerous environmental samples surrounding outbreak areas are contaminated by the virus and may act as potential sources for human and/or animal contamination. PMID:22340982

  16. Epidemiologic study of influenza infection in Okinawa, Japan, from 2001 to 2007: changing patterns of seasonality and prevalence of amantadine-resistant influenza A virus.

    PubMed

    Suzuki, Yasushi; Taira, Katsuya; Saito, Reiko; Nidaira, Minoru; Okano, Shou; Zaraket, Hassan; Suzuki, Hiroshi

    2009-03-01

    To clarify seasonal influenza patterns and the prevalence of amantadine-resistant influenza A viruses in Okinawa, located at the southern extremity of Japan in a subtropical climate, we conducted a laboratory-based study of influenza virus infections from 2001 to 2007. The annual outbreaks tended to show two peaks in Okinawa, in summer and winter, although the main islands of Japan, located in a temperate climate area, showed only winter influenza activity. Epidemic types and subtypes in Okinawa mostly matched those on the main islands of Japan in winter and those in Taiwan in summer. Rates of amantadine resistance dramatically increased, from 7.3% in the November 2002-to-March 2003 season to 90.0% in summer 2005, and a similarly high rate of resistance continued for the rest of the study period. Phylogenetic analysis of the hemagglutinin gene of A/H3N2 isolates collected from 2002 to 2007 revealed a monophyletic lineage that was divided into four period groups. Each group included amantadine-sensitive and -resistant viruses within independent clusters. In the November 2005-to-March 2006 season, all of the amantadine-resistant viruses were clustered in clade N, with dual (position 193 and 225) amino acid mutations in their HA1 subunits. In 2005, clade N amantadine-resistant viruses existed in Okinawa several months before the circulation of this clade on the main islands of Japan. In conclusion, surveillance in Okinawa to monitor influenza virus circulation is important for elucidating the dynamics of virus transmission in a border area between temperate and subtropical areas, as Okinawa is one of the best sentinel points in Japan.

  17. Subcellular proteomic analysis of human host cells infected with H3N2 swine influenza virus.

    PubMed

    Wu, Xiaopeng; Wang, Sanying; Yu, Yang; Zhang, Jinyang; Sun, Zeyu; Yan, Yan; Zhou, Jiyong

    2013-11-01

    Cross-species transmissions of swine influenza viruses (SIVs) raise great public health concerns. In this study, subcellular proteomic profiles of human A549 cells inoculated with H3N2 subtype SIV were used to characterize dynamic cellular responses to infection. By 2DE and MS, 27 differentially expressed (13 upregulated, 14 downregulated) cytoplasmic proteins and 20 differentially expressed (13 upregulated, 7 downregulated) nuclear proteins were identified. Gene ontology analysis suggested that these differentially expressed proteins were mainly involved in cell death, stress response, lipid metabolism, cell signaling, and RNA PTMs. Moreover, 25 corresponding genes of the differentially expressed proteins were quantitated by real time RT-PCR to examine the transcriptional profiles between mock- and virus-infected A549 cells. Western blot analysis confirmed that changes in abundance of identified cellular proteins heterogeneous nuclear ribonucleoprotein (hnRNP) U, hnRNP C, ALDH1A1, tryptophanyl-tRNA synthetase, IFI35, and HSPB1 in H3N2 SIV-infected cells were consistent with results of 2DE analysis. By confocal microscopy, nucleus-to-cytoplasm translocation of hnRNP C and colocalization between the viral nonstructural protein 1 and hnRNP C as well as N-myc (and STAT) interactor were observed upon infection. Ingenuity Pathway Analysis revealed that cellular proteins altered during infection were grouped mainly into NFκB and interferon signaling networks. Collectively, these identified subcellular constituents provide an important framework for understanding host/SIV interactions and underlying mechanisms of SIV cross-species infection and pathogenesis.

  18. Avian influenza virus in pregnancy.

    PubMed

    Liu, Shelan; Sha, Jianping; Yu, Zhao; Hu, Yan; Chan, Ta-Chien; Wang, Xiaoxiao; Pan, Hao; Cheng, Wei; Mao, Shenghua; Zhang, Run Ju; Chen, Enfu

    2016-07-01

    The unprecedented epizootic of avian influenza viruses, such as H5N1, H5N6, H7N1 and H10N8, has continued to cause disease in humans in recent years. In 2013, another novel influenza A (H7N9) virus emerged in China, and 30% of those patients died. Pregnant women are particularly susceptible to avian influenza and are more likely to develop severe complications and to die, especially when infection occurs in the middle and late trimesters. Viremia is believed to occur infrequently, and thus vertical transmission induced by avian influenza appears to be rare. However, avian influenza increases the risk of adverse pregnancy outcomes, including spontaneous abortion, preterm birth and fatal distress. This review summarises 39 cases of pregnant women and their fetuses from different countries dating back to 1997, including 11, 15 and 13 infections with H7N9, H5N1 and the 2009 pandemic influenza (H1N1), respectively. We analysed the epidemic features, following the geographical, population and pregnancy trimester distributions; underlying diseases; exposure history; medical timelines; human-to-human transmission; pathogenicity and vertical transmission; antivirus treatments; maternal severity and mortality and pregnancy outcome. The common experiences reported in different countries and areas suggest that early identification and treatment are imperative. In the future, vigilant virologic and epidemiologic surveillance systems should be developed to monitor avian influenza viruses during pregnancy. Furthermore, extensive study on the immune mechanisms should be conducted, as this will guide safe, rational immunomodulatory treatment among this high-risk population. Most importantly, we should develop a universal avian influenza virus vaccine to prevent outbreaks of the different subtypes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27187752

  19. The comparison of pathology in ferrets infected by H9N2 avian influenza viruses with different genomic features.

    PubMed

    Gao, Rongbao; Bai, Tian; Li, Xiaodan; Xiong, Ying; Huang, Yiwei; Pan, Ming; Zhang, Ye; Bo, Hong; Zou, Shumei; Shu, Yuelong

    2016-01-15

    H9N2 avian influenza virus circulates widely in poultry and has been responsible for sporadic human infections in several regions. Few studies have been conducted on the pathogenicity of H9N2 AIV isolates that have different genomic features. We compared the pathology induced by a novel reassortant H9N2 virus and two currently circulating H9N2 viruses that have different genomic features in ferrets. The results showed that the three viruses can induce infections with various amounts of viral shedding in ferrets. The novel H9N2 induced respiratory infection, but no pathological lesions were observed in lung tissues. The other two viruses induced mild to intermediate pathological lesions in lung tissues, although the clinical signs presented mildly in ferrets. The pathological lesions presented a diversity consistent with viral replication in ferrets. PMID:26638019

  20. Interleukin-35 is upregulated in response to influenza virus infection and secondary bacterial pneumonia.

    PubMed

    Chen, Yi; Wang, Chuan-jiang; Lin, Shi-hui; Zhang, Mu; Li, Sheng-yuan; Xu, Fang

    2016-05-01

    Postinfluenza pneumococcal pneumonia is an important cause of global morbidity and mortality. What causes this increased susceptibility is not well elucidated. IL-35 is a newly described cytokine in infectious tolerance. A murine model was established to study postinfluenza pneumococcal pneumonia and evaluate the role of IL-35 in host defense against postinfluenza pneumococcal pneumonia. Pulmonary IL-35 was rapidly up-regulated during murine influenza infection, which was partially mediated by type I IFN-α/β receptor signaling pathway. Secondary pneumococcal infection led to a synergistic IL-35 response in influenza-infected mice. Clinical analysis showed that IL-35 levels were significantly elevated in the patients with influenza infection compared with healthy individuals and influenza infection could induce IL-35 production from human peripheral blood mononuclear cells. These data suggest that IL-35 contributes to the increased susceptibility to secondary pneumococcal pneumonia at least in part by inhibiting the early immune response.

  1. Type III interferon gene expression in response to influenza virus infection in chicken and duck embryonic fibroblasts.

    PubMed

    Zhang, Zhijie; Zou, Tingting; Hu, Xiaotong; Jin, Hong

    2015-12-01

    Type III interferons (IFN-λs) comprise a group of newly identified antiviral cytokines that are functionally similar to type I IFNs and elicit first-line antiviral responses. Recently, type III IFNs were identified in several species; however, little information is available about type III IFNs in ducks. We compared the expression of type III IFNs and their receptor in chicken embryonic fibroblasts (CEFs) and duck embryonic fibroblasts (DEFs) in response to influenza virus infection. The results showed that the expression of type III IFNs was upregulated in both DEFs and CEFs following infection with H1N1 influenza virus or treatment with poly (I:C), and expression levels were significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs (IL-28Rα) was also upregulated following infection with H1N1 virus or treatment with poly (I:C) and was significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs occurred from 8 hpi and remained at similar levels until 36 hpi in CEFs, but the expression level was elevated from 36 hpi in DEFs. These findings revealed the existence of distinct expression patterns for type III IFNs in chickens and ducks in response to influenza virus infection. The provided data are fundamentally useful in furthering our understanding of type III IFNs and innate antiviral responses in different species.

  2. Type III interferon gene expression in response to influenza virus infection in chicken and duck embryonic fibroblasts.

    PubMed

    Zhang, Zhijie; Zou, Tingting; Hu, Xiaotong; Jin, Hong

    2015-12-01

    Type III interferons (IFN-λs) comprise a group of newly identified antiviral cytokines that are functionally similar to type I IFNs and elicit first-line antiviral responses. Recently, type III IFNs were identified in several species; however, little information is available about type III IFNs in ducks. We compared the expression of type III IFNs and their receptor in chicken embryonic fibroblasts (CEFs) and duck embryonic fibroblasts (DEFs) in response to influenza virus infection. The results showed that the expression of type III IFNs was upregulated in both DEFs and CEFs following infection with H1N1 influenza virus or treatment with poly (I:C), and expression levels were significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs (IL-28Rα) was also upregulated following infection with H1N1 virus or treatment with poly (I:C) and was significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs occurred from 8 hpi and remained at similar levels until 36 hpi in CEFs, but the expression level was elevated from 36 hpi in DEFs. These findings revealed the existence of distinct expression patterns for type III IFNs in chickens and ducks in response to influenza virus infection. The provided data are fundamentally useful in furthering our understanding of type III IFNs and innate antiviral responses in different species. PMID:26598110

  3. Consequences of resistance: in vitro fitness, in vivo infectivity, and transmissibility of oseltamivir‐resistant influenza A viruses

    PubMed Central

    Govorkova, Elena A.

    2012-01-01

    Please cite this paper as: Govorkova EA. (2012) Consequences of resistance: in vitro fitness, in vivo infectivity, and transmissibility of oseltamivir‐resistant influenza A viruses. Influenza and Other Respiratory Viruses 7(Suppl. 1), 50–57. The development of drug resistance is a major drawback to any antiviral therapy, and the specific anti‐influenza drugs, the neuraminidase (NA) inhibitors (NAIs), are not excluded from this rule. The impact of drug resistance depends on the degree of reduction in fitness of the particular drug‐resistant virus. If the resistance mutations lead to only a modest biological fitness cost and the virus remains highly transmissible, the effectiveness of antiviral use is likely to be reduced. This review focuses on the fitness of oseltamivir‐resistant seasonal H1N1 and H3N2, 2009 pandemic H1N1 (H1N1pdm09), and highly pathogenic H5N1 influenza A viruses carrying clinically derived NAI resistance‐associated NA mutations. PMID:23279897

  4. Pathogenesis of H5N1 influenza virus infections in mice and ferret models differ between respiratory and digestive system exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Epidemiological, clinical and laboratory data suggests H5N1 influenza viruses are transmitted through and predominantly affect the respiratory system of mammals. Some data suggests digestive system involvement. However, direct evidence of alimentary transmission and infection in mammal...

  5. Interaction of Host Nucleolin with Influenza A Virus Nucleoprotein in the Early Phase of Infection Limits the Late Viral Gene Expression

    PubMed Central

    Kumar, Deepshikha; Broor, Shobha; Rajala, Maitreyi S.

    2016-01-01

    Influenza A virus nucleoprotein, is a multifunctional RNA-binding protein, encoded by segment-5 of the negative sense RNA genome. It serves as a key connector between the virus and the host during virus replication. It continuously shuttles between the cytoplasm and the nucleus interacting with various host cellular factors. In the current study, host proteins interacting with nucleoprotein of Influenza A virus of H1N1 2009 pandemic strain were identified by co-immunoprecipitation studies followed by MALDI-TOF/MS analysis. Here we report the host nucleolin, a major RNA-binding protein of the nucleolus as a novel interacting partner to influenza A virus nucleoprotein. We thus, explored the implications of this interaction in virus life cycle and our studies have shown that these two proteins interact early during infection in the cytoplasm of infected cells. Depletion of nucleolin in A549 cells by siRNA targeting endogenous nucleolin followed by influenza A virus infection, disrupted its interaction with viral nucleoprotein, resulting in increased expression of gene transcripts encoding late viral proteins; matrix (M1) and hemagglutinin (HA) in infected cells. On the contrary, over expression of nucleolin in cells transiently transfected with pEGFP-NCL construct followed by virus infection significantly reduced the late viral gene transcripts, and consequently the viral titer. Altered expression of late viral genes and titers following manipulation of host cellular nucleolin, proposes the functional importance of its interaction with nucleoprotein during influenza A virus infection. PMID:27711134

  6. Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: The role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza

    NASA Astrophysics Data System (ADS)

    Geiss, Gary K.; Salvatore, Mirella; Tumpey, Terrence M.; Carter, Victoria S.; Wang, Xiuyan; Basler, Christopher F.; Taubenberger, Jeffery K.; Bumgarner, Roger E.; Palese, Peter; Katze, Michael G.; García-Sastre, Adolfo

    2002-08-01

    The NS1 protein of influenza A virus contributes to viral pathogenesis, primarily by enabling the virus to disarm the host cell type IFN defense system. We examined the downstream effects of NS1 protein expression during influenza A virus infection on global cellular mRNA levels by measuring expression of over 13,000 cellular genes in response to infection with wild-type and mutant viruses in human lung epithelial cells. Influenza A/PR/8/34 virus infection resulted in a significant induction of genes involved in the IFN pathway. Deletion of the viral NS1 gene increased the number and magnitude of expression of cellular genes implicated in the IFN, NF-B, and other antiviral pathways. Interestingly, different IFN-induced genes showed different sensitivities to NS1-mediated inhibition of their expression. A recombinant virus with a C-terminal deletion in its NS1 gene induced an intermediate cellular mRNA expression pattern between wild-type and NS1 knockout viruses. Most significantly, a virus containing the 1918 pandemic NS1 gene was more efficient at blocking the expression of IFN-regulated genes than its parental influenza A/WSN/33 virus. Taken together, our results suggest that the cellular response to influenza A virus infection in human lung cells is significantly influenced by the sequence of the NS1 gene, demonstrating the importance of the NS1 protein in regulating the host cell response triggered by virus infection.

  7. Influenza virus activation of the interferon system

    PubMed Central

    Killip, Marian J.; Fodor, Ervin; Randall, Richard E.

    2015-01-01

    The host interferon (IFN) response represents one of the first barriers that influenza viruses must surmount in order to establish an infection. Many advances have been made in recent years in understanding the interactions between influenza viruses and the interferon system. In this review, we summarise recent work regarding activation of the type I IFN response by influenza viruses, including attempts to identify the viral RNA responsible for IFN induction, the stage of the virus life cycle at which it is generated and the role of defective viruses in this process. PMID:25678267

  8. Different outcomes of infection of chickens and ducks with a duck-origin H9N2 influenza A virus.

    PubMed

    Wang, J; Li, C C; Diao, Y X; Sun, X Y; Hao, D M; Liu, X; Ge, P P

    2014-01-01

    As the major aquatic and terrestrial hosts for avian influenza viruses (AIVs), ducks and chickens play a critical role in the evolution and spread of the H9N2 virus. However, the outcomes of infection of ducks and chickens with the H9N2 virus are not sufficiently documented. In this study, we compared the outcomes of infection of chickens and Peking ducks with a duck-origin H9N2 virus. The results showed that this virus caused more pronounced clinical signs and histological lesions in chickens. As for the virus shedding, chickens shed more virus in the trachea and less virus in the cloaca in levels of interferon (IFN) γ were found in the trachea of ducks compared with chickens, while comparison with ducks. As for cytokines, namely IFNs and interleukins (IL), higher higher levels of IFN-β, IFN-γ, IL-1β, and IL-6 were observed in the ileum of chickens compared with ducks. Eventually, serum hemagglutination-inhibition (HI) antibody titers were higher in chickens than in ducks. Taken together, ducks and chickens use different strategies in response to the H9N2 virus infection in tissues representing main replication sites of low-pathogenic AIVs. Given the different outcomes of the H9N2 virus infection in ducks and chickens, different measures should be taken in vaccination and treatment.

  9. Premedication with Clarithromycin Is Effective against Secondary Bacterial Pneumonia during Influenza Virus Infection in a Pulmonary Emphysema Mouse Model.

    PubMed

    Harada, Tatsuhiko; Ishimatsu, Yuji; Hara, Atsuko; Morita, Towako; Nakashima, Shota; Kakugawa, Tomoyuki; Sakamoto, Noriho; Kosai, Kosuke; Izumikawa, Koichi; Yanagihara, Katsunori; Mukae, Hiroshi; Kohno, Shigeru

    2016-09-01

    Secondary bacterial pneumonia (SBP) during influenza increases the severity of chronic obstructive pulmonary disease (COPD) and its associated mortality. Macrolide antibiotics, including clarithromycin (CAM), are potential treatments for a variety of chronic respiratory diseases owing to their pharmacological activities, in addition to antimicrobial action. We examined the efficacy of CAM for the treatment of SBP after influenza infection in COPD. Specifically, we evaluated the effect of CAM in elastase-induced emphysema mice that were inoculated with influenza virus (strain A/PR8/34) and subsequently infected with macrolide-resistant Streptococcus pneumoniae CAM was administered to the emphysema mice 4 days prior to influenza virus inoculation. Premedication with CAM improved pathologic responses and bacterial load 2 days after S. pneumoniae inoculation. Survival rates were higher in emphysema mice than control mice. While CAM premedication did not affect viral titers or exert antibacterial activity against S. pneumoniae in the lungs, it enhanced host defense and reduced inflammation, as evidenced by the significant reductions in total cell and neutrophil counts and interferon (IFN)-γ levels in bronchoalveolar lavage fluid and lung homogenates. These results suggest that CAM protects against SBP during influenza in elastase-induced emphysema mice by reducing IFN-γ production, thus enhancing immunity to SBP, and by decreasing neutrophil infiltration into the lung to prevent injury. Accordingly, CAM may be an effective strategy to prevent secondary bacterial pneumonia in COPD patients in areas in which vaccines are inaccessible or limited.

  10. Premedication with Clarithromycin Is Effective against Secondary Bacterial Pneumonia during Influenza Virus Infection in a Pulmonary Emphysema Mouse Model.

