Sample records for informal problem solving

  1. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams

    PubMed Central

    Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804

  2. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    PubMed

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  3. Spontaneous gestures influence strategy choices in problem solving.

    PubMed

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  4. Using the Big Six Information Skills as a Metacognitive Scaffold To Solve Information Based Problems.

    ERIC Educational Resources Information Center

    Wolf, Sara Elizabeth; Brush, Thomas

    The purpose of this research study was to determine whether a specific information problem-solving skills model was an effective metacognitive scaffold for students solving information-based problems. Specifically, 35 eighth grade students in two intact classes were asked to write newspaper articles that summarized the events surrounding the Selma…

  5. A Descriptive Model of Information Problem Solving while Using Internet

    ERIC Educational Resources Information Center

    Brand-Gruwel, Saskia; Wopereis, Iwan; Walraven, Amber

    2009-01-01

    This paper presents the IPS-I-model: a model that describes the process of information problem solving (IPS) in which the Internet (I) is used to search information. The IPS-I-model is based on three studies, in which students in secondary and (post) higher education were asked to solve information problems, while thinking aloud. In-depth analyses…

  6. An Information-Summarising Instruction Strategy for Improving the Web-Based Problem Solving Abilities of Students

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Kuo, Fan-Ray

    2011-01-01

    As knowledge rapidly expands and accumulates, training and assessing students' information searching ability for solving problems on the Internet has become an important and challenging issue. This research aims to improve the web-based problem solving abilities of primary school students by employing an information summarising approach for…

  7. Decision e Informacion en Solucion de Problemas. Publicacion No. 77 (Information and Decision Making in Problem Solving. Publication No. 77).

    ERIC Educational Resources Information Center

    Rimoldi, Horacio J. A.; And Others

    A technique using information and decision-making theories to evaluate problem solving tactics is presented. In problem solving, the process of solution is evaluated by investigating the questions that the subject doing the problem solving asks. The sequence of questions asked is called a tactic. It is assumed that: (1) tactics are the observable…

  8. Information Seeking When Problem Solving: Perspectives of Public Health Professionals.

    PubMed

    Newman, Kristine; Dobbins, Maureen; Yost, Jennifer; Ciliska, Donna

    2017-04-01

    Given the many different types of professionals working in public health and their diverse roles, it is likely that their information needs, information-seeking behaviors, and problem-solving abilities differ. Although public health professionals often work in interdisciplinary teams, few studies have explored their information needs and behaviors within the context of teamwork. This study explored the relationship between Canadian public health professionals' perceptions of their problem-solving abilities and their information-seeking behaviors with a specific focus on the use of evidence in practice settings. It also explored their perceptions of collaborative information seeking and the work contexts in which they sought information. Key Canadian contacts at public health organizations helped recruit study participants through their list-servs. An electronic survey was used to gather data about (a) individual information-seeking behaviors, (b) collaborative information-seeking behaviors, (c) use of evidence in practice environments, (d) perceived problem-solving abilities, and (e) demographic characteristics. Fifty-eight public health professionals were recruited, with different roles and representing most Canadian provinces and one territory. A significant relationship was found between perceived problem-solving abilities and collaborative information-seeking behavior (r = -.44, p < .00, N = 58), but not individual information seeking. The results suggested that when public health professionals take a shared, active approach to problem solving, maintain personal control, and have confidence, they are more likely collaborate with others in seeking information to complete a work task. Administrators of public health organizations should promote collaboration by implementing effective communication and information-seeking strategies, and by providing information resources and retrieval tools. Public health professionals' perceived problem-solving abilities can influence how they collaborate in seeking information. Educators in public health organizations should tailor training in information searching to promote collaboration through collaborative technology systems. © 2016 Sigma Theta Tau International.

  9. Problem representation and mathematical problem solving of students of varying math ability.

    PubMed

    Krawec, Jennifer L

    2014-01-01

    The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.

  10. The role of retrieval practice in memory and analogical problem-solving.

    PubMed

    Hostetter, Autumn B; Penix, Elizabeth A; Norman, Mackenzie Z; Batsell, W Robert; Carr, Thomas H

    2018-05-01

    Retrieval practice (e.g., testing) has been shown to facilitate long-term retention of information. In two experiments, we examine whether retrieval practice also facilitates use of the practised information when it is needed to solve analogous problems. When retrieval practice was not limited to the information most relevant to the problems (Experiment 1), it improved memory for the information a week later compared with copying or rereading the information, although we found no evidence that it improved participants' ability to apply the information to the problems. In contrast, when retrieval practice was limited to only the information most relevant to the problems (Experiment 2), we found that retrieval practice enhanced memory for the critical information, the ability to identify the schematic similarities between the two sources of information, and the ability to apply that information to solve an analogous problem after a hint was given to do so. These results suggest that retrieval practice, through its effect on memory, can facilitate application of information to solve novel problems but has minimal effects on spontaneous realisation that the information is relevant.

  11. Distraction during learning with hypermedia: difficult tasks help to keep task goals on track

    PubMed Central

    Scheiter, Katharina; Gerjets, Peter; Heise, Elke

    2014-01-01

    In educational hypermedia environments, students are often confronted with potential sources of distraction arising from additional information that, albeit interesting, is unrelated to their current task goal. The paper investigates the conditions under which distraction occurs and hampers performance. Based on theories of volitional action control it was hypothesized that interesting information, especially if related to a pending goal, would interfere with task performance only when working on easy, but not on difficult tasks. In Experiment 1, 66 students learned about probability theory using worked examples and solved corresponding test problems, whose task difficulty was manipulated. As a second factor, the presence of interesting information unrelated to the primary task was varied. Results showed that students solved more easy than difficult probability problems correctly. However, the presence of interesting, but task-irrelevant information did not interfere with performance. In Experiment 2, 68 students again engaged in example-based learning and problem solving in the presence of task-irrelevant information. Problem-solving difficulty was varied as a first factor. Additionally, the presence of a pending goal related to the task-irrelevant information was manipulated. As expected, problem-solving performance declined when a pending goal was present during working on easy problems, whereas no interference was observed for difficult problems. Moreover, the presence of a pending goal reduced the time on task-relevant information and increased the time on task-irrelevant information while working on easy tasks. However, as revealed by mediation analyses these changes in overt information processing behavior did not explain the decline in problem-solving performance. As an alternative explanation it is suggested that goal conflicts resulting from pending goals claim cognitive resources, which are then no longer available for learning and problem solving. PMID:24723907

  12. The Nature and Impact of Task Definition: Information Problem Categorization during Task Definition within the Information Problem-Solving Process

    ERIC Educational Resources Information Center

    Marino, John L., Jr.

    2017-01-01

    Information literacy describes expertise in information problem-solving. This expertise includes facility in several endeavors addressed by the information behavior literature, including information needs, seeking, and use. Definitions and descriptions of information literacy suggest that this expertise is broadly applicable to a variety of…

  13. Interference thinking in constructing students’ knowledge to solve mathematical problems

    NASA Astrophysics Data System (ADS)

    Jayanti, W. E.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.

  14. An Eye Tracking Study of High- and Low-Performing Students in Solving Interactive and Analytical Problems

    ERIC Educational Resources Information Center

    Hu, Yiling; Wu, Bian; Gu, Xiaoqing

    2017-01-01

    Test results from the Program for International Student Assessment (PISA) reveal that Shanghai students performed less well in solving interactive problems (those that require uncovering necessary information) than in solving analytical problems (those having all information disclosed at the outset). Accordingly, this study investigates…

  15. A Structural Equation Model to Analyse the Antecedents to Students' Web-Based Problem-Solving Performance

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Kuo, Fan-Ray

    2015-01-01

    Web-based problem-solving, a compound ability of critical thinking, creative thinking, reasoning thinking and information-searching abilities, has been recognised as an important competence for elementary school students. Some researchers have reported the possible correlations between problem-solving competence and information searching ability;…

  16. Introduction to Problem Solving: Strategies for the Elementary Math Classroom.

    ERIC Educational Resources Information Center

    O'Connell, Susan

    This book is designed to help better understand problem-solving instruction. It presents information on helping students understand the problem-solving process as well as information on teaching specific strategies, including: Choose an Operation; Find a Pattern; Make a Table; Make an Organized List; Draw a Picture or Diagram; Guess, Check, and…

  17. An Exploration of Strategies Used by Students To Solve Problems with Multiple Ways of Solution.

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    1996-01-01

    Describes a study that provides information about the extent to which students actually use their mathematical resources and strategies to solve problems. Interviews were used to analyze the problem solving abilities of high school students (N=35) as they solved five problems. (DDR)

  18. Informing a Pedagogy for Design and Problem-Solving in Hard Materials by Theorising Technologists' Learning Experiences

    ERIC Educational Resources Information Center

    Potter, Patricia; France, Bev

    2018-01-01

    Design and problem solving are central to technology and have distinguished learning in technology from other curriculum areas. This research investigated how expert technologists learn design and problem solving through experience. Data was collected from four expert technologists and this information was analysed using learning theories that…

  19. Use of Social Media in Different Contexts of Information Seeking: Effects of Sex and Problemsolving Style

    ERIC Educational Resources Information Center

    Kim, Kyung­-Sun; Sin, Sei­-Ching Joanna

    2015-01-01

    Introduction: Social media are increasingly popular and emerging as important information sources. The study investigates how users' sex and problem-solving style affect their use and evaluation of social media in two contexts. Method: A Web survey including the problem solving inventory (problem solving inventory) was used to collect data. Over…

  20. Puzzling Science: Using the Rubik's Cube to Teach Problem Solving

    ERIC Educational Resources Information Center

    Rohrig, Brian

    2010-01-01

    A major goal of education is to help learners store information in long-term memory and use that information on later occasions to effectively solve problems (Vockell 2010). Therefore, this author began to use the Rubik's cube to help students learn to problem solve. There is something special about this colorful three-dimensional puzzle that…

  1. 77 FR 32138 - Agency Information Collection Agencies: Proposed Collection; Comments Requested Census of Problem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... Agencies: Proposed Collection; Comments Requested Census of Problem-Solving Courts 2012 ACTION: 30-Day...-Solving Courts (CPSC), 201 2. The title of the form/collection: Census of Problem-Solving Courts or CPSC... Abstract: Problem-solving courts at all levels of government. Abstract: The Bureau of Justice Statistics...

  2. Junior high school students' cognitive process in solving the developed algebraic problems based on information processing taxonomy model

    NASA Astrophysics Data System (ADS)

    Purwoko, Saad, Noor Shah; Tajudin, Nor'ain Mohd

    2017-05-01

    This study aims to: i) develop problem solving questions of Linear Equations System of Two Variables (LESTV) based on levels of IPT Model, ii) explain the level of students' skill of information processing in solving LESTV problems; iii) explain students' skill in information processing in solving LESTV problems; and iv) explain students' cognitive process in solving LESTV problems. This study involves three phases: i) development of LESTV problem questions based on Tessmer Model; ii) quantitative survey method on analyzing students' skill level of information processing; and iii) qualitative case study method on analyzing students' cognitive process. The population of the study was 545 eighth grade students represented by a sample of 170 students of five Junior High Schools in Hilir Barat Zone, Palembang (Indonesia) that were chosen using cluster sampling. Fifteen students among them were drawn as a sample for the interview session with saturated information obtained. The data were collected using the LESTV problem solving test and the interview protocol. The quantitative data were analyzed using descriptive statistics, while the qualitative data were analyzed using the content analysis. The finding of this study indicated that students' cognitive process was just at the step of indentifying external source and doing algorithm in short-term memory fluently. Only 15.29% students could retrieve type A information and 5.88% students could retrieve type B information from long-term memory. The implication was the development problems of LESTV had validated IPT Model in modelling students' assessment by different level of hierarchy.

  3. Automation and adaptation: Nurses' problem-solving behavior following the implementation of bar coded medication administration technology.

    PubMed

    Holden, Richard J; Rivera-Rodriguez, A Joy; Faye, Héléne; Scanlon, Matthew C; Karsh, Ben-Tzion

    2013-08-01

    The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses' operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA's impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians' work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign.

  4. Automation and adaptation: Nurses’ problem-solving behavior following the implementation of bar coded medication administration technology

    PubMed Central

    Holden, Richard J.; Rivera-Rodriguez, A. Joy; Faye, Héléne; Scanlon, Matthew C.; Karsh, Ben-Tzion

    2012-01-01

    The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses’ operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA’s impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians’ work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign. PMID:24443642

  5. Problem-Solving Rubrics Revisited: Attending to the Blending of Informal Conceptual and Formal Mathematical Reasoning

    ERIC Educational Resources Information Center

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-01-01

    Much research in engineering and physics education has focused on improving students' problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student's expertise in solving problems using these strategies. These rubrics value "communication" between the…

  6. 77 FR 17522 - Agency Information Collection Agencies: New Collection; Comments Requested

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ..., Census of Problem-Solving Courts (CPSC), 2012. 2. The title of the form/collection: Census of Problem..., as well as a brief abstract: Problem-solving courts at all levels of government. Abstract: The Bureau of Justice Statistics (BJS) proposes to implement a Census of Problem-Solving Courts (CPSC). Problem...

  7. Effects of a Research-Based Intervention to Improve Seventh-Grade Students' Proportional Problem Solving: A Cluster Randomized Trial

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C.

    2015-01-01

    This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem-solving and metacognitive…

  8. Effects of a Research-Based Intervention to Improve Seventh-Grade Students' Proportional Problem Solving: A Cluster Randomized Trial

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C.

    2015-01-01

    This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem solving and metacognitive…

  9. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes

    PubMed Central

    Wade, Shari L.; Cassedy, Amy E.; Fulks, Lauren E.; Taylor, H. Gerry; Stancin, Terry; Kirkwood, Michael W.; Yeates, Keith O.; Kurowski, Brad G.

    2017-01-01

    Objective To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Design Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Setting Four children’s hospitals and 1 general hospital, with level 1 trauma units. Participants Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Main Outcome Measures Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. Results The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23–.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Conclusions Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. PMID:28389109

  10. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.

    PubMed

    Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G

    2017-08-01

    To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23-.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Informal schooling and problem-solving skills in second-grade science: A naturalistic investigation

    NASA Astrophysics Data System (ADS)

    Griffin, Georgia Inez Hunt

    The influence of informal schooling on the problem solving skills of urban elementary school children is unclear. The relationship between culture and problem solving can be studied using subjective methodologies, particularly when investigating problem solving strategies that are culturally situated. Yet, little research has been conducted to investigate how informal learning of African American children are integrated as part of the problem solving used in school. This study has been designed to expand the existing literature in this area. The purpose of this study is therefore to explore how 15 African American children attending school in Southwest Philadelphia solve problems presented to them in second grade science. This was accomplished by assessing their ability to observe, classify, recall, and perceive space/time relationships. Think-aloud protocols were used for this examination. A naturalistic approach to the investigation was implemented. Individual children were selected because he or she exhibited unique and subjective characteristics associated with individual approaches to problem solving. Children responded to three tasks: interviews of their parents, an essay on community gardens, and a group diorama collaboratively designed. Content analysis was used to infer themes that were evident in the children's work and that revealed the extent to which informal schooling influenced solutions to a community garden problem. The investigations did increase the researcher's ability to understand and build upon the understanding of African American children in their indigenous community. The study also demonstrated how these same strategies can be used to involve parents in the science curriculum. Additionally, the researcher gained insight on how to bridge the gap between home, community, and school.

  12. Problem-Solving Models for Computer Literacy: Getting Smarter at Solving Problems. Student Lessons.

    ERIC Educational Resources Information Center

    Moursund, David

    This book is intended for use as a student guide. It is about human problem solving and provides information on how the mind works, placing a major emphasis on the role of computers as an aid in problem solving. The book is written with the underlying philosophy of discovery-based learning based on two premises: first, through the appropriate…

  13. Problem-Framing: A perspective on environmental problem-solving

    NASA Astrophysics Data System (ADS)

    Bardwell, Lisa V.

    1991-09-01

    The specter of environmental calamity calls for the best efforts of an involved public. Ironically, the way people understand the issues all too often serves to discourage and frustrate rather than motivate them to action. This article draws from problem-solving perspectives offered by cognitive psychology and conflict management to examine a framework for thinking about environmental problems that promises to help rather than hinder efforts to address them. Problem-framing emphasizes focusing on the problem definition. Since how one defines a problem determines one's understanding of and approach to that problem, being able to redefine or reframe a problem and to explore the “problem space” can help broaden the range of alternatives and solutions examined. Problem-framing incorporates a cognitive perspective on how people respond to information. It explains why an emphasis on problem definition is not part of people's typical approach to problems. It recognizes the importance of structure and of having ways to organize that information on one's problem-solving effort. Finally, problem-framing draws on both cognitive psychology and conflict management for strategies to manage information and to create a problem-solving environment that not only encourages participation but can yield better approaches to our environmental problems.

  14. SEMINAR PUBLICATION: NATIONAL CONFERENCE ON ENVIRONMENTAL PROBLEM-SOLVING WITH GEOGRAPHIC INFORMATION SYSTEMS

    EPA Science Inventory

    The National Conference on Environmental Problem Solving with Geographic Information Systems was held in Cincinnati, Ohio, September 21-23, 1994. The conference was a forum for over 450 environmental professionals to exchange information and approaches on how to use geographic ...

  15. An investigation of Taiwanese early adolescents' self-evaluations concerning the Big 6 information problem-solving approach.

    PubMed

    Chang, Chiung-Sui

    2007-01-01

    The study developed a Big 6 Information Problem-Solving Scale (B61PS), including the subscales of task definition and information-seeking strategies, information access and synthesis, and evaluation. More than 1,500 fifth and sixth graders in Taiwan responded. The study revealed that the scale showed adequate reliability in assessing the adolescents' perceptions about the Big 6 information problem-solving approach. In addition, the adolescents had quite different responses toward different subscales of the approach. Moreover, females tended to have higher quality information-searching skills than their male counterparts. The adolescents of different grades also displayed varying views toward the approach. Other results are also provided.

  16. Distributed problem solving by pilots and dispatchers

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Wich, Mike; Fischer, Ute; Jobe, Kim; Mccoy, Elaine; Beatty, Roger; Smith, Phil

    1993-01-01

    The study addressed the following question: Are flight planning problems solved differently by PILOTS and DISPATCHERS when they work alone versus when they work together? Aspect of their performance that were of interest include the following: Problem perception and definition; Problem solving strategies and information use; Options considered; Solution and rational; and errors.

  17. Students’ Relational Thinking of Impulsive and Reflective in Solving Mathematical Problem

    NASA Astrophysics Data System (ADS)

    Satriawan, M. A.; Budiarto, M. T.; Siswono, T. Y. E.

    2018-01-01

    This is a descriptive research which qualitatively investigates students’ relational thinking of impulsive and reflective cognitive style in solving mathematical problem. The method used in this research are test and interview. The data analyzed by reducing, presenting and concluding the data. The results of research show that the students’ reflective cognitive style can possibly help to find out important elements in understanding a problem. Reading more than one is useful to identify what is being questioned and write the information which is known, building relation in every element and connecting information with arithmetic operation, connecting between what is being questioned with known information, making equation model to find out the value by using substitution, and building a connection on re-checking, re-reading, and re-counting. The impulsive students’ cognitive style supports important elements in understanding problems, building a connection in every element, connecting information with arithmetic operation, building a relation about a problem comprehensively by connecting between what is being questioned with known information, finding out the unknown value by using arithmetic operation without making any equation model. The result of re-checking problem solving, impulsive student was only reading at glance without re-counting the result of problem solving.

  18. Effects of Preventative Tutoring on the Mathematical Problem Solving of Third-Grade Students With Math and Reading Difficulties.

    PubMed

    Fuchs, Lynn S; Seethaler, Pamela M; Powell, Sarah R; Fuchs, Douglas; Hamlett, Carol L; Fletcher, Jack M

    2008-01-01

    This study assessed the effects of preventative tutoring on the math problem solving of third-grade students with math and reading difficulties. Students (n = 35) were assigned randomly to continue in their general education math program or to receive secondary preventative tutoring 3 times per week, 30 min per session, for 12 weeks. Schema-broadening tutoring taught students to (a) focus on the mathematical structure of 3 problem types; (b) recognize problems as belonging to those 3 problem-type schemas; (c) solve the 3 word-problem types; and (d) transfer solution methods to problems that include irrelevant information, 2-digit operands, missing information in the first or second positions in the algebraic equation, or relevant information in charts, graphs, and pictures. Also, students were taught to perform the calculation and algebraic skills foundational for problem solving. Analyses of variance revealed statistically significant effects on a wide range of word problems, with large effect sizes. Findings support the efficacy of the tutoring protocol for preventing word-problem deficits among third-grade students with math and reading deficits.

  19. Effects of Preventative Tutoring on the Mathematical Problem Solving of Third-Grade Students With Math and Reading Difficulties

    PubMed Central

    Fuchs, Lynn S.; Seethaler, Pamela M.; Powell, Sarah R.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.

    2009-01-01

    This study assessed the effects of preventative tutoring on the math problem solving of third-grade students with math and reading difficulties. Students (n = 35) were assigned randomly to continue in their general education math program or to receive secondary preventative tutoring 3 times per week, 30 min per session, for 12 weeks. Schema-broadening tutoring taught students to (a) focus on the mathematical structure of 3 problem types; (b) recognize problems as belonging to those 3 problem-type schemas; (c) solve the 3 word-problem types; and (d) transfer solution methods to problems that include irrelevant information, 2-digit operands, missing information in the first or second positions in the algebraic equation, or relevant information in charts, graphs, and pictures. Also, students were taught to perform the calculation and algebraic skills foundational for problem solving. Analyses of variance revealed statistically significant effects on a wide range of word problems, with large effect sizes. Findings support the efficacy of the tutoring protocol for preventing word-problem deficits among third-grade students with math and reading deficits. PMID:20209074

  20. The influence of open goals on the acquisition of problem-relevant information.

    PubMed

    Moss, Jarrod; Kotovsky, Kenneth; Cagan, Jonathan

    2007-09-01

    There have been a number of recent findings indicating that unsolved problems, or open goals more generally, influence cognition even when the current task has no relation to the task in which the goal was originally set. It was hypothesized that open goals would influence what information entered the problem-solving process. Three studies were conducted to establish the effect of open goals on the acquisition of problem-relevant information. It was found that problem-relevant information, or hints, presented implicitly in a 2nd task in between attempts at solving problems aided problem solving. This effect cannot be attributed to strategic behavior after participants caught on to the manipulation, as most participants were not aware of the relationship. The implications of this research are discussed, including potential contributions to our understanding of insight, incubation, transfer, and creativity. 2007 APA

  1. Errors analysis of problem solving using the Newman stage after applying cooperative learning of TTW type

    NASA Astrophysics Data System (ADS)

    Rr Chusnul, C.; Mardiyana, S., Dewi Retno

    2017-12-01

    Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.

  2. Examining Information Problem-Solving, Knowledge, and Application Gains within Two Instructional Methods: Problem-Based and Computer-Mediated Participatory Simulation

    ERIC Educational Resources Information Center

    Newell, Terrance S.

    2008-01-01

    This study compared the effectiveness of two instructional methods--problem-based instruction within a face-to-face context and computer-mediated participatory simulation--in increasing students' content knowledge and application gains in the area of information problem-solving. The instructional methods were implemented over a four-week period. A…

  3. The Big6: Not Just for Kids! Introduction to the Big6: Information Problem-Solving for Upper High School, College-Age, and Adult Students.

    ERIC Educational Resources Information Center

    Eisenberg, Mike; Spitzer, Kathy

    1998-01-01

    Explains the Big6 approach to information problem-solving based on exercises that were developed for college or upper high school students that can be completed during class sessions. Two of the exercises relate to personal information problems, and one relates Big6 skill areas to course assignments. (LRW)

  4. Math Ties: Problem Solving, Logic Teasers, and Math Puzzles All "Tied" to the Math Curriculum. Book A1.

    ERIC Educational Resources Information Center

    Santi, Terri

    This book contains a classroom-tested approach to the teaching of problem solving to all students in Grades 4-6, regardless of ability. Information on problem solving in general is provided, then mathematical problems on logic, whole numbers, number theory, fractions, decimals, geometry, ratio, proportion, percent, probability, sets, and…

  5. Do problem-solving skills affect success in nursing process applications? An application among Turkish nursing students.

    PubMed

    Bayindir Çevik, Ayfer; Olgun, Nermin

    2015-04-01

    This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.

  6. Facilitating Learners' Web-Based Information Problem-Solving by Query Expansion-Based Concept Mapping

    ERIC Educational Resources Information Center

    Huang, Yueh-Min; Liu, Ming-Chi; Chen, Nian-Shing; Kinshuk; Wen, Dunwei

    2014-01-01

    Web-based information problem-solving has been recognised as a critical ability for learners. However, the development of students' abilities in this area often faces several challenges, such as difficulty in building well-organised knowledge structures to support complex problems that require higher-order skills (e.g., system thinking). To…

  7. Applying an Information Problem-Solving Model to Academic Reference Work: Findings and Implications.

    ERIC Educational Resources Information Center

    Cottrell, Janet R.; Eisenberg, Michael B.

    2001-01-01

    Examines the usefulness of the Eisenberg-Berkowitz Information Problem-Solving model as a categorization for academic reference encounters. Major trends in the data include a high proportion of questions about location and access of sources, lack of synthesis or production activities, and consistent presence of system problems that impede the…

  8. A Cognitive Information Processing Approach to Employment Problem Solving and Decision Making.

    ERIC Educational Resources Information Center

    Sampson, James P., Jr.; Lenz, Janet G.; Reardon, Robert C.; Peterson, Gary W.

    1999-01-01

    Applies a cognitive information processing approach to the specific process of employment problem solving and decision making. Definitions and accompanying employment examples are followed by an exploration of the nature of employment problems. Examples of positive and negative cognitions that have an impact on the effectiveness of employment…

  9. Schema Knowledge for Solving Arithmetic Story Problems: Some Affective Components.

    ERIC Educational Resources Information Center

    Marshall, Sandra P.

    This report discusses the role of affect in cognitive processing. The importance of affect in processing mathematical information is described in the context of solving arithmetic story problems. Some ideas are offered about the way affective responses to mathematical problem solving situations influence the development, maintenance, and retrieval…

  10. Toward Theory-Based Instruction in Scientific Problem Solving.

    ERIC Educational Resources Information Center

    Heller, Joan I.; And Others

    Several empirical and theoretical analyses related to scientific problem-solving are reviewed, including: detailed studies of individuals at different levels of expertise, and computer models simulating some aspects of human information processing during problem solving. Analysis of these studies has revealed many facets about the nature of the…

  11. Fostering Problem-Solving in a Virtual Environment

    ERIC Educational Resources Information Center

    Morin, Danielle; Thomas, Jennifer D. E.; Saadé, Raafat George

    2015-01-01

    This article investigates students' perceptions of the relationship between Problem-Solving and the activities and resources used in a Web-based course on the fundamentals of Information Technology at a university in Montreal, Canada. We assess for the different learning components of the course, the extent of perceived problem-solving skills…

  12. Student Modeling Based on Problem Solving Times

    ERIC Educational Resources Information Center

    Pelánek, Radek; Jarušek, Petr

    2015-01-01

    Student modeling in intelligent tutoring systems is mostly concerned with modeling correctness of students' answers. As interactive problem solving activities become increasingly common in educational systems, it is useful to focus also on timing information associated with problem solving. We argue that the focus on timing is natural for certain…

  13. Technology for a Purpose: Technology for Information Problem-Solving with the Big6[R].

    ERIC Educational Resources Information Center

    Eisenberg, Mike B

    2003-01-01

    Explains the Big6 model of information problem solving as a conceptual framework for learning and teaching information and technology skills. Highlights include information skills; examples of integrating technology in Big6 contexts; and the Big6 and the Internet, including email, listservs, chat, Web browsers, search engines, portals, Web…

  14. Foundational Skills and Dispositions for Learning: An Experience with Information Problem Solving on the Web

    ERIC Educational Resources Information Center

    Caviglia, Francesco; Delfino, Manuela

    2016-01-01

    Active participation in the information society requires the ability to find some order in the chaotic nature of the Web and not to get lost within the endemic presence of inaccurate, misleading, biased and false information. This article presents an approach to Information Problem Solving (IPS)--that is, finding, understanding and assessing…

  15. False memories from survival processing make better primes for problem-solving.

    PubMed

    Garner, Sarah R; Howe, Mark L

    2014-01-01

    Previous research has demonstrated that participants remember significantly more survival-related information and more information that is processed for its survival relevance. Recent research has also shown that survival materials and processing result in more false memories, ones that are adaptive inasmuch as they prime solutions to insight-based problems. Importantly, false memories for survival-related information facilitate problem solving more than false memories for other types of information. The present study explores this survival advantage using an incidental rather than intentional memory task. Here participants rated information either in the context of its importance to a survival-processing scenario or to moving to a new house. Following this, participants solved a number of compound remote associate tasks (CRATs), half of which had the solution primed by false memories that were generated during the processing task. Results showed that (a) CRATs were primed by false memories in this incidental task, with participants solving significantly more CRATs when primed than when unprimed, (b) this effect was greatest when participants rated items for survival than moving, and (c) processing items for a survival scenario improved overall problem-solving performance even when specific problems themselves were not primed. Results are discussed with regard to adaptive theories of memory.

  16. Task-Analytic Design of Graphic Presentations

    DTIC Science & Technology

    1990-05-18

    important premise of Larkin and Simon’s work is that, when comparing alternative presentations, it is fruitful to characterize graphic-based problem solving...using the same information-processing models used to help understand problem solving using other representations [Newell and Simon, 19721...luring execution of graphic presentation- 4 based problem -solving procedures. Chapter 2 reviews other work related to the problem of designing graphic

  17. Math Ties: Problem Solving, Logic Teasers, and Math Puzzles All "Tied" To the Math Curriculum. Book B1.

    ERIC Educational Resources Information Center

    Santi, Terri

    This book contains a classroom-tested approach to the teaching of problem solving to all students in Grades 6-8, regardless of ability. Information on problem solving in general is provided, then mathematical problems on logic, exponents, fractions, pre-algebra, algebra, geometry, number theory, set theory, ratio, proportion, percent, probability,…

  18. Problem Solving with Workstations. Program Description, Teacher Materials, and Student Information. Teacher Developed Technology Education for the Nineties (TD-TEN).

    ERIC Educational Resources Information Center

    Garey, Robert W.

    The Randolph, New Jersey Intermediate School updated its industrial arts program to reflect the challenges and work force of the Twentieth Century in which students apply a design/problem-solving process to solve real-world problems. In the laboratory portion of the program, students circulate between workstations to define problems, complete…

  19. Teachers' ICT and Problem-Solving Skills: Competencies and Needs. Education Indicators in Focus. No. 40

    ERIC Educational Resources Information Center

    OECD Publishing, 2016

    2016-01-01

    The education sector performs well for information and communication technology (ICT) and problem-solving skills, although it still lags behind the professional, scientific and technical activities sector. Primary and secondary teachers have better ICT and problem-solving skills than the general population, and similar skills to other…

  20. Leveling of Critical Thinking Abilities of Students of Mathematics Education in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Rasiman

    2015-01-01

    This research aims to determine the leveling of critical thinking abilities of students of mathematics education in mathematical problem solving. It includes qualitative-explorative study that was conducted at University of PGRI Semarang. The generated data in the form of information obtained problem solving question and interview guides. The…

  1. The Role of the Updating Function in Solving Arithmetic Word Problems

    ERIC Educational Resources Information Center

    Mori, Kanetaka; Okamoto, Masahiko

    2017-01-01

    We investigated how the updating function supports the integration process in solving arithmetic word problems. In Experiment 1, we measured reading time, that is, translation and integration times, when undergraduate and graduate students (n = 78) were asked to solve 2 types of problems: those containing only necessary information and those…

  2. Empowering Educationally Disadvantaged Mathematics Students through a Strategies-Based Problem Solving Approach

    ERIC Educational Resources Information Center

    Ramnarain, Umesh

    2014-01-01

    A major impediment to problem solving in mathematics in the great majority of South African schools is that disadvantaged students from seriously impoverished learning environments are lacking in the necessary informal mathematical knowledge to develop their own strategies for solving non-routine problems. A randomized pretest-posttest control…

  3. Problem Solving in Social Studies: Concepts and Critiques.

    ERIC Educational Resources Information Center

    Van Sickle, Ronald L.; Hoge, John D.

    Recent developments in the field of cognitive psychology, particularly in the area of information processing, have shed light on the way people think in order to make decisions and solve problems. In addition, cooperative learning research has provided evidence of the effectiveness of cooperatively structured group work aimed at problem solving.…

  4. Improving Students' Problem Solving in a Virtual Chemistry Simulation through Metacognitive Messages

    ERIC Educational Resources Information Center

    Beal, Carole R.; Stevens, Ronald H.

    2011-01-01

    Recent assessments indicate that American students do not score well on tests of scientific problem solving, relative to students in other nations. IMMEX is a web-based virtual environment that provides students with opportunities to solve science problems by viewing information resources through a suite of menu options, developing a hypothesis…

  5. Middle-School Students' Online Information Problem Solving Behaviors on the Information Retrieval Interface

    ERIC Educational Resources Information Center

    Yeh, Yi-Fen; Hsu, Ying-Shao; Chuang, Fu-Tai; Hwang, Fu-Kwun

    2014-01-01

    With the near-overload of online information, it is necessary to equip our students with the skills necessary to deal with Information Problem Solving (IPS). This study also intended to help students develop major IPS strategies with the assistance of an instructor's scaffolding in a designed IPS course as well as on an Online Information…

  6. An Investigation of Taiwanese Early Adolescents' Self-Evaluations Concerning the Big 6 Information Problem-Solving Approach

    ERIC Educational Resources Information Center

    Chang, Chiung-Sui

    2007-01-01

    The study developed a Big 6 Information Problem-Solving Scale (B61PS), including the subscales of task definition and information-seeking strategies, information access and synthesis, and evaluation. More than 1,500 fifth and sixth graders in Taiwan responded. The study revealed that the scale showed adequate reliability in assessing the…

  7. Problem solving in great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo abelii): the effect of visual feedback.

    PubMed

    Völter, Christoph J; Call, Josep

    2012-09-01

    What kind of information animals use when solving problems is a controversial topic. Previous research suggests that, in some situations, great apes prefer to use causally relevant cues over arbitrary ones. To further examine to what extent great apes are able to use information about causal relations, we presented three different puzzle box problems to the four nonhuman great ape species. Of primary interest here was a comparison between one group of apes that received visual access to the functional mechanisms of the puzzle boxes and one group that did not. Apes' performance in the first two, less complex puzzle boxes revealed that they are able to solve such problems by means of trial-and-error learning, requiring no information about the causal structure of the problem. However, visual inspection of the functional mechanisms of the puzzle boxes reduced the amount of time needed to solve the problems. In the case of the most complex problem, which required the use of a crank, visual feedback about what happened when the handle of the crank was turned was necessary for the apes to solve the task. Once the solution was acquired, however, visual feedback was no longer required. We conclude that visual feedback about the consequences of their actions helps great apes to solve complex problems. As the crank task matches the basic requirements of vertical string pulling in birds, the present results are discussed in light of recent findings with corvids.

  8. The application of artificial intelligence techniques to large distributed networks

    NASA Technical Reports Server (NTRS)

    Dubyah, R.; Smith, T. R.; Star, J. L.

    1985-01-01

    Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.

  9. The impact of information technology and organizational focus on the visibility of patient care errors.

    PubMed

    Walston, Stephen L; Mwachofi, Ari; Aldosari, Bakheet; Al-Omar, Badran A; Yousef, Asmaa Al; Sheikh, Asiya

    2010-01-01

    INVESTIGATED: The implementation of information systems and the creation of an open culture, characterized by emphasis on patient safety and problem solving, are 2 means suggested to improve health care quality. This study examines the effects of use of information technology and focus on patient safety and problem solving on the visibility of patient care errors. A survey of nurses in Saudi Arabia is analyzed by means of factor analysis and multiregression analysis to examine nurses' use of information technology and culture in controlling errors. Our research suggests that greater use of information technology to control patient care errors may reduce the prevalence of such errors while an increased focus on patient safety and problem solving facilitates an open environment where errors can be more openly discussed and addressed. The use of technology appears to have a role in decreasing errors. Yet, an organization that focuses on problem solving and patient safety can open lines of communication and create a culture in which errors can be discussed and resolved.

  10. Interactive Computer Based Assessment Tasks: How Problem-Solving Process Data Can Inform Instruction

    ERIC Educational Resources Information Center

    Zoanetti, Nathan

    2010-01-01

    This article presents key steps in the design and analysis of a computer based problem-solving assessment featuring interactive tasks. The purpose of the assessment is to support targeted instruction for students by diagnosing strengths and weaknesses at different stages of problem-solving. The first focus of this article is the task piloting…

  11. Perception and Selection of Information Sources by Undergraduate Students: Effects of Avoidant Style, Confidence, and Personal Control in Problem-Solving

    ERIC Educational Resources Information Center

    Kim, Kyung-Sun; Sin, Sei-Ching Joanna

    2007-01-01

    A survey of undergraduate students examined how students' beliefs about their problem-solving styles and abilities (including avoidant style, confidence, and personal control in problem-solving) influenced their perception and selection of sources, as reflected in (1) perceived characteristics of sources, (2) source characteristics considered…

  12. Assessing Reflective Thinking in Solving Design Problems: The Development of a Questionnaire

    ERIC Educational Resources Information Center

    Hong, Yi-Chun; Choi, Ikseon

    2015-01-01

    Reflection is a critical factor in solving design problems. Using good methods to observe designers' reflection is essential to inform the design of the learning environments that support the development of design problem-solving skills. In this study, we have developed and validated a novel self-reporting questionnaire as an efficient instrument…

  13. ENVIRONMENTAL PROBLEM SOLVING WITH GEOGRAPHIC INFORMATION SYSTEMS: 1994 AND 1999 CONFERENCE PROCEEDINGS

    EPA Science Inventory

    These two national conferences, held in Cincinnati, Ohio in 1994 and 1999, addressed the area of environmental problem solving with Geographic Information Systems. This CD-ROM is a compilation of the proceedings in PDF format. The emphasis of the conference presentations were on ...

