Sample records for informatics

  1. Nursing Informatics Certification Worldwide: History, Pathway, Roles, and Motivation

    PubMed Central

    Cummins, M. R.; Gundlapalli, A. V.; Murray, P.; Park, H.-A.; Lehmann, C. U.

    2016-01-01

    Summary Introduction Official recognition and certification for informatics professionals are essential aspects of workforce development. Objective: To describe the history, pathways, and nuances of certification in nursing informatics across the globe; compare and contrast those with board certification in clinical informatics for physicians. Methods (1) A review of the representative literature on informatics certification and related competencies for nurses and physicians, and relevant websites for nursing informatics associations and societies worldwide; (2) similarities and differences between certification processes for nurses and physicians, and (3) perspectives on roles for nursing informatics professionals in healthcare Results The literature search for ‘nursing informatics certification’ yielded few results in PubMed; Google Scholar yielded a large number of citations that extended to magazines and other non-peer reviewed sources. Worldwide, there are several nursing informatics associations, societies, and workgroups dedicated to nursing informatics associated with medical/health informatics societies. A formal certification program for nursing informatics appears to be available only in the United States. This certification was established in 1992, in concert with the formation and definition of nursing informatics as a specialty practice of nursing by the American Nurses Association. Although informatics is inherently interprofessional, certification pathways for nurses and physicians have developed separately, following long-standing professional structures, training, and pathways aligned with clinical licensure and direct patient care. There is substantial similarity with regard to the skills and competencies required for nurses and physicians to obtain informatics certification in their respective fields. Nurses may apply for and complete a certification examination if they have experience in the field, regardless of formal training. Increasing numbers of informatics nurses are pursuing certification. Conclusions The pathway to certification is clear and well-established for U.S. based informatics nurses. The motivation for obtaining and maintaining nursing informatics certification appears to be stronger for nurses who do not have an advanced informatics degree. The primary difference between nursing and physician certification pathways relates to the requirement of formal training and level of informatics practice. Nurse informatics certification requires no formal education or training and verifies knowledge and skill at a more basic level. Physician informatics certification validates informatics knowledge and skill at a more advanced level; currently this requires documentation of practice and experience in clinical informatics and in the future will require successful completion of an accredited two-year fellowship in clinical informatics. For the profession of nursing, a graduate degree in nursing or biomedical informatics validates specialty knowledge at a level more comparable to the physician certification. As the field of informatics and its professional organization structures mature, a common certification pathway may be appropriate. Nurses, physicians, and other healthcare professionals with informatics training and certification are needed to contribute their expertise in clinical operations, teaching, research, and executive leadership. PMID:27830261

  2. Health Professionals' Views of Informatics Education

    PubMed Central

    Staggers, Nancy; Gassert, Carole A.; Skiba, Diane J.

    2000-01-01

    Health care leaders emphasize the need to include information technology and informatics concepts in formal education programs, yet integration of informatics into health educational programs has progressed slowly. The AMIA 1999 Spring Congress was held to address informatics educational issues across health professions, including the educational needs in the various health professions, goals for health informatics education, and implementation strategies to achieve these goals. This paper presents the results from AMIA work groups focused on informatics education for non-informatics health professionals. In the categories of informatics needs, goals, and strategies, conference attendees suggested elements in these areas: educational responsibilities for faculty and students, organizational responsibilities, core computer skills and informatics knowledge, how to learn informatics skills, and resources required to implement educational strategies. PMID:11062228

  3. On Informatics Diagnostics and Informatics Therapeutics - Good Medical Informatics Research Is Needed Here.

    PubMed

    Haux, Reinhold

    2017-01-01

    In the era of digitization some new procedures play an increasing role for diagnosis as well as for therapy: informatics diagnostics and informatics therapeutics. Challenges for such procedures are described. It is discussed, when research on such diagnostics and therapeutics can be regarded as good research. Examples are mentioned for informatics diagnostics and informatics therapeutics, which are based on health-enabling technologies.

  4. Tools and Methods for Teaching Informatics at School: An Advanced Logo Course.

    ERIC Educational Resources Information Center

    Nikolov, Rumen

    1992-01-01

    Describes a course in educational informatics for preservice teachers and students in educational software development that emphasizes the use of LOGO, and summarizes course modules that cover tools and methods for teaching informatics, informatics curriculum design, introducing the basic notions of informatics, integrating informatics into the…

  5. Career Paths of Pathology Informatics Fellowship Alumni.

    PubMed

    Rudolf, Joseph W; Garcia, Christopher A; Hanna, Matthew G; Williams, Christopher L; Balis, Ulysses G; Pantanowitz, Liron; Tuthill, J Mark; Gilbertson, John R

    2018-01-01

    The alumni of today's Pathology Informatics and Clinical Informatics fellowships fill diverse roles in academia, large health systems, and industry. The evolving training tracks and curriculum of Pathology Informatics fellowships have been well documented. However, less attention has been given to the posttraining experiences of graduates from informatics training programs. Here, we examine the career paths of subspecialty fellowship-trained pathology informaticians. Alumni from four Pathology Informatics fellowship training programs were contacted for their voluntary participation in the study. We analyzed various components of training, and the subsequent career paths of Pathology Informatics fellowship alumni using data extracted from alumni provided curriculum vitae. Twenty-three out of twenty-seven alumni contacted contributed to the study. A majority had completed undergraduate study in science, technology, engineering, and math fields and combined track training in anatomic and clinical pathology. Approximately 30% (7/23) completed residency in a program with an in-house Pathology Informatics fellowship. Most completed additional fellowships (15/23) and many also completed advanced degrees (10/23). Common primary posttraining appointments included chief medical informatics officer (3/23), director of Pathology Informatics (10/23), informatics program director (2/23), and various roles in industry (3/23). Many alumni also provide clinical care in addition to their informatics roles (14/23). Pathology Informatics alumni serve on a variety of institutional committees, participate in national informatics organizations, contribute widely to scientific literature, and more than half (13/23) have obtained subspecialty certification in Clinical Informatics to date. Our analysis highlights several interesting phenomena related to the training and career trajectory of Pathology Informatics fellowship alumni. We note the long training track alumni complete in preparation for their careers. We believe flexible training pathways combining informatics and clinical training may help to alleviate the burden. We highlight the importance of in-house Pathology Informatics fellowships in promoting interest in informatics among residents. We also observe the many important leadership roles in academia, large community health systems, and industry available to early career alumni and believe this reflects a strong market for formally trained informaticians. We hope this analysis will be useful as we continue to develop the informatics fellowships to meet the future needs of our trainees and discipline.

  6. Pathology Informatics Essentials for Residents: A Flexible Informatics Curriculum Linked to Accreditation Council for Graduate Medical Education Milestones.

    PubMed

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2017-01-01

    -Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics has been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. -To develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills, and meets Accreditation Council for Graduate Medical Education Informatics Milestones. -The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. -Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). -PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time.

  7. Moving toward a United States strategic plan in primary care informatics: a White Paper of the Primary Care Informatics Working Group, American Medical Informatics Association.

    PubMed

    Little, David R; Zapp, John A; Mullins, Henry C; Zuckerman, Alan E; Teasdale, Sheila; Johnson, Kevin B

    2003-01-01

    The Primary Care Informatics Working Group (PCIWG) of the American Medical Informatics Association (AMIA) has identified the absence of a national strategy for primary care informatics. Under PCIWG leadership, major national and international societies have come together to create the National Alliance for Primary Care Informatics (NAPCI), to promote a connection between the informatics community and the organisations that support primary care. The PCIWG clinical practice subcommittee has recognised the necessity of a global needs assessment, and proposed work in point-of-care technology, clinical vocabularies, and ambulatory electronic medical record development. Educational needs include a consensus statement on informatics competencies, recommendations for curriculum and teaching methods, and methodologies to evaluate their effectiveness. The research subcommittee seeks to define a primary care informatics research agenda, and to support and disseminate informatics research throughout the primary care community. The AMIA board of directors has enthusiastically endorsed the conceptual basis for this White Paper.

  8. An Approach for All in Pharmacy Informatics Education.

    PubMed

    Fox, Brent I; Flynn, Allen; Clauson, Kevin A; Seaton, Terry L; Breeden, Elizabeth

    2017-03-25

    Computerization is transforming health care. All clinicians are users of health information technology (HIT). Understanding fundamental principles of informatics, the field focused on information needs and uses, is essential if HIT is going to support improved patient outcomes. Informatics education for clinicians is a national priority. Additionally, some informatics experts are needed to bring about innovations in HIT. A common approach to pharmacy informatics education has been slow to develop. Meanwhile, accreditation standards for informatics in pharmacy education continue to evolve. A gap remains in the implementation of informatics education for all pharmacy students and it is unclear what expert informatics training should cover. In this article, we propose the first of two complementary approaches to informatics education in pharmacy: to incorporate fundamental informatics education into pharmacy curricula for all students. The second approach, to train those students interested in becoming informatics experts to design, develop, implement, and evaluate HIT, will be presented in a subsequent issue of the Journal .

  9. An Approach for All in Pharmacy Informatics Education

    PubMed Central

    Flynn, Allen; Clauson, Kevin A.; Seaton, Terry L.; Breeden, Elizabeth

    2017-01-01

    Computerization is transforming health care. All clinicians are users of health information technology (HIT). Understanding fundamental principles of informatics, the field focused on information needs and uses, is essential if HIT is going to support improved patient outcomes. Informatics education for clinicians is a national priority. Additionally, some informatics experts are needed to bring about innovations in HIT. A common approach to pharmacy informatics education has been slow to develop. Meanwhile, accreditation standards for informatics in pharmacy education continue to evolve. A gap remains in the implementation of informatics education for all pharmacy students and it is unclear what expert informatics training should cover. In this article, we propose the first of two complementary approaches to informatics education in pharmacy: to incorporate fundamental informatics education into pharmacy curricula for all students. The second approach, to train those students interested in becoming informatics experts to design, develop, implement, and evaluate HIT, will be presented in a subsequent issue of the Journal. PMID:28381898

  10. Pathology Informatics Essentials for Residents: A flexible informatics curriculum linked to Accreditation Council for Graduate Medical Education milestones

    PubMed Central

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics have been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: The objective of the study is to develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:27563486

  11. Current Status of Nursing Informatics Education in Korea.

    PubMed

    Jeon, Eunjoo; Kim, Jeongeun; Park, Hyeoun-Ae; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-04-01

    This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses.

  12. Current Status of Nursing Informatics Education in Korea

    PubMed Central

    Jeon, Eunjoo; Kim, Jeongeun; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-01-01

    Objectives This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. Methods A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. Results A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Conclusions Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses. PMID:27200224

  13. Health system informatics.

    PubMed

    Felkey, B G

    1997-02-01

    The application of informatics in a health system in general and to pharmacy in particular is discussed. Informatics is the use of information technology to enhance the quality of care, facilitate accountability, and assist in cost containment. Tying the pieces of health care into a seamless system using informatics principles yields a more rational approach to caregiving. A four-layer hierarchy of information systems can be found in any health system: layer 1, the foundational layer formed by a transaction-processing system; 2, the management information system; 3, decision support; and 4, advanced informatics applications such as expert systems. Other industries appear to be ahead of health care in investing in informatics applications. Pharmacy is one of the key health care professions that must adopt informatics. A stepwise structure for pharmacy informatics has been proposed; it consists of establishing a relationship with the patient, establishing a database, listing and ranking problems, choosing among alternatives, and planning and monitoring. Informatics should be approached by determining where the department is going strategically. Informatics standards will be needed. Pharmacists will need to use informatics to enhance their worth on the health care team and to improve patient care.

  14. The internal challenges of medical informatics.

    PubMed

    Gell, G

    1997-03-01

    Haux's [7] basic assumption that the object of medical informatics is: "... to assure and to improve the quality of healthcare as well as the quality of research and education in medicine and in the health sciences ..." is taken as a starting point to discuss the three main topics: What is the meaning of medical informatics (i.e. what should be the main activities of medical informatics to bring maximum benefit to medicine)? What are the achievements and failures of medical informatics today (again considering the impact on the quality of healthcare)? What are the main challenges? Concerning the definition of medical informatics it is argued that one should not hide the link to basic informatics and, for that matter to computers, completely behind abstract definitions. After an analysis of the purposes of the definition of a discipline, a differentiated definition of the scope of medical informatics, rather general when concerning the field of scientific interest, more focused when concerning the practical (constructive) applications, is proposed. Contrasting Haux's chapter on achievements of medical informatics we concentrate on and analyse non fulfilled promises of medical informatics to derive lessons for the future and to propose 'generic' (or core) tasks of medical informatics to meet the challenges of the future. A set of 'internal challenges' of medical informatics to change priorities and attitudes within the discipline is put forward to enable medical informatics to meet the 'external challenges' listed by Haux.

  15. Different tracks for pathology informatics fellowship training: Experiences of and input from trainees in a large multisite fellowship program

    PubMed Central

    Levy, Bruce P.; McClintock, David S.; Lee, Roy E.; Lane, William J.; Klepeis, Veronica E.; Baron, Jason M.; Onozato, Maristela L.; Kim, JiYeon; Brodsky, Victor; Beckwith, Bruce; Kuo, Frank; Gilbertson, John R.

    2012-01-01

    Background: Pathology Informatics is a new field; a field that is still defining itself even as it begins the formalization, accreditation, and board certification process. At the same time, Pathology itself is changing in a variety of ways that impact informatics, including subspecialization and an increased use of data analysis. In this paper, we examine how these changes impact both the structure of Pathology Informatics fellowship programs and the fellows’ goals within those programs. Materials and Methods: As part of our regular program review process, the fellows evaluated the value and effectiveness of our existing fellowship tracks (Research Informatics, Clinical Two-year Focused Informatics, Clinical One-year Focused Informatics, and Clinical 1 + 1 Subspecialty Pathology and Informatics). They compared their education, informatics background, and anticipated career paths and analyzed them for correlations between those parameters and the fellowship track chosen. All current and past fellows of the program were actively involved with the project. Results: Fellows’ anticipated career paths correlated very well with the specific tracks in the program. A small set of fellows (Clinical – one or two year – Focused Informatics tracks) anticipated clinical careers primarily focused in informatics (Director of Informatics). The majority of the fellows, however, anticipated a career practicing in a Pathology subspecialty, using their informatics training to enhance that practice (Clinical 1 + 1 Subspecialty Pathology and Informatics Track). Significantly, all fellows on this track reported they would not have considered a Clinical Two-year Focused Informatics track if it was the only track offered. The Research and the Clinical One-year Focused Informatics tracks each displayed unique value for different situations. Conclusions: It seems a “one size fits all” fellowship structure does not fit the needs of the majority of potential Pathology Informatics candidates. Increasingly, these fellowships must be able to accommodate the needs of candidates anticipating a wide range of Pathology Informatics career paths, be able to accommodate Pathology's increasingly subspecialized structure, and do this in a way that respects the multiple fellowships needed to become a subspecialty pathologist and informatician. This is further complicated as Pathology Informatics begins to look outward and takes its place in the growing, and still ill-defined, field of Clinical Informatics, a field that is not confined to just one medical specialty, to one way of practicing medicine, or to one way of providing patient care. PMID:23024889

  16. The Use and Interpretation of Quasi-Experimental Studies in Medical Informatics

    PubMed Central

    Harris, Anthony D.; McGregor, Jessina C.; Perencevich, Eli N.; Furuno, Jon P.; Zhu, Jingkun; Peterson, Dan E.; Finkelstein, Joseph

    2006-01-01

    Quasi-experimental study designs, often described as nonrandomized, pre-post intervention studies, are common in the medical informatics literature. Yet little has been written about the benefits and limitations of the quasi-experimental approach as applied to informatics studies. This paper outlines a relative hierarchy and nomenclature of quasi-experimental study designs that is applicable to medical informatics intervention studies. In addition, the authors performed a systematic review of two medical informatics journals, the Journal of the American Medical Informatics Association (JAMIA) and the International Journal of Medical Informatics (IJMI), to determine the number of quasi-experimental studies published and how the studies are classified on the above-mentioned relative hierarchy. They hope that future medical informatics studies will implement higher level quasi-experimental study designs that yield more convincing evidence for causal links between medical informatics interventions and outcomes. PMID:16221933

  17. The Health Information Technology Competencies Tool: Does It Translate for Nursing Informatics in the United States?

    PubMed

    Sipes, Carolyn; Hunter, Kathleen; McGonigle, Dee; West, Karen; Hill, Taryn; Hebda, Toni

    2017-12-01

    Information technology use in healthcare delivery mandates a prepared workforce. The initial Health Information Technology Competencies tool resulted from a 2-year transatlantic effort by experts from the US and European Union to identify approaches to develop skills and knowledge needed by healthcare workers. It was determined that competencies must be identified before strategies are established, resulting in a searchable database of more than 1000 competencies representing five domains, five skill levels, and more than 250 roles. Health Information Technology Competencies is available at no cost and supports role- or competency-based queries. Health Information Technology Competencies developers suggest its use for curriculum planning, job descriptions, and professional development.The Chamberlain College of Nursing informatics research team examined Health Information Technology Competencies for its possible application to our research and our curricular development, comparing it originally with the TIGER-based Assessment of Nursing Informatics Competencies and Nursing Informatics Competency Assessment of Level 3 and Level 4 tools, which examine informatics competencies at four levels of nursing practice. Additional analysis involved the 2015 Nursing Informatics: Scope and Standards of Practice. Informatics is a Health Information Technology Competencies domain, so clear delineation of nursing-informatics competencies was expected. Researchers found TIGER-based Assessment of Nursing Informatics Competencies and Nursing Informatics Competency Assessment of Level 3 and Level 4 differed from Health Information Technology Competencies 2016 in focus, definitions, ascribed competencies, and defined levels of expertise. When Health Information Technology Competencies 2017 was compared against the nursing informatics scope and standards, researchers found an increase in the number of informatics competencies but not to a significant degree. This is not surprising, given that Health Information Technology Competencies includes all healthcare workers, while the TIGER-based Assessment of Nursing Informatics Competencies and Nursing Informatics Competency Assessment of Level 3 and Level 4 tools and the American Nurses Association Nursing Informatics: Scope and Standards of Practice are nurse specific. No clear cross mapping across these tools and the standards of nursing informatics practice exists. Further examination and review are needed to translate Health Information Technology Competencies as a viable tool for nursing informatics use in the US.

  18. Metropolis revisited: the evolving role of librarians in informatics education for the health professions

    PubMed Central

    King, Samuel B.; Lapidus, Mariana

    2015-01-01

    Objective: The authors' goal was to assess changes in the role of librarians in informatics education from 2004 to 2013. This is a follow-up to “Metropolis Redux: The Unique Importance of Library Skills in Informatics,” a 2004 survey of informatics programs. Methods: An electronic survey was conducted in January 2013 and sent to librarians via the MEDLIB-L email discussion list, the library section of the American Association of Colleges of Pharmacy, the Medical Informatics Section of the Medical Library Association, the Information Technology Interest Group of the Association of College and Research Libraries/New England Region, and various library directors across the country. Results: Librarians from fifty-five institutions responded to the survey. Of these respondents, thirty-four included librarians in nonlibrary aspects of informatics training. Fifteen institutions have librarians participating in leadership positions in their informatics programs. Compared to the earlier survey, the role of librarians has evolved. Conclusions: Librarians possess skills that enable them to participate in informatics programs beyond a narrow library focus. Librarians currently perform significant leadership roles in informatics education. There are opportunities for librarian interdisciplinary collaboration in informatics programs. Implications: Informatics is much more than the study of technology. The information skills that librarians bring to the table enrich and broaden the study of informatics in addition to adding value to the library profession itself. PMID:25552939

  19. Metropolis revisited: the evolving role of librarians in informatics education for the health professions.

    PubMed

    King, Samuel B; Lapidus, Mariana

    2015-01-01

    The authors' goal was to assess changes in the role of librarians in informatics education from 2004 to 2013. This is a follow-up to "Metropolis Redux: The Unique Importance of Library Skills in Informatics," a 2004 survey of informatics programs. An electronic survey was conducted in January 2013 and sent to librarians via the MEDLIB-L email discussion list, the library section of the American Association of Colleges of Pharmacy, the Medical Informatics Section of the Medical Library Association, the Information Technology Interest Group of the Association of College and Research Libraries/New England Region, and various library directors across the country. Librarians from fifty-five institutions responded to the survey. Of these respondents, thirty-four included librarians in nonlibrary aspects of informatics training. Fifteen institutions have librarians participating in leadership positions in their informatics programs. Compared to the earlier survey, the role of librarians has evolved. Librarians possess skills that enable them to participate in informatics programs beyond a narrow library focus. Librarians currently perform significant leadership roles in informatics education. There are opportunities for librarian interdisciplinary collaboration in informatics programs. Informatics is much more than the study of technology. The information skills that librarians bring to the table enrich and broaden the study of informatics in addition to adding value to the library profession itself.

  20. Informatics Competencies for Nursing and Healthcare Leaders

    PubMed Central

    Westra, Bonnie L.; Delaney, Connie W.

    2008-01-01

    Historically, educational preparation did not address informatics competencies; thus managers, administrators, or executives may not be prepared to use or lead change in the use of health information technologies. A number of resources for informatics competencies exist, however, a comprehensive list addressing the unique knowledge and skills required in the role of a manager or administrator was not found. The purpose of this study was to develop informatics competencies for nursing leaders. A synthesis of the literature and a Delphi approach using three rounds of surveys with an expert panel resulted in identification of informatics competencies for nursing leaders that address computer skills, informatics knowledge, and informatics skills. PMID:18998803

  1. The Anesthesiologist-Informatician: A Survey of Physicians Board-Certified in Both Anesthesiology and Clinical Informatics.

    PubMed

    Poterack, Karl A; Epstein, Richard H; Dexter, Franklin

    2018-03-12

    All 36 physicians board-certified in both anesthesiology and clinical informatics as of January 1, 2016, were surveyed via e-mail, with 26 responding. Although most (25/26) generally expressed satisfaction with the clinical informatics boards, and view informatics expertise as important to anesthesiology, most (24/26) thought it unlikely or highly unlikely that substantial numbers of anesthesiology residents would pursue clinical informatics fellowships. Anesthesiologists wishing to qualify for the clinical informatics board examination under the practice pathway need to devote a substantive amount of worktime to informatics. There currently are options outside of formal fellowship training to acquire the knowledge to pass.

  2. Building a Culture of Health Informatics Innovation and Entrepreneurship: A New Frontier.

    PubMed

    Househ, Mowafa; Alshammari, Riyad; Almutairi, Mariam; Jamal, Amr; Alshoaib, Saleh

    2015-01-01

    Entrepreneurship and innovation within the health informatics (HI) scientific community are relatively sluggish when compared to other disciplines such as computer science and engineering. Healthcare in general, and specifically, the health informatics scientific community needs to embrace more innovative and entrepreneurial practices. In this paper, we explore the concepts of innovation and entrepreneurship as they apply to the health informatics scientific community. We also outline several strategies to improve the culture of innovation and entrepreneurship within the health informatics scientific community such as: (I) incorporating innovation and entrepreneurship in health informatics education; (II) creating strong linkages with industry and healthcare organizations; (III) supporting national health innovation and entrepreneurship competitions; (IV) creating a culture of innovation and entrepreneurship within healthcare organizations; (V) developing health informatics policies that support innovation and entrepreneurship based on internationally recognized standards; and (VI) develop an health informatics entrepreneurship ecosystem. With these changes, we conclude that embracing health innovation and entrepreneurship may be more readily accepted over the long-term within the health informatics scientific community.

  3. Biomedical informatics and translational medicine.

    PubMed

    Sarkar, Indra Neil

    2010-02-26

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams.

  4. Publication trends in the medical informatics literature: 20 years of "Medical Informatics" in MeSH

    PubMed Central

    2009-01-01

    Background The purpose of this study is to identify publication output, and research areas, as well as descriptively and quantitatively characterize the field of medical informatics through publication trend analysis over a twenty year period (1987–2006). Methods A bibliometric analysis of medical informatics citations indexed in Medline was performed using publication trends, journal frequency, impact factors, MeSH term frequencies and characteristics of citations. Results There were 77,023 medical informatics articles published during this 20 year period in 4,644 unique journals. The average annual article publication growth rate was 12%. The 50 identified medical informatics MeSH terms are rarely assigned together to the same document and are almost exclusively paired with a non-medical informatics MeSH term, suggesting a strong interdisciplinary trend. Trends in citations, journals, and MeSH categories of medical informatics output for the 20-year period are summarized. Average impact factor scores and weighted average impact factor scores increased over the 20-year period with two notable growth periods. Conclusion There is a steadily growing presence and increasing visibility of medical informatics literature over the years. Patterns in research output that seem to characterize the historic trends and current components of the field of medical informatics suggest it may be a maturing discipline, and highlight specific journals in which the medical informatics literature appears most frequently, including general medical journals as well as informatics-specific journals. PMID:19159472

  5. A survey of public health and consumer health informatics programmes and courses in Canadian universities and colleges.

    PubMed

    Arocha, Jose F; Hoffman-Goetz, Laurie

    2012-12-01

    As information technology becomes more widely used by people for health-care decisions, training in consumer and public health informatics will be important for health practitioners working directly with the public. Using information from 74 universities and colleges across Canada, we searched websites and online calendars for programmes (undergraduate, graduate) regarding availability and scope of education in programmes, courses and topics geared to public health and/or consumer health informatics. Of the 74 institutions searched, 31 provided some content relevant to health informatics (HI) and 8 institutions offered full HI-related programmes. Of these 8 HI programmes, only 1 course was identified with content relevant to public health informatics and 1 with content about consumer health informatics. Some institutions (n  =  22) - which do not offer HI-degree programmes - provide health informatics-related courses, including one on consumer health informatics. We found few programmes, courses or topic areas within courses in Canadian universities and colleges that focus on consumer or public health informatics education. Given the increasing emphasis on personal responsibility for health and health-care decision-making, skills training for health professionals who help consumers navigate the Internet should be considered in health informatics education.

  6. The pathology informatics curriculum wiki: Harnessing the power of user-generated content.

    PubMed

    Kim, Ji Yeon; Gudewicz, Thomas M; Dighe, Anand S; Gilbertson, John R

    2010-07-13

    The need for informatics training as part of pathology training has never been so critical, but pathology informatics is a wide and complex field and very few programs currently have the resources to provide comprehensive educational pathology informatics experiences to their residents. In this article, we present the "pathology informatics curriculum wiki", an open, on-line wiki that indexes the pathology informatics content in a larger public wiki, Wikipedia, (and other online content) and organizes it into educational modules based on the 2003 standard curriculum approved by the Association for Pathology Informatics (API). In addition to implementing the curriculum wiki at http://pathinformatics.wikispaces.com, we have evaluated pathology informatics content in Wikipedia. Of the 199 non-duplicate terms in the API curriculum, 90% have at least one associated Wikipedia article. Furthermore, evaluation of articles on a five-point Likert scale showed high scores for comprehensiveness (4.05), quality (4.08), currency (4.18), and utility for the beginner (3.85) and advanced (3.93) learners. These results are compelling and support the thesis that Wikipedia articles can be used as the foundation for a basic curriculum in pathology informatics. The pathology informatics community now has the infrastructure needed to collaboratively and openly create, maintain and distribute the pathology informatics content worldwide (Wikipedia) and also the environment (the curriculum wiki) to draw upon its own resources to index and organize this content as a sustainable basic pathology informatics educational resource. The remaining challenges are numerous, but largest by far will be to convince the pathologists to take the time and effort required to build pathology informatics content in Wikipedia and to index and organize this content for education in the curriculum wiki.

  7. The pathology informatics curriculum wiki: Harnessing the power of user-generated content

    PubMed Central

    Kim, Ji Yeon; Gudewicz, Thomas M.; Dighe, Anand S.; Gilbertson, John R.

    2010-01-01

    Background: The need for informatics training as part of pathology training has never been so critical, but pathology informatics is a wide and complex field and very few programs currently have the resources to provide comprehensive educational pathology informatics experiences to their residents. In this article, we present the “pathology informatics curriculum wiki”, an open, on-line wiki that indexes the pathology informatics content in a larger public wiki, Wikipedia, (and other online content) and organizes it into educational modules based on the 2003 standard curriculum approved by the Association for Pathology Informatics (API). Methods and Results: In addition to implementing the curriculum wiki at http://pathinformatics.wikispaces.com, we have evaluated pathology informatics content in Wikipedia. Of the 199 non-duplicate terms in the API curriculum, 90% have at least one associated Wikipedia article. Furthermore, evaluation of articles on a five-point Likert scale showed high scores for comprehensiveness (4.05), quality (4.08), currency (4.18), and utility for the beginner (3.85) and advanced (3.93) learners. These results are compelling and support the thesis that Wikipedia articles can be used as the foundation for a basic curriculum in pathology informatics. Conclusions: The pathology informatics community now has the infrastructure needed to collaboratively and openly create, maintain and distribute the pathology informatics content worldwide (Wikipedia) and also the environment (the curriculum wiki) to draw upon its own resources to index and organize this content as a sustainable basic pathology informatics educational resource. The remaining challenges are numerous, but largest by far will be to convince the pathologists to take the time and effort required to build pathology informatics content in Wikipedia and to index and organize this content for education in the curriculum wiki. PMID:20805963

  8. PearlTrees web-based interface for teaching informatics in the radiology residency

    NASA Astrophysics Data System (ADS)

    Licurse, Mindy Y.; Cook, Tessa S.

    2014-03-01

    Radiology and imaging informatics education have rapidly evolved over the past few decades. With the increasing recognition that future growth and maintenance of radiology practices will rely heavily on radiologists with fundamentally sound informatics skills, the onus falls on radiology residency programs to properly implement and execute an informatics curriculum. In addition, the American Board of Radiology may choose to include even more informatics on the new board examinations. However, the resources available for didactic teaching and guidance most especially at the introductory level are widespread and varied. Given the breadth of informatics, a centralized web-based interface designed to serve as an adjunct to standardized informatics curriculums as well as a stand-alone for other interested audiences is desirable. We present the development of a curriculum using PearlTrees, an existing web-interface based on the concept of a visual interest graph that allows users to collect, organize, and share any URL they find online as well as to upload photos and other documents. For our purpose, the group of "pearls" includes informatics concepts linked by appropriate hierarchal relationships. The curriculum was developed using a combination of our institution's current informatics fellowship curriculum, the Practical Imaging Informatics textbook1 and other useful online resources. After development of the initial interface and curriculum has been publicized, we anticipate that involvement by the informatics community will help promote collaborations and foster mentorships at all career levels.

  9. Long distance education for croatian nurses with open source software.

    PubMed

    Radenovic, Aleksandar; Kalauz, Sonja

    2006-01-01

    Croatian Nursing Informatics Association (CNIA) has been established as result of continuing work on promoting nursing informatics in Croatia. Main goals of CNIA are promoting nursing informatics and education of nurses about nursing informatics and using information technology in nursing process. CNIA in start of work is developed three courses from nursing informatics all designed with support of long distance education with open source software. Courses are: A - 'From Data to Wisdom', B - 'Introduction to Nursing Informatics' and C - 'Nursing Informatics I'. Courses A and B are obligatory for C course. Technology used to implement these online courses is based on the open source Learning Management System (LMS), Claroline, free online collaborative learning platform. Courses are divided in two modules/days. First module/day participants have classical approach to education and second day with E-learning from home. These courses represent first courses from nursing informatics' and first long distance education for nurses also.

  10. The nursing informatics workforce: who are they and what do they do?

    PubMed

    Murphy, Judy

    2011-01-01

    Nursing informatics has evolved into an integral part of health care delivery and a differentiating factor in the selection, implementation, and evaluation of health IT that supports safe, high-quality, patient-centric care. New nursing informatics workforce data reveal changing dynamics in clinical experience, job responsibilities, applications, barriers to success, information, and compensation and benefits. In addition to the more traditional informatics nurse role, a new position has begun to emerge in the health care C-suite with the introduction of the chief nursing informatics officer (CNIO). The CNIO is the senior informatics nurse guiding the implementation and optimization of HIT systems for an organization. With their fused clinical and informatics background, informatics nurses and CNIOs are uniquely positioned to help with "meaningful use" initiatives which are so important to changing the face of health care in the United States.

  11. Biomedical informatics training at the University of Wisconsin-Madison.

    PubMed

    Severtson, D J; Pape, L; Page, C D; Shavlik, J W; Phillips, G N; Flatley Brennan, P

    2007-01-01

    The purpose of this paper is to describe biomedical informatics training at the University of Wisconsin-Madison (UW-Madison). We reviewed biomedical informatics training, research, and faculty/trainee participation at UW-Madison. There are three primary approaches to training 1) The Computation & Informatics in Biology & Medicine Training Program, 2) formal biomedical informatics offered by various campus departments, and 3) individualized programs. Training at UW-Madison embodies the features of effective biomedical informatics training recommended by the American College of Medical Informatics that were delineated as: 1) curricula that integrate experiences among computational sciences and application domains, 2) individualized and interdisciplinary cross-training among a diverse cadre of trainees to develop key competencies that he or she does not initially possess, 3) participation in research and development activities, and 4) exposure to a range of basic informational and computational sciences. The three biomedical informatics training approaches immerse students in multidisciplinary training and education that is supported by faculty trainers who participate in collaborative research across departments. Training is provided across a range of disciplines and available at different training stages. Biomedical informatics training at UW-Madison illustrates how a large research University, with multiple departments across biological, computational and health fields, can provide effective and productive biomedical informatics training via multiple bioinformatics training approaches.

  12. Twenty Years of Society of Medical Informatics of B&H and the Journal Acta Informatica Medica

    PubMed Central

    Masic, Izet

    2012-01-01

    In 2012, Health/Medical informatics profession celebrates five jubilees in Bosnia and Herzegovina: a) Thirty five years from the introduction of the first automatic manipulation of data; b) Twenty five years from establishing Society for Medical Informatics BiH; c) Twenty years from establishing scientific and professional journal of the Society for Medical Informatics of Bosnia and Herzegovina „Acta Informatica Medica“; d) Twenty years from establishing first Cathdra for Medical Informatics on biomedical faculties in Bosnia and Herzegovina and e) Ten years from the introduction of “Distance learning” in medical curriculum. All of the five mentioned activities in the area of Medical informatics had special importance and gave appropriate contribution in the development of Health/Medical informatics in Bosnia And Herzegovina. PMID:23322947

  13. Twenty years of society of medical informatics of b&h and the journal acta informatica medica.

    PubMed

    Masic, Izet

    2012-03-01

    In 2012, Health/Medical informatics profession celebrates five jubilees in Bosnia and Herzegovina: a) Thirty five years from the introduction of the first automatic manipulation of data; b) Twenty five years from establishing Society for Medical Informatics BiH; c) Twenty years from establishing scientific and professional journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica"; d) Twenty years from establishing first Cathdra for Medical Informatics on biomedical faculties in Bosnia and Herzegovina and e) Ten years from the introduction of "Distance learning" in medical curriculum. All of the five mentioned activities in the area of Medical informatics had special importance and gave appropriate contribution in the development of Health/Medical informatics in Bosnia And Herzegovina.

  14. The Chief Clinical Informatics Officer (CCIO)

    PubMed Central

    Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U

    2016-01-01

    Summary Introduction The emerging operational role of the “Chief Clinical Informatics Officer” (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). Background The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. Discussion An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. Conclusion A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science. PMID:27081413

  15. The Chief Clinical Informatics Officer (CCIO): AMIA Task Force Report on CCIO Knowledge, Education, and Skillset Requirements.

    PubMed

    Kannry, Joseph; Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U

    2016-01-01

    The emerging operational role of the "Chief Clinical Informatics Officer" (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science.