    PubMed

    Harada, Tatsuhiko; Ishimatsu, Yuji; Hara, Atsuko; Morita, Towako; Nakashima, Shota; Kakugawa, Tomoyuki; Sakamoto, Noriho; Kosai, Kosuke; Izumikawa, Koichi; Yanagihara, Katsunori; Mukae, Hiroshi; Kohno, Shigeru

    2016-09-01

    Secondary bacterial pneumonia (SBP) during influenza increases the severity of chronic obstructive pulmonary disease (COPD) and its associated mortality. Macrolide antibiotics, including clarithromycin (CAM), are potential treatments for a variety of chronic respiratory diseases owing to their pharmacological activities, in addition to antimicrobial action. We examined the efficacy of CAM for the treatment of SBP after influenza infection in COPD. Specifically, we evaluated the effect of CAM in elastase-induced emphysema mice that were inoculated with influenza virus (strain A/PR8/34) and subsequently infected with macrolide-resistant Streptococcus pneumoniae CAM was administered to the emphysema mice 4 days prior to influenza virus inoculation. Premedication with CAM improved pathologic responses and bacterial load 2 days after S. pneumoniae inoculation. Survival rates were higher in emphysema mice than control mice. While CAM premedication did not affect viral titers or exert antibacterial activity against S. pneumoniae in the lungs, it enhanced host defense and reduced inflammation, as evidenced by the significant reductions in total cell and neutrophil counts and interferon (IFN)-γ levels in bronchoalveolar lavage fluid and lung homogenates. These results suggest that CAM protects against SBP during influenza in elastase-induced emphysema mice by reducing IFN-γ production, thus enhancing immunity to SBP, and by decreasing neutrophil infiltration into the lung to prevent injury. Accordingly, CAM may be an effective strategy to prevent secondary bacterial pneumonia in COPD patients in areas in which vaccines are inaccessible or limited. PMID:27489022

  11. Biogenesis, assembly, and export of viral messenger ribonucleoproteins in the influenza A virus infected cell

    PubMed Central

    York, Ashley; Fodor, Ervin

    2013-01-01

    The flow of genetic information from sites of transcription within the nucleus to the cytoplasmic translational machinery of eukaryotic cells is obstructed by a physical blockade, the nuclear double membrane, which must be overcome in order to adhere to the central dogma of molecular biology, DNA makes RNA makes protein. Advancement in the field of cellular and molecular biology has painted a detailed picture of the molecular mechanisms from transcription of genes to mRNAs and their processing that is closely coupled to export from the nucleus. The rules that govern delivering messenger transcripts from the nucleus must be obeyed by influenza A virus, a member of the Orthomyxoviridae that has adopted a nuclear replication cycle. The negative-sense genome of influenza A virus is segmented into eight individual viral ribonucleoprotein (vRNP) complexes containing the viral RNA-dependent RNA polymerase and single-stranded RNA encapsidated in viral nucleoprotein. Influenza A virus mRNAs fall into three major categories, intronless, intron-containing unspliced and spliced. During evolutionary history, influenza A virus has conceived a way of negotiating the passage of viral transcripts from the nucleus to cytoplasmic sites of protein synthesis. The major mRNA nuclear export NXF1 pathway is increasingly implicated in viral mRNA export and this review considers and discusses the current understanding of how influenza A virus exploits the host mRNA export pathway for replication. PMID:23807439

  12. Outbreak of influenza A (H3N2) variant virus infection among attendees of an agricultural fair, Pennsylvania, USA, 2011.

    PubMed

    Wong, Karen K; Greenbaum, Adena; Moll, Maria E; Lando, James; Moore, Erin L; Ganatra, Rahul; Biggerstaff, Matthew; Lam, Eugene; Smith, Erica E; Storms, Aaron D; Miller, Jeffrey R; Dato, Virginia; Nalluswami, Kumar; Nambiar, Atmaram; Silvestri, Sharon A; Lute, James R; Ostroff, Stephen; Hancock, Kathy; Branch, Alicia; Trock, Susan C; Klimov, Alexander; Shu, Bo; Brammer, Lynnette; Epperson, Scott; Finelli, Lyn; Jhung, Michael A

    2012-12-01

    During August 2011, influenza A (H3N2) variant [A(H3N2)v] virus infection developed in a child who attended an agricultural fair in Pennsylvania, USA; the virus resulted from reassortment of a swine influenza virus with influenza A(H1N1)pdm09. We interviewed fair attendees and conducted a retrospective cohort study among members of an agricultural club who attended the fair. Probable and confirmed cases of A(H3N2)v virus infection were defined by serology and genomic sequencing results, respectively. We identified 82 suspected, 4 probable, and 3 confirmed case-patients who attended the fair. Among 127 cohort study members, the risk for suspected case status increased as swine exposure increased from none (4%; referent) to visiting swine exhibits (8%; relative risk 2.1; 95% CI 0.2-53.4) to touching swine (16%; relative risk 4.4; 95% CI 0.8-116.3). Fairs may be venues for zoonotic transmission of viruses with epidemic potential; thus, health officials should investigate respiratory illness outbreaks associated with agricultural events.

  13. In vitro inhibition of influenza virus infection by a crude extract from Isatis indigotica root resulting in the prevention of viral attachment.

    PubMed

    Yang, Zifeng; Wang, Yutao; Zhong, Shan; Zhao, Suishan; Zeng, Xiangteng; Mo, Ziyao; Qin, Sheng; Guan, Wenda; Li, Chuyuan; Zhong, Nanshan

    2012-03-01

    Isatis indigotica root (IIR) has been widely used as a Chinese medicinal herb to treat regular seasonal influenza over the long history of traditional Chinese medicinal practice. However, its inhibitory activities against influenza virus infections along with the associated mechanisms have not been investigated comprehensively. In this study, the chemical nature, mode of action and in vitro anti-influenza activities of a crude extract (G2) of IIR were characterized. The extract was found to inhibit different subtypes of human or avian influenza viruses at various magnitudes of activity (IC50 0.39‑4.3 mg/ml) in vitro, including A/PR/8/34 (H1N1), A/FM/1/47 (H1N1), A/Aichi/2/68 (H3N2), seasonal influenza (A/Guangzhou/GIRD/02/09 H1N1, B/Guangzhou/GIRD/08/09), novel swine-originating influenza (A/Guangzhou/GIRD/07/09, H1N1), A/Duck/Guangdong/09 (H6N2), A/Duck/Guangdong/94 (H7N3) and A/Chicken/Guangdong/96 (H9N2), while G2 was inactive against respiratory syncytial virus (RSV), adenovirus 3 (ADV3), parainfluenza virus 3 (PIV3) and enterovirus 71 (EV71). An apparent virus titer reduction was detected when the influenza viruses were pretreated with G2, and it was also shown that G2 exhibited inhibitory effects on influenza virus hemagglutination. In addition, G2 played a role in the early stages of infection, which did not easily result in the emergence of virus drug resistance. Thus, G2 may affect the attachment of influenza virus by interfering with the viral particles, thereby preventing the binding of influenza virus to the host cell surface.

  14. RIG-I Signaling Is Critical for Efficient Polyfunctional T Cell Responses during Influenza Virus Infection

    PubMed Central

    Kandasamy, Matheswaran; Suryawanshi, Amol; Tundup, Smanla; Perez, Jasmine T.; Schmolke, Mirco; Manicassamy, Santhakumar; Manicassamy, Balaji

    2016-01-01

    Retinoic acid inducible gene-I (RIG-I) is an innate RNA sensor that recognizes the influenza A virus (IAV) RNA genome and activates antiviral host responses. Here, we demonstrate that RIG-I signaling plays a crucial role in restricting IAV tropism and regulating host immune responses. Mice deficient in the RIG-I-MAVS pathway show defects in migratory dendritic cell (DC) activation, viral antigen presentation, and priming of CD8+ and CD4+ T cell responses during IAV infection. These defects result in decreased frequency of polyfunctional effector T cells and lowered protection against heterologous IAV challenge. In addition, our data show that RIG-I activation is essential for protecting epithelial cells and hematopoietic cells from IAV infection. These diverse effects of RIG-I signaling are likely imparted by the actions of type I interferon (IFN), as addition of exogenous type I IFN is sufficient to overcome the defects in antigen presentation by RIG-I deficient BMDC. Moreover, the in vivo T cell defects in RIG-I deficient mice can be overcome by the activation of MDA5 –MAVS via poly I:C treatment. Taken together, these findings demonstrate that RIG-I signaling through MAVS is critical for determining the quality of polyfunctional T cell responses against IAV and for providing protection against subsequent infection from heterologous or novel pandemic IAV strains. PMID:27438481

  15. Cumulative neonatal oxygen exposure predicts response of adult mice infected with influenza A virus

    PubMed Central

    Maduekwe, Echezona T.; Buczynski, Bradley W.; Yee, Min; Rangasamy, Tiruamalai; Stevens, Timothy P.; Lawrence, B. Paige; O'Reilly, Michael A.

    2015-01-01

    Summary An acceptable level of oxygen exposure in preterm infants that maximizes efficacy and minimizes harm has yet to be determined. Quantifying oxygen exposure as an area-under-the curve (OAUC) has been predictive of later respiratory symptoms among former low birth weight infants. Here, we test the hypothesis that quantifying OAUC in newborn mice can predict their risk for altered lung development and respiratory viral infections as adults. Newborn mice were exposed to room air or a FiO2 of 100% oxygen for 4 days, 60% oxygen for 8 days, or 40% oxygen for 16 days (same cumulative dose of excess oxygen). At 8 weeks of age, mice were infected intranasally with a non-lethal dose of influenza A virus. Adult mice exposed to 100% oxygen for 4 days or 60% oxygen for 8 days exhibited alveolar simplification and altered elastin deposition compared to siblings birthed into room air, as well as increased inflammation and fibrotic lung disease following viral infection. These changes were not observed in mice exposed to 40% oxygen for 16 days. Our findings in mice support the concept that quantifying OAUC over a currently unspecified threshold can predict human risk for respiratory morbidity later in life. PMID:24850805

  16. Emerging Infections of CNS: Avian Influenza A Virus, Rift Valley Fever Virus and Human Parechovirus.

    PubMed

    Wiley, Clayton A; Bhardwaj, Nitin; Ross, Ted M; Bissel, Stephanie J

    2015-09-01

    History is replete with emergent pandemic infections that have decimated the human population. Given the shear mass of humans that now crowd the earth, there is every reason to suspect history will repeat itself. We describe three RNA viruses that have recently emerged in the human population to mediate severe neurological disease. These new diseases are results of new mutations in the infectious agents or new exposure pathways to the agents or both. To appreciate their pathogenesis, we summarize the essential virology and immune response to each agent. Infection is described in the context of known host defenses. Once the viruses evade immune defenses and enter central nervous system (CNS) cells, they rapidly co-opt host RNA processing to a cataclysmic extent. It is not clear why the brain is particularly susceptible to RNA viruses; but perhaps because of its tremendous dependence on RNA processing for physiological functioning, classical mechanisms of host defense (eg, interferon disruption of viral replication) are diminished or not available. Effectiveness of immunity, immunization and pharmacological therapies is reviewed to contextualize the scope of the public health challenge. Unfortunately, vaccines that confer protection from systemic disease do not necessarily confer protection for the brain after exposure through unconventional routes.

  17. Reassortment patterns in Swine influenza viruses.

    PubMed

    Khiabanian, Hossein; Trifonov, Vladimir; Rabadan, Raul

    2009-10-07

    Three human influenza pandemics occurred in the twentieth century, in 1918, 1957, and 1968. Influenza pandemic strains are the results of emerging viruses from non-human reservoirs to which humans have little or no immunity. At least two of these pandemic strains, in 1957 and in 1968, were the results of reassortments between human and avian viruses. Also, many cases of swine influenza viruses have reportedly infected humans, in particular, the recent H1N1 influenza virus of swine origin, isolated in Mexico and the United States. Pigs are documented to allow productive replication of human, avian, and swine influenza viruses. Thus it has been conjectured that pigs are the "mixing vessel" that create the avian-human reassortant strains, causing the human pandemics. Hence, studying the process and patterns of viral reassortment, especially in pigs, is a key to better understanding of human influenza pandemics. In the last few years, databases containing sequences of influenza A viruses, including swine viruses, collected since 1918 from diverse geographical locations, have been developed and made publicly available. In this paper, we study an ensemble of swine influenza viruses to analyze the reassortment phenomena through several statistical techniques. The reassortment patterns in swine viruses prove to be similar to the previous results found in human viruses, both in vitro and in vivo, that the surface glycoprotein coding segments reassort most often. Moreover, we find that one of the polymerase segments (PB1), reassorted in the strains responsible for the last two human pandemics, also reassorts frequently.

  18. Structural basis for preferential avian receptor binding by the human-infecting H10N8 avian influenza virus.

    PubMed

    Wang, Min; Zhang, Wei; Qi, Jianxun; Wang, Fei; Zhou, Jianfang; Bi, Yuhai; Wu, Ying; Sun, Honglei; Liu, Jinhua; Huang, Chaobin; Li, Xiangdong; Yan, Jinghua; Shu, Yuelong; Shi, Yi; Gao, George F

    2015-01-01

    Since December 2013, at least three cases of human infections with H10N8 avian influenza virus have been reported in China, two of them being fatal. To investigate the epidemic potential of H10N8 viruses, we examined the receptor binding property of the first human isolate, A/Jiangxi-Donghu/346/2013 (JD-H10N8), and determined the structures of its haemagglutinin (HA) in complex with both avian and human receptor analogues. Our results suggest that JD-H10N8 preferentially binds the avian receptor and that residue R137-localized within the receptor-binding site of HA-plays a key role in this preferential binding. Compared with the H7N9 avian influenza viruses, JD-H10N8 did not exhibit the enhanced binding to human receptors observed with the prevalent H7N9 virus isolate Anhui-1, but resembled the receptor binding activity of the early-outbreak H7N9 isolate (Shanghai-1). We conclude that the H10N8 virus is a typical avian influenza virus.

  19. Novel influenza A (H1N1) virus infections among health-care personnel - United States, April-May 2009.

    PubMed

    2009-06-19

    Soon after identification of novel influenza A (H1N1) virus infections in the United States in mid-April 2009, CDC provided interim recommendations to reduce the risk for transmission in health-care settings. These included recommendations on use of personal protective equipment (PPE), management of health-care personnel (HCP) after unprotected exposures, and instruction of ill HCP not to report to work. To better understand the risk for acquiring infection with the virus among HCP and the impact of infection-control recommendations, CDC solicited reports of infected HCP from state health departments. As of May 13, CDC had received 48 reports of confirmed or probable infections with novel influenza A (H1N1) virus; of these, 26 reports included detailed case reports with information regarding risk factors that might have led to infection. Of the 26 cases, 13 (50%) HCP were deemed to have acquired infection in a health-care setting, including one instance of probable HCP to HCP transmission and 12 instances of probable or possible patient to HCP transmission. Eleven HCP had probable or possible acquisition in the community, and two had no reported exposures in either health-care or community settings. Among 11 HCP with probable or possible patient to HCP acquisition and available information on PPE use, only three reported always using either a surgical mask or an N95 respirator. These findings suggest that transmission of novel influenza A (H1N1) virus to HCP is occurring in both health-care and community settings and that additional messages aimed at reinforcing current infection-control recommendations are needed. PMID:19543199

  20. Ostrich ( Struthio camelus ) Infected with H5N8 Highly Pathogenic Avian Influenza Virus in South Korea in 2014.

    PubMed

    Kim, Hye-Ryoung; Kwon, Yong-Kuk; Lee, Youn-Jeong; Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jung, Suk-Chan; Lee, Kyung-Hyun; Lee, Hyun-Kyoung; Baek, Kang-Hyun; Bae, You-Chan

    2016-06-01

    Highly pathogenic avian influenza (HPAI) virus of the H5N8 subtype was isolated from a young ostrich in South Korea in March 2014. Clinical signs characterized by anorexia, depression, and signs of nervousness were observed. The isolated A/ostrich/Korea/H829/2014 (H5N8) virus had a cleavage site motif containing multiple basic amino acids, typical of HPAI virus. The phylogenetic tree of the hemagglutinin gene of the H5 HPAI virus showed that this ostrich H5N8 virus belongs to clade 2.3.4.4 viruses together with H5N8 strains isolated from ducks and wild birds in South Korea in 2014. Pathologically, redness of pancreas, enlargement and hemorrhage of spleen, friability of brain, and hydropericardium were prominently found. Histologic legions were observed in pancreas, spleen, liver, lung, heart, and brain, and influenza A nucleoproteins were detected in the same organs by immunohistochemistry. Other ostriches farmed together in open camps were not infected with HPAI virus based on the serologic and virologic tests. The findings indicate that ostriches are susceptible to H5N8 HPAI virus, but this virus does not spread efficiently among ratites. PMID:27309301

  1. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus-Infected Birds, United States, December 2014-March 2015.

    PubMed

    Arriola, Carmen S; Nelson, Deborah I; Deliberto, Thomas J; Blanton, Lenee; Kniss, Krista; Levine, Min Z; Trock, Susan C; Finelli, Lyn; Jhung, Michael A

    2015-12-01

    Newly emerged highly pathogenic avian influenza (HPAI) A H5 viruses have caused outbreaks among birds in the United States. These viruses differ genetically from HPAI H5 viruses that previously caused human illness, most notably in Asia and Africa. To assess the risk for animal-to-human HPAI H5 virus transmission in the United States, we determined the number of persons with self-reported exposure to infected birds, the number with an acute respiratory infection (ARI) during a 10-day postexposure period, and the number with ARI who tested positive for influenza by real-time reverse transcription PCR or serologic testing for each outbreak during December 15, 2014-March 31, 2015. During 60 outbreaks in 13 states, a total of 164 persons were exposed to infected birds. ARI developed in 5 of these persons within 10 days of exposure. H5 influenza virus infection was not identified in any persons with ARI, suggesting a low risk for animal-to-human HPAI H5 virus transmission.

  2. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus-Infected Birds, United States, December 2014-March 2015.

    PubMed

    Arriola, Carmen S; Nelson, Deborah I; Deliberto, Thomas J; Blanton, Lenee; Kniss, Krista; Levine, Min Z; Trock, Susan C; Finelli, Lyn; Jhung, Michael A

    2015-12-01

    Newly emerged highly pathogenic avian influenza (HPAI) A H5 viruses have caused outbreaks among birds in the United States. These viruses differ genetically from HPAI H5 viruses that previously caused human illness, most notably in Asia and Africa. To assess the risk for animal-to-human HPAI H5 virus transmission in the United States, we determined the number of persons with self-reported exposure to infected birds, the number with an acute respiratory infection (ARI) during a 10-day postexposure period, and the number with ARI who tested positive for influenza by real-time reverse transcription PCR or serologic testing for each outbreak during December 15, 2014-March 31, 2015. During 60 outbreaks in 13 states, a total of 164 persons were exposed to infected birds. ARI developed in 5 of these persons within 10 days of exposure. H5 influenza virus infection was not identified in any persons with ARI, suggesting a low risk for animal-to-human HPAI H5 virus transmission. PMID:26583382

  3. Contemporary Seasonal Influenza A (H1N1) Virus Infection Primes for a More Robust Response To Split Inactivated Pandemic Influenza A (H1N1) Virus Vaccination in Ferrets ▿

    PubMed Central

    Ellebedy, Ali H.; Fabrizio, Thomas P.; Kayali, Ghazi; Oguin, Thomas H.; Brown, Scott A.; Rehg, Jerold; Thomas, Paul G.; Webby, Richard J.