  14. Introducing Mathematics to Information Problem-Solving Tasks: Surface or Substance?

    ERIC Educational Resources Information Center

    Erickson, Ander

    2017-01-01

    This study employs a cross-case analysis in order to explore the demands and opportunities that arise when information problem-solving tasks are introduced into college mathematics classes. Professors at three universities collaborated with me to develop statistics-related activities that required students to engage in research outside the…

  15. Infusing Action Mazes into Language Assessment Class Using Quandary

    ERIC Educational Resources Information Center

    Kiliçkaya, Ferit

    2017-01-01

    It is widely acknowledged that problem solving is one of today's prominent skills and is an ongoing activity where learners are actively involved in seeking information, generating new knowledge based on this information, and making decisions accordingly. In this respective, through infusing problem-solving into curriculum of language teaching, it…

  16. Influence of forest and rangeland management on anadromous fish habitat in Western North America: effects of livestock grazing.

    Treesearch

    William S. Platts

    1981-01-01

    This paper documents current knowledge on interactions of livestock and fish habitat. Included are discussions of incompatibility and compatibility between livestock grazing and fisheries, present management guidelines, information needed for problem solving, information available for problem solving, and future research needs.

  17. Pre-Engineering Program. Introduction to Engineering. Advanced Engineering.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.

    This guide contains information and hands-on activities to guide students through the problem-solving process needed in engineering (problem solving, presentation, and impact analysis) and information to help the instructor manage the program or courses in Virginia. Following an introduction, the guide contains a program description that supplies…

  18. To draw or not to draw? Examining the necessity of problem diagrams using massive open online course experiments

    NASA Astrophysics Data System (ADS)

    Chen, Zhongzhou; Demirci, Neset; Choi, Youn-Jeng; Pritchard, David E.

    2017-06-01

    Previous research on problem diagrams suggested that including a supportive diagram, one that does not provide necessary problem solving information, may bring little, or even negative, benefit to students' problem solving success. We tested the usefulness of problem diagrams on 12 different physics problems (6A/B experiments) in our massive open online course. By analyzing over 8000 student responses in total, we found that including a problem diagram that contains no significant additional information only slightly improves the first attempt correct rate for the few most spatially complex problems, and has little impact on either the final correct percentage or the time spent on solving the problem. On the other hand, in half of the cases, removing the diagram significantly increased the fraction of students' drawing their own diagrams during problem solving. The increase in drawing behavior is largely independent of students' physics abilities. In summary, our results suggest that for many physics problems, the benefit of a diagram is exceedingly small and may not justify the effort of creating one.

  19. The Management of Cognitive Load During Complex Cognitive Skill Acquisition by Means of Computer-Simulated Problem Solving

    ERIC Educational Resources Information Center

    Kester, Liesbeth; Kirschner, Paul A.; van Merrienboer, Jeroen J.G.

    2005-01-01

    This study compared the effects of two information presentation formats on learning to solve problems in electrical circuits. In one condition, the split-source format, information relating to procedural aspects of the functioning of an electrical circuit was not integrated in a circuit diagram, while information in the integrated format condition…

  20. When procedures discourage insight: epistemological consequences of prompting novice physics students to construct force diagrams

    NASA Astrophysics Data System (ADS)

    Kuo, Eric; Hallinen, Nicole R.; Conlin, Luke D.

    2017-05-01

    One aim of school science instruction is to help students become adaptive problem solvers. Though successful at structuring novice problem solving, step-by-step problem-solving frameworks may also constrain students' thinking. This study utilises a paradigm established by Heckler [(2010). Some consequences of prompting novice physics students to construct force diagrams. International Journal of Science Education, 32(14), 1829-1851] to test how cuing the first step in a standard framework affects undergraduate students' approaches and evaluation of solutions in physics problem solving. Specifically, prompting the construction of a standard diagram before problem solving increases the use of standard procedures, decreasing the use of a conceptual shortcut. Providing a diagram prompt also lowers students' ratings of informal approaches to similar problems. These results suggest that reminding students to follow typical problem-solving frameworks limits their views of what counts as good problem solving.

  1. The use of questions as problem-solving strategies during early childhood.

    PubMed

    Legare, Cristine H; Mills, Candice M; Souza, André L; Plummer, Leigh E; Yasskin, Rebecca

    2013-01-01

    This study examined the strategic use of questions to solve problems across early childhood. Participants (N=54, 4-, 5-, and 6-year-olds) engaged in two tasks: a novel problem-solving question task that required asking questions to an informant to determine which card in an array was located in a box and a cognitive flexibility task that required classifying stimuli by multiple dimensions. The results from the question task indicated that there were age differences in the types of questions asked, with 6-year-olds asking more constraint-seeking questions than 4- and 5-year-olds. The number of constraint-seeking questions asked was the only significant predictor of accuracy. Performance on the cognitive flexibility task correlated with both constraint-seeking strategy use and accuracy in the question task. In sum, our results provide evidence that the capacity to use questions to generate relevant information develops before the capacity to apply this information successfully and consistently to solve complex problems. We propose that the process of using questions as strategic tools is an ideal context for examining how children come to gain active and intentional control over problem solving. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. You Need to Know: There Is a Causal Relationship between Structural Knowledge and Control Performance in Complex Problem Solving Tasks

    ERIC Educational Resources Information Center

    Goode, Natassia; Beckmann, Jens F.

    2010-01-01

    This study investigates the relationships between structural knowledge, control performance and fluid intelligence in a complex problem solving (CPS) task. 75 participants received either complete, partial or no information regarding the underlying structure of a complex problem solving task, and controlled the task to reach specific goals.…

  3. Examining the Effects of Principals' Transformational Leadership on Teachers' Creative Practices and Students' Performance in Problem-Solving

    ERIC Educational Resources Information Center

    Owoh, Jeremy Strickland

    2015-01-01

    In today's technology enriched schools and workforces, creative problem-solving is involved in many aspects of a person's life. The educational systems of developed nations are designed to raise students who are creative and skillful in solving complex problems. Technology and the age of information require nations to develop generations of…

  4. Developing a Creativity and Problem Solving Course in Support of the Information Systems Curriculum

    ERIC Educational Resources Information Center

    Martz, Ben; Hughes, Jim; Braun, Frank

    2016-01-01

    This paper looks at and assesses the development and implementation of a problem solving and creativity class for the purpose of providing a basis for a Business Informatics curriculum. The development was fueled by the desire to create a broad based class that 1. Familiarized students to the underlying concepts of problem solving; 2. Introduced…

  5. Assessment of Students’ Critical-Thinking and Problem-Solving Abilities Across a 6-Year Doctor of Pharmacy Program

    PubMed Central

    Gaebelein, Claude J.; Grice, Gloria R.; Crannage, Andrew J.; Weck, Margaret A.; Hurd, Peter; Walter, Brenda; Duncan, Wendy

    2013-01-01

    Objective. To determine the feasibility of using a validated set of assessment rubrics to assess students’ critical-thinking and problem-solving abilities across a doctor of pharmacy (PharmD) curriculum. Methods. Trained faculty assessors used validated rubrics to assess student work samples for critical-thinking and problem-solving abilities. Assessment scores were collected and analyzed to determine student achievement of these 2 ability outcomes across the curriculum. Feasibility of the process was evaluated in terms of time and resources used. Results. One hundred sixty-one samples were assessed for critical thinking, and 159 samples were assessed for problem-solving. Rubric scoring allowed assessors to evaluate four 5- to 7-page work samples per hour. The analysis indicated that overall critical-thinking scores improved over the curriculum. Although low yield for problem-solving samples precluded meaningful data analysis, it was informative for identifying potentially needed curricular improvements. Conclusions. Use of assessment rubrics for program ability outcomes was deemed authentic and feasible. Problem-solving was identified as a curricular area that may need improving. This assessment method has great potential to inform continuous quality improvement of a PharmD program. PMID:24159207

  6. Assessment of students' critical-thinking and problem-solving abilities across a 6-year doctor of pharmacy program.

    PubMed

    Gleason, Brenda L; Gaebelein, Claude J; Grice, Gloria R; Crannage, Andrew J; Weck, Margaret A; Hurd, Peter; Walter, Brenda; Duncan, Wendy

    2013-10-14

    To determine the feasibility of using a validated set of assessment rubrics to assess students' critical-thinking and problem-solving abilities across a doctor of pharmacy (PharmD) curriculum. Trained faculty assessors used validated rubrics to assess student work samples for critical-thinking and problem-solving abilities. Assessment scores were collected and analyzed to determine student achievement of these 2 ability outcomes across the curriculum. Feasibility of the process was evaluated in terms of time and resources used. One hundred sixty-one samples were assessed for critical thinking, and 159 samples were assessed for problem-solving. Rubric scoring allowed assessors to evaluate four 5- to 7-page work samples per hour. The analysis indicated that overall critical-thinking scores improved over the curriculum. Although low yield for problem-solving samples precluded meaningful data analysis, it was informative for identifying potentially needed curricular improvements. Use of assessment rubrics for program ability outcomes was deemed authentic and feasible. Problem-solving was identified as a curricular area that may need improving. This assessment method has great potential to inform continuous quality improvement of a PharmD program.

  7. Cognitive Theory. Volume 2.

    ERIC Educational Resources Information Center

    Castellan, N. John, Jr., Ed.; And Others

    The conference papers in this collection emphasize the theoretical significance of their authors' work in the areas of mathematical and cognitive psychology. Major topics considered include facilitation of problem solving; psychological differences among problem isomorphs; the process of understanding in problem solving; processing information for…

  8. Conceptual problem solving in high school physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  9. A study of fuzzy logic ensemble system performance on face recognition problem

    NASA Astrophysics Data System (ADS)

    Polyakova, A.; Lipinskiy, L.

    2017-02-01

    Some problems are difficult to solve by using a single intelligent information technology (IIT). The ensemble of the various data mining (DM) techniques is a set of models which are able to solve the problem by itself, but the combination of which allows increasing the efficiency of the system as a whole. Using the IIT ensembles can improve the reliability and efficiency of the final decision, since it emphasizes on the diversity of its components. The new method of the intellectual informational technology ensemble design is considered in this paper. It is based on the fuzzy logic and is designed to solve the classification and regression problems. The ensemble consists of several data mining algorithms: artificial neural network, support vector machine and decision trees. These algorithms and their ensemble have been tested by solving the face recognition problems. Principal components analysis (PCA) is used for feature selection.

  10. A Decision Support System for Evaluating and Selecting Information Systems Projects

    NASA Astrophysics Data System (ADS)

    Deng, Hepu; Wibowo, Santoso

    2009-01-01

    This chapter presents a decision support system (DSS) for effectively solving the information systems (IS) project selection problem. The proposed DSS recognizes the multidimensional nature of the IS project selection problem, the availability of multicriteria analysis (MA) methods, and the preferences of the decision-maker (DM) on the use of specific MA methods in a given situation. A knowledge base consisting of IF-THEN production rules is developed for assisting the DM with a systematic adoption of the most appropriate method with the efficient use of the powerful reasoning and explanation capabilities of intelligent DSS. The idea of letting the problem to be solved determines the method to be used is incorporated into the proposed DSS. As a result, effective decisions can be made for solving the IS project selection problem. An example is presented to demonstrate the applicability of the proposed DSS for solving the problem of selecting IS projects in real world situations.

  11. Problem-solving rubrics revisited: Attending to the blending of informal conceptual and formal mathematical reasoning

    NASA Astrophysics Data System (ADS)

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-06-01

    Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.

  12. Probabilistic data integration and computational complexity

    NASA Astrophysics Data System (ADS)

    Hansen, T. M.; Cordua, K. S.; Mosegaard, K.

    2016-12-01

    Inverse problems in Earth Sciences typically refer to the problem of inferring information about properties of the Earth from observations of geophysical data (the result of nature's solution to the `forward' problem). This problem can be formulated more generally as a problem of `integration of information'. A probabilistic formulation of data integration is in principle simple: If all information available (from e.g. geology, geophysics, remote sensing, chemistry…) can be quantified probabilistically, then different algorithms exist that allow solving the data integration problem either through an analytical description of the combined probability function, or sampling the probability function. In practice however, probabilistic based data integration may not be easy to apply successfully. This may be related to the use of sampling methods, which are known to be computationally costly. But, another source of computational complexity is related to how the individual types of information are quantified. In one case a data integration problem is demonstrated where the goal is to determine the existence of buried channels in Denmark, based on multiple sources of geo-information. Due to one type of information being too informative (and hence conflicting), this leads to a difficult sampling problems with unrealistic uncertainty. Resolving this conflict prior to data integration, leads to an easy data integration problem, with no biases. In another case it is demonstrated how imperfections in the description of the geophysical forward model (related to solving the wave-equation) can lead to a difficult data integration problem, with severe bias in the results. If the modeling error is accounted for, the data integration problems becomes relatively easy, with no apparent biases. Both examples demonstrate that biased information can have a dramatic effect on the computational efficiency solving a data integration problem and lead to biased results, and under-estimation of uncertainty. However, in both examples, one can also analyze the performance of the sampling methods used to solve the data integration problem to indicate the existence of biased information. This can be used actively to avoid biases in the available information and subsequently in the final uncertainty evaluation.

  13. A Multidirectional Model for Assessing Learning Disabled Students' Intelligence: An Information-Processing Framework.

    ERIC Educational Resources Information Center

    Swanson, H. Lee

    1982-01-01

    An information processing approach to the assessment of learning disabled students' intellectual performance is presented. The model is based on the assumption that intelligent behavior is comprised of a variety of problem- solving strategies. An account of child problem solving is explained and illustrated with a "thinking aloud" protocol.…

  14. The Roles of Negative Career Thinking and Career Problem-Solving Self-Efficacy in Career Exploratory Behavior

    ERIC Educational Resources Information Center

    Bullock-Yowell, Emily; Katz, Sheba P.; Reardon, Robert C.; Peterson, Gary W.

    2012-01-01

    The respective roles of social cognitive career theory and cognitive information processing in career exploratory behavior were analyzed. A verified path model shows cognitive information processing theory's negative career thoughts inversely predict social cognitive career theory's career problem-solving self-efficacy, which predicts career…

  15. An Auto-Scoring Mechanism for Evaluating Problem-Solving Ability in a Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Chiou, Chuang-Kai; Hwang, Gwo-Jen; Tseng, Judy C. R.

    2009-01-01

    The rapid development of computer and network technologies has attracted researchers to investigate strategies for and the effects of applying information technologies in learning activities; simultaneously, learning environments have been developed to record the learning portfolios of students seeking web information for problem-solving. Although…

  16. Michael Eisenberg and Robert Berkowitz's Big6[TM] Information Problem-Solving Model.

    ERIC Educational Resources Information Center

    Carey, James O.

    2003-01-01

    Reviews the Big6 information problem-solving model. Highlights include benefits and dangers of the simplicity of the model; theories of instruction; testing of the model; the model as a process for completing research projects; and advice for school library media specialists considering use of the model. (LRW)

  17. Design of Linear Quadratic Regulators and Kalman Filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L.

    1986-01-01

    AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.

  18. First Episode Psychosis

    MedlinePlus

    ... teaches family members about psychosis, coping, communication, and problem-solving skills. Family members who are informed and involved ... to ensure success. Case Management helps clients with problem solving. The case manager may offer solutions to address ...

  19. Moving your eyes to solution: effects of movements on the perception of a problem-solving task.

    PubMed

    Werner, K; Raab, M

    2014-01-01

    There is ample evidence suggesting a bidirectional connection between bodily movements and cognitive processes, such as problem solving. Current research suggests that previous movements can influence the problem-solving process, but it is unclear what phase of this process is affected. Therefore, we investigated participants' gaze behaviour in the first phase of arithmetic problem solving with two groups (plus group, minus group) to explore a spatial bias toward the left or the right while perceiving a problem-solving task (the water-jar problem) after two different movements-that is, for the plus group, sorting marbles from two outer bowls into one in the middle, and for the minus group, sorting marbles from the middle bowl to the outer ones. We showed a right shift of spatial bias for the plus and to the left for the minus group in the perception and problem tasks. Although movements affected gaze, the groups did not differ in their overall problem-solving strategies; however, the first correct solutions did differ. This study provides further evidence of sensorimotor effects on problem solving and spatial bias and offers insight into how a two-phase problem-solving process is guided by sensorimotor information.

  20. Diagrams benefit symbolic problem-solving.

    PubMed

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  1. To Draw or Not to Draw? Examining the Necessity of Problem Diagrams Using Massive Open Online Course Experiments

    ERIC Educational Resources Information Center

    Chen, Zhongzhou; Demirci, Neset; Choi, Youn-Jeng; Pritchard, David E.

    2017-01-01

    Previous research on problem diagrams suggested that including a supportive diagram, one that does not provide necessary problem solving information, may bring little, or even negative, benefit to students' problem solving success. We tested the usefulness of problem diagrams on 12 different physics problems (6A/B experiments) in our massive open…

  2. Effects of traumatic brain injury on a virtual reality social problem solving task and relations to cortical thickness in adolescence.

    PubMed

    Hanten, Gerri; Cook, Lori; Orsten, Kimberley; Chapman, Sandra B; Li, Xiaoqi; Wilde, Elisabeth A; Schnelle, Kathleen P; Levin, Harvey S

    2011-02-01

    Social problem solving was assessed in 28 youth ages 12-19 years (15 with moderate to severe traumatic brain injury (TBI), 13 uninjured) using a naturalistic, computerized virtual reality (VR) version of the Interpersonal Negotiations Strategy interview (Yeates, Schultz, & Selman, 1991). In each scenario, processing load condition was varied in terms of number of characters and amount of information. Adolescents viewed animated scenarios depicting social conflict in a virtual microworld environment from an avatar's viewpoint, and were questioned on four problem solving steps: defining the problem, generating solutions, selecting solutions, and evaluating the likely outcome. Scoring was based on a developmental scale in which responses were judged as impulsive, unilateral, reciprocal, or collaborative, in order of increasing score. Adolescents with TBI were significantly impaired on the summary VR-Social Problem Solving (VR-SPS) score in Condition A (2 speakers, no irrelevant information), p=0.005; in Condition B (2 speakers+irrelevant information), p=0.035; and Condition C (4 speakers+irrelevant information), p=0.008. Effect sizes (Cohen's D) were large (A=1.40, B=0.96, C=1.23). Significant group differences were strongest and most consistent for defining the problems and evaluating outcomes. The relation of task performance to cortical thickness of specific brain regions was also explored, with significant relations found with orbitofrontal regions, the frontal pole, the cuneus, and the temporal pole. Results are discussed in the context of specific cognitive and neural mechanisms underlying social problem solving deficits after childhood TBI. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Effects of Traumatic Brain Injury on a Virtual Reality Social Problem Solving Task and Relations to Cortical Thickness in Adolescence

    PubMed Central

    Hanten, Gerri; Cook, Lori; Orsten, Kimberley; Chapman, Sandra B.; Li, Xiaoqi; Wilde, Elisabeth A.; Schnelle, Kathleen P.; Levin, Harvey S.

    2011-01-01

    Social problem solving was assessed in 28 youth ages 12–19 years (15 with moderate to severe traumatic brain injury (TBI), 13 uninjured) using a naturalistic, computerized virtual reality (VR) version of the Interpersonal Negotiations Strategy interview (Yeates, Schultz, & Selman, 1991). In each scenario, processing load condition was varied in terms of number of characters and amount of information. Adolescents viewed animated scenarios depicting social conflict in a virtual microworld environment from an avatar’s viewpoint, and were questioned on four problem solving steps: defining the problem, generating solutions, selecting solutions, and evaluating the likely outcome. Scoring was based on a developmental scale in which responses were judged as impulsive, unilateral, reciprocal, or collaborative, in order of increasing score. Adolescents with TBI were significantly impaired on the summary VR-Social Problem Solving (VR-SPS) score in Condition A (2 speakers, no irrelevant information), p = 0.005; in Condition B (2 speakers + irrelevant information), p = 0.035; and Condition C (4 speakers + irrelevant information), p = 0.008. Effect sizes (Cohen’s d) were large (A = 1.40, B = 0.96, C = 1.23). Significant group differences were strongest and most consistent for defining the problems and evaluating outcomes. The relation of task performance to cortical thickness of specific brain regions was also explored, with significant relations found with orbitofrontal regions, the frontal pole, the cuneus, and the temporal pole. Results are discussed in the context of specific cognitive and neural mechanisms underlying social problem solving deficits after childhood TBI. PMID:21147137

  4. A problem-solving education intervention in caregivers and patients during allogeneic hematopoietic stem cell transplantation.

    PubMed

    Bevans, Margaret; Wehrlen, Leslie; Castro, Kathleen; Prince, Patricia; Shelburne, Nonniekaye; Soeken, Karen; Zabora, James; Wallen, Gwenyth R

    2014-05-01

    The aim of this study was to determine the effect of problem-solving education on self-efficacy and distress in informal caregivers of allogeneic hematopoietic stem cell transplantation patients. Patient/caregiver teams attended three 1-hour problem-solving education sessions to help cope with problems during hematopoietic stem cell transplantation. Primary measures included the Cancer Self-Efficacy Scale-transplant and Brief Symptom Inventory-18. Active caregivers reported improvements in self-efficacy (p < 0.05) and distress (p < 0.01) post-problem-solving education; caregiver responders also reported better health outcomes such as fatigue. The effect of problem-solving education on self-efficacy and distress in hematopoietic stem cell transplantation caregivers supports its inclusion in future interventions to meet the multifaceted needs of this population.

  5. Cognitive Intervention in the Normal Developmental Problems of Young Adults

    ERIC Educational Resources Information Center

    Wilson, Stephen B.

    1978-01-01

    The common developmental problems of young adults--career focus, sex confidence, clarification of beliefs, and separation from parents--provide themes of interest to young adults. Using these themes and the human tendency to problem solve, specific information can be given to improve personal problem-solving skills without psychological games.…

  6. The Structure of Ill-Structured (and Well-Structured) Problems Revisited

    ERIC Educational Resources Information Center

    Reed, Stephen K.

    2016-01-01

    In his 1973 article "The Structure of ill structured problems", Herbert Simon proposed that solving ill-structured problems could be modeled within the same information-processing framework developed for solving well-structured problems. This claim is reexamined within the context of over 40 years of subsequent research and theoretical…

  7. Analysing student written solutions to investigate if problem-solving processes are evident throughout

    NASA Astrophysics Data System (ADS)

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-07-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.

  8. A General Architecture for Intelligent Tutoring of Diagnostic Classification Problem Solving

    PubMed Central

    Crowley, Rebecca S.; Medvedeva, Olga

    2003-01-01

    We report on a general architecture for creating knowledge-based medical training systems to teach diagnostic classification problem solving. The approach is informed by our previous work describing the development of expertise in classification problem solving in Pathology. The architecture envelops the traditional Intelligent Tutoring System design within the Unified Problem-solving Method description Language (UPML) architecture, supporting component modularity and reuse. Based on the domain ontology, domain task ontology and case data, the abstract problem-solving methods of the expert model create a dynamic solution graph. Student interaction with the solution graph is filtered through an instructional layer, which is created by a second set of abstract problem-solving methods and pedagogic ontologies, in response to the current state of the student model. We outline the advantages and limitations of this general approach, and describe it’s implementation in SlideTutor–a developing Intelligent Tutoring System in Dermatopathology. PMID:14728159

  9. Analysis of the Efficacy of an Intervention to Improve Parent-Adolescent Problem Solving

    PubMed Central

    Semeniuk, Yulia Yuriyivna; Brown, Roger L.; Riesch, Susan K.

    2016-01-01

    We conducted a two-group longitudinal partially nested randomized controlled trial to examine whether young adolescent youth-parent dyads participating in Mission Possible: Parents and Kids Who Listen, in contrast to a comparison group, would demonstrate improved problem solving skill. The intervention is based on the Circumplex Model and Social Problem Solving Theory. The Circumplex Model posits that families who are balanced, that is characterized by high cohesion and flexibility and open communication, function best. Social Problem Solving Theory informs the process and skills of problem solving. The Conditional Latent Growth Modeling analysis revealed no statistically significant differences in problem solving among the final sample of 127 dyads in the intervention and comparison groups. Analyses of effect sizes indicated large magnitude group effects for selected scales for youth and dyads portraying a potential for efficacy and identifying for whom the intervention may be efficacious if study limitations and lessons learned were addressed. PMID:26936844

  10. Applying Catastrophe Theory to an Information-Processing Model of Problem Solving in Science Education

    ERIC Educational Resources Information Center

    Stamovlasis, Dimitrios; Tsaparlis, Georgios

    2012-01-01

    In this study, we test an information-processing model (IPM) of problem solving in science education, namely the working memory overload model, by applying catastrophe theory. Changes in students' achievement were modeled as discontinuities within a cusp catastrophe model, where working memory capacity was implemented as asymmetry and the degree…

  11. Information Processing at the Memoryful and Memoryless Channel Levels in Problem-Solving and Recall Tasks.

    ERIC Educational Resources Information Center

    Fazio, Frank; Moser, Gene W.

    A probabilistic model (see SE 013 578) describing information processing during the cognitive tasks of recall and problem solving was tested, refined, and developed by testing graduate students on a number of tasks which combined oral, written, and overt "input" and "output" modes in several ways. In a verbal chain one subject…

  12. Applying the Cognitive Information Processing Approach to Career Problem Solving and Decision Making to Women's Career Development.

    ERIC Educational Resources Information Center

    McLennan, Natasha A.; Arthur, Nancy

    1999-01-01

    Outlines an expanded framework of the Cognitive Information Processing (CIP) approach to career problem solving and decision making for career counseling with women. Addresses structural and individual barriers in women's career development and provides practical suggestions for applying and evaluating the CIP approach in career counseling.…

  13. Bibliography of Recent Books on Creativity and Problem Solving: Supplement 31.

    ERIC Educational Resources Information Center

    Stievater, Susan M.

    1993-01-01

    This bibliography lists approximately 55 books on creativity and problem solving, published in 1992 and 1993. For each listing, bibliographic information is provided along with one or more subject descriptor terms. (JDD)

  14. Generic Tasks for Knowledge-Based Problem Solving: Extension and New Directions

    DTIC Science & Technology

    1991-02-01

    Report. i 3] D. Brown and B. Chandrasekaran. Design: An information processing level analy- sis. In Design Problem Solving: Knowledge Structures and...generic information processing tasks. In Proceedings of the Internaoional Joint Conference on Artificial Inte!lzjence. IJCAI, 1987. [181 B...Chandrasekaran. What kind of information processing is intelligence? a perspective I on ai paradigms and a proposal. In D. Partridge and Y. Wilks, editors

  15. The archiving of meteor research information

    NASA Technical Reports Server (NTRS)

    Nechitailenko, V. A.

    1987-01-01

    The results obtained over the past years under GLOBMET are not reviewed but some of the problems the solution of which will guide further development of meteor investigation and international cooperation in this field for the near term are discussed. The main attention is paid to problems which the meteor community itself can solve, or at least expedite. Most of them are more or less connected with the problem of information archiving. Information archiving deals with methods and techniques of solving two closely connected groups of problems. The first is the analysis of data and information as an integral part of meteor research and deals with the solution of certain methodological problems. The second deals with gathering data and information for the designing of models of the atmosphere and/or meteor complex and its utilization. These problem solutions are discussed.

  16. Using Problem Solving to Assess Young Children's Mathematics Knowledge

    ERIC Educational Resources Information Center

    Charlesworth, Rosalind; Leali, Shirley A.

    2012-01-01

    Mathematics problem solving provides a means for obtaining a view of young children's understanding of mathematics as they move through the early childhood concept development sequence. Assessment information can be obtained through observations and interviews as children develop problem solutions. Examples of preschool, kindergarten, and primary…

  17. Representation of Students in Solving Simultaneous Linear Equation Problems Based on Multiple Intelligence

    NASA Astrophysics Data System (ADS)

    Yanti, Y. R.; Amin, S. M.; Sulaiman, R.

    2018-01-01

    This study described representation of students who have musical, logical-mathematic and naturalist intelligence in solving a problem. Subjects were selected on the basis of multiple intelligence tests (TPM) consists of 108 statements, with 102 statements adopted from Chislet and Chapman and 6 statements equal to eksistensial intelligences. Data were analyzed based on problem-solving tests (TPM) and interviewing. See the validity of the data then problem-solving tests (TPM) and interviewing is given twice with an analyzed using the representation indikator and the problem solving step. The results showed that: the stage of presenting information known, stage of devising a plan, and stage of carrying out the plan those three subjects were using same form of representation. While he stage of presenting information asked and stage of looking back, subject of logical-mathematic was using different forms of representation with subjects of musical and naturalist intelligence. From this research is expected to provide input to the teacher in determining the learning strategy that will be used by considering the representation of students with the basis of multiple intelligences.

  18. After Being Challenged by a Video Game Problem, Sleep Increases the Chance to Solve It

    PubMed Central

    Beijamini, Felipe; Pereira, Sofia Isabel Ribeiro; Cini, Felipe Augusto; Louzada, Fernando Mazzilli

    2014-01-01

    In the past years many studies have demonstrated the role of sleep on memory consolidation. It is known that sleeping after learning a declarative or non-declarative task, is better than remaining awake. Furthermore, there are reports of a possible role for dreams in consolidation of declarative memories. Other studies have reported the effect of naps on memory consolidation. With similar protocols, another set of studies indicated that sleep has a role in creativity and problem-solving. Here we hypothesised that sleep can increase the likelihood of solving problems. After struggling to solve a video game problem, subjects who took a nap (n = 14) were almost twice as likely to solve it when compared to the wake control group (n = 15). It is interesting to note that, in the nap group 9 out 14 subjects engaged in slow-wave sleep (SWS) and all solved the problem. Surprisingly, we did not find a significant involvement of Rapid Eye Movement (REM) sleep in this task. Slow-wave sleep is believed to be crucial for the transfer of memory-related information to the neocortex and implement intentions. Sleep can benefit problem-solving through the generalisation of newly encoded information and abstraction of the gist. In conclusion, our results indicate that sleep, even a nap, can potentiate the solution of problems that involve logical reasoning. Thus, sleep's function seems to go beyond memory consolidation to include managing of everyday-life events. PMID:24416219

  19. After being challenged by a video game problem, sleep increases the chance to solve it.

    PubMed

    Beijamini, Felipe; Pereira, Sofia Isabel Ribeiro; Cini, Felipe Augusto; Louzada, Fernando Mazzilli

    2014-01-01

    In the past years many studies have demonstrated the role of sleep on memory consolidation. It is known that sleeping after learning a declarative or non-declarative task, is better than remaining awake. Furthermore, there are reports of a possible role for dreams in consolidation of declarative memories. Other studies have reported the effect of naps on memory consolidation. With similar protocols, another set of studies indicated that sleep has a role in creativity and problem-solving. Here we hypothesised that sleep can increase the likelihood of solving problems. After struggling to solve a video game problem, subjects who took a nap (n = 14) were almost twice as likely to solve it when compared to the wake control group (n = 15). It is interesting to note that, in the nap group 9 out 14 subjects engaged in slow-wave sleep (SWS) and all solved the problem. Surprisingly, we did not find a significant involvement of Rapid Eye Movement (REM) sleep in this task. Slow-wave sleep is believed to be crucial for the transfer of memory-related information to the neocortex and implement intentions. Sleep can benefit problem-solving through the generalisation of newly encoded information and abstraction of the gist. In conclusion, our results indicate that sleep, even a nap, can potentiate the solution of problems that involve logical reasoning. Thus, sleep's function seems to go beyond memory consolidation to include managing of everyday-life events.

  20. Solving nuts-and-bolts nuclear problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmstead, A.; Schoen, J.

    1979-05-01

    The Operations and Maintenance Information Service (MIS), created and operated by NUS Corp., was designed to improve plant availability through the exchange of practical information between nuclear plants and a return to an emphasis on the problem-solving process. MIS meetings cover a range of plant problems and have been unique in bringing the rapid feedback of information pertinent to the day-to-day working operation of a total plant. Much of the response is by telephone contact, although the monthly newsletter, semi-annual meetings, and scheduled plant visits are also helpful.

  1. Problem solving of student with visual impairment related to mathematical literacy problem

    NASA Astrophysics Data System (ADS)

    Pratama, A. R.; Saputro, D. R. S.; Riyadi

    2018-04-01

    The student with visual impairment, total blind category depends on the sense of touch and hearing in obtaining information. In fact, the two senses can receive information less than 20%. Thus, students with visual impairment of the total blind categories in the learning process must have difficulty, including learning mathematics. This study aims to describe the problem-solving process of the student with visual impairment, total blind category on mathematical literacy issues based on Polya phase. This research using test method similar problems mathematical literacy in PISA and in-depth interviews. The subject of this study was a student with visual impairment, total blind category. Based on the result of the research, problem-solving related to mathematical literacy based on Polya phase is quite good. In the phase of understanding the problem, the student read about twice by brushing the text and assisted with information through hearing three times. The student with visual impairment in problem-solving based on the Polya phase, devising a plan by summoning knowledge and experience gained previously. At the phase of carrying out the plan, students with visual impairment implement the plan in accordance with pre-made. In the looking back phase, students with visual impairment need to check the answers three times but have not been able to find a way.

  2. The Process of Probability Problem Solving: Use of External Visual Representations

    ERIC Educational Resources Information Center

    Zahner, Doris; Corter, James E.

    2010-01-01

    We investigate the role of external inscriptions, particularly those of a spatial or visual nature, in the solution of probability word problems. We define a taxonomy of external visual representations used in probability problem solving that includes "pictures," "spatial reorganization of the given information," "outcome listings," "contingency…

  3. The Quantum Binding Problem in the Context of Associative Memory

    PubMed Central

    Wichert, Andreas

    2016-01-01

    We present a method to solve the binding problem by using a quantum algorithm for the retrieval of associations from associative memory during visual scene analysis. The problem is solved by mapping the information representing different objects into superposition by using entanglement and Grover’s amplification algorithm. PMID:27603782

  4. Evoking Knowledge and Information Awareness for Enhancing Computer-Supported Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Engelmann, Tanja; Tergan, Sigmar-Olaf; Hesse, Friedrich W.

    2010-01-01

    Computer-supported collaboration by spatially distributed group members still involves interaction problems within the group. This article presents an empirical study investigating the question of whether computer-supported collaborative problem solving by spatially distributed group members can be fostered by evoking knowledge and information…

  5. Cognitive patterns of neuroanatomy concepts: Knowledge organizations that emerge from problem solving versus information gathering

    NASA Astrophysics Data System (ADS)

    Weidner, Jeanne Margaret O'malley

    2000-10-01

    This study was motivated by some of the claims that are found in the literature on Problem-Based Learning (PBL). This instructional technique, which uses case studies as its primary instructional tool, has been advanced as an alternative to traditional instruction in order to foster more meaningful, integrative learning of scientific concepts. Several of the advantages attributed to Problem-Based Learning are that it (1) is generally preferred by students because it appears to foster a more nurturing and enjoyable learning experience, (2) fosters greater retention of knowledge and concepts acquired, and (3) results in increased ability to apply this knowledge toward solving new problems. This study examines the differences that result when students learn neuroanatomy concepts under two instructional contexts: problem solving vs. information gathering. The technological resource provided to students to support learning under each of these contexts was the multimedia program BrainStorm: An Interactive Neuroanatomy Atlas (Coppa & Tancred, 1995). The study explores the influence of context with regard to subjects' performance on objective post-tests, organization of knowledge as measured by Pathfinder Networks, differential use of the multimedia software and discourse differences emerging from the transcripts. The findings support previous research in the literature that problem-solving results in less knowledge acquisition in the short term, greater retention of material over time, and a subjects' preference for the method. However, both the degree of retention and preference were influenced by subjects' prior knowledge of the material in the exercises, as there was a significant difference in performance between the two exercises: for the exercise about which subjects appeared to have greater background information, memory decay was less, and subject attitude toward the problem solving instructional format was more favorable, than for the exercise for which subjects had less prior knowledge. Subjects also used the software differently under each format with regard to modules accessed, time spent in modules, and types of information sought. In addition, analyses of the transcripts showed more numerous occurrences of explanations and summarizations in the problem-solving context, compared to the information gathering context. The attempts to show significant differences between the contexts by means of Pathfinder analyses were less than successful.

  6. Uniformity and nonuniformity of neural activities correlated to different insight problem solving.

    PubMed

    Zhao, Q; Li, Y; Shang, X; Zhou, Z; Han, L

    2014-06-13

    Previous studies on the neural basis of insight reflected weak consistency except for the anterior cingulate cortex. The present work adopted the semantic and homophonic punny riddle to explore the uniformity and nonuniformity of neural activities correlated to different insight problem solving. Results showed that in the early period of insight solving, the semantic and homophonic punny riddles induced a common N350-500 over the central scalp. However, during -400 to 0 ms before the riddles were solved, the semantic punny riddles induced a positive event-related potential (ERP) deflection over the temporal cortex for retrieving the extensive semantic information, while the homophonic punny riddles induced a positive ERP deflection over the temporal cortex and a negative one in the left frontal cortex which might reflect the semantic and phonological information processing respectively. Our study indicated that different insight problem solving should have the same cognitive process of detecting cognitive conflicts, but have different ways to solve the conflicts. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Collaborative learning in networks.

    PubMed

    Mason, Winter; Watts, Duncan J

    2012-01-17

    Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions.

  8. Collaborative learning in networks

    PubMed Central

    Mason, Winter; Watts, Duncan J.

    2012-01-01

    Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions. PMID:22184216

  9. Algorithm for solving of two-level hierarchical minimax program control problem of final state the regional socio-economic system in the presence of risks

    NASA Astrophysics Data System (ADS)

    Shorikov, A. F.

    2017-10-01

    In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks. For this problem we propose a mathematical model in the form of two-level hierarchical minimax program control problem of the final state of this process with incomplete information. For solving of its problem we constructed the common algorithm that has a form of a recurrent procedure of solving a linear programming and a finite optimization problems.

  10. Self Esteem, Information Search and Problem Solving Efficiency.

    DTIC Science & Technology

    1979-05-01

    Weiss (1977, 1978) has shown that low self esteem workers are more likely to model the role behaviors and work values of superiors than are high self ...task where search is functional. Results showed that, as expected, low self esteem subjects searched for more information, search was functional and low ...situation. He has also argued that high self esteem individuals search for less information on problem solving tasks and are therefore less likely to

  11. Understanding Managerial Problem-Solving, Knowledge Use and Information Processing: Investigating Stages from School to the Workplace

    ERIC Educational Resources Information Center

    Arts, Jos A. R.; Gijselaers, Wim H.; Boshuizen, Henny P. A.