  16. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    PubMed Central

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T.; Becich, Michael J.

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics will be critical to assuring their success as leaders in the era of big data and personalized medicine. PMID:24860688

  17. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    PubMed

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics will be critical to assuring their success as leaders in the era of big data and personalized medicine.

  18. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Tringe, Susannah

    2018-01-15

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  19. Emerging medical informatics research trends detection based on MeSH terms.

    PubMed

    Lyu, Peng-Hui; Yao, Qiang; Mao, Jin; Zhang, Shi-Jing

    2015-01-01

    The aim of this study is to analyze the research trends of medical informatics over the last 12 years. A new method based on MeSH terms was proposed to identify emerging topics and trends of medical informatics research. Informetric methods and visualization technologies were applied to investigate research trends of medical informatics. The metric of perspective factor (PF) embedding MeSH terms was appropriately employed to assess the perspective quality for journals. The emerging MeSH terms have changed dramatically over the last 12 years, identifying two stages of medical informatics: the "medical imaging stage" and the "medical informatics stage". The focus of medical informatics has shifted from acquisition and storage of healthcare data by integrating computational, informational, cognitive and organizational sciences to semantic analysis for problem solving and clinical decision-making. About 30 core journals were determined by Bradford's Law in the last 3 years in this area. These journals, with high PF values, have relative high perspective quality and lead the trend of medical informatics.

  20. Multi-Sensory Informatics Education

    ERIC Educational Resources Information Center

    Katai, Zoltan; Toth, Laszlo; Adorjani, Alpar Karoly

    2014-01-01

    A recent report by the joint Informatics Europe & ACM Europe Working Group on Informatics Education emphasizes that: (1) computational thinking is an important ability that all people should possess; (2) informatics-based concepts, abilities and skills are teachable, and must be included in the primary and particularly in the secondary school…

  1. Crossing the chasm: information technology to biomedical informatics.

    PubMed

    Fahy, Brenda G; Balke, C William; Umberger, Gloria H; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L; Conigliaro, Joseph

    2011-06-01

    Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) "Roadmap for Medical Research." The Clinical and Translational Science Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH's translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology platforms of the enterprise clinical operations within academic health centers.This report details one academic health center's transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This article describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts.

  2. The scope and direction of health informatics.

    PubMed

    McGinnis, Patrick J

    2002-05-01

    Health Informatics (HI) is a dynamic discipline based on the medical sciences, information sciences, and cognitive sciences. Its domain can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art," and indicate the likely growth areas for health informatics. The sources of information used in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA-Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  3. The Western New York regional electronic health record initiative: Healthcare informatics use from the registered nurse perspective.

    PubMed

    Sackett, Kay M; Erdley, W Scott; Jones, Janice

    2006-01-01

    This paper describes a select population of Western New York (WNY) Registered Nurses' (RN) perspectives on the use of healthcare informatics and the adoption of a regional electronic health record (EHR). A three part class assignment on healthcare informatics used a Strengths, Weaknesses, Opportunities, Threats (SWOT) Analysis, and a Healthcare Informatics Schemata: A paradigm shift over time(c) timeline to determine RN perspectives about healthcare informatics use at their place of employment. Qualitative analysis of 41 RNs who completed the SWOT analysis provided positive and negative themes related to perceptions about healthcare informatics and EHR use at their place of employment. 29 healthcare organizations were aggregated by year on the timeline from 1950 through 2000. Information suggests that, RNs have the capacity to positively drive the adoption of EHRs and healthcare informatics in WNY.

  4. [Role of self-leadership in the relationship between organizational culture and informatics competency].

    PubMed

    Kim, Myoung Soo

    2009-10-01

    The purpose of this study was to identify the moderating and mediating effects of self-leadership in the relationship between organizational culture and nurses' informatics competency. Participants in this study were 297 nurses from the cities of Busan and Ulsan. The scales of organizational culture, self-leadership and informatics competency for nurses were used in this study. Descriptive statistics, Pearson correlation coefficient, stepwise multiple regression were used for data analysis. Nursing informatics competency of the participants was relatively low with a mean score 3.02. There were significant positive correlations between subcategories of perceived organizational culture, self-leadership and nursing informatics competency. Self-leadership was a moderator and a mediator between organizational culture and informatics competency. Based on the results of this study, self-leadership promotion strategies to improve nursing informatics competency are needed.

  5. The scope and direction of health informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2002-01-01

    Health Informatics (HI) is a dynamic discipline based on the medical sciences, information sciences, and cognitive sciences. Its domain can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art," and indicate the likely growth areas for health informatics. The sources of information used in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA-Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  6. The evolution of medical informatics in China: A retrospective study and lessons learned.

    PubMed

    Lei, Jianbo; Meng, Qun; Li, Yuefeng; Liang, Minghui; Zheng, Kai

    2016-08-01

    In contrast to China's giant health information technology (HIT) market and tremendous investments in hospital information systems the contributions of Chinese scholars in medical informatics to the global community are very limited. China would like to have a more important position in the global medical informatics community. A better understanding of the differences between medical informatics research and education in China and the discipline that emerged abroad will better inform Chinese scholars to develop right strategies to advance the field in China and help identify an appropriate means to collaborate more closely with medical informatics scholars globally. For the first time, this paper divides the evolution of medical informatics in China into four stages based on changes in the core content of research, the educational orientation and other developmental characteristics. The four stages are infancy, incubation, primary establishment and formal establishment. This paper summarizes and reviews major supporting journals and publications, as well as major organizations. Finally, we analyze the main problems that exist in the current disciplinary development in China related to medical informatics research and education and offer suggestions for future improvement. The evolution of medical informatics shows a strong and traditional concentration on medical library/bibliographic information rather than medical (hospital information or patient information) information. Misdirected-concentration, a lack of formal medical informatics trained teaching staff and mistakenly positioning medical informatics as an undergraduate discipline are some of the problems inhibiting the development of medical informatics in China. These lessons should be shared and learned for the global community. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Public Health, Population Health, and Epidemiology Informatics: Recent Research and Trends in the United States.

    PubMed

    Massoudi, B L; Chester, K G

    2017-08-01

    Objectives: To survey advances in public and population health and epidemiology informatics over the past 18 months. Methods: We conducted a review of English-language research works conducted in the domain of public and population health informatics and published in MEDLINE or Web of Science between January 2015 and June 2016 where information technology or informatics was a primary subject or main component of the study methodology. Selected articles were presented using a thematic analysis based on the 2011 American Medical Informatics Association (AMIA) Public Health Informatics Agenda tracks as a typology. Results: Results are given within the context developed by Dixon et al., (2015) and key themes from the 2011 AMIA Public Health Informatics Agenda. Advances are presented within a socio-technical infrastructure undergirded by a trained, competent public health workforce, systems development to meet the business needs of the practice field, and research that evaluates whether those needs are adequately met. The ability to support and grow the infrastructure depends on financial sustainability. Conclusions: The fields of public health and population health informatics continue to grow, with the most notable developments focused on surveillance, workforce development, and linking to or providing clinical services, which encompassed population health informatics advances. Very few advances addressed the need to improve communication, coordination, and consistency with the field of informatics itself, as identified in the AMIA agenda. This will likely result in the persistence of the silos of public health information systems that currently exist. Future research activities need to aim toward a holistic approach of informatics across the enterprise. Georg Thieme Verlag KG Stuttgart.

  8. The Interactions Between Clinical Informatics and Bioinformatics

    PubMed Central

    Altman, Russ B.

    2000-01-01

    For the past decade, Stanford Medical Informatics has combined clinical informatics and bioinformatics research and training in an explicit way. The interest in applying informatics techniques to both clinical problems and problems in basic science can be traced to the Dendral project in the 1960s. Having bioinformatics and clinical informatics in the same academic unit is still somewhat unusual and can lead to clashes of clinical and basic science cultures. Nevertheless, the benefits of this organization have recently become clear, as the landscape of academic medicine in the next decades has begun to emerge. The author provides examples of technology transfer between clinical informatics and bioinformatics that illustrate how they complement each other. PMID:10984462

  9. Integrating information literacy across a BSN curriculum.

    PubMed

    Flood, Lisa Sue; Gasiewicz, Nanci; Delpier, Terry

    2010-02-01

    Although research regarding effective informatics teaching strategies is sparse and informatics competencies have not yet been finalized, nurse educators have been challenged to include informatics throughout the curriculum. Nurse educators are confronted with how best to incorporate informatics into an already burgeoning curriculum. This article offers a systematic approach to incorporating information literacy, a vital component of informatics, across a baccalaureate of science in nursing curriculum. Motivated by the Institute of Medicine report, guided by the initial Technology Informatics Guiding Education Reform competency framework, and using the specific Quality and Safety Education for Nurses informatics competencies, the proposed integrated approach emphasizes clinical applications. The five assignments are designed to incrementally increase students' abilities to recognize the need for information (i.e., knowledge); advance students' abilities to locate, evaluate, and use information (i.e., skills); and foster a positive appreciation for information literacy (i.e., attitudes) when planning safe, effective patient care. Copyright 2010, SLACK Incorporated.

  10. Information science for the future: an innovative nursing informatics curriculum.

    PubMed

    Travis, L; Flatley Brennan, P

    1998-04-01

    Health care is increasingly driven by information, and consequently, patient care will demand effective management of information. The report of the Priority Expert Panel E: Nursing Informatics and Enhancing Clinical Care Through Nursing Informatics challenges faculty to produce baccalaureate graduates who use information technologies to improve the patient care process and change health care. The challenge is to construct an evolving nursing informatics curriculum to provide nursing professionals with the foundation for affecting health care delivery. This article discusses the design, implementation, and evaluation of an innovative nursing informatics curriculum incorporated into a baccalaureate nursing program. The basic components of the curriculum framework are information, technology, and clinical care process. The presented integrated curriculum is effective in familiarizing students with informatics and encouraging them to think critically about using informatics in practice. The two groups of students who completed the four-course sequence will be discussed.

  11. Reducing Health Cost: Health Informatics and Knowledge Management as a Business and Communication Tool

    NASA Astrophysics Data System (ADS)

    Gyampoh-Vidogah, Regina; Moreton, Robert; Sallah, David

    Health informatics has the potential to improve the quality and provision of care while reducing the cost of health care delivery. However, health informatics is often falsely regarded as synonymous with information management (IM). This chapter (i) provides a clear definition and characteristic benefits of health informatics and information management in the context of health care delivery, (ii) identifies and explains the difference between health informatics (HI) and managing knowledge (KM) in relation to informatics business strategy and (iii) elaborates the role of information communication technology (ICT) KM environment. This Chapter further examines how KM can be used to improve health service informatics costs, and identifies the factors that could affect its implementation and explains some of the reasons driving the development of electronic health record systems. This will assist in avoiding higher costs and errors, while promoting the continued industrialisation of KM delivery across health care communities.

  12. The Scope and Direction of Health Informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2001-01-01

    Health Informatics (HI) is a dynamic discipline based upon the medical sciences, information sciences, and cognitive sciences. Its domain is can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art" , and indicate the likely growth areas for health informatics. The sources of information utilized in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  13. It's Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence.

    PubMed

    McIntosh, Leslie D; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders.

  14. Enhancing "Mathematics for Informatics" and its Correlation with Student Pass Rates

    ERIC Educational Resources Information Center

    Divjak, B.; Erjavec, Z.

    2008-01-01

    In this article, changes in "Mathematics for Informatics" at the Faculty of Organisation and Informatics in the University of Zagreb are described, and correlated with students pass rates. Students at the Faculty work in an interdisciplinary field, studying Informatics within a business context. The main reason for introducing the…

  15. [The Role and Function of Informatics Nurses in Information Technology Decision-Making].

    PubMed

    Lee, Tso-Ying

    2017-08-01

    The medical environment has changed greatly with the coming of the information age, and, increasingly, the operating procedures for medical services have been altered in keeping with the trend toward mobile, paperless services. Informatization has the potential to improve the working efficiency of medical personnel, enhance patient care safety, and give medical organizations a positive image. Informatics nurses play an important role in the decision-making processes that accompany informatization. As one of the decision-making links in the information technology lifecycle, this role affects the success of the development and operation of information systems. The present paper examines the functions and professional knowledge that informatics nurses must possess during the technology lifecycle, the four stages of which include: planning, analysis, design/development/revision, and implementation/assessment/support/maintenance. The present paper further examines the decision-making shortcomings and errors that an informatics nurses may make during the decision-making process. We hope that this paper will serve as an effective and useful reference for informatics nurses during the informatization decision-making process.

  16. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    PubMed

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  17. Health Informatics for Development: a Three-pronged Strategy of Partnerships, Standards, and Mobile Health. Contribution of the IMIA Working Group on Health Informatics for Development.

    PubMed

    Marcelo, A; Adejumo, A; Luna, D

    2011-01-01

    Describe the issues surrounding health informatics in developing countries and the challenges faced by practitioners in building internal capacity. From these issues, the authors propose cost-effective strategies that can fast track health informatics development in these low to medium income countries (LMICs). The authors conducted a review of literature and consulted key opinion leaders who have experience with health informatics implementations around the world. Despite geographic and cultural differences, many LMICs share similar challenges and opportunities in developing health informatics. Partnerships, standards, and inter-operability are well known components of successful informatics programs. Establishing partnerships can be comprised of formal inter-institutional collaborations on training and research, collaborative open source software development, and effective use of social networking. Lacking legacy systems, LMICs can discuss standards and inter-operability more openly and have greater potential for success. Lastly, since cellphones are pervasive in developing countries, they can be leveraged as access points for delivering and documenting health services in remote under-served areas. Mobile health or mHealth gives LMICs a unique opportunity to leapfrog through most issues that have plagued health informatics in developed countries. By employing this proposed roadmap, LMICs can now develop capacity for health informatics using appropriate and cost-effective technologies.

  18. Crossing the Chasm: Information Technology to Biomedical Informatics

    PubMed Central

    Fahy, Brenda G.; Balke, C. William; Umberger, Gloria H.; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L.; Conigliaro, Joseph

    2011-01-01

    Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) “Roadmap for Medical Research.” The Clinical and Translational Research Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH’s translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology (IT) platforms of the enterprise clinical operations within academic health centers. This report details one academic health center’s transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This paper describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts. PMID:21383632

  19. Quantitative and Qualitative Evaluation of The Structural Designing of Medical Informatics Dynamic Encyclopedia.

    PubMed

    Safdari, Reza; Shahmoradi, Leila; Hosseini-Beheshti, Molouk-Sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad

    2015-10-01

    Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics' sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics.

  20. A national survey on the current status of informatics residency education in pharmacy.

    PubMed

    Blash, Anthony; Saltsman, Connie L; Steil, Condit

    2017-11-01

    Upon completion of their post-graduate training, pharmacy informatics residents need to be prepared to interact with clinical and technology experts in the new healthcare environment. This study describes pharmacy informatics residency programs within the United States. Preliminary information for all pharmacy informatics residency programs was accessed from program webpages. An email was sent out to programs asking them to respond to a six-item questionnaire. This questionnaire was designed to elicit information on attributes of the program, behaviors of the preceptors and residents, and attitudes of the residency directors. Of 22 pharmacy informatics residencies identified, nineteen (86%) participated. Twenty (91%) were second post-graduate year (PGY2) residencies. Ten (45%) were accredited by the American Society of Health-System Pharmacists (ASHP), while eight (36%) were candidates for accreditation. Hospital (17/22, 77%) and administrative offices (3/22, 14%) were the predominant training sites for pharmacy informatics residents. Large institutions were the predominant training environment for the pharmacy informatics resident, with 19 of 22 (86%) institutions reporting a licensed bed count of 500 or more. The median (range) number of informatics preceptors at a site was six to eight. Regarding barriers to pharmacy informatics residency education, residency directors reported that residents did not feel prepared based on the limited availability of curricular offerings. In the United States, relatively few residencies are explicitly focused on pharmacy informatics. Most of these are accredited and hospital affiliated, especially with large institutions (>500 beds). Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Data, Staff, and Money: Leadership Reflections on the Future of Public Health Informatics.

    PubMed

    Leider, Jonathon P; Shah, Gulzar H; Williams, Karmen S; Gupta, Akrati; Castrucci, Brian C

    Health informatics can play a critical role in supporting local health departments' (LHDs') delivery of certain essential public health services and improving evidence base for decision support. However, LHDs' informatics capacities are below an optimum level. Efforts to build such capacities face ongoing challenges. Moreover, little is known about LHD leaders' desires for the future of public health informatics. Conduct a qualitative analysis of LHDs' future informatics plans, perceived barriers to accomplishing those plans, and potential impact of future advances in public health informatics on the work of the public health enterprise. This research presents findings from 49 in-depth key informant interviews with public health leaders and informatics professionals from LHDs, representing insights from across the United States. Interviewees were selected on the basis of the size of the population their LHD serves, as well as level of informatics capacity. Interviews were transcribed, verified, and double coded. Major barriers to doing more with informatics included staff capacity and training, financial constraints, dependency on state health agency, and small LHD size/lack of regionalization. When asked about the role of leadership in expanding informatics, interviewees said that leaders could make it a priority through (1) learning more about informatics and (2) creating appropriate budgets for integrated information systems. Local health department leaders said that they desired data that were timely and geographically specific. In addition, LHD leaders said that they desired greater access to clinical data, especially around chronic disease indicators. Local health department leadership desires to have timely or even real-time data. Local health departments have a great potential to benefit from informatics, particularly electronic health records in advancing their administrative practices and service delivery, but financial and human capital represents the largest barrier. Interoperability of public health systems is highly desirable but hardly achievable in the presence of such barriers.

  2. An analysis of application of health informatics in Traditional Medicine: A review of four Traditional Medicine Systems.

    PubMed

    Raja Ikram, Raja Rina; Abd Ghani, Mohd Khanapi; Abdullah, Noraswaliza

    2015-11-01

    This paper shall first investigate the informatics areas and applications of the four Traditional Medicine systems - Traditional Chinese Medicine (TCM), Ayurveda, Traditional Arabic and Islamic Medicine and Traditional Malay Medicine. Then, this paper shall examine the national informatics infrastructure initiatives in the four respective countries that support the Traditional Medicine systems. Challenges of implementing informatics in Traditional Medicine Systems shall also be discussed. The literature was sourced from four databases: Ebsco Host, IEEE Explore, Proquest and Google scholar. The search term used was "Traditional Medicine", "informatics", "informatics infrastructure", "traditional Chinese medicine", "Ayurveda", "traditional Arabic and Islamic medicine", and "traditional malay medicine". A combination of the search terms above was also executed to enhance the searching process. A search was also conducted in Google to identify miscellaneous books, publications, and organization websites using the same terms. Amongst major advancements in TCM and Ayurveda are bioinformatics, development of Traditional Medicine databases for decision system support, data mining and image processing. Traditional Chinese Medicine differentiates itself from other Traditional Medicine systems with documented ISO Standards to support the standardization of TCM. Informatics applications in Traditional Arabic and Islamic Medicine are mostly ehealth applications that focus more on spiritual healing, Islamic obligations and prophetic traditions. Literature regarding development of health informatics to support Traditional Malay Medicine is still insufficient. Major informatics infrastructure that is common in China and India are automated insurance payment systems for Traditional Medicine treatment. National informatics infrastructure in Middle East and Malaysia mainly cater for modern medicine. Other infrastructure such as telemedicine and hospital information systems focus its implementation in modern medicine or are not implemented and strategized at a national level to support Traditional Medicine. Informatics may not be able to address all the emerging areas of Traditional Medicine because the concepts in Traditional Medicine system of medicine are different from modern system, though the aim may be same, i.e., to give relief to the patient. Thus, there is a need to synthesize Traditional Medicine systems and informatics with involvements from modern system of medicine. Future research works may include filling the gaps of informatics areas and integrate national informatics infrastructure with established Traditional Medicine systems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. An overview of medical informatics education in China.

    PubMed

    Hu, Dehua; Sun, Zhenling; Li, Houqing

    2013-05-01

    To outline the history of medical informatics education in the People's Republic of China, systematically analyze the current status of medical informatics education at different academic levels (bachelor's, master's, and doctoral), and suggest reasonable strategies for the further development of the field in China. The development of medical informatics education was divided into three stages, defined by changes in the specialty's name. Systematic searches of websites for material related to the specialty of medical informatics were then conducted. For undergraduate education, the websites surveyed included the website of the Ministry of Education of the People's Republic of China (MOE) and those of universities or colleges identified using the baidu.com search engine. For postgraduate education, the websites included China's Graduate Admissions Information Network (CGAIN) and the websites of the universities or their schools or faculties. Specialties were selected on the basis of three criteria: (1) for undergraduate education, the name of specialty or program was medical informatics or medical information or information management and information system; for postgraduate education, medical informatics or medical information; (2) the specialty was approved and listed by the MOE; (3) the specialty was set up by a medical college or medical university, or a school of medicine of a comprehensive university. The information abstracted from the websites included the year of program approval and listing, the university/college, discipline catalog, discipline, specialty, specialty code, objectives, and main courses. A total of 55 program offerings for undergraduate education, 27 for master's-level education, and 5 for PhD-level education in medical informatics were identified and assessed in China. The results indicate that medical informatics education, a specialty rooted in medical library and information science education in China, has grown significantly in that country over the past 10 years. Frequent changes in the specialty's name and an unclear identity have hampered the visibility of this educational specialty and impeded its development. There is a noticeable imbalance in the distribution of degree programs in medical informatics in different disciplines, with the majority falling under information management. There is also an uneven distribution of the specialty settings of medical informatics at the various academic levels (bachelor's, master's, and doctoral). In addition, the objectives and curriculum design of medical informatics education differ from one university to another and also from those of foreign universities or colleges. It is recommended that China (1) treat medical informatics as a priority "must-have" discipline to build in China, (2) establish its own independent, balanced degree programs, (3) set up a specialty of "medical informatics" under the "medicine" category, (4) explore curriculum integration with international medical informatics education, and (5) establish and improve medical informatics education system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. The Informatics Opportunities at the Intersection of Patient Safety and Clinical Informatics

    PubMed Central

    Kilbridge, Peter M.; Classen, David C.

    2008-01-01

    Health care providers have a basic responsibility to protect patients from accidental harm. At the institutional level, creating safe health care organizations necessitates a systematic approach. Effective use of informatics to enhance safety requires the establishment and use of standards for concept definitions and for data exchange, development of acceptable models for knowledge representation, incentives for adoption of electronic health records, support for adverse event detection and reporting, and greater investment in research at the intersection of informatics and patient safety. Leading organizations have demonstrated that health care informatics approaches can improve safety. Nevertheless, significant obstacles today limit optimal application of health informatics to safety within most provider environments. The authors offer a series of recommendations for addressing these challenges. PMID:18436896

  5. Psychometric Properties of the Canadian Nurse Informatics Competency Assessment Scale.

    PubMed

    Kleib, Manal; Nagle, Lynn

    2018-04-10

    Assessment of nursing informatics competencies has gained momentum in the scholarly literature in response to the increased need for resources available to support informatics capacity in nursing. The purpose of this study was to examine the factor structure and internal consistency reliability of the Canadian Nurse Informatics Competency Assessment Scale, a newly developed 21-item measure based on published entry-to-practice informatics competencies for RNs. For this study, 2844 nurses completed the Canadian Nurse Informatics Competency Assessment Scale through a cross-sectional survey. Exploratory principal component analysis with oblique promax rotation revealed a four-component/factor structure for the 21-item Canadian Nurse Informatics Competency Assessment Scale, explaining 61.04% of the variance. Item loading per each component reflected the original Canadian Association of Schools of Nursing grouping of nursing informatics competency indicators, as per three key domains of competency: information and knowledge management (α = .85); professional and regulatory accountability (α = .81); and use of information and communication technology in the delivery of patient care (α = .87) with the exception of one item (Indicator 3), which loaded into the category of foundational information and communication technology skills (α = .81). This study provided preliminary evidence for the construct validity of the entry-to-practice competency domains and the factor structure and reliability of the Canadian Nurse Informatics Competency Assessment Scale among practicing nurses. Further testing among nurses in other settings and among nursing students is recommended.

  6. Middle East and North African Health Informatics Association (MENAHIA): Building Sustainable Collaboration.

    PubMed

    Al-Shorbaji, Najeeb; Househ, Mowafa; Taweel, Adel; Alanizi, Abdullah; Mohammed, Bennani Othmani; Abaza, Haitham; Bawadi, Hala; Rasuly, Hamayon; Alyafei, Khalid; Fernandez-Luque, Luis; Shouman, Mohamed; El-Hassan, Osama; Hussein, Rada; Alshammari, Riyad; Mandil, Salah; Shouman, Sarah; Taheri, Shahrad; Emara, Tamer; Dalhem, Wasmiya; Al-Hamdan, Zaid; Serhier, Zineb

    2018-04-22

    There has been a growing interest in Health Informatics applications, research, and education within the Middle East and North African Region over the past twenty years. People of this region share similar cultural and religious values, primarily speak the Arabic language, and have similar health care related issues, which are in dire need of being addressed. Health Informatics efforts, organizations, and initiatives within the region have been largely under-represented within, but not ignored by, the International Medical Informatics Association (IMIA). Attempts to create bonds and collaboration between the different organizations of the region have remained scattered, and often, resulted in failure despite the fact that the need for a united health informatics collaborative within the region has never been more crucial than today. During the 2017 MEDINFO, held in Hangzhou, China, a new organization, the Middle East and North African Health Informatics Association (MENAHIA) was conceived as a regional non-governmental organization to promote and facilitate health informatics uptake within the region endorsing health informatics research and educational initiatives of the 22 countries represented within the region. This paper provides an overview of the collaboration and efforts to date in forming MENAHIA and displays the variety of initiatives that are already occurring within the MENAHIA region, which MENAHIA will help, endorse, support, share, and improve within the international forum of health informatics. Georg Thieme Verlag KG Stuttgart.

  7. Informatics and Technology in Resident Education.

    PubMed

    Niehaus, William

    2017-05-01

    Biomedical or clinical informatics is the transdisciplinary field that studies and develops effective uses of biomedical data, information technology innovations, and medical knowledge for scientific inquiry, problem solving, and decision making, with an emphasis on improving human health. Given the ongoing advances in information technology, the field of informatics is becoming important to clinical practice and to residency education. This article will discuss how informatics is specifically relevant to residency education and the different ways to incorporate informatics into residency education, and will highlight applications of current technology in the context of residency education. How informatics can optimize communication for residents, promote information technology use, refine documentation techniques, reduce medical errors, and improve clinical decision making will be reviewed. It is hoped that this article will increase faculty and trainees' knowledge of the field of informatics, awareness of available technology, and will assist practitioners to maximize their ability to provide quality care to their patients. This article will also introduce the idea of incorporating informatics specialists into residency programs to help practitioners deliver more evidenced-based care and to further improve their efficiency. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. The Australian Health Informatics Competencies Framework and Its Role in the Certified Health Informatician Australasia (CHIA) Program.

    PubMed

    Martin-Sanchez, Fernando; Rowlands, David; Schaper, Louise; Hansen, David

    2017-01-01

    The Certified Health Informatician Australasia (CHIA) program consists of an online exam, which aims to test whether a candidate has the knowledge and skills that are identified in the competencies framework to perform as a health informatics professional. The CHIA Health Informatics Competencies Framework provides the context in which the questions for the exam have been developed. The core competencies for health informatics that are tested in the exam have been developed with reference to similar programs by the American Medical Informatics Association, the International Medical Informatics Association and COACH, Canada's Health Informatics Association, and builds on the previous work done by the Australian Health Informatics Education Council. This paper shows how the development of this competency framework is helping to raise the profile of health informaticians in Australasia, contributing to a wider recognition of the profession, and defining more clearly the body of knowledge underpinning this discipline. This framework can also be used as a set of guidelines for recruiting purposes, definitions of career pathways, or the design of educational and training activities. We discuss here the current status of the program, its resultsandprospectsfor the future.

  9. It’s Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence

    PubMed Central

    McIntosh, Leslie D.; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders. PMID:26306252

  10. Combining medical informatics and bioinformatics toward tools for personalized medicine.

    PubMed

    Sarachan, B D; Simmons, M K; Subramanian, P; Temkin, J M

    2003-01-01

    Key bioinformatics and medical informatics research areas need to be identified to advance knowledge and understanding of disease risk factors and molecular disease pathology in the 21 st century toward new diagnoses, prognoses, and treatments. Three high-impact informatics areas are identified: predictive medicine (to identify significant correlations within clinical data using statistical and artificial intelligence methods), along with pathway informatics and cellular simulations (that combine biological knowledge with advanced informatics to elucidate molecular disease pathology). Initial predictive models have been developed for a pilot study in Huntington's disease. An initial bioinformatics platform has been developed for the reconstruction and analysis of pathways, and work has begun on pathway simulation. A bioinformatics research program has been established at GE Global Research Center as an important technology toward next generation medical diagnostics. We anticipate that 21 st century medical research will be a combination of informatics tools with traditional biology wet lab research, and that this will translate to increased use of informatics techniques in the clinic.

  11. What is biomedical informatics?

    PubMed Central

    Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R.

    2009-01-01

    Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine. PMID:19683067

  12. Continuous quality improvement and medical informatics: the convergent synergy.

    PubMed

    Werth, G R; Connelly, D P

    1992-01-01

    Continuous quality improvement (CQI) and medical informatics specialists need to converge their efforts to create synergy for improving health care. Health care CQI needs medical informatics' expertise and technology to build the information systems needed to manage health care organizations according to quality improvement principles. Medical informatics needs CQI's philosophy and methods to build health care information systems that can evolve to meet the changing needs of clinicians and other stakeholders. This paper explores the philosophical basis for convergence of CQI and medical informatics efforts, and then examines a clinical computer workstation development project that is applying a combined approach.

  13. Informatics for the Modern Intensive Care Unit.

    PubMed

    Anderson, Diana C; Jackson, Ashley A; Halpern, Neil A

    Advanced informatics systems can help improve health care delivery and the environment of care for critically ill patients. However, identifying, testing, and deploying advanced informatics systems can be quite challenging. These processes often require involvement from a collaborative group of health care professionals of varied disciplines with knowledge of the complexities related to designing the modern and "smart" intensive care unit (ICU). In this article, we explore the connectivity environment within the ICU, middleware technologies to address a host of patient care initiatives, and the core informatics concepts necessary for both the design and implementation of advanced informatics systems.

  14. Discussion on informatization teaching of certain radar transmitter

    NASA Astrophysics Data System (ADS)

    Liang, Guanhui; Lv, Guizhou; Meng, Yafeng

    2017-04-01

    With the development of informatization, the traditional teaching method of certain radar transmitter is more and more difficult to meet the need of cultivating new type of high-quality military talents. This paper first analyzes the problems traditional teaching method of certain radar transmitter, and then puts forward the strategy of informatization teaching, and finally elaborates the concrete steps and contents of informatization teaching. Using the multimedia maintenance training system, information simulation training system and network courses and other informatization means, effectively improves the master degree to radar transmitter by trainees, but also lays a good foundation for repair in the next step.

  15. Core Content for the Subspecialty of Clinical Informatics

    PubMed Central

    Gardner, Reed M.; Overhage, J. Marc; Steen, Elaine B.; Munger, Benson S.; Holmes, John H.; Williamson, Jeffrey J.; Detmer, Don E.

    2009-01-01

    The Core Content for Clinical Informatics defines the boundaries of the discipline and informs the Program Requirements for Fellowship Education in Clinical Informatics. The Core Content includes four major categories: fundamentals, clinical decision making and care process improvement, health information systems, and leadership and management of change. The AMIA Board of Directors approved the Core Content for Clinical Informatics in November 2008. PMID:19074296

  16. The Top 100 Articles in the Medical Informatics: a Bibliometric Analysis.

    PubMed

    Nadri, Hamed; Rahimi, Bahlol; Timpka, Toomas; Sedghi, Shahram

    2017-08-19

    The number of citations that a research paper receives can be used as a measure of its scientific impact. The objective of this study was to identify and to examine the characteristics of top 100 cited articles in the field of Medical Informatics based on data acquired from the Thomson Reuters' Web of Science (WOS) in October, 2016. The data was collected using two procedures: first we included articles published in the 24 journals listed in the "Medical Informatics" category; second, we retrieved articles using the key words: "informatics", "medical informatics", "biomedical informatics", "clinical informatics" and "health informatics". After removing duplicate records, articles were ranked by the number of citations they received. When the 100 top cited articles had been identified, we collected the following information for each record: all WOS database citations, year of publication, journal, author names, authors' affiliation, country of origin and topics indexed for each record. Citations for the top 100 articles ranged from 346 to 7875, and citations per year ranged from 11.12 to 525. The majority of articles were published in the 2000s (n=43) and 1990s (n=38). Articles were published across 10 journals, most commonly Statistics in medicine (n=71) and Medical decision making (n=28). The articles had an average of 2.47 authors. Statistics and biostatistics modeling was the most common topic (n=71), followed by artificial intelligence (n=12), and medical errors (n=3), other topics included data mining, diagnosis, bioinformatics, information retrieval, and medical imaging. Our bibliometric analysis illustrated a historical perspective on the progress of scientific research on Medical Informatics. Moreover, the findings of the current study provide an insight on the frequency of citations for top cited articles published in Medical Informatics as well as quality of the works, journals, and the trends steering Medical Informatics.

  17. Time for TIGER to ROAR! Technology Informatics Guiding Education Reform.

    PubMed

    O'Connor, Siobhan; Hubner, Ursula; Shaw, Toria; Blake, Rachelle; Ball, Marion

    2017-11-01

    Information Technology (IT) continues to evolve and develop with electronic devices and systems becoming integral to healthcare in every country. This has led to an urgent need for all professions working in healthcare to be knowledgeable and skilled in informatics. The Technology Informatics Guiding Education Reform (TIGER) Initiative was established in 2006 in the United States to develop key areas of informatics in nursing. One of these was to integrate informatics competencies into nursing curricula and life-long learning. In 2009, TIGER developed an informatics competency framework which outlines numerous IT competencies required for professional practice and this work helped increase the emphasis of informatics in nursing education standards in the United States. In 2012, TIGER expanded to the international community to help synthesise informatics competencies for nurses and pool educational resources in health IT. This transition led to a new interprofessional, interdisciplinary approach, as health informatics education needs to expand to other clinical fields and beyond. In tandem, a European Union (EU) - United States (US) Collaboration on eHealth began a strand of work which focuses on developing the IT skills of the health workforce to ensure technology can be adopted and applied in healthcare. One initiative within this is the EU*US eHealth Work Project, which started in 2016 and is mapping the current structure and gaps in health IT skills and training needs globally. It aims to increase educational opportunities by developing a model for open and scalable access to eHealth training programmes. With this renewed initiative to incorporate informatics into the education and training of nurses and other health professionals globally, it is time for educators, researchers, practitioners and policy makers to join in and ROAR with TIGER. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. On Contributing to the Progress of Medical Informatics as Publisher.

    PubMed

    Haux, R; Geissbuhler, A; Holmes, J; Jaulent, M-C; Koch, S; Kulikowski, C A; Lehmann, C U; McCray, A T; Séroussi, B; Soualmia, L F; van Bemmel, J H

    2017-08-01

    May 1st, 2017, will mark Dieter Bergemann's 80th birthday. As Chief Executive Officer and Owner of Schattauer Publishers from 1983 to 2016, the biomedical and health informatics community owes him a great debt of gratitude. The past and present editors of Methods of Information in Medicine, the IMIA Yearbook of Medical Informatics, and Applied Clinical Informatics want to honour and thank Dieter Bergemann by providing a brief biography that emphasizes his contributions, by reviewing his critical role as an exceptionally supportive publisher for Schattauer's three biomedical and health informatics periodicals, and by sharing some personal anecdotes. Over the past 40 years, Dieter Bergemann has been an influential, if behind-the-scenes, driving force in biomedical and health informatics publications, helping to ensure success in the dissemination of our field's research and practice. Georg Thieme Verlag KG Stuttgart.