    2010-01-01

    Human influenza pandemics occur when influenza viruses to which the population has little or no immunity emerge and acquire the ability to achieve human-to-human transmission. In April 2009, cases of a novel H1N1 influenza virus in children in the southwestern United States were reported. It was retrospectively shown that these cases represented the spread of this virus from an ongoing outbreak in Mexico. The emergence of the pandemic led to a number of national vaccination programs. Surprisingly, early human clinical trial data have shown that a single dose of nonadjuvanted pandemic influenza A (H1N1) 2009 monovalent inactivated vaccine (pMIV) has led to a seroprotective response in a majority of individuals, despite earlier studies showing a lack of cross-reactivity between seasonal and pandemic H1N1 viruses. Here we show that previous exposure to a contemporary seasonal H1N1 influenza virus and to a lesser degree a seasonal influenza virus trivalent inactivated vaccine is able to prime for a higher antibody response after a subsequent dose of pMIV in ferrets. The more protective response was partially dependent on the presence of CD8+ cells. Two doses of pMIV were also able to induce a detectable antibody response that provided protection from subsequent challenge. These data show that previous infection with seasonal H1N1 influenza viruses likely explains the requirement for only a single dose of pMIV in adults and that vaccination campaigns with the current pandemic influenza vaccines should reduce viral burden and disease severity in humans. PMID:20962210

  4. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition

    PubMed Central

    Tate, Michelle D.; Ong, James D. H.; Dowling, Jennifer K.; McAuley, Julie L.; Robertson, Avril B.; Latz, Eicke; Drummond, Grant R.; Cooper, Matthew A.; Hertzog, Paul J.; Mansell, Ashley

    2016-01-01

    The inflammasome NLRP3 is activated by pathogen associated molecular patterns (PAMPs) during infection, including RNA and proteins from influenza A virus (IAV). However, chronic activation by danger associated molecular patterns (DAMPs) can be deleterious to the host. We show that blocking NLRP3 activation can be either protective or detrimental at different stages of lethal influenza A virus (IAV). Administration of the specific NLRP3 inhibitor MCC950 to mice from one day following IAV challenge resulted in hypersusceptibility to lethality. In contrast, delaying treatment with MCC950 until the height of disease (a more likely clinical scenario) significantly protected mice from severe and highly virulent IAV-induced disease. These findings identify for the first time that NLRP3 plays a detrimental role later in infection, contributing to IAV pathogenesis through increased cytokine production and lung cellular infiltrates. These studies also provide the first evidence identifying NLRP3 inhibition as a novel therapeutic target to reduce IAV disease severity. PMID:27283237

  5. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition.

    PubMed

    Tate, Michelle D; Ong, James D H; Dowling, Jennifer K; McAuley, Julie L; Robertson, Avril B; Latz, Eicke; Drummond, Grant R; Cooper, Matthew A; Hertzog, Paul J; Mansell, Ashley

    2016-01-01

    The inflammasome NLRP3 is activated by pathogen associated molecular patterns (PAMPs) during infection, including RNA and proteins from influenza A virus (IAV). However, chronic activation by danger associated molecular patterns (DAMPs) can be deleterious to the host. We show that blocking NLRP3 activation can be either protective or detrimental at different stages of lethal influenza A virus (IAV). Administration of the specific NLRP3 inhibitor MCC950 to mice from one day following IAV challenge resulted in hypersusceptibility to lethality. In contrast, delaying treatment with MCC950 until the height of disease (a more likely clinical scenario) significantly protected mice from severe and highly virulent IAV-induced disease. These findings identify for the first time that NLRP3 plays a detrimental role later in infection, contributing to IAV pathogenesis through increased cytokine production and lung cellular infiltrates. These studies also provide the first evidence identifying NLRP3 inhibition as a novel therapeutic target to reduce IAV disease severity.

  6. Polymerized liposomes containing C-glycosides of sialic acid: Potent inhibitors of influenza virus in vitro infectivity

    SciTech Connect

    Spevak, W.; Bednarski, M.D.; Nagy, J.O.; Charych, D.H ); Schaefer, M.E.; Gilbert, J.H. )

    1993-02-10

    The surface lectin of the influenza virus, hemagglutinin, binds to terminal [alpha]-glycosides of N-acetylneuraminic acid (NeuAc) on cell-surface glycoproteins and glycolipids. Viral binding to cells expression terminal NeuAc residues can be inhibited by [alpha]-O-glycosides of NeuAc (O-sialosides). Recently, dramatic enhancements in the inhibition of viral adhesion to erythrocytes have been achieved using synthetic polyvalent sialosides. In this communication, the authors report that polymerized liposomes containing [alpha]-C-glycosides of sialic acid are potent inhibitors of influenza virus in vitro infectivity. Their results also indicate that the capacity to inhibit hemagglutination does not necessarily reflect the capacity to inhibit in vitro infectivity. 14 refs., 1 tab.

  7. Influenza A Virus Infection of Intestinal Epithelial Cells Enhances the Adhesion Ability of Crohn’s Disease Associated Escherichia coli Strains

    PubMed Central

    Aleandri, Marta; Conte, Maria Pia; Simonetti, Giovanna; Panella, Simona; Celestino, Ignacio; Checconi, Paola; Marazzato, Massimiliano; Longhi, Catia; Goldoni, Paola; Nicoletti, Mauro; Barnich, Nicolas; Palamara, Anna Teresa; Schippa, Serena; Nencioni, Lucia

    2015-01-01

    Modifications of intestinal glycoreceptors expression, in particular CEACAM6, typically found in ileal Crohn's disease (CD), favor, among the commensal species of microbiota, the enrichment in Escherichia coli. Removal of protein glycosidic residues by neuraminidase, a sialidase typical of influenza virus, increases adhesion ability of Escherichia coli to Caco-2 intestinal cells. In this study we investigated whether influenza virus infection of human intestinal epithelial cells could influence the adhesiveness of different Escherichia coli strains isolated from CD patients by altering surface glycoreceptors. Influenza virus infection of intestinal cells increased exposure of galactose and mannose residues on the cell surface. In particular, glycoreceptors Thomsen-Friedenreich and CEACAM6 were over-expressed in influenza virus infected cells. In the same experimental conditions, a significant increase in bacterial adhesiveness was observed, independently of their own adhesive ability. The increase was reverted by treatment with anti-TF and anti-CEACAM6 antibodies. Interestingly, influenza virus was able to efficiently replicate in human primary intestinal cells leading to TF exposure. Finally, intestinal infected cells produced high levels of pro-inflammatory cytokines compared to control. Overall these data suggest that influenza virus infection, could constitute an additional risk factor in CD patients. PMID:25706391

  8. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    PubMed Central

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-01-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses. PMID:27080193

  9. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    NASA Astrophysics Data System (ADS)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  10. Comparison of two modern vaccines and previous influenza infection against challenge with an equine influenza virus from the Australian 2007 outbreak.

    PubMed

    Bryant, Neil A; Paillot, Romain; Rash, Adam S; Medcalf, Elizabeth; Montesso, Fernando; Ross, Julie; Watson, James; Jeggo, Martyn; Lewis, Nicola S; Newton, J Richard; Elton, Debra M

    2010-01-01

    During 2007, large outbreaks of equine influenza (EI) caused by Florida sublineage Clade 1 viruses affected horse populations in Japan and Australia. The likely protection that would be provided by two modern vaccines commercially available in the European Union (an ISCOM-based and a canarypox-based vaccine) at the time of the outbreaks was determined. Vaccinated ponies were challenged with a representative outbreak isolate (A/eq/Sydney/2888-8/07) and levels of protection were compared.A group of ponies infected 18 months previously with a phylogenetically-related isolate from 2003 (A/eq/South Africa/4/03) was also challenged with the 2007 outbreak virus. After experimental infection with A/eq/Sydney/2888-8/07, unvaccinated control ponies all showed clinical signs of infection together with virus shedding. Protection achieved by both vaccination or long-term immunity induced by previous exposure to equine influenza virus (EIV) was characterised by minor signs of disease and reduced virus shedding when compared with unvaccinated control ponies. The three different methods of virus titration in embryonated hens' eggs, EIV NP-ELISA and quantitative RT-PCR were used to monitor EIV shedding and results were compared. Though the majority of previously infected ponies had low antibody levels at the time of challenge, they demonstrated good clinical protection and limited virus shedding. In summary, we demonstrate that vaccination with current EIV vaccines would partially protect against infection with A/eq/Sydney/2888-8/07-like strains and would help to limit the spread of disease in our vaccinated horse population.

  11. Integrated Omics Analysis of Pathogenic Host Responses during Pandemic H1N1 Influenza Virus Infection: The Crucial Role of Lipid Metabolism.

    PubMed

    Tisoncik-Go, Jennifer; Gasper, David J; Kyle, Jennifer E; Eisfeld, Amie J; Selinger, Christian; Hatta, Masato; Morrison, Juliet; Korth, Marcus J; Zink, Erika M; Kim, Young-Mo; Schepmoes, Athena A; Nicora, Carrie D; Purvine, Samuel O; Weitz, Karl K; Peng, Xinxia; Green, Richard R; Tilton, Susan C; Webb-Robertson, Bobbie-Jo; Waters, Katrina M; Metz, Thomas O; Smith, Richard D; Kawaoka, Yoshihiro; Suresh, M; Josset, Laurence; Katze, Michael G

    2016-02-10

    Pandemic influenza viruses modulate proinflammatory responses that can lead to immunopathogenesis. We present an extensive and systematic profiling of lipids, metabolites, and proteins in respiratory compartments of ferrets infected with either 1918 or 2009 human pandemic H1N1 influenza viruses. Integrative analysis of high-throughput omics data with virologic and histopathologic data uncovered relationships between host responses and phenotypic outcomes of viral infection. Proinflammatory lipid precursors in the trachea following 1918 infection correlated with severe tracheal lesions. Using an algorithm to infer cell quantity changes from gene expression data, we found enrichment of distinct T cell subpopulations in the trachea. There was also a predicted increase in inflammatory monocytes in the lung of 1918 virus-infected animals that was sustained throughout infection. This study presents a unique resource to the influenza research community and demonstrates the utility of an integrative systems approach for characterization of lipid metabolism alterations underlying respiratory responses to viruses.

  12. Surfactant protein A genetic variants associate with severe respiratory insufficiency in pandemic influenza A virus infection

    PubMed Central

    2014-01-01

    Introduction Inherited variability in host immune responses influences susceptibility and outcome of Influenza A virus (IAV) infection, but these factors remain largely unknown. Components of the innate immune response may be crucial in the first days of the infection. The collectins surfactant protein (SP)-A1, -A2, and -D and mannose-binding lectin (MBL) neutralize IAV infectivity, although only SP-A2 can establish an efficient neutralization of poorly glycosylated pandemic IAV strains. Methods We studied the role of polymorphic variants at the genes of MBL (MBL2), SP-A1 (SFTPA1), SP-A2 (SFTPA2), and SP-D (SFTPD) in 93 patients with H1N1 pandemic 2009 (H1N1pdm) infection. Results Multivariate analysis showed that two frequent SFTPA2 missense alleles (rs1965708-C and rs1059046-A) and the SFTPA2 haplotype 1A0 were associated with a need for mechanical ventilation, acute respiratory failure, and acute respiratory distress syndrome. The SFTPA2 haplotype 1A1 was a protective variant. Kaplan-Meier analysis and Cox regression also showed that diplotypes not containing the 1A1 haplotype were associated with a significantly shorter time to ICU admission in hospitalized patients. In addition, rs1965708-C (P = 0.0007), rs1059046-A (P = 0.0007), and haplotype 1A0 (P = 0.0004) were associated, in a dose-dependent fashion, with lower PaO2/FiO2 ratio, whereas haplotype 1A1 was associated with a higher PaO2/FiO2 ratio (P = 0.001). Conclusions Our data suggest an effect of genetic variants of SFTPA2 on the severity of H1N1pdm infection and could pave the way for a potential treatment with haplotype-specific (1A1) SP-A2 for future IAV pandemics. PMID:24950659

  13. Heterosubtypic protection conferred by the human monoclonal antibody PN-SIA28 against influenza A virus lethal infections in mice.

    PubMed

    Retamal, Miguel; Abed, Yacine; Rhéaume, Chantal; Cappelletti, Francesca; Clementi, Nicola; Mancini, Nicasio; Clementi, Massimo; Burioni, Roberto; Boivin, Guy

    2015-05-01

    PN-SIA28 is a human monoclonal antibody (Hu-MAb) targeting highly conserved epitopes within the stem portion of the influenza virus hemagglutinin (HA) (N. Clementi, et al, PLoS One 6:e28001, 2011, http://dx.doi.org/10.1371/journal.pone.0028001). Previous in vitro studies demonstrated PN-SIA28 neutralizing activities against phylogenetically divergent influenza A subtypes. In this study, the protective activity of PN-SIA28 was evaluated in mice inoculated with lethal influenza A/WSN/33 (H1N1), A/Quebec/144147/09 (H1N1)pdm09, and A/Victoria/3/75 (H3N2) viruses. At 24 h postinoculation (p.i.), animals received PN-SIA28 intraperitoneally (1 or 10 mg/kg of body weight) or 10 mg/kg of unrelated Hu-MAb (mock). Body weight loss and mortality rate (MR) were recorded for 14 days postinfection (p.i.). Lung viral titers (LVT) were determined at day 5 p.i. In A/WSN/33 (H1N1)-infected groups, all untreated and mock-receiving mice died, whereas MRs of 87.5% and 25% were observed in mice that received PN-SIA28 1 and 10 mg/kg, respectively. In influenza A(H1N1) pdm09-infected groups, an MR of 75% was recorded for untreated and mock-treated groups, whereas the PN-SIA28 1-mg/kg and 10-mg/kg groups had rates of 62.5% and 0%, respectively. In A/Victoria/3/75 (H3N2)-infected animals, untreated and mock-treated animals had MRs of 37.5% and 25%, respectively, and no mortalities were recorded after PN-SIA28 treatments. Accordingly, PN-SIA28 treatments significantly reduced weight losses and resulted in a ≥ 1-log reduction in LVT compared to the control in all infection groups. This study confirms that antibodies targeting highly conserved epitopes in the influenza HA stem region, like PN-SIA28, not only neutralize influenza A viruses of clinically relevant subtypes in vitro but also, more importantly, protect from a lethal influenza virus challenge in vivo.

  14. Clinical and Virological Factors Associated with Viremia in Pandemic Influenza A/H1N1/2009 Virus Infection

    PubMed Central

    Tse, Herman; To, Kelvin K. W.; Wen, Xi; Chen, Honglin; Chan, Kwok-Hung; Tsoi, Hoi-Wah; Li, Iris W. S.; Yuen, Kwok-Yung

    2011-01-01

    Background Positive detection of viral RNA in blood and other non-respiratory specimens occurs in severe human influenza A/H5N1 viral infection but is not known to occur commonly in seasonal human influenza infection. Recently, viral RNA was detected in the blood of patients suffering from severe pandemic influenza A/H1N1/2009 viral infection, although the significance of viremia had not been previously studied. Our study aims to explore the clinical and virological factors associated with pandemic influenza A/H1N1/2009 viremia and to determine its clinical significance. Methodology/Principal Findings Clinical data of patients admitted to hospitals in Hong Kong between May 2009 and April 2010 and tested positive for pandemic influenza A/H1N1/2009 was collected. Viral RNA was detected by reverse-transcription polymerase chain reactions (RT-PCR) targeting the matrix (M) and HA genes of pandemic influenza A/H1N1/2009 virus from the following specimens: nasopharyngeal aspirate (NPA), endotracheal aspirate (ETA), blood, stool and rectal swab. Stool and/ or rectal swab was obtained only if the patient complained of any gastrointestinal symptoms. A total of 139 patients were included in the study, with viral RNA being detected in the blood of 14 patients by RT-PCR. The occurrence of viremia was strongly associated with a severe clinical presentation and a higher mortality rate, although the latter association was not statistically significant. D222G/N quasispecies were observed in 90% of the blood samples. Conclusion Presence of pandemic influenza A/H1N1/2009 viremia is an indicator of disease severity and strongly associated with D222G/N mutation in the viral hemagglutinin protein. PMID:21980333

  15. Putative Human and Avian Risk Factors for Avian Influenza Virus Infections in Backyard Poultry in Egypt

    PubMed Central

    Sheta, Basma M.; Fuller, Trevon L.; Larison, Brenda; Njabo, Kevin Y.; Ahmed, Ahmed Samy; Harrigan, Ryan; Chasar, Anthony; Aziz, Soad Abdel; Khidr, Abdel-Aziz A.; Elbokl, Mohamed M.; Habbak, Lotfy Z.; Smith, Thomas B.

    2014-01-01

    Highly pathogenic influenza A virus subtype H5N1 causes significant poultry mortality in the six countries where it is endemic and can also infect humans. Egypt has reported the third highest number of poultry outbreaks (n=1,084) globally. The objective of this cross-sectional study was to identify putative risk factors for H5N1 infections in backyard poultry in 16 villages in Damietta, El Gharbia, Fayoum, and Menofia governorates from 2010–2012. Cloacal and tracheal swabs and serum samples from domestic (n=1242)and wild birds (n=807) were tested for H5N1 via RT-PCR and hemagglutination inhibition, respectively. We measured poultry rearing practices with questionnaires (n=306 households) and contact rates among domestic and wild bird species with scan sampling. Domestic birds (chickens, ducks, and geese, n = 51) in three governorates tested positive for H5N1 by PCR or serology. A regression model identified a significant correlation between H5N1 in poultry and the practice of disposing of dead poultry and poultry feces in the garbage (F = 15.7, p< 0.0001). In addition, contact between domestic and wild birds was more frequent in villages where we detected H5N1 in backyard flocks (F= 29.5, p< 0.0001). PMID:24315038

  16. Putative human and avian risk factors for avian influenza virus infections in backyard poultry in Egypt.

    PubMed

    Sheta, Basma M; Fuller, Trevon L; Larison, Brenda; Njabo, Kevin Y; Ahmed, Ahmed Samy; Harrigan, Ryan; Chasar, Anthony; Abdel Aziz, Soad; Khidr, Abdel-Aziz A; Elbokl, Mohamed M; Habbak, Lotfy Z; Smith, Thomas B

    2014-01-10

    Highly pathogenic influenza A virus subtype H5N1 causes significant poultry mortality in the six countries where it is endemic and can also infect humans. Egypt has reported the third highest number of poultry outbreaks (n=1084) globally. The objective of this cross-sectional study was to identify putative risk factors for H5N1 infections in backyard poultry in 16 villages in Damietta, El Gharbia, Fayoum, and Menofia governorates from 2010-2012. Cloacal and tracheal swabs and serum samples from domestic (n=1242) and wild birds (n=807) were tested for H5N1 via RT-PCR and hemagglutination inhibition, respectively. We measured poultry rearing practices with questionnaires (n=306 households) and contact rates among domestic and wild bird species with scan sampling. Domestic birds (chickens, ducks, and geese, n=51) in three governorates tested positive for H5N1 by PCR or serology. A regression model identified a significant correlation between H5N1 in poultry and the practice of disposing of dead poultry and poultry feces in the garbage (F=15.7, p<0.0001). In addition, contact between domestic and wild birds was more frequent in villages where we detected H5N1 in backyard flocks (F=29.5, p<0.0001).