    2006-01-01

    The present study explores stages in managerial problem-solving skills of participants beginning with formal education, and continuing through the professional workplace setting. We studied nine different levels of expertise: from novice student groups, to graduates and expert groups. Participants were asked to diagnose and solve business cases.…

  12. Guided Research in Middle School: Mystery in the Media Center. Second Edition

    ERIC Educational Resources Information Center

    Harrington, LaDawna

    2011-01-01

    A little imagination, a little drama, a little mystery. Using the guided inquiry model in this updated, second edition, students become detectives at Information Headquarters. They solve a mystery-and enhance their problem-solving and literacy skills. Middle school is a crucial time in the development of problem-solving, critical-thinking, and…

  13. Syntactic Awareness and Arithmetic Word Problem Solving in Children with and without Learning Disabilities

    ERIC Educational Resources Information Center

    Peake, Christian; Jiménez, Juan E.; Rodríguez, Cristina; Bisschop, Elaine; Villarroel, Rebeca

    2015-01-01

    Arithmetic word problem (AWP) solving is a highly demanding task for children with learning disabilities (LD) since verbal and mathematical information have to be integrated. This study examines specifically how syntactic awareness (SA), the ability to manage the grammatical structures of language, affects AWP solving. Three groups of children in…

  14. Solucion de Problemas y Procesos Cognoscitivos (Problem Solving and Cognitive Processes). Publication No. 41.

    ERIC Educational Resources Information Center

    Rimoldi, Horacio J. A.

    The study of problem solving is made through the analysis of the process that leads to the final answer. The type of information obtained through the study of the process is compared with the information obtained by studying the final answer. The experimental technique used permits to identify the sequence of questions (tactics) that subjects ask…

  15. Information Problem-Solving Skills in Small Virtual Groups and Learning Outcomes

    ERIC Educational Resources Information Center

    Garcia, Consuelo; Badia, Antoni

    2017-01-01

    This study investigated the frequency of use of information problem-solving (IPS) skills and its relationship with learning outcomes. During the course of the study, 40 teachers carried out a collaborative IPS task in small virtual groups in a 4-week online training course. The status of IPS skills was collected through self-reports handed in over…

  16. Temperament and problem solving in a population of adolescent guide dogs.

    PubMed

    Bray, Emily E; Sammel, Mary D; Seyfarth, Robert M; Serpell, James A; Cheney, Dorothy L

    2017-09-01

    It is often assumed that measures of temperament within individuals are more correlated to one another than to measures of problem solving. However, the exact relationship between temperament and problem-solving tasks remains unclear because large-scale studies have typically focused on each independently. To explore this relationship, we tested 119 prospective adolescent guide dogs on a battery of 11 temperament and problem-solving tasks. We then summarized the data using both confirmatory factor analysis and exploratory principal components analysis. Results of confirmatory analysis revealed that a priori separation of tests as measuring either temperament or problem solving led to weak results, poor model fit, some construct validity, and no predictive validity. In contrast, results of exploratory analysis were best summarized by principal components that mixed temperament and problem-solving traits. These components had both construct and predictive validity (i.e., association with success in the guide dog training program). We conclude that there is complex interplay between tasks of "temperament" and "problem solving" and that the study of both together will be more informative than approaches that consider either in isolation.

  17. Factors affecting the social problem-solving ability of baccalaureate nursing students.

    PubMed

    Lau, Ying

    2014-01-01

    The hospital environment is characterized by time pressure, uncertain information, conflicting goals, high stakes, stress, and dynamic conditions. These demands mean there is a need for nurses with social problem-solving skills. This study set out to (1) investigate the social problem-solving ability of Chinese baccalaureate nursing students in Macao and (2) identify the association between communication skill, clinical interaction, interpersonal dysfunction, and social problem-solving ability. All nursing students were recruited in one public institute through the census method. The research design was exploratory, cross-sectional, and quantitative. The study used the Chinese version of the Social Problem Solving Inventory short form (C-SPSI-R), Communication Ability Scale (CAS), Clinical Interactive Scale (CIS), and Interpersonal Dysfunction Checklist (IDC). Macao nursing students were more likely to use the two constructive or adaptive dimensions rather than the three dysfunctional dimensions of the C-SPSI-R to solve their problems. Multiple linear regression analysis revealed that communication ability (ß=.305, p<.0001), clinical interaction (ß=.129, p=.047), and interpersonal dysfunction (ß=-.402, p<.0001) were associated with social problem-solving after controlling for covariates. Macao has had no problem-solving training in its educational curriculum; an effective problem-solving training should be implemented as part of the curriculum. With so many changes in healthcare today, nurses must be good social problem-solvers in order to deliver holistic care. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Enhancing chemistry problem-solving achievement using problem categorization

    NASA Astrophysics Data System (ADS)

    Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

    The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.

  19. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  20. Metaphor and analogy in everyday problem solving.

    PubMed

    Keefer, Lucas A; Landau, Mark J

    2016-11-01

    Early accounts of problem solving focused on the ways people represent information directly related to target problems and possible solutions. Subsequent theory and research point to the role of peripheral influences such as heuristics and bodily states. We discuss how metaphor and analogy similarly influence stages of everyday problem solving: Both processes mentally map features of a target problem onto the structure of a relatively more familiar concept. When individuals apply this structure, they use a well-known concept as a framework for reasoning about real world problems and candidate solutions. Early studies found that analogy use helped people gain insight into novel problems. More recent research on metaphor goes further to show that activating mappings has subtle, sometimes surprising effects on judgment and reasoning in everyday problem solving. These findings highlight situations in which mappings can help or hinder efforts to solve problems. WIREs Cogn Sci 2016, 7:394-405. doi: 10.1002/wcs.1407 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  1. Two Aspects of Meaningful Problem Solving in Science.

    ERIC Educational Resources Information Center

    Stewart, James

    1982-01-01

    Presents a model for solving genetics problems when problem statements include information on which alleles are dominant/recessive and on what forms of a trait are coded for by the alleles. Includes procedural steps employed in a solution and conceptual knowledge of genetics/meiosis allowing students to justify what they have done. (Author/JN)

  2. Preservice Middle and High School Mathematics Teachers' Strategies When Solving Proportion Problems

    ERIC Educational Resources Information Center

    Arican, Muhammet

    2018-01-01

    The purpose of this study was to investigate eight preservice middle and high school mathematics teachers' solution strategies when solving single and multiple proportion problems. Real-world missing-value word problems were used in an interview setting to collect information about preservice teachers' (PSTs) reasoning about proportional…

  3. Health Information Obtained From the Internet and Changes in Medical Decision Making: Questionnaire Development and Cross-Sectional Survey.

    PubMed

    Chen, Yen-Yuan; Li, Chia-Ming; Liang, Jyh-Chong; Tsai, Chin-Chung

    2018-02-12

    The increasing utilization of the internet has provided a better opportunity for people to search online for health information, which was not easily available to them in the past. Studies reported that searching on the internet for health information may potentially influence an individual's decision making to change her health-seeking behaviors. The objectives of this study were to (1) develop and validate 2 questionnaires to estimate the strategies of problem-solving in medicine and utilization of online health information, (2) determine the association between searching online for health information and utilization of online health information, and (3) determine the association between online medical help-seeking and utilization of online health information. The Problem Solving in Medicine and Online Health Information Utilization questionnaires were developed and implemented in this study. We conducted confirmatory factor analysis to examine the structure of the factor loadings and intercorrelations for all the items and dimensions. We employed Pearson correlation coefficients for examining the correlations between each dimension of the Problem Solving in Medicine questionnaire and each dimension of the Online Health Information Utilization questionnaire. Furthermore, we conducted structure equation modeling for examining the possible linkage between each of the 6 dimensions of the Problem Solving in Medicine questionnaire and each of the 3 dimensions of the Online Health Information Utilization questionnaire. A total of 457 patients participated in this study. Pearson correlation coefficients ranged from .12 to .41, all with statistical significance, implying that each dimension of the Problem Solving in Medicine questionnaire was significantly associated with each dimension of the Online Health Information Utilization questionnaire. Patients with the strategy of online health information search for solving medical problems positively predicted changes in medical decision making (P=.01), consulting with others (P<.001), and promoting self-efficacy on deliberating the online health information (P<.001) based on the online health information they obtained. Present health care professionals have a responsibility to acknowledge that patients' medical decision making may be changed based on additional online health information. Health care professionals should assist patients' medical decision making by initiating as much dialogue with patients as possible, providing credible and convincing health information to patients, and guiding patients where to look for accurate, comprehensive, and understandable online health information. By doing so, patients will avoid becoming overwhelmed with extraneous and often conflicting health information. Educational interventions to promote health information seekers' ability to identify, locate, obtain, read, understand, evaluate, and effectively use online health information are highly encouraged. ©Yen-Yuan Chen, Chia-Ming Li, Jyh-Chong Liang, Chin-Chung Tsai. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 12.02.2018.

  4. Foresight beyond the very next event: four-year-olds can link past and deferred future episodes

    PubMed Central

    Redshaw, Jonathan; Suddendorf, Thomas

    2013-01-01

    Previous experiments have demonstrated that by 4 years of age children can use information from a past episode to solve a problem for the very next future episode. However, it remained unclear whether 4-year-olds can similarly use such information to solve a problem for a more removed future episode that is not of immediate concern. In the current study we introduced 4-year-olds to problems in one room before taking them to another room and distracting them for 15 min. The children were then offered a choice of items to place into a bucket that was to be taken back to the first room when a 5-min sand-timer had completed a cycle. Across two conceptually distinct domains, the children placed the item that could solve the deferred future problem above chance level. This result demonstrates that by 48 months many children can recall a problem from the past and act in the present to solve that problem for a deferred future episode. We discuss implications for theories about the nature of episodic foresight. PMID:23847575

  5. Real-Life Problem-Solving Thinking and Social Adjustment: Intervention for Preschool and Kindergarten Children.

    ERIC Educational Resources Information Center

    Shure, Myrna Beth

    1979-01-01

    Descriptive and evaluative information is presented about the Interpersonal Cognitive Problem Solving (ICPS) program, which utilizes sequenced games and dialogs to teach young children new ways of thinking about and coping with interpersonal difficulties. (SJL)

  6. Incremental planning to control a blackboard-based problem solver

    NASA Technical Reports Server (NTRS)

    Durfee, E. H.; Lesser, V. R.

    1987-01-01

    To control problem solving activity, a planner must resolve uncertainty about which specific long-term goals (solutions) to pursue and about which sequences of actions will best achieve those goals. A planner is described that abstracts the problem solving state to recognize possible competing and compatible solutions and to roughly predict the importance and expense of developing these solutions. With this information, the planner plans sequences of problem solving activities that most efficiently resolve its uncertainty about which of the possible solutions to work toward. The planner only details actions for the near future because the results of these actions will influence how (and whether) a plan should be pursued. As problem solving proceeds, the planner adds new details to the plan incrementally, and monitors and repairs the plan to insure it achieves its goals whenever possible. Through experiments, researchers illustrate how these new mechanisms significantly improve problem solving decisions and reduce overall computation. They briefly discuss current research directions, including how these mechanisms can improve a problem solver's real-time response and can enhance cooperation in a distributed problem solving network.

  7. Analysis of the Efficacy of an Intervention to Improve Parent-Adolescent Problem Solving.

    PubMed

    Semeniuk, Yulia Yuriyivna; Brown, Roger L; Riesch, Susan K

    2016-07-01

    We conducted a two-group longitudinal partially nested randomized controlled trial to examine whether young adolescent youth-parent dyads participating in Mission Possible: Parents and Kids Who Listen, in contrast to a comparison group, would demonstrate improved problem-solving skill. The intervention is based on the Circumplex Model and Social Problem-Solving Theory. The Circumplex Model posits that families who are balanced, that is characterized by high cohesion and flexibility and open communication, function best. Social Problem-Solving Theory informs the process and skills of problem solving. The Conditional Latent Growth Modeling analysis revealed no statistically significant differences in problem solving among the final sample of 127 dyads in the intervention and comparison groups. Analyses of effect sizes indicated large magnitude group effects for selected scales for youth and dyads portraying a potential for efficacy and identifying for whom the intervention may be efficacious if study limitations and lessons learned were addressed. © The Author(s) 2016.

  8. The Role of Arts-Related Information and Communication Technology Use in Problem Solving and Achievement: Findings from the Programme for International Student Assessment

    ERIC Educational Resources Information Center

    Liem, Gregory Arief D.; Martin, Andrew J.; Anderson, Michael; Gibson, Robyn; Sudmalis, David

    2014-01-01

    Drawing on the Programme for International Student Assessment 2003 data set comprising over 190,000 15-year-old students in 25 countries, the current study sought to examine the role of arts-related information and communication technology (ICT) use in students' problem-solving skill and science and mathematics achievement. Structural equation…

  9. Electronic neural network for solving traveling salesman and similar global optimization problems

    NASA Technical Reports Server (NTRS)

    Thakoor, Anilkumar P. (Inventor); Moopenn, Alexander W. (Inventor); Duong, Tuan A. (Inventor); Eberhardt, Silvio P. (Inventor)

    1993-01-01

    This invention is a novel high-speed neural network based processor for solving the 'traveling salesman' and other global optimization problems. It comprises a novel hybrid architecture employing a binary synaptic array whose embodiment incorporates the fixed rules of the problem, such as the number of cities to be visited. The array is prompted by analog voltages representing variables such as distances. The processor incorporates two interconnected feedback networks, each of which solves part of the problem independently and simultaneously, yet which exchange information dynamically.

  10. Unconscious processing modulates creative problem solving: evidence from an electrophysiological study.

    PubMed

    Gao, Ying; Zhang, Hao

    2014-05-01

    Previous behavioral studies have identified the significant role of subliminal cues in creative problem solving. However, neural mechanisms of such unconscious processing remain poorly understood. Here we utilized an event-related potential (ERP) approach and sandwich mask technique to investigate cerebral activities underlying the unconscious processing of cues in creative problem solving. College students were instructed to solve divergent problems under three different conditions (conscious cue, unconscious cue and no-cue conditions). Our data showed that creative problem solving can benefit from unconscious cues, although not as much as from conscious cues. More importantly, we found that there are crucial ERP components associated with unconscious processing of cues in solving divergent problems. Similar to the processing of conscious cues, processing unconscious cues in problem solving involves the semantic activation of unconscious cues (N280-340) in the right inferior parietal lobule (BA 40), new association formation (P350-450) in the right parahippocampal gyrus (BA 36), and mental representation transformation (P500-760) in the right superior temporal gyrus (BA 22). The present results suggest that creative problem solving can be modulated by unconscious processing of enlightening information that is weakly diffused in the semantic network beyond our conscious awareness. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Guidance for modeling causes and effects in environmental problem solving

    USGS Publications Warehouse

    Armour, Carl L.; Williamson, Samuel C.

    1988-01-01

    Environmental problems are difficult to solve because their causes and effects are not easily understood. When attempts are made to analyze causes and effects, the principal challenge is organization of information into a framework that is logical, technically defensible, and easy to understand and communicate. When decisionmakers attempt to solve complex problems before an adequate cause and effect analysis is performed there are serious risks. These risks include: greater reliance on subjective reasoning, lessened chance for scoping an effective problem solving approach, impaired recognition of the need for supplemental information to attain understanding, increased chance for making unsound decisions, and lessened chance for gaining approval and financial support for a program/ Cause and effect relationships can be modeled. This type of modeling has been applied to various environmental problems, including cumulative impact assessment (Dames and Moore 1981; Meehan and Weber 1985; Williamson et al. 1987; Raley et al. 1988) and evaluation of effects of quarrying (Sheate 1986). This guidance for field users was written because of the current interest in documenting cause-effect logic as a part of ecological problem solving. Principal literature sources relating to the modeling approach are: Riggs and Inouye (1975a, b), Erickson (1981), and United States Office of Personnel Management (1986).

  12. Big 6 Tips: Teaching Information Problem Solving. #1 Task Definition: What Needs To Be Done.

    ERIC Educational Resources Information Center

    Eisenberg, Michael

    1997-01-01

    Explains task definition which is the first stage in the Big 6, an approach to information and technology skills instruction. Highlights include defining the problem; identifying the information requirements of the problem; transferability from curriculum-based problems to everyday tasks; and task definition logs kept by students. (LRW)

  13. Fuzzy spaces topology change as a possible solution to the black hole information loss paradox

    NASA Astrophysics Data System (ADS)

    Silva, C. A. S.

    2009-06-01

    The black hole information loss paradox is one of the most intricate problems in modern theoretical physics. A proposal to solve this is one related with topology change. However it has found some obstacles related to unitarity and cluster decomposition (locality). In this Letter we argue that modelling the black hole's event horizon as a noncommutative manifold - the fuzzy sphere - we can solve the problems with topology change, getting a possible solution to the black hole information loss paradox.

  14. The Application of Problem Solving Method on Science Teacher Trainees on the Solution of the Environmental Problems

    ERIC Educational Resources Information Center

    Dogru, Mustafa

    2008-01-01

    Helping students to improve their problems solving skills is the primary target of science teacher trainees. In modern science, for training the students, methods should be used for improving their thinking skills, making connections with events and concepts and scientific operations skills rather than information and definition giving. One of…

  15. The Model Method: Singapore Children's Tool for Representing and Solving Algebraic Word Problems

    ERIC Educational Resources Information Center

    Ng, Swee Fong; Lee, Kerry

    2009-01-01

    Solving arithmetic and algebraic word problems is a key component of the Singapore elementary mathematics curriculum. One heuristic taught, the model method, involves drawing a diagram to represent key information in the problem. We describe the model method and a three-phase theoretical framework supporting its use. We conducted 2 studies to…

  16. Can Students Identify the Relevant Information to Solve a Problem?

    ERIC Educational Resources Information Center

    Zhang, Lishan; Yu, Shengquan; Li, Baoping; Wang, Jing

    2017-01-01

    Solving non-routine problems is one of the most important skills for the 21st century. Traditional paper-pencil tests cannot assess this type of skill well because of their lack of interactivity and inability to capture procedural data. Tools such as MicroDYN and MicroFIN have proved to be trustworthy in assessing complex problem-solving…

  17. The Teaching of Creativity in Information Systems Programmes at South African Higher Education Institutions

    ERIC Educational Resources Information Center

    Turpin, Marita; Matthee, Machdel; Kruger, Anine

    2015-01-01

    The development of problem solving skills is a shared goal in science, engineering, mathematics and technology education. In the applied sciences, problems are often open-ended and complex, requiring a multidisciplinary approach as well as new designs. In such cases, problem solving requires not only analytical capabilities, but also creativity…

  18. Writing for Business: A Graduate-Level Course in Problem-Solving

    ERIC Educational Resources Information Center

    Seifert, Christine

    2009-01-01

    This paper details an assignment sequence that requires graduate students in an applied communication program to identify problems that clients may not be aware of. Good writing and good problem-solving are "inextricably linked to [a student's] ability to frame an issue, gather, and analyze information, and to structure a helpful response" (Musso,…

  19. Geo-Sandbox: An Interactive Geoscience Training Tool with Analytics to Better Understand Student Problem Solving Approaches

    NASA Astrophysics Data System (ADS)

    Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.

    2015-12-01

    The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.

  20. Sources of difficulty in the solution of verbal arithmetic problems by mentally retarded and nonretarded individuals.

    PubMed

    Bilsky, L H; Judd, T

    1986-01-01

    Effects of several logical (i.e., operation type and amount of extraneous information), memory (i.e., availability of memory aids and number of problem presentations), and semantic variables (i.e., problem text type) on verbal math problem-solving performance were assessed. Results revealed that the overall problem-solving performance of mildly mentally retarded adolescents was inferior to that of nonretarded fourth graders in spite of comparable performance on a computational screening test. Although the retarded individuals experienced particular difficulty with subtraction and static problem texts, the two groups responded similarly to the other experimental variables. The possibly important role of comprehension in problem-solving was discussed.

  1. Design Studio.

    ERIC Educational Resources Information Center

    Draze, Dianne; Palouda, Annelise

    This book presents information about 10 areas of design, with the main emphasis on graphic design. One section presents the creative problem solving process and provides practice in using this process to solve design problems. Students are given a glimpse of other areas of design, including fashion, industrial, architectural, decorative,…

  2. Superintendents' Group Problem-Solving Processes.

    ERIC Educational Resources Information Center

    Leithwood, Kenneth; And Others

    Findings of a study that examined the collaborative problem-solving processes used by superintendents are presented in this paper. Based on information processing theory, the study utilizes a model composed of the following components: interpretation; goals; principles and values; constraints; solution processes; and mood. Data were derived from…

  3. Identification of cloud fields by the nonparametric algorithm of pattern recognition from normalized video data recorded with the AVHRR instrument

    NASA Astrophysics Data System (ADS)

    Protasov, Konstantin T.; Pushkareva, Tatyana Y.; Artamonov, Evgeny S.

    2002-02-01

    The problem of cloud field recognition from the NOAA satellite data is urgent for solving not only meteorological problems but also for resource-ecological monitoring of the Earth's underlying surface associated with the detection of thunderstorm clouds, estimation of the liquid water content of clouds and the moisture of the soil, the degree of fire hazard, etc. To solve these problems, we used the AVHRR/NOAA video data that regularly displayed the situation in the territory. The complexity and extremely nonstationary character of problems to be solved call for the use of information of all spectral channels, mathematical apparatus of testing statistical hypotheses, and methods of pattern recognition and identification of the informative parameters. For a class of detection and pattern recognition problems, the average risk functional is a natural criterion for the quality and the information content of the synthesized decision rules. In this case, to solve efficiently the problem of identifying cloud field types, the informative parameters must be determined by minimization of this functional. Since the conditional probability density functions, representing mathematical models of stochastic patterns, are unknown, the problem of nonparametric reconstruction of distributions from the leaning samples arises. To this end, we used nonparametric estimates of distributions with the modified Epanechnikov kernel. The unknown parameters of these distributions were determined by minimization of the risk functional, which for the learning sample was substituted by the empirical risk. After the conditional probability density functions had been reconstructed for the examined hypotheses, a cloudiness type was identified using the Bayes decision rule.

  4. Solution mechanism guide: implementing innovation within a research & development organization.

    PubMed

    Keeton, Kathryn E; Richard, Elizabeth E; Davis, Jeffrey R

    2014-10-01

    In order to create a culture more open to novel problem-solving mechanisms, NASA's Human Health and Performance Directorate (HH&P) created a strategic knowledge management tool that educates employees about innovative problem-solving techniques, the Solution Mechanism Guide (SMG). The SMG is a web-based, interactive guide that leverages existing and innovative problem-solving methods and presents this information as a unique user experience so that the employee is empowered to make the best decision about which problem-solving tool best meets their needs. By integrating new and innovative methods with existing problem solving tools, the SMG seamlessly introduces open innovation and collaboration concepts within HH&P to more effectively address human health and performance risks. This commentary reviews the path of creating a more open and innovative culture within HH&P and the process and development steps that were taken to develop the SMG.

  5. Uncovering the Problem-Solving Process: Cued Retrospective Reporting Versus Concurrent and Retrospective Reporting

    ERIC Educational Resources Information Center

    van Gog, Tamara; Paas, Fred; Merrienboer, Jeroen J. G.; Witte, Puk

    2005-01-01

    This study investigated the amounts of problem-solving process information ("action," "why," "how," and "metacognitive") elicited by means of concurrent, retrospective, and cued retrospective reporting. In a within-participants design, 26 participants completed electrical circuit troubleshooting tasks under different reporting conditions. The…

  6. Journal of Business and Training Education, 1997.

    ERIC Educational Resources Information Center

    Journal of Business and Training Education, 1997

    1997-01-01

    This annual serial issue contains six papers dealing with business education and training. Three approaches to teaching problem solving are detailed in "Teaching Problem Solving for Employment Preparation" (Judith J. Lambrecht). A study to identify the technologies used to manage information in business and industry is reported in…

  7. Teaming to Teach the Information Problem-Solving Process.

    ERIC Educational Resources Information Center

    Sine, Lynn; Murphy, Becky

    1992-01-01

    Explains a problem-solving format developed by a school media specialist and first grade teacher that used the framework of Eisenberg and Berkowitz's "Big Six Skills" for library media programs. The application of the format to a science unit on the senses is described. (two references) (MES)

  8. Problem Solving in Biology: A Methodology

    ERIC Educational Resources Information Center

    Wisehart, Gary; Mandell, Mark

    2008-01-01

    A methodology is described that teaches science process by combining informal logic and a heuristic for rating factual reliability. This system facilitates student hypothesis formation, testing, and evaluation of results. After problem solving with this scheme, students are asked to examine and evaluate arguments for the underlying principles of…

  9. Conceptual and procedural knowledge community college students use when solving a complex science problem

    NASA Astrophysics Data System (ADS)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as a misconception. One of 21 (5%) problem-solving pathway characteristics was used effectively, 7 (33%) marginally, and 13 (62%) poorly. There were very few (0 to 4) problem-solving pathway characteristics used unsuccessfully most were simply not used.

  10. Calculus Problem Solving Behavior of Mathematic Education Students

    NASA Astrophysics Data System (ADS)

    Rizal, M.; Mansyur, J.

    2017-04-01

    The purpose of this study is to obtain a description of the problem-solving behaviour of mathematics education students. The attainment of the purpose consisted of several stages: (1) to gain the subject from the mathematic education of first semester students, each of them who has a high, medium, and low competence of mathematic case. (2) To give two mathematical problems with different characteristics. The first problem (M1), the statement does not lead to a resolution. The second problem (M2), a statement leads to problem-solving. (3) To explore the behaviour of problem-solving based on the step of Polya (Rizal, 2011) by way of thinking aloud and in-depth interviews. The obtained data are analysed as suggested by Miles and Huberman (1994) but at first, time triangulation is done or data’s credibility by providing equivalent problem contexts and at different times. The results show that the behavioral problem solvers (mathematic education students) who are capable of high mathematic competency (ST). In understanding M1, ST is more likely to pay attention to an image first, read the texts piecemeal and repeatedly, then as a whole and more focus to the sentences that contain equations, numbers or symbols. As a result, not all information can be received well. When understanding the M2, ST can link the information from a problem that is stored in the working memory to the information on the long-term memory. ST makes planning to the solution of M1 and M2 by using a formula based on similar experiences which have been ever received before. Another case when implementing the troubleshooting plans, ST complete the M1 according to the plan, but not all can be resolved correctly. In contrast to the implementation of the solving plan of M2, ST can solve the problem according to plan quickly and correctly. According to the solving result of M1 and M2, ST conducts by reading the job based on an algorithm and reasonability. Furthermore, when SS and SR understand the problem of M1 and M2 similar to the ST’s, but both of the problem solvers read the questions with not complete so that they cannot pay attention to the questions of the problems. SS and SR create and execute M2 plan same as ST, but for M1, SS and SR cannot do it, but only active on reading the statement of the problem. On the checking of the M2 task, SS and SR retrace the task according to the used formula.

  11. Problem-Solving Software

    NASA Technical Reports Server (NTRS)

    1992-01-01

    CBR Express software solves problems by adapting sorted solutions to new problems specified by a user. It is applicable to a wide range of situations. The technology was originally developed by Inference Corporation for Johnson Space Center's Advanced Software Development Workstation. The project focused on the reuse of software designs, and Inference used CBR as part of the ACCESS prototype software. The commercial CBR Express is used as a "help desk" for customer support, enabling reuse of existing information when necessary. It has been adopted by several companies, among them American Airlines, which uses it to solve reservation system software problems.

  12. Gender Differences in Solution of Algebraic Word Problems Containing Irrelevant Information.

    ERIC Educational Resources Information Center

    Low, Renae; Over, Ray

    1993-01-01

    Female tenth graders (n=217) were less likely than male tenth graders (n=219) to identify missing or irrelevant information in algebra problems. Female eleventh graders (n=234) were less likely than male eleventh graders (n=287) to solve problems with irrelevant information. Results indicate sex differences in knowledge of problem structure. (SLD)

  13. Students using visual thinking to learn science in a Web-based environment

    NASA Astrophysics Data System (ADS)

    Plough, Jean Margaret

    United States students' science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment. The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students' performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of other students, and used these linked structures as models for solving problems. Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts. The results of this study showed clearly that (1) making visual representations helped students understand science knowledge, (2) making links between web pages helped students construct Science Knowledge Structures, and (3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the science concepts were usually represented accurately. Further, looking for information on the internet may cause new problems in learning. Likewise, being absent, starting late, and/or dropping out all may negatively influence students' proficiency on the standards. Finally, the way Science Structures are constructed and linked may provide insights into the way individual students think and process information.

  14. Studying PubMed usages in the field for complex problem solving: Implications for tool design

    PubMed Central

    Song, Jean; Tonks, Jennifer Steiner; Meng, Fan; Xuan, Weijian; Ameziane, Rafiqa

    2012-01-01

    Many recent studies on MEDLINE-based information seeking have shed light on scientists’ behaviors and associated tool innovations that may improve efficiency and effectiveness. Few if any studies, however, examine scientists’ problem-solving uses of PubMed in actual contexts of work and corresponding needs for better tool support. Addressing this gap, we conducted a field study of novice scientists (14 upper level undergraduate majors in molecular biology) as they engaged in a problem solving activity with PubMed in a laboratory setting. Findings reveal many common stages and patterns of information seeking across users as well as variations, especially variations in cognitive search styles. Based on findings, we suggest tool improvements that both confirm and qualify many results found in other recent studies. Our findings highlight the need to use results from context-rich studies to inform decisions in tool design about when to offer improved features to users. PMID:24376375

  15. Generic Science Skills Enhancement of Students through Implementation of IDEAL Problem Solving Model on Genetic Information Course

    NASA Astrophysics Data System (ADS)

    Zirconia, A.; Supriyanti, F. M. T.; Supriatna, A.

    2018-04-01

    This study aims to determine generic science skills enhancement of students through implementation of IDEAL problem-solving model on genetic information course. Method of this research was mixed method, with pretest-posttest nonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry course, consisted of 22 students in the experimental class and 19 students in control class. The instrument in this study was essayed involves 6 indicators generic science skills such as indirect observation, causality thinking, logical frame, self-consistent thinking, symbolic language, and developing concept. The results showed that genetic information course using IDEAL problem-solving model have been enhancing generic science skills in low category with of 20,93%. Based on result for each indicator, showed that there are indicators of generic science skills classified in the high category.

  16. On the problem of solving the optimization for continuous space based on information distribution function of ant colony algorithm

    NASA Astrophysics Data System (ADS)

    Min, Huang; Na, Cai

    2017-06-01

    These years, ant colony algorithm has been widely used in solving the domain of discrete space optimization, while the research on solving the continuous space optimization was relatively little. Based on the original optimization for continuous space, the article proposes the improved ant colony algorithm which is used to Solve the optimization for continuous space, so as to overcome the ant colony algorithm’s disadvantages of searching for a long time in continuous space. The article improves the solving way for the total amount of information of each interval and the due number of ants. The article also introduces a function of changes with the increase of the number of iterations in order to enhance the convergence rate of the improved ant colony algorithm. The simulation results show that compared with the result in literature[5], the suggested improved ant colony algorithm that based on the information distribution function has a better convergence performance. Thus, the article provides a new feasible and effective method for ant colony algorithm to solve this kind of problem.

  17. Problems of systems dataware using optoelectronic measuring means of linear displacement

    NASA Astrophysics Data System (ADS)

    Bazykin, S. N.; Bazykina, N. A.; Samohina, K. S.

    2017-10-01

    Problems of the dataware of the systems with the use of optoelectronic means of the linear displacement are considered in the article. The classification of the known physical effects, realized by the means of information-measuring systems, is given. The organized analysis of information flows in technical systems from the standpoint of determination of inaccuracies of measurement and management was conducted. In spite of achieved successes in automation of machine-building and instruments-building equipment in the field of dataware of the technical systems, there are unresolved problems, concerning the qualitative aspect of the production process. It was shown that the given problem can be solved using optoelectronic lazer information-measuring systems. Such information-measuring systems are capable of not only executing the measuring functions, but also solving the problems of management and control during processing, thereby guaranteeing the quality of final products.

  18. Cultivating Peace through Design Thinking: Problem Solving with PAST Foundation

    ERIC Educational Resources Information Center

    Deaner, Kat; McCreery-Kellert, Heather

    2018-01-01

    Design thinking is a methodology that emphasizes reasoning and decision-making as part of the problem-solving process. It is a structured framework for identifying challenges, gathering information, generating potential solutions, refining ideas, and testing solutions. Design thinking offers valuable skills that will serve students well as they…

  19. An Application of the Patient-Oriented Problem-Solving (POPS) System.

    ERIC Educational Resources Information Center

    Chiodo, Gary T.; And Others

    1991-01-01

    The Patient-Oriented Problem-Solving System, a cooperative learning model, was implemented in a second year immunology course at the Oregon Health Sciences University School of Dentistry, to correlate basic and clinical sciences information about Acquired Immune Deficiency Syndrome. Student enthusiasm and learning were substantial. (MSE)

  20. Classification Objects, Ideal Observers & Generative Models

    ERIC Educational Resources Information Center

    Olman, Cheryl; Kersten, Daniel

    2004-01-01

    A successful vision system must solve the problem of deriving geometrical information about three-dimensional objects from two-dimensional photometric input. The human visual system solves this problem with remarkable efficiency, and one challenge in vision research is to understand how neural representations of objects are formed and what visual…

  1. Connecting Learning & Technology for Effective Lesson Plan Design.

    ERIC Educational Resources Information Center

    Seamon, Mary P.

    This paper focuses on the design of effective lesson plans using the Internet. Effective lesson design helps students to explore ideas, acquire and synthesize information, and frame and solve problems. The creative problem solving which depends upon context, interrelationships, and real-world activities is available through Internet projects.…

  2. Modelling Mathematics Problem Solving Item Responses Using a Multidimensional IRT Model

    ERIC Educational Resources Information Center

    Wu, Margaret; Adams, Raymond

    2006-01-01

    This research examined students' responses to mathematics problem-solving tasks and applied a general multidimensional IRT model at the response category level. In doing so, cognitive processes were identified and modelled through item response modelling to extract more information than would be provided using conventional practices in scoring…

  3. Transformational Leadership and Creative Problem-Solving: The Mediating Role of Psychological Safety and Reflexivity

    ERIC Educational Resources Information Center

    Carmeli, Abraham; Sheaffer, Zachary; Binyamin, Galy; Reiter-Palmon, Roni; Shimoni, Tali

    2014-01-01

    Previous research has pointed to the importance of transformational leadership in facilitating employees' creative outcomes. However, the mechanism by which transformational leadership cultivates employees' creative problem-solving capacity is not well understood. Drawing on theories of leadership, information processing and creativity,…

  4. Problem-Solving Practices and Complexity in School Psychology

    ERIC Educational Resources Information Center

    Brady, John; Espinosa, William R.

    2017-01-01

    How do experienced school psychologists solve problems in their practice? What can trainers of school psychologists learn about how to structure training and mentoring of graduate students from what actually happens in schools, and how can this inform our teaching at the university? This qualitative multi-interview study explored the processes…

  5. Young Children's Drawings in Problem Solving

    ERIC Educational Resources Information Center

    Bakar, Kamariah Abu; Way, Jennifer; Bobis, Janette

    2016-01-01

    This paper explores young children's drawings (6 years old) in early number and addition activities in Malaysia. Observation, informal interviews and analysis of drawings revealed two types of drawing, and gave insight into the transitional process required for children to utilise drawings in problem solving. We argue the importance of valuing and…

  6. The Computer as a Tutorial Laboratory: The Stanford BIP Project.

    ERIC Educational Resources Information Center

    Barr, Avron; And Others

    The BASIC Instructional Program (BIP) is an interactive problem-solving laboratory that offers tutorial assistance to students solving introductory programing problems in the BASIC language. After a brief review of the rationale and origins of the BIP instructional system, the design and implementation of BIP's curriculum information network are…

  7. Solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators.

    PubMed

    Zhao, Jing; Zong, Haili

    2018-01-01

    In this paper, we propose parallel and cyclic iterative algorithms for solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators. We also combine the process of cyclic and parallel iterative methods and propose two mixed iterative algorithms. Our several algorithms do not need any prior information about the operator norms. Under mild assumptions, we prove weak convergence of the proposed iterative sequences in Hilbert spaces. As applications, we obtain several iterative algorithms to solve the multiple-set split equality problem.

  8. A Monte-Carlo game theoretic approach for Multi-Criteria Decision Making under uncertainty

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh; Lund, Jay R.

    2011-05-01

    Game theory provides a useful framework for studying Multi-Criteria Decision Making problems. This paper suggests modeling Multi-Criteria Decision Making problems as strategic games and solving them using non-cooperative game theory concepts. The suggested method can be used to prescribe non-dominated solutions and also can be used as a method to predict the outcome of a decision making problem. Non-cooperative stability definitions for solving the games allow consideration of non-cooperative behaviors, often neglected by other methods which assume perfect cooperation among decision makers. To deal with the uncertainty in input variables a Monte-Carlo Game Theory (MCGT) approach is suggested which maps the stochastic problem into many deterministic strategic games. The games are solved using non-cooperative stability definitions and the results include possible effects of uncertainty in input variables on outcomes. The method can handle multi-criteria multi-decision-maker problems with uncertainty. The suggested method does not require criteria weighting, developing a compound decision objective, and accurate quantitative (cardinal) information as it simplifies the decision analysis by solving problems based on qualitative (ordinal) information, reducing the computational burden substantially. The MCGT method is applied to analyze California's Sacramento-San Joaquin Delta problem. The suggested method provides insights, identifies non-dominated alternatives, and predicts likely decision outcomes.

  9. Attitude and practice of physical activity and social problem-solving ability among university students.

    PubMed

    Sone, Toshimasa; Kawachi, Yousuke; Abe, Chihiro; Otomo, Yuki; Sung, Yul-Wan; Ogawa, Seiji

    2017-04-04

    Effective social problem-solving abilities can contribute to decreased risk of poor mental health. In addition, physical activity has a favorable effect on mental health. These previous studies suggest that physical activity and social problem-solving ability can interact by helping to sustain mental health. The present study aimed to determine the association between attitude and practice of physical activity and social problem-solving ability among university students. Information on physical activity and social problem-solving was collected using a self-administered questionnaire. We analyzed data from 185 students who participated in the questionnaire surveys and psychological tests. Social problem-solving as measured by the Social Problem-Solving Inventory-Revised (SPSI-R) (median score 10.85) was the dependent variable. Multiple logistic regression analysis was employed to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for higher SPSI-R according to physical activity categories. The multiple logistic regression analysis indicated that the ORs (95% CI) in reference to participants who said they never considered exercising were 2.08 (0.69-6.93), 1.62 (0.55-5.26), 2.78 (0.86-9.77), and 6.23 (1.81-23.97) for participants who did not exercise but intended to start, tried to exercise but did not, exercised but not regularly, and exercised regularly, respectively. This finding suggested that positive linear association between physical activity and social problem-solving ability (p value for linear trend < 0.01). The present findings suggest that regular physical activity or intention to start physical activity may be an effective strategy to improve social problem-solving ability.