  19. Nursing informatics competencies: bibliometric analysis.

    PubMed

    Kokol, Peter; Blažun, Helena; Vošner, Janez; Saranto, Kaija

    2014-01-01

    Information and communication technology is developing rapidly and it is incorporated in many health care processes, but in spite of that fact we can still notice that nursing informatics competencies had received limited attention in basic nursing education curricula in Europe and especially in Eastern European countries. The purpose of the present paper is to present the results of a bibliometric analysis of the nursing informatics competencies scientific literature production. We applied the bibliometrics analysis to the corpus of 332 papers found in SCOPUS, related to nursing informatics competencies. The results showed that there is a positive trend in the number of published papers per year, indicating the increased research interest in nursing informatics competencies. Despite the fact that the first paper was published in Denmark, the most prolific country regarding the research in nursing informatics competencies is United States as are their institutions and authors.

  20. Massive Open Online Course for Health Informatics Education

    PubMed Central

    2014-01-01

    Objectives This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). Methods The Health Informatics Forum is one of examples of MOOCs through a social networking site for educating health informatics students and professionals. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. Results The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Conclusions Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost. PMID:24872906

  1. Massive open online course for health informatics education.

    PubMed

    Paton, Chris

    2014-04-01

    This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). The Health Informatics Forum is a social networking site for educating health informatics students and professionals [corrected]. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost.

  2. Recommendations of the International Medical Informatics Association (IMIA) on education in health and medical informatics.

    PubMed

    2000-08-01

    The International Medical Informatics Association (IMIA) agreed on international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in health and medical informatics (HMI), particularly international activities in educating HMI specialists and the sharing of courseware. The IMIA recommendations centre on educational needs for healthcare professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in healthcare (physicians, nurses, HMI professionals, ...), 2) type of specialisation in health and medical informatics (IT users, HMI specialists) and 3) stage of career progression (bachelor, master, ...). Learning outcomes are defined in terms of knowledge and practical skills for healthcare professionals in their role (a) as IT user and (b) as HMI specialist. Recommendations are given for courses/course tracks in HMI as part of educational programs in medicine, nursing, healthcare management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in HMI (with bachelor, master or doctor degree). To support education in HMI, IMIA offers to award a certificate for high quality HMI education and supports information exchange on programs and courses in HMI through a WWW server of its Working Group on Health and Medical Informatics Education (http:www.imia.org/wg1).

  3. Measuring Computer Science Knowledge Level of Hungarian Students Specialized in Informatics with Romanian Students Attending a Science Course or a Mathematics-Informatics Course

    ERIC Educational Resources Information Center

    Kiss, Gabor

    2012-01-01

    An analysis of Information Technology knowledge of Hungarian and Romanian students was made with the help of a self developed web based Informatics Test. The goal of this research is an analysis of the Computer Science knowledge level of Hungarian and Romanian students attending a Science course or a Mathematics-Informatics course. Analysed was…

  4. Teaching Informatics to Prelicensure, RN-to-BSN, and Graduate Level Students.

    PubMed

    Vottero, Beth

    Teaching nursing informatics to students in associate, baccalaureate, RN-BSN, and graduate nursing programs poses challenges for curriculum design, as well as developing appropriate instruction and assessment methods. The current state of nursing informatics education provides opportunities for unique instructional design and assessment techniques. Key course content is provided with suggestions for teaching informatics that focus on leveling for prelicensure, RN-BSN, and graduate nursing programs.

  5. Current Status for Teaching Nursing Informatics in Denmark, Canada, and Australia.

    PubMed

    Madsen, Inge; Cummings, Elizabeth; Borycki, Elizabeth M

    2015-01-01

    Nursing schools in Denmark, Canada, and Australia are all currently involved in integrating nursing informatics in the nursing bachelor programme. This paper gives a brief update on the current situation of nursing informatics education for bachelor level nurses in each of the three countries. Whilst there are differences in the curriculum in each county, it is important to share knowledge about undergraduate nursing informatics worldwide to ensure consistency.

  6. The challenge of ubiquitous computing in health care: technology, concepts and solutions. Findings from the IMIA Yearbook of Medical Informatics 2005.

    PubMed

    Bott, O J; Ammenwerth, E; Brigl, B; Knaup, P; Lang, E; Pilgram, R; Pfeifer, B; Ruderich, F; Wolff, A C; Haux, R; Kulikowski, C

    2005-01-01

    To review recent research efforts in the field of ubiquitous computing in health care. To identify current research trends and further challenges for medical informatics. Analysis of the contents of the Yearbook on Medical Informatics 2005 of the International Medical Informatics Association (IMIA). The Yearbook of Medical Informatics 2005 includes 34 original papers selected from 22 peer-reviewed scientific journals related to several distinct research areas: health and clinical management, patient records, health information systems, medical signal processing and biomedical imaging, decision support, knowledge representation and management, education and consumer informatics as well as bioinformatics. A special section on ubiquitous health care systems is devoted to recent developments in the application of ubiquitous computing in health care. Besides additional synoptical reviews of each of the sections the Yearbook includes invited reviews concerning E-Health strategies, primary care informatics and wearable healthcare. Several publications demonstrate the potential of ubiquitous computing to enhance effectiveness of health services delivery and organization. But ubiquitous computing is also a societal challenge, caused by the surrounding but unobtrusive character of this technology. Contributions from nearly all of the established sub-disciplines of medical informatics are demanded to turn the visions of this promising new research field into reality.

  7. Preface - Access to Knowledge Revisited

    PubMed Central

    Humphreys, Betsy L.

    2016-01-01

    Summary Objective To review and update the Preface to the 1998 Yearbook of Medical Informatics, which had as its Special Topic “Health Informatics and the Internet”. Method Assessment of the accuracy of predictions made in 1998 and consideration of key developments in informatics since that time. Results Predictions made in 1998 were generally accurate regarding reduced dependence on keyboards, expansion of multimedia, medical data privacy policy development, impact of molecular biology on knowledge and treatment of neoplasms, and use of imaging and informatics to advance understanding of brain structure and function. Key developments since 1998 include the huge increase in publicly available electronic information; acknowledgement by leaders in government and science of the importance of biomedical informatics to societal goals for health, health care, and scientific discovery; the influence of the public in promoting clinical research transparency and free access to government-funded research results; the long-awaited arrival of electronic health records; and the “Cloud” as a 21st century reformulation of contracting out the computer center. Conclusions There are many challenging and important problems that deserve the attention of the informatics community. Informatics researchers will be best served by embracing a very broad definition of medical informatics and by promoting public understanding of the field. PMID:27199193

  8. Citation analysis in journal rankings: medical informatics in the library and information science literature.

    PubMed Central

    Vishwanatham, R

    1998-01-01

    Medical informatics is an interdisciplinary field. Medical informatics articles will be found in the literature of various disciplines including library and information science publications. The purpose of this study was to provide an objectively ranked list of journals that publish medical informatics articles relevant to library and information science. Library Literature, Library and Information Science Abstracts, and Social Science Citation Index were used to identify articles published on the topic of medical informatics and to identify a ranked list of journals. This study also used citation analysis to identify the most frequently cited journals relevant to library and information science. PMID:9803294

  9. Knowledge, Skills, and Resources for Pharmacy Informatics Education

    PubMed Central

    Fox, Brent I.; Flynn, Allen J.; Fortier, Christopher R.; Clauson, Kevin A.

    2011-01-01

    Pharmacy has an established history of technology use to support business processes. Pharmacy informatics education within doctor of pharmacy programs, however, is inconsistent, despite its inclusion as a requirement in the 2007 Accreditation Council for Pharmacy Education Standards and Guidelines. This manuscript describes pharmacy informatics knowledge and skills that all graduating pharmacy students should possess, conceptualized within the framework of the medication use process. Additionally, we suggest core source materials and specific learning activities to support pharmacy informatics education. We conclude with a brief discussion of emerging changes in the practice model. These changes are facilitated by pharmacy informatics and will inevitably become commonplace in our graduates’ practice environment. PMID:21829267

  10. Knowledge, skills, and resources for pharmacy informatics education.

    PubMed

    Fox, Brent I; Flynn, Allen J; Fortier, Christopher R; Clauson, Kevin A

    2011-06-10

    Pharmacy has an established history of technology use to support business processes. Pharmacy informatics education within doctor of pharmacy programs, however, is inconsistent, despite its inclusion as a requirement in the 2007 Accreditation Council for Pharmacy Education Standards and Guidelines. This manuscript describes pharmacy informatics knowledge and skills that all graduating pharmacy students should possess, conceptualized within the framework of the medication use process. Additionally, we suggest core source materials and specific learning activities to support pharmacy informatics education. We conclude with a brief discussion of emerging changes in the practice model. These changes are facilitated by pharmacy informatics and will inevitably become commonplace in our graduates' practice environment.

  11. A Nursing Informatics Research Agenda for 2008–18: Contextual Influences and Key Components

    PubMed Central

    Bakken, Suzanne; Stone, Patricia W.; Larson, Elaine L.

    2008-01-01

    The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on three specific aspects of context - genomic health care, shifting research paradigms, and social (Web 2.0) technologies - that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008–18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context. PMID:18922269

  12. Assessing the current state of dental informatics in saudi arabia: the new frontier.

    PubMed

    Al-Nasser, Lubna; Al-Ehaideb, Ali; Househ, Mowafa

    2014-01-01

    Dental informatics is an emerging field that has the potential to transform the dental profession. This study aims to summarize the current applications of dental informatics in Saudi Arabia and to identify the challenges facing expansion of dental informatics in the Saudi context. Search for published articles and specialized forum entries was conducted, as well as interviews with dental professionals familiar with the topic. Results indicated that digital radiography/analysis and administrative management of dental practice are the commonest applications used. Applications in Saudi dental education included: web-based learning systems, computer-based assessments and virtual technology for clinical skills' teaching. Patients' education software, electronic dental/oral health records and the potential of dental research output from electronic databases are yet to be achieved in Saudi Arabia. Challenges facing Saudi dental informatics include: lack of IT infrastructure/support, social acceptability and financial cost. Several initiatives are taken towards the research in dental informatics. Still, more investments are needed to fully achieve the potential of various application of informatics in dental education, practice and research.

  13. Education review: applied medical informatics--informatics in medical education.

    PubMed

    Naeymi-Rad, F; Trace, D; Moidu, K; Carmony, L; Booden, T

    1994-05-01

    The importance of informatics training within a health sciences program is well recognized and is being implemented on an increasing scale. At Chicago Medical School (CMS), the Informatics program incorporates information technology at every stage of medical education. First-year students are offered an elective in computer topics that concentrate on basic computer literacy. Second-year students learn information management such as entry and information retrieval skills. For example, during the Introduction to Clinical Medicine course, the student is exposed to the Intelligent Medical Record-Entry (IMR-E), allowing the student to enter and organize information gathered from patient encounters. In the third year, students in the Internal Medicine rotation at Norwalk Hospital use Macintosh power books to enter and manage their patients. Patient data gathered by the student are stored in a local server in Norwalk Hospital. In the final year, we teach students the role of informatics in clinical decision making. The present senior class at CMS has been exposed to the power of medical informatics tools for several years. The use of these informatics tools at the point of care is stressed.

  14. Informatics, evidence-based care, and research; implications for national policy: a report of an American Medical Informatics Association health policy conference.

    PubMed

    Bloomrosen, Meryl; Detmer, Don E

    2010-01-01

    There is an increased level of activity in the biomedical and health informatics world (e-prescribing, electronic health records, personal health records) that, in the near future, will yield a wealth of available data that we can exploit meaningfully to strengthen knowledge building and evidence creation, and ultimately improve clinical and preventive care. The American Medical Informatics Association (AMIA) 2008 Health Policy Conference was convened to focus and propel discussions about informatics-enabled evidence-based care, clinical research, and knowledge management. Conference participants explored the potential of informatics tools and technologies to improve the evidence base on which providers and patients can draw to diagnose and treat health problems. The paper presents a model of an evidence continuum that is dynamic, collaborative, and powered by health informatics technologies. The conference's findings are described, and recommendations on terminology harmonization, facilitation of the evidence continuum in a "wired" world, development and dissemination of clinical practice guidelines and other knowledge support strategies, and the role of diverse stakeholders in the generation and adoption of evidence are presented.

  15. 2018 Informatics Tool Challenge Winners

    Cancer.gov

    DCEG announced six winners of the 2018 DCEG Informatics Tool Challenge, a competitive funding program that supports innovation to enhance epidemiological methods, data collection, analysis, and other research using modern technology and informatics. Learn more about the winning innovations.

  16. A UML-based meta-framework for system design in public health informatics.

    PubMed

    Orlova, Anna O; Lehmann, Harold

    2002-01-01

    The National Agenda for Public Health Informatics calls for standards in data and knowledge representation within public health, which requires a multi-level framework that links all aspects of public health. The literature of public health informatics and public health informatics application were reviewed. A UML-based systems analysis was performed. Face validity of results was evaluated in analyzing the public health domain of lead poisoning. The core class of the UML-based system of public health is the Public Health Domain, which is associated with multiple Problems, for which Actors provide Perspectives. Actors take Actions that define, generate, utilize and/or evaluate Data Sources. The life cycle of the domain is a sequence of activities attributed to its problems that spirals through multiple iterations and realizations within a domain. The proposed Public Health Informatics Meta-Framework broadens efforts in applying informatics principles to the field of public health

  17. The Jubilee of Medical Informatics in Bosnia and Herzegovina - 20 Years Anniversary

    PubMed Central

    Masic, Izet

    2009-01-01

    CONFLICT OF INTEREST: NONE DECLARED Last two years, the health informatics profession celebrated five jubilees in Bosnia and Herzegovina: thirty years from the introduction of the first automatic manipulation of data, twenty years from the establishment of Society for Medical Informatics BiH, fifteen years from the establishment of the Scientific and Professional Journal of the Society for Medical Informatics of Bosnia and Herzegovina „Acta Informatica Medica“, fifteen years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina and five years on from the introduction of the method of “Distance learning” in medical curriculum. The author of this article are eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period. PMID:24133382

  18. An information technology emphasis in biomedical informatics education.

    PubMed

    Kane, Michael D; Brewer, Jeffrey L

    2007-02-01

    Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.

  19. The jubilee of medical informatics in bosnia and herzegovina - 20 years anniversary.

    PubMed

    Masic, Izet

    2009-01-01

    NONE DECLARED LAST TWO YEARS, THE HEALTH INFORMATICS PROFESSION CELEBRATED FIVE JUBILEES IN BOSNIA AND HERZEGOVINA: thirty years from the introduction of the first automatic manipulation of data, twenty years from the establishment of Society for Medical Informatics BiH, fifteen years from the establishment of the Scientific and Professional Journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica", fifteen years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina and five years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article are eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.

  20. Developing Informatics Tools and Strategies for Consumer-centered Health Communication

    PubMed Central

    Keselman, Alla; Logan, Robert; Smith, Catherine Arnott; Leroy, Gondy; Zeng-Treitler, Qing

    2008-01-01

    As the emphasis on individuals' active partnership in health care grows, so does the public's need for effective, comprehensible consumer health resources. Consumer health informatics has the potential to provide frameworks and strategies for designing effective health communication tools that empower users and improve their health decisions. This article presents an overview of the consumer health informatics field, discusses promising approaches to supporting health communication, and identifies challenges plus direction for future research and development. The authors' recommendations emphasize the need for drawing upon communication and social science theories of information behavior, reaching out to consumers via a range of traditional and novel formats, gaining better understanding of the public's health information needs, and developing informatics solutions for tailoring resources to users' needs and competencies. This article was written as a scholarly outreach and leadership project by members of the American Medical Informatics Association's Consumer Health Informatics Working Group. PMID:18436895

  1. Recommendations of the International Medical Informatics Association (IMIA) on education in health and medical informatics.

    PubMed

    2004-01-01

    The International Medical Informatics Association (IMIA) agreed on international recommendations in health informatics / medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in health and medical informatics (HMI), particularly international activities in educating HMI specialists and the sharing of courseware. The IMIA recommendations centre on educational needs for health care professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in health care (physicians, nurses, HMI professionals, ...), 2) type of specialisation in health and medical informatics (IT users, HMI specialists) and 3) stage of career progression (bachelor, master, ...). Learning outcomes are defined in terms of knowledge and practical skills for health care professionals in their role (a) as IT user and (b) as HMI specialist. Recommendations are given for courses/course tracks in HMI as part of educational programs in medicine, nursing, health care management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in HMI (with bachelor, master or doctor degree). To support education in HMI, IMIA offers to award a certificate for high quality HMI education and supports information exchange on programs and courses in HMI through a WWW server of its Working Group on Health and Medical Informatics Education (http://www.imia.org/wg1).

  2. Quantitative and Qualitative Evaluation of The Structural Designing of Medical Informatics Dynamic Encyclopedia

    PubMed Central

    Safdari, Reza; Shahmoradi, Leila; Hosseini-beheshti, Molouk-sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad

    2015-01-01

    Introduction: Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. Materials and Methods: This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. Findings: In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics’ sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Results and Discussion: Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics. PMID:26635440

  3. A Repository of Codes of Ethics and Technical Standards in Health Informatics

    PubMed Central

    Zaïane, Osmar R.

    2014-01-01

    We present a searchable repository of codes of ethics and standards in health informatics. It is built using state-of-the-art search algorithms and technologies. The repository will be potentially beneficial for public health practitioners, researchers, and software developers in finding and comparing ethics topics of interest. Public health clinics, clinicians, and researchers can use the repository platform as a one-stop reference for various ethics codes and standards. In addition, the repository interface is built for easy navigation, fast search, and side-by-side comparative reading of documents. Our selection criteria for codes and standards are two-fold; firstly, to maintain intellectual property rights, we index only codes and standards freely available on the internet. Secondly, major international, regional, and national health informatics bodies across the globe are surveyed with the aim of understanding the landscape in this domain. We also look at prevalent technical standards in health informatics from major bodies such as the International Standards Organization (ISO) and the U. S. Food and Drug Administration (FDA). Our repository contains codes of ethics from the International Medical Informatics Association (IMIA), the iHealth Coalition (iHC), the American Health Information Management Association (AHIMA), the Australasian College of Health Informatics (ACHI), the British Computer Society (BCS), and the UK Council for Health Informatics Professions (UKCHIP), with room for adding more in the future. Our major contribution is enhancing the findability of codes and standards related to health informatics ethics by compilation and unified access through the health informatics ethics repository. PMID:25422725

  4. Understanding the Essence of Caring from the Lived Experiences of Filipino Informatics Nurses.

    PubMed

    Macabasag, Romeo Luis A; Diño, Michael Joseph S

    2018-04-01

    Caring is considered a unique concept in nursing because it subsumes all intrinsic attributes of nursing as a human helping discipline. Scholars have argued that caring is usually seen as an encounter between nurses and patients, but how about nurses with minimal or absent nurse-patient encounters, like informatics nurses? In this study, we explored the meaning of the phenomenon of caring to present lived experiences of caring, namely caring as actions of coming in between; caring as expressed within embodied relations; and caring and the path traversed by informatics nurses. The informatics nurse-cyborg-patient triad speaks of Filipino informatics nurses' insightful understanding of the phenomenon of caring.

  5. A Short Factography About IMIA and EFMI

    PubMed Central

    Hofdijk, Jacob; Weber, Patrick; Mantas, John; Mihalas, George; Masic, Izet

    2014-01-01

    International Medical Informatics Association (IMIA) and European Federation of Medical Informatics are scientific associations which represents Health/Medical informatics as scientific and profesional disciplines. Those associations have long tradition in spreading knowledge, experiences and strategies in organization, practical applications and education within Health, Medical and Biomedical informatics in approximately 60 countries the world. In this review we present basic facts about IMIA and EFMI.who celebrate this 50 years of their establishing as professional associations. PMID:24648623

  6. Incorporating Health Information Technology and Pharmacy Informatics in a Pharmacy Professional Didactic Curriculum -with a Team-based Learning Approach.

    PubMed

    Hincapie, Ana L; Cutler, Timothy W; Fingado, Amanda R

    2016-08-25

    Objective. To incorporate a pharmacy informatics program in the didactic curriculum of a team-based learning institution and to assess students' knowledge of and confidence with health informatics during the course. Design. A previously developed online pharmacy informatics course was adapted and implemented into a team-based learning (TBL) 3-credit-hour drug information course for doctor of pharmacy (PharmD) students in their second didactic year. During a period of five weeks (15 contact hours), students used the online pharmacy informatics modules as part of their readiness assurance process. Additional material was developed to comply with the TBL principles. Online pre/postsurveys were administered to evaluate knowledge gained and students' perceptions of the informatics program. Assessment. Eighty-three second-year students (84% response rate) completed the surveys. Participants' knowledge of electronic health records, computerized physician order entry, pharmacy information systems, and clinical decision support was significantly improved. Additionally, their confidence significantly improved in terms of describing health informatics terminology, describing the benefits and barriers of using health information technology, and understanding reasons for systematically processing health information. Conclusion. Students responded favorably to the incorporation of pharmacy informatics content into a drug information course using a TBL approach. Students met the learning objectives of seven thematic areas and had positive attitudes toward the course after its completion.

  7. Evaluation of Founding Members of the International Academy of Health Sciences Informatics (IAHSI) Based on Google Scholar and Scopus Parameters.

    PubMed

    Masic, Izet

    2017-12-01

    The International Academy of Health Sciences Informatics (IAHSI) is established by International Medical Informatics Association (IMIA) which is the world body for health and biomedical informatics. The Academy will serve as an honor society that recognizes expertise in biomedical and health informatics internationally. Academy membership will be one of the highest honors in the international field of biomedical and health informatics. To present scientometric analysis of founding members of the International Academy of Health Sciences Informatics, to evaluate members and their scientific rating. The work has an analytical character and presents analysis of the data obtained from the Google Scholar and Scopus database. Results are shown through number of cases, percentage and graphically. The analysis showed a significant correlation between the Academy and the country (continent) of origin of the academician. In IAHSI are mainly represented academics originating from Europe - 40 members (33,3%), North America - 39 members (32,5%), Asia - 20 members (16,6%), South America - 9 members (7,5%), Australia - 7 members (5,8%), while only 5 members or 4,16% come from Africa. Criteria for number of representatives of each continent to main academic communities are relatively questionable, as this analysis showed. Development of Health Sciences Informatics should be the main purpose, and it should be evenly distributed with slight deviations in number of representatives of each continent.

  8. Visualization of the IMIA Yearbook of Medical Informatics Publications over the Last 25 Years

    PubMed Central

    Tam-Tham, H.; Minty, E. P.

    2016-01-01

    Summary Background The last 25 years have been a period of innovation in the area of medical informatics. The International Medical Informatics Association (IMIA) has published, every year for the last quarter century, the Yearbook of Medical Informatics, collating selected papers from various journals in an attempt to provide a summary of the academic medical informatics literature. The objective of this paper is to visualize the evolution of the medical informatics field over the last 25 years according to the frequency of word occurrences in the papers published in the IMIA Yearbook of Medical Informatics. Methods A literature review was conducted examining the IMIA Yearbook of Medical Informatics between 1992 and 2015. These references were collated into a reference manager application to examine the literature using keyword searches, word clouds, and topic clustering. The data was considered in its entirety, as well as segregated into 3 time periods to examine the evolution of main trends over time. Several methods were used, including word clouds, cluster maps, and custom developed web-based information dashboards. Results The literature search resulted in a total of 1210 references published in the Yearbook, of which 213 references were excluded, resulting in 997 references for visualization. Overall, we found that publications were more technical and methods-oriented between 1992 and 1999; more clinically and patient-oriented between 2000 and 2009; and noted the emergence of “big data”, decision support, and global health in the past decade between 2010 and 2015. Dashboards were additionally created to show individual reference data, as well as, aggregated information. Conclusion Medical informatics is a vast and expanding area with new methods and technologies being researched, implemented, and evaluated. Determining visualization approaches that enhance our understanding of literature is an active area of research, and like medical informatics, is constantly evolving as new software and algorithms are developed. This paper examined several approaches for visualizing the medical informatics literature to show historical trends, associations, and aggregated summarized information to illustrate the state and changes in the IMIA Yearbook publications over the last quarter century. PMID:27362591

  9. Pathology informatics questions and answers from the University of Pittsburgh pathology residency informatics rotation.

    PubMed

    Harrison, James H

    2004-01-01

    Effective pathology practice increasingly requires familiarity with concepts in medical informatics that may cover a broad range of topics, for example, traditional clinical information systems, desktop and Internet computer applications, and effective protocols for computer security. To address this need, the University of Pittsburgh (Pittsburgh, Pa) includes a full-time, 3-week rotation in pathology informatics as a required component of pathology residency training. To teach pathology residents general informatics concepts important in pathology practice. We assess the efficacy of the rotation in communicating these concepts using a short-answer examination administered at the end of the rotation. Because the increasing use of computers and the Internet in education and general communications prior to residency training has the potential to communicate key concepts that might not need additional coverage in the rotation, we have also evaluated incoming residents' informatics knowledge using a similar pretest. This article lists 128 questions that cover a range of topics in pathology informatics at a level appropriate for residency training. These questions were used for pretests and posttests in the pathology informatics rotation in the Pathology Residency Program at the University of Pittsburgh for the years 2000 through 2002. With slight modification, the questions are organized here into 15 topic categories within pathology informatics. The answers provided are brief and are meant to orient the reader to the question and suggest the level of detail appropriate in an answer from a pathology resident. A previously published evaluation of the test results revealed that pretest scores did not increase during the 3-year evaluation period, and self-assessed computer skill level correlated with pretest scores, but all pretest scores were low. Posttest scores increased substantially, and posttest scores did not correlate with the self-assessed computer skill level recorded at pretest time. Even residents who rated themselves high in computer skills lacked many concepts important in pathology informatics, and posttest scores showed that residents with both high and low self-assessed skill levels learned pathology informatics concepts effectively.

  10. Visualization of the IMIA Yearbook of Medical Informatics Publications over the Last 25 Years.

    PubMed

    Yergens, D W; Tam-Tham, H; Minty, E P

    2016-06-30

    The last 25 years have been a period of innovation in the area of medical informatics. The International Medical Informatics Association (IMIA) has published, every year for the last quarter century, the Yearbook of Medical Informatics, collating selected papers from various journals in an attempt to provide a summary of the academic medical informatics literature. The objective of this paper is to visualize the evolution of the medical informatics field over the last 25 years according to the frequency of word occurrences in the papers published in the IMIA Yearbook of Medical Informatics. A literature review was conducted examining the IMIA Yearbook of Medical Informatics between 1992 and 2015. These references were collated into a reference manager application to examine the literature using keyword searches, word clouds, and topic clustering. The data was considered in its entirety, as well as segregated into 3 time periods to examine the evolution of main trends over time. Several methods were used, including word clouds, cluster maps, and custom developed web-based information dashboards. The literature search resulted in a total of 1210 references published in the Yearbook, of which 213 references were excluded, resulting in 997 references for visualization. Overall, we found that publications were more technical and methods-oriented between 1992 and 1999; more clinically and patient-oriented between 2000 and 2009; and noted the emergence of "big data", decision support, and global health in the past decade between 2010 and 2015. Dashboards were additionally created to show individual reference data, as well as, aggregated information. Medical informatics is a vast and expanding area with new methods and technologies being researched, implemented, and evaluated. Determining visualization approaches that enhance our understanding of literature is an active area of research, and like medical informatics, is constantly evolving as new software and algorithms are developed. This paper examined several approaches for visualizing the medical informatics literature to show historical trends, associations, and aggregated summarized information to illustrate the state and changes in the IMIA Yearbook publications over the last quarter century.

  11. Medical Informatics in Academic Health Science Centers.

    ERIC Educational Resources Information Center

    Frisse, Mark E.

    1992-01-01

    An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…

  12. Latvian Education Informatization System LIIS

    ERIC Educational Resources Information Center

    Bicevskis, Janis; Andzans, Agnis; Ikaunieks, Evalds; Medvedis, Inga; Straujums, Uldis; Vezis, Viesturs

    2004-01-01

    The Latvian Education Informatization System LIIS project covers the whole information grid: education content, management, information services, infrastructure and user training at several levels--schools, school boards and Ministry of Education and Science. Informatization is the maintained process of creating the technical, economical and…

  13. Health Informatics: An Overview.

    ERIC Educational Resources Information Center

    MacDougall, Jennifer; And Others

    1996-01-01

    Reviews literature related to health informatics and health information management. Provides examples covering types of information, library and information services outcomes, training of informatics professionals, areas of application, the impact of evidence based medicine, professional issues, integrated information systems, and the needs of the…

  14. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102

  15. Medical informatics in morocco.

    PubMed

    Bouhaddou, O; Bennani Othmani, M; Diouny, S

    2013-01-01

    Informatics is an essential tool for helping to transform healthcare from a paper-based to a digital sector. This article explores the state-of-the-art of health informatics in Morocco. Specifically, it aims to give a general overview of the Moroccan healthcare system, the challenges it is facing, and the efforts undertaken by the informatics community and Moroccan government in terms of education, research and practice to reform the country's health sector. Through the experience of establishing Medical Informatics as a medical specialty in 2008, creating a Moroccan Medical Informatics Association in 2010 and holding a first national congress took place in April 2012, the authors present their assessment of some important priorities for health informatics in Morocco. These Moroccan initiatives are facilitating collaboration in education, research, and implementation of clinical information systems. In particular, the stakeholders have recognized the need for a national coordinator office and the development of a national framework for standards and interoperability. For developing countries like Morocco, new health IT approaches like mobile health and trans-media health advertising could help optimize scarce resources, improve access to rural areas and focus on the most prevalent health problems, optimizing health care access, quality, and cost for Morocco population.

  16. Clinical microbiology informatics.

    PubMed

    Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron

    2014-10-01

    The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Clinical Microbiology Informatics

    PubMed Central

    Sintchenko, Vitali; Rauch, Carol A.; Pantanowitz, Liron

    2014-01-01

    SUMMARY The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. PMID:25278581

  18. History of Romanian Medical Informatics: Learning from the Past to Reshape the Future.

    PubMed

    Mihalas, George I; Stoicu-Tivadar, Lacramioara

    2018-04-22

     The paper presents a review of the history of medical informatics in Romania, starting from the pioneering works, relating the present, and foreseeing the future.  Major milestones of the development of this field have not been simply enumerated, but described within the specific socio-political frame, grasping the entire context over the last four decades in Romania. Two main perspectives have been traced: education and training in medical informatics and implementations in healthcare.  Four distinctive historical periods are identified and the major events of each period are described in a critical manner. The history of the Romanian Society of Medical Informatics is presented in a separate chapter. The last section is dedicated to the present state of the field in Romania.  The history of Romanian Medical Informatics spans many years and is rich in content. The Romanian Society of Medical Informatics is mainly the result of the efforts undertaken by an enthusiastic and sound professional community, trying to continue the tradition, to achieve new goals, and to work as an active member of the international biomedical/health informatics community. Georg Thieme Verlag KG Stuttgart.

  19. A strategic vision for telemedicine and medical informatics in space flight

    NASA Technical Reports Server (NTRS)

    Williams, D. R.; Bashshur, R. L.; Pool, S. L.; Doarn, C. R.; Merrell, R. C.; Logan, J. S.

    2000-01-01

    This Workshop was designed to assist in the ongoing development and application of telemedicine and medical informatics to support extended space flight. Participants included specialists in telemedicine and medical/health informatics (terrestrial and space) medicine from NASA, federal agencies, academic centers, and research and development institutions located in the United States and several other countries. The participants in the working groups developed vision statements, requirements, approaches, and recommendations pertaining to developing and implementing a strategy pertaining to telemedicine and medical informatics. Although some of the conclusions and recommendations reflect ongoing work at NASA, others provided new insight and direction that may require a reprioritization of current NASA efforts in telemedicine and medical informatics. This, however, was the goal of the Workshop. NASA is seeking other perspectives and views from leading practitioners in the fields of telemedicine and medical informatics to invigorate an essential and high-priority component of the International Space Station and future extended exploration missions. Subsequent workshops will further define and refine the general findings and recommendations achieved here. NASA's ultimate aim is to build a sound telemedicine and medical informatics operational system to provide the best medical care available for astronauts going to Mars and beyond.

  20. Capacity building in e-health and health informatics: a review of the global vision and informatics educational initiatives of the American Medical Informatics Association.

    PubMed

    Detmer, D E

    2010-01-01

    Substantial global and national commitment will be required for current healthcare systems and health professional practices to become learning care systems utilizing information and communications technology (ICT) empowered by informatics. To engage this multifaceted challenge, a vision is required that shifts the emphasis from silos of activities toward integrated systems. Successful systems will include a set of essential elements, e.g., a sufficient ICT infrastructure, evolving health care processes based on evidence and harmonized to local cultures, a fresh view toward educational preparation, sound and sustained policy support, and ongoing applied research and development. Increasingly, leaders are aware that ICT empowered by informatics must be an integral part of their national and regional visions. This paper sketches out the elements of what is needed in terms of objectives and some steps toward achieving them. It summarizes some of the progress that has been made to date by the American and International Medical Informatics Associations working separately as well as collaborating to conceptualize informatics capacity building in order to bring this vision to reality in low resource nations in particular.

  1. The life and death of URLs in five biomedical informatics journals.

    PubMed

    Carnevale, Randy J; Aronsky, Dominik

    2007-04-01

    To determine the decay rate of Uniform Record Locators (URLs) in the reference section of biomedical informatics journals. URL references were collected from printed journal articles of the first and middle issues of 1999-2004 and electronically available in-press articles in January 2005. We limited this set to five biomedical informatics journals: Artificial Intelligence in Medicine, International Journal of Medical Informatics, Journal of the American Medical Informatics Association: JAMIA, Methods of Information in Medicine, and Journal of Biomedical Informatics. During a 1-month period, URL access attempts were performed eight times a day at regular intervals. Of the 19,108 references extracted from 606 printed and 86 in-press articles, 1112 (5.8%) references contained a URL. Of the 1049 unique URLs, 726 (69.2%) were alive, 230 (21.9%) were dead, and 93 (8.9%) were comatose. URLs from in-press articles included 212 URLs, of which 169 (79.7%) were alive, 21 (9.9%) were dead, and 22 (10.4%) were comatose. The average annual decay, or link rot, rate was 5.4%. The URL decay rate in biomedical informatics journals is high. A commonly accepted strategy for the permanent archival of digital information referenced in scholarly publications is urgently needed.

  2. A strategic vision for telemedicine and medical informatics in space flight.

    PubMed

    Williams, D R; Bashshur, R L; Pool, S L; Doarn, C R; Merrell, R C; Logan, J S

    2000-01-01

    This Workshop was designed to assist in the ongoing development and application of telemedicine and medical informatics to support extended space flight. Participants included specialists in telemedicine and medical/health informatics (terrestrial and space) medicine from NASA, federal agencies, academic centers, and research and development institutions located in the United States and several other countries. The participants in the working groups developed vision statements, requirements, approaches, and recommendations pertaining to developing and implementing a strategy pertaining to telemedicine and medical informatics. Although some of the conclusions and recommendations reflect ongoing work at NASA, others provided new insight and direction that may require a reprioritization of current NASA efforts in telemedicine and medical informatics. This, however, was the goal of the Workshop. NASA is seeking other perspectives and views from leading practitioners in the fields of telemedicine and medical informatics to invigorate an essential and high-priority component of the International Space Station and future extended exploration missions. Subsequent workshops will further define and refine the general findings and recommendations achieved here. NASA's ultimate aim is to build a sound telemedicine and medical informatics operational system to provide the best medical care available for astronauts going to Mars and beyond.