  17. Characterizing and controlling the inflammatory network during influenza A virus infection

    NASA Astrophysics Data System (ADS)

    Jin, Suoqin; Li, Yuanyuan; Pan, Ruangang; Zou, Xiufen

    2014-01-01

    To gain insights into the pathogenesis of influenza A virus (IAV) infections, this study focused on characterizing the inflammatory network and identifying key proteins by combining high-throughput data and computational techniques. We constructed the cell-specific normal and inflammatory networks for H5N1 and H1N1 infections through integrating high-throughput data. We demonstrated that better discrimination between normal and inflammatory networks by network entropy than by other topological metrics. Moreover, we identified different dynamical interactions among TLR2, IL-1β, IL10 and NFκB between normal and inflammatory networks using optimization algorithm. In particular, good robustness and multistability of inflammatory sub-networks were discovered. Furthermore, we identified a complex, TNFSF10/HDAC4/HDAC5, which may play important roles in controlling inflammation, and demonstrated that changes in network entropy of this complex negatively correlated to those of three proteins: TNFα, NFκB and COX-2. These findings provide significant hypotheses for further exploring the molecular mechanisms of infectious diseases and developing control strategies.

  18. C646, a Novel p300/CREB-Binding Protein-Specific Inhibitor of Histone Acetyltransferase, Attenuates Influenza A Virus Infection

    PubMed Central

    Zhao, Dongming; Fukuyama, Satoshi; Sakai-Tagawa, Yuko; Takashita, Emi; Shoemaker, Jason E.

    2015-01-01

    New strategies to develop novel broad-spectrum antiviral drugs against influenza virus infections are needed due to the emergence of antigenic variants and drug-resistant viruses. Here, we evaluated C646, a novel p300/CREB-binding protein-specific inhibitor of histone acetyltransferase (HAT), as an anti-influenza virus agent in vitro and in vivo and explored how C646 affects the viral life cycle and host response. Our studies highlight the value of targeting HAT activity for anti-influenza drug development. PMID:26711748

  19. First reported detection of a low pathogenicity avian influenza virus subtype H9 infection in domestic fowl in England.

    PubMed

    Parker, C D; Reid, S M; Ball, A; Cox, W J; Essen, S C; Hanna, A; Mahmood, S; Slomka, M J; Irvine, R M; Brown, I H

    2012-10-13

    In December 2010, infection with a H9N1 low pathogenicity avian influenza (LPAI) virus was detected in a broiler breeder flock in East Anglia. Disease suspicion was based on acute drops in egg production in two of four sheds on the premises, poor egg shell quality and evidence of diarrhoea. H9N1 LPAI virus infection was confirmed by real-time reverse transcription PCR. Sequencing revealed high nucleotide identity of 93.6 per cent and 97.9 per cent with contemporary North American H9 and Eurasian N1 genes, respectively. Attempted virus isolation in embryonated specific pathogen free (SPF) fowls' eggs was unsuccessful. Epidemiological investigations were conducted to identify the source of infection and any onward spread. These concluded that infection was restricted to the affected premises, and no contacts or movements of poultry, people or fomites could be attributed as the source of infection. However, the infection followed a period of extremely cold weather and snow which impacted on the biosecurity protocols on site, and also led to increased wild bird activity locally, including waterfowl and game birds around the farm buildings. Analysis of the N1 gene sequence suggested direct introduction from wild birds. Although H9 infection in poultry is not notifiable, H9N2 LPAI viruses have been associated with production and mortality episodes in poultry in many parts of Asia and the Middle East. In the present H9N1 outbreak, clinical signs were relatively mild in the poultry with no mortality, transient impact on egg production and no indication of zoonotic spread. However, this first reported detection of H9 LPAI virus in chickens in England was also the first H9 UK poultry case for 40 years, and vindicates the need for continued vigilance and surveillance of avian influenza viruses in poultry populations. PMID:22949546

  20. Different routes of inoculation impact infectivity and pathogenesis of H5N1 high pathogenicity avian influenza virus infection in chickens and domestic ducks.

    PubMed

    Kwon, Y K; Swayne, D E

    2010-12-01

    The H5N1 type A influenza viruses classified as Qinghai-like virus (clade 2.2) are a unique lineage of type A influenza viruses with the capacity to produce significant disease and mortality in gallinaceous and anseriform birds, including domestic and wild ducks. The objective of this study was to determine the susceptibility and pathogenesis of chickens and domestic ducks to A/Whooper Swan/Mongolia/224/05 (H5N1) high pathogenicity avian influenza (HPAI) virus when administered through respiratory or alimentary routes of exposure. The chickens and ducks were more susceptible to the H5N1 HPAI virus, as evidenced by low infectious and lethal viral doses, when exposed by intranasal as compared to alimentary routes of inoculation (intragastric or oral-fed infected chicken meat). In the alimentary exposure pathogenesis study, pathologic changes included hemorrhage, necrosis, and inflammation in association with virus detection. These changes were generally observed in most of the visceral organs of chickens, between 2 and 4 days postinoculation (DPI), and are similar to lesions and virus localization seen in birds in natural cases or in experimental studies using the intranasal route. Alimentary exposure to the virus caused systemic infection in the ducks, characterized by moderate lymphocytic encephalitis, necrotized hepatitis, and pancreatitis with a corresponding demonstration of virus within the lesions. In both chickens and ducks with alimentary exposure, lesions, virus, or both were first demonstrated in the upper alimentary tract on 1 DPI, suggesting that the alimentary tract was the initial site affected upon consumption of infected meat or on gavage of virus in liquid medium. However, as demonstrated in the infectivity study in chickens, alimentary infection required higher exposure doses to produce infection as compared to intranasal exposure in chickens. These data suggest that upper respiratory exposure to H5N1 HPAI virus in birds is more likely to result in

  1. Efficient translation of mRNAs in influenza A virus-infected cells is independent of the viral 5' untranslated region.

    PubMed

    Cassetti, M C; Noah, D L; Montelione, G T; Krug, R M

    2001-10-25

    We test the hypothesis that the translation machinery in cells infected by influenza A virus efficiently translates only mRNAs that possess the influenza viral 5' untranslated region (5'-UTR) by introducing mRNAs directly into the cytoplasm of infected cells. This strategy avoids effects due to the inhibition of the nuclear export of cellular mRNAs mediated by the viral NS1 protein. In one approach, we transfect in vitro synthesized mRNAs into infected cells and demonstrate that these mRNAs are efficiently translated whether or not they possess the influenza viral 5'-UTR. In the second approach, an mRNA is synthesized endogenously in the cytoplasm of influenza A virus infected cells by a constitutively expressed T7 RNA polymerase. Although this mRNA is uncapped and lacks the influenza viral 5'-UTR sequence, it is efficiently translated in infected cells via an internal ribosome entry site. We conclude that the translation machinery in influenza A virus infected cells is capable of efficiently translating all mRNAs and that the switch from cellular to virus-specific protein synthesis that occurs during infection results from other processes.

  2. Severity of Clinical Disease and Pathology in Ferrets Experimentally Infected with Influenza Viruses Is Influenced by Inoculum Volume

    PubMed Central

    Moore, Ian N.; Lamirande, Elaine W.; Paskel, Myeisha; Donahue, Danielle; Qin, Jing

    2014-01-01

    ABSTRACT Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. However, the contributions of the volume of inoculum administered and the ferret's respiratory tract anatomy to disease outcome have not been explored. We noted variations in clinical disease outcomes and the volume of inoculum administered and investigated these differences by administering two influenza viruses (A/California/07/2009 [H1N1 pandemic] and A/Minnesota/11/2010 [H3N2 variant]) to ferrets intranasally at a dose of 106 50% tissue culture infective doses in a range of inoculum volumes (0.2, 0.5, or 1.0 ml) and followed viral replication, clinical disease, and pathology over 6 days. Clinical illness and respiratory tract pathology were the most severe and most consistent when the viruses were administered in a volume of 1.0 ml. Using a modified micro-computed tomography imaging method and examining gross specimens, we found that the right main-stem bronchus was consistently larger in diameter than the left main-stem bronchus, though the latter was longer and straighter. These anatomic features likely influence the distribution of the inoculum in the lower respiratory tract. A 1.0-ml volume of inoculum is optimal for delivery of virus to the lower respiratory tract of ferrets, particularly when evaluation of clinical disease is desired. Furthermore, we highlight important anatomical features of the ferret lung that influence the kinetics of viral replication, clinical disease severity, and lung pathology. IMPORTANCE Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. Clinical disease in ferrets is an important parameter in evaluating the virulence of novel influenza viruses, and findings are extrapolated to virulence in humans. Therefore, it is highly desirable that the data from different laboratories be accurate and reproducible. We have found that, even when the same virus

  3. Effect of statin treatments on highly pathogenic avian influenza H5N1, seasonal and H1N1pdm09 virus infections in BALB/c mice

    PubMed Central

    Kumaki, Yohichi; Morrey, John D; Barnard, Dale L

    2013-01-01

    Statins are used to control elevated cholesterol or hypercholesterolemia, but have previously been reported to have antiviral properties. Aims To show efficacy of statins in various influenza virus mouse models. Materials & methods BALB/c mice were treated intraperitoneally or orally with several types of statins (simvastatin, lovastatin, mevastatin, pitavastatin, atorvastatin or rosuvastatin) at various concentrations before or after infection with either influenza A/Duck/ MN/1525/81 H5N1 virus, influenza A/Vietnam/1203/2004 H5N1 virus, influenza A/ Victoria/3/75 H3N2 virus, influenza A/NWS/33 H1N1 virus or influenza A/CA/04/09 H1N1pdm09 virus. Results The statins administered intraperitoneally or orally at any dose did not significantly enhance the total survivors relative to untreated controls. In addition, infected mice receiving any concentration of statin were not protected against weight loss due to the infection. None of the statins significantly increased the mean day of death relative to mice in the placebo treatment group. Furthermore, the statins had relatively few ameliorative effects on lung pathology or lung weights at day 3 and 6 after virus exposure, although mice treated with simvastatin did have improved lung function as measured by arterial saturated oxygen levels in one experiment. Conclusion Statins showed relatively little efficacy in any mouse model used by any parameter tested. PMID:23420457

  4. Complement-Dependent Lysis of Influenza A Virus-Infected Cells by Broadly Cross-Reactive Human Monoclonal Antibodies ▿

    PubMed Central

    Terajima, Masanori; Cruz, John; Co, Mary Dawn T.; Lee, Jane-Hwei; Kaur, Kaval; Wilson, Patrick C.; Ennis, Francis A.

    2011-01-01

    We characterized human monoclonal antibodies (MAbs) cloned from influenza virus-infected patients and from influenza vaccine recipients by complement-dependent lysis (CDL) assay. Most MAbs active in CDL were neutralizing, but not all neutralizing MAbs can mediate CDL. Two of the three stalk-specific neutralizing MAbs tested were able to mediate CDL and were more cross-reactive to temporally distant H1N1 strains than the conventional hemagglutination-inhibiting and neutralizing MAbs. One of the stalk-specific MAbs was subtype cross-reactive to H1 and H2 hemagglutinins, suggesting a role for stalk-specific antibodies in protection against influenza illness, especially by a novel viral subtype which can cause pandemics. PMID:21994454

  5. Early IL-1 Signaling Promotes iBALT Induction after Influenza Virus Infection.

    PubMed

    Neyt, Katrijn; GeurtsvanKessel, Corine H; Deswarte, Kim; Hammad, Hamida; Lambrecht, Bart N

    2016-01-01

    Inducible bronchus-associated lymphoid tissue (iBALT) is a long lasting tertiary lymphoid tissue that can be induced following influenza A virus (IAV) infection. Previous studies have shown that iBALT structures containing germinal center (GC) B cells protect against repeated infection by contributing locally to the cellular and humoral immune response. If we are to exploit this in vaccination strategies, we need a better understanding on how iBALT structures are induced. One hypothesis is that the strength of the initial innate response dictates induction of iBALT. In the present study, we investigated the role of interleukin (IL)-1 and IL-1R signaling on iBALT formation. Mice lacking the IL-1R had a delayed viral clearance and, thus, a prolonged exposure to viral replication, leading to increased disease severity, compared to wild-type mice. Contradictorily, iBALT formation following clearance of the virus was heavily compromised in Il1r1 (-/-) mice. Quantification of gene induction after IAV infection demonstrated induction of IL-1α and to a much lesser extent of IL-1β. Administration of recombinant IL-1α to the lungs of wild-type mice, early but not late, after IAV infection led to more pronounced iBALT formation and an increased amount of GC B cells in the lungs. Bone marrow chimeric mice identified the stromal compartment as the crucial IL-1 responsive cell for iBALT induction. Mechanistically, Q-PCR analysis of lung homogenates revealed a strongly diminished production of CXCL13, a B cell-attracting chemokine, in Il1r (-/-) mice during the early innate phase of IAV infection. These experiments demonstrate that appropriate innate IL-1α-IL-1R signaling is necessary for IAV clearance and at the same time instructs the formation of organized tertiary lymphoid tissues through induction of CXCL13 early after infection. These findings are discussed in the light of recent insights on the pathogenesis of tertiary lymphoid organ formation in the lung in various

  6. Early IL-1 Signaling Promotes iBALT Induction after Influenza Virus Infection

    PubMed Central

    Neyt, Katrijn; GeurtsvanKessel, Corine H.; Deswarte, Kim; Hammad, Hamida; Lambrecht, Bart N.

    2016-01-01

    Inducible bronchus-associated lymphoid tissue (iBALT) is a long lasting tertiary lymphoid tissue that can be induced following influenza A virus (IAV) infection. Previous studies have shown that iBALT structures containing germinal center (GC) B cells protect against repeated infection by contributing locally to the cellular and humoral immune response. If we are to exploit this in vaccination strategies, we need a better understanding on how iBALT structures are induced. One hypothesis is that the strength of the initial innate response dictates induction of iBALT. In the present study, we investigated the role of interleukin (IL)-1 and IL-1R signaling on iBALT formation. Mice lacking the IL-1R had a delayed viral clearance and, thus, a prolonged exposure to viral replication, leading to increased disease severity, compared to wild-type mice. Contradictorily, iBALT formation following clearance of the virus was heavily compromised in Il1r1−/− mice. Quantification of gene induction after IAV infection demonstrated induction of IL-1α and to a much lesser extent of IL-1β. Administration of recombinant IL-1α to the lungs of wild-type mice, early but not late, after IAV infection led to more pronounced iBALT formation and an increased amount of GC B cells in the lungs. Bone marrow chimeric mice identified the stromal compartment as the crucial IL-1 responsive cell for iBALT induction. Mechanistically, Q-PCR analysis of lung homogenates revealed a strongly diminished production of CXCL13, a B cell-attracting chemokine, in Il1r−/− mice during the early innate phase of IAV infection. These experiments demonstrate that appropriate innate IL-1α–IL-1R signaling is necessary for IAV clearance and at the same time instructs the formation of organized tertiary lymphoid tissues through induction of CXCL13 early after infection. These findings are discussed in the light of recent insights on the pathogenesis of tertiary lymphoid organ formation in the lung in

  7. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus

    PubMed Central

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F.

    2015-01-01

    Background Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. Study design We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Results Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 104/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. Conclusions It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. PMID:26590689

  8. Corneal Opacity in Domestic Ducks Experimentally Infected With H5N1 Highly Pathogenic Avian Influenza Virus.

    PubMed

    Yamamoto, Y; Nakamura, K; Yamada, M; Mase, M

    2016-01-01

    Domestic ducks can be a key factor in the regional spread of H5N1 highly pathogenic avian influenza (HPAI) virus in Asia. The authors performed experimental infections to examine the relationship between corneal opacity and H5N1 HPAI virus infection in domestic ducks (Anas platyrhyncha var domestica). A total of 99 domestic ducks, including 3 control birds, were used in the study. In experiment 1, when domestic ducks were inoculated intranasally with 2 H5N1 HPAI viruses, corneal opacity appeared more frequently than neurologic signs and mortality. Corneal ulceration and exophthalmos were rare findings. Histopathologic examinations of the eyes of domestic ducks in experiment 2 revealed that corneal opacity was due to the loss of corneal endothelial cells and subsequent keratitis with edema. Influenza viral antigen was detected in corneal endothelial cells and some other ocular cells by immunohistochemistry. Results suggest that corneal opacity is a characteristic and frequent finding in domestic ducks infected with the H5N1 HPAI virus. Confirming this ocular change may improve the detection rate of infected domestic ducks in the field.

  9. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses

    PubMed Central

    Pantin-Jackwood, Mary; Costa-Hurtado, Mar; Miller, Patti J.; Afonso, Claudio L.; Spackman, Erica; Kapczynski, Darrell; Shepherd, Eric; Smith, Diane; Swayne, David

    2015-01-01

    Infections with avian influenza viruses (AIV) of low and high pathogenicity (LP and HP) and Newcastle disease virus (NDV) are commonly reported in domestic ducks in many parts of the world. However, it’s not clear if co-infections with these viruses affect the severity of the diseases they produce, the amount of virus shed, and transmission of the viruses. In this study we infected domestic ducks with a virulent NDV virus (vNDV) and either a LPAIV or a HPAIV by giving the viruses individually, simultaneously, or sequentially two days apart. No clinical signs were observed in ducks infected or co-infected with vNDV and LPAIV, but co-infection decreased the number of ducks shedding vNDV and the amount of virus shed (P <0.01) at 4 days post inoculation (dpi). Co-infection didn’t affect the number of birds shedding LPAIV, but more LPAIV was shed at 2 dpi (P <0.0001) from ducks inoculated with only LPAIV compared to ducks co-infected with vNDV. Ducks that received the HPAIV with the vNDV simultaneously survived fewer days (P <0.05) compared to the ducks that received the vNDV two days before the HPAIV. Co-infection also reduced transmission of vNDV to naïve contact ducks housed with the inoculated ducks. In conclusion, domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission. These findings indicate that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses. PMID:25759292

  10. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses.