  10. Raising a Thinking Preteen: The "I Can Problem Solve" Program for 8- to 12-Year-Olds.

    ERIC Educational Resources Information Center

    Shure, Myrna B.

    Aimed at parents of early adolescents, this book helps parents provide the skills teens need to cope with life's everyday frustrations and to make informed decisions about problems such as the stresses of homework, friendship, contending with peer pressure, and dealing with bullies. The foundation of the book is the "I Can Problem Solve" (ICPS)…

  11. Information transfer and shared mental models for decision making

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Fischer, Ute

    1991-01-01

    A study to determine how communication influences flight crew performance is presented. This analysis focuses on the content of communication, principally asking what an utterance does from a cognitive, problem solving viewpoint. Two questions are addressed in this study: how is language utilized to manage problems in the cockpit, and are there differences between two- and three-member crews in their communication and problem solving strategies?

  12. Human-Assisted Machine Information Exploitation: a crowdsourced investigation of information-based problem solving

    NASA Astrophysics Data System (ADS)

    Kase, Sue E.; Vanni, Michelle; Caylor, Justine; Hoye, Jeff

    2017-05-01

    The Human-Assisted Machine Information Exploitation (HAMIE) investigation utilizes large-scale online data collection for developing models of information-based problem solving (IBPS) behavior in a simulated time-critical operational environment. These types of environments are characteristic of intelligence workflow processes conducted during human-geo-political unrest situations when the ability to make the best decision at the right time ensures strategic overmatch. The project takes a systems approach to Human Information Interaction (HII) by harnessing the expertise of crowds to model the interaction of the information consumer and the information required to solve a problem at different levels of system restrictiveness and decisional guidance. The design variables derived from Decision Support Systems (DSS) research represent the experimental conditions in this online single-player against-the-clock game where the player, acting in the role of an intelligence analyst, is tasked with a Commander's Critical Information Requirement (CCIR) in an information overload scenario. The player performs a sequence of three information processing tasks (annotation, relation identification, and link diagram formation) with the assistance of `HAMIE the robot' who offers varying levels of information understanding dependent on question complexity. We provide preliminary results from a pilot study conducted with Amazon Mechanical Turk (AMT) participants on the Volunteer Science scientific research platform.

  13. SOLVE The performance analyst for hardwood sawmills

    Treesearch

    Jeff Palmer; Jan Wiedenbeck; Elizabeth Porterfield

    2009-01-01

    Presents the users manual and CD-ROM for SOLVE, a computer program that helps sawmill managers improve efficiency and solve problems commonly found in hardwood sawmills. SOLVE provides information on key operational factors including log size distribution, lumber grade yields, lumber recovery factor and overrun, and break-even log costs. (Microsoft Windows? Edition)...

  14. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Fikes, R. E.; Chaitin, L. J.; Hart, P. E.; Duda, R. O.; Nilsson, N. J.

    1971-01-01

    A program of research in the field of artificial intelligence is presented. The research areas discussed include automatic theorem proving, representations of real-world environments, problem-solving methods, the design of a programming system for problem-solving research, techniques for general scene analysis based upon television data, and the problems of assembling an integrated robot system. Major accomplishments include the development of a new problem-solving system that uses both formal logical inference and informal heuristic methods, the development of a method of automatic learning by generalization, and the design of the overall structure of a new complete robot system. Eight appendices to the report contain extensive technical details of the work described.

  15. Memory Inhibition as a Critical Factor Preventing Creative Problem Solving

    ERIC Educational Resources Information Center

    Gómez-Ariza, Carlos J.; del Prete, Francesco; Prieto del Val, Laura; Valle, Tania; Bajo, M. Teresa; Fernandez, Angel

    2017-01-01

    The hypothesis that reduced accessibility to relevant information can negatively affect problem solving in a remote associate test (RAT) was tested by using, immediately before the RAT, a retrieval practice procedure to hinder access to target solutions. The results of 2 experiments clearly showed that, relative to baseline, target words that had…

  16. The Role of Spatial Ability and Strategy Preference for Spatial Problem Solving in Organic Chemistry

    ERIC Educational Resources Information Center

    Stieff, Mike; Ryu, Minjung; Dixon, Bonnie; Hegarty, Mary

    2012-01-01

    In organic chemistry, spatial reasoning is critical for reasoning about spatial relationships in three dimensions and representing spatial information in diagrams. Despite its importance, little is known about the underlying cognitive components of spatial reasoning and the strategies that students employ to solve spatial problems in organic…

  17. Problem solving or social change? The Applegate and Grand Canyon Forest Partnerships

    Treesearch

    Cassandra Moseley; Brett KenCairn

    2001-01-01

    Natural resource conflicts have resulted in attempts at better collaboration between public and private sectors. The resulting partnerships approach collaboration either by problem solving through better information and management, or by requiring substantial social change. The Applegate Partnership in Oregon and the Grand Canyon Forest Partnership in Arizona...

  18. Imitation in Infancy: The Wealth of the Stimulus

    ERIC Educational Resources Information Center

    Ray, Elizabeth; Heyes, Cecilia

    2011-01-01

    Imitation requires the imitator to solve the correspondence problem--to translate visual information from modelled action into matching motor output. It has been widely accepted for some 30 years that the correspondence problem is solved by a specialized, innate cognitive mechanism. This is the conclusion of a poverty of the stimulus argument,…

  19. Improvement of Word Problem Solving and Basic Mathematics Competencies in Students with Attention Deficit/Hyperactivity Disorder and Mathematical Learning Difficulties

    ERIC Educational Resources Information Center

    González-Castro, Paloma; Cueli, Marisol; Areces, Débora; Rodríguez, Celestino; Sideridis, Georgios

    2016-01-01

    Problem solving represents a salient deficit in students with mathematical learning difficulties (MLD) primarily caused by difficulties with informal and formal mathematical competencies. This study proposes a computerized intervention tool, the integrated dynamic representation (IDR), for enhancing the early learning of basic mathematical…

  20. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1974-01-01

    The conceptual, experimental, and practical aspects of the development of a robot computer problem solving system were investigated. The distinctive characteristics were formulated of the approach taken in relation to various studies of cognition and robotics. Vehicle and eye control systems were structured, and the information to be generated by the visual system is defined.

  1. Assessing Students in Human-to-Agent Settings to Inform Collaborative Problem-Solving Learning

    ERIC Educational Resources Information Center

    Rosen, Yigal

    2017-01-01

    In order to understand potential applications of collaborative problem-solving (CPS) assessment tasks, it is necessary to examine empirically the multifaceted student performance that may be distributed across collaboration methods and purposes of the assessment. Ideally, each student should be matched with various types of group members and must…

  2. Environmental Pollution: Is There Enough Public Concern to Lead to Action?

    ERIC Educational Resources Information Center

    Sharma, Navin C.; And Others

    1975-01-01

    Research indicates that the impetus to solve pollution problems may have to come from processes outside the realm of ordinary problem solving institutions. Mass media exposure and involvement in the political process are ineffective in generating antipollution sentiment. "Grass roots" movements based on informal communication may emerge to combat…

  3. Learning comunication strategies for distributed artificial intelligence

    NASA Astrophysics Data System (ADS)

    Kinney, Michael; Tsatsoulis, Costas

    1992-08-01

    We present a methodology that allows collections of intelligent system to automatically learn communication strategies, so that they can exchange information and coordinate their problem solving activity. In our methodology communication between agents is determined by the agents themselves, which consider the progress of their individual problem solving activities compared to the communication needs of their surrounding agents. Through learning, communication lines between agents might be established or disconnected, communication frequencies modified, and the system can also react to dynamic changes in the environment that might force agents to cease to exist or to be added. We have established dynamic, quantitative measures of the usefulness of a fact, the cost of a fact, the work load of an agent, and the selfishness of an agent (a measure indicating an agent's preference between transmitting information versus performing individual problem solving), and use these values to adapt the communication between intelligent agents. In this paper we present the theoretical foundations of our work together with experimental results and performance statistics of networks of agents involved in cooperative problem solving activities.

  4. Lesion mapping of social problem solving

    PubMed Central

    Colom, Roberto; Paul, Erick J.; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H.

    2014-01-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion–symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511

  5. Trading a Problem-solving Task

    NASA Astrophysics Data System (ADS)

    Matsubara, Shigeo

    This paper focuses on a task allocation problem, especially cases where the task is to find a solution in a search problem or a constraint satisfaction problem. If the search problem is hard to solve, a contractor may fail to find a solution. Here, the more computational resources such as the CPU time the contractor invests in solving the search problem, the more a solution is likely to be found. This brings about a new problem that a contractee has to find an appropriate level of the quality in a task achievement as well as to find an efficient allocation of a task among contractors. For example, if the contractee asks the contractor to find a solution with certainty, the payment from the contractee to the contractor may exceed the contractee's benefit from obtaining a solution, which discourages the contractee from trading a task. However, solving this problem is difficult because the contractee cannot ascertain the contractor's problem-solving ability such as the amount of available resources and knowledge (e.g. algorithms, heuristics) or monitor what amount of resources are actually invested in solving the allocated task. To solve this problem, we propose a task allocation mechanism that is able to choose an appropriate level of the quality in a task achievement and prove that this mechanism guarantees that each contractor reveals its true information. Moreover, we show that our mechanism can increase the contractee's utility compared with a simple auction mechanism by using computer simulation.

  6. Lexical Problems in Large Distributed Information Systems.

    ERIC Educational Resources Information Center

    Berkovich, Simon Ya; Shneiderman, Ben

    1980-01-01

    Suggests a unified concept of a lexical subsystem as part of an information system to deal with lexical problems in local and network environments. The linguistic and control functions of the lexical subsystems in solving problems for large computer systems are described, and references are included. (Author/BK)

  7. Children's application of simultaneous and successive processing in inductive and deductive reasoning problems: Implications for developing scientific reasoning skills

    NASA Astrophysics Data System (ADS)

    Watters, James J.; English, Lyn D.

    The research reported in this article was undertaken to obtain a better understanding of problem solving and scientific reasoning in 10-year-old children. The study involved measuring children's competence at syllogistic reasoning and in solving a series of problems requiring inductive reasoning. Children were also categorized on the basis of levels of simultaneous and successive synthesis. Simultaneous and successive synthesis represent two dimensions of information processing identified by Luria in a program of neuropsychological research. Simultaneous synthesis involves integration of information in a holistic or spatial fashion, whereas successive synthesis involves processing information sequentially with temporal links between stimuli. Analysis of the data generated in the study indicated that syllogistic reasoning and inductive reasoning were significantly correlated with both simultaneous and successive synthesis. However, the strongest correlation was found between simultaneous synthesis and inductive reasoning. These findings provide a basis for understanding the roles of spatial and verbal-logical ability as defined by Luria's neuropsychological theory in scientific problem solving. The results also highlight the need for teachers to provide experiences which are compatible with individual students' information processing styles.Received: 19 October 1993; Revised: 15 December 1994;

  8. Three Modes of Hydrogeophysical Investigation: Puzzles, Mysteries, and Conundrums

    NASA Astrophysics Data System (ADS)

    Ferre, P. A.

    2011-12-01

    In an article in the New Yorker in 2007, Malcolm Gladwell discussed the distinction that national security expert Gregory Treverton has made between puzzles and mysteries. Specifically, puzzles are problems that we understand and that will eventually be solved when we amass enough information. (Think crossword puzzles.) Mysteries are problems for which we have the necessary information, but it is often overwhelmed by irrelevant or misleading input. To solve a mystery, we require improved analysis. (Think find-a-word.) Gladwell goes on to explain that, in the national security realm, the Cold War was a puzzle while the current national security condition is a mystery. I will discuss the past, current, and future trajectories of hydrogeophysics in terms of puzzles and mysteries. I will also add a third class of problem: conundrums - those for which we lack sufficient information about their structure to know how to solve them. A conundrum is a mystery with an unexpected twist. I hope to make the case that the future growth of hydrogeophysics lies in our ability to address this more challenging and more interesting class of problem.

  9. Neural pathway in the right hemisphere underlies verbal insight problem solving.

    PubMed

    Zhao, Q; Zhou, Z; Xu, H; Fan, W; Han, L

    2014-01-03

    Verbal insight problem solving means to break mental sets, to select the novel semantic information and to form novel, task-related associations. Although previous studies have identified the brain regions associated with these key processes, the interaction among these regions during insight is still unclear. In the present study, we explored the functional connectivity between the key regions during solving Chinese 'chengyu' riddles by using event-related functional magnetic resonance imaging. Results showed that both insight and noninsight solutions activated the bilateral inferior frontal gyri, middle temporal gyri and hippocampi, and these regions constituted a frontal to temporal to hippocampal neural pathway. Compared with noninsight solution, insight solution had a stronger functional connectivity between the inferior frontal gyrus and middle temporal gyrus in the right hemisphere. Our study reveals the neural pathway of information processing during verbal insight problem solving, and supports the right-hemisphere advantage theory of insight. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Uncovering the problem-solving process: cued retrospective reporting versus concurrent and retrospective reporting.

    PubMed

    van Gog, Tamara; Paas, Fred; van Merriënboer, Jeroen J G; Witte, Puk

    2005-12-01

    This study investigated the amounts of problem-solving process information ("action," "why," "how," and "metacognitive") elicited by means of concurrent, retrospective, and cued retrospective reporting. In a within-participants design, 26 participants completed electrical circuit troubleshooting tasks under different reporting conditions. The method of cued retrospective reporting used the original computer-based task and a superimposed record of the participant's eye fixations and mouse-keyboard operations as a cue for retrospection. Cued retrospective reporting (with the exception of why information) and concurrent reporting (with the exception of metacognitive information) resulted in a higher number of codes on the different types of information than did retrospective reporting.

  11. Interactive computerized learning program exposes veterinary students to challenging international animal-health problems.

    PubMed

    Conrad, Patricia A; Hird, Dave; Arzt, Jonathan; Hayes, Rick H; Magliano, Dave; Kasper, Janine; Morfin, Saul; Pinney, Stephen

    2007-01-01

    This article describes a computerized case-based CD-ROM (CD) on international animal health that was developed to give veterinary students an opportunity to "virtually" work alongside veterinarians and other veterinary students as they try to solve challenging disease problems relating to tuberculosis in South African wildlife, bovine abortion in Mexico, and neurologic disease in horses in Rapa Nui, Chile. Each of the three case modules presents, in a highly interactive format, a problem or mystery that must be solved by the learner. As well as acquiring information via video clips and text about the specific health problem, learners obtain information about the different countries, animal-management practices, diagnostic methods, related disease-control issues, economic factors, and the opinions of local experts. After assimilating this information, the learner must define the problem and formulate an action plan or make a recommendation or diagnosis. The computerized program invokes three principles of adult education: active learning, learner-centered education, and experiential learning. A medium that invokes these principles is a potentially efficient learning tool and template for developing other case-based problem-solving computerized programs. The program is accessible on the World Wide Web at . A broadband Internet connection is recommended, since the modules make extensive use of embedded video and audio clips. Information on how to obtain the CD is also provided.

  12. Digital program for solving the linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, B.

    1975-01-01

    A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.

  13. The Efficacy and Development of Students' Problem-Solving Strategies During Compulsory Schooling: Logfile Analyses

    PubMed Central

    Molnár, Gyöngyvér; Csapó, Benő

    2018-01-01

    The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3rd- to 12th-grade students (aged 9–18) in Hungarian schools (n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons. PMID:29593606

  14. The Efficacy and Development of Students' Problem-Solving Strategies During Compulsory Schooling: Logfile Analyses.

    PubMed

    Molnár, Gyöngyvér; Csapó, Benő

    2018-01-01

    The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3 rd - to 12 th -grade students (aged 9-18) in Hungarian schools ( n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons.

  15. Eliminating Barriers: A Training Intervention in the Use of Medical Information Resources Within an Information-rich Ambulatory Care Environment

    PubMed Central

    Cuddy, Colleen; Brewer, Karen; Fitzpatrick, Bronson; Faraino, Richard; Trainor, Angela; Ciotoli, Carlo

    2001-01-01

    The NYU Ehrman Medical Library worked with the NYU Health Center to establish a base line analysis of the Center staff's knowledge and skills about medical information resources and how they apply them to clinical problem solving in their practice. Based on the results of this survey, the library conducted a targeted 12-month training program in how to select and use electronic resources for clinical problem solving. The survey was repeated and analyzed for significant self-reported change in information-seeking behavior and information skills. The poster presents the statistically significant changes and a set of the resultant research hypotheses.

  16. Development and Validation of the Diabetes Adolescent Problem Solving Questionnaire

    PubMed Central

    Mulvaney, Shelagh A.; Jaser, Sarah S.; Rothman, Russell L.; Russell, William; Pittel, Eric J.; Lybarger, Cindy; Wallston, Kenneth A.

    2014-01-01

    Objective Problem solving is a critical diabetes self-management skill. Because of a lack of clinically feasible measures, our aim was to develop and validate a self-report self-management problem solving questionnaire for adolescents with type 1 diabetes (T1D). Methods A multidisciplinary team of diabetes experts generated questionnaire items that addressed diabetes self-management problem solving. Iterative feedback from parents and adolescents resulted in 27 items. Adolescents from two studies (N=156) aged 13–17 were recruited through a pediatric diabetes clinic and completed measures through an online survey. Glycemic control was measured by HbA1c recorded in the medical record. Results Empirical elimination of items using Principal Components Analyses resulted in a 13-item unidimensional measure, the Diabetes Adolescent Problem Solving Questionnaire (DAPSQ) that explained 57% of the variance. The DAPSQ demonstrated internal consistency (Cronbach’s alpha = 0.92) and was correlated with diabetes self-management (r=0.53, p<.001), self-efficacy (r=0.54, p<.001), and glycemic control (r= −0.24, p<.01). Conclusion The DAPSQ is a brief instrument for assessment of diabetes self-management problem solving in youth with T1D associated with better self-management behaviors and glycemic control. Practice Implications The DAPSQ is a clinically feasible self-report measure that can provide valuable information regarding level of self-management problem solving and guide patient education. PMID:25063715

  17. Development and validation of the diabetes adolescent problem solving questionnaire.

    PubMed

    Mulvaney, Shelagh A; Jaser, Sarah S; Rothman, Russell L; Russell, William E; Pittel, Eric J; Lybarger, Cindy; Wallston, Kenneth A

    2014-10-01

    Problem solving is a critical diabetes self-management skill. Because of a lack of clinically feasible measures, our aim was to develop and validate a self-report self-management problem solving questionnaire for adolescents with type 1 diabetes (T1D). A multidisciplinary team of diabetes experts generated questionnaire items that addressed diabetes self-management problem solving. Iterative feedback from parents and adolescents resulted in 27 items. Adolescents from two studies (N=156) aged 13-17 were recruited through a pediatric diabetes clinic and completed measures through an online survey. Glycemic control was measured by HbA1c recorded in the medical record. Empirical elimination of items using principal components analyses resulted in a 13-item unidimensional measure, the diabetes adolescent problem solving questionnaire (DAPSQ) that explained 56% of the variance. The DAPSQ demonstrated internal consistency (Cronbach's alpha=0.92) and was correlated with diabetes self-management (r=0.53, p<.001), self-efficacy (r=0.54, p<.001), and glycemic control (r=-0.24, p<.01). The DAPSQ is a brief instrument for assessment of diabetes self-management problem solving in youth with T1D and is associated with better self-management behaviors and glycemic control. The DAPSQ is a clinically feasible self-report measure that can provide valuable information regarding level of self-management problem solving and guide patient education. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Agent Architecture for Aviation Data Integration System

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Wang, Yao; Windrem, May; Patel, Hemil; Wei, Mei

    2004-01-01

    This paper describes the proposed agent-based architecture of the Aviation Data Integration System (ADIS). ADIS is a software system that provides integrated heterogeneous data to support aviation problem-solving activities. Examples of aviation problem-solving activities include engineering troubleshooting, incident and accident investigation, routine flight operations monitoring, safety assessment, maintenance procedure debugging, and training assessment. A wide variety of information is typically referenced when engaging in these activities. Some of this information includes flight recorder data, Automatic Terminal Information Service (ATIS) reports, Jeppesen charts, weather data, air traffic control information, safety reports, and runway visual range data. Such wide-ranging information cannot be found in any single unified information source. Therefore, this information must be actively collected, assembled, and presented in a manner that supports the users problem-solving activities. This information integration task is non-trivial and presents a variety of technical challenges. ADIS has been developed to do this task and it permits integration of weather, RVR, radar data, and Jeppesen charts with flight data. ADIS has been implemented and used by several airlines FOQA teams. The initial feedback from airlines is that such a system is very useful in FOQA analysis. Based on the feedback from the initial deployment, we are developing a new version of the system that would make further progress in achieving following goals of our project.

  19. The Influence of Science Knowledge Structures on Children's Success in Solving Academic Problems.

    ERIC Educational Resources Information Center

    Champagne, Audrey B.; And Others

    Presented is a study of eighth-grade students' academic problem-solving ability based on their knowledge structures, or their information stored in semantic or long-term memory. The authors describe a technique that they developed to probe knowledge structures with an extension of the card-sort method. The method, known as the Concept Structure…

  20. Impact of Authenticity on Sense Making in Word Problem Solving

    ERIC Educational Resources Information Center

    Palm, Torulf

    2008-01-01

    The study presented in this paper seeks to investigate the impact of authenticity on the students' disposition to make necessary real world considerations in their word problem solving. The aim is also to gather information about the extent to which different reasons for the students' behaviors are responsible for not providing solutions that are…

  1. In Search of Facilitating Citizens' Problem Solving: Public Libraries' Collaborative Development of Services with Related Organizations

    ERIC Educational Resources Information Center

    Ikeya, Nozomi; Tamura, Shunsaku; Miwa, Makiko; Koshizuka, Mika; Saito, Seiichi; Kasai, Yumiko

    2011-01-01

    Introduction: The paper attempts to understand value constellations in organising and using the business information service that was recently developed by various stakeholders with libraries who were in pursuit of supporting people's problem solving in Japanese public libraries. Method: In-depth interviews were conducted not only with users and…

  2. Exploring Teachers' Process of Change in Incorporating Problem Solving into the Mathematics Classroom

    ERIC Educational Resources Information Center

    Rutherford, Vanessa

    2012-01-01

    This study explores how a problem-solving based professional learning community (PLC) affects the beliefs, knowledge, and instructional practices of two sixth-grade mathematics teachers. An interview and two observations were conducted prior to beginning the year-long PLC in order to gather information about the participants' beliefs,…

  3. Brain Hyper-Connectivity and Operation-Specific Deficits during Arithmetic Problem Solving in Children with Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod

    2015-01-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who…

  4. VET Workers' Problem-Solving Skills in Technology-Rich Environments: European Approach

    ERIC Educational Resources Information Center

    Hämäläinen, Raija; Cincinnato, Sebastiano; Malin, Antero; De Wever, Bram

    2014-01-01

    The European workplace is challenging VET adults' problem-solving skills in technology-rich environments (TREs). So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults' skills to date. The present study (N = 50 369) focuses on gaining insight…

  5. Mathematical Self-Efficacy and Understanding: Using Geographic Information Systems to Mediate Urban High School Students' Real-World Problem Solving

    ERIC Educational Resources Information Center

    DeBay, Dennis J.

    2013-01-01

    To explore student mathematical self-efficacy and understanding of graphical data, this dissertation examines students solving real-world problems in their neighborhood, mediated by professional urban planning technologies. As states and schools are working on the alignment of the Common Core State Standards for Mathematics (CCSSM), traditional…

  6. Changing Channels: Activities Promoting Media Smarts and Creative Problem Solving for Kids.

    ERIC Educational Resources Information Center

    Hoffman, Eric

    When children have healthy ways to process the news and information they see on television, they are better prepared to approach conflict peacefully and solve problems in their everyday lives. This guide presents activities for children to help them learn to think critically about what they see on television, to resolve conflicts productively, and…

  7. Colorful Success: Preschoolers' Use of Perceptual Color Cues to Solve a Spatial Reasoning Problem

    ERIC Educational Resources Information Center

    Joh, Amy S.; Spivey, Leigh A.

    2012-01-01

    Spatial reasoning, a crucial skill for everyday actions, develops gradually during the first several years of childhood. Previous studies have shown that perceptual information and problem solving strategies are critical for successful spatial reasoning in young children. Here, we sought to link these two factors by examining children's use of…

  8. Assessment of Complex Problem Solving: What We Know and What We Don't Know

    ERIC Educational Resources Information Center

    Herde, Christoph Nils; Wüstenberg, Sascha; Greiff, Samuel

    2016-01-01

    Complex Problem Solving (CPS) is seen as a cross-curricular 21st century skill that has attracted interest in large-scale-assessments. In the Programme for International Student Assessment (PISA) 2012, CPS was assessed all over the world to gain information on students' skills to acquire and apply knowledge while dealing with nontransparent…

  9. Analysing Student Written Solutions to Investigate if Problem-Solving Processes Are Evident Throughout

    ERIC Educational Resources Information Center

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-01-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science…

  10. Designs of goal-free problems for trigonometry learning

    NASA Astrophysics Data System (ADS)

    Retnowati, E.; Maulidya, S. R.

    2018-03-01

    This paper describes the designs of goal-free problems particularly for trigonometry, which may be considered a difficult topic for high school students.Goal-free problem is an instructional design developed based on a Cognitive load theory (CLT). Within the design, instead of asking students to solve a specific goal of a mathematics problem, the instruction is to solve as many Pythagoras as possible. It was assumed that for novice students, goal-free problems encourage students to pay attention more to the given information and the mathematical principles that can be applied to reveal the unknown variables. Hence, students develop more structured knowledge while solving the goal-free problems. The resulted design may be used in regular mathematics classroom with some adjustment on the difficulty level and the allocated lesson time.

  11. Implementation of basic chemistry experiment based on metacognition to increase problem-solving and build concept understanding

    NASA Astrophysics Data System (ADS)

    Zuhaida, A.

    2018-04-01

    Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.

  12. Experimental Design for Estimating Unknown Hydraulic Conductivity in a Confined Aquifer using a Genetic Algorithm and a Reduced Order Model

    NASA Astrophysics Data System (ADS)

    Ushijima, T.; Yeh, W.

    2013-12-01

    An optimal experimental design algorithm is developed to select locations for a network of observation wells that provides the maximum information about unknown hydraulic conductivity in a confined, anisotropic aquifer. The design employs a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. Because that the formulated problem is non-convex and contains integer variables (necessitating a combinatorial search), for a realistically-scaled model, the problem may be difficult, if not impossible, to solve through traditional mathematical programming techniques. Genetic Algorithms (GAs) are designed to search out the global optimum; however because a GA requires a large number of calls to a groundwater model, the formulated optimization problem may still be infeasible to solve. To overcome this, Proper Orthogonal Decomposition (POD) is applied to the groundwater model to reduce its dimension. The information matrix in the full model space can then be searched without solving the full model.

  13. Stalking the IQ Quark.

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    1979-01-01

    An information-processing framework is presented for understanding intelligence. Two levels of processing are discussed: the steps involved in solving a complex intellectual task, and higher-order processes used to decide how to solve the problem. (MH)

  14. A technique for solving constraint satisfaction problems using Prolog's definite clause grammars

    NASA Technical Reports Server (NTRS)

    Nachtsheim, Philip R.

    1988-01-01

    A new technique for solving constraint satisfaction problems using Prolog's definite clause grammars is presented. It exploits the fact that the grammar rule notation can be viewed as a state exchange notation. The novel feature of the technique is that it can perform informed as well as blind search. It provides the Prolog programmer with a new technique for application to a wide range of design, scheduling, and planning problems.

  15. Distributed Optimization for a Class of Nonlinear Multiagent Systems With Disturbance Rejection.

    PubMed

    Wang, Xinghu; Hong, Yiguang; Ji, Haibo

    2016-07-01

    The paper studies the distributed optimization problem for a class of nonlinear multiagent systems in the presence of external disturbances. To solve the problem, we need to achieve the optimal multiagent consensus based on local cost function information and neighboring information and meanwhile to reject local disturbance signals modeled by an exogenous system. With convex analysis and the internal model approach, we propose a distributed optimization controller for heterogeneous and nonlinear agents in the form of continuous-time minimum-phase systems with unity relative degree. We prove that the proposed design can solve the exact optimization problem with rejecting disturbances.

  16. Working wonders? investigating insight with magic tricks.

    PubMed

    Danek, Amory H; Fraps, Thomas; von Müller, Albrecht; Grothe, Benedikt; Ollinger, Michael

    2014-02-01

    We propose a new approach to differentiate between insight and noninsight problem solving, by introducing magic tricks as problem solving domain. We argue that magic tricks are ideally suited to investigate representational change, the key mechanism that yields sudden insight into the solution of a problem, because in order to gain insight into the magicians' secret method, observers must overcome implicit constraints and thus change their problem representation. In Experiment 1, 50 participants were exposed to 34 different magic tricks, asking them to find out how the trick was accomplished. Upon solving a trick, participants indicated if they had reached the solution either with or without insight. Insight was reported in 41.1% of solutions. The new task domain revealed differences in solution accuracy, time course and solution confidence with insight solutions being more likely to be true, reached earlier, and obtaining higher confidence ratings. In Experiment 2, we explored which role self-imposed constraints actually play in magic tricks. 62 participants were presented with 12 magic tricks. One group received verbal cues, providing solution relevant information without giving the solution away. The control group received no informative cue. Experiment 2 showed that participants' constraints were suggestible to verbal cues, resulting in higher solution rates. Thus, magic tricks provide more detailed information about the differences between insightful and noninsightful problem solving, and the underlying mechanisms that are necessary to have an insight. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Investigating the psychological resilience, self-confidence and problem-solving skills of midwife candidates.

    PubMed

    Ertekin Pinar, Sukran; Yildirim, Gulay; Sayin, Neslihan

    2018-05-01

    The high level of psychological resilience, self-confidence and problem solving skills of midwife candidates play an important role in increasing the quality of health care and in fulfilling their responsibilities towards patients. This study was conducted to investigate the psychological resilience, self-confidence and problem-solving skills of midwife candidates. It is a convenience descriptive quantitative study. Students who study at Health Sciences Faculty in Turkey's Central Anatolia Region. Midwife candidates (N = 270). In collection of data, the Personal Information Form, Psychological Resilience Scale for Adults (PRSA), Self-Confidence Scale (SCS), and Problem Solving Inventory (PSI) were used. There was a negatively moderate-level significant relationship between the Problem Solving Inventory scores and the Psychological Resilience Scale for Adults scores (r = -0.619; p = 0.000), and between Self-Confidence Scale scores (r = -0.524; p = 0.000). There was a positively moderate-level significant relationship between the Psychological Resilience Scale for Adults scores and the Self-Confidence Scale scores (r = 0.583; p = 0.000). There was a statistically significant difference (p < 0.05) between the Problem Solving Inventory and the Psychological Resilience Scale for Adults scores according to getting support in a difficult situation. As psychological resilience and self-confidence levels increase, problem-solving skills increase; additionally, as self-confidence increases, psychological resilience increases too. Psychological resilience, self-confidence, and problem-solving skills of midwife candidates in their first-year of studies are higher than those who are in their fourth year. Self-confidence and psychological resilience of midwife candidates aged between 17 and 21, self-confidence and problem solving skills of residents of city centers, psychological resilience of those who perceive their monthly income as sufficient are high. Psychological resilience and problem-solving skills for midwife candidates who receive social support are also high. The fact that levels of self-confidence, problem-solving skills and psychological resilience of fourth-year students are found to be low presents a situation that should be taken into consideration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Complex collaborative problem-solving processes in mission control.

    PubMed

    Fiore, Stephen M; Wiltshire, Travis J; Oglesby, James M; O'Keefe, William S; Salas, Eduardo

    2014-04-01

    NASA's Mission Control Center (MCC) is responsible for control of the International Space Station (ISS), which includes responding to problems that obstruct the functioning of the ISS and that may pose a threat to the health and well-being of the flight crew. These problems are often complex, requiring individuals, teams, and multiteam systems, to work collaboratively. Research is warranted to examine individual and collaborative problem-solving processes in this context. Specifically, focus is placed on how Mission Control personnel-each with their own skills and responsibilities-exchange information to gain a shared understanding of the problem. The Macrocognition in Teams Model describes the processes that individuals and teams undertake in order to solve problems and may be applicable to Mission Control teams. Semistructured interviews centering on a recent complex problem were conducted with seven MCC professionals. In order to assess collaborative problem-solving processes in MCC with those predicted by the Macrocognition in Teams Model, a coding scheme was developed to analyze the interview transcriptions. Findings are supported with excerpts from participant transcriptions and suggest that team knowledge-building processes accounted for approximately 50% of all coded data and are essential for successful collaborative problem solving in mission control. Support for the internalized and externalized team knowledge was also found (19% and 20%, respectively). The Macrocognition in Teams Model was shown to be a useful depiction of collaborative problem solving in mission control and further research with this as a guiding framework is warranted.

  19. A method to stabilize linear systems using eigenvalue gradient information

    NASA Technical Reports Server (NTRS)

    Wieseman, C. D.

    1985-01-01

    Formal optimization methods and eigenvalue gradient information are used to develop a stabilizing control law for a closed loop linear system that is initially unstable. The method was originally formulated by using direct, constrained optimization methods with the constraints being the real parts of the eigenvalues. However, because of problems in trying to achieve stabilizing control laws, the problem was reformulated to be solved differently. The method described uses the Davidon-Fletcher-Powell minimization technique to solve an indirect, constrained minimization problem in which the performance index is the Kreisselmeier-Steinhauser function of the real parts of all the eigenvalues. The method is applied successfully to solve two different problems: the determination of a fourth-order control law stabilizes a single-input single-output active flutter suppression system and the determination of a second-order control law for a multi-input multi-output lateral-directional flight control system. Various sets of design variables and initial starting points were chosen to show the robustness of the method.

  20. An investigation of aviator problem-solving skills as they relate to amount of total flight time

    NASA Astrophysics Data System (ADS)

    Guilkey, James Elwood, Jr.

    As aircraft become increasingly more reliable, safety issues have shifted towards the human component of flight, the pilot. Jensen (1995) indicated that 80% of all General Aviation (GA) accidents are the result, at least in part, of errors committed by the aviator. One major focus of current research involves aviator decision making (ADM). ADM combines a broad range of psychological factors including personality, attitude, and motivation. This approach fails to isolate certain key components such as aviator problem-solving (APS) which are paramount to safe operations. It should be noted that there is a clear delineation between problem-solving and decision making and not assume that they are homogenous. For years, researchers, industry, and the Federal Aviation Administration (FAA) have depended on total flight hours as the standard by which to judge aviator expertise. A pilot with less than a prescribed number of hours is considered a novice while those above that mark are considered experts. The reliance on time as a predictor of performance may be accurate when considering skills which are required on every flight (i.e., takeoff and landing) but we can't assume that this holds true for all aspects of aviator expertise. Complex problem-solving for example, is something that is rarely faced during the normal course of flying. In fact, there are a myriad of procedures and FAA mandated regulations designed to assist pilots in avoiding problems. Thus, one should not assume that aviator problem-solving skills will increase over time. This study investigated the relationship between problem-solving skills of general aviation pilots and total number of flight hours. It was discovered that flight time is not a good predictor of problem-solving performance. There were two distinct strategies that were identified in the study. The first, progressive problem solving (PPS) was characterized by a stepwise method in which pilots gathered information, formulated hypotheses, and evaluated outcomes. Both high time as well as low time pilots demonstrated this approach. The second method, termed knee-jerk decision making was distinguished by a lack of problem-solving abilities and involved an almost immediate decision with little if any supporting information. Again both high and low time pilots performed in this manner. The result of these findings is a recommendation that the FAA adopt new training methods which will allow pilots to develop the skills required to handle critical inflight situations.

  1. PIAAC Problem Solving in Technology-Rich Environments: A Conceptual Framework. OECD Education Working Papers, No. 36

    ERIC Educational Resources Information Center

    Rouet, Jean-Francois; Betrancourt, Mirelle; Britt, M. Anne; Bromme, Rainer; Graesser, Arthur C.; Kulikowich, Jonna M.; Leu, Donald J.; Ueno, Naoki; van Oostendorp, Herre

    2009-01-01

    Governments and other stakeholders have become increasingly interested in assessing the skills of their adult populations for the purposes of monitoring how well prepared they are for the challenges of the new information world. The current paper provides an overview of the conceptual framework developed for the assessment of problem solving in…

  2. Heuristics for Solving Problem of Evacuating Non-Ambulatory People in a Short-Notice Disaster

    DTIC Science & Technology

    2012-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT Heuristics for Solving Problem of Evacuating Non...Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved...OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for

  3. Studies in the Human Use of Controlled English

    DTIC Science & Technology

    2015-12-01

    Controlled English (CE) is intended to aid human problem solving processes when analysing data and generating high-value conclusions in collaboration...state of affairs. The second approach is to guide a user face-to-face to formulate free English sentences into CE to solve a logic problem. The paper describes both approaches and provides an informal analysis of the results to date.

  4. Analyzing Log Files to Predict Students' Problem Solving Performance in a Computer-Based Physics Tutor

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2015-01-01

    This study investigates whether information saved in the log files of a computer-based tutor can be used to predict the problem solving performance of students. The log files of a computer-based physics tutoring environment called Andes Physics Tutor was analyzed to build a logistic regression model that predicted success and failure of students'…

  5. The Computer-Based Assessment of Complex Problem Solving and How It Is Influenced by Students' Information and Communication Technology Literacy

    ERIC Educational Resources Information Center

    Greiff, Samuel; Kretzschmar, André; Müller, Jonas C.; Spinath, Birgit; Martin, Romain

    2014-01-01

    The 21st-century work environment places strong emphasis on nonroutine transversal skills. In an educational context, complex problem solving (CPS) is generally considered an important transversal skill that includes knowledge acquisition and its application in new and interactive situations. The dynamic and interactive nature of CPS requires a…

  6. Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data

    NASA Astrophysics Data System (ADS)

    Lukyanenko, D. V.; Shishlenin, M. A.; Volkov, V. T.