  3. Outcomes management of mechanically ventilated patients: utilizing informatics technology.

    PubMed

    Smith, K R

    1998-11-01

    This article examines an informatics system developed for outcomes management of the mechanically ventilated adult population, focusing on weaning the patient from mechanical ventilation. The link between medical informatics and outcomes management is discussed, along with the development of methods, tools, and data sets for outcomes management of the mechanically ventilated adult population at an acute care academic institution. Pros and cons of this system are identified, and specific areas for improvement of future health care outcomes medical informatics systems are discussed.

  4. Informatics for practicing anatomical pathologists: marking a new era in pathology practice.

    PubMed

    Gabril, Manal Y; Yousef, George M

    2010-03-01

    Informatics can be defined as using highly advanced technologies to improve patient diagnosis or management. Pathology informatics had evolved as a response to the overwhelming amount of information that was available, in an attempt to better use and maintain them. The most commonly used tools of informatics can be classified into digital imaging, telepathology, as well as Internet and electronic data mining. Digital imaging is the storage of anatomical pathology information, either gross pictures or microscopic slides, in an electronic format. These images can be used for education, archival, diagnosis, and consultation. Virtual microscopy is the more advanced form of digital imaging with enhanced efficiency and accessibility. Telepathology is now increasingly becoming a useful tool in anatomical pathology practice. Different types of telepathology communications are available for both diagnostic and consultation services. The spectrum of applications of informatics in the field of anatomical pathology is broad and encompasses medical education, clinical services, and pathology research. Informatics is now settling on solid ground as an important tool for pathology teaching, with digital teaching becoming the standard tool in many institutions. After a slow start, we now witness the transition of informatics from the research bench to bedside. As we are moving into a new era of extensive pathology informatics utilization, several challenges have to be addressed, including the cost of the new technology, legal issues, and resistance of pathologists. It is clear from the current evidence that pathology informatics will continue to grow and have a major role in the future of our specialty. However, it is also clear that it is not going to fully replace the human factor or the regular microscope.

  5. Health Informatics 3.0 and other increasingly dispersed technologies require even greater trust: promoting safe evidence-based health informatics. Contribution of the IMIA Working Group on Technology Assessment & Quality Development in Health Informatics.

    PubMed

    Rigby, M; Ammenwerth, E; Talmon, J; Nykänen, P; Brender, J; de Keizer, N

    2011-01-01

    Health informatics is generally less committed to a scientific evidence-based approach than any other area of health science, which is an unsound position. Introducing the new Web 3.0 paradigms into health IT applications can unleash a further great potential, able to integrate and distribute data from multiple sources. The counter side is that it makes the user and the patient evermore dependent on the 'black box' of the system, and the re-use of the data remote from the author and initial context. Thus anticipatory consideration of uses, and proactive analysis of evidence of effects, are imperative, as only when a clinical technology can be proven to be trustworthy and safe should it be implemented widely - as is the case with other health technologies. To argue for promoting evidence-based health informatics as systems become more powerful and pro-active yet more dispersed and remote; and evaluation as the means of generating the necessary scientific evidence base. To present ongoing IMIA and EFMI initiatives in this field. Critical overview of recent developments in health informatics evaluation, alongside the precedents of other health technologies, summarising current initiatives and the new challenges presented by Health Informatics 3.0. Web 3.0 should be taken as an opportunity to move health informatics from being largely unaccountable to one of being an ethical and responsible science-based domain. Recent and planned activities of the EFMI and IMIA working groups have significantly progressed key initiatives. Concurrent with the emergence of Web 3.0 as a means of new-generation diffuse health information systems comes an increasing need for an evidence-based culture in health informatics.

  6. 10 years experience with pioneering open access publishing in health informatics: the Journal of Medical Internet Research (JMIR).

    PubMed

    Eysenbach, Gunther

    2010-01-01

    Peer-reviewed journals remain important vehicles for knowledge transfer and dissemination in health informatics, yet, their format, processes and business models are changing only slowly. Up to the end of last century, it was common for individual researchers and scientific organizations to leave the business of knowledge transfer to professional publishers, signing away their rights to the works in the process, which in turn impeded wider dissemination. Traditional medical informatics journals are poorly cited and the visibility and uptake of articles beyond the medical informatics community remain limited. In 1999, the Journal of Medical Internet Research (JMIR; http://www.jmir.org) was launched, featuring several innovations including 1) ownership and copyright retained by the authors, 2) electronic-only, "lean" non-for-profit publishing, 3) openly accessible articles with a reversed business model (author pays instead of reader pays), 4) technological innovations such as automatic XML tagging and reference checking, on-the-fly PDF generation from XML, etc., enabling wide distribution in various bibliographic and full-text databases. In the past 10 years, despite limited resources, the journal has emerged as a leading journal in health informatics, and is presently ranked the top journal in the medical informatics and health services research categories by impact factor. The paper summarizes some of the features of the Journal, and uses bibliometric and access data to compare the influence of the Journal on the discipline of medical informatics and other disciplines. While traditional medical informatics journals are primarily cited by other Medical Informatics journals (33%-46% of citations), JMIR papers are to a more often cited by "end-users" (policy, public health, clinical journals), which may be partly attributable to the "open access advantage".

  7. Nursing informatics, outcomes, and quality improvement.

    PubMed

    Charters, Kathleen G

    2003-08-01

    Nursing informatics actively supports nursing by providing standard language systems, databases, decision support, readily accessible research results, and technology assessments. Through normalized datasets spanning an entire enterprise or other large demographic, nursing informatics tools support improvement of healthcare by answering questions about patient outcomes and quality improvement on an enterprise scale, and by providing documentation for business process definition, business process engineering, and strategic planning. Nursing informatics tools provide a way for advanced practice nurses to examine their practice and the effect of their actions on patient outcomes. Analysis of patient outcomes may lead to initiatives for quality improvement. Supported by nursing informatics tools, successful advance practice nurses leverage their quality improvement initiatives against the enterprise strategic plan to gain leadership support and resources.

  8. Comparative effectiveness research and medical informatics.

    PubMed

    D'Avolio, Leonard W; Farwell, Wildon R; Fiore, Louis D

    2010-12-01

    As is the case for environmental, ecological, astronomical, and other sciences, medical practice and research finds itself in a tsunami of data. This data deluge, due primarily to the introduction of digitalization in routine medical care and medical research, affords the opportunity for improved patient care and scientific discovery. Medical informatics is the subdiscipline of medicine created to make greater use of information in order to improve healthcare. The 4 areas of medical informatics research (information access, structure, analysis, and interaction) are used as a framework to discuss the overlap in information needs of comparative effectiveness research and potential contributions of medical informatics. Examples of progress from the medical informatics literature and the Veterans Affairs Healthcare System are provided. Published by Elsevier Inc.

  9. Office of Biological Informatics and Outreach geospatial technology activities

    USGS Publications Warehouse

    ,

    1998-01-01

    The U.S. Geological Survey (USGS) Office of Biological Informatics and Outreach (OBIO) in Reston, Virginia, and its Center for Biological Informatics (CBI) in Denver, Colorado, provide leadership in the development and use of geospatial technologies to advance the Nation's biological science activities.

  10. Four "E"pochs: The Story of Informatization.

    ERIC Educational Resources Information Center

    Duff, Alistair S.

    2003-01-01

    Informatization is a term of Japanese provenance denoting major systemic change from the application of information technology. Proposes a theory of post-war informatization focusing on information services in libraries, specifically computerized information retrieval. Describes four electronic epochs: offline, online, CD-ROM, and Internet, and…

  11. Evaluation of the Effects of Flipped Learning of a Nursing Informatics Course.

    PubMed

    Oh, Jina; Kim, Shin-Jeong; Kim, Sunghee; Vasuki, Rajaguru

    2017-08-01

    This study evaluated the effects of flipped learning in a nursing informatics course. Sixty-four undergraduate students attending a flipped learning nursing informatics course at a university in South Korea participated in this study in 2013. Of these, 43 students participated at University A, and 46 students participated at University B, as a comparison group. Three levels of Kirkpatrick's evaluation model were used: level one (the students' satisfaction), level two (achievement on the course outcomes), and level three (self-perceived nursing informatics competencies). Students of the flipped learning course reported positive effects above the middle degree of satisfaction (level one) and achieved the course outcomes (level two). In addition, self-perceived nursing informatics competencies (level three) of the flipped learning group were higher than those of the comparison group. A flipped learning nursing informatics course is an effective teaching strategy for preparing new graduate nurses in the clinical setting. [J Nurs Educ. 2017;56(8):477-483.]. Copyright 2017, SLACK Incorporated.

  12. Craniofacial imaging informatics and technology development.

    PubMed

    Vannier, M W

    2003-01-01

    'Craniofacial imaging informatics' refers to image and related scientific data from the dentomaxillofacial complex, and application of 'informatics techniques' (derived from disciplines such as applied mathematics, computer science and statistics) to understand and organize the information associated with the data. Major trends in information technology determine the progress made in craniofacial imaging and informatics. These trends include industry consolidation, disruptive technologies, Moore's law, electronic atlases and on-line databases. Each of these trends is explained and documented, relative to their influence on craniofacial imaging. Craniofacial imaging is influenced by major trends that affect all medical imaging and related informatics applications. The introduction of cone beam craniofacial computed tomography scanners is an example of a disruptive technology entering the field. An important opportunity lies in the integration of biologic knowledge repositories with craniofacial images. The progress of craniofacial imaging will continue subject to limitations imposed by the underlying technologies, especially imaging informatics. Disruptive technologies will play a major role in the evolution of this field.

  13. Towards health informatics 3.0. Editorial.

    PubMed

    Kulikowski, Casimir A; Geissbuhler, Antoine

    2011-01-01

    To provide an editorial introduction to the 2011 IMIA Yearbook of Medical Informatics with an overview of its contents and contributors. A brief overview of the main theme, and an outline of the purposes, contents, format, and acknowledgment of contributions for the 2011 IMIA Yearbook. This 2011 issue of the IMIA Yearbook highlights important developments in the development of Web 3.0 capabilities that are increasing in Health Informatics, impacting the activities in research, education and practice in this interdisciplinary field. There has been steady progress towards introducing semantics into informatics systems through more sophisticated representations of knowledge in their underlying information. Health Informatics 3.0 capabilities are identified from the recent literature, illustrated by selected papers published during the past 12 months, and articles reported by IMIA Working Groups. Surveys of the main research sub-fields in biomedical informatics in the Yearbook provide an overview of progress and current challenges across the spectrum of the discipline, focusing on Web 3.0 challenges and opportunities.

  14. Patient Centred Systems: Techno-Anthropological reflections on the challenges of 'meaningfully engaging' patients within health informatics research.

    PubMed

    Wong, Ming-Chao; Almond, Helen; Cummings, Elizabeth; Roehrer, Erin; Showell, Chris; Turner, Paul

    2015-01-01

    This chapter explores how Techno-Anthropology can contribute to more explicitly professional and ethically responsible reflections on the socio-technical practices involved in meaningfully engaging patients in health informatics research. The chapter draws on insights from health informatics research projects focused on chronic disease and self-management conducted in Tasmania during the last 10 years. Through these projects the paper explores three topics of relevance to 'meaningful engagement' with patients: (i) Patient Self-Management and Chronic Disease (ii) Patients as Users in Health Informatics research, and, (iii) Evaluations of outcomes in Health and Health Informatics Interventions. Techno-Anthropological reflections are then discussed through the concepts of liminality, polyphony and power. This chapter argues that beyond its contribution to methodology, an important role for Techno-Anthropology in patient centred health informatics research may be its capacity to support new ways of conceptualising and critically reflecting on the construction and mediation of patients' needs, values and perspectives.

  15. Military research needs in biomedical informatics.

    PubMed

    Reifman, Jaques; Gilbert, Gary R; Fagan, Lawrence; Satava, Richard

    2002-01-01

    The 2001 U.S. Army Medical Research and Materiel Command (USAMRMC) Biomedical Informatics Roadmap Meeting was devoted to developing a strategic plan in four focus areas: Hospital and Clinical Informatics, E-Health, Combat Health Informatics, and Bioinformatics and Biomedical Computation. The driving force of this Roadmap Meeting was the recent accelerated pace of change in biomedical informatics in which emerging technologies have the potential to affect significantly the Army research portfolio and investment strategy in these focus areas. The meeting was structured so that the first two days were devoted to presentations from experts in the field, including representatives from the three services, other government agencies, academia, and the private sector, and the morning of the last day was devoted to capturing specific biomedical informatics research needs in the four focus areas. This white paper summarizes the key findings and recommendations and should be a powerful tool for the crafting of future requests for proposals to help align USAMRMC new strategic research investments with new developments and emerging technologies.

  16. Informatics and Nursing in a Post-Nursing Informatics World: Future Directions for Nurses in an Automated, Artificially Intelligent, Social-Networked Healthcare Environment.

    PubMed

    Booth, Richard G

    2016-01-01

    The increased adoption and use of technology within healthcare and society has influenced the nursing informatics specialty in a multitude of fashions. Namely, the nursing informatics specialty currently faces a range of important decisions related to its knowledge base, established values and future directions - all of which are in need of development and future-proofing. In light of the increased use of automation, artificial intelligence and big data in healthcare, the specialty must also reconceptualize the roles of both nurses and informaticians to ensure that the nursing profession is ready to operate within future digitalized healthcare ecosystems. To explore these goals, the author of this manuscript outlines an examination of technological advancements currently taking place within healthcare, and also proposes implications for the nursing role and the nursing informatics specialty. Finally, recommendations and insights towards how the roles of nurses and informaticians might evolve or be shaped in the growing post-nursing informatics era are presented. Copyright © 2016 Longwoods Publishing.

  17. Clinical Informatics Fellowship Programs: In Search of a Viable Financial Model: An open letter to the Centers for Medicare and Medicaid Services.

    PubMed

    Lehmann, C U; Longhurst, C A; Hersh, W; Mohan, V; Levy, B P; Embi, P J; Finnell, J T; Turner, A M; Martin, R; Williamson, J; Munger, B

    2015-01-01

    In the US, the new subspecialty of Clinical Informatics focuses on systems-level improvements in care delivery through the use of health information technology (HIT), data analytics, clinical decision support, data visualization and related tools. Clinical informatics is one of the first subspecialties in medicine open to physicians trained in any primary specialty. Clinical Informatics benefits patients and payers such as Medicare and Medicaid through its potential to reduce errors, increase safety, reduce costs, and improve care coordination and efficiency. Even though Clinical Informatics benefits patients and payers, because GME funding from the Centers for Medicare and Medicaid Services (CMS) has not grown at the same rate as training programs, the majority of the cost of training new Clinical Informaticians is currently paid by academic health science centers, which is unsustainable. To maintain the value of HIT investments by the government and health care organizations, we must train sufficient leaders in Clinical Informatics. In the best interest of patients, payers, and the US society, it is therefore critical to find viable financial models for Clinical Informatics fellowship programs. To support the development of adequate training programs in Clinical Informatics, we request that the Centers for Medicare and Medicaid Services (CMS) issue clarifying guidance that would allow accredited ACGME institutions to bill for clinical services delivered by fellows at the fellowship program site within their primary specialty.

  18. Evaluation of Founding Members of the International Academy of Health Sciences Informatics (IAHSI) Based on Google Scholar and Scopus Parameters

    PubMed Central

    Masic, Izet

    2017-01-01

    Introduction: The International Academy of Health Sciences Informatics (IAHSI) is established by International Medical Informatics Association (IMIA) which is the world body for health and biomedical informatics. The Academy will serve as an honor society that recognizes expertise in biomedical and health informatics internationally. Academy membership will be one of the highest honors in the international field of biomedical and health informatics. Aim: To present scientometric analysis of founding members of the International Academy of Health Sciences Informatics, to evaluate members and their scientific rating. Material and methods: The work has an analytical character and presents analysis of the data obtained from the Google Scholar and Scopus database. Results are shown through number of cases, percentage and graphically. Results: The analysis showed a significant correlation between the Academy and the country (continent) of origin of the academician. In IAHSI are mainly represented academics originating from Europe - 40 members (33,3%), North America - 39 members (32,5%), Asia - 20 members (16,6%), South America - 9 members (7,5%), Australia - 7 members (5,8%), while only 5 members or 4,16% come from Africa. Conclusion: Criteria for number of representatives of each continent to main academic communities are relatively questionable, as this analysis showed. Development of Health Sciences Informatics should be the main purpose, and it should be evenly distributed with slight deviations in number of representatives of each continent. PMID:29284909

  19. The history of pathology informatics: A global perspective

    PubMed Central

    Park, Seung; Parwani, Anil V.; Aller, Raymond D.; Banach, Lech; Becich, Michael J.; Borkenfeld, Stephan; Carter, Alexis B.; Friedman, Bruce A.; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron

    2013-01-01

    Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286

  20. Informatics and the Organization of Education.

    ERIC Educational Resources Information Center

    van Weert, Tom J.

    1992-01-01

    Defines informatics as both a pure and an applied science dealing with information technology and its uses and examines the organization of education from two different perspectives: how applications of informatics may impact on education, forcing it to change; and how the educational system may deal with problems to effectively integrate…

  1. The Recurrence Relations in Teaching Students of Informatics

    ERIC Educational Resources Information Center

    Bakoev, Valentin P.

    2010-01-01

    The topic "Recurrence relations" and its place in teaching students of Informatics is discussed in this paper. We represent many arguments about the importance, the necessity and the benefit of studying this subject by Informatics students. They are based on investigation of some fundamental books and textbooks on Discrete Mathematics,…

  2. Nurse Leadership and Informatics Competencies: Shaping Transformation of Professional Practice.

    PubMed

    Kennedy, Margaret Ann; Moen, Anne

    2017-01-01

    Nurse leaders must demonstrate capacities and develop specific informatics competencies in order to provide meaningful leadership and support ongoing transformation of the healthcare system. Concurrently, staff informatics competencies must be planned and fostered to support critical principles of transformation and patient safety in practice, advance evidence-informed practice, and enable nursing to flourish in complex digital environments across the healthcare continuum. In addition to nurse leader competencies, two key aspects of leadership and informatics competencies will be addressed in this chapter - namely, the transformation of health care and preparation of the nursing workforce.

  3. Nursing Informatics Training in Undergraduate Nursing Programs in Peru.

    PubMed

    Condor, Daniel F; Sanchez Alvarez, Katherine; Bidman, Austin A

    2018-01-01

    Nursing informatics training has been progressively developing as a field in Latin America, each country with diverse approaches to its implementation. In Peru, this process has not yet taken place, so it is necessary to determine how universities are performing in this regard. We conducted a search to describe if universities provide training in computer nursing or similar. There are 72 universities offering professional nursing training, with only 24% of these providing any specific course in nursing informatics. Training undergraduates in nursing informatics improves the skillset of licensed nurses.

  4. Early experiences of accredited clinical informatics fellowships.

    PubMed

    Longhurst, Christopher A; Pageler, Natalie M; Palma, Jonathan P; Finnell, John T; Levy, Bruce P; Yackel, Thomas R; Mohan, Vishnu; Hersh, William R

    2016-07-01

    Since the launch of the clinical informatics subspecialty for physicians in 2013, over 1100 physicians have used the practice and education pathways to become board-certified in clinical informatics. Starting in 2018, only physicians who have completed a 2-year clinical informatics fellowship program accredited by the Accreditation Council on Graduate Medical Education will be eligible to take the board exam. The purpose of this viewpoint piece is to describe the collective experience of the first four programs accredited by the Accreditation Council on Graduate Medical Education and to share lessons learned in developing new fellowship programs in this novel medical subspecialty. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. New study program: Interdisciplinary Postgraduate Specialist Study in Medical Informatics.

    PubMed

    Hercigonja-Szekeres, Mira; Simić, Diana; Božikov, Jadranka; Vondra, Petra

    2014-01-01

    Paper presents an overview of the EU funded Project of Curriculum Development for Interdisciplinary Postgraduate Specialist Study in Medical Informatics named MEDINFO to be introduced in Croatia. The target group for the program is formed by professionals in any of the areas of medicine, IT professionals working on applications of IT for health and researchers and teachers in medical informatics. In addition to Croatian students, the program will also provide opportunity for enrolling students from a wider region of Southeast Europe. Project partners are two faculties of the University of Zagreb - Faculty of Organization and Informatics from Varaždin and School of Medicine, Andrija Štampar School of Public Health from Zagreb with the Croatian Society for Medical Informatics, Croatian Chamber of Economy, and Ericsson Nikola Tesla Company as associates.

  6. Bioinformatics and Medical Informatics: Collaborations on the Road to Genomic Medicine?

    PubMed Central

    Maojo, Victor; Kulikowski, Casimir A.

    2003-01-01

    In this report, the authors compare and contrast medical informatics (MI) and bioinformatics (BI) and provide a viewpoint on their complementarities and potential for collaboration in various subfields. The authors compare MI and BI along several dimensions, including: (1) historical development of the disciplines, (2) their scientific foundations, (3) data quality and analysis, (4) integration of knowledge and databases, (5) informatics tools to support practice, (6) informatics methods to support research (signal processing, imaging and vision, and computational modeling, (7) professional and patient continuing education, and (8) education and training. It is pointed out that, while the two disciplines differ in their histories, scientific foundations, and methodologic approaches to research in various areas, they nevertheless share methods and tools, which provides a basis for exchange of experience in their different applications. MI expertise in developing health care applications and the strength of BI in biological “discovery science” complement each other well. The new field of biomedical informatics (BMI) holds great promise for developing informatics methods that will be crucial in the development of genomic medicine. The future of BMI will be influenced strongly by whether significant advances in clinical practice and biomedical research come about from separate efforts in MI and BI, or from emerging, hybrid informatics subdisciplines at their interface. PMID:12925552

  7. Development of national competency-based learning objectives "Medical Informatics" for undergraduate medical education.

    PubMed

    Röhrig, R; Stausberg, J; Dugas, M

    2013-01-01

    The aim of this project is to develop a catalogue of competency-based learning objectives "Medical Informatics" for undergraduate medical education (abbreviated NKLM-MI in German). The development followed a multi-level annotation and consensus process. For each learning objective a reason why a physician needs this competence was required. In addition, each objective was categorized according to the competence context (A = covered by medical informatics, B = core subject of medical informatics, C = optional subject of medical informatics), the competence level (1 = referenced knowledge, 2 = applied knowledge, 3 = routine knowledge) and a CanMEDS competence role (medical expert, communicator, collaborator, manager, health advocate, professional, scholar). Overall 42 objectives in seven areas (medical documentation and information processing, medical classifications and terminologies, information systems in healthcare, health telematics and telemedicine, data protection and security, access to medical knowledge and medical signal-/image processing) were identified, defined and consented. With the NKLM-MI the competences in the field of medical informatics vital to a first year resident physician are identified, defined and operationalized. These competencies are consistent with the recommendations of the International Medical Informatics Association (IMIA). The NKLM-MI will be submitted to the National Competence-Based Learning Objectives for Undergraduate Medical Education. The next step is implementation of these objectives by the faculties.

  8. Person-generated Data in Self-quantification. A Health Informatics Research Program.

    PubMed

    Gray, Kathleen; Martin-Sanchez, Fernando J; Lopez-Campos, Guillermo H; Almalki, Manal; Merolli, Mark

    2017-01-09

    The availability of internet-connected mobile, wearable and ambient consumer technologies, direct-to-consumer e-services and peer-to-peer social media sites far outstrips evidence about the efficiency, effectiveness and efficacy of using them in healthcare applications. The aim of this paper is to describe one approach to build a program of health informatics research, so as to generate rich and robust evidence about health data and information processing in self-quantification and associated healthcare and health outcomes. The paper summarises relevant health informatics research approaches in the literature and presents an example of developing a program of research in the Health and Biomedical Informatics Centre (HaBIC) at the University of Melbourne. The paper describes this program in terms of research infrastructure, conceptual models, research design, research reporting and knowledge sharing. The paper identifies key outcomes from integrative and multiple-angle approaches to investigating the management of information and data generated by use of this Centre's collection of wearable, mobiles and other devices in health self-monitoring experiments. These research results offer lessons for consumers, developers, clinical practitioners and biomedical and health informatics researchers. Health informatics is increasingly called upon to make sense of emerging self-quantification and other digital health phenomena that are well beyond the conventions of healthcare in which the field of informatics originated and consolidated. To make a substantial contribution to optimise the aims, processes and outcomes of health self-quantification needs further work at scale in multi-centre collaborations for this Centre and for health informatics researchers generally.

  9. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  10. Characteristics of Information Systems and Business Informatics Study Programs

    ERIC Educational Resources Information Center

    Helfert, Markus

    2011-01-01

    Over the last decade there is an intensive discussion within the Information Systems (IS) and Informatics community about the characteristics and identity of the discipline. Simultaneously with the discussion, there is an ongoing debate on essential skills and capabilities of IS and Business Informatics graduates as well as the profile of IS…

  11. The Teaching of Informatics for Business Students

    ERIC Educational Resources Information Center

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  12. A Health Informatics Curriculum Congruent with IS 2010 and IMIA Recommendations for an Undergraduate Degree

    ERIC Educational Resources Information Center

    Longenecker, Herbert E., Jr.; Campbell, S. Matt; Landry, Jeffrey P.; Pardue, Harold; Daigle, Roy J.

    2012-01-01

    In addition to being a relevant program for health information technology workers, a recently proposed Health Informatics program was designed with additional objectives in mind: that the program is compatible with the IS 2010 Model Curriculum and that it satisfies the International Medical Informatics Association recommendation for undergraduate…

  13. Informatics Education in Italian Secondary Schools

    ERIC Educational Resources Information Center

    Bellettini, Carlo; Lonati, Violetta; Malchiodi, Dario; Monga, Mattia; Morpurgo, Anna; Torelli, Mauro; Zecca, Luisa

    2014-01-01

    This article describes the state of informatics education in the Italian secondary schools, highlighting how the learning objectives set up by the Ministry of Education are difficult to meet, due to the fact that the subject is often taught by teachers not holding an informatics degree, the lack of suitable teaching material and the expectations…

  14. An informatics agenda for public health: summarized recommendations from the 2011 AMIA PHI Conference

    PubMed Central

    Goodman, Kenneth W; Gotham, Ivan J; Holmes, John H; Lang, Lisa; Miner, Kathleen; Potenziani, David D; Richards, Janise; Turner, Anne M; Fu, Paul C

    2012-01-01

    The AMIA Public Health Informatics 2011 Conference brought together members of the public health and health informatics communities to revisit the national agenda developed at the AMIA Spring Congress in 2001, assess the progress that has been made in the past decade, and develop recommendations to further guide the field. Participants met in five discussion tracks: technical framework; research and evaluation; ethics; education, professional training, and workforce development; and sustainability. Participants identified 62 recommendations, which clustered into three key themes related to the need to (1) enhance communication and information sharing within the public health informatics community, (2) improve the consistency of public health informatics through common public health terminologies, rigorous evaluation methodologies, and competency-based training, and (3) promote effective coordination and leadership that will champion and drive the field forward. The agenda and recommendations from the meeting will be disseminated and discussed throughout the public health and informatics communities. Both communities stand to gain much by working together to use these recommendations to further advance the application of information technology to improve health. PMID:22395299

  15. Pathology informatics fellowship retreats: The use of interactive scenarios and case studies as pathology informatics teaching tools.

    PubMed

    Lee, Roy E; McClintock, David S; Balis, Ulysses J; Baron, Jason M; Becich, Michael J; Beckwith, Bruce A; Brodsky, Victor B; Carter, Alexis B; Dighe, Anand S; Haghighi, Mehrvash; Hipp, Jason D; Henricks, Walter H; Kim, Jiyeon Y; Klepseis, Veronica E; Kuo, Frank C; Lane, William J; Levy, Bruce P; Onozato, Maristela L; Park, Seung L; Sinard, John H; Tuthill, Mark J; Gilbertson, John R

    2012-01-01

    Last year, our pathology informatics fellowship added informatics-based interactive case studies to its existing educational platform of operational and research rotations, clinical conferences, a common core curriculum with an accompanying didactic course, and national meetings. The structure of the informatics case studies was based on the traditional business school case study format. Three different formats were used, varying in length from short, 15-minute scenarios to more formal multiple hour-long case studies. Case studies were presented over the course of three retreats (Fall 2011, Winter 2012, and Spring 2012) and involved both local and visiting faculty and fellows. Both faculty and fellows found the case studies and the retreats educational, valuable, and enjoyable. From this positive feedback, we plan to incorporate the retreats in future academic years as an educational component of our fellowship program. Interactive case studies appear to be valuable in teaching several aspects of pathology informatics that are difficult to teach in more traditional venues (rotations and didactic class sessions). Case studies have become an important component of our fellowship's educational platform.

  16. Clinical informatics in undergraduate teaching of health informatics.

    PubMed

    Pantazi, Stefan V; Pantazi, Felicia; Daly, Karen

    2011-01-01

    We are reporting on a recent experience with Health Informatics (HI) teaching at undergraduate degree level to an audience of HI and Pharmacy students. The important insight is that effective teaching of clinical informatics must involve highly interactive, applied components in addition to the traditional theoretical material. This is in agreement with general literature underlining the importance of simulations and role playing in teaching and is well supported by our student evaluation results. However, the viability and sustainability of such approaches to teaching hinges on significant course preparation efforts. These efforts consist of time-consuming investigations of informatics technologies, applications and systems followed by the implementation of workable solutions to a wide range of technical problems. In effect, this approach to course development is an involved process that relies on a special form of applied research whose technical complexity could explain the dearth of published reports on similar approaches in HI education. Despite its difficulties, we argue that this approach can be used to set a baseline for clinical informatics training at undergraduate level and that its implications for HI education in Canada are of importance.

  17. Alumni's perception of public health informatics competencies: lessons from the Graduate Program of Public Health, Faculty of Medicine, Universitas Gadjah Mada, Indonesia.

    PubMed

    Fuad, Anis; Sanjaya, Guardian Yoki; Lazuardi, Lutfan; Rahmanti, Annisa Ristya; Hsu, Chien-Yeh

    2013-01-01

    Public health informatics has been defined as the systematic application of information and computer science and technology to public health practice, research, and learning [1]. Unfortunately, limited reports exist concerning to the capacity building strategies to improve public health informatics workforce in limited-resources setting. In Indonesia, only three universities, including Universitas Gadjah Mada (UGM), offer master degree program on related public health informatics discipline. UGM started a new dedicated master program on Health Management Information Systems in 2005, under the auspice of the Graduate Program of Public Health at the Faculty of Medicine. This is the first tracer study to the alumni aiming to a) identify the gaps between curriculum and the current jobs and b) describe their perception on public health informatics competencies. We distributed questionnaires to 114 alumni with 36.84 % response rate. Despite low response rate, this study provided valuable resources to set up appropriate competencies, curriculum and capacity building strategies of public health informatics workforce in Indonesia.

  18. History of health informatics: a global perspective.

    PubMed

    Cesnik, Branko; Kidd, Michael R

    2010-01-01

    In considering a 'history' of Health Informatics it is important to be aware that the discipline encompasses a wide array of activities, products, research and theories. Health Informatics is as much a result of evolution as planned philosophy, having its roots in the histories of information technology and medicine. The process of its growth continues so that today's work is tomorrow's history. A 'historical' discussion of the area is its history to date, a report rather than a summation. As well as its successes, the history of Health Informatics is populated with visionary promises that have failed to materialise despite the best intentions. For those studying the subject or working in the field, the experiences of others' use of Information Technologies for the betterment of health care can provide a necessary perspective. This chapter starts by noting some of the major events and people that form a technological backdrop to Health Informatics and ends with some thoughts on the future. This chapter gives an educational overview of: * The history of computing * The beginnings of the health informatics discipline.

  19. Medical Informatics Education & Research in Greece.

    PubMed

    Chouvarda, I; Maglaveras, N

    2015-08-13

    This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated.

  20. Informatics and operations--let's get integrated.

    PubMed

    Marsolo, Keith

    2013-01-01

    The widespread adoption of commercial electronic health records (EHRs) presents a significant challenge to the field of informatics. In their current form, EHRs function as a walled garden and prevent the integration of outside tools and services. This impedes the widespread adoption and diffusion of research interventions into the clinic. In most institutions, EHRs are supported by clinical operations staff who are largely separate from their informatics counterparts. This relationship needs to change. Research informatics and clinical operations need to work more closely on the implementation and configuration of EHRs to ensure that they are used to collect high-quality data for research and improvement at the point of care. At the same time, the informatics community needs to lobby commercial EHR vendors to open their systems and design new architectures that allow for the integration of external applications and services.

  1. Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott

    2014-01-01

    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.

  2. Public Policy and Health Informatics.

    PubMed

    Bell, Katherine

    2018-05-01

    To provide an overview of the history of electronic health policy and identify significant laws that influence health informatics. US Department of Health and Human Services. The development of health information technology has influenced the process for delivering health care. Public policy and regulations are an important part of health informatics and establish the structure of electronic health systems. Regulatory bodies of the government initiate policies to ease the execution of electronic health record implementation. These same bureaucratic entities regulate the system to protect the rights of the patients and providers. Nurses should have an overall understanding of the system behind health informatics and be able to advocate for change. Nurses can utilize this information to optimize the use of health informatics and campaign for safe, effective, and efficient health information technology. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Developing a Capstone Course within a Health Informatics Program

    PubMed Central

    Hackbarth, Gary; Cata, Teuta; Cole, Laura

    2012-01-01

    This article discusses the ongoing development of a health informatics capstone program in a Midwest university from the hiring of a program coordinator to the development of a capstone course, through initial student results. University health informatics programs require a strong academic program to be successful but also require a spirited program coordinator to manage resources and organize an effective capstone course. This is particularly true of health informatics master's programs that support health industry career fields, whereby employers can locate and work with a pool of qualified applicants. The analysis of students’ logs confirms that students’ areas of focus and concern are consistent with course objectives and company work requirements during the work-study portion of the student capstone project. The article further discusses lessons learned and future improvements to be made in the health informatics capstone course. PMID:22783150

  4. An informatics research agenda to support precision medicine: seven key areas.

    PubMed

    Tenenbaum, Jessica D; Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R

    2016-07-01

    The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM's vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  5. Pharmacovigilance and Biomedical Informatics: A Model for Future Development.

    PubMed

    Beninger, Paul; Ibara, Michael A

    2016-12-01

    The discipline of pharmacovigilance is rooted in the aftermath of the thalidomide tragedy of 1961. It has evolved as a result of collaborative efforts by many individuals and organizations, including physicians, patients, Health Authorities, universities, industry, the World Health Organization, the Council for International Organizations of Medical Sciences, and the International Conference on Harmonisation. Biomedical informatics is rooted in technologically based methodologies and has evolved at the speed of computer technology. The purpose of this review is to bring a novel lens to pharmacovigilance, looking at the evolution and development of the field of pharmacovigilance from the perspective of biomedical informatics, with the explicit goal of providing a foundation for discussion of the future direction of pharmacovigilance as a discipline. For this review, we searched [publication trend for the log 10 value of the numbers of publications identified in PubMed] using the key words [informatics (INF), pharmacovigilance (PV), phar-macovigilance þ informatics (PV þ INF)], for [study types] articles published between [1994-2015]. We manually searched the reference lists of identified articles for additional information. Biomedical informatics has made significant contributions to the infrastructural development of pharmacovigilance. However, there has not otherwise been a systematic assessment of the role of biomedical informatics in enhancing the field of pharmacovigilance, and there has been little cross-discipline scholarship. Rapidly developing innovations in biomedical informatics pose a challenge to pharmacovigilance in finding ways to include new sources of safety information, including social media, massively linked databases, and mobile and wearable wellness applications and sensors. With biomedical informatics as a lens, it is evident that certain aspects of pharmacovigilance are evolving more slowly. However, the high levels of mutual interest in both fields and intense global and economic external pressures offer opportunities for a future of closer collaboration. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  6. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M; Kalet, I; McNutt, T

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussionmore » in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be incorporated into modeling methods.« less

  7. Recommendations of the International Medical Informatics Association (IMIA) on Education in Biomedical and Health Informatics. First Revision.