    PubMed

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Miller, Patti J; Afonso, Claudio L; Spackman, Erica; Kapczynski, Darrell R; Shepherd, Eric; Smith, Diane; Swayne, David E

    2015-05-15

    Infections with avian influenza viruses (AIV) of low and high pathogenicity (LP and HP) and Newcastle disease virus (NDV) are commonly reported in domestic ducks in many parts of the world. However, it is not clear if co-infections with these viruses affect the severity of the diseases they produce, the amount of virus shed, and transmission of the viruses. In this study we infected domestic ducks with a virulent NDV virus (vNDV) and either a LPAIV or a HPAIV by giving the viruses individually, simultaneously, or sequentially two days apart. No clinical signs were observed in ducks infected or co-infected with vNDV and LPAIV, but co-infection decreased the number of ducks shedding vNDV and the amount of virus shed (P<0.01) at 4 days post inoculation (dpi). Co-infection did not affect the number of birds shedding LPAIV, but more LPAIV was shed at 2 dpi (P<0.0001) from ducks inoculated with only LPAIV compared to ducks co-infected with vNDV. Ducks that received the HPAIV with the vNDV simultaneously survived fewer days (P<0.05) compared to the ducks that received the vNDV two days before the HPAIV. Co-infection also reduced transmission of vNDV to naïve contact ducks housed with the inoculated ducks. In conclusion, domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission. These findings indicate that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses.

  11. Vaccination with Adjuvanted Recombinant Neuraminidase Induces Broad Heterologous, but Not Heterosubtypic, Cross-Protection against Influenza Virus Infection in Mice

    PubMed Central

    Wohlbold, Teddy John; Nachbagauer, Raffael; Xu, Haoming; Tan, Gene S.; Hirsh, Ariana; Brokstad, Karl A.; Cox, Rebecca J.; Palese, Peter

    2015-01-01

    ABSTRACT In an attempt to assess the cross-protective potential of the influenza virus neuraminidase (NA) as a vaccine antigen, different subtypes of recombinant NA were expressed in a baculovirus system and used to vaccinate mice prior to lethal challenge with homologous, heterologous, or heterosubtypic viruses. Mice immunized with NA of subtype N2 were completely protected from morbidity and mortality in a homologous challenge and displayed significantly reduced viral lung titers. Heterologous challenge with a drifted strain resulted in morbidity but no mortality. Similar results were obtained for challenge experiments with N1 NA. Mice immunized with influenza B virus NA (from B/Yamagata/16/88) displayed no morbidity when sublethally infected with the homologous strain and, importantly, were completely protected from morbidity and mortality when lethally challenged with the prototype Victoria lineage strain or a more recent Victoria lineage isolate. Upon analyzing the NA content in 4 different inactivated-virus vaccine formulations from the 2013-2014 season via Western blot assay and enzyme-linked immunosorbent assay quantification, we found that the amount of NA does indeed vary across vaccine brands. We also measured hemagglutinin (HA) and NA endpoint titers in pre- and postvaccination human serum samples from individuals who received a trivalent inactivated seasonal influenza vaccine from the 2004-2005 season; the induction of NA titers was statistically less pronounced than the induction of HA titers. The demonstrated homologous and heterologous protective capacity of recombinant NA suggests that supplementing vaccine formulations with a standard amount of NA may offer increased protection against influenza virus infection. PMID:25759506

  12. Identification of Influenza A/H7N9 Virus Infection-Related Human Genes Based on Shortest Paths in a Virus-Human Protein Interaction Network

    PubMed Central

    Huang, Tao; Cai, Yu-Dong

    2014-01-01

    The recently emerging Influenza A/H7N9 virus is reported to be able to infect humans and cause mortality. However, viral and host factors associated with the infection are poorly understood. It is suggested by the “guilt by association” rule that interacting proteins share the same or similar functions and hence may be involved in the same pathway. In this study, we developed a computational method to identify Influenza A/H7N9 virus infection-related human genes based on this rule from the shortest paths in a virus-human protein interaction network. Finally, we screened out the most significant 20 human genes, which could be the potential infection related genes, providing guidelines for further experimental validation. Analysis of the 20 genes showed that they were enriched in protein binding, saccharide or polysaccharide metabolism related pathways and oxidative phosphorylation pathways. We also compared the results with those from human rhinovirus (HRV) and respiratory syncytial virus (RSV) by the same method. It was indicated that saccharide or polysaccharide metabolism related pathways might be especially associated with the H7N9 infection. These results could shed some light on the understanding of the virus infection mechanism, providing basis for future experimental biology studies and for the development of effective strategies for H7N9 clinical therapies. PMID:24955349

  13. Kolaviron Improves Morbidity and Suppresses Mortality by Mitigating Oxido-Inflammation in BALB/c Mice Infected with Influenza Virus.

    PubMed

    Awogbindin, Ifeoluwa O; Olaleye, David O; Farombi, Ebenezer O

    2015-09-01

    Influenza A viruses (IAV) induce cytokine storm and host's intracellular redox imbalance to ensure continuous replication and survival, leading to severe immunopathology and death. The unpredictability of broad-spectrum vaccines, the emergence of drug-resistant and/or more virulent strains, the prevalence of the amantadane-resistant IAV, and the prohibitive cost of available drugs especially in resource-poor countries necessitate exploring drugs with novel action mechanisms as anti-influenza agents. This study presents the protective role of kolaviron (KV), a natural antioxidant and anti-inflammatory agent from Garcinia kola seeds, on BALB/c mice challenged with influenza A/Perth/H3N2/16/09 (Pr/H3N2) virus. KV at 400 mg/kg was administered orally to groups of BALB/c mice for 3 days, 3 h, and 1 h prior to infection with 1LD50 or 3LD50 (14-day study) and 5LD50 (6-day study) Pr/H3N2. Pr/H3N2 in the lungs was detected by hemagglutination assay, while oxidative stress and inflammatory biomarkers were assayed in both lungs and liver. Infected mice treated with KV progressively increased in weight with minimal mortality. Single-dose administration of KV at 1 h or 3 h before viral challenge and 3 days pretreatment improved lung aeration and reduced lung consolidation as well as inflammatory cells infiltration in a way that had minimal impact on viral clearance, but attenuated myeloperoxidase activity and nitric oxide production via priming of reduced glutathione levels, thus enhancing the preservation of function in the lungs and liver. This study suggests that KV may be effective for delaying the development of clinical symptoms of influenza virus, and this may be through a mechanism unrelated to those deployed by the existing anti-influenza drugs but closely associated to its antioxidant and immunomodulatory properties.

  14. Identification of equine influenza virus infection in Asian wild horses (Equus przewalskii).

    PubMed

    Yin, Xin; Lu, Gang; Guo, Wei; Qi, Ting; Ma, Jian; Zhu, Chao; Zhao, Shihua; Pan, Jialiang; Xiang, Wenhua

    2014-05-01

    An outbreak of equine influenza was observed in the Asian wild horse population in Xinjiang Province, China, in 2007. Nasal swabs were collected from wild horses and inoculated into 9-10-day SPF embryonated eggs. The complete genome of the isolate was sequenced. A comparison of the amino acid sequence revealed that the isolate was an equine influenza virus strain, which we named A/equine/Xinjiang/4/2007. Each gene of the virus was found to have greater than 99 % homology to equine influenza virus strains of the Florida-2 sublineage, which were circulating simultaneously in China, and a lesser amount of homology was found to the strain A/equine/Qinghai/1/1994 (European lineage), which was isolated during the last outbreak in China. These observations were confirmed by phylogenetic analysis. In addition, the deduced amino acid sequence of the neuraminidase of the A/equine/Xinjiang/4/2007 strain was identical to that of A/equine/California/8560/2002, an American isolate, and was found to be similar to those of Florida-2 strains found in other countries by comparing them with nine other field strains that were isolated in China from 2007 to 2008. It is suggested that the neuraminidase segment of A/equine/Xinjiang/4/2007 may have been obtained from equine influenza virus strains from other countries. We report for the first time an outbreak of equine influenza in the Asian wild horse population, and the complete genome of the virus is provided and analyzed.

  15. Experimental co-infection of SPF chickens with low pathogenicity avian influenza virus (LPAIV) subtypes H9N2, H5N2 and H7N9, and infectious bronchitis virus (IBV)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and infectious bronchitis virus (IBV) are two of the most important respiratory viruses affecting poultry worldwide, but little is known about the effect of co-infection of these two viruses in poultry. Low pathogenicity (LP) AIV can produce from mild to moderate upper r...

  16. Methamphetamine reduces human influenza A virus replication.

    PubMed

    Chen, Yun-Hsiang; Wu, Kuang-Lun; Chen, Chia-Hsiang

    2012-01-01

    Methamphetamine (meth) is a highly addictive psychostimulant that is among the most widely abused illicit drugs, with an estimated over 35 million users in the world. Several lines of evidence suggest that chronic meth abuse is a major factor for increased risk of infections with human immunodeficiency virus and possibly other pathogens, due to its immunosuppressive property. Influenza A virus infections frequently cause epidemics and pandemics of respiratory diseases among human populations. However, little is known about whether meth has the ability to enhance influenza A virus replication, thus increasing severity of influenza illness in meth abusers. Herein, we investigated the effects of meth on influenza A virus replication in human lung epithelial A549 cells. The cells were exposed to meth and infected with human influenza A/WSN/33 (H1N1) virus. The viral progenies were titrated by plaque assays, and the expression of viral proteins and cellular proteins involved in interferon responses was examined by Western blotting and immunofluorescence staining. We report the first evidence that meth significantly reduces, rather than increases, virus propagation and the susceptibility to influenza infection in the human lung epithelial cell line, consistent with a decrease in viral protein synthesis. These effects were apparently not caused by meth's effects on enhancing virus-induced interferon responses in the host cells, reducing viral biological activities, or reducing cell viability. Our results suggest that meth might not be a great risk factor for influenza A virus infection among meth abusers. Although the underlying mechanism responsible for the action of meth on attenuating virus replication requires further investigation, these findings prompt the study to examine whether other structurally similar compounds could be used as anti-influenza agents.

  17. Immune Repertoire Diversity Correlated with Mortality in Avian Influenza A (H7N9) Virus Infected Patients

    PubMed Central

    Hou, Dongni; Ying, Tianlei; Wang, Lili; Chen, Cuicui; Lu, Shuihua; Wang, Qin; Seeley, Eric; Xu, Jianqing; Xi, Xiuhong; Li, Tao; Liu, Jie; Tang, Xinjun; Zhang, Zhiyong; Zhou, Jian; Bai, Chunxue; Wang, Chunlin; Byrne-Steele, Miranda; Qu, Jieming; Han, Jian; Song, Yuanlin

    2016-01-01

    Specific changes in immune repertoires at genetic level responding to the lethal H7N9 virus are still poorly understood. We performed deep sequencing on the T and B cells from patients recently infected with H7N9 to explore the correlation between clinical outcomes and immune repertoire alterations. T and B cell repertoires display highly dynamic yet distinct clonotype alterations. During infection, T cell beta chain repertoire continues to contract while the diversity of immunoglobulin heavy chain repertoire recovers. Patient recovery is correlated to the diversity of T cell and B cell repertoires in different ways – higher B cell diversity and lower T cell diversity are found in survivors. The sequences clonally related to known antibodies with binding affinity to H7 hemagglutinin could be identified from survivors. These findings suggest that utilizing deep sequencing may improve prognostication during influenza infection and could help in development of antibody discovery methodologies for the treatment of virus infection. PMID:27669665

  18. [Evolution and infection biology of new influenza A viruses with pandemic potential].

    PubMed

    Klenk, H D

    2013-01-01

    Wild aquatic birds are natural hosts for a large variety of influenza A viruses. Occasionally, viruses are transmitted from this reservoir to other species, such as chickens, pigs, and man, and may then cause devastating outbreaks in domestic poultry or give rise to human influenza pandemics. The H5N1-, H7N7-, H9N2-, and H2N2-viruses are considered to have high pandemic potential, because of their pathogenicity in humans and because of the lack of immune protection in the human population. However, the unexpected outbreak of the H1N1 pandemic in 2009 demonstrates that the reliability of such predictions is limited. Host specificity, pathogenicity, and transmissibility are polygenic traits that depend on the interactions of viral proteins with host factors, among which receptor specificity and fusion activity of the hemagglutinin, nuclear transport of the polymerase, and interferon antagonism of the NS1 protein are of particular importance.

  19. Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus: studies in the pig model of influenza.

    PubMed

    Qiu, Yu; De Hert, Karl; Van Reeth, Kristien

    2015-01-01

    Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs. PMID:26404790

  20. Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus: studies in the pig model of influenza.

    PubMed

    Qiu, Yu; De Hert, Karl; Van Reeth, Kristien

    2015-09-24

    Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs.

  1. Immune and acute phase response in pigs experimentally infected with H1N2 swine influenza virus.

    PubMed

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Kwit, Krzysztof

    2012-12-01

    Acute phase proteins (APPs) and immune responses in pigs after experimental infection with H1N2 swine influenza virus (SwH1N2) were studied. Eight piglets were infected intranasally with SwH1N2. Four served as controls. Antibodies against swine influenza virus (SIV)s were measured by hemagglutination inhibition assay. The proliferation assay was used to measure influenza-specific cell-mediated response. Hematological parameters were measured on a hematology analyzer. C-reactive protein (CRP), haptoglobin (Hp), serum amyloid A (SAA) and pig major APP (Pig-MAP) concentrations in serum were measured using commercial ELISAs. Antibodies against SwH1N2 in the serum of infected pigs were detected from 7 dpi. SwH1N2-specific T-cell response was observed from 5 dpi. A significant drop in lymphocyte numbers and an increase in medium-sized cell (MID) counts with no accompanying leukopenia was observed in all infected pigs from 3 to 7 dpi. In infected pigs, concentrations of CRP, Hp and SAA increased significantly when the greatest amounts of virus were shed (from 1 to 3 dpi). The level of Pig-MAP remained unchanged during study. The significant positive correlation found between maximum concentrations of SAA in serum and lung scores, makes SAA a potentially useful indicator in experimental infection studies (e.g. vaccine efficiency investigations) or as a marker for disease severity, but to confirm this hypothesis more studies are needed.

  2. In vivo reassortment of influenza viruses.

    PubMed

    Urbaniak, Kinga; Markowska-Daniel, Iwona

    2014-01-01

    The genetic material of influenza A virus consists of eight negative-sense RNA segments. Under suitable conditions, the segmented structure of the viral genome allows an exchange of the individual gene segments between different strains, causing formation of new reassorted viruses. For reassortment to occur, co-infection with two or more influenza virus strains is necessary. The reassortment is an important evolutionary mechanism which can result in antigenic shifts that modify host range, pathology, and transmission of the influenza A viruses. In this process, the influenza virus strain with epidemic and/or pandemic potential can be created. Cases of this kind were in 1957 (Asian flu), 1968 (Hong Kong flu) and recently in 2009 (Mexico). Viruses containing genes of avian, swine, and/or human origin are widespread around the world, for example the triple reassortant H1N1 virus causing the 2009 influenza pandemic in 2009 that has become a seasonal virus. The aim of the study is to present the mechanism of reassortment and the results of experimental co-infection with different influenza viruses.

  3. Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells.

    PubMed Central

    Bhardwaj, N; Bender, A; Gonzalez, N; Bui, L K; Garrett, M C; Steinman, R M

    1994-01-01

    Antigen-specific, CD8+, cytolytic T lymphocytes (CTLs) could potentially provide resistance to several infectious and malignant diseases. However, the cellular requirements for the generation of specific CTLs in human lymphocyte cultures are not well defined, and repetitive stimulation with antigen is often required. We find that strong CD8+ CTL responses to influenza virus can be generated from freshly isolated blood T cells, as long as dendritic cells are used as antigen presenting cells (APCs). Small numbers of dendritic cells (APC:T cell ratio of 1:50-1:100) induce these CTL responses from most donors in 7 d of culture, but monocytes are weak or inactive. Whereas both dendritic cells and monocytes are infected with influenza virus, the former serve as effective APCs for the induction of CD8+ T cells while the latter act as targets for the CTLs that are induced. The strong CD8+ response to influenza virus-infected dendritic cells is accompanied by extensive proliferation of the CD8+ T cells, but the response can develop in the apparent absence of CD4+ helpers or exogenous lymphokines. CD4+ influenza virus-specific CTLs can also be induced by dendritic cells, but the cultures initially must be depleted of CD8+ cells. These findings should make it possible to use dendritic cells to generate human, antigen-specific, CD8+ CTLs to other targets. The results illustrate the principle that efficient T cell-mediated responses develop in two stages: an afferent limb in which dendritic cells are specialized APCs and an efferent limb in which the primed T cells carry out an immune response to many types of presenting cells. Images PMID:8040335

  4. ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells.

    PubMed

    Zhao, Chen; Hsiang, Tien-Ying; Kuo, Rei-Lin; Krug, Robert M

    2010-02-01

    ISG15 is an IFN-alpha/beta-induced, ubiquitin-like protein that is conjugated to a wide array of cellular proteins through the sequential action of three conjugation enzymes that are also induced by IFN-alpha/beta. Recent studies showed that ISG15 and/or its conjugates play an important role in protecting cells from infection by several viruses, including influenza A virus. However, the mechanism by which ISG15 modification exerts antiviral activity has not been established. Here we extend the repertoire of ISG15 targets to a viral protein by demonstrating that the NS1 protein of influenza A virus (NS1A protein), an essential, multifunctional protein, is ISG15 modified in virus-infected cells. We demonstrate that the major ISG15 acceptor site in the NS1A protein in infected cells is a critical lysine residue (K41) in the N-terminal RNA-binding domain (RBD). ISG15 modification of K41 disrupts the association of the NS1A RBD domain with importin-alpha, the protein that mediates nuclear import of the NS1A protein, whereas the RBD retains its double-stranded RNA-binding activity. Most significantly, we show that ISG15 modification of K41 inhibits influenza A virus replication and thus contributes to the antiviral action of IFN-beta. We also show that the NS1A protein directly and specifically binds to Herc5, the major E3 ligase for ISG15 conjugation in human cells. These results establish a "loss of function" mechanism for the antiviral activity of the IFN-induced ISG15 conjugation system, namely, that it inhibits viral replication by conjugating ISG15 to a specific viral protein, thereby inhibiting its function.

  5. Transmission of H5N1 high pathogenicity avian influenza virus to Herring gulls (Larus argentatus) through intranasal inoculation of virus and ingestion of virus-infected chicken meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to evaluate the susceptibility of herring gulls (Larus argentatus) to H5N1 highly pathogenic avian influenza (HPAI) virus under natural routes of infection, we exposed gulls to two Asian lineage H5N1 HPAI viruses (A/whooper swan/Mongolia/244/05 and A/duck meat/Anyang/AVL-1/01) via intranasa...