    2018-01-01

    We propose the numerical method for solving coefficient inverse problem for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time observation data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows us to extract a priory information about interior layer (moving front), which appears in the direct problem, and boundary layers, which appear in the conjugate problem. We describe and implement the method of constructing a dynamically adapted mesh based on this a priory information. The dynamically adapted mesh significantly reduces the complexity of the numerical calculations and improve the numerical stability in comparison with the usual approaches. Numerical example shows the effectiveness of the proposed method.

  7. Memory inhibition as a critical factor preventing creative problem solving.

    PubMed

    Gómez-Ariza, Carlos J; Del Prete, Francesco; Prieto Del Val, Laura; Valle, Tania; Bajo, M Teresa; Fernandez, Angel

    2017-06-01

    The hypothesis that reduced accessibility to relevant information can negatively affect problem solving in a remote associate test (RAT) was tested by using, immediately before the RAT, a retrieval practice procedure to hinder access to target solutions. The results of 2 experiments clearly showed that, relative to baseline, target words that had been competitors during selective retrieval were much less likely to be provided as solutions in the RAT, demonstrating that performance in the problem-solving task was strongly influenced by the predetermined accessibility status of the solutions in memory. Importantly, this was so even when participants were unaware of the relationship between the memory and the problem-solving procedures in the experiments. This finding is consistent with an inhibitory account of retrieval-induced forgetting effects and, more generally, constitutes support for the idea that the activation status of mental representations originating in a given task (e.g., episodic memory) can unwittingly have significant consequences for a different, unrelated task (e.g., problem solving). (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Construct Validation of the Physics Metacognition Inventory

    NASA Astrophysics Data System (ADS)

    Taasoobshirazi, Gita; Farley, John

    2013-02-01

    The 24-item Physics Metacognition Inventory was developed to measure physics students' metacognition for problem solving. Items were classified into eight subcomponents subsumed under two broader components: knowledge of cognition and regulation of cognition. The students' scores on the inventory were found to be reliable and related to students' physics motivation and physics grade. An exploratory factor analysis provided evidence of construct validity, revealing six components of students' metacognition when solving physics problems including: knowledge of cognition, planning, monitoring, evaluation, debugging, and information management. Although women and men differed on the components, they had equivalent overall metacognition for problem solving. The implications of these findings for future research are discussed.

  9. Social Orientation: Problem Behavior and Motivations Toward Interpersonal Problem Solving Among High Risk Adolescents

    PubMed Central

    Kuperminc, Gabriel P.; Allen, Joseph P.

    2006-01-01

    A model of problematic adolescent behavior that expands current theories of social skill deficits in delinquent behavior to consider both social skills and orientation toward the use of adaptive skills was examined in an ethnically and socioeconomically diverse sample of 113 male and female adolescents. Adolescents were selected on the basis of moderate to serious risk for difficulties in social adaptation in order to focus on the population of youth most likely to be targeted by prevention efforts. Structural equation modeling was used to examine cross-sectional data using multiple informants (adolescents, peers, and parents) and multiple methods (performance test and self-report). Adolescent social orientation, as reflected in perceived problem solving effectiveness, identification with adult prosocial values, and self-efficacy expectations, exhibited a direct association to delinquent behavior and an indirect association to drug involvement mediated by demonstrated success in using problem solving skills. Results suggest that the utility of social skill theories of adolescent problem behaviors for informing preventive and remedial interventions can be enhanced by expanding them to consider adolescents’ orientation toward using the skills they may already possess. PMID:16929380

  10. Much ado about aha!: Insight problem solving is strongly related to working memory capacity and reasoning ability.

    PubMed

    Chuderski, Adam; Jastrzębski, Jan

    2018-02-01

    A battery comprising 4 fluid reasoning tests as well as 13 working memory (WM) tasks that involved storage, recall, updating, binding, and executive control, was applied to 318 adults in order to evaluate the true relationship of reasoning ability and WM capacity (WMC) to insight problem solving, measured using 40 verbal, spatial, math, matchstick, and remote associates problems (insight problems). WMC predicted 51.8% of variance in insight problem solving and virtually explained its almost isomorphic link to reasoning ability (84.6% of shared variance). The strong link between WMC and insight pertained generally to most WM tasks and insight problems, was identical for problems solved with and without reported insight, was linear throughout the ability levels, and was not mediated by age, motivation, anxiety, psychoticism, and openness to experience. In contrast to popular views on the sudden and holistic nature of insight, the solving of insight problems results primarily from typical operations carried out by the basic WM mechanisms that are responsible for the maintenance, retrieval, transformation, and control of information in the broad range of intellectual tasks (including fluid reasoning). Little above and beyond WM is unique about insight. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Characterization and Developmental History of Problem Solving Methods in Medicine

    PubMed Central

    Harbort, Robert A.

    1980-01-01

    The central thesis of this paper is the importance of the framework in which information is structured. It is technically important in the design of systems; it is also important in guaranteeing that systems are usable by clinicians. Progress in medical computing depends on our ability to develop a more quantitative understanding of the role of context in our choice of problem solving techniques. This in turn will help us to design more flexible and responsive computer systems. The paper contains an overview of some models of knowledge and problem solving methods, a characterization of modern diagnostic techniques, and a discussion of skill development in medical practice. Diagnostic techniques are examined in terms of how they are taught, what problem solving methods they use, and how they fit together into an overall theory of interpretation of the medical status of a patient.

  12. Good practices in managing work-related indoor air problems: a psychosocial perspective.

    PubMed

    Lahtinen, Marjaana; Huuhtanen, Pekka; Vähämäki, Kari; Kähkönen, Erkki; Mussalo-Rauhamaa, Helena; Reijula, Kari

    2004-07-01

    Indoor air problems at workplaces are often exceedingly complex. Technical questions are interrelated with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the problem solving process are also put to the test. The objective of our study was to analyze the process of managing and solving indoor air problems from a psychosocial perspective. This collective case study was based on data from questionnaires, interviews and various documentary materials. Technical inspections of the buildings and indoor air measurements were also carried out. The following four factors best differentiated successful cases from impeded cases: extensive multiprofessional collaboration and participative action, systematic action and perseverance, investment in information and communication, and process thinking and learning. The study also proposed a theoretical model for the role of the psychosocial work environment in indoor air problems. The expertise related to social and human aspects of problem solving plays a significant role in solving indoor air problems. Failures to properly handle these aspects may lead to resources being wasted and result in a problematic situation becoming stagnant or worse. Copyright 2004 Wiley-Liss, Inc.

  13. Everyday problem solving across the adult life span: solution diversity and efficacy.

    PubMed

    Mienaltowski, Andrew

    2011-10-01

    Everyday problem solving involves examining the solutions that individuals generate when faced with problems that take place in their everyday experiences. Problems can range from medication adherence and meal preparation to disagreeing with a physician over a recommended medical procedure or compromising with extended family members over where to host Thanksgiving dinner. Across the life span, research has demonstrated divergent patterns of change in performance based on the type of everyday problems used as well as based on the way that problem-solving efficacy is operationally defined. Advancing age is associated with worsening performance when tasks involve single-solution or fluency-based definitions of effectiveness. However, when efficacy is defined in terms of the diversity of strategies used, as well as by the social and emotional impact of solution choice on the individual, performance is remarkably stable and sometimes even improves in the latter half of life. This article discusses how both of these approaches to everyday problem solving inform research on the influence that aging has on everyday functioning. © 2011 New York Academy of Sciences.

  14. Everyday problem solving across the adult life span: solution diversity and efficacy

    PubMed Central

    Mienaltowski, Andrew

    2013-01-01

    Everyday problem solving involves examining the solutions that individuals generate when faced with problems that take place in their everyday experiences. Problems can range from medication adherence and meal preparation to disagreeing with a physician over a recommended medical procedure or compromising with extended family members over where to host Thanksgiving dinner. Across the life span, research has demonstrated divergent patterns of change in performance based on the type of everyday problems used as well as based on the way that problem-solving efficacy is operationally defined. Advancing age is associated with worsening performance when tasks involve single-solution or fluency-based definitions of effectiveness. However, when efficacy is defined in terms of the diversity of strategies used, as well as by the social and emotional impact of solution choice on the individual, performance is remarkably stable and sometimes even improves in the latter half of life. This article discusses how both of these approaches to everyday problem solving inform research on the influence that aging has on everyday functioning. PMID:22023569

  15. Focus group discussion in mathematical physics learning

    NASA Astrophysics Data System (ADS)

    Ellianawati; Rudiana, D.; Sabandar, J.; Subali, B.

    2018-03-01

    The Focus Group Discussion (FGD) activity in Mathematical Physics learning has helped students perform the stages of problem solving reflectively. The FGD implementation was conducted to explore the problems and find the right strategy to improve the students' ability to solve the problem accurately which is one of reflective thinking component that has been difficult to improve. The research method used is descriptive qualitative by using single subject response in Physics student. During the FGD process, one student was observed of her reflective thinking development in solving the physics problem. The strategy chosen in the discussion activity was the Cognitive Apprenticeship-Instruction (CA-I) syntax. Based on the results of this study, it is obtained the information that after going through a series of stages of discussion, the students' reflective thinking skills is increased significantly. The scaffolding stage in the CA-I model plays an important role in the process of solving physics problems accurately. Students are able to recognize and formulate problems by describing problem sketches, identifying the variables involved, applying mathematical equations that accord to physics concepts, executing accurately, and applying evaluation by explaining the solution to various contexts.

  16. Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics.

    PubMed

    Aono, Masashi; Naruse, Makoto; Kim, Song-Ju; Wakabayashi, Masamitsu; Hori, Hirokazu; Ohtsu, Motoichi; Hara, Masahiko

    2013-06-18

    Biologically inspired computing devices and architectures are expected to overcome the limitations of conventional technologies in terms of solving computationally demanding problems, adapting to complex environments, reducing energy consumption, and so on. We previously demonstrated that a primitive single-celled amoeba (a plasmodial slime mold), which exhibits complex spatiotemporal oscillatory dynamics and sophisticated computing capabilities, can be used to search for a solution to a very hard combinatorial optimization problem. We successfully extracted the essential spatiotemporal dynamics by which the amoeba solves the problem. This amoeba-inspired computing paradigm can be implemented by various physical systems that exhibit suitable spatiotemporal dynamics resembling the amoeba's problem-solving process. In this Article, we demonstrate that photoexcitation transfer phenomena in certain quantum nanostructures mediated by optical near-field interactions generate the amoebalike spatiotemporal dynamics and can be used to solve the satisfiability problem (SAT), which is the problem of judging whether a given logical proposition (a Boolean formula) is self-consistent. SAT is related to diverse application problems in artificial intelligence, information security, and bioinformatics and is a crucially important nondeterministic polynomial time (NP)-complete problem, which is believed to become intractable for conventional digital computers when the problem size increases. We show that our amoeba-inspired computing paradigm dramatically outperforms a conventional stochastic search method. These results indicate the potential for developing highly versatile nanoarchitectonic computers that realize powerful solution searching with low energy consumption.

  17. Lesion mapping of social problem solving.

    PubMed

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Decision-making and problem-solving methods in automation technology

    NASA Technical Reports Server (NTRS)

    Hankins, W. W.; Pennington, J. E.; Barker, L. K.

    1983-01-01

    The state of the art in the automation of decision making and problem solving is reviewed. The information upon which the report is based was derived from literature searches, visits to university and government laboratories performing basic research in the area, and a 1980 Langley Research Center sponsored conferences on the subject. It is the contention of the authors that the technology in this area is being generated by research primarily in the three disciplines of Artificial Intelligence, Control Theory, and Operations Research. Under the assumption that the state of the art in decision making and problem solving is reflected in the problems being solved, specific problems and methods of their solution are often discussed to elucidate particular aspects of the subject. Synopses of the following major topic areas comprise most of the report: (1) detection and recognition; (2) planning; and scheduling; (3) learning; (4) theorem proving; (5) distributed systems; (6) knowledge bases; (7) search; (8) heuristics; and (9) evolutionary programming.

  19. The Influence of Open Goals on the Acquisition of Problem-Relevant Information

    ERIC Educational Resources Information Center

    Moss, Jarrod; Kotovsky, Kenneth; Cagan, Jonathan

    2007-01-01

    There have been a number of recent findings indicating that unsolved problems, or open goals more generally, influence cognition even when the current task has no relation to the task in which the goal was originally set. It was hypothesized that open goals would influence what information entered the problem-solving process. Three studies were…

  20. Design and Diagnosis Problem Solving with Multifunctional Technical Knowledge Bases

    DTIC Science & Technology

    1992-09-29

    STRUCTURE METHODOLOGY Design problem solving is a complex activity involving a number of subtasks. and a number of alternative methods potentially available...Conference on Artificial Intelligence. London: The British Computer Society, pp. 621-633. Friedland, P. (1979). Knowledge-based experimental design ...Computing Milieuxl: Management of Computing and Information Systems- -ty,*m man- agement General Terms: Design . Methodology Additional Key Words and Phrases

  1. Creativity: Creativity in Complex Military Systems

    DTIC Science & Technology

    2017-05-25

    generation later in the problem-solving process. The design process is an alternative problem-solving framework individuals or groups use to orient...no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control ...the potential of their formations. 15. SUBJECT TERMS Creativity, Divergent Thinking, Design , Systems Thinking, Operational Art 16. SECURITY

  2. How Do We Know They're Getting Better? Assessment for 21st Century Minds, K-8

    ERIC Educational Resources Information Center

    Barell, John

    2012-01-01

    How do we measure students inquiry, problem-solving, and critical thinking abilities so that we know they are prepared to meet the challenges of the 21st century? John Barell explains how inquiry leads to problem-solving and provides specific steps for formative assessment that informs instruction of 21st century skills. Included are examples that…

  3. An Online Game Approach for Improving Students' Learning Performance in Web-Based Problem-Solving Activities

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Wu, Po-Han; Chen, Chi-Chang

    2012-01-01

    In this paper, an online game was developed in the form of a competitive board game for conducting web-based problem-solving activities. The participants of the game determined their move by throwing a dice. Each location of the game board corresponds to a gaming task, which could be a web-based information-searching question or a mini-game; the…

  4. PROBLEMS OF CYBERNETICS AND SPACE MEDICINE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parin, V.V.; Baevskii, R.M.

    1963-01-01

    Problems of cybernetics are discussed with reference to space medicine. The information theory is widely used for solving the problems relevant to radiotelemetric transmission of biological data. Construction of devices for automatic medical control of the condition of the crew of the space ship has a direct bearing to electron diagnostic machines. Mathematical methods and the computing technic are used for analyzing experimental evidence. The theory of automatic regulation was applied for modeling physiological reactions, for developing closed ecological systems, and for solving the problems of driving space ships. The problems bearing on the modifications undergone by the information inmore » the brain are of primary importance for the study of the effect of the space flight conditions upon the efficiency of man, the activity of his nervous system and of his analyzers. (P.C.H.)« less

  5. Development and implementation of web based infrastructure for problem management at UNPRI

    NASA Astrophysics Data System (ADS)

    WijayaDewantoro, Rico; Wardani, Sumita; Rudy; Surya Perdana Girsang, Batara; Dharma, Abdi

    2018-04-01

    Information technology drastically affects human way of thinking. It has entered every part of human life and also became one of the most significant contributors to make human life more manageable. Reporting a problem of facilities and infrastructure in Universitas Prima Indonesia was done manually where the complainant have to meet the responsible person directly and describe how the problem looks like. Then, the responsible person only solve the problem but have no good documentation on it like Five Ws and How. Moreover, the other issue is to avoid a person who is mischievous for giving false reports. In this paper, we applied a set of procedures called Universitas Prima Indonesia Problem Management System (UNPRI-PMS) which also integrated with academic information system. Implemetation of UNPRI-PMS affects all of the problems about facilities and infrastructure at Universitas Prima Indonesia can be solved more efficient, structured, and accurate.

  6. Metaphors we think with: the role of metaphor in reasoning.

    PubMed

    Thibodeau, Paul H; Boroditsky, Lera

    2011-02-23

    The way we talk about complex and abstract ideas is suffused with metaphor. In five experiments, we explore how these metaphors influence the way that we reason about complex issues and forage for further information about them. We find that even the subtlest instantiation of a metaphor (via a single word) can have a powerful influence over how people attempt to solve social problems like crime and how they gather information to make "well-informed" decisions. Interestingly, we find that the influence of the metaphorical framing effect is covert: people do not recognize metaphors as influential in their decisions; instead they point to more "substantive" (often numerical) information as the motivation for their problem-solving decision. Metaphors in language appear to instantiate frame-consistent knowledge structures and invite structurally consistent inferences. Far from being mere rhetorical flourishes, metaphors have profound influences on how we conceptualize and act with respect to important societal issues. We find that exposure to even a single metaphor can induce substantial differences in opinion about how to solve social problems: differences that are larger, for example, than pre-existing differences in opinion between Democrats and Republicans.

  7. Divide et impera: subgoaling reduces the complexity of probabilistic inference and problem solving

    PubMed Central

    Maisto, Domenico; Donnarumma, Francesco; Pezzulo, Giovanni

    2015-01-01

    It has long been recognized that humans (and possibly other animals) usually break problems down into smaller and more manageable problems using subgoals. Despite a general consensus that subgoaling helps problem solving, it is still unclear what the mechanisms guiding online subgoal selection are during the solution of novel problems for which predefined solutions are not available. Under which conditions does subgoaling lead to optimal behaviour? When is subgoaling better than solving a problem from start to finish? Which is the best number and sequence of subgoals to solve a given problem? How are these subgoals selected during online inference? Here, we present a computational account of subgoaling in problem solving. Following Occam's razor, we propose that good subgoals are those that permit planning solutions and controlling behaviour using less information resources, thus yielding parsimony in inference and control. We implement this principle using approximate probabilistic inference: subgoals are selected using a sampling method that considers the descriptive complexity of the resulting sub-problems. We validate the proposed method using a standard reinforcement learning benchmark (four-rooms scenario) and show that the proposed method requires less inferential steps and permits selecting more compact control programs compared to an equivalent procedure without subgoaling. Furthermore, we show that the proposed method offers a mechanistic explanation of the neuronal dynamics found in the prefrontal cortex of monkeys that solve planning problems. Our computational framework provides a novel integrative perspective on subgoaling and its adaptive advantages for planning, control and learning, such as for example lowering cognitive effort and working memory load. PMID:25652466

  8. The perceived problem-solving ability of nurse managers.

    PubMed

    Terzioglu, Fusun

    2006-07-01

    The development of a problem-solving approach to nursing has been one of the more important changes in nursing during the last decade. Nurse Managers need to have effective problem-solving and management skills to be able to decrease the cost of the health care and to increase the quality of care. This descriptive study was conducted to determine the perceived problem-solving ability of nurse managers. From a population of 87 nurse managers, 71 were selected using the stratified random sampling method, 62 nurse managers agreed to participate. Data were collected through a questionnaire including demographic information and a problem-solving inventory. The problem-solving inventory was developed by Heppner and Petersen in 1982, and validity and readability studies were done. It was adapted to Turkish by Sahin et al (1993). The acquired data have been evaluated on the software spss 10.0 programme, using percentages, mean values, one-way anova and t-test (independent samples t-test). Most of the nurses had 11 or more years of working experience (71%) and work as charge nurses in the clinics. It was determined that 69.4% of the nurse managers did not have any educational training in administration. The most encountered problems stated were issues related to managerial (30.6%) and professional staff (25.8%). It was identified that nurse managers who had received education about management, following scientific publication and scientific meeting and had followed management models, perceived their problem-resolving skills as more adequate than the others (P>0.05). In this study, it was determined that nurses do not perceive that they have problem-solving skills at a desired level. In this context, it is extremely important that this subject be given an important place in both nursing education curriculum and continuing education programmes.

  9. Learning Disabilities

    MedlinePlus

    ... a student to read, write, spell, or solve math problems. The way our brains process information is ... has difficulty speaking, reading, writing, figuring out a math problem, communicating with a parent, or paying attention ...

  10. Blackboard system generator (BSG) - An alternative distributed problem-solving paradigm

    NASA Technical Reports Server (NTRS)

    Silverman, Barry G.; Feggos, Kostas; Chang, Joseph Shih

    1989-01-01

    A status review is presented for a generic blackboard-based distributed problem-solving environment in which multiple-agent cooperation can be effected. This environment is organized into a shared information panel, a chairman control panel, and a metaplanning panel. Each panel contains a number of embedded AI techniques that facilitate its operation and that provide heuristics for solving the underlying team-agent decision problem. The status of these panels and heuristics is described along with a number of robustness considerations. The techniques for each of the three panels and for four sets of paradigm-related advances are described, along with selected results from classroom teaching experiments and from three applications.

  11. Transportation Self-Efficacy and Social Problem-Solving of Persons Who Are Blind or Visually Impaired.

    PubMed

    Crudden, Adele; O'Mally, Jamie; Antonelli, Karla

    2016-01-01

    Social problem-solving skills and transportation self-efficacy were assessed for 48 vocational rehabilitation consumers with visual disabilities who required assistance securing work transportation. Social problem solving was at the upper end of the normed average; transportation self-efficacy averaged 101.5 out of 140. Level of vision loss was not associated with score differences; urban residence related to slightly higher self-efficacy than suburban or rural residency. Participants appeared to have the skills necessary to secure employment transportation, but were less confident about transportation-seeking activities that required more initiative of social interaction. Training and information might help consumers gain confidence in these tasks and increase viable transportation options.

  12. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design

    PubMed Central

    Van Regenmortel, Marc H. V.

    2018-01-01

    Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems. PMID:29387066

  13. The inverse problem of refraction travel times, part I: Types of Geophysical Nonuniqueness through Minimization

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.

    2005-01-01

    In a set of two papers we study the inverse problem of refraction travel times. The purpose of this work is to use the study as a basis for development of more sophisticated methods for finding more reliable solutions to the inverse problem of refraction travel times, which is known to be nonunique. The first paper, "Types of Geophysical Nonuniqueness through Minimization," emphasizes the existence of different forms of nonuniqueness in the realm of inverse geophysical problems. Each type of nonuniqueness requires a different type and amount of a priori information to acquire a reliable solution. Based on such coupling, a nonuniqueness classification is designed. Therefore, since most inverse geophysical problems are nonunique, each inverse problem must be studied to define what type of nonuniqueness it belongs to and thus determine what type of a priori information is necessary to find a realistic solution. The second paper, "Quantifying Refraction Nonuniqueness Using a Three-layer Model," serves as an example of such an approach. However, its main purpose is to provide a better understanding of the inverse refraction problem by studying the type of nonuniqueness it possesses. An approach for obtaining a realistic solution to the inverse refraction problem is planned to be offered in a third paper that is in preparation. The main goal of this paper is to redefine the existing generalized notion of nonuniqueness and a priori information by offering a classified, discriminate structure. Nonuniqueness is often encountered when trying to solve inverse problems. However, possible nonuniqueness diversity is typically neglected and nonuniqueness is regarded as a whole, as an unpleasant "black box" and is approached in the same manner by applying smoothing constraints, damping constraints with respect to the solution increment and, rarely, damping constraints with respect to some sparse reference information about the true parameters. In practice, when solving geophysical problems different types of nonuniqueness exist, and thus there are different ways to solve the problems. Nonuniqueness is usually regarded as due to data error, assuming the true geology is acceptably approximated by simple mathematical models. Compounding the nonlinear problems, geophysical applications routinely exhibit exact-data nonuniqueness even for models with very few parameters adding to the nonuniqueness due to data error. While nonuniqueness variations have been defined earlier, they have not been linked to specific use of a priori information necessary to resolve each case. Four types of nonuniqueness, typical for minimization problems are defined with the corresponding methods for inclusion of a priori information to find a realistic solution without resorting to a non-discriminative approach. The above-developed stand-alone classification is expected to be helpful when solving any geophysical inverse problems. ?? Birkha??user Verlag, Basel, 2005.

  14. An approach for heterogeneous and loosely coupled geospatial data distributed computing

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui

    2010-07-01

    Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.

  15. Wondering + Online Inquiry = Learning

    ERIC Educational Resources Information Center

    Sekeres, Diane Carver; Coiro, Julie; Castek, Jill; Guzniczak, Lizabeth A.

    2014-01-01

    Digital information sources can form the basis of effective inquiry-based learning if teachers construct the information and exercises in ways that will promote collaboration, communication, and problem solving.

  16. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia

    PubMed Central

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod

    2014-01-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. PMID:25098903

  17. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia.

    PubMed

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B; Geary, David C; Menon, Vinod

    2015-05-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. © 2014 John Wiley & Sons Ltd.

  18. Errors Analysis of Students in Mathematics Department to Learn Plane Geometry

    NASA Astrophysics Data System (ADS)

    Mirna, M.

    2018-04-01

    This article describes the results of qualitative descriptive research that reveal the locations, types and causes of student error in answering the problem of plane geometry at the problem-solving level. Answers from 59 students on three test items informed that students showed errors ranging from understanding the concepts and principles of geometry itself to the error in applying it to problem solving. Their type of error consists of concept errors, principle errors and operational errors. The results of reflection with four subjects reveal the causes of the error are: 1) student learning motivation is very low, 2) in high school learning experience, geometry has been seen as unimportant, 3) the students' experience using their reasoning in solving the problem is very less, and 4) students' reasoning ability is still very low.

  19. Neural Activity When People Solve Verbal Problems with Insight

    PubMed Central

    Bowden, Edward M; Haberman, Jason; Frymiare, Jennifer L; Arambel-Liu, Stella; Greenblatt, Richard; Reber, Paul J

    2004-01-01

    People sometimes solve problems with a unique process called insight, accompanied by an “Aha!” experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1) revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2) revealed a sudden burst of high-frequency (gamma-band) neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them. PMID:15094802

  20. A Designer’s Guide to Human Performance Modelling (La Modelisation des Performances Humaines: Manuel du Concepteur).

    DTIC Science & Technology

    1998-12-01

    failure detection, monitoring, and decision making.) moderator function. Originally, the output from these One of the best known OCM implementations, the...imposed by the tasks themselves, the information and equipment provided, the task environment, operator skills and experience, operator strategies , the...problem-solving situation, including the toward failure.) knowledge necessary to generate the right problem- solving strategies , the attention that

  1. Students’ Spatial Performance: Cognitive Style and Sex Differences

    NASA Astrophysics Data System (ADS)

    Hanifah, U.; Juniati, D.; Siswono, T. Y. E.

    2018-01-01

    This study aims at describing the students’ spatial abilities based on cognitive styles and sex differences. Spatial abilities in this study include 5 components, namely spatial perception, spatial visualization, mental rotation, spatial relations, and spatial orientation. This research is descriptive research with qualitative approach. The subjects in this research were 4 students of junior high school, there were 1 male FI, 1 male FD, 1 female FI, and 1 female FI. The results showed that there are differences in spatial abilities of the four subjects that are on the components of spatial visualization, mental rotation, and spatial relations. The differences in spatial abilities were found in methods / strategies used by each subject to solve each component problem. The differences in cognitive styles and sex suggested different choice of strategies used to solve problems. The male students imagined the figures but female students needed the media to solve the problem. Besides sex, the cognitive style differences also have an effect on solving a problem. In addition, FI students were not affected by distracting information but FD students could be affected by distracting information. This research was expected to contribute knowledge and insight to the readers, especially for math teachers in terms of the spatial ability of the students so that they can optimize their students’ spatial ability.

  2. Toward a Practical Model of Cognitive/Information Task Analysis and Schema Acquisition for Complex Problem-Solving Situations.

    ERIC Educational Resources Information Center

    Braune, Rolf; Foshay, Wellesley R.

    1983-01-01

    The proposed three-step strategy for research on human information processing--concept hierarchy analysis, analysis of example sets to teach relations among concepts, and analysis of problem sets to build a progressively larger schema for the problem space--may lead to practical procedures for instructional design and task analysis. Sixty-four…

  3. Teacher’s Stimulus Helps Students Achieve Mathematics Reasoning and Problem Solving Competences

    NASA Astrophysics Data System (ADS)

    Hidayah, Isti; Pujiastuti, Emi; Chrisna, Jeanet Eva

    2017-04-01

    The students’ problem-solving ability in mathematics learning still becomes a challenge for teachers, especially in primary education. The scientific approach, with its activities including observing, asking, collecting information/experimenting/trying, associating/analysing information/reasoning, communicating/presenting/ networking is expected to be able to help students to achieve their competence of reasoning and problem-solving. The Missouri Mathematics Project learning by using student worksheet and manipulative (classical and group) have helped students achieved problem-solving competence. The implementation of scientific approach in the activities of observing, experimenting, and communicating are good. However, the questioning and associating activities are still less promoted. The result of observation towards four meetings of learning by using teaching aids shows that the expected activity which did not emerge during the learning is “students ask questions from the factual thing to hypothetical thing, starting with guidance from teacher until they can do by themselves”. The result of analysis towards theoretical background and research result conclude that the students’ asking and thinking abilities can be developed gradually by delivering stimuli in the form of tasks which have been designed by the teacher. The task could be a problem or a clue; then the students determine things such as: “what the question?”, “facts from pictures/text/graphs/tables”, “find the hidden question”, what’s extra?”, “what’s missing?”, “what’s wrong?”, alternatively, “make up the problem.

  4. Phases of learning: How skill acquisition impacts cognitive processing.

    PubMed

    Tenison, Caitlin; Fincham, Jon M; Anderson, John R

    2016-06-01

    This fMRI study examines the changes in participants' information processing as they repeatedly solve the same mathematical problem. We show that the majority of practice-related speedup is produced by discrete changes in cognitive processing. Because the points at which these changes take place vary from problem to problem, and the underlying information processing steps vary in duration, the existence of such discrete changes can be hard to detect. Using two converging approaches, we establish the existence of three learning phases. When solving a problem in one of these learning phases, participants can go through three cognitive stages: Encoding, Solving, and Responding. Each cognitive stage is associated with a unique brain signature. Using a bottom-up approach combining multi-voxel pattern analysis and hidden semi-Markov modeling, we identify the duration of that stage on any particular trial from participants brain activation patterns. For our top-down approach we developed an ACT-R model of these cognitive stages and simulated how they change over the course of learning. The Solving stage of the first learning phase is long and involves a sequence of arithmetic computations. Participants transition to the second learning phase when they can retrieve the answer, thereby drastically reducing the duration of the Solving stage. With continued practice, participants then transition to the third learning phase when they recognize the problem as a single unit and produce the answer as an automatic response. The duration of this third learning phase is dominated by the Responding stage. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Social problem solving and social performance after a group social skills intervention for childhood brain tumor survivors.

    PubMed

    Schulte, Fiona; Vannatta, Kathryn; Barrera, Maru

    2014-02-01

    The aim of this study was to explore the ability of a group social skills intervention program for childhood brain tumor survivors to effect two steps of the social information processing model: social problem solving and social performance. Participants were 15 survivors (eight men and seven women) aged 7-15 years. The intervention consisted of eight 2-h weekly sessions focused on social skills including friendship making. Social problem solving, using hypothetical scenarios, was assessed during sessions 1 and 8. Social performance was observed during intervention sessions 1, 4, and 8. Compared with session 1, significant increases were found in social performance: frequency of maintaining eye contact and social conversations with peers over the course of the intervention. No significant changes in social problem solving were noted. This pilot study is the first to report improvements related to group social skills intervention at the level of observed social performance over the course of intervention. The lack of change in social problem solving suggests that survivors may possess the social knowledge required for social situations but have difficulty enacting social behaviors. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Specific Cognitive Predictors of Early Math Problem Solving

    ERIC Educational Resources Information Center

    Decker, Scott L.; Roberts, Alycia M.

    2015-01-01

    Development of early math skill depends on a prerequisite level of cognitive development. Identification of specific cognitive skills that are important for math development may not only inform instructional approaches but also inform assessment approaches to identifying children with specific learning problems in math. This study investigated the…

  7. The technology base for agile manufacturing

    NASA Technical Reports Server (NTRS)

    Brost, R. C.; Strip, D. R.; Eicker, P. J.

    1993-01-01

    The effective use of information is a critical problem faced by manufacturing organizations that must respond quickly to market changes. As product runs become shorter, rapid and efficient development of product manufacturing facilities becomes crucial to commercial success. Effective information utilization is a key element to successfully meeting these requirements. This paper reviews opportunities for developing technical solutions to information utilization problems within a manufacturing enterprise and outlines a research agenda for solving these problems.

  8. A linear programming manual

    NASA Technical Reports Server (NTRS)

    Tuey, R. C.

    1972-01-01

    Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

  9. Multichannel signal enhancement

    DOEpatents

    Lewis, Paul S.

    1990-01-01

    A mixed adaptive filter is formulated for the signal processing problem where desired a priori signal information is not available. The formulation generates a least squares problem which enables the filter output to be calculated directly from an input data matrix. In one embodiment, a folded processor array enables bidirectional data flow to solve the recursive problem by back substitution without global communications. In another embodiment, a balanced processor array solves the recursive problem by forward elimination through the array. In a particular application to magnetoencephalography, the mixed adaptive filter enables an evoked response to an auditory stimulus to be identified from only a single trial.

  10. Characteristics of Problem Posing of Grade 9 Students on Geometric Tasks

    ERIC Educational Resources Information Center

    Chua, Puay Huat; Wong, Khoon Yoong

    2012-01-01

    This is an exploratory study into the individual problem-posing characteristics of 480 Grade 9 Singapore students who were novice problem posers working on two geometric tasks. The students were asked to pose a problem for their friends to solve. Analyses of solvable posed problems were based on the problem type, problem information, solution type…

  11. Method for Evaluating Information to Solve Problems of Control, Monitoring and Diagnostics

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. A.; Dobrynina, N. V.

    2017-06-01

    The article describes a method for evaluating information to solve problems of control, monitoring and diagnostics. It is necessary for reducing the dimensionality of informational indicators of situations, bringing them to relative units, for calculating generalized information indicators on their basis, ranking them by characteristic levels, for calculating the efficiency criterion of a system functioning in real time. The design of information evaluation system has been developed on its basis that allows analyzing, processing and assessing information about the object. Such object can be a complex technical, economic and social system. The method and the based system thereof can find a wide application in the field of analysis, processing and evaluation of information on the functioning of the systems, regardless of their purpose, goals, tasks and complexity. For example, they can be used to assess the innovation capacities of industrial enterprises and management decisions.

  12. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows

    PubMed Central

    Wang, Di; Kleinberg, Robert D.

    2009-01-01

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2, C3, C4,…. It is known that C2 can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing Ck (k > 2) require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network. PMID:20161596

  13. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows.

    PubMed

    Wang, Di; Kleinberg, Robert D

    2009-11-28

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C(2), C(3), C(4),…. It is known that C(2) can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing C(k) (k > 2) require solving a linear program. In this paper we prove that C(3) can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}(n), this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.

  14. Divide et impera: subgoaling reduces the complexity of probabilistic inference and problem solving.

    PubMed

    Maisto, Domenico; Donnarumma, Francesco; Pezzulo, Giovanni

    2015-03-06

    It has long been recognized that humans (and possibly other animals) usually break problems down into smaller and more manageable problems using subgoals. Despite a general consensus that subgoaling helps problem solving, it is still unclear what the mechanisms guiding online subgoal selection are during the solution of novel problems for which predefined solutions are not available. Under which conditions does subgoaling lead to optimal behaviour? When is subgoaling better than solving a problem from start to finish? Which is the best number and sequence of subgoals to solve a given problem? How are these subgoals selected during online inference? Here, we present a computational account of subgoaling in problem solving. Following Occam's razor, we propose that good subgoals are those that permit planning solutions and controlling behaviour using less information resources, thus yielding parsimony in inference and control. We implement this principle using approximate probabilistic inference: subgoals are selected using a sampling method that considers the descriptive complexity of the resulting sub-problems. We validate the proposed method using a standard reinforcement learning benchmark (four-rooms scenario) and show that the proposed method requires less inferential steps and permits selecting more compact control programs compared to an equivalent procedure without subgoaling. Furthermore, we show that the proposed method offers a mechanistic explanation of the neuronal dynamics found in the prefrontal cortex of monkeys that solve planning problems. Our computational framework provides a novel integrative perspective on subgoaling and its adaptive advantages for planning, control and learning, such as for example lowering cognitive effort and working memory load. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Subhash C.; Roy, Hillol K.

    2007-04-10

    The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational fluid dynamics. The FVM used in the radiative heatmore » transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the effects of various parameters such as the scattering albedo, the conduction-radiation parameter and the boundary emissivity. The results of the LBM-FVM combination were found to be in excellent agreement with the FVM-FVM combination. The number of iterations and CPU times in both the combinations were found comparable.« less

  16. Teaching Information & Technology Skills: The Big6[TM] in Elementary Schools. Professional Growth Series.

    ERIC Educational Resources Information Center

    Eisenberg, Michael B.; Berkowitz, Robert E.

    This book about using the Big6 information problem solving process model in elementary schools is organized into two parts. Providing an overview of the Big6 approach, Part 1 includes the following chapters: "Introduction: The Need," including the information problem, the Big6 and other process models, and teaching/learning the Big6;…

  17. Cognitive and Linguistic Predictors of Mathematical Word Problems With and Without Irrelevant Information.

    PubMed

    Wang, Amber Y; Fuchs, Lynn S; Fuchs, Douglas

    2016-12-01

    The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working memory capacity, and processing speed; in the spring, they were tested on a word-problem measure that included items with versus without irrelevant information. Significant predictors common to both forms of word problems were initial arithmetic and word problem-solving skill as well as language and working memory. Nonverbal reasoning predicted word problems with irrelevant information, but not word problems without irrelevant information. Findings are discussed in terms of implications for intervention and future research.