    PubMed

    Mantas, John; Ammenwerth, Elske; Demiris, George; Hasman, Arie; Haux, Reinhold; Hersh, William; Hovenga, Evelyn; Lun, K C; Marin, Heimar; Martin-Sanchez, Fernando; Wright, Graham

    2010-01-07

    Objective: The International Medical Informatics Association (IMIA) agreed on revising the existing international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in biomedical and health informatics (BMHI), particularly international activities in educating BMHI specialists and the sharing of courseware. Method: An IMIA task force, nominated in 2006, worked on updating the recommendations' first version. These updates have been broadly discussed and refined by members of IMIA's National Member Societies, IMIA's Academic Institutional Members and by members of IMIA's Working Group on Health and Medical Informatics Education. Results and Conclusions: The IMIA recommendations center on educational needs for health care professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in health care (e.g. physicians, nurses, BMHI professionals), 2) type of specialization in BMHI (IT users, BMHI specialists), and 3) stage of career progression (bachelor, master, doctorate). Learning outcomes are defined in terms of knowledge and practical skills for health care professionals in their role a) as IT user and b) as BMHI specialist. Recommendations are given for courses/course tracks in BMHI as part of educational programs in medicine, nursing, health care management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in BMHI (with bachelor, master or doctor degree). To support education in BMHI, IMIA offers to award a certificate for high-quality BMHI education. It supports information exchange on programs and courses in BMHI through its Working Group on Health and Medical Informatics Education.

  8. Integrating information literacy into an online undergraduate nursing informatics course: the librarian's role in the design and teaching of the course.

    PubMed

    Schulte, Stephanie J

    2008-01-01

    Integration of information literacy as a core component into a new online undergraduate nursing course proved to be a learning experience in course design and teaching. This article describes the framework for the course design that combined cultural competency, informatics, and information literacy and was grounded in informatics competencies for nurses at the beginning level, an informatics textbook, and the Neurnan Systems Model. The librarian's role in this process and the information literacy unit's content and written assignment are detailed, and challenges in the collaboration are also addressed.

  9. IT Strategic Planning Workshops Develop Long-Term Goals | Poster

    Cancer.gov

    As part of NCI’s Research IT Strategic Planning efforts, a workshop was held on the NIH main campus in June. The main purpose of the workshop was to discuss ways to better integrate IT and informatics throughout NCI, and develop specific, high-level goals and related objectives that will drive the direction of IT and informatics support over the next five years. The initiative to integrate NCI’s IT and informatics is a collaboration between the Center for Biomedical Informatics and Information Technology (CBIIT), Office of Scientific Operations, Data Management Services, and the IT Operations Group.

  10. SYMBIOmatics: synergies in Medical Informatics and Bioinformatics--exploring current scientific literature for emerging topics.

    PubMed

    Rebholz-Schuhman, Dietrich; Cameron, Graham; Clark, Dominic; van Mulligen, Erik; Coatrieux, Jean-Louis; Del Hoyo Barbolla, Eva; Martin-Sanchez, Fernando; Milanesi, Luciano; Porro, Ivan; Beltrame, Francesco; Tollis, Ioannis; Van der Lei, Johan

    2007-03-08

    The SYMBIOmatics Specific Support Action (SSA) is "an information gathering and dissemination activity" that seeks "to identify synergies between the bioinformatics and the medical informatics" domain to improve collaborative progress between both domains (ref. to http://www.symbiomatics.org). As part of the project experts in both research fields will be identified and approached through a survey. To provide input to the survey, the scientific literature was analysed to extract topics relevant to both medical informatics and bioinformatics. This paper presents results of a systematic analysis of the scientific literature from medical informatics research and bioinformatics research. In the analysis pairs of words (bigrams) from the leading bioinformatics and medical informatics journals have been used as indication of existing and emerging technologies and topics over the period 2000-2005 ("recent") and 1990-1990 ("past"). We identified emerging topics that were equally important to bioinformatics and medical informatics in recent years such as microarray experiments, ontologies, open source, text mining and support vector machines. Emerging topics that evolved only in bioinformatics were system biology, protein interaction networks and statistical methods for microarray analyses, whereas emerging topics in medical informatics were grid technology and tissue microarrays. We conclude that although both fields have their own specific domains of interest, they share common technological developments that tend to be initiated by new developments in biotechnology and computer science.

  11. SYMBIOmatics: Synergies in Medical Informatics and Bioinformatics – exploring current scientific literature for emerging topics

    PubMed Central

    Rebholz-Schuhman, Dietrich; Cameron, Graham; Clark, Dominic; van Mulligen, Erik; Coatrieux, Jean-Louis; Del Hoyo Barbolla, Eva; Martin-Sanchez, Fernando; Milanesi, Luciano; Porro, Ivan; Beltrame, Francesco; Tollis, Ioannis; Van der Lei, Johan

    2007-01-01

    Background The SYMBIOmatics Specific Support Action (SSA) is "an information gathering and dissemination activity" that seeks "to identify synergies between the bioinformatics and the medical informatics" domain to improve collaborative progress between both domains (ref. to ). As part of the project experts in both research fields will be identified and approached through a survey. To provide input to the survey, the scientific literature was analysed to extract topics relevant to both medical informatics and bioinformatics. Results This paper presents results of a systematic analysis of the scientific literature from medical informatics research and bioinformatics research. In the analysis pairs of words (bigrams) from the leading bioinformatics and medical informatics journals have been used as indication of existing and emerging technologies and topics over the period 2000–2005 ("recent") and 1990–1990 ("past"). We identified emerging topics that were equally important to bioinformatics and medical informatics in recent years such as microarray experiments, ontologies, open source, text mining and support vector machines. Emerging topics that evolved only in bioinformatics were system biology, protein interaction networks and statistical methods for microarray analyses, whereas emerging topics in medical informatics were grid technology and tissue microarrays. Conclusion We conclude that although both fields have their own specific domains of interest, they share common technological developments that tend to be initiated by new developments in biotechnology and computer science. PMID:17430562

  12. Understanding the use of geographical information systems (GIS) in health informatics research: A review.

    PubMed

    Shaw, Nicola; McGuire, Suzanne

    2017-06-23

    The purpose of this literature review is to understand geographical information systems (GIS) and how they can be applied to public health informatics, medical informatics, and epidemiology. Relevant papers that reflected the use of geographical information systems (GIS) in health research were identified from four academic databases: Academic Search Complete, BioMed Central, PubMed Central, and Scholars Portal, as well as Google Scholar. The search strategy used was to identify articles with "geographic information systems", "GIS", "public health", "medical informatics", "epidemiology", and "health geography" as main subject headings or text words in titles and abstracts. Papers published between 1997 and 2014 were considered and a total of 39 articles were included to inform the authors on the use of GIS technologies in health informatics research. The main applications of GIS in health informatics and epidemiology include disease surveillance, health risk analysis, health access and planning, and community health profiling. GIS technologies can significantly improve quality and efficiency in health research as substantial connections can be made between a population's health and their geographical location. Gains in health informatics can be made when GIS are applied through research, however, improvements need to occur in the quantity and quality of data input for these systems to ensure better geographical health maps are used so that proper conclusions between public health and environmental factors may be made.

  13. 2016 Year-in-Review of Clinical and Consumer Informatics: Analysis and Visualization of Keywords and Topics.

    PubMed

    Park, Hyeoun-Ae; Lee, Joo Yun; On, Jeongah; Lee, Ji Hyun; Jung, Hyesil; Park, Seul Ki

    2017-04-01

    The objective of this study was to review and visualize the medical informatics field over the previous 12 months according to the frequencies of keywords and topics in papers published in the top four journals in the field and in Healthcare Informatics Research (HIR) , an official journal of the Korean Society of Medical Informatics. A six-person team conducted an extensive review of the literature on clinical and consumer informatics. The literature was searched using keywords employed in the American Medical Informatics Association year-in-review process and organized into 14 topics used in that process. Data were analyzed using word clouds, social network analysis, and association rules. The literature search yielded 370 references and 1,123 unique keywords. 'Electronic Health Record' (EHR) (78.6%) was the most frequently appearing keyword in the articles published in the five studied journals, followed by 'telemedicine' (2.1%). EHR (37.6%) was also the most frequently studied topic area, followed by clinical informatics (12.0%). However, 'telemedicine' (17.0%) was the most frequently appearing keyword in articles published in HIR , followed by 'telecommunications' (4.5%). Telemedicine (47.1%) was the most frequently studied topic area, followed by EHR (14.7%). The study findings reflect the Korean government's efforts to introduce telemedicine into the Korean healthcare system and reactions to this from the stakeholders associated with telemedicine.

  14. Teaching Some Informatics Concepts Using Formal System

    ERIC Educational Resources Information Center

    Yang, Sojung; Park, Seongbin

    2014-01-01

    There are many important issues in informatics and many agree that algorithms and programming are most important issues that need to be included in informatics education (Dagiene and Jevsikova, 2012). In this paper, we propose how some of these issues can be easily taught using the notion of a formal system which consists of axioms and inference…

  15. The Asia Pacific Association for Medical Informatics (APAMI) and World Organisation of Family Doctors (WONCA) Consortium on General and Family Practice Informatics--a statement of intent.

    PubMed

    Liaw, S T; Kidd, M; Cesnik, B; Lun, K C; Goh, L G; Yoo, T; Wun, Y T

    1998-01-01

    This paper describes the establishment of a consortium to advance health and medical informatics in general/family practice in the Asia Pacific Region. The objectives, current activities currently taking place in the region and key activities planned will be outlined.

  16. A Multidisciplinary PBL Approach for Teaching Industrial Informatics and Robotics in Engineering

    ERIC Educational Resources Information Center

    Calvo, Isidro; Cabanes, Itziar; Quesada, Jeronimo; Barambones, Oscar

    2018-01-01

    This paper describes the design of an industrial informatics course, following the project-based learning methodology, and reports the experience of four academic years (from 2012-13 to 2015-16). Industrial Informatics is a compulsory course taught in the third year of the B.Sc. degree in industrial electronics and automation engineering at the…

  17. Integrating community-based participatory research and informatics approaches to improve the engagement and health of underserved populations

    PubMed Central

    Schaefbauer, Chris L; Campbell, Terrance R; Senteio, Charles; Siek, Katie A; Bakken, Suzanne; Veinot, Tiffany C

    2016-01-01

    Objective We compare 5 health informatics research projects that applied community-based participatory research (CBPR) approaches with the goal of extending existing CBPR principles to address issues specific to health informatics research. Materials and methods We conducted a cross-case analysis of 5 diverse case studies with 1 common element: integration of CBPR approaches into health informatics research. After reviewing publications and other case-related materials, all coauthors engaged in collaborative discussions focused on CBPR. Researchers mapped each case to an existing CBPR framework, examined each case individually for success factors and barriers, and identified common patterns across cases. Results Benefits of applying CBPR approaches to health informatics research across the cases included the following: developing more relevant research with wider impact, greater engagement with diverse populations, improved internal validity, more rapid translation of research into action, and the development of people. Challenges of applying CBPR to health informatics research included requirements to develop strong, sustainable academic-community partnerships and mismatches related to cultural and temporal factors. Several technology-related challenges, including needs to define ownership of technology outputs and to build technical capacity with community partners, also emerged from our analysis. Finally, we created several principles that extended an existing CBPR framework to specifically address health informatics research requirements. Conclusions Our cross-case analysis yielded valuable insights regarding CBPR implementation in health informatics research and identified valuable lessons useful for future CBPR-based research. The benefits of applying CBPR approaches can be significant, particularly in engaging populations that are typically underserved by health care and in designing patient-facing technology. PMID:26228766

  18. Gaps in the existing public health informatics training programs: a challenge to the development of a skilled global workforce.

    PubMed

    Joshi, Ashish; Perin, Douglas Marcel Puricelli

    2012-01-01

    The objective of this study was to explore public health informatics (PHI) training programs that currently exist to meet the growing demand for a trained global workforce. We used several search engines, scientific databases, and the websites of informatics organizations; sources included PubMed, Google, the American Medical Informatics Organization, and the International Medical Informatics Organization. The search was conducted from May to July 2011 and from January to February 2012 using key words such as informatics, public health informatics, or biomedical informatics along with academic programs, training, certificate, graduate programs, or postgraduate programs. Course titles and catalog descriptions were gathered from the program or institution websites. Variables included PHI program categories, location and mode of delivery, program credits, and costs. Each course was then categorized based on its title and description as available on the Internet. Finally, we matched course titles and descriptions with the competencies for PHIs determined by Centers for Disease Control and Prevention (CDC). Descriptive analysis was performed to report means and frequency distributions for continuous and categorical variables. Stratified analysis was performed to explore average credits and cost per credit among both the public and private institutions. Fifteen PHI programs were identified across 13 different institutions, the majority of which were US-based. The average number of credits and the associated costs required to obtain PHI training were much higher in private as compared to public institutions. The study results suggest that a need for online contextual and cost-effective PHI training programs exists to address the growing needs of professionals worldwide who are using technology to improve public health in their respective countries.

  19. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  20. From bed to bench: bridging from informatics practice to theory: an exploratory analysis.

    PubMed

    Haux, R; Lehmann, C U

    2014-01-01

    In 2009, Applied Clinical Informatics (ACI)--focused on applications in clinical informatics--was launched as a companion journal to Methods of Information in Medicine (MIM). Both journals are official journals of the International Medical Informatics Association. To explore which congruencies and interdependencies exist in publications from theory to practice and from practice to theory and to determine existing gaps. Major topics discussed in ACI and MIM were analyzed. We explored if the intention of publishing companion journals to provide an information bridge from informatics theory to informatics practice and vice versa could be supported by this model. In this manuscript we will report on congruencies and interdependences from practice to theory and on major topics in MIM. Retrospective, prolective observational study on recent publications of ACI and MIM. All publications of the years 2012 and 2013 were indexed and analyzed. Hundred and ninety-six publications were analyzed (ACI 87, MIM 109). In MIM publications, modelling aspects as well as methodological and evaluation approaches for the analysis of data, information, and knowledge in biomedicine and health care were frequently raised - and often discussed from an interdisciplinary point of view. Important themes were ambient-assisted living, anatomic spatial relations, biomedical informatics as scientific discipline, boosting, coding, computerized physician order entry, data analysis, grid and cloud computing, health care systems and services, health-enabling technologies, health information search, health information systems, imaging, knowledge-based decision support, patient records, signal analysis, and web science. Congruencies between journals could be found in themes, but with a different focus on content. Interdependencies from practice to theory, found in these publications, were only limited. Bridging from informatics theory to practice and vice versa remains a major component of successful research and practice as well as a major challenge.

  1. The state and profile of open source software projects in health and medical informatics.

    PubMed

    Janamanchi, Balaji; Katsamakas, Evangelos; Raghupathi, Wullianallur; Gao, Wei

    2009-07-01

    Little has been published about the application profiles and development patterns of open source software (OSS) in health and medical informatics. This study explores these issues with an analysis of health and medical informatics related OSS projects on SourceForge, a large repository of open source projects. A search was conducted on the SourceForge website during the period from May 1 to 15, 2007, to identify health and medical informatics OSS projects. This search resulted in a sample of 174 projects. A Java-based parser was written to extract data for several of the key variables of each project. Several visually descriptive statistics were generated to analyze the profiles of the OSS projects. Many of the projects have sponsors, implying a growing interest in OSS among organizations. Sponsorship, we discovered, has a significant impact on project success metrics. Nearly two-thirds of the projects have a restrictive license type. Restrictive licensing may indicate tighter control over the development process. Our sample includes a wide range of projects that are at various stages of development (status). Projects targeted towards the advanced end user are primarily focused on bio-informatics, data formats, database and medical science applications. We conclude that there exists an active and thriving OSS development community that is focusing on health and medical informatics. A wide range of OSS applications are in development, from bio-informatics to hospital information systems. A profile of OSS in health and medical informatics emerges that is distinct and unique to the health care field. Future research can focus on OSS acceptance and diffusion and impact on cost, efficiency and quality of health care.

  2. Examining the Relationship Between Nursing Informatics Competency and the Quality of Information Processing.

    PubMed

    Al-Hawamdih, Sajidah; Ahmad, Muayyad M

    2018-03-01

    The purpose of this study was to examine nursing informatics competency and the quality of information processing among nurses in Jordan. The study was conducted in a large hospital with 380 registered nurses. The hospital introduced the electronic health record in 2010. The measures used in this study were personal and job characteristics, self-efficacy, Self-Assessment Nursing Informatics Competencies, and Health Information System Monitoring Questionnaire. The convenience sample consisted of 99 nurses who used the electronic health record for at least 3 months. The analysis showed that nine predictors explained 22% of the variance in the quality of information processing, whereas the statistically significant predictors were nursing informatics competency, clinical specialty, and years of nursing experience. There is a need for policies that advocate for every nurse to be educated in nursing informatics and the quality of information processing.

  3. Including information technology project management in the nursing informatics curriculum.

    PubMed

    Sockolow, Paulina; Bowles, Kathryn H

    2008-01-01

    Project management is a critical skill for nurse informaticists who are in prominent roles developing and implementing clinical information systems. It should be included in the nursing informatics curriculum, as evidenced by its inclusion in informatics competencies and surveys of important skills for informaticists. The University of Pennsylvania School of Nursing includes project management in two of the four courses in the master's level informatics minor. Course content includes the phases of the project management process; the iterative unified process methodology; and related systems analysis and project management skills. During the introductory course, students learn about the project plan, requirements development, project feasibility, and executive summary documents. In the capstone course, students apply the system development life cycle and project management skills during precepted informatics projects. During this in situ experience, students learn, the preceptors benefit, and the institution better prepares its students for the real world.

  4. The state of medical informatics in India: a roadmap for optimal organization.

    PubMed

    Sarbadhikari, Suptendra Nath

    2005-04-01

    In India, the healthcare delivery systems are based on manual record keeping despite a good telecommunication infrastructure. Unfortunately, Indian policy makers are yet to realize the importance of medical informatics (including tele-health, which comprises e-Health and Telemedicine) in delivering healthcare. In the medical curriculum also, nowhere is this treated as a subject or even as a tool for learning. The final aim of most of the medical and paramedical students should be to become good users, and if possible, also experts for advancing medical knowledge base through medical informatics. In view of the fast changing world of medical informatics, it is essential to formulate a flexible syllabus rather than a rigid one for incorporating into the regular curriculum of medical and paramedical education. Only after that one may expect all members of the healthcare delivery systems to adopt and apply medical informatics optimally as a routine tool for their services.

  5. An innovative capstone health care informatics clinical residency: Interprofessional team collaboration.

    PubMed

    Custis, Laura M; Hawkins, Shelley Y; Thomason, Tanna R

    2017-03-01

    Integrated information systems and wireless technology have been increasingly incorporated into health care organizations with the premise that information technology will promote safe, high-quality, cost-effective patient care. With the advancement of technology, the level of expertise necessary to assume health care information technology roles has escalated. The purpose of this article is to describe a clinical residency project whereby students in a graduate degree health care informatics program successfully fulfilled program competencies through a faculty-lead research project focused on the use of home telehealth with a group of heart failure patients. Through the use of Donabedian's framework of structure, process, and outcomes, the health care informatics students completed essential learning activities deemed essential for transition into the role of an informatics specialist. Health care informatics educational leaders are encouraged to adapt this template of applied learning into their practices.

  6. A Synthesis of Students' Theses in the Accredited HHSI Master's Programme.

    PubMed

    Kinnunen, Ulla-Mari; Saranto, Kaija

    2018-01-01

    Education in Health Informatics (HI) has been a key priority to guarantee knowledge and skills for professionals working in healthcare settings. One of the early academic models to teach HI are the recommendations provided by the International Medical Informatics Association. The paper describes the curriculum developed for master's degrees and the status of a paradigm used in informatics education, as well as research in the health and human services fields. The aim is to synthesise the methodological focuses in students' theses and discuss the future needs for development. The paradigm guides informatics research. The research focuses, questions and applied research methods were coded for 152 master's degree theses. Based on the results, the most often used method was qualitative. The most frequent research area was steering and organising of information management in work processes. The results guide teachers in supervising the theses of the Health and Human Services Informatics (HHSI) programme and tutoring new students.

  7. A Short History of Medical Informatics in Bosnia and Herzegovina

    PubMed Central

    Masic, Izet

    2014-01-01

    The health informatics profession in Bosnia and Herzegovina has relatively long history. Thirty five years from the introduction of the first automatic manipulation of data, thirty years from the establishment of Society for Medical Informatics BiH, twenty years from the establishment of the Scientific journal “Acta Informatica Medica (Acta Inform Med”, indexed in PubMed, PubMed Central Scopus, Embase, etc.), twenty years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina, ten years on from the introduction of the method of “Distance learning” in medical curriculum. The author of this article is eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period. PMID:24648621

  8. Commentaries on “Informatics and Medicine: From Molecules to Populations”

    PubMed Central

    Altman, R. B.; Balling, R.; Brinkley, J. F.; Coiera, E.; Consorti, F.; Dhansay, M. A.; Geissbuhler, A.; Hersh, W.; Kwankam, S. Y.; Lorenzi, N. M.; Martin-Sanchez, F.; Mihalas, G. I.; Shahar, Y.; Takabayashi, K.; Wiederhold, G.

    2009-01-01

    Summary Objective To discuss interdisciplinary research and education in the context of informatics and medicine by commenting on the paper of Kuhn et al. “Informatics and Medicine: From Molecules to Populations”. Method Inviting an international group of experts in biomedical and health informatics and related disciplines to comment on this paper. Results and Conclusions The commentaries include a wide range of reasoned arguments and original position statements which, while strongly endorsing the educational needs identified by Kuhn et al., also point out fundamental challenges that are very specific to the unusual combination of scientific, technological, personal and social problems characterizing biomedical informatics. They point to the ultimate objectives of managing difficult human health problems, which are unlikely to yield to technological solutions alone. The psychological, societal, and environmental components of health and disease are emphasized by several of the commentators, setting the stage for further debate and constructive suggestions. PMID:18690363

  9. Medical Informatics Education

    PubMed Central

    Patton, Gregory A.; Gardner, Reed M.

    1999-01-01

    The University of Utah has been educating health professionals in medical informatics since 1964. Over the 35 years since the program's inception, 272 graduate students have studied in the department. Most students have been male (80 percent) and have come from the United States (75 percent). Students entering the program have had diverse educational backgrounds, most commonly in medicine, engineering, computer science, or biology (59 percent of all informatics students). A total of 209 graduate degrees have been awarded, with an overall graduation rate of 87 percent since the program's start. Alumni are located in the United States (91 percent) and abroad (9 percent); half (51 percent) have remained in Utah. Former students are employed in a wide variety of jobs, primarily concerned with the application of medical informatics in sizable health care delivery organizations. Trends toward increasing managerial responsibility for medical informatics graduates and the emergence of the chief information officer role are noted. PMID:10579604

  10. Establishing a national resource: a health informatics collection to maintain the legacy of health informatics development.

    PubMed

    Ellis, Beverley; Roberts, Jean; Cooper, Helen

    2007-01-01

    This case study report of the establishment of a national repository of multi-media materials describes the creation process, the challenges faced in putting it into operation and the opportunities for the future. The initial resource has been incorporated under standard library and knowledge management practices. A collaborative action research method was used with active experts in the domain to determine the requirements and priorities for further development. The National Health Informatics Collection (NatHIC) is now accessible and the further issues are being addressed by inclusion in future University and NHS strategic plans. Ultimately the Collection will link with other facilities that contribute to the description and maintenance of effective informatics in support of health globally. The issues raised about the National Health Informatics Collection as established in the UK have resonance with the challenges of capturing the overall historic development of an emerging discipline in any country.

  11. Bridging informatics and implementation science: evaluating a framework to assess electronic health record implementations in community settings.

    PubMed

    Richardson, Joshua E; Abramson, Erika L; Pfoh, Elizabeth R; Kaushal, Rainu

    2012-01-01

    Effective electronic health record (EHR) implementations in community settings are critical to promoting safe and reliable EHR use as well as mitigating provider dissatisfaction that often results. The implementation challenge is compounded given the scale and scope of EHR installations that are occurring and will continue to occur over the next five years. However, when compared to EHR evaluations relatively few biomedical informatics researchers have published on evaluating EHR implementations. Fewer still have evaluated EHR implementations in community settings. We report on the methods we used to achieve a novel application of an implementation science framework in informatics to qualitatively evaluate community-based EHR implementations. We briefly provide an overview of the implementation science framework, our methods for adapting it to informatics, the effects the framework had on our qualitative methods of inquiry and analysis, and discuss its potential value for informatics research.

  12. A short history of medical informatics in bosnia and herzegovina.

    PubMed

    Masic, Izet

    2014-02-01

    The health informatics profession in Bosnia and Herzegovina has relatively long history. Thirty five years from the introduction of the first automatic manipulation of data, thirty years from the establishment of Society for Medical Informatics BiH, twenty years from the establishment of the Scientific journal "Acta Informatica Medica (Acta Inform Med", indexed in PubMed, PubMed Central Scopus, Embase, etc.), twenty years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina, ten years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article is eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.

  13. Biomedical and Health Informatics Education – the IMIA Years

    PubMed Central

    2016-01-01

    Summary Objective This paper presents the development of medical informatics education during the years from the establishment of the International Medical Informatics Association (IMIA) until today. Method A search in the literature was performed using search engines and appropriate keywords as well as a manual selection of papers. The search covered English language papers and was limited to search on papers title and abstract only. Results The aggregated papers were analyzed on the basis of the subject area, origin, time span, and curriculum development, and conclusions were drawn. Conclusions From the results, it is evident that IMIA has played a major role in comparing and integrating the Biomedical and Health Informatics educational efforts across the different levels of education and the regional distribution of educators and institutions. A large selection of references is presented facilitating future work on the field of education in biomedical and health informatics. PMID:27488405

  14. AMIA Board white paper: definition of biomedical informatics and specification of core competencies for graduate education in the discipline

    PubMed Central

    Kulikowski, Casimir A; Shortliffe, Edward H; Currie, Leanne M; Elkin, Peter L; Hunter, Lawrence E; Johnson, Todd R; Kalet, Ira J; Lenert, Leslie A; Musen, Mark A; Ozbolt, Judy G; Smith, Jack W; Tarczy-Hornoch, Peter Z

    2012-01-01

    The AMIA biomedical informatics (BMI) core competencies have been designed to support and guide graduate education in BMI, the core scientific discipline underlying the breadth of the field's research, practice, and education. The core definition of BMI adopted by AMIA specifies that BMI is ‘the interdisciplinary field that studies and pursues the effective uses of biomedical data, information, and knowledge for scientific inquiry, problem solving and decision making, motivated by efforts to improve human health.’ Application areas range from bioinformatics to clinical and public health informatics and span the spectrum from the molecular to population levels of health and biomedicine. The shared core informatics competencies of BMI draw on the practical experience of many specific informatics sub-disciplines. The AMIA BMI analysis highlights the central shared set of competencies that should guide curriculum design and that graduate students should be expected to master. PMID:22683918

  15. Creativity as a Key Driver for Designing Context Sensitive Health Informatics.

    PubMed

    Zhou, Chunfang; Nøhr, Christian

    2017-01-01

    In order to face the increasing challenges of complexity and uncertainty in practice of health care, this paper aims to discuss how creativity can contribute to design new technologies in health informatics systems. It will firstly introduce the background highlighting creativity as a missing element in recent studies on context sensitive health informatics. Secondly, the concept of creativity and its relationship with activities of technology design will be discussed from a socio-culture perspective. This will be thirdly followed by understanding the roles of creativity in designing new health informatics technologies for meeting needs of high context sensitivity. Finally, a series of potential strategies will be suggested to improve creativity among technology designers working in healthcare industries. Briefly, this paper innovatively bridges two areas studies on creativity and context sensitive health informatics by issues of technology design that also indicates its important significances for future research.

  16. Formal logic rewrite system bachelor in teaching mathematical informatics

    NASA Astrophysics Data System (ADS)

    Habiballa, Hashim; Jendryscik, Radek

    2017-07-01

    The article presents capabilities of the formal rewrite logic system - Bachelor - for teaching theoretical computer science (mathematical informatics). The system Bachelor enables constructivist approach to teaching and therefore it may enhance the learning process in hard informatics essential disciplines. It brings not only detailed description of formal rewrite process but also it can demonstrate algorithmical principles for logic formulae manipulations.

  17. An informatics strategy for cancer care

    PubMed Central

    Wright, J; Shogan, A; McCune, J; Stevens, S

    2008-01-01

    Whether transitioning from paper to electronic records or attempting to leverage data from existing systems for outcome studies, oncology practices face many challenges in defining and executing an informatics strategy. With the increasing costs of oncology treatments and expected changes in reimbursement rules, including requirements for evidence that supports physician decisions, it will become essential to collect data on treatment decisions and treatment efficacy to run a successful program. This study evaluates the current state of informatics systems available for use in oncology programs and focuses on developing an informatics strategy to meet the challenges introduced by expected changes in reimbursement rules and in medical and information technologies. PMID:21611003

  18. A National Agenda for Public Health Informatics

    PubMed Central

    Yasnoff, William A.; Overhage, J. Marc; Humphreys, Betsy L.; LaVenture, Martin

    2001-01-01

    The AMIA 2001 Spring Congress brought together members of the the public health and informatics communities to develop a national agenda for public health informatics. Discussions of funding and governance; architecture and infrastructure; standards and vocabulary; research, evaluation, and best practices; privacy, confidentiality, and security; and training and workforce resulted in 74 recommendations with two key themes—that all stakeholders need to be engaged in coordinated activities related to public health information architecture, standards, confidentiality, best practices, and research; and that informatics training is needed throughout the public health workforce. Implementation of this consensus agenda will help promote progress in the application of information technology to improve public health. PMID:11687561

  19. Panel: Eco-informatics and decision making managing our natural resources

    USGS Publications Warehouse

    Gushing, J.B.; Wilson, T.; Martin, F.; Schnase, J.; Spengler, S.; Sugarbaker, L.; Pardo, T.

    2006-01-01

    This panel responds to the December 2004 workshop on Eco-Informatics and Decision Making [1], which addressed how informatics tools can help with better management of natural resources and policy making. The workshop was jointly sponsored by the NSF, NBII, NASA, and EPA. Workshop participants recommended that informatics research in four IT areas be funded: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, they recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. This panel brings issues raised in that workshop to the attention of digital government researchers.

  20. The State of Information and Communication Technology and Health Informatics in Ghana

    PubMed Central

    Achampong, Emmanuel Kusi

    2012-01-01

    Information and Communication Technology (ICT) has become a major tool in delivery of health services and has had an innovative impact on quality of life. ICT is affecting the way healthcare is delivered to clients. In this paper, we discuss the state of ICT and health informatics in Ghana. We also discuss the state of various relevant infrastructures for the successful implementation of ehealth projects. We analyse the past and present state of health informatics in Ghana, in comparison to other African countries. We also review the challenges facing successful implementation of health informatics projects in Ghana and suggest possible solutions. PMID:23569633

  1. NASA Biomedical Informatics Capabilities and Needs

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.

    2009-01-01

    To improve on-orbit clinical capabilities by developing and providing operational support for intelligent, robust, reliable, and secure, enterprise-wide and comprehensive health care and biomedical informatics systems with increasing levels of autonomy, for use on Earth, low Earth orbit & exploration class missions. Biomedical Informatics is an emerging discipline that has been defined as the study, invention, and implementation of structures and algorithms to improve communication, understanding and management of medical information. The end objective of biomedical informatics is the coalescing of data, knowledge, and the tools necessary to apply that data and knowledge in the decision-making process, at the time and place that a decision needs to be made.

  2. Innovation in transformative nursing leadership: nursing informatics competencies and roles.

    PubMed

    Remus, Sally; Kennedy, Margaret Ann

    2012-12-01

    In a recent brief to the Canadian Nurses Association's National Expert Commission on the Health of Our Nation, the Academy of Canadian Executive Nurses (ACEN) discussed leadership needs in the Canadian healthcare system, and promoted the pivotal role of nursing executives in transforming Canada's healthcare system into an integrated patient-centric system. Included among several recommendations was the need to develop innovative leadership competencies that enable nurse leaders to lead and advance transformative health system change. This paper focuses on an emerging "avant-garde executive leadership competency" recommended for today's health leaders to guide health system transformation. Specifically, this competency is articulated as "state of the art communication and technology savvy," and it implies linkages between nursing informatics competencies and transformational leadership roles for nurse executive. The authors of this paper propose that distinct nursing informatics competencies are required to augment traditional executive skills to support transformational outcomes of safe, integrated, high-quality care delivery through knowledge-driven care. International trends involving nursing informatics competencies and the evolution of new corporate informatics roles, such as chief nursing informatics officers (CNIOs), are demonstrating value and advanced transformational leadership as nursing executive roles that are informed by clinical data. Copyright © 2013 Longwoods Publishing.

  3. osni.info-Using free/libre/open source software to build a virtual international community for open source nursing informatics.

    PubMed

    Oyri, Karl; Murray, Peter J

    2005-12-01

    Many health informatics organizations seem to be slow to take up the advantages of dynamic, web-based technologies for providing services to, and interaction with, their members; these are often the very technologies they promote for use within healthcare environments. This paper aims to introduce some of the many free/libre/open source (FLOSS) applications that are now available to develop interactive websites and dynamic online communities as part of the structure of health informatics organizations, and to show how the Open Source Nursing Informatics Working Group (OSNI) of the special interest group in nursing informatics of the International Medical Informatics Association (IMIA-NI) is using some of these tools to develop an online community of nurse informaticians through their website, at . Some background introduction to FLOSS applications is used for the benefit of those less familiar with such tools, and examples of some of the FLOSS content management systems (CMS) being used by OSNI are described. The experiences of the OSNI will facilitate a knowledgeable nursing contribution to the wider discussions on the applications of FLOSS within health and healthcare, and provides a model that many other groups could adopt.

  4. Medical Informatics Education & Research in Greece

    PubMed Central

    Chouvarda, I.

    2015-01-01

    Summary Objectives This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. Methods With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Results Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Conclusions Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated. PMID:26123910

  5. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research.

    PubMed

    King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  6. MIRASS: medical informatics research activity support system using information mashup network.

    PubMed

    Kiah, M L M; Zaidan, B B; Zaidan, A A; Nabi, Mohamed; Ibraheem, Rabiu

    2014-04-01

    The advancement of information technology has facilitated the automation and feasibility of online information sharing. The second generation of the World Wide Web (Web 2.0) enables the collaboration and sharing of online information through Web-serving applications. Data mashup, which is considered a Web 2.0 platform, plays an important role in information and communication technology applications. However, few ideas have been transformed into education and research domains, particularly in medical informatics. The creation of a friendly environment for medical informatics research requires the removal of certain obstacles in terms of search time, resource credibility, and search result accuracy. This paper considers three glitches that researchers encounter in medical informatics research; these glitches include the quality of papers obtained from scientific search engines (particularly, Web of Science and Science Direct), the quality of articles from the indices of these search engines, and the customizability and flexibility of these search engines. A customizable search engine for trusted resources of medical informatics was developed and implemented through data mashup. Results show that the proposed search engine improves the usability of scientific search engines for medical informatics. Pipe search engine was found to be more efficient than other engines.