  6. Monoclonal Antibodies against the Fusion Peptide of Hemagglutinin Protect Mice from Lethal Influenza A Virus H5N1 Infection

    PubMed Central

    Prabhu, Nayana; Prabakaran, Mookkan; Ho, Hui-Ting; Velumani, Sumathy; Qiang, Jia; Goutama, Michael; Kwang, Jimmy

    2009-01-01

    The HA2 glycopolypeptide (gp) is highly conserved in all influenza A virus strains, and it is known to play a major role in the fusion of the virus with the endosomal membrane in host cells during the course of viral infection. Vaccines and therapeutics targeting this HA2 gp could induce efficient broad-spectrum immunity against influenza A virus infections. So far, there have been no studies on the possible therapeutic effects of monoclonal antibodies (MAbs), specifically against the fusion peptide of hemagglutinin (HA), upon lethal infections with highly pathogenic avian influenza (HPAI) H5N1 virus. We have identified MAb 1C9, which binds to GLFGAIAGF, a part of the fusion peptide of the HA2 gp. We evaluated the efficacy of MAb 1C9 as a therapy for influenza A virus infections. This MAb, which inhibited cell fusion in vitro when administered passively, protected 100% of mice from challenge with five 50% mouse lethal doses of HPAI H5N1 influenza A viruses from two different clades. Furthermore, it caused earlier clearance of the virus from the lung. The influenza virus load was assessed in lung samples from mice challenged after pretreatment with MAb 1C9 (24 h prior to challenge) and from mice receiving early treatment (24 h after challenge). The study shows that MAb 1C9, which is specific to the antigenically conserved fusion peptide of HA2, can contribute to the cross-clade protection of mice infected with H5N1 virus and mediate more effective recovery from infection. PMID:19109379

  7. Major Histocompatibility Complex Class II Expression and Hemagglutinin Subtype Influence the Infectivity of Type A Influenza Virus for Respiratory Dendritic Cells ▿

    PubMed Central

    Hargadon, Kristian M.; Zhou, Haixia; Albrecht, Randy A.; Dodd, Haley A.; García-Sastre, Adolfo; Braciale, Thomas J.

    2011-01-01

    Dendritic cells (DC) play a key role in antiviral immunity, functioning both as innate effector cells in early phases of the immune response and subsequently as antigen-presenting cells that activate the adaptive immune response. In the murine respiratory tract, there are several respiratory dendritic cell (RDC) subsets, including CD103+ DC, CD11bhi DC, monocyte/macrophage DC, and plasmacytoid DC. However, little is known about the interaction between these tissue-resident RDC and viruses that are encountered during natural infection in the respiratory tract. Here, we show both in vitro and in vivo that the susceptibility of murine RDC to infection with type A influenza virus varies with the level of MHC class II expression by RDC and with the virus strain. Both CD103+ and CD11bhi RDC, which express the highest basal level of major histocompatibility complex (MHC) class II, are highly susceptible to infection by type A influenza virus. However, efficient infection is restricted to type A influenza virus strains of the H2N2 subtype. Furthermore, enhanced infectivity by viruses of the H2N2 subtype is linked to expression of the I-E MHC class II locus product. These results suggest a potential novel role for MHC class II molecules in influenza virus infection and pathogenesis in the respiratory tract. PMID:21917972

  8. Proteomic analysis reveals down-regulation of surfactant protein B in murine type II pneumocytes infected with influenza A virus

    PubMed Central

    Kebaabetswe, Lemme P.; Haick, Anoria K.; Gritsenko, Marina A.; Fillmore, Thomas L.; Chu, Rosalie K.; Purvine, Samuel O.; Webb-Robertson, Bobbie-Jo; Matzke, Melissa M.; Smith, Richard D.; Waters, Katrina M.; Metz, Thomas O.; Miura, Tanya A.

    2015-01-01

    Infection of type II alveolar epithelial (ATII) cells by influenza A viruses (IAV) correlates with severe respiratory disease in humans and mice. To understand pathogenic mechanisms during IAV infection of ATII cells, murine ATII cells were cultured to maintain a differentiated phenotype, infected with IAV-PR8, which causes severe lung pathology in mice, and proteomics analyses were performed using liquid chromatography-mass spectrometry. PR8 infection increased levels of proteins involved in interferon signaling, antigen presentation, and cytoskeleton regulation. Proteins involved in mitochondrial membrane permeability, energy metabolism, and chromatin formation had reduced levels in PR8-infected cells. Phenotypic markers of ATII cells in vivo were identified, confirming the differentiation status of the cultures. Surfactant protein B had decreased levels in PR8-infected cells, which was confirmed by immunoblotting and immunofluorescence assays. Analysis of ATII cell protein profiles will elucidate cellular processes in IAV pathogenesis, which may provide insight into potential therapies to modulate disease severity. PMID:25965799

  9. Comparison of the Directigen flu A+B test, the QuickVue influenza test, and clinical case definition to viral culture and reverse transcription-PCR for rapid diagnosis of influenza virus infection.

    PubMed

    Ruest, Annie; Michaud, Sophie; Deslandes, Sylvie; Frost, Eric H

    2003-08-01

    The diagnostic performances of the clinical case definition of influenza virus infection based on the combination of fever and cough and of two rapid influenza diagnostic tests, the Directigen Flu A+B test (Directigen; BD Diagnostic Systems, Sparks, Md.) and the QuickVue influenza test (QuickVue; Quidel, San Diego, Calif.), were compared to those of viral culture and an in-house reverse transcription (RT)-PCR during the 2000-2001 flu season. Two hundred consecutive nasopharyngeal aspirates were analyzed from 192 patients, including 122 adults and 70 children. Viral culture identified influenza virus A in 16 samples and influenza virus B in 55 samples, whereas RT-PCR identified influenza virus A in 21 samples and influenza virus B in 64 samples. When RT-PCR was used as the reference standard, the likelihood ratios for a positive test were 40.0 for Directigen, 8.6 for QuickVue, and 1.4 for the combination of fever and cough, whereas the likelihood ratios for a negative test were 0.22, 0.16, and 0.48, respectively. Our study suggests that (i). the poor specificity (35 to 58%) and the poor positive predictive value (41 to 60%) of the clinical case definition of influenza preclude its use for prediction of influenza virus infections during epidemics, especially when infection control decision making in the hospital setting is considered; (ii). Directigen has a higher diagnostic yield than QuickVue but is associated with a larger number of invalid results; (iii). the sensitivities of the rapid diagnostic tests are significantly lower with samples from adults than with samples from children, with the rates of false-negative results reaching up to 29%; and (iv). RT-PCR detects more cases of influenza than viral culture, and this greater accuracy makes it a more useful reference standard.

  10. Influenza Virus Evolution, Host Adaptation and Pandemic Formation

    PubMed Central

    Taubenberger, Jeffery K.; Kash, John C.

    2010-01-01

    Newly emerging or `re-emerging' viral diseases continue to pose significant global public health threats. Prototypic are influenza viruses that are major causes of human respiratory infections and mortality. Influenza viruses can cause zoonotic infections and adapt to humans leading to sustained transmission and emergence of novel viruses. Mechanisms by which viruses evolve in one host, cause zoonotic infection and adapt to a new host species remain unelucidated. Here we review evolution of influenza A viruses in their reservoir hosts and discuss genetic changes associated with introduction of novel viruses into humans leading to pandemics and the establishment of seasonal viruses. PMID:20542248

  11. Impact of prior seasonal H3N2 influenza vaccination or infection on protection and transmission of emerging variants of influenza A(H3N2)v virus in ferrets.

    PubMed

    Houser, Katherine V; Pearce, Melissa B; Katz, Jacqueline M; Tumpey, Terrence M

    2013-12-01

    Influenza H3N2 A viruses continue to circulate in swine and occasionally infect humans, resulting in outbreaks of variant influenza H3N2 [A(H3N2)v] virus. It has been previously demonstrated in ferrets that A(H3N2)v viruses transmit as efficiently as seasonal influenza viruses, raising concern over the pandemic potential of these viruses. However, A(H3N2)v viruses have not acquired the ability to transmit efficiently among humans, which may be due in part to existing cross-reactive immunity to A(H3N2)v viruses. Although current seasonal H3N2 and A(H3N2)v viruses are antigenically distinct from one another, historical H3N2 viruses have some antigenic similarity to A(H3N2)v viruses and previous exposure to these viruses may provide a measure of immune protection sufficient to dampen A(H3N2)v virus transmission. Here, we evaluated whether prior seasonal H3N2 influenza virus vaccination or infection affects virus replication and transmission of A(H3N2)v virus in the ferret animal model. We found that the seasonal trivalent inactivated influenza virus vaccine (TIV) or a monovalent vaccine prepared from an antigenically related 1992 seasonal influenza H3N2 (A/Beijing/32/1992) virus failed to substantially reduce A(H3N2)v (A/Indiana/08/2011) virus shedding and subsequent transmission to naive hosts. Conversely, ferrets primed by seasonal H3N2 virus infection displayed reduced A(H3N2)v virus shedding following challenge, which blunted transmission to naive ferrets. A higher level of specific IgG and IgA antibody titers detected among infected versus vaccinated ferrets was associated with the degree of protection offered by seasonal H3N2 virus infection. The data demonstrate in ferrets that the efficiency of A(H3N2)v transmission is disrupted by preexisting immunity induced by seasonal H3N2 virus infection.

  12. Short-Term Heat Shock Affects Host–Virus Interaction in Mice Infected with Highly Pathogenic Avian Influenza Virus H5N1

    PubMed Central

    Xue, Jia; Fan, Xiaoxu; Yu, Jing; Zhang, Shouping; Xiao, Jin; Hu, Yanxin; Wang, Ming

    2016-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 is a highly contagious virus that can cause acute respiratory infections and high human fatality ratio due to excessive inflammatory response. Short-term heat shock, as a stressful condition, could induce the expression of heat shock proteins that function as molecular chaperones to protect cells against multiple stresses. However, the protective effect of short-term heat shock in influenza infection is far from being understood. In this study, mice were treated at 39°C for 4 h before being infected with HPAIV H5N1. Interestingly, short-term heat shock significantly increased the levels of HSP70 and pro-inflammatory cytokines IL-6, TNF-α, IFN-β, and IFN-γ in the lung tissues of mice. Following HPAIV H5N1 infection, short-term heat shock alleviated immunopathology and viral replication in lung tissue and repressed the weight loss and increased the survival rate of H5N1-infected mice. Our data reported that short-term heat shock provided beneficial anti-HPAIV H5N1 properties in mice model, which offers an alternative strategy for non-drug prevention for influenza infection. PMID:27379054

  13. Clinical and epidemiological features of respiratory virus infections in preschool children over two consecutive influenza seasons in southern Brazil.

    PubMed

    Giamberardin, Heloisa I G; Homsani, Sheila; Bricks, Lucia F; Pacheco, Ana P O; Guedes, Matilde; Debur, Maria C; Raboni, Sonia M

    2016-08-01

    This study reports the results of a systematic screening for respiratory viruses in pediatric outpatients from an emergency department (ED) in southern Brazil during two consecutive influenza seasons. Children eligible for enrollment in this study were aged 24-59 months and presented with acute respiratory symptoms and fever. Naso- and oropharyngeal swabs were collected and multiplex reverse transcription PCR (RT-PCR) was performed to identify the respiratory viruses involved. In total, 492 children were included in this study: 248 in 2010 and 244 in 2011. In 2010, 136 samples (55%) were found to be positive for at least one virus and the most frequently detected viruses were human rhinovirus (HRV) (18%), adenovirus (AdV) (13%), and human coronavirus (CoV) (5%). In 2011, 158 samples (65%) were found to be positive for at least one virus, and the most frequently detected were HRV (29%), AdV (12%), and enterovirus (9%). Further, the presence of asthma (OR, 3.17; 95% CI, 1.86-5.46) was independently associated with HRV infection, whereas fever was associated with AdV (OR, 3.86; 95% CI, 1.31-16.52) and influenza infections (OR, 3.74; 95% CI, 1.26-16.06). Ten patients (2%) were diagnosed with pneumonia, and six of these tested positive for viral infection (4 HRV, 1 RSV, and 1 AdV). Thus, this study identified the most common respiratory viruses found in preschool children in the study region and demonstrated their high frequency, highlighting the need for improved data collection, and case management in order to stimulate preventive measures against these infections. J. Med. Virol. 88:1325-1333, 2016. © 2016 Wiley Periodicals, Inc.

  14. Post-exposure treatment with whole inactivated H5N1 avian influenza virus protects against lethal homologous virus infection in mice

    PubMed Central

    Hagan, Mable; Ranadheera, Charlene; Audet, Jonathan; Morin, Jocelyn; Leung, Anders; Kobasa, Darwyn

    2016-01-01

    Concerns with H5N1 influenza viruses include their prevalence in wild and domestic poultry, high mortality rate (~60%) in humans with some strains, lack of pre-existing immunity in humans, and the possibility that these viruses acquire mutations that enable efficient transmission between humans. H5 subtype viruses of Eurasian origin have recently appeared in wild and domestic bird populations in North America, and have led to the generation of new virus strains that are highly pathogenic in poultry. These new H5 HA containing viruses with their ability to evolve rapidly represent an unknown threat to humans in contact with infected poultry, and vaccination with an off-the-shelf vaccine may be impractical to provide protection to at-risk individuals. Instead, we have evaluated the efficacy of a formalin-inactivated vaccine, which could be derived directly from a circulating virus, to provide post-exposure protection. This strategy was evaluated using a prototypic highly pathogenic avian H5N1 strain, A/Vietnam/1203/2004, and demonstrated rapid induction of adaptive immune responses providing protection in a mammalian model of lethal infection. Additionally, this post-exposure vaccine was highly efficacious when administered 24 hours after exposure. This study offers a platform for developing effective post-exposure vaccines for treatment of highly virulent influenza infections. PMID:27405487

  15. Avian Influenza (H7N9) Virus Infection in Chinese Tourist in Malaysia, 2014

    PubMed Central

    William, Timothy; Thevarajah, Bharathan; Lee, Shiu Fee; Suleiman, Maria; Jeffree, Mohamad Saffree; Menon, Jayaram; Saat, Zainah; Thayan, Ravindran; Tambyah, Paul Anantharajah

    2015-01-01

    Of the ≈400 cases of avian influenza (H7N9) diagnosed in China since 2003, the only travel-related cases have been in Hong Kong and Taiwan. Detection of a case in a Chinese tourist in Sabah, Malaysia, highlights the ease with which emerging viral respiratory infections can travel globally. PMID:25531078

  16. Comparison of the safety, vaccine virus shedding, and immunogenicity of influenza virus vaccine, trivalent, types A and B, live cold-adapted, administered to human immunodeficiency virus (HIV)-infected and non-HIV-infected adults.

    PubMed

    King, J C; Treanor, J; Fast, P E; Wolff, M; Yan, L; Iacuzio, D; Readmond, B; O'Brien, D; Mallon, K; Highsmith, W E; Lambert, J S; Belshe, R B

    2000-02-01

    Fifty-seven human immunodeficiency virus (HIV)-infected (CDC class A1-2) and 54 non-HIV-infected adults, not prescreened for influenza susceptibility, were randomized to receive trivalent live attenuated influenza vaccine (LAIV) or placebo intranasally. LAIV was safe and well tolerated with no serious adverse events attributable to vaccine. Reactogenicity rates were similar in LAIV and placebo recipients except that runny nose/nasal congestion was significantly more common in LAIV recipients regardless of HIV status. No prolonged shedding of LAIV was observed in HIV-infected participants. HIV RNA levels were not increased and CD4 counts were not decreased in HIV-infected LAIV recipients compared with placebo recipients after immunization. Shedding of LAIV and increases in antibody titers were infrequent, consistent with prior experience in unscreened adults. The data suggest that inadvertent vaccination with LAIV in relatively asymptomatic HIV-infected adults would not be associated with frequent significant adverse events.

  17. Experimental infection with low and high pathogenicity H7N3 Chilean avian influenza viruses in Chiloe Wigeon (Anas sibilatrix) and Cinnamon Teal (Anas cyanoptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 high pathogenicity avian influenza (HPAI) viruses have been associated with natural, lethal infections in wild aquatic birds which have been reproduced experimentally. Some aquatic bird species have been suggested as potential transporters of H5N1 HPAI virus via migration. However, ...

  18. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza virus (HPAIV) infections in chickens produce a negative impact on egg production, and virus is deposited on surface and internal contents of eggs. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H...

  19. Serum antibody response to matrix protein 2 following natural infection with 2009 pandemic influenza A(H1N1) virus in humans.

    PubMed

    Zhong, Weimin; Reed, Carrie; Blair, Patrick J; Katz, Jacqueline M; Hancock, Kathy

    2014-04-01

    Natural infection-induced humoral immunity to matrix protein 2 (M2) of influenza A viruses in humans is not fully understood. Evidence suggests that anti-M2 antibody responses following influenza A virus infection are weak and/or transient. We show that the seroprevalence of anti-M2 antibodies increased with age in 317 serum samples from healthy individuals in the United States in 2007-2008. Infection with 2009 pandemic H1N1 influenza A virus (A[H1N1]pdm09) elicited a recall serum antibody response to M2 protein of A(H1N1)pdm09 in 47% of the affected 118 individuals tested. Anti-M2 antibody responses were more robust among individuals with preexisting antibodies to M2 protein. Moreover, the antibodies induced as a result of infection with A(H1N1)pdm09 were cross-reactive with M2 protein of seasonal influenza A viruses. These results emphasize the need to further investigate the possible roles of anti-M2 antibodies in human influenza A virus infection. PMID:24325965

  20. Intranasal hydroxypropyl-β-cyclodextrin-adjuvanted influenza vaccine protects against sub-heterologous virus infection.

    PubMed

    Kusakabe, Takato; Ozasa, Koji; Kobari, Shingo; Momota, Masatoshi; Kishishita, Natsuko; Kobiyama, Kouji; Kuroda, Etsushi; Ishii, Ken J

    2016-06-01

    Intranasal vaccination with inactivated influenza viral antigens is an attractive and valid alternative to currently available influenza (flu) vaccines; many of which seem to need efficient and safe adjuvant, however. In this study, we examined whether hydroxypropyl-β-cyclodextrin (HP-β-CD), a widely used pharmaceutical excipient to improve solubility and drug delivery, can act as a mucosal adjuvant for intranasal flu vaccines. We found that intranasal immunization of mice with hemagglutinin split- as well as inactivated whole-virion influenza vaccine with HP-β-CD resulted in secretion of antigen-specific IgA and IgGs in the airway mucosa and the serum as well. As a result, both HP-β-CD adjuvanted-flu intranasal vaccine protected mice against lethal challenge with influenza virus, equivalent to those induced by experimental cholera toxin-adjuvanted ones. Of note, intranasal use of HP-β-CD as an adjuvant induced significantly lower antigen-specific IgE responses than that induced by aluminum salt adjuvant. These results suggest that HP-β-CD may be a potent mucosal adjuvant for seasonal and pandemic influenza vaccine. PMID:27160037

  1. An analysis of microbiota-targeted therapies in patients with avian influenza virus subtype H7N9 infection

    PubMed Central

    2014-01-01

    Background Selective prophylactic decontamination of the digestive tract is a strategy for the prevention of secondary nosocomial infection in patients with avian influenza virus subtype H7N9 infection. Our aim was to summarize the effectiveness of these therapies in re-establishing a stable and diverse microbial community, and reducing secondary infections. Methods Comprehensive therapies were dependent on the individual clinical situation of subjects, and were divided into antiviral treatment, microbiota-targeted therapies, including pro- or pre-biotics and antibiotic usage, and immunotherapy. Quantitative polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE) were used for real-time monitoring of the predominant intestinal microbiome during treatment. Clinical information about secondary infection was confirmed by analyzing pathogens isolated from clinical specimens. Results Different antibiotics had similar effects on the gut microbiome, with a marked decrease and slow recovery of the Bifidobacterium population. Interestingly, most fecal microbial DGGE profiles showed the relative stability of communities under the continual suppression of the same antibiotics, and significant changes when new antibiotics were introduced. Moreover, we found no marked increase in C-reactive protein, and no cases of bacteremia or pneumonia, caused by probiotic use in the patients, which confirmed that the probiotics used in this study were safe for use in patients with H7N9 infection. Approximately 72% of those who subsequently suffered exogenous respiratory infection by Candida species or multidrug-resistant Acinetobacter baumannii and Klebsiella pneumoniae were older than 60 years. The combination of probiotics and prebiotics with antibiotics seemed to fail in these patients. Conclusions Elderly patients infected with the influenza A (H7N9) virus are considered a high-risk group for developing secondary bacterial infection. Microbiota restoration

  2. Highly pathogenic avian influenza viruses do not inhibit interferon synthesis in infected chickens but can override the interferon-induced antiviral state.