  18. Syntactic Awareness and Arithmetic Word Problem Solving in Children With and Without Learning Disabilities.

    PubMed

    Peake, Christian; Jiménez, Juan E; Rodríguez, Cristina; Bisschop, Elaine; Villarroel, Rebeca

    2015-01-01

    Arithmetic word problem (AWP) solving is a highly demanding task for children with learning disabilities (LD) since verbal and mathematical information have to be integrated. This study examines specifically how syntactic awareness (SA), the ability to manage the grammatical structures of language, affects AWP solving. Three groups of children in elementary education were formed: children with arithmetic learning disabilities (ALD), children with reading learning disabilities (RLD), and children with comorbid arithmetic and reading learning disabilities (ARLD). Mediation analysis confirmed that SA was a mediator variable for both groups of children with reading disabilities when solving AWPs, but not for children in the ALD group. All groups performed below the control group in the problem solving task. When SA was controlled for, semantic structure and position of the unknown set were variables that affected both groups with ALD. Specifically, children with ALD only were more affected by the place of the unknown set. © Hammill Institute on Disabilities 2014.

  19. Differences in Visual Attention between Those Who Correctly and Incorrectly Answer Physics Problems

    ERIC Educational Resources Information Center

    Madsen, Adrian M.; Larson, Adam M.; Loschky, Lester C.; Rebello, N. Sanjay

    2012-01-01

    This study investigated how visual attention differed between those who correctly versus incorrectly answered introductory physics problems. We recorded eye movements of 24 individuals on six different conceptual physics problems where the necessary information to solve the problem was contained in a diagram. The problems also contained areas…

  20. Population Issues. Resources in Technology.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    Presents information about the problems caused by increasing population. Discusses the environmental impact and the ways that technology can be used to solve problems of overpopulation. Includes possible student outcomes and a student quiz. (JOW)

  1. Asessing for Structural Understanding in Childrens' Combinatorial Problem Solving.

    ERIC Educational Resources Information Center

    English, Lyn

    1999-01-01

    Assesses children's structural understanding of combinatorial problems when presented in a variety of task situations. Provides an explanatory model of students' combinatorial understandings that informs teaching and assessment. Addresses several components of children's structural understanding of elementary combinatorial problems. (Contains 50…

  2. Communicating Bad News to Patients

    PubMed Central

    Premi, J. N.

    1981-01-01

    This article reviews the literature on doctor/patient communication, emphasizing the communication of bad news. Available information supports the view that patients want more information than they generally receive and that, contrary to popular belief, patients who are better informed benefit from the information they receive. Physicians are seen as taking a less professional approach to communication activities than to clinical problem solving. Some strategies for approaching the problems identified are outlined. PMID:11650449

  3. Quantum computation with coherent spin states and the close Hadamard problem

    NASA Astrophysics Data System (ADS)

    Adcock, Mark R. A.; Høyer, Peter; Sanders, Barry C.

    2016-04-01

    We study a model of quantum computation based on the continuously parameterized yet finite-dimensional Hilbert space of a spin system. We explore the computational powers of this model by analyzing a pilot problem we refer to as the close Hadamard problem. We prove that the close Hadamard problem can be solved in the spin system model with arbitrarily small error probability in a constant number of oracle queries. We conclude that this model of quantum computation is suitable for solving certain types of problems. The model is effective for problems where symmetries between the structure of the information associated with the problem and the structure of the unitary operators employed in the quantum algorithm can be exploited.

  4. Learning Ethics through Everyday Problems: Informed Consent

    ERIC Educational Resources Information Center

    Verdu, Fernando; Frances, Francesc; Castello, Ana

    2012-01-01

    The teaching of bioethics and its importance in clinical relationships is to a certain extent complicated when we address students of medicine, young people who are more used to dealing with and solving strictly clinical problems. Informed Consent is one of the aspects of professional practice that is generally and widely accepted in Western…

  5. An Analysis of Synergies of IT-Applications and Knowledge Management Strategies with Regard to Organizational Change

    DTIC Science & Technology

    2003-09-01

    applicable to problem solving (Woolf, 1990). (b) Knowledge is organized and analyzed information in order to make it understandable and applicable to problem...therefore due to a lack of understanding of tacit knowledge and the relationship between tacit knowledge and information technologies (Bresman et al

  6. Using Educational Technology in Applications as Element of Teaching for Special Disciplines

    ERIC Educational Resources Information Center

    Neupokoeva, Elena E.; Chapaev, Nikolay K.; Akimova, Olga B.; Shcherbin, Matthew D.; Borovikov, Evgenij A.

    2016-01-01

    The relevance of research problem due to high growth of information technologies roles in industrial activity and low level of teachers professionalism in topics related with information technology. Purpose of article is to show main components of a learning technology aimed at improving level teachers skills to solve didactic problems associated…

  7. Connected Component Model for Multi-Object Tracking.

    PubMed

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  8. Signature neural networks: definition and application to multidimensional sorting problems.

    PubMed

    Latorre, Roberto; de Borja Rodriguez, Francisco; Varona, Pablo

    2011-01-01

    In this paper we present a self-organizing neural network paradigm that is able to discriminate information locally using a strategy for information coding and processing inspired in recent findings in living neural systems. The proposed neural network uses: 1) neural signatures to identify each unit in the network; 2) local discrimination of input information during the processing; and 3) a multicoding mechanism for information propagation regarding the who and the what of the information. The local discrimination implies a distinct processing as a function of the neural signature recognition and a local transient memory. In the context of artificial neural networks none of these mechanisms has been analyzed in detail, and our goal is to demonstrate that they can be used to efficiently solve some specific problems. To illustrate the proposed paradigm, we apply it to the problem of multidimensional sorting, which can take advantage of the local information discrimination. In particular, we compare the results of this new approach with traditional methods to solve jigsaw puzzles and we analyze the situations where the new paradigm improves the performance.

  9. Solving Constraint-Satisfaction Problems In Prolog Language

    NASA Technical Reports Server (NTRS)

    Nachtsheim, Philip R.

    1991-01-01

    Technique for solution of constraint-satisfaction problems uses definite-clause grammars of Prolog computer language. Exploits fact that grammar-rule notation viewed as "state-change notation". Facilitates development of dynamic representation performing informed as well as blind searches. Applicable to design, scheduling, and planning problems.

  10. Toward information management in corporations (2)

    NASA Astrophysics Data System (ADS)

    Shibata, Mitsuru

    If construction of inhouse information management systems in an advanced information society should be positioned along with the social information management, its base making begins with reviewing current paper filing systems. Since the problems which inhere in inhouse information management systems utilizing OA equipments also inhere in paper filing systems, the first step toward full scale inhouse information management should be to grasp and solve the fundamental problems in current filing systems. This paper describes analysis of fundamental problems in filing systems, making new type of offices and analysis of improvement needs in filing systems, and some points in improving filing systems.

  11. Optimal Full Information Synthesis for Flexible Structures Implemented on Cray Supercomputers

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Balas, Gary J.

    1995-01-01

    This paper considers an algorithm for synthesis of optimal controllers for full information feedback. The synthesis procedure reduces to a single linear matrix inequality which may be solved via established convex optimization algorithms. The computational cost of the optimization is investigated. It is demonstrated the problem dimension and corresponding matrices can become large for practical engineering problems. This algorithm represents a process that is impractical for standard workstations for large order systems. A flexible structure is presented as a design example. Control synthesis requires several days on a workstation but may be solved in a reasonable amount of time using a Cray supercomputer.

  12. Linear SFM: A hierarchical approach to solving structure-from-motion problems by decoupling the linear and nonlinear components

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Huang, Shoudong; Dissanayake, Gamini

    2018-07-01

    This paper presents a novel hierarchical approach to solving structure-from-motion (SFM) problems. The algorithm begins with small local reconstructions based on nonlinear bundle adjustment (BA). These are then joined in a hierarchical manner using a strategy that requires solving a linear least squares optimization problem followed by a nonlinear transform. The algorithm can handle ordered monocular and stereo image sequences. Two stereo images or three monocular images are adequate for building each initial reconstruction. The bulk of the computation involves solving a linear least squares problem and, therefore, the proposed algorithm avoids three major issues associated with most of the nonlinear optimization algorithms currently used for SFM: the need for a reasonably accurate initial estimate, the need for iterations, and the possibility of being trapped in a local minimum. Also, by summarizing all the original observations into the small local reconstructions with associated information matrices, the proposed Linear SFM manages to preserve all the information contained in the observations. The paper also demonstrates that the proposed problem formulation results in a sparse structure that leads to an efficient numerical implementation. The experimental results using publicly available datasets show that the proposed algorithm yields solutions that are very close to those obtained using a global BA starting with an accurate initial estimate. The C/C++ source code of the proposed algorithm is publicly available at https://github.com/LiangZhaoPKUImperial/LinearSFM.

  13. Reverse and direct methods for solving the characteristic equation

    NASA Astrophysics Data System (ADS)

    Lozhkin, Alexander; Bozek, Pavol; Lyalin, Vadim; Tarasov, Vladimir; Tothova, Maria; Sultanov, Ravil

    2016-06-01

    Fundamentals of information-linguistic interpretation of the geometry presented shortly. The method of solving the characteristic equation based on Euler's formula is described. The separation of the characteristic equation for several disassembled for Jordan curves. Applications of the theory for problems of mechatronics outlined briefly.

  14. ISE: An Integrated Search Environment. The manual

    NASA Technical Reports Server (NTRS)

    Chu, Lon-Chan

    1992-01-01

    Integrated Search Environment (ISE), a software package that implements hierarchical searches with meta-control, is described in this manual. ISE is a collection of problem-independent routines to support solving searches. Mainly, these routines are core routines for solving a search problem and they handle the control of searches and maintain the statistics related to searches. By separating the problem-dependent and problem-independent components in ISE, new search methods based on a combination of existing methods can be developed by coding a single master control program. Further, new applications solved by searches can be developed by coding the problem-dependent parts and reusing the problem-independent parts already developed. Potential users of ISE are designers of new application solvers and new search algorithms, and users of experimental application solvers and search algorithms. The ISE is designed to be user-friendly and information rich. In this manual, the organization of ISE is described and several experiments carried out on ISE are also described.

  15. Problem-based learning in the NICU.

    PubMed

    Pilcher, Jobeth

    2014-01-01

    Problem-based learning (PBL) is an educational strategy that provides learners with the opportunity to investigate and solve realistic problem situations. It is also referred to as project-based learning or work-based learning. PBL combines several learning strategies including the use of case studies coupled with collaborative, facilitated, and self-directed learning. Research has demonstrated that use of PBL can result in learners having improved problem-solving skills, increased breadth and analysis of complex data, higher-level thinking skills, and improved collaboration. This article will include background information and a description of PBL, followed by examples of how this strategy can be used for learning in neonatal settings.

  16. Cognitive and Linguistic Predictors of Mathematical Word Problems With and Without Irrelevant Information

    PubMed Central

    Fuchs, Lynn S.; Fuchs, Douglas

    2016-01-01

    The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working memory capacity, and processing speed; in the spring, they were tested on a word-problem measure that included items with versus without irrelevant information. Significant predictors common to both forms of word problems were initial arithmetic and word problem-solving skill as well as language and working memory. Nonverbal reasoning predicted word problems with irrelevant information, but not word problems without irrelevant information. Findings are discussed in terms of implications for intervention and future research. PMID:28190942

  17. Problem solving, loneliness, depression levels and associated factors in high school adolescents.

    PubMed

    Sahin, Ummugulsum; Adana, Filiz

    2016-01-01

    To determine problem solving, loneliness, depression levels and associated factors in high school adolescents. This cross-sectional study was conducted in a city west of Turkey (Bursa) in a public high school and the population was 774 and the sampling was 394 students. Students to be included in the study were selected using the multiple sampling method. A personal Information Form with 23 questions, Problem Solving Inventory (PSI), Loneliness Scale (UCLA), Beck Depression Inventory (BDI) were used as data collection tools in the study. Basic statistical analyses, t-test, Kruskall Wallis-H, One Way Anova and Pearson Correlation test were used to evaluate the data. Necessary permissions were obtained from the relevant institution, students, parents and the ethical committee. The study found significant differences between "problem solving level" and family type, health assessment, life quality and mothers', fathers' siblings' closeness level; between "loneliness level" and gender, family income, health assessment, life quality and mothers', fathers', siblings' closeness level; between "depression level" and life quality, family income, fathers' closeness level. Unfavorable socio-economic and cultural conditions can have an effect on the problem solving, loneliness and depression levels of adolescents. Providing structured education to adolescents at risk under school mental health nursing practices is recommended.

  18. A problem-solving intervention for cardiovascular disease risk reduction in veterans: Protocol for a randomized controlled trial.

    PubMed

    Nieuwsma, Jason A; Wray, Laura O; Voils, Corrine I; Gierisch, Jennifer M; Dundon, Margaret; Coffman, Cynthia J; Jackson, George L; Merwin, Rhonda; Vair, Christina; Juntilla, Karen; White-Clark, Courtney; Jeffreys, Amy S; Harris, Amy; Owings, Michael; Marr, Johnpatrick; Edelman, David

    2017-09-01

    Health behaviors related to diet, tobacco usage, physical activity, medication adherence, and alcohol use are highly determinative of risk for developing cardiovascular disease. This paper describes a study protocol to evaluate a problem-solving intervention that aims to help patients at risk for developing cardiovascular disease address barriers to adopting positive health behaviors in order to reduce cardiovascular risk. Eligible patients are adults enrolled in Veterans Affairs (VA) health care who have not experienced a cardiovascular event but are at elevated risk based on their Framingham Risk Score (FRS). Participants in this two-site study are randomized to either the intervention or care as usual, with a target of 400 participants. The study intervention, Healthy Living Problem-Solving (HELPS), consists of six group sessions conducted approximately monthly interspersed with individualized coaching calls to help participants apply problem-solving principles. The primary outcome is FRS, analyzed at the beginning and end of the study intervention (6months). Participants also complete measures of physical activity, caloric intake, self-efficacy, group cohesion, problem-solving capacities, and demographic characteristics. Results of this trial will inform behavioral interventions to change health behaviors in those at risk for cardiovascular disease and other health conditions. ClinicalTrials.gov identifier NCT01838226. Published by Elsevier Inc.

  19. Cost effective campaigning in social networks

    NASA Astrophysics Data System (ADS)

    Kotnis, Bhushan; Kuri, Joy

    2016-05-01

    Campaigners are increasingly using online social networking platforms for promoting products, ideas and information. A popular method of promoting a product or even an idea is incentivizing individuals to evangelize the idea vigorously by providing them with referral rewards in the form of discounts, cash backs, or social recognition. Due to budget constraints on scarce resources such as money and manpower, it may not be possible to provide incentives for the entire population, and hence incentives need to be allocated judiciously to appropriate individuals for ensuring the highest possible outreach size. We aim to do the same by formulating and solving an optimization problem using percolation theory. In particular, we compute the set of individuals that are provided incentives for minimizing the expected cost while ensuring a given outreach size. We also solve the problem of computing the set of individuals to be incentivized for maximizing the outreach size for given cost budget. The optimization problem turns out to be non trivial; it involves quantities that need to be computed by numerically solving a fixed point equation. Our primary contribution is, that for a fairly general cost structure, we show that the optimization problems can be solved by solving a simple linear program. We believe that our approach of using percolation theory to formulate an optimization problem is the first of its kind.

  20. Problems Related to Computer Ethics: Origins of the Problems and Suggested Solutions

    ERIC Educational Resources Information Center

    Kuzu, Abdullah

    2009-01-01

    Increasing use of information and communication technologies (ICTs) help individuals to solve several everyday problems, which used to be harder, more complicated and time consuming. Even though ICTs provide individuals with many advantages, they might also serve as grounds for several societal and ethical problems which vary in accordance with…

  1. A framework for simultaneous aerodynamic design optimization in the presence of chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günther, Stefanie, E-mail: stefanie.guenther@scicomp.uni-kl.de; Gauger, Nicolas R.; Wang, Qiqi

    Integrating existing solvers for unsteady partial differential equations into a simultaneous optimization method is challenging due to the forward-in-time information propagation of classical time-stepping methods. This paper applies the simultaneous single-step one-shot optimization method to a reformulated unsteady constraint that allows for both forward- and backward-in-time information propagation. Especially in the presence of chaotic and turbulent flow, solving the initial value problem simultaneously with the optimization problem often scales poorly with the time domain length. The new formulation relaxes the initial condition and instead solves a least squares problem for the discrete partial differential equations. This enables efficient one-shot optimizationmore » that is independent of the time domain length, even in the presence of chaos.« less

  2. Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making

    NASA Astrophysics Data System (ADS)

    Modir, Bahar

    In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I will lay out a new theoretical framework based in epistemic framing that separates the problem solving space into four frames divided along two axes. The first axis models students' framing in math and physics, expanded through the second axis of conceptual problem solving and algorithmic problem solving. I use this framework to show how students navigate problem solving. Lastly, I will use this developed framework to interpret existing difficulties in quantum mechanics.

  3. Mental models as indicators of scientific thinking

    NASA Astrophysics Data System (ADS)

    Derosa, Donald Anthony

    One goal of science education reform is student attainment of scientific literacy. Therefore, it is imperative for science educators to identify its salient elements. A dimension of scientific literacy that warrants careful consideration is scientific thinking and effective ways to foster scientific thinking among students. This study examined the use of mental models as evidence of scientific thinking in the context of two instructional approaches, transmissional and constructivist. Types of mental models, frequency of explanative information, and scores on problem solving transfer questions were measured and compared among subjects in each instructional context. Methods. Subjects consisted of sophomore biology students enrolled in general biology courses at three public high schools. The Group Assessment of Logical Thinking instrument was used to identify two equivalent groups with an N of 65. Each group was taught the molecular basis of sickle cell anemia and the principles of hemoglobin gel electrophoresis using one of the two instructional approaches at their schools during five instructional periods over the course of one week. Laboratory equipment and materials were provided by Boston University School of Medicine's MobileLab program. Following the instructional periods, each subject was asked to think aloud while responding to four problem solving transfer questions. Each response was audiotaped and videotaped. The interviews were transcribed and coded to identify types of mental models and explanative information. Subjects' answers to the problem solving transfer questions were scored using a rubric. Results. Students taught in a constructivist context tended to use more complete mental models than students taught in a transmissional context. Fifty-two percent of constructivist subjects and forty-four percent of transmissional subjects demonstrated evidence of relevant mental models. Overall fifty-two percent of the subjects expressed naive mental models with respect to content. There was no significant difference in the frequency of explanative information expressed by either group. Both groups scored poorly on the problem solving transfer problems. The average score for the constructivist group was 30% and the average score for the transmissional group was 34%. A significant correlation was found between the frequency of explanative information and scores on the problem-solving transfer questions, r = 0.766. Conclusion. The subjects exhibited difficulty in formulating and applying mental models to effectively answer problem solving transfer questions regardless of the context in which the subjects were taught. The results call into question the extent to which students have been taught to use mental models and more generally, the extent to which their prior academic experience has encouraged them to develop an awareness of scientific thinking skills. Implications of the study suggest further consideration of mental modeling in science education reform and the deliberate integration of an awareness of scientific thinking skills in the development of science curricula.

  4. Embellishing Problem-Solving Examples with Deep Structure Information Facilitates Transfer

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Betts, Shawn; Anderson, John R.

    2017-01-01

    Appreciation of problem structure is critical to successful learning. Two experiments investigated effective ways of communicating problem structure in a computer-based learning environment and tested whether verbal instruction is necessary to specify solution steps, when deep structure is already embellished by instructional examples.…

  5. A Primer for Problem Solving Using Artificial Intelligence.

    ERIC Educational Resources Information Center

    Schell, George P.

    1988-01-01

    Reviews the development of artificial intelligence systems and the mechanisms used, including knowledge representation, programing languages, and problem processing systems. Eleven books and 6 journals are listed as sources of information on artificial intelligence. (23 references) (CLB)

  6. Playful Physics

    NASA Technical Reports Server (NTRS)

    Weaver, David

    2008-01-01

    Effectively communicate qualitative and quantitative information orally and in writing. Explain the application of fundamental physical principles to various physical phenomena. Apply appropriate problem-solving techniques to practical and meaningful problems using graphical, mathematical, and written modeling tools. Work effectively in collaborative groups.

  7. A Conceptual Model for Solving Percent Problems.

    ERIC Educational Resources Information Center

    Bennett, Albert B., Jr.; Nelson, L. Ted

    1994-01-01

    Presents an alternative method to teaching percent problems which uses a 10x10 grid to help students visualize percents. Offers a means of representing information and suggests different approaches for finding solutions. Includes reproducible student worksheet. (MKR)

  8. Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.

    2010-12-01

    Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.

  9. Individual differences in working memory and reasoning-remembering relationships in solving class-inclusion problems.

    PubMed

    Howe, M L; Rabinowitz, F M; Powell, T L

    1998-09-01

    In the present experiment, we evaluated the effects of individual differences in reading span and variation in memory demands on class-inclusion performance. One hundred twenty college students whose reading spans ranged from low to medium to high (as indexed by a computerized version of the Daneman and Carpenter [1980] reading-span task) solved 48 class-inclusion problems. Half of the subjects had the solution information available when the problems were presented; the other half performed a detection task between solution information and problem presentation. The results from both standard statistical analyses and from a mathematical model indicated that differences in reading span and memory load had predictable, similar effects. Specifically, the sophistication of reasoning strategies declined when memory demands increased or when reading spans decreased. Surprisingly, these effects were primarily additive. The results were interpreted in terms of global resource models and findings from the developmental literature.

  10. Numerical algebraic geometry: a new perspective on gauge and string theories

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; He, Yang-Hui; Hauensteine, Jonathan D.

    2012-07-01

    There is a rich interplay between algebraic geometry and string and gauge theories which has been recently aided immensely by advances in computational algebra. However, symbolic (Gröbner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these shortcomings. The so-called `embarrassing parallelizability' allows us to solve many problems and extract physical information which elude symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.

  11. Recognizing Value of Educational Collaboration between High Schools and Universities Facilitated by Modern ICT

    ERIC Educational Resources Information Center

    Zielinski, K.; Czekierda, L.; Malawski, F.; Stras, R.; Zielinski, S.

    2017-01-01

    In this paper, we address the problem of an educational gap existing between high schools and universities: many students consider their choice of field of study as inappropriate, mostly due to insufficient information regarding the discipline and the university educational process. To solve this problem, we define an innovative, information and…

  12. Virtual manufacturing in reality

    NASA Astrophysics Data System (ADS)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  13. Supervised guiding long-short term memory for image caption generation based on object classes

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cao, Zhiguo; Xiao, Yang; Qi, Xinyuan

    2018-03-01

    The present models of image caption generation have the problems of image visual semantic information attenuation and errors in guidance information. In order to solve these problems, we propose a supervised guiding Long Short Term Memory model based on object classes, named S-gLSTM for short. It uses the object detection results from R-FCN as supervisory information with high confidence, and updates the guidance word set by judging whether the last output matches the supervisory information. S-gLSTM learns how to extract the current interested information from the image visual se-mantic information based on guidance word set. The interested information is fed into the S-gLSTM at each iteration as guidance information, to guide the caption generation. To acquire the text-related visual semantic information, the S-gLSTM fine-tunes the weights of the network through the back-propagation of the guiding loss. Complementing guidance information at each iteration solves the problem of visual semantic information attenuation in the traditional LSTM model. Besides, the supervised guidance information in our model can reduce the impact of the mismatched words on the caption generation. We test our model on MSCOCO2014 dataset, and obtain better performance than the state-of-the- art models.

  14. Problems and solutions for patients with fibromyalgia: Building new helping relationships.

    PubMed

    Montesó-Curto, Pilar; García-Martinez, Montserrat; Romaguera, Sara; Mateu, María Luisa; Cubí-Guillén, María Teresa; Sarrió-Colas, Lidia; Llàdser, Anna Núria; Bradley, Stephen; Panisello-Chavarria, María Luisa

    2018-02-01

    The aim of this study was to identify the main biological, psychological and sociological problems and potential solutions for patients diagnosed with fibromyalgia by use of Group Problem-Solving Therapy. Group Problem-Solving Therapy is a technique for identifying and solving problems, increasing assertiveness, self-esteem and eliminating negative thoughts. Qualitative phenomenological interpretive design: Group Problem-Solving Therapy sessions conducted with patients suffering fibromyalgia were studied; participants recruited via the Rheumatology Department at a general hospital and associations in Catalonia, Spain with sessions conducted in nearby university setting. The study included 44 people diagnosed with fibromyalgia (43 female, 1 male) from 6 Group Problem-Solving Therapy sessions. Data collected from March-June 2013. A total of 24 sessions were audio recorded, all with prior informed consent. Data were transcribed and then analysed in accordance with established methods of inductive thematic analysis, via a process of reduction to manage and classify data. Five themes were identified: (1) Current problems are often related to historical trauma; (2) There are no "one size fits all" solutions; (3) Fibromyalgia is life-changing; (4) Fibromyalgia is widely misunderstood; (5) Statistically Significant impacts on physical, psychological and social are described. The majority of patients' problems were associated with their previous history and the onset of fibromyalgia; which may be related to trauma in adolescence, early adulthood or later. The solutions provided during the groups appeared to be accepted by the participants. These findings can improve the self-management of fibromyalgia patients by helping to enhance adaptive behaviours and incorporating the female gender approach. © 2017 John Wiley & Sons Ltd.

  15. The generic task toolset: High level languages for the construction of planning and problem solving systems

    NASA Technical Reports Server (NTRS)

    Chandrasekaran, B.; Josephson, J.; Herman, D.

    1987-01-01

    The current generation of languages for the construction of knowledge-based systems as being at too low a level of abstraction is criticized, and the need for higher level languages for building problem solving systems is advanced. A notion of generic information processing tasks in knowledge-based problem solving is introduced. A toolset which can be used to build expert systems in a way that enhances intelligibility and productivity in knowledge acquistion and system construction is described. The power of these ideas is illustrated by paying special attention to a high level language called DSPL. A description is given of how it was used in the construction of a system called MPA, which assists with planning in the domain of offensive counter air missions.

  16. Focus information is used to interpret binocular images

    PubMed Central

    Hoffman, David M.; Banks, Martin S.

    2011-01-01

    Focus information—blur and accommodation—is highly correlated with depth in natural viewing. We examined the use of focus information in solving the binocular correspondence problem and in interpreting monocular occlusions. We presented transparent scenes consisting of two planes. Observers judged the slant of the farther plane, which was seen through the nearer plane. To do this, they had to solve the correspondence problem. In one condition, the two planes were presented with sharp rendering on one image plane, as is done in conventional stereo displays. In another condition, the planes were presented on two image planes at different focal distances, simulating focus information in natural viewing. Depth discrimination performance improved significantly when focus information was correct, which shows that the visual system utilizes the information contained in depth-of-field blur in solving binocular correspondence. In a second experiment, we presented images in which one eye could see texture behind an occluder that the other eye could not see. When the occluder's texture was sharp along with the occluded texture, binocular rivalry was prominent. When the occluded and occluding textures were presented with different blurs, rivalry was significantly reduced. This shows that blur aids the interpretation of scene layout near monocular occlusions. PMID:20616139

  17. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems

    DOE PAGES

    Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan

    2015-05-19

    The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less

  18. Sandia National Laboratories analysis code data base

    NASA Astrophysics Data System (ADS)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  19. Analysis of problem solving on project based learning with resource based learning approach computer-aided program

    NASA Astrophysics Data System (ADS)

    Kuncoro, K. S.; Junaedi, I.; Dwijanto

    2018-03-01

    This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.

  20. Biomimetics: its practice and theory.

    PubMed

    Vincent, Julian F V; Bogatyreva, Olga A; Bogatyrev, Nikolaj R; Bowyer, Adrian; Pahl, Anja-Karina

    2006-08-22

    Biomimetics, a name coined by Otto Schmitt in the 1950s for the transfer of ideas and analogues from biology to technology, has produced some significant and successful devices and concepts in the past 50 years, but is still empirical. We show that TRIZ, the Russian system of problem solving, can be adapted to illuminate and manipulate this process of transfer. Analysis using TRIZ shows that there is only 12% similarity between biology and technology in the principles which solutions to problems illustrate, and while technology solves problems largely by manipulating usage of energy, biology uses information and structure, two factors largely ignored by technology.

  1. Assessing problem-solving skills in construction education with the virtual construction simulator

    NASA Astrophysics Data System (ADS)

    Castronovo, Fadi

    The ability to solve complex problems is an essential skill that a construction and project manager must possess when entering the architectural, engineering, and construction industry. Such ability requires a mixture of problem-solving skills, ranging from lower to higher order thinking skills, composed of cognitive and metacognitive processes. These skills include the ability to develop and evaluate construction plans and manage the execution of such plans. However, in a typical construction program, introducing students to such complex problems can be a challenge, and most commonly the learner is presented with only part of a complex problem. To support this challenge, the traditional methodology of delivering design, engineering, and construction instruction has been going through a technological revolution, due to the rise of computer-based technology. For example, in construction classrooms, and other disciplines, simulations and educational games are being utilized to support the development of problem-solving skills. Previous engineering education research has illustrated the high potential that simulations and educational games have in engaging in lower and higher order thinking skills. Such research illustrated their capacity to support the development of problem-solving skills. This research presents evidence supporting the theory that educational simulation games can help with the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems. The educational simulation game employed in this study is the Virtual Construction Simulator (VCS). The VCS is a game developed to provide students in an engaging learning activity that simulates the planning and managing phases of a construction project. Assessment of the third iteration of the VCS(3) game has shown pedagogical value in promoting students' motivation and a basic understanding of construction concepts. To further evaluate the benefits on problem-solving skills, a new version of the VCS(4) was developed, with new building modules and assessment framework. The design and development of the VCS4 leveraged research in educational psychology, multimedia learning, human-computer interaction, and Building Information Modeling. In this dissertation the researcher aimed to evaluate the pedagogical value of the VCS4 in fostering problem-solving skills. To answer the research questions, a crossover repeated measures quasi-experiment was designed to assess the educational gains that the VCS can provide to construction education. A group of 34 students, attending a fourth-year construction course at a university in the United States was chosen to participate in the experiment. The three learning modules of the VCS were used, which challenged the students to plan and manage the construction process of a wooden pavilion, the steel erection of a dormitory, and the concrete placement of the same dormitory. Based on the results the researcher was able to provide evidence supporting the hypothesis that the chosen sample of construction students were able to gain and retain problem-solving skills necessary to solve complex construction simulation problems, no matter what the sequence with which these modules were played. In conclusion, the presented results provide evidence supporting the theory that educational simulation games can help the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems.

  2. Use of Information: Getting to the Heart of the Matter

    ERIC Educational Resources Information Center

    Eisenberg, Michael B.

    2005-01-01

    The Big6 approach to information problem solving is widely used by students in the US. Use of Information is the 4th stage and marks a shift in focus from selecting and accessing information sources to using the information itself in a process that involves "critical thinking."

  3. Suboptimal Tradeoffs in Information Seeking

    ERIC Educational Resources Information Center

    Fu, Wai-Tat; Gray, Wayne D.

    2006-01-01

    Explicit information-seeking actions are needed to evaluate alternative actions in problem-solving tasks. Information-seeking costs are often traded off against the utility of information. We present three experiments that show how subjects adapt to the cost and information structures of environments in a map-navigation task. We found that…

  4. Clinical and Cognitive Characteristics Associated with Mathematics Problem Solving in Adolescents with Autism Spectrum Disorder.

    PubMed

    Oswald, Tasha M; Beck, Jonathan S; Iosif, Ana-Maria; McCauley, James B; Gilhooly, Leslie J; Matter, John C; Solomon, Marjorie

    2016-04-01

    Mathematics achievement in autism spectrum disorder (ASD) has been understudied. However, the ability to solve applied math problems is associated with academic achievement, everyday problem-solving abilities, and vocational outcomes. The paucity of research on math achievement in ASD may be partly explained by the widely-held belief that most individuals with ASD are mathematically gifted, despite emerging evidence to the contrary. The purpose of the study was twofold: to assess the relative proportions of youth with ASD who demonstrate giftedness versus disability on applied math problems, and to examine which cognitive (i.e., perceptual reasoning, verbal ability, working memory) and clinical (i.e., test anxiety) characteristics best predict achievement on applied math problems in ASD relative to typically developing peers. Twenty-seven high-functioning adolescents with ASD and 27 age- and Full Scale IQ-matched typically developing controls were assessed on standardized measures of math problem solving, perceptual reasoning, verbal ability, and test anxiety. Results indicated that 22% of the ASD sample evidenced a mathematics learning disability, while only 4% exhibited mathematical giftedness. The parsimonious linear regression model revealed that the strongest predictor of math problem solving was perceptual reasoning, followed by verbal ability and test anxiety, then diagnosis of ASD. These results inform our theories of math ability in ASD and highlight possible targets of intervention for students with ASD struggling with mathematics. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  5. Estimation and Compression over Large Alphabets

    ERIC Educational Resources Information Center

    Acharya, Jayadev

    2014-01-01

    Compression, estimation, and prediction are basic problems in Information theory, statistics and machine learning. These problems have been extensively studied in all these fields, though the primary focus in a large portion of the work has been on understanding and solving the problems in the asymptotic regime, "i.e." the alphabet size…

  6. Algebra Word Problem Solving Approaches in a Chemistry Context: Equation Worked Examples versus Text Editing

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Yeung, Alexander Seeshing

    2013-01-01

    Text editing directs students' attention to the problem structure as they classify whether the texts of word problems contain sufficient, missing or irrelevant information for working out a solution. Equation worked examples emphasize the formation of a coherent problem structure to generate a solution. Its focus is on the construction of three…

  7. Representation in incremental learning

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Work focused on two areas in machine learning: representation for inductive learning and how to apply concept learning techniques to learning state preferences, which can represent search control knowledge for problem solving. Specifically, in the first area the issues of the effect of representation on learning, on how learning formalisms are biased, and how concept learning can benefit from the use of a hybrid formalism are addressed. In the second area, the issues of developing an agent to learn search control knowledge from the relative values of states, of the source of that qualitative information, and of the ability to use both quantitative and qualitative information in order to develop an effective problem-solving policy are examined.

  8. Toward Solving the Problem of Problem Solving: An Analysis Framework

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  9. Promoting Students' Problem Solving Skills and Knowledge of STEM Concepts in a Data-Rich Learning Environment: Using Online Data as a Tool for Teaching about Renewable Energy Technologies

    NASA Astrophysics Data System (ADS)

    Thurmond, Brandi

    This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related to renewable energy technologies and students' problem solving skills. Two purposefully selected Advanced Placement (AP) Environmental Science teachers were included in the study. Each teacher taught one class about RET in a lecture-based environment (control) and another class in a DRL environment (treatment), for a total of four classes of students (n=128). This study utilized a quasi-experimental, pretest/posttest, control-group design. The initial hypothesis that the treatment group would have a significant gain in knowledge of STEM concepts related to RET and be better able to solve problems when compared to the control group was not supported by the data. Although students in the DRL environment had a significant gain in knowledge after instruction, posttest score comparisons of the control and treatment groups revealed no significant differences between the groups. Further, no significant differences were noted in students' problem solving abilities as measured by scores on a problem-based activity and self-reported abilities on a reflective questionnaire. This suggests that the DRL environment is at least as effective as the lecture-based learning environment in teaching AP Environmental Science students about RET and fostering the development of problem solving skills. As this was a small scale study, further research is needed to provide information about effectiveness of DRL environments in promoting students' knowledge of STEM concepts and problem-solving skills.

  10. Integrated identification, modeling and control with applications

    NASA Astrophysics Data System (ADS)

    Shi, Guojun

    This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing controller such that the active control energy is minimized. A weighted q-Markov COVER method is introduced for identification with measurement noise. The result is use to develop an iterative closed loop identification/control design algorithm. The effectiveness of the algorithm is illustrated by experimental results.

  11. Sleep promotes analogical transfer in problem solving.

    PubMed

    Monaghan, Padraic; Sio, Ut Na; Lau, Sum Wai; Woo, Hoi Kei; Linkenauger, Sally A; Ormerod, Thomas C

    2015-10-01

    Analogical problem solving requires using a known solution from one problem to apply to a related problem. Sleep is known to have profound effects on memory and information restructuring, and so we tested whether sleep promoted such analogical transfer, determining whether improvement was due to subjective memory for problems, subjective recognition of similarity across related problems, or by abstract generalisation of structure. In Experiment 1, participants were exposed to a set of source problems. Then, after a 12-h period involving sleep or wake, they attempted target problems structurally related to the source problems but with different surface features. Experiment 2 controlled for time of day effects by testing participants either in the morning or the evening. Sleep improved analogical transfer, but effects were not due to improvements in subjective memory or similarity recognition, but rather effects of structural generalisation across problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Reinforcement learning in computer vision

    NASA Astrophysics Data System (ADS)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  13. A self-care, problem-solving and mindfulness intervention for informal caregivers of people with motor neurone disease: A pilot study.

    PubMed

    Ugalde, Anna; Mathers, Susan; Hennessy Anderson, Nicole; Hudson, Peter; Orellana, Liliana; Gluyas, Cathy

    2018-04-01

    Informal caregivers of people with motor neurone disease (MND) take on an extensive role. Caregivers are at increased risk of experiencing psychological distress and burden, yet, there is a lack of intervention programmes to support them. The aim of this study was to investigate the feasibility and acceptability of a therapeutic group intervention promoting self-care, problem-solving and mindfulness to informal caregivers of people with MND. Pilot study that utilised a one-arm pre- and post-design. Acceptability of the intervention was assessed 2 weeks post intervention with a questionnaire designed specifically for this study. Feasibility was assessed with consent, adherence and reasons for non-participation, refusal and attrition. Participants completed baseline and follow-up (6-week post intervention) questionnaires for psychological morbidity, burden, problem-solving, mindfulness and preparedness. Settings/participants: Caregivers of people with a diagnosis of MND within the past 12 months who were 18 years or older; who could speak, read and write in English and who were attending a progressive neurological diseases clinic were eligible. A total of 13 caregivers participated in one of three group intervention sessions which were focused on self-care, problem-solving and mindfulness. The intervention appeared to be feasible and acceptable. All participants stated that they would recommend the intervention to others. The group format appeared to be highly valued. There was no significant change in measures between pre-intervention and 6 weeks post intervention. This pilot serves as an initial step for examining interventions for MND caregivers, with the hope of identifying effective, efficient and sustainable strategies to best support this group.

  14. Organizational and Pedagogical Conditions for Training Teachers under Distance Education Framework

    ERIC Educational Resources Information Center

    Khuziakhmetov, Anvar N.; Suleymanova, Dilyara N.; Nasibullov, Ramis R.; Yarullin, Ilnar F.