  7. Medical informatics across Europe: analysis of medical informatics scientific output in 33 European countries.

    PubMed

    Polašek, Ozren; Kern, Josipa

    2012-01-01

    To investigate the medical informatics scientific output in 33 European countries. Medical Subject Heading term "medical informatics" was used to identify all relevant articles published in 1998-2007 and indexed in the Medline database. The number of articles was adjusted to the population size of each included country in order to obtain the rates per million inhabitants. A total of 28,604 articles were identified. The highest number per million inhabitants was found for Switzerland and the lowest for Albania. Overall, European Union member states had higher output than non-member states, gross domestic product was strongly associated with the scientific output in the field of medical informatics (r = 0.88, p < 0.001). While most countries had significant increase in the scientific output during the observed period, an adjustment to the European average output trend suggested that Lithuania, Portugal, Serbia and Spain had a greater increase than the rest of Europe. The results suggest large disparities across Europe. Further development of medical informatics as a profession and a clear recognition of the discipline are needed to reduce these disparities and propel further increase in research productivity.

  8. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research

    PubMed Central

    King, Andrew J.; Fisher, Arielle M.; Becich, Michael J.; Boone, David N.

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist. PMID:28400991

  9. The Future of Public Health Informatics: Alternative Scenarios and Recommended Strategies

    PubMed Central

    Edmunds, Margo; Thorpe, Lorna; Sepulveda, Martin; Bezold, Clem; Ross, David A.

    2014-01-01

    Background: In October 2013, the Public Health Informatics Institute (PHII) and Institute for Alternative Futures (IAF) convened a multidisciplinary group of experts to evaluate forces shaping public health informatics (PHI) in the United States, with the aim of identifying upcoming challenges and opportunities. The PHI workshop was funded by the Robert Wood Johnson Foundation as part of its larger strategic planning process for public health and primary care. Workshop Context: During the two-day workshop, nine experts from the public and private sectors analyzed and discussed the implications of four scenarios regarding the United States economy, health care system, information technology (IT) sector, and their potential impacts on public health in the next 10 years, by 2023. Workshop participants considered the potential role of the public health sector in addressing population health challenges in each scenario, and then identified specific informatics goals and strategies needed for the sector to succeed in this role. Recommendations and Conclusion: Participants developed recommendations for the public health informatics field and for public health overall in the coming decade. These included the need to rely more heavily on intersectoral collaborations across public and private sectors, to improve data infrastructure and workforce capacity at all levels of the public health enterprise, to expand the evidence base regarding effectiveness of informatics-based public health initiatives, and to communicate strategically with elected officials and other key stakeholders regarding the potential for informatics-based solutions to have an impact on population health. PMID:25848630

  10. Instantiating informatics in nursing practice for integrated patient centred holistic models of care: a discussion paper.

    PubMed

    Hussey, Pamela A; Kennedy, Margaret Ann

    2016-05-01

    A discussion on how informatics knowledge and competencies can enable nursing to instantiate transition to integrated models of care. Costs of traditional models of care are no longer sustainable consequent to the spiralling incidence and costs of chronic illness. The international community looks towards technology-enabled solutions to support a shift towards integrated patient-centred models of care. Discussion paper. A search of the literature was performed dating from 2000-2015 and a purposeful data sample based on relevance to building the discussion was included. The holistic perspective of nursing knowledge can support and advance integrated healthcare models. Informatics skills are key for the profession to play a leadership role in design, implementation and operation of next generation health care. However, evidence suggests that nursing engagement with informatics strategic development for healthcare provision is currently variable. A statistically significant need exists to progress health care towards integrated models of care. Strategic and tactical plans that are robustly pragmatic with nursing insights and expertise are an essential component to achieve effective healthcare provision. To avoid exclusion in the discourse dominated by management and technology experts, nursing leaders must develop and actively promote the advancement of nursing informatics skills. For knowledge in nursing practice to flourish in contemporary health care, nurse leaders will need to incorporate informatics for optimal translation and interpretation. Defined nursing leadership roles informed by informatics are essential to generate concrete solutions sustaining nursing practice in integrated care models. © 2016 John Wiley & Sons Ltd.

  11. The Informatics Challenges Facing Biobanks: A Perspective from a United Kingdom Biobanking Network

    PubMed Central

    Groves, Martin; Jordan, Lee B.; Stobart, Hilary; Purdie, Colin A.; Thompson, Alastair M

    2015-01-01

    The challenges facing biobanks are changing from simple collections of materials to quality-assured fit-for-purpose clinically annotated samples. As a result, informatics awareness and capabilities of a biobank are now intrinsically related to quality. A biobank may be considered a data repository, in the form of raw data (the unprocessed samples), data surrounding the samples (processing and storage conditions), supplementary data (such as clinical annotations), and an increasing ethical requirement for biobanks to have a mechanism for researchers to return their data. The informatics capabilities of a biobank are no longer simply knowing sample locations; instead the capabilities will become a distinguishing factor in the ability of a biobank to provide appropriate samples. There is an increasing requirement for biobanking systems (whether in-house or commercially sourced) to ensure the informatics systems stay apace with the changes being experienced by the biobanking community. In turn, there is a requirement for the biobanks to have a clear informatics policy and directive that is embedded into the wider decision making process. As an example, the Breast Cancer Campaign Tissue Bank in the UK was a collaboration between four individual and diverse biobanks in the UK, and an informatics platform has been developed to address the challenges of running a distributed network. From developing such a system there are key observations about what can or cannot be achieved by informatics in isolation. This article will highlight some of the lessons learned during this development process. PMID:26418270

  12. Biomedical informatics advancing the national health agenda: the AMIA 2015 year-in-review in clinical and consumer informatics.

    PubMed

    Roberts, Kirk; Boland, Mary Regina; Pruinelli, Lisiane; Dcruz, Jina; Berry, Andrew; Georgsson, Mattias; Hazen, Rebecca; Sarmiento, Raymond F; Backonja, Uba; Yu, Kun-Hsing; Jiang, Yun; Brennan, Patricia Flatley

    2017-04-01

    The field of biomedical informatics experienced a productive 2015 in terms of research. In order to highlight the accomplishments of that research, elicit trends, and identify shortcomings at a macro level, a 19-person team conducted an extensive review of the literature in clinical and consumer informatics. The result of this process included a year-in-review presentation at the American Medical Informatics Association Annual Symposium and a written report (see supplemental data). Key findings are detailed in the report and summarized here. This article organizes the clinical and consumer health informatics research from 2015 under 3 themes: the electronic health record (EHR), the learning health system (LHS), and consumer engagement. Key findings include the following: (1) There are significant advances in establishing policies for EHR feature implementation, but increased interoperability is necessary for these to gain traction. (2) Decision support systems improve practice behaviors, but evidence of their impact on clinical outcomes is still lacking. (3) Progress in natural language processing (NLP) suggests that we are approaching but have not yet achieved truly interactive NLP systems. (4) Prediction models are becoming more robust but remain hampered by the lack of interoperable clinical data records. (5) Consumers can and will use mobile applications for improved engagement, yet EHR integration remains elusive. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Fatigue Solutions for Maintenance: From Science to Workplace Reality

    DTIC Science & Technology

    2011-12-01

    John Hall IAMAW Jim Hein AWP-204 William (Bill) Johnson AIR-100 Charles (Bob) Kelley AJW-341 Daniel Mollicone Pulsar Informatics, Inc. Thomas...That Fit Industry. Dr. Daniel Mollicone, President and Chief Executive Officer for Pulsar Informatics, Inc., presented research on the use of...FAA Maintenance Fatigue applied R&D program has worked with Pulsar Informatics to develop a software system that helps individuals assess their

  14. Women's Self-Identified Sources of Student Support in a Master's-Level Health Informatics Database Course

    ERIC Educational Resources Information Center

    Feinberg, Daniel A.

    2017-01-01

    This study examined the supports that female students sought out and found of value in an online database design course in a health informatics master's program. A target outcome was to help inform the practice of faculty and administrators in similar programs. Health informatics is a growing field that has faced shortages of qualified workers who…

  15. Informatics in Turkey

    NASA Technical Reports Server (NTRS)

    Cakir, Serhat

    1994-01-01

    In the last twenty years the rapid change in the informatics sector has had economic and social impact on private and government activities. The Supreme Council for Science and Technology of Turkey assigned highest priority to the informatics in its meeting in February 1993. With this advice TUBITAK (The Scientific and Technical Research Council of Turkey) intends to give a strong impulse to development of a research policy in this field.

  16. Informatic innovations in glycobiology: relevance to drug discovery.

    PubMed

    Mamitsuka, Hiroshi

    2008-02-01

    The recent development and applications of tree-based informatics on glycans have accelerated the biological analysis on glycans, particularly from structural viewpoints. We review three major aspects of recent informatics innovations on glycan structures: maturity of well-organized databases on glycan structures linking with other biological information, implementation of glycan structure matching algorithms and extensive development of methods for mining frequent patterns from glycan structures.

  17. Factors influencing medical informatics examination grade--can biorhythm, astrological sign, seasonal aspect, or bad statistics predict outcome?

    PubMed

    Petrovecki, Mladen; Rahelić, Dario; Bilić-Zulle, Lidija; Jelec, Vjekoslav

    2003-02-01

    To investigate whether and to what extent various parameters, such as individual characteristics, computer habits, situational factors, and pseudoscientific variables, influence Medical Informatics examination grade, and how inadequate statistical analysis can lead to wrong conclusions. The study included a total of 382 second-year undergraduate students at the Rijeka University School of Medicine in the period from 1996/97 to 2000/01 academic year. After passing the Medical Informatics exam, students filled out an anonymous questionnaire about their attitude toward learning medical informatics. They were asked to grade the course organization and curriculum content, and provide their date of birth; sex; study year; high school grades; Medical Informatics examination grade, type, and term; and describe their computer habits. From these data, we determined their zodiac signs and biorhythm. Data were compared by the use of t-test, one-way ANOVA with Tukey's honest significance difference test, and randomized complete block design ANOVA. Out of 21 variables analyzed, only 10 correlated with the average grade. Students taking Medical Informatics examination in the 1998/99 academic year earned lower average grade than any other generation. Significantly higher Medical Informatics exam grade was earned by students who finished a grammar high school; owned and regularly used a computer, Internet, and e-mail (p< or =0.002 for all items); passed an oral exam without taking a written test (p=0.004), or did not repeat the exam (p<0.001). Better high-school students and students with better grades from high-school informatics course also scored significantly better (p=0.032 and p<0.001, respectively). Grade in high-school mathematics, student's sex, and time of year when the examination was taken were not related to the grade, and neither were pseudoscientific parameters, such as student zodiac sign, zodiac sign quality, or biorhythm cycles, except when intentionally inadequate statistics was used for data analysis. Medical Informatics examination grades correlated with general learning capacity and computer habits of students, but showed no relation to other investigated parameters, such as examination term or pseudoscientific parameters. Inadequate statistical analysis can always confirm false conclusions.

  18. A core curriculum for clinical fellowship training in pathology informatics

    PubMed Central

    McClintock, David S.; Levy, Bruce P.; Lane, William J.; Lee, Roy E.; Baron, Jason M.; Klepeis, Veronica E.; Onozato, Maristela L.; Kim, JiYeon; Dighe, Anand S.; Beckwith, Bruce A.; Kuo, Frank; Black-Schaffer, Stephen; Gilbertson, John R.

    2012-01-01

    Background: In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. Materials and Methods: The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required) and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. Results: Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1) Information Fundamentals, (2) Information Systems, (3) Workflow and Process, and (4) Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012). Discussion: The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world, including departments, companies, and health systems considering hiring a pathology informatician, the core knowledge set expected of a person trained in the field and, more fundamentally, it helps to define the scope of the field within Pathology and healthcare in general. PMID:23024890

  19. Informatics tools to improve clinical research study implementation.

    PubMed

    Brandt, Cynthia A; Argraves, Stephanie; Money, Roy; Ananth, Gowri; Trocky, Nina M; Nadkarni, Prakash M

    2006-04-01

    There are numerous potential sources of problems when performing complex clinical research trials. These issues are compounded when studies are multi-site and multiple personnel from different sites are responsible for varying actions from case report form design to primary data collection and data entry. We describe an approach that emphasizes the use of a variety of informatics tools that can facilitate study coordination, training, data checks and early identification and correction of faulty procedures and data problems. The paper focuses on informatics tools that can help in case report form design, procedures and training and data management. Informatics tools can be used to facilitate study coordination and implementation of clinical research trials.

  20. Evidence-based Patient Choice and Consumer health informatics in the Internet age

    PubMed Central

    2001-01-01

    In this paper we explore current access to and barriers to health information for consumers. We discuss how computers and other developments in information technology are ushering in the era of consumer health informatics , and the potential that lies ahead. It is clear that we witness a period in which the public will have unprecedented ability to access information and to participate actively in evidence-based health care. We propose that consumer health informatics be regarded as a whole new academic discipline, one that should be devoted to the exploration of the new possibilities that informatics is creating for consumers in relation to health and health care issues. PMID:11720961

  1. The Evolution of Data-Information-Knowledge-Wisdom in Nursing Informatics.

    PubMed

    Ronquillo, Charlene; Currie, Leanne M; Rodney, Paddy

    2016-01-01

    The data-information-knowledge-wisdom (DIKW) model has been widely adopted in nursing informatics. In this article, we examine the evolution of DIKW in nursing informatics while incorporating critiques from other disciplines. This includes examination of assumptions of linearity and hierarchy and an exploration of the implicit philosophical grounding of the model. Two guiding questions are considered: (1) Does DIKW serve clinical information systems, nurses, or both? and (2) What level of theory does DIKW occupy? The DIKW model has been valuable in advancing the independent field of nursing informatics. We offer that if the model is to continue to move forward, its role and functions must be explicitly addressed.

  2. Innovative designs for the smart ICU: Part 3: Advanced ICU informatics.

    PubMed

    Halpern, Neil A

    2014-04-01

    This third and final installment of this series on innovative designs for the smart ICU addresses the steps involved in conceptualizing, actualizing, using, and maintaining the advanced ICU informatics infrastructure and systems. The smart ICU comprehensively and electronically integrates the patient in the ICU with all aspects of care, displays data in a variety of formats, converts data to actionable information, uses data proactively to enhance patient safety, and monitors the ICU environment to facilitate patient care and ICU management. The keys to success in this complex informatics design process include an understanding of advanced informatics concepts, sophisticated planning, installation of a robust infrastructure capable of both connectivity and interoperability, and implementation of middleware solutions that provide value. Although new technologies commonly appear compelling, they are also complicated and challenging to incorporate within existing or evolving hospital informatics systems. Therefore, careful analysis, deliberate testing, and a phased approach to the implementation of innovative technologies are necessary to achieve the multilevel solutions of the smart ICU.

  3. Information management and informatics: need for a modern pathology service.

    PubMed

    Jones, Rick; O'Connor, John

    2004-05-01

    Requirements for information technology in pathology now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, "informatics"--the art and science of turning data into useful information--is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology--whether in implementing processes for pathology modernization, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients--which requires critical assessment of the ever-increasing volume of information available--can also benefit greatly from appropriate use of informatics. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerized order entry, data security and recovery, and audit. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this paper.

  4. A current perspective on medical informatics and health sciences librarianship.

    PubMed

    Perry, Gerald J; Roderer, Nancy K; Assar, Soraya

    2005-04-01

    The article offers a current perspective on medical informatics and health sciences librarianship. The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as "boundary spanners," incorporating human factors that unite technology with health care delivery.

  5. Antecedents of the People and Organizational Aspects of Medical Informatics

    PubMed Central

    Lorenzi, Nancy M.; Riley, Robert T.; Blyth, Andrew J. C.; Southon, Gray; Dixon, Bradley J.

    1997-01-01

    Abstract People and organizational issues are critical in both implementing medical informatics systems and in dealing with the altered organizations that new systems often create. The people and organizational issues area—like medical informatics itself—is a blend of many disciplines. The academic disciplines of psychology, sociology, social psychology, social anthropology, organizational behavior and organizational development, management, and cognitive sciences are rich with research with significant potential to ease the introduction and on-going use of information technology in today's complex health systems. These academic areas contribute research data and core information for better understanding of such issues as the importance of and processes for creating future direction; managing a complex change process; effective strategies for involving individuals and groups in the informatics effort; and effectively managing the altered organization. This article reviews the behavioral and business referent disciplines that can potentially contribute to improved implementations and on-going management of change in the medical informatics arena. PMID:9067874

  6. Crossing Borders: An Online Interdisciplinary Course in Health Informatics for Students From Two Countries.

    PubMed

    Fossum, Mariann; Fruhling, Ann; Moe, Carl Erik; Thompson, Cheryl Bagley

    2017-04-01

    A cross-countries and interprofessional novel approach for delivering an international interdisciplinary graduate health informatics course online is presented. Included in this discussion are the challenges, lessons learned, and pedagogical recommendations from the experiences of teaching the course. Four professors from three different fields and from three universities collaborated in offering an international health informatics course for an interdisciplinary group of 18 US and seven Norwegian students. Highly motivated students and professors, an online technology infrastructure that supported asynchronously communication and course delivery, the ability to adapt the curriculum to meet the pedagogy requirements at all universities, and the support of higher administration for international collaboration were enablers for success. This project demonstrated the feasibility and advantages of an interdisciplinary, interprofessional, and cross-countries approach in teaching health informatics online. Students were able to establish relationships and conduct professional conversations across disciplines and international boundaries using content management software. This graduate course can be used as a part of informatics, computer science, and/or health science programs.

  7. Toward an Informatics Research Agenda

    PubMed Central

    Kaplan, Bonnie; Brennan, Patricia Flatley; Dowling, Alan F.; Friedman, Charles P.; Peel, Victor

    2001-01-01

    As we have advanced in medical informatics and created many impressive innovations, we also have learned that technologic developments are not sufficient to bring the value of computer and information technologies to health care systems. This paper proposes a model for improving how we develop and deploy information technology. The authors focus on trends in people, organizational, and social issues (POI/OSI), which are becoming more complex as both health care institutions and information technologies are changing rapidly. They outline key issues and suggest high-priority research areas. One dimension of the model concerns different organizational levels at which informatics applications are used. The other dimension draws on social science disciplines for their approaches to studying implications of POI/OSI in informatics. By drawing on a wide variety of research approaches and asking questions based in social science disciplines, the authors propose a research agenda for high-priority issues, so that the challenges they see ahead for informatics may be met better. PMID:11320068

  8. Quo Vadis, Informatics Education?--Towards a More Up-to-Date Informatics Education

    ERIC Educational Resources Information Center

    Zsakó, László; Horváth, Gyozo

    2017-01-01

    Informatics education has been in a cul-de-sac for several years (not only in Hungary), being less and less able to meet the needs of the industry and higher education. In addition, the latest PISA survey shows that--to put it a little strongly--the majority of the x-, y- and z generations are digital illiterates. The aim of this paper to examine…

  9. Advanced Extravehicular Mobility Unit Informatics Software Design

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  10. Biomedical informatics and the convergence of Nano-Bio-Info-Cogno (NBIC) technologies.

    PubMed

    Martin-Sanchez, F; Maojo, V

    2009-01-01

    To analyze the role that biomedical informatics could play in the application of the NBIC Converging Technologies in the medical field and raise awareness of these new areas throughout the Biomedical Informatics community. Review of the literature and analysis of the reference documents in this domain from the biomedical informatics perspective. Detailing existing developments showing that partial convergence of technologies have already yielded relevant results in biomedicine (such as bioinformatics or biochips). Input from current projects in which the authors are involved is also used. Information processing is a key issue in enabling the convergence of NBIC technologies. Researchers in biomedical informatics are in a privileged position to participate and actively develop this new scientific direction. The experience of biomedical informaticians in five decades of research in the medical area and their involvement in the completion of the Human and other genome projects will help them participate in a similar role for the development of applications of converging technologies -particularly in nanomedicine. The proposed convergence will bring bridges between traditional disciplines. Particular attention should be placed on the ethical, legal, and social issues raised by the NBIC convergence. These technologies provide new directions for research and education in Biomedical Informatics placing a greater emphasis in multidisciplinary approaches.

  11. Visibility of medical informatics regarding bibliometric indices and databases

    PubMed Central

    2011-01-01

    Background The quantitative study of the publication output (bibliometrics) deeply influences how scientific work is perceived (bibliometric visibility). Recently, new bibliometric indices and databases have been established, which may change the visibility of disciplines, institutions and individuals. This study examines the effects of the new indices on the visibility of Medical Informatics. Methods By objective criteria, three sets of journals are chosen, two representing Medical Informatics and a third addressing Internal Medicine as a benchmark. The availability of index data (index coverage) and the aggregate scores of these corpora are compared for journal-related (Journal impact factor, Eigenfactor metrics, SCImago journal rank) and author-related indices (Hirsch-index, Egghes G-index). Correlation analysis compares the dependence of author-related indices. Results The bibliometric visibility depended on the research focus and the citation database: Scopus covers more journals relevant for Medical Informatics than ISI/Thomson Reuters. Journals focused on Medical Informatics' methodology were negatively affected by the Eigenfactor metrics, while the visibility profited from an interdisciplinary research focus. The correlation between Hirsch-indices computed on citation databases and the Internet was strong. Conclusions The visibility of smaller technology-oriented disciplines like Medical Informatics is changed by the new bibliometric indices and databases possibly leading to suitably changed publication strategies. Freely accessible author-related indices enable an easy and adequate individual assessment. PMID:21496230

  12. The role of ethics in information technology decisions: a case-based approach to biomedical informatics education.

    PubMed

    Anderson, James G

    2004-03-18

    The purpose of this paper is to propose a case-based approach to instruction regarding ethical issues raised by the use of information technology (IT) in healthcare. These issues are rarely addressed in graduate degree and continuing professional education programs in health informatics. There are important reasons why ethical issues need to be addressed in informatics training. Ethical issues raised by the introduction of information technology affect practice and are ubiquitous. These issues are frequently among the most challenging to young practitioners who are ill prepared to deal with them in practice. First, the paper provides an overview of methods of moral reasoning that can be used to identify and analyze ethical problems in health informatics. Second, we provide a framework for defining cases that involve ethical issues and outline major issues raised by the use of information technology. Specific cases are used as examples of new dilemmas that are posed by the introduction of information technology in healthcare. These cases are used to illustrate how ethics can be integrated with the other elements of informatics training. The cases discussed here reflect day-to-day situations that arise in health settings that require decisions. Third, an approach that can be used to teach ethics in health informatics programs is outlined and illustrated.

  13. The Big Data Revolution: Opportunities for Chief Nurse Executives.

    PubMed

    Remus, Sally

    2016-01-01

    Informatics competency adoption is a recognized issue across nursing roles in digital health practice settings. Further, it has been suggested that the health system's inability to reap the promised benefits of electronic health/patient records is, in part, a manifestation of inadequate development of informatics competency by chief nurse executives (CNEs) and other clinicians (Amendola 2008; Simpson 2013). This paper will focus on CNE informatics competency and nursing knowledge development as it pertains to the Big Data revolution. With the paper's aim of showing how CNEs armed with informatics competency can harness the full potential of Big Data offering new opportunities for nursing knowledge development in their clinical transformation roles as eHealth project sponsors. It is proposed that informatics-savvy CNEs are the new transformational leaders of the digital age who will have the advantage to successfully advocate for nurses in leading 21st-century health systems. Also, transformational CNEs armed with informatics competency will position nurses and the nursing profession to achieve its future vision, where nurses are perceived by patients and professionals alike as knowledge workers, providing the leadership essential for safe, quality care and demonstrating nursing's unique contributions to fiscal health through clinically relevant, evidence-based practices (McBride 2005b). Copyright © 2016 Longwoods Publishing.

  14. Skills and knowledge of informatics, and training needs of hospital pharmacists in Thailand: A self-assessment survey.

    PubMed

    Chonsilapawit, Teeraporn; Rungpragayphan, Suang

    2016-10-01

    Because hospital pharmacists have to deal with large amounts of health information and advanced information technology in practice, they must possess adequate skills and knowledge of informatics to operate efficiently. However, most current pharmacy curricula in Thailand barely address the principles and skills concerned with informatics, and Thai pharmacists usually acquire computer literacy and informatics skills through personal-interest training and self-study. In this study, we aimed to assess the skills and knowledge of informatics and the training needs of hospital pharmacists in Thailand, in order to improve curricular and professional development. A self-assessment postal survey of 73 questions was developed and distributed to the pharmacy departments of 601 hospitals throughout the country. Practicing hospital pharmacists were requested to complete and return the survey voluntarily. Within the 3 months of the survey period, a total of 805 out of 2002 surveys were returned. On average, respondents rated themselves as competent or better in the skills of basic computer operation, the Internet, information management, and communication. Understandably, they rated themselves at novice level for information technology and database design knowledge/skills, and at advanced beginner level for project, risk, and change management skills. Respondents believed that skills and knowledge of informatics were highly necessary for their work, and definitely needed training. Thai hospital pharmacists were confident in using computers and the Internet. They realized and appreciated their lack of informatics knowledge and skills, and needed more training. Pharmacy curricula and training should be developed accordingly. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Building the foundations of an informatics agenda for global health - 2011 workshop report.

    PubMed

    Mirza, Muzna; Kratz, Mary; Medeiros, Donna; Pina, Jamie; Richards, Janise; Zhang, Xiaohui; Fraser, Hamish; Bailey, Christopher; Krishnamurthy, Ramesh

    2012-01-01

    Strengthening the capacity of public health systems to protect and promote the health of the global population continues to be essential in an increasingly connected world. Informatics practices and principles can play an important role for improving global health response capacity. A critical step is to develop an informatics agenda for global health so that efforts can be prioritized and important global health issues addressed. With the aim of building a foundation for this agenda, the authors developed a workshop to examine the evidence in this domain, recognize the gaps, and document evidence-based recommendations. On 21 August 2011, at the 2011 Public Health Informatics Conference in Atlanta, GA, USA, a four-hour interactive workshop was conducted with 85 participants from 15 countries representing governmental organizations, private sector companies, academia, and non-governmental organizations. The workshop discussion followed an agenda of a plenary session - planning and agenda setting - and four tracks: Policy and governance; knowledge management, collaborative networks and global partnerships; capacity building; and globally reusable resources: metrics, tools, processes, templates, and digital assets. Track discussions examined the evidence base and the participants' experience to gather information about the current status, compelling and potential benefits, challenges, barriers, and gaps for global health informatics as well as document opportunities and recommendations. This report provides a summary of the discussions and key recommendations as a first step towards building an informatics agenda for global health. Attention to the identified topics and issues is expected to lead to measurable improvements in health equity, health outcomes, and impacts on population health. We propose the workshop report be used as a foundation for the development of the full agenda and a detailed roadmap for global health informatics activities based on further contribution from key stakeholders. The global health informatics agenda and roadmap can provide guidance to countries for developing and enhancing their individual and regional agendas.

  16. Building the Foundations of an Informatics Agenda for Global Health - 2011 Workshop Report

    PubMed Central

    Mirza, Muzna; Kratz, Mary; Medeiros, Donna; Pina, Jamie; Richards, Janise; Zhang, Xiaohui; Fraser, Hamish; Bailey, Christopher; Krishnamurthy, Ramesh

    2012-01-01

    Strengthening the capacity of public health systems to protect and promote the health of the global population continues to be essential in an increasingly connected world. Informatics practices and principles can play an important role for improving global health response capacity. A critical step is to develop an informatics agenda for global health so that efforts can be prioritized and important global health issues addressed. With the aim of building a foundation for this agenda, the authors developed a workshop to examine the evidence in this domain, recognize the gaps, and document evidence-based recommendations. On 21 August 2011, at the 2011 Public Health Informatics Conference in Atlanta, GA, USA, a four-hour interactive workshop was conducted with 85 participants from 15 countries representing governmental organizations, private sector companies, academia, and non-governmental organizations. The workshop discussion followed an agenda of a plenary session - planning and agenda setting - and four tracks: Policy and governance; knowledge management, collaborative networks and global partnerships; capacity building; and globally reusable resources: metrics, tools, processes, templates, and digital assets. Track discussions examined the evidence base and the participants’ experience to gather information about the current status, compelling and potential benefits, challenges, barriers, and gaps for global health informatics as well as document opportunities and recommendations. This report provides a summary of the discussions and key recommendations as a first step towards building an informatics agenda for global health. Attention to the identified topics and issues is expected to lead to measurable improvements in health equity, health outcomes, and impacts on population health. We propose the workshop report be used as a foundation for the development of the full agenda and a detailed roadmap for global health informatics activities based on further contribution from key stakeholders. The global health informatics agenda and roadmap can provide guidance to countries for developing and enhancing their individual and regional agendas. PMID:23569628

  17. Transforming user needs into functional requirements for an antibiotic clinical decision support system: explicating content analysis for system design.

    PubMed

    Bright, T J

    2013-01-01

    Many informatics studies use content analysis to generate functional requirements for system development. Explication of this translational process from qualitative data to functional requirements can strengthen the understanding and scientific rigor when applying content analysis in informatics studies. To describe a user-centered approach transforming emergent themes derived from focus group data into functional requirements for informatics solutions and to illustrate these methods to the development of an antibiotic clinical decision support system (CDS). THE APPROACH CONSISTED OF FIVE STEPS: 1) identify unmet therapeutic planning information needs via Focus Group Study-I, 2) develop a coding framework of therapeutic planning themes to refine the domain scope to antibiotic therapeutic planning, 3) identify functional requirements of an antibiotic CDS system via Focus Group Study-II, 4) discover informatics solutions and functional requirements from coded data, and 5) determine the types of information needed to support the antibiotic CDS system and link with the identified informatics solutions and functional requirements. The coding framework for Focus Group Study-I revealed unmet therapeutic planning needs. Twelve subthemes emerged and were clustered into four themes; analysis indicated a need for an antibiotic CDS intervention. Focus Group Study-II included five types of information needs. Comments from the Barrier/Challenge to information access and Function/Feature themes produced three informatics solutions and 13 functional requirements of an antibiotic CDS system. Comments from the Patient, Institution, and Domain themes generated required data elements for each informatics solution. This study presents one example explicating content analysis of focus group data and the analysis process to functional requirements from narrative data. Illustration of this 5-step method was used to develop an antibiotic CDS system, resolving unmet antibiotic prescribing needs. As a reusable approach, these techniques can be refined and applied to resolve unmet information needs with informatics interventions in additional domains.

  18. Transforming User Needs into Functional Requirements for an Antibiotic Clinical Decision Support System

    PubMed Central

    Bright, T.J.

    2013-01-01

    Summary Background Many informatics studies use content analysis to generate functional requirements for system development. Explication of this translational process from qualitative data to functional requirements can strengthen the understanding and scientific rigor when applying content analysis in informatics studies. Objective To describe a user-centered approach transforming emergent themes derived from focus group data into functional requirements for informatics solutions and to illustrate these methods to the development of an antibiotic clinical decision support system (CDS). Methods The approach consisted of five steps: 1) identify unmet therapeutic planning information needs via Focus Group Study-I, 2) develop a coding framework of therapeutic planning themes to refine the domain scope to antibiotic therapeutic planning, 3) identify functional requirements of an antibiotic CDS system via Focus Group Study-II, 4) discover informatics solutions and functional requirements from coded data, and 5) determine the types of information needed to support the antibiotic CDS system and link with the identified informatics solutions and functional requirements. Results The coding framework for Focus Group Study-I revealed unmet therapeutic planning needs. Twelve subthemes emerged and were clustered into four themes; analysis indicated a need for an antibiotic CDS intervention. Focus Group Study-II included five types of information needs. Comments from the Barrier/Challenge to information access and Function/Feature themes produced three informatics solutions and 13 functional requirements of an antibiotic CDS system. Comments from the Patient, Institution, and Domain themes generated required data elements for each informatics solution. Conclusion This study presents one example explicating content analysis of focus group data and the analysis process to functional requirements from narrative data. Illustration of this 5-step method was used to develop an antibiotic CDS system, resolving unmet antibiotic prescribing needs. As a reusable approach, these techniques can be refined and applied to resolve unmet information needs with informatics interventions in additional domains. PMID:24454586

  19. Homeostatic and Circadian Modulation of Cognition: Integrating Mathematical and Computational Modeling Approaches

    DTIC Science & Technology

    2012-08-20

    Leonid V. Kalachev, Ph.D. (University of Montana, not supported on grant) Daniel J. Mollicone, Ph.D. ( Pulsar Informatics, Inc., not supported on grant...project to Pulsar Informatics, Inc., who are providing an implementation suitable for integration with crew rostering to the U.S. Navy (key...individuals involved: Daniel Mollicone, Ph.D. and Mike Stubna, Ph.D. of Pulsar Informatics, Inc.).  We transitioned a numerical library for the mathematical

  20. Neonatal Informatics: Transforming Neonatal Care Through Translational Bioinformatics

    PubMed Central

    Palma, Jonathan P.; Benitz, William E.; Tarczy-Hornoch, Peter; Butte, Atul J.; Longhurst, Christopher A.

    2012-01-01

    The future of neonatal informatics will be driven by the availability of increasingly vast amounts of clinical and genetic data. The field of translational bioinformatics is concerned with linking and learning from these data and applying new findings to clinical care to transform the data into proactive, predictive, preventive, and participatory health. As a result of advances in translational informatics, the care of neonates will become more data driven, evidence based, and personalized. PMID:22924023

  1. Informatics Metrics and Measures for a Smart Public Health Systems Approach: Information Science Perspective

    PubMed Central

    Shea, Christopher Michael

    2017-01-01

    Public health informatics is an evolving domain in which practices constantly change to meet the demands of a highly complex public health and healthcare delivery system. Given the emergence of various concepts, such as learning health systems, smart health systems, and adaptive complex health systems, health informatics professionals would benefit from a common set of measures and capabilities to inform our modeling, measuring, and managing of health system “smartness.” Here, we introduce the concepts of organizational complexity, problem/issue complexity, and situational awareness as three codependent drivers of smart public health systems characteristics. We also propose seven smart public health systems measures and capabilities that are important in a public health informatics professional's toolkit. PMID:28167999

  2. Bioimage informatics for experimental biology

    PubMed Central

    Swedlow, Jason R.; Goldberg, Ilya G.; Eliceiri, Kevin W.

    2012-01-01

    Over the last twenty years there have been great advances in light microscopy with the result that multi-dimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition are reportedly frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remains largely unsolved. Like the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges and discuss our own vision for future development of bioimage informatics solution. PMID:19416072

  3. Informatics Metrics and Measures for a Smart Public Health Systems Approach: Information Science Perspective.

    PubMed

    Carney, Timothy Jay; Shea, Christopher Michael

    2017-01-01

    Public health informatics is an evolving domain in which practices constantly change to meet the demands of a highly complex public health and healthcare delivery system. Given the emergence of various concepts, such as learning health systems, smart health systems, and adaptive complex health systems, health informatics professionals would benefit from a common set of measures and capabilities to inform our modeling, measuring, and managing of health system "smartness." Here, we introduce the concepts of organizational complexity, problem/issue complexity, and situational awareness as three codependent drivers of smart public health systems characteristics. We also propose seven smart public health systems measures and capabilities that are important in a public health informatics professional's toolkit.

  4. Mouse Genome Informatics (MGI): Resources for Mining Mouse Genetic, Genomic, and Biological Data in Support of Primary and Translational Research.