    PubMed

    Penski, Nicola; Härtle, Sonja; Rubbenstroth, Dennis; Krohmann, Carsten; Ruggli, Nicolas; Schusser, Benjamin; Pfann, Michael; Reuter, Antje; Gohrbandt, Sandra; Hundt, Jana; Veits, Jutta; Breithaupt, Angele; Kochs, Georg; Stech, Jürgen; Summerfield, Artur; Vahlenkamp, Thomas; Kaspers, Bernd; Staeheli, Peter

    2011-08-01

    From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses.

  3. Modeling human influenza infection in the laboratory

    PubMed Central

    Radigan, Kathryn A; Misharin, Alexander V; Chi, Monica; Budinger, GR Scott

    2015-01-01

    Influenza is the leading cause of death from an infectious cause. Because of its clinical importance, many investigators use animal models to understand the biologic mechanisms of influenza A virus replication, the immune response to the virus, and the efficacy of novel therapies. This review will focus on the biosafety, biosecurity, and ethical concerns that must be considered in pursuing influenza research, in addition to focusing on the two animal models – mice and ferrets – most frequently used by researchers as models of human influenza infection. PMID:26357484

  4. Human Infection with Influenza A(H7N9) Virus during 3 Major Epidemic Waves, China, 2013–2015

    PubMed Central

    Wu, Peng; Peng, Zhibin; Fang, Vicky J.; Feng, Luzhao; Tsang, Tim K.; Jiang, Hui; Lau, Eric H.Y.; Yang, Juan; Zheng, Jiandong; Qin, Ying; Li, Zhongjie; Leung, Gabriel M.; Cowling, Benjamin J.

    2016-01-01

    Since March 2013, a novel influenza A(H7N9) virus has caused 3 epidemic waves of human infection in mainland China. We analyzed data from patients with laboratory-confirmed influenza A(H7N9) virus infection to estimate the risks for severe outcomes after hospitalization across the 3 waves. We found that hospitalized patients with confirmed infections in waves 2 and 3 were younger and more likely to be residing in small cities and rural areas than were patients in wave 1; they also had a higher risk for death, after adjustment for age and underlying medical conditions. Risk for death among hospitalized patients during waves 2 and 3 was lower in Jiangxi and Fujian Provinces than in eastern and southern provinces. The variation in risk for death among hospitalized case-patients in different areas across 3 epidemic waves might be associated with differences in case ascertainment, changes in clinical management, or virus genetic diversity. PMID:27191934

  5. Human Infection with Influenza A(H7N9) Virus during 3 Major Epidemic Waves, China, 2013-2015.

    PubMed

    Wu, Peng; Peng, Zhibin; Fang, Vicky J; Feng, Luzhao; Tsang, Tim K; Jiang, Hui; Lau, Eric H Y; Yang, Juan; Zheng, Jiandong; Qin, Ying; Li, Zhongjie; Leung, Gabriel M; Yu, Hongjie; Cowling, Benjamin J

    2016-06-01

    Since March 2013, a novel influenza A(H7N9) virus has caused 3 epidemic waves of human infection in mainland China. We analyzed data from patients with laboratory-confirmed influenza A(H7N9) virus infection to estimate the risks for severe outcomes after hospitalization across the 3 waves. We found that hospitalized patients with confirmed infections in waves 2 and 3 were younger and more likely to be residing in small cities and rural areas than were patients in wave 1; they also had a higher risk for death, after adjustment for age and underlying medical conditions. Risk for death among hospitalized patients during waves 2 and 3 was lower in Jiangxi and Fujian Provinces than in eastern and southern provinces. The variation in risk for death among hospitalized case-patients in different areas across 3 epidemic waves might be associated with differences in case ascertainment, changes in clinical management, or virus genetic diversity. PMID:27191934

  6. Integrated Molecular Signature of Disease: Analysis of Influenza Virus-Infected Macaques through Functional Genomics and Proteomics

    SciTech Connect

    Baas, T.; Baskin, C. R.; Diamond, Deborah L.; Garcia-Sastre, A.; Bielefeldt-Ohmann, H.; Tumpey, T. M.; Thomas, M. J.; Carter, V. S.; Teal, T. H.; Van Hoven, N.; Proll, Sean; Jacobs, Jon M.; Caldwell, Z.; Gritsenko, Marina A.; Hukkanen, R.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2006-11-01

    Recent outbreaks of avian influenza in humans have stressed the need for an improved non-human primate model of influenza pathogenesis. In order to develop our macaque model, we expanded our in vivo and functional genomics experiments: We focused on the innate immune response at day 2 post-inoculation and on gene expression in affected lung tissue with viral genetic material present; finally, we sought to identify signature genes for early infection in whole blood. For these purposes, we infected six pigtailed macaques with 107 TCID50 of influenza A/Texas/36/91 virus and three control animals with a sham inoculate. We sacrificed one control and two experimental animals at day 2, 4, and 7 and lung tissue was harvested for pathology, gene expression profiling, and proteomics. Additionally, blood was collected for genomics every other day from each animal until its endpoint. Gross and microscopic pathology, immunohistochemistry, viral gene expression by arrays and/or quantitative real-time RT-PCR confirmed successful yet mild infection in all experimental animals. Genomic experiments were performed using second generation macaque-specific oligonucleotide arrays and high-throughput proteomics revealed host response to infection at the protein level. Our data showed dramatic differences in gene expression within the same influenza-induced lesion based on the presence or absence of viral mRNA. We also identified genes tightly co-regulated in peripheral white blood cells and in lung tissue at day 2 post-inoculation. This latter finding opens the possibility of using gene expression arrays on whole blood to detect infection after exposure but prior to onset of symptoms or shedding.

  7. Acute phase protein response during subclinical infection of pigs with H1N1 swine influenza virus.

    PubMed

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2012-10-12

    In the present study acute phase proteins (APPs) responses in pigs after subclinical infection with H1N1 swine influenza virus (SwH1N1) were evaluated. Fourteen 5 weeks old, seronegative piglets, both sexes were used. Ten of them were infected intranasally with SwH1N1. C-reactive protein (CRP), haptoglobin (Hp), serum amyloid A (SAA) and pig major acute phase protein (Pig-MAP) concentrations in serum were measured using commercial ELISAs. No significant clinical signs were observed in any of the infected pigs, however, all infected animals developed specific antibodies against SwH1N1 and viral shedding was observed from 2 to 5 dpi. Only concentrations of Hp and SAA were significantly induced after infection, with mean maximum levels from days 1 to 2 post infection (dpi). The concentrations of CRP and Pig-MAP remained generally unchanged, however in half of infected pigs the concentration of CRP tended to increase at 1 dpi (but without statistical significance). The results of our study confirmed that monitoring of APPs may be useful for detection of subclinically infected pigs. The use of SAA or Hp and Pig-MAP may be a valuable in combination [i.e. Hp (increased concentration) and Pig-MAP (unchanged concentration)] to detect subclinically SIV infected pigs, or to identify pigs actually producing a large amount of virus. Additional studies need to be done in order to confirm these findings.

  8. Highly (H5N1) and Low (H7N2) Pathogenic Avian Influenza Virus Infection in Falcons Via Nasochoanal Route and Ingestion of Experimentally Infected Prey

    PubMed Central

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5–7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey

  9. Highly (H5N1) and low (H7N2) pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    PubMed

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and

  10. Sociodemographic factors and clinical conditions associated to hospitalization in influenza A (H1N1) 2009 virus infected patients in Spain, 2009-2010.

    PubMed

    González-Candelas, Fernando; Astray, Jenaro; Alonso, Jordi; Castro, Ady; Cantón, Rafael; Galán, Juan Carlos; Garin, Olatz; Sáez, Marc; Soldevila, Nuria; Baricot, Maretva; Castilla, Jesús; Godoy, Pere; Delgado-Rodríguez, Miguel; Martín, Vicente; Mayoral, José María; Pumarola, Tomás; Quintana, José María; Tamames, Sonia; Domínguez, Angela

    2012-01-01

    The emergence and pandemic spread of a new strain of influenza A (H1N1) virus in 2009 resulted in a serious alarm in clinical and public health services all over the world. One distinguishing feature of this new influenza pandemic was the different profile of hospitalized patients compared to those from traditional seasonal influenza infections. Our goal was to analyze sociodemographic and clinical factors associated to hospitalization following infection by influenza A(H1N1) virus. We report the results of a Spanish nationwide study with laboratory confirmed infection by the new pandemic virus in a case-control design based on hospitalized patients. The main risk factors for hospitalization of influenza A (H1N1) 2009 were determined to be obesity (BMI≥40, with an odds-ratio [OR] 14.27), hematological neoplasia (OR 10.71), chronic heart disease, COPD (OR 5.16) and neurological disease, among the clinical conditions, whereas low education level and some ethnic backgrounds (Gypsies and Amerinds) were the sociodemographic variables found associated to hospitalization. The presence of any clinical condition of moderate risk almost triples the risk of hospitalization (OR 2.88) and high risk conditions raise this value markedly (OR 6.43). The risk of hospitalization increased proportionally when for two (OR 2.08) or for three or more (OR 4.86) risk factors were simultaneously present in the same patient. These findings should be considered when a new influenza virus appears in the human population.

  11. Estimating the Distribution of the Incubation Periods of Human Avian Influenza A(H7N9) Virus Infections.

    PubMed

    Virlogeux, Victor; Li, Ming; Tsang, Tim K; Feng, Luzhao; Fang, Vicky J; Jiang, Hui; Wu, Peng; Zheng, Jiandong; Lau, Eric H Y; Cao, Yu; Qin, Ying; Liao, Qiaohong; Yu, Hongjie; Cowling, Benjamin J

    2015-10-15

    A novel avian influenza virus, influenza A(H7N9), emerged in China in early 2013 and caused severe disease in humans, with infections occurring most frequently after recent exposure to live poultry. The distribution of A(H7N9) incubation periods is of interest to epidemiologists and public health officials, but estimation of the distribution is complicated by interval censoring of exposures. Imputation of the midpoint of intervals was used in some early studies, resulting in estimated mean incubation times of approximately 5 days. In this study, we estimated the incubation period distribution of human influenza A(H7N9) infections using exposure data available for 229 patients with laboratory-confirmed A(H7N9) infection from mainland China. A nonparametric model (Turnbull) and several parametric models accounting for the interval censoring in some exposures were fitted to the data. For the best-fitting parametric model (Weibull), the mean incubation period was 3.4 days (95% confidence interval: 3.0, 3.7) and the variance was 2.9 days; results were very similar for the nonparametric Turnbull estimate. Under the Weibull model, the 95th percentile of the incubation period distribution was 6.5 days (95% confidence interval: 5.9, 7.1). The midpoint approximation for interval-censored exposures led to overestimation of the mean incubation period. Public health observation of potentially exposed persons for 7 days after exposure would be appropriate.

  12. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry.

    PubMed

    Feeley, Eric M; Sims, Jennifer S; John, Sinu P; Chin, Christopher R; Pertel, Thomas; Chen, Li-Mei; Gaiha, Gaurav D; Ryan, Bethany J; Donis, Ruben O; Elledge, Stephen J; Brass, Abraham L

    2011-10-01

    To replicate, viruses must gain access to the host cell's resources. Interferon (IFN) regulates the actions of a large complement of interferon effector genes (IEGs) that prevent viral replication. The interferon inducible transmembrane protein family members, IFITM1, 2 and 3, are IEGs required for inhibition of influenza A virus, dengue virus, and West Nile virus replication in vitro. Here we report that IFN prevents emergence of viral genomes from the endosomal pathway, and that IFITM3 is both necessary and sufficient for this function. Notably, viral pseudoparticles were inhibited from transferring their contents into the host cell cytosol by IFN, and IFITM3 was required and sufficient for this action. We further demonstrate that IFN expands Rab7 and LAMP1-containing structures, and that IFITM3 overexpression is sufficient for this phenotype. Moreover, IFITM3 partially resides in late endosomal and lysosomal structures, placing it in the path of invading viruses. Collectively our data are consistent with the prediction that viruses that fuse in the late endosomes or lysosomes are vulnerable to IFITM3's actions, while viruses that enter at the cell surface or in the early endosomes may avoid inhibition. Multiple viruses enter host cells through the late endocytic pathway, and many of these invaders are attenuated by IFN. Therefore these findings are likely to have significance for the intrinsic immune system's neutralization of a diverse array of threats. PMID:22046135

  13. Neonatal infection with neurotropic influenza A virus affects working memory and expression of type III Nrg1 in adult mice.

    PubMed

    Asp, Linnéa; Beraki, Simret; Kristensson, Krister; Ogren, Sven Ove; Karlsson, Håkan

    2009-08-01

    Epidemiological studies suggest that early life infections may contribute to the development of psychiatric disorders characterized by cognitive deficits. Here, we studied the effects of a neonatal influenza A/WSN/33 virus infection on locomotor activity, working memory and emotional behavior in adult mice. In addition to wild type mice, immunodeficient (Tap1(-/-)) mice lacking functional CD8(+) T cells, were included in the study to model the potential influence of a genetic deficit relating to virus clearance. Three to four months after the infection, infected Tap1(-/-) mice, but not wild type mice, exhibited deficits in working memory as well as increased rearing activity and anxiety. In the medial prefrontal cortices of these infected Tap1(-/-) mice reduced levels of type III Nrg1 transcripts were observed supporting a role for neuregulin 1 signaling in neuronal circuits involved in working memory. Virus replication, distribution or clearance did not differ between the two genotypes. The lack of CD8(+) T cells, however, appeared to contribute to a more pronounced glia response in Tap1(-/-) than in wild type mice. Thus, the present study suggest that the risk of developing deficits in cognitive and emotional behavior following a CNS infection during brain development is influenced by genetic variation in genes involved in the immune response.

  14. Amino acid substitution D222N from fatal influenza infection affects receptor-binding properties of the influenza A(H1N1)pdm09 virus.

    PubMed

    Matos-Patrón, Adriana; Byrd-Leotis, Lauren; Steinhauer, David A; Barclay, Wendy S; Ayora-Talavera, Guadalupe

    2015-10-01

    We have analyzed the receptor binding profile of A(H1N1)pdm09 recombinant influenza viruses containing the amino acid substitution D222N which has been associated with a fatal case of infection. This mutation was investigated in conjunction with a secondary mutation, S185N. Using human tracheobronchial epithelial cells (HTBE), we found that single mutation D222N affects the binding and replication of the virus during initial stages of infection, with limited but preferred tropism to non-ciliated cells expressing α2,6-SA. However, in conjunction with the S185N change, the (D222N, S185N) virus shows a remarkable increase in binding and replication efficiency, with tropism for both ciliated and non-ciliated cells. Glycan microarray analysis demonstrated correlation between the binding profile and the cell tropism observed in the HTBE cells. These findings suggest that viruses with D222N required compensatory mutations such as S185N to maintain viral fitness, and in combination, affect the pathogenicity of the virus and the clinical outcome.

  15. Experimental infection of mallard ducks with different subtype H5 and H7 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of some Asian lineage H5N1 HPAIVs which can cause severe disease in ducks. With ...

  16. Phenolic Diterpenoid Derivatives as Anti-Influenza A Virus Agents

    PubMed Central

    2015-01-01

    A series of diterpenoid derivatives based on podocarpic acid were synthesized and evaluated as anti-influenza A virus agents. Several of the novel podocarpic acid derivatives exhibited nanomolar activities against an H1N1 influenza A virus (A/Puerto Rico/8/34) that was resistant to two anti-influenza drugs, oseltamivir and amantadine. This class of compounds inhibits the influenza virus by targeting the viral hemagglutinin-mediated membrane fusion. These results indicated that podocarpic acid derivatives may serve as potential drug candidates to fight drug-resistant influenza A virus infections. PMID:25815159

  17. Influenza Type A Viruses and Subtypes

    MedlinePlus

    ... virus infection of humans, such as with Asian-origin highly pathogenic avian influenza A (H5N1) viruses currently circulating among poultry in Asia and the Middle East have been reported in 16 countries, often resulting in severe pneumonia with approximately 60% ...

  18. Influenza Virus Infection Induces the Nuclear Relocalization of the Hsp90 Co-Chaperone p23 and Inhibits the Glucocorticoid Receptor Response

    PubMed Central

    Chase, Geoffrey; dos Santos Afonso, Emmanuel; Picard, Didier; Schwemmle, Martin; Naffakh, Nadia

    2011-01-01

    The genomic RNAs of influenza A viruses are associated with the viral polymerase subunits (PB1, PB2, PA) and nucleoprotein (NP), forming ribonucleoprotein complexes (RNPs). Transcription/replication of the viral genome occurs in the nucleus of infected cells. A role for Hsp90 in nuclear import and assembly of newly synthetized RNA-polymerase subunits has been proposed. Here we report that the p23 cochaperone of Hsp90, which plays a major role in glucocorticoid receptor folding and function, associates with influenza virus polymerase. We show that p23 is not essential for viral multiplication in cultured cells but relocalizes to the nucleus in influenza virus-infected cells, which may alter some functions of p23 and Hsp90. Moreover, we show that influenza virus infection inhibits glucocorticoid receptor-mediated gene transactivation, and that this negative effect can occur through a p23-independent pathway. Viral-induced inhibition of the glucocorticoid receptor response might be of significant importance regarding the physiopathology of influenza infections in vivo. PMID:21853119

  19. Cause of Flu (Influenza)

    MedlinePlus

    ... Skip Content Marketing Share this: Main Content Area Flu (Influenza) Cause About the Flu Virus Influenza, or flu, is a respiratory infection ... the virus. Influenza A virus. Credit: CDC Where Influenza Comes From In nature, the flu virus is ...