    2016-01-01

    Distance education in a professional higher school is of particular importance in terms of fundamental changes in modern educational institutions. This form of training together with the expansion of information technologies can effectively solve the problem of training students and life-long learning. Distance education is able to solve the…

  15. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    PubMed

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  16. Novel approaches for road congestion mitigation.

    DOT National Transportation Integrated Search

    2012-07-02

    Transportation planning is usually aiming to solve two problems: the traffic assignment and the toll pricing problems. The latter one utilizes information from the first one, in order to find the optimal set of tolls that is the set of tolls that lea...

  17. Novel approaches for road congestion minimization.

    DOT National Transportation Integrated Search

    2012-07-01

    Transportation planning is usually aiming to solve two problems: the traffic assignment and the toll pricing problems. The latter one utilizes information from the first one, in order to find the optimal set of tolls that is the set of tolls that lea...

  18. Minimization of transmission cost in decentralized control systems

    NASA Technical Reports Server (NTRS)

    Wang, S.-H.; Davison, E. J.

    1978-01-01

    This paper considers the problem of stabilizing a linear time-invariant multivariable system by using local feedback controllers and some limited information exchange among local stations. The problem of achieving a given degree of stability with minimum transmission cost is solved.

  19. Motivating the Notion of Generic Design within Information Processing Theory: The Design Problem Space.

    ERIC Educational Resources Information Center

    Goel, Vinod; Pirolli, Peter

    The notion of generic design, while it has been around for 25 years, is not often articulated, especially within Newell and Simon's (1972) Information Processing Theory framework. Design is merely lumped in with other forms of problem solving activity. Intuitively it is felt that there should be a level of description of the phenomenon which…

  20. Landfill gas control at military installations. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafer, R.A.; Renta-Babb, A.; Bandy, J.T.

    1984-01-01

    This report provides information useful to Army personnel responsible for recognizing and solving potential problems from gas generated by landfills. Information is provided on recognizing and gauging the magnitude of landfill gas problems; selecting appropriate gas control strategies, procedures, and equipment; use of computer modeling to predict gas production and migration and the success of gas control devices; and safety considerations.

  1. Innovative Model for Information Assurance Curriculum: A Teaching Hospital

    ERIC Educational Resources Information Center

    Goel, Sanjay; Pon, Damira; Bloniarz, Peter; Bangert-Drowns, Robert; Berg, George; Delio, Vince; Iwan, Laura; Hurbanek, Thomas; Schuman, Sandoor P.; Gangolly, Jagdish; Baykal, Adnan; Hobbs, Jon

    2006-01-01

    A novel idea for information security education created by the New York State Center for Information Forensics and Assurance (CIFA) is presented. This new approach incorporates a teaching hospital model originally developed for medical training. In this model, information security problems from industry and government are solved and abstracted…

  2. Context Oriented Information Integration

    NASA Astrophysics Data System (ADS)

    Mohania, Mukesh; Bhide, Manish; Roy, Prasan; Chakaravarthy, Venkatesan T.; Gupta, Himanshu

    Faced with growing knowledge management needs, enterprises are increasingly realizing the importance of seamlessly integrating critical business information distributed across both structured and unstructured data sources. Academicians have focused on this problem but there still remain a lot of obstacles for its widespread use in practice. One of the key problems is the absence of schema in unstructured text. In this paper we present a new paradigm for integrating information which overcomes this problem - that of Context Oriented Information Integration. The goal is to integrate unstructured data with the structured data present in the enterprise and use the extracted information to generate actionable insights for the enterprise. We present two techniques which enable context oriented information integration and show how they can be used for solving real world problems.

  3. Bicriteria Network Optimization Problem using Priority-based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Lin, Lin; Cheng, Runwei

    Network optimization is being an increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. In many applications, however, there are several criteria associated with traversing each edge of a network. For example, cost and flow measures are both important in the networks. As a result, there has been recent interest in solving Bicriteria Network Optimization Problem. The Bicriteria Network Optimization Problem is known a NP-hard. The efficient set of paths may be very large, possibly exponential in size. Thus the computational effort required to solve it can increase exponentially with the problem size in the worst case. In this paper, we propose a genetic algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including maximum flow (MXF) model and minimum cost flow (MCF) model. The objective is to find the set of Pareto optimal solutions that give possible maximum flow with minimum cost. This paper also combines Adaptive Weight Approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. Computer simulations show the several numerical experiments by using some difficult-to-solve network design problems, and show the effectiveness of the proposed method.

  4. Enhanced algorithms for stochastic programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, Alamuru S.

    1993-09-01

    In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean ofmore » a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.« less

  5. Resources in Technology: Problem-Solving.

    ERIC Educational Resources Information Center

    Technology Teacher, 1986

    1986-01-01

    This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)

  6. An Intuitionistic Fuzzy Logic Models for Multicriteria Decision Making Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Jana, Biswajit; Mohanty, Sachi Nandan

    2017-04-01

    The purpose of this paper is to enhance the applicability of the fuzzy sets for developing mathematical models for decision making under uncertainty, In general a decision making process consist of four stages, namely collection of information from various sources, compile the information, execute the information and finally take the decision/action. Only fuzzy sets theory is capable to quantifying the linguistic expression to mathematical form in complex situation. Intuitionistic fuzzy set (IFSs) which reflects the fact that the degree of non membership is not always equal to one minus degree of membership. There may be some degree of hesitation. Thus, there are some situations where IFS theory provides a more meaningful and applicable to cope with imprecise information present for solving multiple criteria decision making problem. This paper emphasis on IFSs, which is help for solving real world problem in uncertainty situation.

  7. The Human-Computer Interface and Information Literacy: Some Basics and Beyond.

    ERIC Educational Resources Information Center

    Church, Gary M.

    1999-01-01

    Discusses human/computer interaction research, human/computer interface, and their relationships to information literacy. Highlights include communication models; cognitive perspectives; task analysis; theory of action; problem solving; instructional design considerations; and a suggestion that human/information interface may be a more appropriate…

  8. Interfaces for End-User Information Seeking.

    ERIC Educational Resources Information Center

    Marchionini, Gary

    1992-01-01

    Discusses essential features of interfaces to support end-user information seeking. Highlights include cognitive engineering; task models and task analysis; the problem-solving nature of information seeking; examples of systems for end-users, including online public access catalogs (OPACs), hypertext, and help systems; and suggested research…

  9. Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems

    PubMed Central

    Liu, Haorui; Yi, Fengyan; Yang, Heli

    2016-01-01

    The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the “elite strategy” to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion. PMID:26819584

  10. Emotion Discourse, Social Cognition, and Social Skills in Children with and without Developmental Delays

    PubMed Central

    Fenning, RM; Baker, BL; Juvonen, J

    2009-01-01

    This study examined parent-child emotion discourse, children’s independent social information processing, and social skills outcomes in 146 families of 8-year-olds with and without developmental delays. Children’s emergent social-cognitive understanding (internal state understanding, perspective taking, and causal reasoning/problem solving) was coded in the context of parent-child conversations about emotion, and children were interviewed separately to assess social problem solving. Mothers, fathers, and teachers reported on children’s social skills. The proposed strengths-based model partially accounted for social skills differences between typically developing children and children with delays. A multigroup analysis of the model linking emotion discourse to social skills through children’s prosocial problem solving suggested that processes operated similarly across the two groups. Implications for ecologically focused prevention and intervention are discussed. PMID:21410465

  11. An Approach to Scoring Collaboration in Online Game Environments

    ERIC Educational Resources Information Center

    Scoular, Claire; Care, Esther; Awwal, Nafisa

    2017-01-01

    With technological advances, it is now possible to use games to capture information-rich behaviours that reveal processes by which players interact and solve problems. Recent problem-based games have been designed to assess and record detailed interactions between the problem solver and the game environment, and thereby capture salient solution…

  12. Problem-Based Learning in Formal and Informal Learning Environments

    ERIC Educational Resources Information Center

    Shimic, Goran; Jevremovic, Aleksandar

    2012-01-01

    Problem-based learning (PBL) is a student-centered instructional strategy in which students solve problems and reflect on their experiences. Different domains need different approaches in the design of PBL systems. Therefore, we present one case study in this article: A Java Programming PBL. The application is developed as an additional module for…

  13. Sharing Teaching Ideas: Active Participation in the Classroom through Creative Problem Generation.

    ERIC Educational Resources Information Center

    Gonzales, Nancy A.; And Others

    1996-01-01

    Presents an activity to involve students in mathematical communication and creative thinking. The activity is similar to the "pass it along" gossip game in which each person in a chain adds a piece of information. The class analyzes the resulting mathematics problem using George Polya's problem-solving techniques. (MKR)

  14. Scene analysis in the natural environment

    PubMed Central

    Lewicki, Michael S.; Olshausen, Bruno A.; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    The problem of scene analysis has been studied in a number of different fields over the past decades. These studies have led to important insights into problems of scene analysis, but not all of these insights are widely appreciated, and there remain critical shortcomings in current approaches that hinder further progress. Here we take the view that scene analysis is a universal problem solved by all animals, and that we can gain new insight by studying the problems that animals face in complex natural environments. In particular, the jumping spider, songbird, echolocating bat, and electric fish, all exhibit behaviors that require robust solutions to scene analysis problems encountered in the natural environment. By examining the behaviors of these seemingly disparate animals, we emerge with a framework for studying scene analysis comprising four essential properties: (1) the ability to solve ill-posed problems, (2) the ability to integrate and store information across time and modality, (3) efficient recovery and representation of 3D scene structure, and (4) the use of optimal motor actions for acquiring information to progress toward behavioral goals. PMID:24744740

  15. Multitask SVM learning for remote sensing data classification

    NASA Astrophysics Data System (ADS)

    Leiva-Murillo, Jose M.; Gómez-Chova, Luis; Camps-Valls, Gustavo

    2010-10-01

    Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task but relation to previous acquisitions should be properly considered. In such problems, different modalities of the data (temporal, spatial, angular) gives rise to changes between the training and test distributions, which constitutes a difficult learning problem known as covariate shift. Multitask learning methods aim at jointly solving a set of prediction problems in an efficient way by sharing information across tasks. This paper presents a novel kernel method for multitask learning in remote sensing data classification. The proposed method alleviates the dataset shift problem by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as core learner and two regularization schemes are introduced: 1) the Euclidean distance of the predictors in the Hilbert space; and 2) the inclusion of relational operators between tasks. Experiments are conducted in the challenging remote sensing problems of cloud screening from multispectral MERIS images and for landmine detection.

  16. Acceptability of participatory social network analysis for problem-solving in Australian Aboriginal health service partnerships

    PubMed Central

    2012-01-01

    Background While participatory social network analysis can help health service partnerships to solve problems, little is known about its acceptability in cross-cultural settings. We conducted two case studies of chronic illness service partnerships in 2007 and 2008 to determine whether participatory research incorporating social network analysis is acceptable for problem-solving in Australian Aboriginal health service delivery. Methods Local research groups comprising 13–19 partnership staff, policy officers and community members were established at each of two sites to guide the research and to reflect and act on the findings. Network and work practice surveys were conducted with 42 staff, and the results were fed back to the research groups. At the end of the project, 19 informants at the two sites were interviewed, and the researchers conducted critical reflection. The effectiveness and acceptability of the participatory social network method were determined quantitatively and qualitatively. Results Participants in both local research groups considered that the network survey had accurately described the links between workers related to the exchange of clinical and cultural information, team care relationships, involvement in service management and planning and involvement in policy development. This revealed the function of the teams and the roles of workers in each partnership. Aboriginal workers had a high number of direct links in the exchange of cultural information, illustrating their role as the cultural resource, whereas they had fewer direct links with other network members on clinical information exchange and team care. The problem of their current and future roles was discussed inside and outside the local research groups. According to the interview informants the participatory network analysis had opened the way for problem-solving by “putting issues on the table”. While there were confronting and ethically challenging aspects, these informants considered that with flexibility of data collection to account for the preferences of Aboriginal members, then the method was appropriate in cross-cultural contexts for the difficult discussions that are needed to improve partnerships. Conclusion Critical reflection showed that the preconditions for difficult discussions are, first, that partners have the capacity to engage in such discussions, second, that partners assess whether the effort required for these discussions is balanced by the benefits they gain from the partnership, and, third, that “boundary spanning” staff can facilitate commitment to partnership goals. PMID:22682504

  17. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  18. Neuroscience: toward unbinding the binding problem.

    PubMed

    Whitney, David

    2009-03-24

    How the brain 'binds' information to create a coherent perceptual experience is an enduring question. Recent research in the psychophysics of perceptual binding and developments in fMRI analysis techniques are bringing us closer to an understanding of how the brain solves the binding problem.

  19. Qualitative Differences in Real-Time Solution of Standardized Figural Analogies.

    ERIC Educational Resources Information Center

    Schiano, Diane J.; And Others

    Performance on standardized figural analogy tests is considered highly predictive of academic success. While information-processing models of analogy solution attribute performance differences to quantitative differences in processing parameters, the problem-solving literature suggests that qualitative differences in problem representation and…

  20. Total-variation based velocity inversion with Bregmanized operator splitting algorithm

    NASA Astrophysics Data System (ADS)

    Zand, Toktam; Gholami, Ali

    2018-04-01

    Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmanized operator splitting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic data which is based on Born approximation, 2) computing interval velocities from RMS velocities via Dix formula. Numerical examples are presented to verify the feasibility of the proposed method for high-resolution velocity inversion.

  1. Arithmetic Problems at School: When There Is an Apparent Contradiction between the Situation Model and the Problem Model

    ERIC Educational Resources Information Center

    Coquin-Viennot, Daniele; Moreau, Stephanie

    2007-01-01

    Background: Understanding and solving problems involves different levels of representation. On the one hand, there are logico-mathematical representations, or problem models (PMs), which contain information such as "the size of the flock changed from 31 sheep to 42" while, on the other hand, there are more qualitative representations, or…

  2. How Students Evaluate Information and Sources when Searching the World Wide Web for Information

    ERIC Educational Resources Information Center

    Walraven, Amber; Brand-Gruwel, Saskia; Boshuizen, Henny P. A.

    2009-01-01

    The World Wide Web (WWW) has become the biggest information source for students while solving information problems for school projects. Since anyone can post anything on the WWW, information is often unreliable or incomplete, and it is important to evaluate sources and information before using them. Earlier research has shown that students have…

  3. Biomimetics: its practice and theory

    PubMed Central

    Vincent, Julian F.V; Bogatyreva, Olga A; Bogatyrev, Nikolaj R; Bowyer, Adrian; Pahl, Anja-Karina

    2006-01-01

    Biomimetics, a name coined by Otto Schmitt in the 1950s for the transfer of ideas and analogues from biology to technology, has produced some significant and successful devices and concepts in the past 50 years, but is still empirical. We show that TRIZ, the Russian system of problem solving, can be adapted to illuminate and manipulate this process of transfer. Analysis using TRIZ shows that there is only 12% similarity between biology and technology in the principles which solutions to problems illustrate, and while technology solves problems largely by manipulating usage of energy, biology uses information and structure, two factors largely ignored by technology. PMID:16849244

  4. Beyond rules: The next generation of expert systems

    NASA Technical Reports Server (NTRS)

    Ferguson, Jay C.; Wagner, Robert E.

    1987-01-01

    The PARAGON Representation, Management, and Manipulation system is introduced. The concepts of knowledge representation, knowledge management, and knowledge manipulation are combined in a comprehensive system for solving real world problems requiring high levels of expertise in a real time environment. In most applications the complexity of the problem and the representation used to describe the domain knowledge tend to obscure the information from which solutions are derived. This inhibits the acquisition of domain knowledge verification/validation, places severe constraints on the ability to extend and maintain a knowledge base while making generic problem solving strategies difficult to develop. A unique hybrid system was developed to overcome these traditional limitations.

  5. Experimental design for estimating unknown groundwater pumping using genetic algorithm and reduced order model

    NASA Astrophysics Data System (ADS)

    Ushijima, Timothy T.; Yeh, William W.-G.

    2013-10-01

    An optimal experimental design algorithm is developed to select locations for a network of observation wells that provide maximum information about unknown groundwater pumping in a confined, anisotropic aquifer. The design uses a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. The formulated optimization problem is non-convex and contains integer variables necessitating a combinatorial search. Given a realistic large-scale model, the size of the combinatorial search required can make the problem difficult, if not impossible, to solve using traditional mathematical programming techniques. Genetic algorithms (GAs) can be used to perform the global search; however, because a GA requires a large number of calls to a groundwater model, the formulated optimization problem still may be infeasible to solve. As a result, proper orthogonal decomposition (POD) is applied to the groundwater model to reduce its dimensionality. Then, the information matrix in the full model space can be searched without solving the full model. Results from a small-scale test case show identical optimal solutions among the GA, integer programming, and exhaustive search methods. This demonstrates the GA's ability to determine the optimal solution. In addition, the results show that a GA with POD model reduction is several orders of magnitude faster in finding the optimal solution than a GA using the full model. The proposed experimental design algorithm is applied to a realistic, two-dimensional, large-scale groundwater problem. The GA converged to a solution for this large-scale problem.

  6. Artificial Intelligence Applications to Videodisc Technology

    PubMed Central

    Vries, John K.; Banks, Gordon; McLinden, Sean; Moossy, John; Brown, Melanie

    1985-01-01

    Much of medical information is visual in nature. Since it is not easy to describe pictorial information in linguistic terms, it has been difficult to store and retrieve this type of information. Coupling videodisc technology with artificial intelligence programming techniques may provide a means for solving this problem.

  7. Education for the Information Age.

    ERIC Educational Resources Information Center

    Breivik, Patricia Senn

    1992-01-01

    To be effective in the current rapidly changing environment, individuals need more than a knowledge base. They also need information literacy which includes techniques for exploring new information, synthesizing it, and using it in practical ways. Undergraduate education should focus on such resource-based learning directed at problem solving.…

  8. Motion-based prediction is sufficient to solve the aperture problem

    PubMed Central

    Perrinet, Laurent U; Masson, Guillaume S

    2012-01-01

    In low-level sensory systems, it is still unclear how the noisy information collected locally by neurons may give rise to a coherent global percept. This is well demonstrated for the detection of motion in the aperture problem: as luminance of an elongated line is symmetrical along its axis, tangential velocity is ambiguous when measured locally. Here, we develop the hypothesis that motion-based predictive coding is sufficient to infer global motion. Our implementation is based on a context-dependent diffusion of a probabilistic representation of motion. We observe in simulations a progressive solution to the aperture problem similar to physiology and behavior. We demonstrate that this solution is the result of two underlying mechanisms. First, we demonstrate the formation of a tracking behavior favoring temporally coherent features independently of their texture. Second, we observe that incoherent features are explained away while coherent information diffuses progressively to the global scale. Most previous models included ad-hoc mechanisms such as end-stopped cells or a selection layer to track specific luminance-based features as necessary conditions to solve the aperture problem. Here, we have proved that motion-based predictive coding, as it is implemented in this functional model, is sufficient to solve the aperture problem. This solution may give insights in the role of prediction underlying a large class of sensory computations. PMID:22734489

  9. Ideas Tried, Lessons Learned, and Improvements to Make: A Journey in Moving a Spreadsheet-Intensive Course Online

    ERIC Educational Resources Information Center

    Berardi, Victor L.

    2012-01-01

    Using information systems to solve business problems is increasingly required of everyone in an organization, not just technical specialists. In the operations management class, spreadsheet usage has intensified with the focus on building decision models to solve operations management concerns such as forecasting, process capability, and inventory…

  10. Insight and analysis problem solving in microbes to machines.

    PubMed

    Clark, Kevin B

    2015-11-01

    A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Information Power Grid: Distributed High-Performance Computing and Large-Scale Data Management for Science and Engineering

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Gannon, Dennis; Nitzberg, Bill; Feiereisen, William (Technical Monitor)

    2000-01-01

    The term "Grid" refers to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. The vision for NASN's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks that will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: The scientist / design engineer whose primary interest is problem solving (e.g., determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user if the tool designer: The computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. This paper describes the current state of IPG (the operational testbed), the set of capabilities being put into place for the operational prototype IPG, as well as some of the longer term R&D tasks.

  12. Using the Big6[TM] To Teach and Learn with the Internet.

    ERIC Educational Resources Information Center

    Kasowitz, Abby S.

    This book is designed to prepare information mentors-educators, parents, educational concept developers, subject-matter experts, and others who guide K-12 students to information literacy to provide instruction, guidance, and services to teach K-12 students how to solve information problems using a variety of information tools and resources. The…

  13. Redefining Information Literacy to Prepare Students for the 21st Century Workforce

    ERIC Educational Resources Information Center

    Monge, Robert; Frisicaro-Pawlowski, Erica

    2014-01-01

    Information literacy instruction--a set of skills taught in order to identify and find the information needed to solve a problem--traditionally follows a formalized academic model. It assumes information skills can be applied universally and learned individually. However, this approach does not correspond to the social and specialized learning…

  14. Information Literacy: Essential Skills for the Information Age, Second Edition

    ERIC Educational Resources Information Center

    Eisenberg, Michael B.; Lowe, Carrie A.; Spitzer, Kathleen L.

    2004-01-01

    This is the definitive work on information literacy. Michael Eisenberg, known worldwide as one of the originators of the innovative Big6 Information Problem Solving Process, and frequent presenters on the subject Carrie A. Lowe and Kathleen L. Spitzer have extensively revised and updated this long-awaited second edition. Tracing the history of…

  15. Knowledge as a Resource--Networks Do Matter: A Study of SME Firms in Rural Illinois.

    ERIC Educational Resources Information Center

    Solymossy, Emeric

    2000-01-01

    Networks among people and businesses facilitate the capture and diffusion of technical and organizational knowledge and can be classified by type of knowledge being exchanged. Types include buyer-supplier information, technical problem-solving information, and informal community information. A survey of 141 small and medium-sized enterprises…

  16. The Key Roles in the Informal Organization: A Network Analysis Perspective

    ERIC Educational Resources Information Center

    de Toni, Alberto F.; Nonino, Fabio

    2010-01-01

    Purpose: The purpose of this paper is to identify the key roles embedded in the informal organizational structure (informal networks) and to outline their contribution in the companies' performance. A major objective of the research is to find and characterize a new key informal role that synthesises problem solving, expertise, and accessibility…

  17. Problem-solving variability in older spouses: how is it linked to problem-, person-, and couple-characteristics?

    PubMed

    Hoppmann, Christiane A; Blanchard-Fields, Fredda

    2011-09-01

    Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.

  18. Linear Equations. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying algebraic operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  19. Acing the Exam.

    ERIC Educational Resources Information Center

    Margolis, Rick

    2002-01-01

    Discusses improving student test scores based on an interview with Bob Berkowitz, co-developer of the Big6 approach to problem solving. Highlights include experiences at Wayne Central High School (Ontario Center, NY); cooperation between library media specialists and classroom teachers; viewing instruction as a series of information problems; and…

  20. Common Fractions. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying mathematical operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  1. Project 1990: Educational Planning at the Metropolitan Level.

    ERIC Educational Resources Information Center

    Swanson, Austin D.; Lamitie, Robert E.

    This paper describes a project designed to provide educational decisionmakers with projections of and forecasts about future metropolitan conditions and problems, and information about the implications of alternative ways of solving metropolitan problems. Project components included (1) population and economic projections and forecasts, (2)…

  2. Early Intervention To Prevent Violence.

    ERIC Educational Resources Information Center

    Lumsden, Linda

    2000-01-01

    This publication summarizes five works exploring the key role schools can play in dealing with emotionally disturbed students, in part because teachers are more reliable sources of information about troubled youths. The importance of interpersonal cognitive problem-solving (ICPS) skills is analyzed in "Preventing Violence the Problem Solving…

  3. Problem-Solving Environments (PSEs) to Support Innovation Clustering

    NASA Technical Reports Server (NTRS)

    Gill, Zann

    1999-01-01

    This paper argues that there is need for high level concepts to inform the development of Problem-Solving Environment (PSE) capability. A traditional approach to PSE implementation is to: (1) assemble a collection of tools; (2) integrate the tools; and (3) assume that collaborative work begins after the PSE is assembled. I argue for the need to start from the opposite premise, that promoting human collaboration and observing that process comes first, followed by the development of supporting tools, and finally evolution of PSE capability through input from collaborating project teams.

  4. Exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Henderson, A., Jr. (Editor); Grey, J.

    1974-01-01

    The potential achievements of solar system exploration are outlined, and a course of action is suggested which will maximize the rewards. Also provided is a sourcebook of information on the solar system and the technology being brought to bear for its exploration. The document explores the degree to which three practical questions can be answered: why it is necessary to explore the solar system, why understanding of the solar system is important to us, and why we cannot wait until all terrestrial problems are solved before an attempt is made to solve problems in space.

  5. Content analysis in information flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grusho, Alexander A.; Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow; Grusho, Nick A.

    The paper deals with architecture of content recognition system. To analyze the problem the stochastic model of content recognition in information flows was built. We proved that under certain conditions it is possible to solve correctly a part of the problem with probability 1, viewing a finite section of the information flow. That means that good architecture consists of two steps. The first step determines correctly certain subsets of contents, while the second step may demand much more time for true decision.

  6. Arithmetic learning with the use of graphic organiser

    NASA Astrophysics Data System (ADS)

    Sai, F. L.; Shahrill, M.; Tan, A.; Han, S. H.

    2018-01-01

    For this study, Zollman’s four corners-and-a-diamond mathematics graphic organiser embedded with Polya’s Problem Solving Model was used to investigate secondary school students’ performance in arithmetic word problems. This instructional learning tool was used to help students break down the given information into smaller units for better strategic planning. The participants were Year 7 students, comprised of 21 male and 20 female students, aged between 11-13 years old, from a co-ed secondary school in Brunei Darussalam. This study mainly adopted a quantitative approach to investigate the types of differences found in the arithmetic word problem pre- and post-tests results from the use of the learning tool. Although the findings revealed slight improvements in the overall comparisons of the students’ test results, the in-depth analysis of the students’ responses in their activity worksheets shows a different outcome. Some students were able to make good attempts in breaking down the key points into smaller information in order to solve the word problems.

  7. Resource Letter RPS-1: Research in problem solving

    NASA Astrophysics Data System (ADS)

    Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.

    2004-09-01

    This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.

  8. The place of SGML and HTML in building electronic patient records.

    PubMed

    Pitty, D; Gordon, C; Reeves, P; Capey, A; Vieyra, P; Rickards, T

    1997-01-01

    The authors are concerned that, although popular, SGML (Standard Generalized Markup Language) is only one approach to capturing, storing, viewing and exchanging healthcare information and does not provide a suitable paradigm for solving most of the problems associated with paper based patient record systems. Although a discussion of the relative merits of SGML, HTML (HyperText Markup Language) may be interesting, we feel such a discussion is avoiding the real issues associated with the most appropriate way to model, represent, and store electronic patient information in order to solve healthcare problems, and therefore the medical informatics community should firstly concern itself with these issues. The paper substantiates this viewpoint and concludes with some suggestions of how progress can be made.

  9. Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shorikov, A. F., E-mail: afshorikov@mail.ru

    We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminalmore » approach process with incomplete information and give a general scheme for its solving.« less

  10. Evaluation of a problem-solving (PS) techniques-based intervention for informal carers of patients with dementia receiving in-home care.

    PubMed

    Chiu, Mary; Pauley, Tim; Wesson, Virginia; Pushpakumar, Dunstan; Sadavoy, Joel

    2015-06-01

    The value of care provided by informal carers in Canada is estimated at $26 billion annually (Hollander et al., 2009). However, carers' needs are often overlooked, limiting their capacity to provide care. Problem-solving therapy (PST), a structured approach to problem solving (PS) and a core principle of the Reitman Centre CARERS Program, has been shown to alleviate emotional distress and improve carers' competence (Chiu et al., 2013). This study evaluated the effectiveness of problem-solving techniques-based intervention based on adapted PST methods, in enhancing carers' physical and emotional capacity to care for relatives with dementia living in the community. 56 carers were equally allocated to a problem-solving techniques-based intervention group or a control arm. Carers in the intervention group received three 1 hr visits by a care coordinator (CC) who had been given advanced training in PS techniques-based intervention. Coping, mastery, competence, burden, and perceived stress of the carers were evaluated at baseline and post-intervention using standardized assessment tools. An intention-to-treat analysis utilizing repeated measures ANOVA was performed on the data. Post-intervention measures completion rate was 82% and 92% for the intervention and control groups, respectively. Carers in the intervention group showed significantly improved task-oriented coping, mastery, and competence and significantly reduced emotion-oriented coping, burden and stress (p < 0.01-0.001). Control carers showed no change. PS techniques, when learned and delivered by CCs as a tool to coach carers in their day-to-day caregiving, improves carers' caregiving competence, coping, burden, and perceived stress. This may reduce dependence on primary, psychiatric, and institutional care. Results provide evidence that establishing effective partnerships between inter-professional clinicians in academic clinical health science centers, and community agencies can extend the reach of the expertise of specialized health care institutions.

  11. Spatial problem-solving strategies of middle school students: Wayfinding with geographic information systems

    NASA Astrophysics Data System (ADS)

    Wigglesworth, John C.

    2000-06-01

    Geographic Information Systems (GIS) is a powerful computer software package that emphasizes the use of maps and the management of spatially referenced environmental data archived in a systems data base. Professional applications of GIS have been in place since the 1980's, but only recently has GIS gained significant attention in the K--12 classroom. Students using GIS are able to manipulate and query data in order to solve all manners of spatial problems. Very few studies have examined how this technological innovation can support classroom learning. In particular, there has been little research on how experience in using the software correlates with a child's spatial cognition and his/her ability to understand spatial relationships. This study investigates the strategies used by middle school students to solve a wayfinding (route-finding) problem using the ArcView GIS software. The research design combined an individual background questionnaire, results from the Group Assessment of Logical Thinking (GALT) test, and analysis of reflective think-aloud sessions to define the characteristics of the strategies students' used to solve this particular class of spatial problem. Three uniquely different spatial problem solving strategies were identified. Visual/Concrete Wayfinders used a highly visual strategy; Logical/Abstract Wayfinders used GIS software tools to apply a more analytical and systematic approach; Transitional Wayfinders used an approach that showed evidence of one that was shifting from a visual strategy to one that was more analytical. The triangulation of data sources indicates that this progression of wayfinding strategy can be correlated both to Piagetian stages of logical thought and to experience with the use of maps. These findings suggest that GIS teachers must be aware that their students' performance will lie on a continuum that is based on cognitive development, spatial ability, and prior experience with maps. To be most effective, GIS teaching strategies and curriculum development should also represent a progression that correlates to the learners' current skills and experience.

  12. A multidisciplinary approach to solving computer related vision problems.

    PubMed

    Long, Jennifer; Helland, Magne

    2012-09-01

    This paper proposes a multidisciplinary approach to solving computer related vision issues by including optometry as a part of the problem-solving team. Computer workstation design is increasing in complexity. There are at least ten different professions who contribute to workstation design or who provide advice to improve worker comfort, safety and efficiency. Optometrists have a role identifying and solving computer-related vision issues and in prescribing appropriate optical devices. However, it is possible that advice given by optometrists to improve visual comfort may conflict with other requirements and demands within the workplace. A multidisciplinary approach has been advocated for solving computer related vision issues. There are opportunities for optometrists to collaborate with ergonomists, who coordinate information from physical, cognitive and organisational disciplines to enact holistic solutions to problems. This paper proposes a model of collaboration and examples of successful partnerships at a number of professional levels including individual relationships between optometrists and ergonomists when they have mutual clients/patients, in undergraduate and postgraduate education and in research. There is also scope for dialogue between optometry and ergonomics professional associations. A multidisciplinary approach offers the opportunity to solve vision related computer issues in a cohesive, rather than fragmented way. Further exploration is required to understand the barriers to these professional relationships. © 2012 The College of Optometrists.

  13. A participatory model for improving occupational health and safety: improving informal sector working conditions in Thailand.

    PubMed

    Manothum, Aniruth; Rukijkanpanich, Jittra; Thawesaengskulthai, Damrong; Thampitakkul, Boonwa; Chaikittiporn, Chalermchai; Arphorn, Sara

    2009-01-01

    The purpose of this study was to evaluate the implementation of an Occupational Health and Safety Management Model for informal sector workers in Thailand. The studied model was characterized by participatory approaches to preliminary assessment, observation of informal business practices, group discussion and participation, and the use of environmental measurements and samples. This model consisted of four processes: capacity building, risk analysis, problem solving, and monitoring and control. The participants consisted of four local labor groups from different regions, including wood carving, hand-weaving, artificial flower making, and batik processing workers. The results demonstrated that, as a result of applying the model, the working conditions of the informal sector workers had improved to meet necessary standards. This model encouraged the use of local networks, which led to cooperation within the groups to create appropriate technologies to solve their problems. The authors suggest that this model could effectively be applied elsewhere to improve informal sector working conditions on a broader scale.

  14. Teaching and Learning with the Internet: A Guide to Building Information Literacy Skills.

    ERIC Educational Resources Information Center

    Kasowitz, Abby S.

    This book is designed to prepare information mentors-educators, parents, educational concept developers, subject-matter experts, and others who guide K-12 students to information literacy to provide instruction, guidance, and services to teach K-12 students how to solve information problems using a variety of information tools and resources. The…

  15. An Effective Hybrid Evolutionary Algorithm for Solving the Numerical Optimization Problems

    NASA Astrophysics Data System (ADS)

    Qian, Xiaohong; Wang, Xumei; Su, Yonghong; He, Liu

    2018-04-01

    There are many different algorithms for solving complex optimization problems. Each algorithm has been applied successfully in solving some optimization problems, but not efficiently in other problems. In this paper the Cauchy mutation and the multi-parent hybrid operator are combined to propose a hybrid evolutionary algorithm based on the communication (Mixed Evolutionary Algorithm based on Communication), hereinafter referred to as CMEA. The basic idea of the CMEA algorithm is that the initial population is divided into two subpopulations. Cauchy mutation operators and multiple paternal crossover operators are used to perform two subpopulations parallelly to evolve recursively until the downtime conditions are met. While subpopulation is reorganized, the individual is exchanged together with information. The algorithm flow is given and the performance of the algorithm is compared using a number of standard test functions. Simulation results have shown that this algorithm converges significantly faster than FEP (Fast Evolutionary Programming) algorithm, has good performance in global convergence and stability and is superior to other compared algorithms.

  16. Complexity in Nature and Society: Complexity Management in the Age of Globalization

    NASA Astrophysics Data System (ADS)

    Mainzer, Klaus

    The theory of nonlinear complex systems has become a proven problem-solving approach in the natural sciences from cosmic and quantum systems to cellular organisms and the brain. Even in modern engineering science self-organizing systems are developed to manage complex networks and processes. It is now recognized that many of our ecological, social, economic, and political problems are also of a global, complex, and nonlinear nature. What are the laws of sociodynamics? Is there a socio-engineering of nonlinear problem solving? What can we learn from nonlinear dynamics for complexity management in social, economic, financial and political systems? Is self-organization an acceptable strategy to handle the challenges of complexity in firms, institutions and other organizations? It is a main thesis of the talk that nature and society are basically governed by nonlinear and complex information dynamics. How computational is sociodynamics? What can we hope for social, economic and political problem solving in the age of globalization?.

  17. The Strength of the Strongest Ties in Collaborative Problem Solving

    NASA Astrophysics Data System (ADS)

    de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune

    2014-06-01

    Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.

  18. The strength of the strongest ties in collaborative problem solving.

    PubMed

    de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune

    2014-06-20

    Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.

  19. Online Scientific and Technological Information in Nigeria: Prospects and Possibilities.

    ERIC Educational Resources Information Center

    Sodipe, R. O.

    Nigeria is faced with developmental problems, most of which can be solved with the aid of scientific and technological information contained in books, journals and patents, largely obtainable from the advanced countries. There are academic and research institutions generating information that could enhance the economic development of the country…

  20. Learning and Teaching Information Technology--Computer Skills in Context. ERIC Digest.

    ERIC Educational Resources Information Center

    Eisenberg, Michael B.; Johnson, Doug

    This digest describes an integrated approach to teaching computer skills in K-12 schools. The introductory section discusses the importance of integrating information skills into the curriculum. "Technology Skills for Information Problem Solving: A Curriculum Based on the Big6 Skills Approach" (Michael B. Eisenberg, Doug Johnson, and…

  1. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  2. Library Skills.

    ERIC Educational Resources Information Center

    Paul, Karin; Kuhlthau, Carol C.; Branch, Jennifer L.; Solowan, Diane Galloway; Case, Roland; Abilock, Debbie; Eisenberg, Michael B.; Koechlin, Carol; Zwaan, Sandi; Hughes, Sandra; Low, Ann; Litch, Margaret; Lowry, Cindy; Irvine, Linda; Stimson, Margaret; Schlarb, Irene; Wilson, Janet; Warriner, Emily; Parsons, Les; Luongo-Orlando, Katherine; Hamilton, Donald

    2003-01-01

    Includes 19 articles that address issues related to library skills and Canadian school libraries. Topics include information literacy; inquiry learning; critical thinking and electronic research; collaborative inquiry; information skills and the Big 6 approach to problem solving; student use of online databases; library skills; Internet accuracy;…

  3. Application of Information Technology in the Outpatient Service Optimization.

    PubMed

    Zhang, Xiaoying

    2017-01-01

    In a hierarchical diagnosis and treatment policy local tertiary hospitals assume the majority of clinic service, improving patient medical experience and enhancing service quality. Information technologies such as comprehensive self-services, and palm medical APPs can help solve these problems.

  4. Faculty Perceptions of Problem-Based Learning in a Veterinary College

    ERIC Educational Resources Information Center

    Malinowski, Robert

    2012-01-01

    Problem-based learning (PBL) has been embraced by several veterinary colleges as one approach to manage the ever-growing body of knowledge in the profession. The goal is to foster the development of problem-solving and critical thinking skills in students, enabling them to make logical and informed decisions, rather than rely on the rote…

  5. Validation of a Performance Assessment Instrument in Problem-Based Learning Tutorials Using Two Cohorts of Medical Students

    ERIC Educational Resources Information Center

    Lee, Ming; Wimmers, Paul F.

    2016-01-01

    Although problem-based learning (PBL) has been widely used in medical schools, few studies have attended to the assessment of PBL processes using validated instruments. This study examined reliability and validity for an instrument assessing PBL performance in four domains: Problem Solving, Use of Information, Group Process, and Professionalism.…

  6. Pattern of mathematic representation ability in magnetic electricity problem

    NASA Astrophysics Data System (ADS)

    Hau, R. R. H.; Marwoto, P.; Putra, N. M. D.