    PubMed

    Eppig, Janan T; Smith, Cynthia L; Blake, Judith A; Ringwald, Martin; Kadin, James A; Richardson, Joel E; Bult, Carol J

    2017-01-01

    The Mouse Genome Informatics (MGI), resource ( www.informatics.jax.org ) has existed for over 25 years, and over this time its data content, informatics infrastructure, and user interfaces and tools have undergone dramatic changes (Eppig et al., Mamm Genome 26:272-284, 2015). Change has been driven by scientific methodological advances, rapid improvements in computational software, growth in computer hardware capacity, and the ongoing collaborative nature of the mouse genomics community in building resources and sharing data. Here we present an overview of the current data content of MGI, describe its general organization, and provide examples using simple and complex searches, and tools for mining and retrieving sets of data.

  5. Training in pathology informatics: implementation at the University of Pittsburgh.

    PubMed

    Harrison, James H; Stewart, Jimmie

    2003-08-01

    Pathology informatics is generally recognized as an important component of pathology training, but the scope, form, and goals of informatics training vary substantially between pathology residency programs. The Training and Education Committee of the Association for Pathology Informatics (API TEC) has developed a standard set of knowledge and skills objectives that are recommended for inclusion in pathology informatics training and may serve to standardize and formalize training programs in this area. The University of Pittsburgh (Pittsburgh, Pa) core rotation in pathology informatics includes most of these goals and is offered as an implementation model for pathology informatics training. The core rotation in pathology informatics is a 3-week, full-time rotation including didactic sessions and hands-on laboratories. Topics include general desktop computing and the Internet, but the primary focus of the rotation is vocabulary and concepts related to enterprise and pathology information systems, pathology practice, and research. The total contact time is 63 hours, and a total of 19 faculty and staff contribute. Pretests and posttests are given at the start and end of the rotation. Performance and course evaluation data were collected for 3 years (a total of 21 residents). The rotation implements 84% of the knowledge objectives and 94% of the skills objectives recommended by the API TEC. Residents scored an average of about 20% on the pretest and about 70% on the posttest for an average increase during the course of 50%. Posttest scores did not correlate with pretest scores or self-assessed computer skill level. The size of the pretest/posttest difference correlated negatively with the pretest scores and self-assessed computing skill level. Pretest scores were generally low regardless of whether residents were familiar with desktop computing and productivity applications, indicating that even residents who are computer "savvy" have limited knowledge of pathology informatics topics. Posttest scores showed that all residents' knowledge increased substantially during the course and that residents who were computing novices were not disadvantaged. In fact, novices tended to have higher pretest/posttest differences, indicating that the rotation effectively supported initially less knowledgeable residents in "catching up" to their peers and achieving an appropriate competency level. This rotation provides a formal training model that implements the API TEC recommendations with demonstrated success.

  6. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  7. Quantum Approach to Informatics

    NASA Astrophysics Data System (ADS)

    Stenholm, Stig; Suominen, Kalle-Antti

    2005-08-01

    An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.

  8. Big Data Application in Biomedical Research and Health Care: A Literature Review.

    PubMed

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care.

  9. Electronic Personal Health Record Use Among Nurses in the Nursing Informatics Community.

    PubMed

    Gartrell, Kyungsook; Trinkoff, Alison M; Storr, Carla L; Wilson, Marisa L

    2015-07-01

    An electronic personal health record is a patient-centric tool that enables patients to securely access, manage, and share their health information with healthcare providers. It is presumed the nursing informatics community would be early adopters of electronic personal health record, yet no studies have been identified that examine the personal adoption of electronic personal health record's for their own healthcare. For this study, we sampled nurse members of the American Medical Informatics Association and the Healthcare Information and Management Systems Society with 183 responding. Multiple logistic regression analysis was used to identify those factors associated with electronic personal health record use. Overall, 72% were electronic personal health record users. Users tended to be older (aged >50 years), be more highly educated (72% master's or doctoral degrees), and hold positions as clinical informatics specialists or chief nursing informatics officers. Those whose healthcare providers used electronic health records were significantly more likely to use electronic personal health records (odds ratio, 5.99; 95% confidence interval, 1.40-25.61). Electronic personal health record users were significantly less concerned about privacy of health information online than nonusers (odds ratio, 0.32; 95% confidence interval, 0.14-0.70) adjusted for ethnicity, race, and practice region. Informatics nurses, with their patient-centered view of technology, are in prime position to influence development of electronic personal health records. Our findings can inform policy efforts to encourage informatics and other professional nursing groups to become leaders and users of electronic personal health record; such use could help them endorse and engage patients to use electronic personal health records. Having champions with expertise in and enthusiasm for the new technology can promote the adoptionof electronic personal health records among healthcare providers as well as their patients.

  10. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss recent developments in data preservation and provenance.

  11. Big Data Application in Biomedical Research and Health Care: A Literature Review

    PubMed Central

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812

  12. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development

    PubMed Central

    2016-01-01

    Background Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. Objectives The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. Methods A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. Results The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one’s choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Conclusions Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines. PMID:26912288

  13. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development.

    PubMed

    Gray, Kathleen; Sockolow, Paulina

    2016-02-24

    Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.

  14. Informatics competencies for nurse leaders: protocol for a scoping review.

    PubMed

    Kassam, Iman; Nagle, Lynn; Strudwick, Gillian

    2017-12-14

    Globally, health information technologies are now being used by nurses in a variety of settings. However, nurse leaders often do not have the necessary strategic and tactical informatics competencies to adequately ensure their effective adoption and use. Although informatics competencies and competency frameworks have been identified and developed, to date there has not been review or consolidation of the work completed in this area. In order to address this gap, a scoping review is being conducted. The objectives of this scoping review are to: (1) identify informatics competencies of relevance to nurse leaders, (2) identify frameworks or theories that have been used to develop informatics competencies for nurse leaders, (3) identify instruments used to assess the informatics competencies of nurse leaders and (4) examine the psychometric properties of identified instruments. Using the Arksey and O'Malley five-step framework, a literature review will be conducted using a scoping review methodology. The search will encompass academic and grey literature and include two primary databases and five secondary databases. Identified studies and documents will be independently screened for eligibility by two reviewers. Data from the studies and documents will be extracted and compiled into a chart. Qualitative data will be subject to a thematic analysis and descriptive statistics applied to the quantitative data. Ethical approval was not required for this study. Results will be used to inform a future study designed to validate an instrument used to evaluate informatics competencies for nurse leaders within a Canadian context. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. The Biomarker Knowledge System Informatics Pilot Project Supplement To The Biomarker Development Laboratory at Moffitt (Bedlam) — EDRN Public Portal

    Cancer.gov

    The Biomarker Knowledge System Informatics Pilot Project goal will develop network interfaces among databases that contain information about existing clinical populations and biospecimens and data relating to those specimens that are important in biomarker assay validation. This protocol comprises one of two that will comprise the Moffitt participation in the Biomarker Knowledge System Informatics Pilot Project. THIS PROTOCOL (58) is the Sput-Epi Database.

  16. Integrating Traumatic Brain Injury Model Systems Data into the Federal Interagency Traumatic Brain Injury Research Informatics Systems

    DTIC Science & Technology

    2016-10-01

    Traumatic Brain Injury Research Informatics Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0564 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...AWARD NUMBER: W81XWH-14-1-0564 TITLE: Integrating Traumatic Brain Injury Model Systems Data into the Federal Interagency Traumatic Brain Injury...Research Informatics Systems PRINCIPAL INVESTIGATOR: Cynthia Harrison-Felix, PhD CONTRACTING ORGANIZATION: Craig Hospital Englewood, CO 80113

  17. Advanced Spacesuit Informatics Software Design for Power, Avionics and Software Version 2.0

    NASA Technical Reports Server (NTRS)

    Wright, Theodore W.

    2016-01-01

    A description of the software design for the 2016 edition of the Informatics computer assembly of the NASAs Advanced Extravehicular Mobility Unit (AEMU), also called the Advanced Spacesuit. The Informatics system is an optional part of the spacesuit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and warning information. It also provides an interface to the suit mounted camera for recording still images, video, and audio field notes.

  18. Evolution of Trends in European Medical Informatics

    PubMed Central

    I. Mihalas, George

    2014-01-01

    This presentation attempts to analyze the trends in Medical Informatics along half a century, in the European socio-political and technological development context. Based on the major characteristics which seem dominant in some periods, a staging is proposed, with a description of each period – the context, major ideas, views and events. A summary of major features of each period is also added. This paper has an original presentation of the evolution of major trends in medical informatics. PMID:24648618

  19. Developing Online Communities with LAMP (Linux, Apache, MySQL, PHP) - the IMIA OSNI and CHIRAD Experiences.

    PubMed

    Murray, Peter J; Oyri, Karl

    2005-01-01

    Many health informatics organisations do not seem to use, on a practical basis, for the benefit of their activities and interaction with their members, the very technologies that they often promote for use within healthcare environments. In particular, many organisations seem to be slow to take up the benefits of interactive web technologies. This paper presents an introduction to some of the many free/libre and open source (FLOSS) applications currently available and using the LAMP - Linux, Apache, MySQL, PHP architecture - as a way of cheaply deploying reliable, scalable, and secure web applications. The experience of moving to applications using LAMP architecture, in particular that of the Open Source Nursing Informatics (OSNI) Working Group of the Special Interest Group in Nursing Informatics of the International Medical Informatics Association (IMIA-NI), in using PostNuke, a FLOSS Content Management System (CMS) illustrates many of the benefits of such applications. The experiences of the authors in installing and maintaining a large number of websites using FLOSS CMS to develop dynamic, interactive websites that facilitate real engagement with the members of IMIA-NI OSNI, the IMIA Open Source Working Group, and the Centre for Health Informatics Research and Development (CHIRAD), as well as other organisations, is used as the basis for discussing the potential benefits that could be realised by others within the health informatics community.

  20. The diversity and disparity in biomedical informatics (DDBI) workshop.

    PubMed

    Southerland, William M; Swamidass, S Joshua; Payne, Philip R O; Wiley, Laura; Williams-DeVane, ClarLynda

    2018-01-01

    The Diversity and Disparity in Biomedical Informatics (DDBI) workshop will be focused on complementary and critical issues concerned with enhancing diversity in the informatics workforce as well as diversity in patient cohorts. According to the National Institute of Minority Health and Health Disparities (NIMHD) at the NIH, diversity refers to the inclusion of the following traditionally underrepresented groups: African Americans/Blacks, Asians (>30 countries), American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Latino or Hispanic (20 countries). Gender, culture, and socioeconomic status are also important dimensions of diversity, which may define some underrepresented groups. The under-representation of specific groups in both the biomedical informatics workforce as well as in the patient-derived data that is being used for research purposes has contributed to an ongoing disparity; these groups have not experienced equity in contributing to or benefiting from advancements in informatics research. This workshop will highlight innovative efforts to increase the pool of minority informaticians and discuss examples of informatics research that addresses the health concerns that impact minority populations. This workshop topics will provide insight into overcoming pipeline issues in the development of minority informaticians while emphasizing the importance of minority participation in health related research. The DDBI workshop will occur in two parts. Part I will discuss specific minority health & health disparities research topics and Part II will cover discussions related to overcoming pipeline issues in the training of minority informaticians.

  1. The Emerging Role of the Chief Research Informatics Officer in Academic Health Centers.

    PubMed

    Sanchez-Pinto, L Nelson; Mosa, Abu S M; Fultz-Hollis, Kate; Tachinardi, Umberto; Barnett, William K; Embi, Peter J

    2017-08-16

    The role of the Chief Research Informatics Officer (CRIO) is emerging in academic health centers to address the challenges clinical researchers face in the increasingly digitalized, data-intensive healthcare system. Most current CRIOs are the first officers in their institutions to hold that role. To date there is very little published information about this role and the individuals who serve it. To increase our understanding of the CRIO role, the leaders who serve it, and the factors associated with their success in their organizations. The Clinical Research Informatics Working Group of the American Medical Informatics Association (AMIA) conducted a national survey of CRIOs in the United States and convened an expert panel of CRIOs to discuss their experience during the 2016 AMIA Annual Symposium. CRIOs come from diverse academic backgrounds. Most have advance training and extensive experience in biomedical informatics but the majority have been CRIOs for less than three years. CRIOs identify funding, data governance, and advancing data analytics as their major challenges. CRIOs play an important role in helping shape the future of clinical research, innovation, and data analytics in healthcare in their organizations. They share many of the same challenges and see the same opportunities for the future of the field. Better understanding the background and experience of current CRIOs can help define and develop the role in other organizations and enhance their influence in the field of research informatics.

  2. Chapter 17: Bioimage Informatics for Systems Pharmacology

    PubMed Central

    Li, Fuhai; Yin, Zheng; Jin, Guangxu; Zhao, Hong; Wong, Stephen T. C.

    2013-01-01

    Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi). Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies. PMID:23633943

  3. Job Profiles of Biomedical Informatics Graduates. Results of a Graduate Survey.

    PubMed

    Ammenwerth, E; Hackl, W O

    2015-01-01

    Biomedical informatics programs exist in many countries. Some analyses of the skills needed and of recommendations for curricular content for such programs have been published. However, not much is known of the job profiles and job careers of their graduates. To analyse the job profiles and job careers of 175 graduates of the biomedical informatics bachelor and master program of the Tyrolean university UMIT. Survey of all biomedical informatics students who graduated from UMIT between 2001 and 2013. Information is available for 170 graduates. Eight percent of graduates are male. Of all bachelor graduates, 86% started a master program. Of all master graduates, 36% started a PhD. The job profiles are quite diverse: at the time of the survey, 35% of all master graduates worked in the health IT industry, 24% at research institutions, 9% in hospitals, 9% as medical doctors, 17% as informaticians outside the health care sector, and 6% in other areas. Overall, 68% of the graduates are working as biomedical informaticians. The results of the survey indicate a good job situation for the graduates. The job opportunities for biomedical informaticians who graduated with a bachelor or master degree from UMIT seem to be quite good. The majority of graduates are working as biomedical informaticians. A larger number of comparable surveys of graduates from other biomedical informatics programs would help to enhance our knowledge about careers in biomedical informatics.

  4. Medical informatics education needs information system practicums in health care settings--experiences and lessons learned from 32 practicums at four universities in two countries.

    PubMed

    Haux, R; Ammenwerth, E; Häber, A; Hübner-Bloder, G; Knaup-Gregori, P; Lechleitner, G; Leiner, F; Weber, R; Winter, A; Wolff, A C

    2006-01-01

    To report about the themes and about experiences with practicums in the management of information systems in health care settings (health information management) for medical informatics students. We first summarize the topics of the health information management practicums/projects that the authors organized between 1990 and 2003 for the medical informatics programs at Heidelberg/Heilbronn, Germany, UMIT, Austria, as well as for the informatics program at the University of Leipzig, Germany. Experiences and lessons learned, obtained from the faculty that organized the practicums in the past 14 years, are reported. Thirty (of 32) health information management practicums focused on the analysis of health information systems. These took place inside university medical centers. Although the practicums were time-intensive and required intensively tutoring students with regard to health information management and project management, feedback from the students and graduates was mainly positive. It is clearly recommended that students specializing in medical informatics need to be confronted with real-world problems of health information systems during their studies.

  5. Beyond information access: Support for complex cognitive activities in public health informatics tools.

    PubMed

    Sedig, Kamran; Parsons, Paul; Dittmer, Mark; Ola, Oluwakemi

    2012-01-01

    Public health professionals work with a variety of information sources to carry out their everyday activities. In recent years, interactive computational tools have become deeply embedded in such activities. Unlike the early days of computational tool use, the potential of tools nowadays is not limited to simply providing access to information; rather, they can act as powerful mediators of human-information discourse, enabling rich interaction with public health information. If public health informatics tools are designed and used properly, they can facilitate, enhance, and support the performance of complex cognitive activities that are essential to public health informatics, such as problem solving, forecasting, sense-making, and planning. However, the effective design and evaluation of public health informatics tools requires an understanding of the cognitive and perceptual issues pertaining to how humans work and think with information to perform such activities. This paper draws on research that has examined some of the relevant issues, including interaction design, complex cognition, and visual representations, to offer some human-centered design and evaluation considerations for public health informatics tools.

  6. A patient-focused framework integrating self-management and informatics.

    PubMed

    Knight, Elizabeth P; Shea, Kimberly

    2014-03-01

    This article introduces a framework to (a) guide chronic illness self-management interventions through the integration of self-management and nursing informatics, (b) focus self-management research, and (c) promote ethical, patient-empowering technology use by practicing nurses. Existing theory and research focusing on chronic illness, self-management, health-enabling technology, and nursing informatics were reviewed and examined and key concepts were identified. A care paradigm focusing on concordance, rather than compliance, served as the overall guiding principle. This framework identifies key relationships among self-management (patient behaviors), health force (patient characteristics), and patient-defined goals. The role of health-enabling technology supporting these relationships is explored in the context of nursing informatics. The Empowerment Informatics framework can guide intervention design and evaluation and support practicing nurses' ethical use of technology as part of self-management support. Nurses worldwide provide support to patients who are living with chronic illnesses. As pressures related to cost and access to care increase, technology-enabled self-management interventions will become increasingly common. This patient-focused framework can guide nursing practice using technology that prioritizes patient needs. © 2013 Sigma Theta Tau International.

  7. A current perspective on medical informatics and health sciences librarianship

    PubMed Central

    Perry, Gerald J.; Roderer, Nancy K.; Assar, Soraya

    2005-01-01

    Objective: The article offers a current perspective on medical informatics and health sciences librarianship. Narrative: The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Summary: Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as “boundary spanners,” incorporating human factors that unite technology with health care delivery. PMID:15858622

  8. Future Direction of IMIA Standardization

    PubMed Central

    Kimura, M.; Ogishima, S.; Shabo, A.; Kim, I. K.; Parisot, C.; de Faria Leao, B.

    2014-01-01

    Summary Objectives Standardization in the field of health informatics has increased its importance and global alliance for establishing interoperability and compatibility internationally. Standardization has been organized by standard development organizations (SDOs) such as ISO (International Organization for Standardization), CEN (European Committee for Standardization), IHE (Integrating the Healthcare Enterprise), and HL7 (Health Level 7), etc. This paper reports the status of these SDOs’ activities. Methods In this workshop, we reviewed the past activities and the current situation of standardization in health care informatics with the standard development organizations such as ISO, CEN, IHE, and HL7. Then we discussed the future direction of standardization in health informatics toward “future medicine” based on standardized technologies. Results We could share the status of each SDO through exchange of opinions in the workshop. Some WHO members joined our discussion to support this constructive activity. Conclusion At this meeting, the workshop speakers have been appointed as new members of the IMIA working groups of Standards in Health Care Informatics (WG16). We could reach to the conclusion that we collaborate for the international standardization in health informatics toward “future medicine”. PMID:25123729

  9. Web impact factor: a bibliometric criterion applied to medical informatics societies' web sites.

    PubMed

    Soualmia, Lina Fatima; Darmoni, Stéfan Jacques; Le Duff, Franck; Douyere, Magaly; Thelwall, Maurice

    2002-01-01

    Several methods are available to evaluate and compare medical journals. The most popular is the journal Impact Factor, derived from averaging counts of citations to articles. Ingwersen adapted this method to assess the attractiveness of Web sites, defining the external Web Impact Factor (WIF) to be the number of external pages containing a link to a given Web site. This paper applies the WIF to 43 medical informatics societies' Web sites using advanced search engine queries to obtain the necessary link counts. The WIF was compared to the number of publications available in the Medline bibliographic database in medical informatics in these 43 countries. Between these two metrics, the observed Pearson correlation was 0.952 (p < 0.01) and the Spearman rank correlation was 0.548 (p < 0.01) showing in both cases a positive and strong significant correlation. The WIF of medicalm informatics society's Web site is statistically related to national productivity and discrepancies can be used to indicate countries where there are either weak medical informatics associations, or ones that do not make optimal use of the Web.

  10. Health informatics and analytics - building a program to integrate business analytics across clinical and administrative disciplines.

    PubMed

    Tremblay, Monica Chiarini; Deckard, Gloria J; Klein, Richard

    2016-07-01

    Health care organizations must develop integrated health information systems to respond to the numerous government mandates driving the movement toward reimbursement models emphasizing value-based and accountable care. Success in this transition requires integrated data analytics, supported by the combination of health informatics, interoperability, business process design, and advanced decision support tools. This case study presents the development of a master's level cross- and multidisciplinary informatics program offered through a business school. The program provides students from diverse backgrounds with the knowledge, leadership, and practical application skills of health informatics, information systems, and data analytics that bridge the interests of clinical and nonclinical professionals. This case presents the actions taken and challenges encountered in navigating intra-university politics, specifying curriculum, recruiting the requisite interdisciplinary faculty, innovating the educational format, managing students with diverse educational and professional backgrounds, and balancing multiple accreditation agencies. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Enabling comparative effectiveness research with informatics: show me the data!

    PubMed

    Safdar, Nabile M; Siegel, Eliot; Erickson, Bradley J; Nagy, Paul

    2011-09-01

    Both outcomes researchers and informaticians are concerned with information and data. As such, some of the central challenges to conducting successful comparative effectiveness research can be addressed with informatics solutions. Specific informatics solutions which address how data in comparative effectiveness research are enriched, stored, shared, and analyzed are reviewed. Imaging data can be made more quantitative, uniform, and structured for researchers through the use of lexicons and structured reporting. Secure and scalable storage of research data is enabled through data warehouses and cloud services. There are a number of national efforts to help researchers share research data and analysis tools. There is a diverse arsenal of informatics tools designed to meet the needs of comparative effective researchers. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  12. Cheminformatics Research at the Unilever Centre for Molecular Science Informatics Cambridge.

    PubMed

    Fuchs, Julian E; Bender, Andreas; Glen, Robert C

    2015-09-01

    The Centre for Molecular Informatics, formerly Unilever Centre for Molecular Science Informatics (UCMSI), at the University of Cambridge is a world-leading driving force in the field of cheminformatics. Since its opening in 2000 more than 300 scientific articles have fundamentally changed the field of molecular informatics. The Centre has been a key player in promoting open chemical data and semantic access. Though mainly focussing on basic research, close collaborations with industrial partners ensured real world feedback and access to high quality molecular data. A variety of tools and standard protocols have been developed and are ubiquitous in the daily practice of cheminformatics. Here, we present a retrospective of cheminformatics research performed at the UCMSI, thereby highlighting historical and recent trends in the field as well as indicating future directions.

  13. An informatics research agenda to support precision medicine: seven key areas

    PubMed Central

    Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R

    2016-01-01

    The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM’s vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. PMID:27107452

  14. Cheminformatics Research at the Unilever Centre for Molecular Science Informatics Cambridge

    PubMed Central

    Fuchs, Julian E; Bender, Andreas; Glen, Robert C

    2015-01-01

    The Centre for Molecular Informatics, formerly Unilever Centre for Molecular Science Informatics (UCMSI), at the University of Cambridge is a world-leading driving force in the field of cheminformatics. Since its opening in 2000 more than 300 scientific articles have fundamentally changed the field of molecular informatics. The Centre has been a key player in promoting open chemical data and semantic access. Though mainly focussing on basic research, close collaborations with industrial partners ensured real world feedback and access to high quality molecular data. A variety of tools and standard protocols have been developed and are ubiquitous in the daily practice of cheminformatics. Here, we present a retrospective of cheminformatics research performed at the UCMSI, thereby highlighting historical and recent trends in the field as well as indicating future directions. PMID:26435758

  15. Informatics — EDRN Public Portal

    Cancer.gov

    The EDRN provides a comprehensive informatics activity which includes a number of tools and an integrated knowledge environment for capturing, managing, integrating, and sharing results from across EDRN's cancer biomarker research network.

  16. Medical informatics education: an alternative pathway for training informationists

    PubMed Central

    Hersh, William

    2002-01-01

    Recognition of the growing complexity of health information needs has led to a call for the creation of a new health care professional, the informationist. Controversy exists as to the role of such individuals and what their training should be. A library science degree, augmented with clinical background or experience, is one pathway. Another to consider is training in medical informatics. With the right coursework, individuals trained in medical informatics should be equally well qualified to assume the role of informationists. PMID:11838463

  17. Women in biomedical engineering and health informatics.

    PubMed

    McGregor, Carolyn; Frize, Monique

    2008-01-01

    A valuable session for anyone whether student or not, interested in learning more about Biomedical Engineering and Health Informatics as a career choice for women. Prominent women within the domains Biomedical Engineering and Health Informatics will present their research and their humanitarian interests that motivate them. Utilise the fantastic networking opportunity that will conclude this session to build and establish new professional networks with other women interested in your fields of expertise. Bring your contact details and be ready to make new contacts that are relevant for you.

  18. The next generation Internet and health care: a civics lesson for the informatics community.

    PubMed

    Shortliffe, E H

    1998-01-01

    The Internet provides one of the most compelling examples of the way in which government research investments can, in time, lead to innovations of broad social and economic impact. This paper reviews the history of the Internet's evolution, emphasizing in particular its relationship to medical informatics and to the nation's health-care system. Current national research programs are summarized and the need for more involvement by the informatics community and by federal health-care agencies is emphasized.

  19. The next generation Internet and health care: a civics lesson for the informatics community.

    PubMed Central

    Shortliffe, E. H.

    1998-01-01

    The Internet provides one of the most compelling examples of the way in which government research investments can, in time, lead to innovations of broad social and economic impact. This paper reviews the history of the Internet's evolution, emphasizing in particular its relationship to medical informatics and to the nation's health-care system. Current national research programs are summarized and the need for more involvement by the informatics community and by federal health-care agencies is emphasized. PMID:9929176

  20. Managing Conflict: Examining Recent PLA Writings on Escalation Control

    DTIC Science & Technology

    2016-02-01

    addition, that PLA authors for the most part assume that in an era of modern, informatized warfare, crisis and conflict can be controlled—so long as...Art of War Situation Control in Informatized Warfare” (Lun xinxihua zhanzheng de zhanju kongzhi yishu; 论信息化战争的战局控制艺术), China Military Science... Informatized Warfare,” p. 25. 17 Shou Xiaosong, ed., The Science of Military Strategy, 2013, p. 142. See also Peng Guangqian, “The Development and

  1. China’s Incomplete Military Transformation: Assessing the Weaknesses of the People’s Liberation Army (PLA)

    DTIC Science & Technology

    2015-02-01

    PLA’s capabilities are still unable to (1) cope with the demands of winning a local war under informatized conditions and (2) successfully carry out...to the PLA’s ability to execute modern informatized military oper- ations. Weaknesses in the realm of human capital include continuing concerns about...improving the PLA’s operational capabilities. 1 Informatized conditions is a PLA concept characterized by a “system-of-system operations . . . [focus

  2. SWOT Analysis on Medical Informatics and Development Strategies

    ERIC Educational Resources Information Center

    Ma, Xiaoyan; Han, Zhongdong; Ma, Hua

    2015-01-01

    This article aims at clarifying the strategic significance of developing medical informatics, conducting SWOT analysis on this discipline and hence establishing the strategic objectives and focal points for its development.

  3. [Psychophysiological state of children in conditions of informatization of their life activity and intensification of education].

    PubMed

    Kuchma, V R; Tkachuk, E A; Tarmaeva, I Yu

    The transition to a new stage of the development - the information society is an objective reality and has an influence on all areas of the activity of the society, including the establishment of a child as an object of the hygienic research. In conditions of the general informatization of the society, the appearance of so-called “clip thinking,” explains the maladjustment of educational technologies to mechanisms of children ’ and teenagers ’perception and is confirmed by the growth of the school pathology and the gain in the morbidity rate. In the investigation on the example of the educational institutions of Irkutsk it was executed the evaluation of the impact of the intensification of informatization of education and personal development. For the investigation there were formed 2 groups ofpreschools with different levels of informatization in the same preschool institution of the central district of the city of Irkutsk but in different periods of time. In total there were observed 211 children aged of 5.5 to 6.5 years. For the study the influence of the intensification (and informatization of training there were formed 2 groups of small schoolchildren with different levels of intensification (and informatization) of education. The total number of cases accountedfor 465 children aged of 7-9 years. There were suggested methodical approaches to the estimation of the health status of the children, with taking into account the inevitable influence offactors of informatization and the intensification of education. The performed investigations have allowed to reveal the following tendencies in the shaping of the psychophysical state of health and development of children: an increase of level of informatization of education and personal and accomplishment; intensification of learning working; reduction of the attention level; imagination and visual divergence; capability to the linear differentiation and construction of inferences; fear to fail to meet the expectations of surrounding people and low resistance to stress; the increase speed of data processing along with fall in quality; the gain in hyperactivity.

  4. Current practices in library/informatics instruction in academic libraries serving medical schools in the Western United States: a three-phase action research study.

    PubMed

    Eldredge, Jonathan D; Heskett, Karen M; Henner, Terry; Tan, Josephine P

    2013-09-04

    To conduct a systematic assessment of library and informatics training at accredited Western U.S. medical schools. To provide a structured description of core practices, detect trends through comparisons across institutions, and to identify innovative training approaches at the medical schools. Action research study pursued through three phases. The first phase used inductive analysis on reported library and informatics skills training via publicly-facing websites at accredited medical schools and the academic health sciences libraries serving those medical schools. Phase Two consisted of a survey of the librarians who provide this training to undergraduate medical education students at the Western U.S. medical schools. The survey revealed gaps in forming a complete picture of current practices, thereby generating additional questions that were answered through the Phase Three in-depth interviews. Publicly-facing websites reviewed in Phase One offered uneven information about library and informatics training at Western U.S. medical schools. The Phase Two survey resulted in a 77% response rate. The survey produced a clearer picture of current practices of library and informatics training. The survey also determined the readiness of medical students to pass certain aspects of the United States Medical Licensure Exam. Most librarians interacted with medical school curricular leaders through either curricula committees or through individual contacts. Librarians averaged three (3) interventions for training within the four-year curricula with greatest emphasis upon the first and third years. Library/informatics training was integrated fully into the respective curricula in almost all cases. Most training involved active learning approaches, specifically within Problem-Based Learning or Evidence-Based Medicine contexts. The Phase Three interviews revealed that librarians are engaged with the medical schools' curricular leaders, they are respected for their knowledge and teaching skills, and that they need to continually adapt to changes in curricula. This study offers a long overdue, systematic view of current practices of library/informatics training at Western U.S. medical schools. Medical educators, particularly curricular leaders, will find opportunities in this study's results for more productive collaborations with the librarians responsible for library and informatics training at their medical schools.

  5. Excellence in Computational Biology and Informatics — EDRN Public Portal

    Cancer.gov

    9th Early Detection Research Network (EDRN) Scientific Workshop. Excellence in Computational Biology and Informatics: Sponsored by the EDRN Data Sharing Subcommittee Moderator: Daniel Crichton, M.S., NASA Jet Propulsion Laboratory

  6. Incorporating healthcare informatics into the strategic planning process in nursing education.

    PubMed

    Sackett, Kay; Jones, Janice; Erdley, W Scott

    2005-01-01

    The purpose of this article is to describe the incorporation of healthcare informatics into the strategic planning process in nursing education. An exemplar from the University at Buffalo, the State University of New York School of Nursing, is interwoven throughout the article. The challenges and successes inherent in a paradigm shift embracing the multifaceted adoption of technology in higher education are illustrated. The paradigm shift that necessitated this change, the need for informatics standards and competencies identified by regulatory agencies and the relationship of the triad mission of the Academy which includes research, teaching and service are then elucidated. Information pertinent to the strategic planning process is described including the use of a strengths, weaknesses, opportunities and threats (SWOT) analysis to facilitate the integration of a healthcare informatics model into a nursing curriculum.

  7. Towards an International Framework for Recommendations of Core Competencies in Nursing and Inter-Professional Informatics: The TIGER Competency Synthesis Project.

    PubMed

    Hübner, Ursula; Shaw, Toria; Thye, Johannes; Egbert, Nicole; Marin, Heimar; Ball, Marion

    2016-01-01

    Informatics competencies of the health care workforce must meet the requirements of inter-professional process and outcome oriented provision of care. In order to help nursing education transform accordingly, the TIGER Initiative deployed an international survey, with participation from 21 countries, to evaluate and prioritise a broad list of core competencies for nurses in five domains: 1) nursing management, 2) information technology (IT) management in nursing, 3) interprofessional coordination of care, 4) quality management, and 5) clinical nursing. Informatics core competencies were found highly important for all domains. In addition, this project compiled eight national cases studies from Austria, Finland, Germany, Ireland, New Zealand, the Philippines, Portugal, and Switzerland that reflected the country specific perspective. These findings will lead us to an international framework of informatics recommendations.

  8. Online cancer communities as informatics intervention for social support: conceptualization, characterization, and impact.

    PubMed

    Zhang, Shaodian; O'Carroll Bantum, Erin; Owen, Jason; Bakken, Suzanne; Elhadad, Noémie

    2017-03-01

    The Internet and social media are revolutionizing how social support is exchanged and perceived, making online health communities (OHCs) one of the most exciting research areas in health informatics. This paper aims to provide a framework for organizing research of OHCs and help identify questions to explore for future informatics research. Based on the framework, we conceptualize OHCs from a social support standpoint and identify variables of interest in characterizing community members. For the sake of this tutorial, we focus our review on online cancer communities. The primary target audience is informaticists interested in understanding ways to characterize OHCs, their members, and the impact of participation, and in creating tools to facilitate outcome research of OHCs. OHC designers and moderators are also among the target audience for this tutorial. The tutorial provides an informatics point of view of online cancer communities, with social support as their leading element. We conceptualize OHCs according to 3 major variables: type of support, source of support, and setting in which the support is exchanged. We summarize current research and synthesize the findings for 2 primary research questions on online cancer communities: (1) the impact of using online social support on an individual's health, and (2) the characteristics of the community, its members, and their interactions. We discuss ways in which future research in informatics in social support and OHCs can ultimately benefit patients. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  9. Biomedical informatics publications: a global perspective: part I: conferences.

    PubMed

    Maojo, V; García-Remesal, M; Bielza, C; Crespo, J; Perez-Rey, D; Kulikowski, C

    2012-01-01

    In the past decade, Medical Informatics (MI) and Bioinformatics (BI) have converged towards a new discipline, called Biomedical Informatics (BMI) bridging informatics methods across the spectrum from genomic research to personalized medicine and global healthcare. This convergence still raises challenging research questions which are being addressed by researchers internationally, which in turn raises the question of how biomedical informatics publications reflect the contributions from around the world in documenting the research. To analyse the worldwide participation of biomedical informatics researchers from professional groups and societies in the best-known scientific conferences in the field. The analysis is focused on their geographical affiliation, but also includes other features, such as the impact and recognition of the conferences. We manually collected data about authors of papers presented at three major MI conferences: Medinfo, MIE and the AMIA symposium. In addition, we collected data from a BI conference, ISMB, as a comparison. Finally, we analyzed the impact and recognition of these conferences within their scientific contexts. Data indicate a predominance of local authors at the regional conferences (AMIA and MIE), whereas other conferences with a world-wide scope (Medinfo and ISMB) had broader participation. Our analysis shows that the influence of these conferences beyond the discipline remains somewhat limited. Our results suggest that for BMI to be recognized as a broad discipline, both in the geographical and scientific sense, it will need to extend the scope of collaborations and their interdisciplinary impacts worldwide.

  10. STARE-HI – Statement on Reporting of Evaluation Studies in Health Informatics

    PubMed Central

    Brender, J.; Talmon, J.; de Keizer, N.; Nykänen, P.; Rigby, M.; Ammenwerth, E.