  20. The genome of an influenza virus from a pilot whale: relation to influenza viruses of gulls and marine mammals.

    PubMed

    Groth, Marco; Lange, Jeannette; Kanrai, Pumaree; Pleschka, Stephan; Scholtissek, Christoph; Krumbholz, Andi; Platzer, Matthias; Sauerbrei, Andreas; Zell, Roland

    2014-06-01

    Influenza virus A/whale/Maine/328B/1984 (H13N2) was isolated from a diseased pilot whale. Since only a partial sequence was available, its complete genome was sequenced and compared to the sequences of subtype H13 influenza viruses from shorebirds and various influenza viruses of marine mammals. The data reveal a rare genotype constellation with all gene segments derived of an influenza virus adapted to gulls, terns and waders. In contrast, the phylogenetic trees indicate that the majority of influenza viruses isolated from marine mammals derived from influenza viruses adapted to geese and ducks. We conclude that A/whale/Maine/328B/1984 is the first record of an infection of a marine mammal from a gull-origin influenza virus. PMID:24704761

  1. Unique Type I Interferon Responses Determine the Functional Fate of Migratory Lung Dendritic Cells during Influenza Virus Infection

    PubMed Central

    Moltedo, Bruno; Li, Wenjing; Yount, Jacob S.; Moran, Thomas M.

    2011-01-01

    Migratory lung dendritic cells (DCs) transport viral antigen from the lungs to the draining mediastinal lymph nodes (MLNs) during influenza virus infection to initiate the adaptive immune response. Two major migratory DC subsets, CD103+ DCs and CD11bhigh DCs participate in this function and it is not clear if these antigen presenting cell (APC) populations become directly infected and if so whether their activity is influenced by the infection. In these experiments we show that both subpopulations can become infected and migrate to the draining MLN but a difference in their response to type I interferon (I-IFN) signaling dictates the capacity of the virus to replicate. CD103+ DCs allow the virus to replicate to significantly higher levels than do the CD11bhigh DCs, and they release infectious virus in the MLNs and when cultured ex-vivo. Virus replication in CD11bhigh DCs is inhibited by I-IFNs, since ablation of the I-IFN receptor (IFNAR) signaling permits virus to replicate vigorously and productively in this subset. Interestingly, CD103+ DCs are less sensitive to I-IFNs upregulating interferon-induced genes to a lesser extent than CD11bhigh DCs. The attenuated IFNAR signaling by CD103+ DCs correlates with their described superior antigen presentation capacity for naïve CD8+ T cells when compared to CD11bhigh DCs. Indeed ablation of IFNAR signaling equalizes the competency of the antigen presenting function for the two subpopulations. Thus, antigen presentation by lung DCs is proportional to virus replication and this is tightly constrained by I-IFN. The “interferon-resistant” CD103+ DCs may have evolved to ensure the presentation of viral antigens to T cells in I-IFN rich environments. Conversely, this trait may be exploitable by viral pathogens as a mechanism for systemic dissemination. PMID:22072965

  2. Genome plasticity of triple-reassortant H1N1 influenza A virus during infection of vaccinated pigs

    PubMed Central

    Diaz, Andres; Enomoto, Shinichiro; Romagosa, Anna; Sreevatsan, Srinand; Nelson, Martha; Culhane, Marie

    2015-01-01

    To gain insight into the evolution of influenza A viruses (IAVs) during infection of vaccinated pigs, we experimentally infected a 3-week-old naive pig with a triple-reassortant H1N1 IAV and placed the seeder pig in direct contact with a group of age-matched vaccinated pigs (n = 10). We indexed the genetic diversity and evolution of the virus at an intra-host level by deep sequencing the entire genome directly from nasal swabs collected at two separate samplings during infection. We obtained 13 IAV metagenomes from 13 samples, which included the virus inoculum and two samples from each of the six pigs that tested positive for IAV during the study. The infection produced a population of heterogeneous alleles (sequence variants) that was dynamic over time. Overall, 794 polymorphisms were identified amongst all samples, which yielded 327 alleles, 214 of which were unique sequences. A total of 43 distinct haemagglutinin proteins were translated, two of which were observed in multiple pigs, whereas the neuraminidase (NA) was conserved and only one dominant NA was found throughout the study. The genetic diversity of IAVs changed dynamically within and between pigs. However, most of the substitutions observed in the internal gene segments were synonymous. Our results demonstrated remarkable IAV diversity, and the complex, rapid and dynamic evolution of IAV during infection of vaccinated pigs that can only be appreciated with repeated sampling of individual animals and deep sequence analysis. PMID:26251306

  3. Genome plasticity of triple-reassortant H1N1 influenza A virus during infection of vaccinated pigs.

    PubMed

    Diaz, Andres; Enomoto, Shinichiro; Romagosa, Anna; Sreevatsan, Srinand; Nelson, Martha; Culhane, Marie; Torremorell, Montserrat

    2015-10-01

    To gain insight into the evolution of influenza A viruses (IAVs) during infection of vaccinated pigs, we experimentally infected a 3-week-old naive pig with a triple-reassortant H1N1 IAV and placed the seeder pig in direct contact with a group of age-matched vaccinated pigs (n = 10). We indexed the genetic diversity and evolution of the virus at an intra-host level by deep sequencing the entire genome directly from nasal swabs collected at two separate samplings during infection. We obtained 13 IAV metagenomes from 13 samples, which included the virus inoculum and two samples from each of the six pigs that tested positive for IAV during the study. The infection produced a population of heterogeneous alleles (sequence variants) that was dynamic over time. Overall, 794 polymorphisms were identified amongst all samples, which yielded 327 alleles, 214 of which were unique sequences. A total of 43 distinct haemagglutinin proteins were translated, two of which were observed in multiple pigs, whereas the neuraminidase (NA) was conserved and only one dominant NA was found throughout the study. The genetic diversity of IAVs changed dynamically within and between pigs. However, most of the substitutions observed in the internal gene segments were synonymous. Our results demonstrated remarkable IAV diversity, and the complex, rapid and dynamic evolution of IAV during infection of vaccinated pigs that can only be appreciated with repeated sampling of individual animals and deep sequence analysis. PMID:26251306

  4. Anti-inflammatory effects of indirubin derivatives on influenza A virus-infected human pulmonary microvascular endothelial cells.

    PubMed

    Kwok, Hoi-Hin; Poon, Po-Ying; Fok, Siu-Ping; Ying-Kit Yue, Patrick; Mak, Nai-Ki; Chan, Michael Chi-Wai; Peiris, Joseph Sriyal Malik; Wong, Ricky Ngok-Shun

    2016-01-01

    Influenza A virus (IAV) poses global threats to human health. Acute respiratory distress syndrome and multi-organ dysfunction are major complications in patients with severe influenza infection. This may be explained by the recent studies which highlighted the role of the pulmonary endothelium as the center of innate immune cells recruitment and excessive pro-inflammatory cytokines production. In this report, we examined the potential immunomodulatory effects of two indirubin derivatives, indirubin-3'-(2,3-dihydroxypropyl)-oximether (E804) and indirubin-3'-oxime (E231), on IAV (H9N2) infected-human pulmonary microvascular endothelial cells (HPMECs). Infection of H9N2 on HPMECs induced a high level of chemokines and cytokines production including IP-10, RANTES, IL-6, IFN-β and IFN-γ1. Post-treatment of E804 or E231 could significantly suppress the production of these cytokines. H9N2 infection rapidly triggered the activation of innate immunity through phosphorylation of signaling molecules including mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT) proteins. Using specific inhibitors or small-interfering RNA, we confirmed that indirubin derivatives can suppress H9N2-induced cytokines production through MAPKs and STAT3 signaling pathways. These results underscore the immunomodulatory effects of indirubin derivatives on pulmonary endothelium and its therapeutic potential on IAV-infection. PMID:26732368

  5. Anti-inflammatory effects of indirubin derivatives on influenza A virus-infected human pulmonary microvascular endothelial cells

    PubMed Central

    Kwok, Hoi-Hin; Poon, Po-Ying; Fok, Siu-Ping; Ying-Kit Yue, Patrick; Mak, Nai-Ki; Chan, Michael Chi-Wai; Peiris, Joseph Sriyal Malik; Wong, Ricky Ngok-Shun

    2016-01-01

    Influenza A virus (IAV) poses global threats to human health. Acute respiratory distress syndrome and multi-organ dysfunction are major complications in patients with severe influenza infection. This may be explained by the recent studies which highlighted the role of the pulmonary endothelium as the center of innate immune cells recruitment and excessive pro-inflammatory cytokines production. In this report, we examined the potential immunomodulatory effects of two indirubin derivatives, indirubin-3′-(2,3-dihydroxypropyl)-oximether (E804) and indirubin-3′-oxime (E231), on IAV (H9N2) infected-human pulmonary microvascular endothelial cells (HPMECs). Infection of H9N2 on HPMECs induced a high level of chemokines and cytokines production including IP-10, RANTES, IL-6, IFN-β and IFN-γ1. Post-treatment of E804 or E231 could significantly suppress the production of these cytokines. H9N2 infection rapidly triggered the activation of innate immunity through phosphorylation of signaling molecules including mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT) proteins. Using specific inhibitors or small-interfering RNA, we confirmed that indirubin derivatives can suppress H9N2-induced cytokines production through MAPKs and STAT3 signaling pathways. These results underscore the immunomodulatory effects of indirubin derivatives on pulmonary endothelium and its therapeutic potential on IAV-infection. PMID:26732368

  6. The effect of dietary intake of the acidic protein fraction of bovine colostrum on influenza A (H1N1) virus infection.

    PubMed

    Xu, Mei Ling; Kim, Hyoung Jin; Chang, Don Yong; Kim, Hong-Jin

    2013-06-01

    Acidic protein levels in the milk decrease markedly as lactation progresses, suggesting that it is an important part of the colostrum. However, little attention has been paid to their biological function. In this study, we isolated the acidic protein fraction of bovine colostrum (AFC, isoelectric point <5) by anion-exchange chromatography, and investigated the effect of its dietary intake on influenza A (H1N1) virus infection. 100% of mice infected with 1 LD50 of the virus survived when administered AFC for 14 days prior to infection, compared with 33% survival when administered phosphate buffered saline (PBS). Moreover, consumption of AFC reduced the weight loss associated with infection. We propose that dietary intake of AFC has a prophylactic effect on influenza A virus infection. PMID:23620352

  7. Global and quantitative proteomic analysis of dogs infected by avian-like H3N2 canine influenza virus

    PubMed Central

    Su, Shuo; Tian, Jin; Hong, Malin; Zhou, Pei; Lu, Gang; Zhu, Huachen; Zhang, Guihong; Lai, Alexander; Li, Shoujun

    2015-01-01

    Canine influenza virus A (H3N2) is a newly emerged etiological agent for respiratory infections in dogs. The mechanism of interspecies transmission from avian to canine species and the development of diseases in this new host remain to be explored. To investigate this, we conducted a differential proteomics study in 2-month-old beagles inoculated intranasally with 106 TCID50 of A/canine/Guangdong/01/2006 (H3N2) virus. Lung sections excised at 12 h post-inoculation (hpi), 4 days, and 7 days post-inoculation (dpi) were processed for global and quantitative analysis of differentially expressed proteins. A total of 17,796 proteins were identified at different time points. About 1.6% was differentially expressed between normal and infected samples. Of these, 23, 27, and 136 polypeptides were up-regulated, and 14, 18, and 123 polypeptides were down-regulated, at 12 hpi, 4 dpi, and 7 dpi, respectively. Vann diagram analysis indicated that 17 proteins were up-regulated and one was down-regulated at all three time points. Selected proteins were validated by real-time PCR and by Western blot. Our results show that apoptosis and cytoskeleton-associated proteins expression was suppressed, whereas interferon-induced proteins plus other innate immunity proteins were induced after the infection. Understanding of the interactions between virus and the host will provide insights into the basis of interspecies transmission, adaptation, and virus pathogenicity. PMID:25883591

  8. Kolaviron Improves Morbidity and Suppresses Mortality by Mitigating Oxido-Inflammation in BALB/c Mice Infected with Influenza Virus

    PubMed Central

    Awogbindin, Ifeoluwa O.; Olaleye, David O.

    2015-01-01

    Abstract Influenza A viruses (IAV) induce cytokine storm and host's intracellular redox imbalance to ensure continuous replication and survival, leading to severe immunopathology and death. The unpredictability of broad-spectrum vaccines, the emergence of drug-resistant and/or more virulent strains, the prevalence of the amantadane-resistant IAV, and the prohibitive cost of available drugs especially in resource-poor countries necessitate exploring drugs with novel action mechanisms as anti-influenza agents. This study presents the protective role of kolaviron (KV), a natural antioxidant and anti-inflammatory agent from Garcinia kola seeds, on BALB/c mice challenged with influenza A/Perth/H3N2/16/09 (Pr/H3N2) virus. KV at 400 mg/kg was administered orally to groups of BALB/c mice for 3 days, 3 h, and 1 h prior to infection with 1LD50 or 3LD50 (14-day study) and 5LD50 (6-day study) Pr/H3N2. Pr/H3N2 in the lungs was detected by hemagglutination assay, while oxidative stress and inflammatory biomarkers were assayed in both lungs and liver. Infected mice treated with KV progressively increased in weight with minimal mortality. Single-dose administration of KV at 1 h or 3 h before viral challenge and 3 days pretreatment improved lung aeration and reduced lung consolidation as well as inflammatory cells infiltration in a way that had minimal impact on viral clearance, but attenuated myeloperoxidase activity and nitric oxide production via priming of reduced glutathione levels, thus enhancing the preservation of function in the lungs and liver. This study suggests that KV may be effective for delaying the development of clinical symptoms of influenza virus, and this may be through a mechanism unrelated to those deployed by the existing anti-influenza drugs but closely associated to its antioxidant and immunomodulatory properties. PMID:26200137

  9. Pandemic 2009 Influenza A (H1N1) virus infection in cancer and hematopoietic stem cell transplant recipients; a multicenter observational study.

    PubMed Central

    Dignani, Maria Cecilia; Costantini, Patricia; Salgueira, Claudia; Jordán, Rosana; Guerrini, Graciela; Valledor, Alejandra; Herrera, Fabián; Nenna, Andrea; Mora, Claudia; Roccia-Rossi, Inés; Stecher, Daniel; Carbone, Edith; Laborde, Ana; Efron, Ernesto; Altclas, Javier; Calmaggi, Aníbal; Cozzi, José

    2015-01-01

    Background: During March 2009 a novel Influenza A virus emerged in Mexico. We describe the clinical picture of the pandemic Influenza A (H1N1) Influenza in cancer patients during the 2009 influenza season. Methods: Twelve centers participated in a multicenter retrospective observational study of cancer patients with confirmed infection with the 2009 H1N1 Influenza A virus (influenza-like illness or pneumonia plus positive PCR for the 2009 H1N1 Influenza A virus  in respiratory secretions). Clinical data were obtained by retrospective chart review and analyzed.  Results: From May to August 2009, data of 65 patients were collected. Median age was 51 years, 57 % of the patients were female. Most patients (47) had onco-hematological cancers and 18 had solid tumors. Cancer treatment mainly consisted of chemotherapy (46), or stem cell transplantation (SCT) (16). Only 19 of 64 patients had received the 2009 seasonal Influenza vaccine. Clinical presentation included pneumonia (43) and upper respiratory tract infection (22). Forty five of 58 ambulatory patients were admitted. Mechanical ventilation was required in 12 patients (18%). Treatment included oseltamivir monotherapy or in combination with amantadine for a median of 7 days. The global 30-day mortality rate was 18%. All 12 deaths were among the non-vaccinated patients. No deaths were observed among the 19 vaccinated patients. Oxygen saturation <96% at presentation was a predictor of mortality (OR 19.5; 95%CI: 2.28 to 165.9). Conclusions: In our cancer patient population, the pandemic 2009 Influenza A (H1N1) virus was associated with high incidence of pneumonia (66%), and 30-day mortality (18.5%). Saturation <96% was significantly associated with death. No deaths were observed among vaccinated patients. PMID:25469231

  10. Molecular design of spacer-N-linked sialoglycopolypeptide as polymeric inhibitors against influenza virus infection.

    PubMed

    Ogata, Makoto; Hidari, Kazuya I P J; Kozaki, Wataru; Murata, Takeomi; Hiratake, Jun; Park, Enoch Y; Suzuki, Takashi; Usui, Taichi

    2009-07-13

    A series of spacer-N-linked glycopolymers carrying long/short α2,3/6 sialylated glycan were designed as polymeric inhibitors of influenza virus. Lactose (Lac) and N-acetyllactosamine (LN: Galβ1,4GlcNAc) were first converted to spacer-N-linked disaccharide glycosides, followed by consecutive enzymatic addition of GlcNAc and Gal residues to the glycosides. The resulting spacer-N-linked glycosides with di-, tetra-, and hexasaccharides carrying a Lac, LN, lacto-N-neotetraose (LNnT: Galβ1,4GlcNAcβ1,3Galβ1,4Glc), and LNβ1,3LNnT were coupled to the carboxy group of γ-polyglutamic acid (γ-PGA) and enzymatically converted to glycopolypeptides carrying α2,3/6 sialylated glycans. The interactions of a series of sialoglycopolypeptides with avian and human influenza virus strains were investigated using a hemagglutination inhibition assay. The avian virus A/Duck/HongKong/313/4/78 (H5N3) bound specifically, regardless of the structure of the asialo portion. In contrast, human virus A/Aichi/2/68 (H3N2) bound preferentially to long α2,6sialylated glycans with penta- or heptasaccharides in a glycan length-dependent manner. Furthermore, the Sambucus sieboldiana (SNA) lectin was also useful as a model of human virus hemagglutinin (HA) for understanding the carbohydrate binding properties, because the recognition motifs of the inner sugar in the receptor were very similar.

  11. Human infection with a highly pathogenic avian influenza A (H5N6) virus in Yunnan province, China.

    PubMed

    Xu, Wen; Li, Hong; Jiang, Li

    2016-01-01

    Highly pathogenic avian influenza A H5N6 virus has caused four human infections in China. This study reports the preliminary findings of the first known human case of H5N6 in Yunnan province. The patient initially developed symptoms of sore throat and coughing on 27 January 2015. The disease rapidly progressed to severe pneumonia, multiple organ dysfunctions and acute respiratory distress syndrome and the patient died on 6 February. Virological analysis determined that the virus belonged to H5 clade 2.3.4.4 and it has obtained partial ability for mammalian adaptation and amantadine resistance. Environmental investigation found H5 in 63% of the samples including poultry faeces, tissues, cage surface swabs and sewage from local live poultry markets by real-time RT-PCR. These findings suggest that the expanding and enhancing of surveillance in both avian and humans are necessary to monitor the evolution of H5 influenza virus and to facilitate early detection of suspected cases. PMID:27030920

  12. Seasonal variations in Clostridium difficile infections are associated with