    2018-03-01

    The mathematic representation ability in solving magnetic electricity problem gives information about the way students understand magnetic electricity. Students have varied mathematic representation pattern ability in solving magnetic electricity problem. This study aims to determine the pattern of students' mathematic representation ability in solving magnet electrical problems.The research method used is qualitative. The subject of this study is the fourth semester students of UNNES Physics Education Study Program. The data collection is done by giving a description test that refers to the test of mathematical representation ability and interview about field line topic and Gauss law. The result of data analysis of student's mathematical representation ability in solving magnet electric problem is categorized into high, medium and low category. The ability of mathematical representations in the high category tends to use a pattern of making known and asked symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representation in the medium category tends to use several patterns of writing the known symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representations in the low category tends to use several patterns of making known symbols, writing equations, substituting quantities into equations, performing calculations and final answer.

  7. Students’ difficulties in probabilistic problem-solving

    NASA Astrophysics Data System (ADS)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  8. An enhanced artificial bee colony algorithm (EABC) for solving dispatching of hydro-thermal system (DHTS) problem

    PubMed Central

    Yu, Yi; Hu, Binqi; Liu, Xinglong

    2018-01-01

    The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm’s performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms. PMID:29324743

  9. An enhanced artificial bee colony algorithm (EABC) for solving dispatching of hydro-thermal system (DHTS) problem.

    PubMed

    Yu, Yi; Wu, Yonggang; Hu, Binqi; Liu, Xinglong

    2018-01-01

    The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.

  10. Emotion discourse, social cognition, and social skills in children with and without developmental delays.

    PubMed

    Fenning, Rachel M; Baker, Bruce L; Juvonen, Jaana

    2011-01-01

    This study examined parent-child emotion discourse, children's independent social information processing, and social skills outcomes in 146 families of 8-year-olds with and without developmental delays. Children's emergent social-cognitive understanding (internal state understanding, perspective taking, and causal reasoning and problem solving) was coded in the context of parent-child conversations about emotion, and children were interviewed separately to assess social problem solving. Mothers, fathers, and teachers reported on children's social skills. The proposed strengths-based model partially accounted for social skills differences between typically developing children and children with delays. A multigroup analysis of the model linking emotion discourse to social skills through children's prosocial problem solving suggested that processes operated similarly for the two groups. Implications for ecologically focused prevention and intervention are discussed. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.

  11. Wolves, dogs, rearing and reinforcement: complex interactions underlying species differences in training and problem-solving performance.

    PubMed

    Frank, Harry

    2011-11-01

    Frank and Frank et al. (1982-1987) administered a series of age-graded training and problem-solving tasks to samples of Eastern timber wolf (C. lupus lycaon) and Alaskan Malamute (C. familiaris) pups to test Frank's (Zeitschrift für Tierpsychologie 53:389-399, 1980) model of the evolution of information processing under conditions of natural and artificial selection. Results confirmed the model's prediction that wolves should perform better than dogs on problem-solving tasks and that dogs should perform better than wolves on training tasks. Further data collected at the University of Connecticut in 1983 revealed a more complex and refined picture, indicating that species differences can be mediated by a number of factors influencing wolf performance, including socialization regimen (hand-rearing vs. mother-rearing), interactive effects of socialization on the efficacy of both rewards and punishments, and the flexibility to select learning strategies that experimenters might not anticipate.

  12. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    NASA Astrophysics Data System (ADS)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  13. Developing Visualization Techniques for Semantics-based Information Networks

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Hall, David R.

    2003-01-01

    Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.

  14. The Diffusion Simulator - Teaching Geomorphic and Geologic Problems Visually.

    ERIC Educational Resources Information Center

    Gilbert, R.

    1979-01-01

    Describes a simple hydraulic simulator based on more complex models long used by engineers to develop approximate solutions. It allows students to visualize non-steady transfer, to apply a model to solve a problem, and to compare experimentally simulated information with calculated values. (Author/MA)

  15. Strengthening Discussions

    ERIC Educational Resources Information Center

    Hintz, Allison B.

    2013-01-01

    "Strategy sharing" is a certain type of discussion that centers on students' ideas and occurs when children present different approaches to problems and provide information about how they solved the problem (Wood, Williams, and McNeal 2004). A teacher may orchestrate a strategy-sharing discussion to achieve one or more of the…

  16. Introduction: Occam’s Razor (SOT - Fit for Purpose workshop introduction)

    EPA Science Inventory

    Mathematical models provide important, reproducible, and transparent information for risk-based decision making. However, these models must be constructed to fit the needs of the problem to be solved. A “fit for purpose” model is an abstraction of a complicated problem that allow...

  17. Love and Sex: Can We Talk About That in School?

    ERIC Educational Resources Information Center

    Vance, Paul C.

    1985-01-01

    Gives statistical information on the "national epidemic" of teenage sexual activity and pregnancy and its consequences. Discusses social causes of this problem. Proposes that schools can help solve the problem by providing a formal sex education curriculum for pupils in kindergarten through grade 12. (CB)

  18. Design Optimization Programmable Calculators versus Campus Computers.

    ERIC Educational Resources Information Center

    Savage, Michael

    1982-01-01

    A hypothetical design optimization problem and technical information on the three design parameters are presented. Although this nested iteration problem can be solved on a computer (flow diagram provided), this article suggests that several hand held calculators can be used to perform the same design iteration. (SK)

  19. The Metric System. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying mathematical operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  20. Age differences in everyday problem-solving effectiveness: older adults select more effective strategies for interpersonal problems.

    PubMed

    Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi

    2007-01-01

    Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.

  1. Genetic Algorithm for Optimization: Preprocessor and Algorithm

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam A.

    2006-01-01

    Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.

  2. Too upset to think: the interplay of borderline personality features, negative emotions, and social problem solving in the laboratory.

    PubMed

    Dixon-Gordon, Katherine L; Chapman, Alexander L; Lovasz, Nathalie; Walters, Kris

    2011-10-01

    Borderline personality disorder (BPD) is associated with poor social problem solving and problems with emotion regulation. In this study, the social problem-solving performance of undergraduates with high (n = 26), mid (n = 32), or low (n = 29) levels of BPD features was assessed with the Social Problem-Solving Inventory-Revised and using the means-ends problem-solving procedure before and after a social rejection stressor. The high-BP group, but not the low-BP group, showed a significant reduction in relevant solutions to social problems and more inappropriate solutions following the negative emotion induction. Increases in self-reported negative emotions during the emotion induction mediated the relationship between BP features and reductions in social problem-solving performance. In addition, the high-BP group demonstrated trait deficits in social problem solving on the Social Problem-Solving Inventory-Revised. These findings suggest that future research must examine social problem solving under differing emotional conditions, and that clinical interventions to improve social problem solving among persons with BP features should focus on responses to emotional contexts.

  3. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  4. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

    ERIC Educational Resources Information Center

    Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

    2016-01-01

    The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

  5. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

    NASA Astrophysics Data System (ADS)

    Palacio-Cayetano, Joycelin

    "Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.

  6. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.

    PubMed

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

  7. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models

    PubMed Central

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)β k ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409

  8. Advances in Collaborative Evaluation

    ERIC Educational Resources Information Center

    Rodriguez-Campos, Liliana

    2012-01-01

    Collaborative evaluation is an approach that offers, among others, many advantages in terms of access to information, quality of information gathered, opportunities for creative problem-solving, and receptivity to findings. In the last decade, collaborative evaluation has grown in popularity along with similar participatory, empowerment, and…

  9. Information for the user in design of intelligent systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.

    1993-01-01

    Recommendations are made for improving intelligent system reliability and usability based on the use of information requirements in system development. Information requirements define the task-relevant messages exchanged between the intelligent system and the user by means of the user interface medium. Thus, these requirements affect the design of both the intelligent system and its user interface. Many difficulties that users have in interacting with intelligent systems are caused by information problems. These information problems result from the following: (1) not providing the right information to support domain tasks; and (2) not recognizing that using an intelligent system introduces new user supervisory tasks that require new types of information. These problems are especially prevalent in intelligent systems used for real-time space operations, where data problems and unexpected situations are common. Information problems can be solved by deriving information requirements from a description of user tasks. Using information requirements embeds human-computer interaction design into intelligent system prototyping, resulting in intelligent systems that are more robust and easier to use.

  10. Swarm Intelligence in Text Document Clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Potok, Thomas E

    2008-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior. The research field that attempts to design algorithms or distributed problem-solving devices inspired by the collective behavior of social insect colonies is called Swarm Intelligence. Compared to the traditional algorithms, the swarm algorithms are usually flexible, robust, decentralized and self-organized. These characters make the swarm algorithms suitable for solving complex problems, such as document collection clustering. The major challenge of today's information society is being overwhelmed with information on any topic they are searching for. Fast and high-quality document clustering algorithms play an important role inmore » helping users to effectively navigate, summarize, and organize the overwhelmed information. In this chapter, we introduce three nature inspired swarm intelligence clustering approaches for document clustering analysis. These clustering algorithms use stochastic and heuristic principles discovered from observing bird flocks, fish schools and ant food forage.« less

  11. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    ERIC Educational Resources Information Center

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  12. Cognitive and behavioral knowledge about insulin-dependent diabetes among children and parents.

    PubMed

    Johnson, S B; Pollak, R T; Silverstein, J H; Rosenbloom, A L; Spillar, R; McCallum, M; Harkavy, J

    1982-06-01

    Youngster's knowledge about insulin-dependent diabetes was assessed across three domains: (1) general information; (2) problem solving and (3) skill at urine testing and self-injection. These youngster's parents completed the general information and problem-solving components of the assessment battery. All test instruments were showed good reliability. The test of problem solving was more difficult than the test of general information for both parents and patients. Mothers were more knowledgeable than fathers and children. Girls performed more accurately than boys, and older children obtained better scores than did younger children. Nevertheless, more than 80% of the youngsters made significant errors on urine testing and almost 40% made serious errors in self-injection. A number of other knowledge deficits were also noted. Duration of diabetes was not related to any of the knowledge measures. Intercorrelations between scores on the assessment instruments indicated that skill at urine testing or self-injection was not highly related to other types of knowledge about diabetes. Furthermore, knowledge in one content are was not usually predictive of knowledge in another content area. The results of this study emphasize the importance of measuring knowledge from several different domains. Patient variables such as sex and age need to be given further consideration in the development and use of patient educational programs. Regular assessment of patients' and parents' knowledge of all critical aspects of diabetes home management seems essential.

  13. Perceptual learning modules in mathematics: enhancing students' pattern recognition, structure extraction, and fluency.

    PubMed

    Kellman, Philip J; Massey, Christine M; Son, Ji Y

    2010-04-01

    Learning in educational settings emphasizes declarative and procedural knowledge. Studies of expertise, however, point to other crucial components of learning, especially improvements produced by experience in the extraction of information: perceptual learning (PL). We suggest that such improvements characterize both simple sensory and complex cognitive, even symbolic, tasks through common processes of discovery and selection. We apply these ideas in the form of perceptual learning modules (PLMs) to mathematics learning. We tested three PLMs, each emphasizing different aspects of complex task performance, in middle and high school mathematics. In the MultiRep PLM, practice in matching function information across multiple representations improved students' abilities to generate correct graphs and equations from word problems. In the Algebraic Transformations PLM, practice in seeing equation structure across transformations (but not solving equations) led to dramatic improvements in the speed of equation solving. In the Linear Measurement PLM, interactive trials involving extraction of information about units and lengths produced successful transfer to novel measurement problems and fraction problem solving. Taken together, these results suggest (a) that PL techniques have the potential to address crucial, neglected dimensions of learning, including discovery and fluent processing of relations; (b) PL effects apply even to complex tasks that involve symbolic processing; and (c) appropriately designed PL technology can produce rapid and enduring advances in learning. Copyright © 2009 Cognitive Science Society, Inc.

  14. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    PubMed

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  15. A centre-free approach for resource allocation with lower bounds

    NASA Astrophysics Data System (ADS)

    Obando, Germán; Quijano, Nicanor; Rakoto-Ravalontsalama, Naly

    2017-09-01

    Since complexity and scale of systems are continuously increasing, there is a growing interest in developing distributed algorithms that are capable to address information constraints, specially for solving optimisation and decision-making problems. In this paper, we propose a novel method to solve distributed resource allocation problems that include lower bound constraints. The optimisation process is carried out by a set of agents that use a communication network to coordinate their decisions. Convergence and optimality of the method are guaranteed under some mild assumptions related to the convexity of the problem and the connectivity of the underlying graph. Finally, we compare our approach with other techniques reported in the literature, and we present some engineering applications.

  16. Supporting traditional instructional methods with a constructivist approach to learning: Promoting conceputal change and understanding of stoichiometry using e-learning tools

    NASA Astrophysics Data System (ADS)

    Abayan, Kenneth Munoz

    Stoichiometry is a fundamental topic in chemistry that measures a quantifiable relationship between atoms, molecules, etc. Stoichiometry is usually taught using expository teaching methods. Students are passively given information, in the hopes they will retain the transmission of information to be able to solve stoichiometry problems masterfully. Cognitive science research has shown that this kind of instructional teaching method is not very effecting in meaningful learning practice. Instead, students must take ownership of their learning. The students need to actively construct their own knowledge by receiving, interpreting, integrating and reorganizing that information into their own mental schemas. In the absence of active learning practices, tools must be created in such a way to be able to scaffold difficult problems by encoding opportunities necessary to make the construction of knowledge memorable, thereby creating a usable knowledge base. Using an online e-learning tool and its potential to create a dynamic and interactive learning environment may facilitate the learning of stoichiometry. The study entailed requests from volunteer students, IRB consent form, a baseline questionnaire, random assignment of treatment, pre- and post-test assessment, and post assessment survey. These activities were given online. A stoichiometry-based assessment was given in a proctored examination at the University of Texas at Arlington (UTA) campus. The volunteer students who took part in these studies were at least 18 of age and were enrolled in General Chemistry 1441, at the University of Texas at Arlington. Each participant gave their informed consent to use their data in the following study. Students were randomly assigned to one of 4 treatments groups based on teaching methodology, (Dimensional Analysis, Operational Method, Ratios and Proportions) and a control group who just received instruction through lecture only. In this study, an e-learning tool was created to demonstrate several methodologies, on how to solve stoichiometry, which are all supported by chemical education research. Comparisons of student performance based on pre- and post-test assessment, and a stoichiometry-based examination was done to determine if the information provided within the e-learning tool yielded greater learning outcomes compared to the students in the absence of scaffold learning material. The e-learning tool was created to help scaffold the problem solving process necessary to help students (N=394) solve stoichiometry problems. Therein the study investigated possible predictors for success on a stoichiometry based examination, students' conceptual understanding of solving stoichiometry problems, and their explanation of reasoning. It was found that the way the student answered a given stoichiometry question (i.e. whether the student used dimensional analysis, operational method or any other process) was not statistically relevant (p=0.05). More importantly, if the students were able to describe their thought process clearly, these students scored significantly higher on stoichiometry test (mean 84, p<0.05). This finding has major implications in teaching the topic, as lecturers tend to stress and focus on the method rather than the process on how to solve stoichiometry problems.

  17. The Influence of Different Pictorial Representations during Idea Generation

    ERIC Educational Resources Information Center

    Cardoso, Carlos; Badke-Schaub, Petra

    2011-01-01

    During creative problem-solving, designers frequently come across a variety of rich visual displays. While browsing for different sources of information, pictorial representations of existing concepts take prominence. However, once designers start generating new solution ideas to design problems, they often become too attached to some of the…

  18. Indoor Air Quality Basics for Schools.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This fact sheet details important information on Indoor Air Quality (IAQ) in school buildings, problems associated with IAQ, and various prevention and problem-solving strategies. Most people spend 90 percent of their time indoors, therefore the Environmental Protection Agency ranks IAQ in the top four environmental risks to the public. The…

  19. Process-Oriented Measurement Using Electronic Tangibles

    ERIC Educational Resources Information Center

    Veerbeek, Jochanan; Verhaegh, Janneke; Elliott, Julian G.; Resing, Wilma C. M.

    2017-01-01

    This study evaluated a new measure for analyzing the process of children's problem solving in a series completion task. This measure focused on a process that we entitled the "Grouping of Answer Pieces" (GAP) that was employed to provide information on problem representation and restructuring. The task was conducted using an electronic…

  20. How to Talk to a Teenager about a Suicide Attempt in Your Family

    MedlinePlus

    ... Inform your teenager about emotional struggles and healthy problem-solving and coping strategies. “Grandpa has been very depressed. Sometimes when people feel that way, they can also feel hopeless about the future ... to deal with problems. Have you experienced those feelings? How do you ...

  1. Bringing Management Reality into the Classroom--The Development of Interactive Learning.

    ERIC Educational Resources Information Center

    Nicholson, Alastair

    1997-01-01

    Effective learning in management education can be enhanced by reproducing the real-world need to solve problems under pressure of time, inadequate information, and group interaction. An interactive classroom communication system involving problems in decision making and continuous improvement is one method for bridging theory and practice. (SK)

  2. On Evaluating Human Problem Solving of Computationally Hard Problems

    ERIC Educational Resources Information Center

    Carruthers, Sarah; Stege, Ulrike

    2013-01-01

    This article is concerned with how computer science, and more exactly computational complexity theory, can inform cognitive science. In particular, we suggest factors to be taken into account when investigating how people deal with computational hardness. This discussion will address the two upper levels of Marr's Level Theory: the computational…

  3. ADD, LD and Extended Information Processing.

    ERIC Educational Resources Information Center

    Stolzenberg, J. B.; Cherkes-Julkowski, M.

    This study examines executive function and its relationship to attention dysfunction and working memory. It attempts to document the manifestations of executive function problems in school-related extended processing tasks, such as verbal problem-solving in math and reading of extended passages. Subjects (in grades 1-12) included 49 children with…

  4. The effects of a shared, Intranet science learning environment on the academic behaviors of problem-solving and metacognitive reflection

    NASA Astrophysics Data System (ADS)

    Parker, Mary Jo

    This study investigated the effects of a shared, Intranet science environment on the academic behaviors of problem-solving and metacognitive reflection. Seventy-eight subjects included 9th and 10th grade male and female biology students. A quasi-experimental design with pre- and post-test data collection and randomization occurring through assignment of biology classes to traditional or shared, Intranet learning groups was employed. Pilot, web-based distance education software (CourseInfo) created the Intranet learning environment. A modified ecology curriculum provided contextualization and content for traditional and shared learning environments. The effect of this environment on problem-solving, was measured using the standardized Watson-Glaser Critical Thinking Appraisal test. Metacognitive reflection, was measured in three ways: (a) number of concepts used, (b) number of concept links noted, and (c) number of concept nodes noted. Visual learning software, Inspiration, generated concept maps. Secondary research questions evaluated the pilot CourseInfo software for (a) tracked user movement, (b) discussion forum findings, and (c) difficulties experienced using CourseInfo software. Analysis of problem-solving group means reached no levels of significance resulting from the shared, Intranet environment. Paired t-Test of individual differences in problem-solving reached levels of significance. Analysis of metacognitive reflection by number of concepts reached levels of significance. Metacognitive reflection by number of concept links noted also reach significance. No significance was found for metacognitive reflection by number of concept nodes. No gender differences in problem-solving ability and metacognitive reflection emerged. Lack of gender differences in the shared, Intranet environment strongly suggests an equalizing effect due to the cooperative, collaborative nature of Intranet environments. Such environments appeal to, and rank high with, the female gender. Tracking learner movements in web-based, science environments has metacognitive and problem-solving learner implications. CourseInfo software offers one method of informing instruction within web-based learning environments focusing on academic behaviors. A shared, technology-supported learning environment may pose one model which science classrooms can use to create equitable scientific study across gender. The lack of significant differences resulting from this environment presents one model for improvement of individual problem-solving ability and metacognitive reflection across gender.

  5. Singular Optimal Controls of Rocket Motion (Survey)

    NASA Astrophysics Data System (ADS)

    Kiforenko, B. N.

    2017-05-01

    Survey of modern state and discussion of problems of the perfection of methods of investigation of variational problems with a focus on mechanics of space flight are presented. The main attention is paid to the enhancement of the methods of solving of variational problems of rocket motion in the gravitational fields, including rocket motion in the atmosphere. These problems are directly connected with the permanently actual problem of the practical astronautics to increase the payload that is orbited by the carrier rockets in the circumplanetary orbits. An analysis of modern approaches to solving the problems of control of rockets and spacecraft motion on the trajectories with singular arcs that are optimal for the motion of the variable mass body in the medium with resistance is given. The presented results for some maneuvers can serve as an information source for decision making on designing promising rocket and space technology

  6. A Comparison between the Effectiveness of PBL and LBL on Improving Problem-Solving Abilities of Medical Students Using Questioning

    ERIC Educational Resources Information Center

    He, Yunfeng; Du, Xiangyun; Toft, Egon; Zhang, Xingli; Qu, Bo; Shi, Jiannong; Zhang, Huan; Zhang, Hui

    2018-01-01

    In daily patient-history taking and diagnosis practice, doctors ask questions to gather information from patients and narrow down diagnostic hypotheses. Training medical students to be efficient problem solvers through the use of questioning is therefore important. In this study, the effectiveness of problem-based learning (PBL) and lecture-based…

  7. Work, Productivity, and Human Performance: Practical Case Studies in Ergonomics, Human Factors and Human Engineering.

    ERIC Educational Resources Information Center

    Fraser, T. M.; Pityn, P. J.

    This book contains 12 case histories, each based on a real-life problem, that show how a manager can use common sense, knowledge, and interpersonal skills to solve problems in human performance at work. Each case study describes a worker's problem and provides background information and an assignment; solutions are suggested. The following cases…

  8. Extraction of a group-pair relation: problem-solving relation from web-board documents.

    PubMed

    Pechsiri, Chaveevan; Piriyakul, Rapepun

    2016-01-01

    This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.

  9. Sports and the Big6: The Information Advantage.

    ERIC Educational Resources Information Center

    Eisenberg, Mike

    1997-01-01

    Explores the connection between sports and the Big6 information problem-solving process and how sports provides an ideal setting for learning and teaching about the Big6. Topics include information aspects of baseball, football, soccer, basketball, figure skating, track and field, and golf; and the Big6 process applied to sports. (LRW)

  10. Information Literacy in Oman's Higher Education: A Descriptive-Inferential Approach

    ERIC Educational Resources Information Center

    Al-Aufi, Ali; Al-Azri, Hamed

    2013-01-01

    This study aims to identify the current status of information literacy among the students at Sultan Qaboos University in their final year through using the Big6 model for solving information problems. The study utilizes self-assessment survey approach, with the questionnaire as a tool for data collection. It surveyed undergraduate students of…

  11. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    NASA Astrophysics Data System (ADS)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  12. Hablando Con Maestros Guia para Padres para Resolver Problemas Con La Escuela = Talking With Teachers: A Problem-Solving Handbook for Parents.

    ERIC Educational Resources Information Center

    Mata, Roberto L.

    Designed to help parents communicate with teachers about the school problems of their children, the handbook provides strategies which can guide parents to collect accurate information about a problem and to use it to initiate an open exchange with the teacher. The strategies can be used whether parents are becoming aware of a problem or have been…

  13. Using a general problem-solving strategy to promote transfer.

    PubMed

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. Revising explanatory models to accommodate anomalous genetic phenomena: Problem solving in the context of discovery

    NASA Astrophysics Data System (ADS)

    Hafner, Robert; Stewart, Jim

    Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).

  15. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving

    PubMed Central

    Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.

    2016-01-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604

  16. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving.

    PubMed

    Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M

    2016-12-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.

  17. Emergence of distributed coordination in the Kolkata Paise Restaurant problem with finite information

    NASA Astrophysics Data System (ADS)

    Ghosh, Diptesh; Chakrabarti, Anindya S.

    2017-10-01

    In this paper, we study a large-scale distributed coordination problem and propose efficient adaptive strategies to solve the problem. The basic problem is to allocate finite number of resources to individual agents in the absence of a central planner such that there is as little congestion as possible and the fraction of unutilized resources is reduced as far as possible. In the absence of a central planner and global information, agents can employ adaptive strategies that uses only a finite knowledge about the competitors. In this paper, we show that a combination of finite information sets and reinforcement learning can increase the utilization fraction of resources substantially.

  18. Rejection Sensitivity and Depression: Indirect Effects Through Problem Solving.

    PubMed

    Kraines, Morganne A; Wells, Tony T

    2017-01-01

    Rejection sensitivity (RS) and deficits in social problem solving are risk factors for depression. Despite their relationship to depression and the potential connection between them, no studies have examined RS and social problem solving together in the context of depression. As such, we examined RS, five facets of social problem solving, and symptoms of depression in a young adult sample. A total of 180 participants completed measures of RS, social problem solving, and depressive symptoms. We used bootstrapping to examine the indirect effect of RS on depressive symptoms through problem solving. RS was positively associated with depressive symptoms. A negative problem orientation, impulsive/careless style, and avoidance style of social problem solving were positively associated with depressive symptoms, and a positive problem orientation was negatively associated with depressive symptoms. RS demonstrated an indirect effect on depressive symptoms through two social problem-solving facets: the tendency to view problems as threats to one's well-being and an avoidance problem-solving style characterized by procrastination, passivity, or overdependence on others. These results are consistent with prior research that found a positive association between RS and depression symptoms, but this is the first study to implicate specific problem-solving deficits in the relationship between RS and depression. Our results suggest that depressive symptoms in high RS individuals may result from viewing problems as threats and taking an avoidant, rather than proactive, approach to dealing with problems. These findings may have implications for problem-solving interventions for rejection sensitive individuals.

  19. The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework

    ERIC Educational Resources Information Center

    Carlson, Marilyn P.; Bloom, Irene

    2005-01-01

    This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…

  20. Mathematical Problem Solving: A Review of the Literature.

    ERIC Educational Resources Information Center

    Funkhouser, Charles

    The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…

  1. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  2. Learning problem-solving skills in a distance education physics course

    NASA Astrophysics Data System (ADS)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  3. Living Well with Living Wills: Application of Protection Motivation Theory to Living Wills Among Older Caucasian and African American Adults

    PubMed Central

    ALLEN, REBECCA S.; PHILLIPS, LAURA L.; PEKMEZI, DOROTHY; CROWTHER, MARTHA R.; PRENTICE-DUNN, STEVEN

    2009-01-01

    Using protection motivation theory, we examined racial differences in intent to complete a living will, rational problem solving (e.g., information seeking), and maladaptive coping responses (i.e., wishful thinking) to a health crisis. Sixty healthy, older adults without living wills responded to written vignettes, including information about living wills as an effective coping mechanism to avoid a health crisis. Use of adaptive coping responses predicted intent to execute a living will. A significant race-by-threat interaction predicted use of rational problem solving, with Caucasians more likely to seek information in response to perceived threat in comparison with African Americans. A significant race-by-adaptive-coping interaction predicted maladaptive coping, indicating that Caucasians were more variable in their maladaptive responses. The effectiveness of health care messages regarding living wills for older adults may be enhanced by focusing on racial differences in response to perceived health threat and perceived adaptive coping information. PMID:19337566

  4. Living Well with Living Wills: Application of Protection Motivation Theory to Living Wills Among Older Caucasian and African American Adults.

    PubMed

    Allen, Rebecca S; Phillips, Laura L; Pekmezi, Dorothy; Crowther, Martha R; Prentice-Dunn, Steven

    2009-01-01

    Using protection motivation theory, we examined racial differences in intent to complete a living will, rational problem solving (e.g., information seeking), and maladaptive coping responses (i.e., wishful thinking) to a health crisis. Sixty healthy, older adults without living wills responded to written vignettes, including information about living wills as an effective coping mechanism to avoid a health crisis. Use of adaptive coping responses predicted intent to execute a living will. A significant race-by-threat interaction predicted use of rational problem solving, with Caucasians more likely to seek information in response to perceived threat in comparison with African Americans. A significant race-by-adaptive-coping interaction predicted maladaptive coping, indicating that Caucasians were more variable in their maladaptive responses. The effectiveness of health care messages regarding living wills for older adults may be enhanced by focusing on racial differences in response to perceived health threat and perceived adaptive coping information.

  5. Web-GIS based information management system to Bureau of Law Enforcement for Urban Managementenforcement for urban management

    NASA Astrophysics Data System (ADS)

    Sun, Hai; Wang, Cheng; Ren, Bo

    2007-06-01

    Daily works of Law Enforcement Bureau are crucial in the urban management. However, with the development of the city, the information and data which are relative to Law Enforcement Bureau's daily work are increasing and updating. The increasing data result in that some traditional work is limited and inefficient in daily work. Analyzing the demands and obstacles of Law Enforcement Bureau, the paper proposes a new method to solve these problems. A web-GIS based information management system was produced for Bureau of Law Enforcement for Urban Management of Foshan. First part of the paper provides an overview of the system. Second part introduces the architecture of system and data organization. In the third part, the paper describes the design and implement of functional modules detailedly. In the end, this paper is concluded and proposes some strategic recommendations for the further development of the system. This paper focuses on the architecture and implementation of the system, solves the developing issues based on ArcServer, and introduces a new concept to the local government to solve the current problems. Practical application of this system showed that it played very important role in the Law Enforcement Bureau's work.

  6. Neural imaging to track mental states while using an intelligent tutoring system.

    PubMed

    Anderson, John R; Betts, Shawn; Ferris, Jennifer L; Fincham, Jon M

    2010-04-13

    Hemodynamic measures of brain activity can be used to interpret a student's mental state when they are interacting with an intelligent tutoring system. Functional magnetic resonance imaging (fMRI) data were collected while students worked with a tutoring system that taught an algebra isomorph. A cognitive model predicted the distribution of solution times from measures of problem complexity. Separately, a linear discriminant analysis used fMRI data to predict whether or not students were engaged in problem solving. A hidden Markov algorithm merged these two sources of information to predict the mental states of students during problem-solving episodes. The algorithm was trained on data from 1 day of interaction and tested with data from a later day. In terms of predicting what state a student was in during a 2-s period, the algorithm achieved 87% accuracy on the training data and 83% accuracy on the test data. The results illustrate the importance of integrating the bottom-up information from imaging data with the top-down information from a cognitive model.

  7. Working Memory Capacity and Fluid Intelligence: Maintenance and Disengagement.

    PubMed

    Shipstead, Zach; Harrison, Tyler L; Engle, Randall W

    2016-11-01

    Working memory capacity and fluid intelligence have been demonstrated to be strongly correlated traits. Typically, high working memory capacity is believed to facilitate reasoning through accurate maintenance of relevant information. In this article, we present a proposal reframing this issue, such that tests of working memory capacity and fluid intelligence are seen as measuring complementary processes that facilitate complex cognition. Respectively, these are the ability to maintain access to critical information and the ability to disengage from or block outdated information. In the realm of problem solving, high working memory capacity allows a person to represent and maintain a problem accurately and stably, so that hypothesis testing can be conducted. However, as hypotheses are disproven or become untenable, disengaging from outdated problem solving attempts becomes important so that new hypotheses can be generated and tested. From this perspective, the strong correlation between working memory capacity and fluid intelligence is due not to one ability having a causal influence on the other but to separate attention-demanding mental functions that can be contrary to one another but are organized around top-down processing goals. © The Author(s) 2016.

  8. Adaptive design optimization: a mutual information-based approach to model discrimination in cognitive science.

    PubMed

    Cavagnaro, Daniel R; Myung, Jay I; Pitt, Mark A; Kujala, Janne V

    2010-04-01

    Discriminating among competing statistical models is a pressing issue for many experimentalists in the field of cognitive science. Resolving this issue begins with designing maximally informative experiments. To this end, the problem to be solved in adaptive design optimization is identifying experimental designs under which one can infer the underlying model in the fewest possible steps. When the models under consideration are nonlinear, as is often the case in cognitive science, this problem can be impossible to solve analytically without simplifying assumptions. However, as we show in this letter, a full solution can be found numerically with the help of a Bayesian computational trick derived from the statistics literature, which recasts the problem as a probability density simulation in which the optimal design is the mode of the density. We use a utility function based on mutual information and give three intuitive interpretations of the utility function in terms of Bayesian posterior estimates. As a proof of concept, we offer a simple example application to an experiment on memory retention.

  9. Coordinating complex problem-solving among distributed intelligent agents

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1992-01-01

    A process-oriented control model is described for distributed problem solving. The model coordinates the transfer and manipulation of information across independent networked applications, both intelligent and conventional. The model was implemented using SOCIAL, a set of object-oriented tools for distributing computing. Complex sequences of distributed tasks are specified in terms of high level scripts. Scripts are executed by SOCIAL objects called Manager Agents, which realize an intelligent coordination model that routes individual tasks to suitable server applications across the network. These tools are illustrated in a prototype distributed system for decision support of ground operations for NASA's Space Shuttle fleet.

  10. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    PubMed Central

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467

  11. Algebraic reasoning and bat-and-ball problem variants: Solving isomorphic algebra first facilitates problem solving later.

    PubMed

    Hoover, Jerome D; Healy, Alice F

    2017-12-01

    The classic bat-and-ball problem is used widely to measure biased and correct reasoning in decision-making. University students overwhelmingly tend to provide the biased answer to this problem. To what extent might reasoners be led to modify their judgement, and, more specifically, is it possible to facilitate problem solution by prompting participants to consider the problem from an algebraic perspective? One hundred ninety-seven participants were recruited to investigate the effect of algebraic cueing as a debiasing strategy on variants of the bat-and-ball problem. Participants who were cued to consider the problem algebraically were significantly more likely to answer correctly relative to control participants. Most of this cueing effect was confined to a condition that required participants to solve isomorphic algebra equations corresponding to the structure of bat-and-ball question types. On a subsequent critical question with differing item and dollar amounts presented without a cue, participants were able to generalize the learned information to significantly reduce overall bias. Math anxiety was also found to be significantly related to bat-and-ball problem accuracy. These results suggest that, under specific conditions, algebraic reasoning is an effective debiasing strategy on bat-and-ball problem variants, and provide the first documented evidence for the influence of math anxiety on Cognitive Reflection Test performance.

  12. Impact of problem-based learning in a large classroom setting: student perception and problem-solving skills.

    PubMed

    Klegeris, Andis; Hurren, Heather

    2011-12-01

    Problem-based learning (PBL) can be described as a learning environment where the problem drives the learning. This technique usually involves learning in small groups, which are supervised by tutors. It is becoming evident that PBL in a small-group setting has a robust positive effect on student learning and skills, including better problem-solving skills and an increase in overall motivation. However, very little research has been done on the educational benefits of PBL in a large classroom setting. Here, we describe a PBL approach (using tutorless groups) that was introduced as a supplement to standard didactic lectures in University of British Columbia Okanagan undergraduate biochemistry classes consisting of 45-85 students. PBL was chosen as an effective method to assist students in learning biochemical and physiological processes. By monitoring student attendance and using informal and formal surveys, we demonstrated that PBL has a significant positive impact on student motivation to attend and participate in the course work. Student responses indicated that PBL is superior to traditional lecture format with regard to the understanding of course content and retention of information. We also demonstrated that student problem-solving skills are significantly improved, but additional controlled studies are needed to determine how much PBL exercises contribute to this improvement. These preliminary data indicated several positive outcomes of using PBL in a large classroom setting, although further studies aimed at assessing student learning are needed to further justify implementation of this technique in courses delivered to large undergraduate classes.

  13. An experience sampling study of learning, affect, and the demands control support model.

    PubMed

    Daniels, Kevin; Boocock, Grahame; Glover, Jane; Holland, Julie; Hartley, Ruth

    2009-07-01

    The demands control support model (R. A. Karasek & T. Theorell, 1990) indicates that job control and social support enable workers to engage in problem solving. In turn, problem solving is thought to influence learning and well-being (e.g., anxious affect, activated pleasant affect). Two samples (N = 78, N = 106) provided data up to 4 times per day for up to 5 working days. The extent to which job control was used for problem solving was assessed by measuring the extent to which participants changed aspects of their work activities to solve problems. The extent to which social support was used to solve problems was assessed by measuring the extent to which participants discussed problems to solve problems. Learning mediated the relationship between changing aspects of work activities to solve problems and activated pleasant affect. Learning also mediated the relationship between discussing problems to solve problems and activated pleasant affect. The findings indicated that how individuals use control and support to respond to problem-solving demands is associated with organizational and individual phenomena, such as learning and affective well-being.

  14. Human Problem Solving: The Complete Model of the Traveling Salesman Problem

    DTIC Science & Technology

    2009-08-31

    REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Pubic reporting burden for this collection of information is estimated to average 1 nour...per response, indudrnj the time for reviewing instructions, searcnmg exsting data sources , gathering and mamtaning the data needed, and completing...provision of law. no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid

  15. What Does (and Doesn't) Make Analogical Problem Solving Easy? A Complexity-Theoretic Perspective

    ERIC Educational Resources Information Center

    Wareham, Todd; Evans, Patricia; van Rooij, Iris

    2011-01-01

    Solving new problems can be made easier if one can build on experiences with other problems one has already successfully solved. The ability to exploit earlier problem-solving experiences in solving new problems seems to require several cognitive sub-abilities. Minimally, one needs to be able to retrieve relevant knowledge of earlier solved…

  16. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    ERIC Educational Resources Information Center

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  17. Generalization of Social Skills: Strategies and Results of a Training Program in Problem Solving Skills.

    ERIC Educational Resources Information Center

    Paraschiv, Irina; Olley, J. Gregory

    This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…

  18. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    ERIC Educational Resources Information Center

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  19. Investigating Problem-Solving Perseverance Using Lesson Study

    ERIC Educational Resources Information Center

    Bieda, Kristen N.; Huhn, Craig

    2017-01-01

    Problem solving has long been a focus of research and curriculum reform (Kilpatrick 1985; Lester 1994; NCTM 1989, 2000; CCSSI 2010). The importance of problem solving is not new, but the Common Core introduced the idea of making sense of problems and persevering in solving them (CCSSI 2010, p. 6) as an aspect of problem solving. Perseverance is…

  20. On the Tip-of-the-Tongue.

    ERIC Educational Resources Information Center

    Moses, Barbara

    1988-01-01

    Discusses the organization and retrieval of information. Describes the tip-of-the-tongue state during mathematics problem solving. Provides five rules for a deep level of processing of new concepts. (YP)

Top