    2013-01-01

    Summary Background Improving the quality of reporting of evaluation studies in health informatics is an important requirement towards the vision of evidence-based health informatics. The STARE-HI – Statement on Reporting of Evaluation Studies in health informatics, published in 2009, provides guidelines on the elements to be contained in an evaluation study report. Objectives To elaborate on and provide a rationale for the principles of STARE-HI and to guide authors and readers of evaluation studies in health informatics by providing explanatory examples of reporting. Methods A group of methodologists, researchers and editors prepared the present elaboration of the STARE-HI statement and selected examples from the literature. Results The 35 STARE-HI items to be addressed in evaluation papers describing health informatics interventions are discussed one by one and each is extended with examples and elaborations. Conclusion The STARE-HI statement and this elaboration document should be helpful resources to improve reporting of both quantitative and qualitative evaluation studies. Evaluation manuscripts adhering to the principles will enable readers of such papers to better place the studies in a proper context and judge their validity and generalizability, and thus in turn optimize the exploitation of the evidence contained therein. Limitations This paper is based on experiences of a group of editors, reviewers, authors of systematic reviews and readers of the scientific literature. The applicability of the details of these principles has to evolve as a function of their use in practice. PMID:24155788

  11. Public Health Platforms: An Emerging Informatics Approach to Health Professional Learning and Development

    PubMed Central

    Gray, Kathleen

    2016-01-01

    Health informatics has a major role to play in optimising the management and use of data, information and knowledge in health systems. As health systems undergo digital transformation, it is important to consider informatics approaches not only to curriculum content but also to the design of learning environments and learning activities for health professional learning and development. An example of such an informatics approach is the use of large-scale, integrated public health platforms on the Internet as part of health professional learning and development. This article describes selected examples of such platforms, with a focus on how they may influence the direction of health professional learning and development. Significance for public health The landscape of healthcare systems, public health systems, health research systems and professional education systems is fragmented, with many gaps and silos. More sophistication in the management of health data, information, and knowledge, based on public health informatics expertise, is needed to tackle key issues of prevention, promotion and policy-making. Platform technologies represent an emerging large-scale, highly integrated informatics approach to public health, combining the technologies of Internet, the web, the cloud, social technologies, remote sensing and/or mobile apps into an online infrastructure that can allow more synergies in work within and across these systems. Health professional curricula need updating so that the health workforce has a deep and critical understanding of the way that platform technologies are becoming the foundation of the health sector. PMID:27190977

  12. Improving Bridging from Informatics Practice to Theory.

    PubMed

    Lehmann, C U; Gundlapalli, A V

    2015-01-01

    In 1962, Methods of Information in Medicine ( MIM ) began to publish papers on the methodology and scientific fundamentals of organizing, representing, and analyzing data, information, and knowledge in biomedicine and health care. Considered a companion journal, Applied Clinical Informatics ( ACI ) was launched in 2009 with a mission to establish a platform that allows sharing of knowledge between clinical medicine and health IT specialists as well as to bridge gaps between visionary design and successful and pragmatic deployment of clinical information systems. Both journals are official journals of the International Medical Informatics Association. As a follow-up to prior work, we set out to explore congruencies and interdependencies in publications of ACI and MIM. The objectives were to describe the major topics discussed in articles published in ACI in 2014 and to determine if there was evidence that theory in 2014 MIM publications was informed by practice described in ACI publications in any year. We also set out to describe lessons learned in the context of bridging informatics practice and theory and offer opinions on how ACI editorial policies could evolve to foster and improve such bridging. We conducted a retrospective observational study and reviewed all articles published in ACI during the calendar year 2014 (Volume 5) for their main theme, conclusions, and key words. We then reviewed the citations of all MIM papers from 2014 to determine if there were references to ACI articles from any year. Lessons learned in the context of bridging informatics practice and theory and opinions on ACI editorial policies were developed by consensus among the two authors. A total of 70 articles were published in ACI in 2014. Clinical decision support, clinical documentation, usability, Meaningful Use, health information exchange, patient portals, and clinical research informatics emerged as major themes. Only one MIM article from 2014 cited an ACI article. There are several lessons learned including the possibility that there may not be direct links between MIM theory and ACI practice articles. ACI editorial policies will continue to evolve to reflect the breadth and depth of the practice of clinical informatics and articles received for publication. Efforts to encourage bridging of informatics practice and theory may be considered by the ACI editors. The lack of direct links from informatics theory-based papers published in MIM in 2014 to papers published in ACI continues as was described for papers published during 2012 to 2013 in the two companion journals. Thus, there is little evidence that theory in MIM has been informed by practice in ACI.

  13. Epilepsy informatics and an ontology-driven infrastructure for large database research and patient care in epilepsy.

    PubMed

    Sahoo, Satya S; Zhang, Guo-Qiang; Lhatoo, Samden D

    2013-08-01

    The epilepsy community increasingly recognizes the need for a modern classification system that can also be easily integrated with effective informatics tools. The 2010 reports by the United States President's Council of Advisors on Science and Technology (PCAST) identified informatics as a critical resource to improve quality of patient care, drive clinical research, and reduce the cost of health services. An effective informatics infrastructure for epilepsy, which is underpinned by a formal knowledge model or ontology, can leverage an ever increasing amount of multimodal data to improve (1) clinical decision support, (2) access to information for patients and their families, (3) easier data sharing, and (4) accelerate secondary use of clinical data. Modeling the recommendations of the International League Against Epilepsy (ILAE) classification system in the form of an epilepsy domain ontology is essential for consistent use of terminology in a variety of applications, including electronic health records systems and clinical applications. In this review, we discuss the data management issues in epilepsy and explore the benefits of an ontology-driven informatics infrastructure and its role in adoption of a "data-driven" paradigm in epilepsy research. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  14. Epilepsy informatics and an ontology-driven infrastructure for large database research and patient care in epilepsy

    PubMed Central

    Sahoo, Satya S.; Zhang, Guo-Qiang; Lhatoo, Samden D.

    2013-01-01

    Summary The epilepsy community increasingly recognizes the need for a modern classification system that can also be easily integrated with effective informatics tools. The 2010 reports by the United States President's Council of Advisors on Science and Technology (PCAST) identified informatics as a critical resource to improve quality of patient care, drive clinical research, and reduce the cost of health services. An effective informatics infrastructure for epilepsy, which is underpinned by a formal knowledge model or ontology, can leverage an ever increasing amount of multimodal data to improve (1) clinical decision support, (2) access to information for patients and their families, (3) easier data sharing, and (4) accelerate secondary use of clinical data. Modeling the recommendations of the International League Against Epilepsy (ILAE) classification system in the form of an epilepsy domain ontology is essential for consistent use of terminology in a variety of applications, including electronic health records systems and clinical applications. In this review, we discuss the data management issues in epilepsy and explore the benefits of an ontology-driven informatics infrastructure and its role in adoption of a “data-driven” paradigm in epilepsy research. PMID:23647220

  15. Integrating DICOM structure reporting (SR) into the medical imaging informatics data grid

    NASA Astrophysics Data System (ADS)

    Lee, Jasper; Le, Anh; Liu, Brent

    2008-03-01

    The Medical Imaging Informatics (MI2) Data Grid developed at the USC Image Processing and Informatics Laboratory enables medical images to be shared securely between multiple imaging centers. Current applications include an imaging-based clinical trial setting where multiple field sites perform image acquisition and a centralized radiology core performs image analysis, often using computer-aided diagnosis tools (CAD) that generate a DICOM-SR to report their findings and measurements. As more and more CAD tools are being developed in the radiology field, the generated DICOM Structure Reports (SR) holding key radiological findings and measurements that are not part of the DICOM image need to be integrated into the existing Medical Imaging Informatics Data Grid with the corresponding imaging studies. We will discuss the significance and method involved in adapting DICOM-SR into the Medical Imaging Informatics Data Grid. The result is a MI2 Data Grid repository from which users can send and receive DICOM-SR objects based on the imaging-based clinical trial application. The services required to extract and categorize information from the structured reports will be discussed, and the workflow to store and retrieve a DICOM-SR file into the existing MI2 Data Grid will be shown.

  16. Informatics for Peru in the new millennium.

    PubMed

    Karras, B T; Kimball, A M; Gonzales, V; Pautler, N A; Alarcón, J; Garcia, P J; Fuller, S

    2001-01-01

    As efforts continue to narrow the digital divide between the North and South, a new biomedical and health informatics training effort has been launched in Peru. This report describes the first year of work on this collaborative effort between the University of Washington (Seattle) Universidad Peruana Cayetano Heredia and Universidad Nacional de San Marcos (Peru) To describe activities in the first year of a new International Research and Training Program in Biomedical and Health Informatics. Descriptive analysis of key activities including an assessment of electronic environment through observation and survey, an in country short course with quantitative evaluation, and first round of recruitment of Peruvian scholars for long-term training in Seattle. A two-week short course on informatics was held in the country. Participants' success in learning was demonstrated through pretest/posttest. A systematic assessment of electronic environment in Peru was carried out and two scholars for long-term training were enrolled at the University of Washington, Seattle. Initial activity in the collaborative training effort has been high. Of particular importance in this environment is orchestration of efforts among interested parties with similar goals in Peru, and integration of informatics skills into ongoing large-scale research projects in country.

  17. Technological Ecosystems in Health Informatics: A Brief Review Article.

    PubMed

    Wu, Zhongmei; Zhang, Xiuxiu; Chen, Ying; Zhang, Yan

    2016-09-01

    The existing models of information technology in health sciences have full scope of betterment and extension. The high demand pressures, public expectations, advanced platforms all collectively contribute towards hospital environment, which has to be kept in kind while designing of advanced technological ecosystem for information technology. Moreover, for the smooth conduct and operation of information system advanced management avenues are also essential in hospitals. It is the top priority of every hospital to deal with the essential needs of care for patients within the available resources of human and financial outputs. In these situations of high demand, the technological ecosystems in health informatics come in to play and prove its importance and role. The present review article would enlighten all these aspects of these ecosystems in hospital management and health care informatics. We searched the electronic database of MEDLINE, EMBASE, and PubMed for clinical controlled trials, pre-clinical studies reporting utilizaiono of ecosysyem advances in health information technology. The primary outcome of eligible studies included confirmation of importance and role of advances ecosystems in health informatics. It was observed that technological ecosystems are the backbone of health informatics. Advancements in technological ecosystems are essential for proper functioning of health information system in clinical setting.

  18. Museum Informatics.

    ERIC Educational Resources Information Center

    Marty, Paul F.; Rayward, W. Boyd; Twidale, Michael B.

    2003-01-01

    Discusses museum informatics that studies how information science and technology affect the museum environment. Examines digital technology; information organization and access; digitization, personal computers, and the Internet; data sharing; standards; social impacts of new technologies; collaboration; consortia; multimedia exhibits; virtual…

  19. Internet Technology in Electronic Commerce

    NASA Astrophysics Data System (ADS)

    Zhanys, A. B.; Tursinbaeva, A. F.

    2018-05-01

    Informatization is an active process of acquiring information as a valuable resource for development using Informatics tools in order to dramatically increase the intellectual level of civilization on this basis – humanistic reconstruction of the whole human life.

  20. About the Beginnings of Medical Informatics in Europe

    PubMed Central

    Roger France, Francis

    2014-01-01

    The term “Informatics” was created in 1962 from two words, information and automatic, and covers all techniques, information concepts and applications of computers. Among them, medicine is the field where we will describe some factors of development in Europe since the late sixties. It took some time for obtaining the acceptance of this new terminology worldwide, but today medical informatics is a well defined discipline which had a tremendous development last decades. This paper tries to recall the context and events from the beginning of medical informatics in Europe. PMID:24648614

  1. Nursing Informatics Competencies: Psychometric Validation, Dissemination, and Maintenance of Self-Assessment Tool for Nurse Leaders.

    PubMed

    Collins, Sarah

    2016-01-01

    Due to rapid advances in technology, HIT competencies for nursing leaders require frequent attention and updating from experts in the field to ensure relevance to nursing leaders' work. This workshop will target nursing informatics researchers and leaders to: 1) learn methods and findings from a study validating a Self-Assessment Scale for Nursing Informatics Competencies for Nurse Leaders, 2) generate awareness of the Self-Assessment scale, 3) discuss strategies for maintenance of competencies overtime and 4) identify strategies to engage nursing leaders in this pursuit.

  2. Molecular Pathology Informatics.

    PubMed

    Roy, Somak

    2015-06-01

    Molecular informatics (MI) is an evolving discipline that will support the dynamic landscape of molecular pathology and personalized medicine. MI provides a fertile ground for development of clinical solutions to bridge the gap between clinical informatics and bioinformatics. Rapid adoption of next generation sequencing (NGS) in the clinical arena has triggered major endeavors in MI that are expected to bring a paradigm shift in the practice of pathology. This brief review presents a broad overview of various aspects of MI, particularly in the context of NGS based testing. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Cancer.gov

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  4. A standard for measuring metadata quality in spectral libraries

    NASA Astrophysics Data System (ADS)

    Rasaiah, B.; Jones, S. D.; Bellman, C.

    2013-12-01

    A standard for measuring metadata quality in spectral libraries Barbara Rasaiah, Simon Jones, Chris Bellman RMIT University Melbourne, Australia barbara.rasaiah@rmit.edu.au, simon.jones@rmit.edu.au, chris.bellman@rmit.edu.au ABSTRACT There is an urgent need within the international remote sensing community to establish a metadata standard for field spectroscopy that ensures high quality, interoperable metadata sets that can be archived and shared efficiently within Earth observation data sharing systems. Metadata are an important component in the cataloguing and analysis of in situ spectroscopy datasets because of their central role in identifying and quantifying the quality and reliability of spectral data and the products derived from them. This paper presents approaches to measuring metadata completeness and quality in spectral libraries to determine reliability, interoperability, and re-useability of a dataset. Explored are quality parameters that meet the unique requirements of in situ spectroscopy datasets, across many campaigns. Examined are the challenges presented by ensuring that data creators, owners, and data users ensure a high level of data integrity throughout the lifecycle of a dataset. Issues such as field measurement methods, instrument calibration, and data representativeness are investigated. The proposed metadata standard incorporates expert recommendations that include metadata protocols critical to all campaigns, and those that are restricted to campaigns for specific target measurements. The implication of semantics and syntax for a robust and flexible metadata standard are also considered. Approaches towards an operational and logistically viable implementation of a quality standard are discussed. This paper also proposes a way forward for adapting and enhancing current geospatial metadata standards to the unique requirements of field spectroscopy metadata quality. [0430] BIOGEOSCIENCES / Computational methods and data processing [0480] BIOGEOSCIENCES / Remote sensing [1904] INFORMATICS / Community standards [1912] INFORMATICS / Data management, preservation, rescue [1926] INFORMATICS / Geospatial [1930] INFORMATICS / Data and information governance [1946] INFORMATICS / Metadata [1952] INFORMATICS / Modeling [1976] INFORMATICS / Software tools and services [9810] GENERAL OR MISCELLANEOUS / New fields

  5. RAS - Target Identification - Informatics

    Cancer.gov

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  6. Health Informatics.

    ERIC Educational Resources Information Center

    Russell, Marie; Brittain, J. Michael

    2002-01-01

    Identifies current trends and issues in health informatics with examples of applications, particularly in English-speaking countries. Topics include health systems, professionals, and patients; consumer health information; electronic medical records; nursing; privacy and confidentiality; finding and using information; the Internet; e-mail;…

  7. Application of the Technological Pedagogical Content Knowledge framework in integrating an educational EMR into health informatics education.

    PubMed

    Bassi, Jesdeep; Kushniruk, Andre W; Borycki, Elizabeth M

    2013-01-01

    The discipline of health informatics is highly immersed in information technology, specifically health information systems. Students graduating from Bachelor degree programs in health informatics are expected to be familiar with a variety of systems upon entering the workforce. The adoption of systems like electronic medical records is on the rise across Canada, therefore it would be highly beneficial for students to have exposure to such systems in their coursework. While some individual instructors have done this to some extent on an ad hoc basis, formal strategies for EMR integration do not exist. A prominent framework for technology integration in learning that has been applied in many scientific disciplines is the Technological Pedagogical Content Knowledge (TPCK) framework. This paper describes how TPCK was used and applied as the guiding conceptual framework for exploring the integration of an educational EMR into undergraduate health informatics education.

  8. Earth Science Informatics Comes of Age

    NASA Technical Reports Server (NTRS)

    Jodha, Siri; Khalsa, S.; Ramachandran, Rahul

    2014-01-01

    The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.

  9. IMIA Educational Recommendations and Nursing Informatics.

    PubMed

    Mantas, John; Hasman, Arie

    2017-01-01

    The updated version of the IMIA educational recommendations has given an adequate guidelines platform for developing educational programs in Biomedical and Health Informatics at all levels of education, vocational training, and distance learning. This chapter will provide a brief introduction of the recommendations pinpointing aspects for developing and assessing educational programs. We will provide a review of the existing feedback we have acquired during the IMIA site visits of accrediting educational programs at a worldwide level and discuss implementations issues. A brief overview of existing academic programs in Europe, North America and in other regions, especially for programs related to Nursing and to Nursing Informatics is provided. Finally, we will draw conclusions as how the IMIA recommendations may be required to be fitted into the specific needs of the Nursing Informatics and the needs of the Nursing professionals when they apply the recommendations to their academic and/or hospital/professional environments.

  10. Building an educated health informatics workforce--the New Zealand experience.

    PubMed

    Parry, David; Hunter, Inga; Honey, Michelle; Holt, Alec; Day, Karen; Kirk, Ray; Cullen, Rowena

    2013-01-01

    New Zealand has a rapidly expanding health information technology (IT) development industry and wide-ranging use of informatics, especially in the primary health sector. The New Zealand government through the National Health IT Board (NHITB) has promised to provide shared care health records of core information for all New Zealanders by 2014. One of the major barriers to improvement in IT use in healthcare is the dearth of trained and interested clinicians, management and technical workforce. Health Informatics New Zealand (HINZ) and the academic community in New Zealand are attempting to remedy this by raising awareness of health informatics at the "grass roots" level of the existing workforce via free "primer" workshops and by developing a sustainable cross-institutional model of educational opportunities. Support from the NHITB has been forthcoming, and the workshops started in early 2013, reaching out to clinical and other staff in post around New Zealand.

  11. Integrating experiential learning into a double degree masters program in nursing and health informatics.

    PubMed

    Borycki, Elizabeth M; Frisch, Noreen; Kushniruk, Andre W; McIntyre, Marjorie; Hutchinson, David

    2012-01-01

    In Canada there are few nurses who have advanced practice competencies in nursing informatics. This is a significant issue for regional health authorities, governments and electronic health record vendors in Canada who are implementing electronic health records. Few Schools of Nursing provide formalized opportunities for nurses to develop informatics competencies. Many of these opportunities take the form of post-baccalaureate certificate programs or individual undergraduate or graduate level courses in nursing. The purpose of this paper will be to: (1) describe the health and human resource issues in this area in Canada, (2) provide a brief overview of the design and development of a new, innovative double degree program at the intersection of nursing and health informatics that interleaves cooperative learning, (3) describe the integration of cooperative learning into this new program, and (4) outline the lessons learned in integrating cooperative education into such a graduate program.

  12. Strategic planning of the master programme in health informatics at Aalborg University: targeting and updating the programme, to meet explicit customer needs.

    PubMed

    Nøhr, C; Bygholm, A; Hejlesen, O

    1998-06-01

    Education is essentially giving people new skills and qualifications to fulfil certain tasks. In planning and managing educational programmes it is crucial to know what skills and what qualifications are needed to carry out the tasks in question, not to mention the importance of knowing what tasks are relevant to carry out. The programme in health informatics at Aalborg University produces health informatics professionals. The students are developing skills in solving informatics problems in health care organisations. The programme has been running for 3 years now and to maintain the perception of the aim for the programme a number of activities have been launched. In the following, the programme will be presented, the activities to obtain information on how to keep the programme targeted and updated will be described and the changes that are going to be introduced will be outlined.

  13. Wellbeing Understanding in High Quality Healthcare Informatics and Telepractice.

    PubMed

    Fiorini, Rodolfo A; De Giacomo, Piero; L'Abate, Luciano

    2016-01-01

    The proper use of healthcare informatics technology and multidimensional conceptual clarity are fundamental to create and boost outstanding clinical and telepractice results. Avoiding even terminology ambiguities is mandatory for high quality of care service. For instance, well-being or wellbeing is a different way to write the same concept only, or there is a good deal of ambiguity around the meanings of these terms the way they are written. In personal health, healthcare and healthcare informatics, this kind of ambiguity and lack of conceptual clarity has been called out repeatedly over the past 50 years. It is time to get the right, terse scenario. We present a brief review to develop and achieve ultimate wellbeing understanding for practical high quality healthcare informatics and telepractice application. This article presents an innovative point of view on deeper wellbeing understanding towards its increased clinical effective application.

  14. Foundational biomedical informatics research in the clinical and translational science era: a call to action.

    PubMed

    Payne, Philip R O; Embi, Peter J; Niland, Joyce

    2010-01-01

    Advances in clinical and translational science, along with related national-scale policy and funding mechanisms, have provided significant opportunities for the advancement of applied clinical research informatics (CRI) and translational bioinformatics (TBI). Such efforts are primarily oriented to application and infrastructure development and are critical to the conduct of clinical and translational research. However, they often come at the expense of the foundational CRI and TBI research needed to grow these important biomedical informatics subdisciplines and ensure future innovations. In light of this challenge, it is critical that a number of steps be taken, including the conduct of targeted advocacy campaigns, the development of community-accepted research agendas, and the continued creation of forums for collaboration and knowledge exchange. Such efforts are needed to ensure that the biomedical informatics community is able to advance CRI and TBI science in the context of the modern clinical and translational science era.

  15. Big data for health.

    PubMed

    Andreu-Perez, Javier; Poon, Carmen C Y; Merrifield, Robert D; Wong, Stephen T C; Yang, Guang-Zhong

    2015-07-01

    This paper provides an overview of recent developments in big data in the context of biomedical and health informatics. It outlines the key characteristics of big data and how medical and health informatics, translational bioinformatics, sensor informatics, and imaging informatics will benefit from an integrated approach of piecing together different aspects of personalized information from a diverse range of data sources, both structured and unstructured, covering genomics, proteomics, metabolomics, as well as imaging, clinical diagnosis, and long-term continuous physiological sensing of an individual. It is expected that recent advances in big data will expand our knowledge for testing new hypotheses about disease management from diagnosis to prevention to personalized treatment. The rise of big data, however, also raises challenges in terms of privacy, security, data ownership, data stewardship, and governance. This paper discusses some of the existing activities and future opportunities related to big data for health, outlining some of the key underlying issues that need to be tackled.

  16. Information and informatics literacy: skills, timing, and estimates of competence.

    PubMed

    Scott, C S; Schaad, D C; Mandel, L S; Brock, D M; Kim, S

    2000-01-01

    Computing and biomedical informatics technologies are providing almost instantaneous access to vast amounts of possibly relevant information. Although students are entering medical school with increasingly sophisticated basic technological skills, medical educators must determine what curricular enhancements are needed to prepare learners for the world of electronic information. The purpose was to examine opinions of academic affairs and informatics administrators, curriculum deans and recently matriculated medical students about prematriculation competence and medical education learning expectations. Two surveys were administered: an Information Literacy Survey for curriculum/informatics deans and a Computing Skills Survey for entering medical students. Results highlight differences of opinion about entering competencies. They also indicate that medical school administrators believe that most basic information skills fall within the domain of undergraduate medical education. Further investigations are needed to determine precise entry-level skills and whether information literacy will increase as a result of rising levels of technical competence.

  17. Consumer Health Informatics in the Context of Engaged Citizens and eHealth Services - A New CHI Meta Model.

    PubMed

    Wiesner, Martin; Griebel, Lena; Becker, Kurt; Pobiruchin, Monika

    2016-01-01

    Consumer Health Informatics (CHI) is a relatively new and interdisciplinary field in Medical Informatics. It focuses on consumer- rather than professional-centered services. However, the definitions and understanding of a) what is a "consumer"? or b) what is health technology in the context of CHI? and c) what factors and actors influence the usage of eHealth services? vary widely. The CHI special interest group (SIG) - associated with the German Association for Medical Informatics, Biometry and Epidemiology - conducted two workshops in 2015 to improve the common understanding on these topics. The workshop outcomes, the derived CHI-specific meta model and examples how to apply this model are presented in this paper. The model supports the definition of multi-actor contexts, as it not solely reflects the conventional patient-physician relationship but also allows for the description of second health market providers.

  18. Research Strategies for Biomedical and Health Informatics. Some Thought-provoking and Critical Proposals to Encourage Scientific Debate on the Nature of Good Research in Medical Informatics.

    PubMed

    Haux, Reinhold; Kulikowski, Casimir A; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra N; Leong, Tze Yun; McCray, Alexa T

    2017-01-25

    Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes.

  19. Building the informatics infrastructure for comparative effectiveness research (CER): a review of the literature.

    PubMed

    Lopez, Marianne Hamilton; Holve, Erin; Sarkar, Indra Neil; Segal, Courtney

    2012-07-01

    Technological advances in clinical informatics have made large amounts of data accessible and potentially useful for research. As a result, a burgeoning literature addresses efforts to bridge the fields of health services research and biomedical informatics. The Electronic Data Methods Forum review examines peer-reviewed literature at the intersection of comparative effectiveness research and clinical informatics. The authors are specifically interested in characterizing this literature and identifying cross-cutting themes and gaps in the literature. A 3-step systematic literature search was conducted, including a structured search of PubMed, manual reviews of articles from selected publication lists, and manual reviews of research activities based on prospective electronic clinical data. Two thousand four hundred thirty-five citations were identified as potentially relevant. Ultimately, a full-text review was performed for 147 peer-reviewed papers. One hundred thirty-two articles were selected for inclusion in the review. Of these, 88 articles are the focus of the discussion in this paper. Three types of articles were identified, including papers that: (1) provide historical context or frameworks for using clinical informatics for research, (2) describe platforms and projects, and (3) discuss issues, challenges, and applications of natural language processing. In addition, 2 cross-cutting themes emerged: the challenges of conducting research in the absence of standardized ontologies and data collection; and unique data governance concerns related to the transfer, storage, deidentification, and access to electronic clinical data. Finally, the authors identified several current gaps on important topics such as the use of clinical informatics for cohort identification, cloud computing, and single point access to research data.

  20. Interdisciplinary innovations in biomedical and health informatics graduate education.

    PubMed

    Demiris, G

    2007-01-01

    Biomedical and health informatics (BHI) is a rapidly growing domain that relies on the active collaboration with diverse disciplines and professions. Educational initiatives in BHI need to prepare students with skills and competencies that will allow them to function within and even facilitate interdisciplinary teams (IDT). This paper describes an interdisciplinary educational approach introduced into a BHI graduate curriculum that aims to prepare informatics researchers to lead IDT research. A case study of the "gerontechnology" research track is presented which highlights how the curriculum fosters collaboration with and understanding of the disciplines of Nursing, Engineering, Computer Science, and Health Administration. Gerontechnology is a new interdisciplinary field that focuses on the use of technology to support aging. Its aim is to explore innovative ways to use information technology and develop systems that support independency and increase quality of life for senior citizens. As a result of a large research group that explores "smart home" technologies and the use of information technology, we integrated this new domain into the curriculum providing a platform for computer scientists, engineers, nurses and physicians to explore challenges and opportunities with our informatics students and faculty. The interdisciplinary educational model provides an opportunity for health informatics students to acquire the skills for communication and collaboration with other disciplines. Numerous graduate and postgraduate students have already participated in this initiative. The evaluation model of this approach is presented. Interdisciplinary educational models are required for health informatics graduate education. Such models need to be innovative and reflect the needs and trends in the domains of health care and information technology.

  1. A curricula-based comparison of biomedical and health informatics programs in the USA

    PubMed Central

    Hemminger, Bradley M

    2011-01-01

    Objective The field of Biomedical and Health Informatics (BMHI) continues to define itself, and there are many educational programs offering ‘informatics’ degrees with varied foci. The goal of this study was to develop a scheme for systematic comparison of programs across the entire BMHI spectrum and to identify commonalities among informatics curricula. Design Guided by several published competency sets, a grounded theory approach was used to develop a program/curricula categorization scheme based on the descriptions of 636 courses offered by 73 public health, nursing, health, medical, and bioinformatics programs in the USA. The scheme was then used to compare the programs in the aforementioned five informatics disciplines. Results The authors developed a Course-Based Informatics Program Categorization (CBIPC) scheme that can be used both to classify coursework for any BMHI educational program and to compare programs from the same or related disciplines. The application of CBIPC scheme to the analysis of public health, nursing, health, medical, and bioinformatics programs reveals distinct intradisciplinary curricular patterns and a common core of courses across the entire BMHI education domain. Limitations The study is based on descriptions of courses from the university's webpages. Thus, it is limited to sampling courses at one moment in time, and classification for the coding scheme is based primarily on course titles and course descriptions. Conclusion The CBIPC scheme combines empirical data about educational curricula from diverse informatics programs and several published competency sets. It also provides a foundation for discussion of BMHI education as a whole and can help define subdisciplinary competencies. PMID:21292707

  2. Characteristics of Local Health Departments Associated with Implementation of Electronic Health Records and Other Informatics Systems.

    PubMed

    Shah, Gulzar H; Leider, Jonathon P; Castrucci, Brian C; Williams, Karmen S; Luo, Huabin

    2016-01-01

    Assessing local health departments' (LHDs') informatics capacities is important, especially within the context of broader, systems-level health reform. We assessed a nationally representative sample of LHDs' adoption of information systems and the factors associated with adoption and implementation by examining electronic health records, health information exchange, immunization registry, electronic disease reporting system, and electronic laboratory reporting. We used data from the National Association of County and City Health Officials' 2013 National Profile of LHDs. We performed descriptive statistics and multinomial logistic regression for the five implementation-oriented outcome variables of interest, with three levels of implementation (implemented, plan to implement, and no activity). Independent variables included infrastructural and financial capacity and other characteristics associated with informatics capacity. Of 505 LHDs that responded to the survey, 69 (13.5%) had implemented health information exchanges, 122 (22.2%) had implemented electronic health records, 245 (47.5%) had implemented electronic laboratory reporting, 368 (73.0%) had implemented an electronic disease reporting system, and 416 (83.8%) had implemented an immunization registry. LHD characteristics associated with health informatics adoption included provision of greater number of clinical services, greater per capita public health expenditures, health information systems specialists on staff, larger population size, decentralized governance system, one or more local boards of health, metropolitan jurisdiction, and top executive with more years in the job. Many LHDs lack health informatics capacity, particularly in smaller, rural jurisdictions. Cross-jurisdictional sharing, investment in public health informatics infrastructure, and additional training may help address these shortfalls.

  3. The Effectiveness of Hands-on Health Informatics Skills Exercises in the Multidisciplinary Smart Home Healthcare and Health Informatics Training Laboratories.

    PubMed

    Sapci, A H; Sapci, H A

    2017-10-01

    This article aimed to evaluate the effectiveness of newly established innovative smart home healthcare and health informatics laboratories, and a novel laboratory course that focuses on experiential health informatics training, and determine students' self-confidence to operate wireless home health monitoring devices before and after the hands-on laboratory course. Two web-based pretraining and posttraining questionnaires were sent to 64 students who received hands-on training with wireless remote patient monitoring devices in smart home healthcare and health informatics laboratories. All 64 students completed the pretraining survey (100% response rate), and 49 students completed the posttraining survey (76% response rate). The quantitative data analysis showed that 95% of students had an interest in taking more hands-on laboratory courses. Sixty-seven percent of students had no prior experience with medical image, physiological data acquisition, storage, and transmission protocols. After the hands-on training session, 75.51% of students expressed improved confidence about training patients to measure blood pressure monitor using wireless devices. Ninety percent of students preferred to use a similar experiential approach in their future learning experience. Additionally, the qualitative data analysis demonstrated that students were expecting to have more courses with hands-on exercises and integration of technology-enabled delivery and patient monitoring concepts into the curriculum. This study demonstrated that the multidisciplinary smart home healthcare and health informatics training laboratories and the hands-on exercises improved students' technology adoption rates and their self-confidence in using wireless patient monitoring devices. Schattauer GmbH Stuttgart.

  4. Training Multidisciplinary Biomedical Informatics Students: Three Years of Experience

    PubMed Central

    van Mulligen, Erik M.; Cases, Montserrat; Hettne, Kristina; Molero, Eva; Weeber, Marc; Robertson, Kevin A.; Oliva, Baldomero; de la Calle, Guillermo; Maojo, Victor

    2008-01-01

    Objective The European INFOBIOMED Network of Excellence 1 recognized that a successful education program in biomedical informatics should include not only traditional teaching activities in the basic sciences but also the development of skills for working in multidisciplinary teams. Design A carefully developed 3-year training program for biomedical informatics students addressed these educational aspects through the following four activities: (1) an internet course database containing an overview of all Medical Informatics and BioInformatics courses, (2) a BioMedical Informatics Summer School, (3) a mobility program based on a ‘brokerage service’ which published demands and offers, including funding for research exchange projects, and (4) training challenges aimed at the development of multi-disciplinary skills. Measurements This paper focuses on experiences gained in the development of novel educational activities addressing work in multidisciplinary teams. The training challenges described here were evaluated by asking participants to fill out forms with Likert scale based questions. For the mobility program a needs assessment was carried out. Results The mobility program supported 20 exchanges which fostered new BMI research, resulted in a number of peer-reviewed publications and demonstrated the feasibility of this multidisciplinary BMI approach within the European Union. Students unanimously indicated that the training challenge experience had contributed to their understanding and appreciation of multidisciplinary teamwork. Conclusion The training activities undertaken in INFOBIOMED have contributed to a multi-disciplinary BMI approach. It is our hope that this work might provide an impetus for training efforts in Europe, and yield a new generation of biomedical informaticians. PMID:18096914

  5. Informatics: A Brief Survey.

    ERIC Educational Resources Information Center

    He, Shaoyi

    2003-01-01

    Provides a brief survey of informatics, defined as the application of information technology to various fields, with respect to its historical background, disciplinary identity, fundamental aspects, applications, and challenges. Highlights include biological, clinical, dental, environmental, geomatics, health, legal, management, medical, museum,…

  6. Information Technology Education for Health Professionals: Opportunities and Challenges.

    ERIC Educational Resources Information Center

    Haque, Syed S.; Gibson, David M.

    1998-01-01

    Describes surveys of potential health-care employers and health-care professionals to identify the need for biomedical informatics programs. Outlines a certificate program, master of science in biomedicine and nursing informatics, and a Ph.D. program. (SK)

  7. 77 FR 38294 - Patient Safety Organizations: Delisting for Cause for Medical Informatics

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... 12:00 Midnight ET (2400) on June 1, 2012. ADDRESSES: Both directories can be accessed electronically..., PSO number P0086, a component entity of Medical Informatics, LLC, effective at 12:00 Midnight ET (2400...

  8. Policy Implications of Education Informatics

    ERIC Educational Resources Information Center

    Carr, Jo Ann; O'Brien, Nancy P.

    2010-01-01

    Background/Context: This concluding article identifies the policy implications of education informatics and explores impacts of current copyright laws, legislative structures, publishing practices, and education organizations. Synthesizing the discussions in the preceding articles, this article highlights the importance of designing information…

  9. MO-C-BRCD-03: The Role of Informatics in Medical Physics and Vice Versa.

    PubMed

    Andriole, K

    2012-06-01

    Like Medical Physics, Imaging Informatics encompasses concepts touching every aspect of the imaging chain from image creation, acquisition, management and archival, to image processing, analysis, display and interpretation. The two disciplines are in fact quite complementary, with similar goals to improve the quality of care provided to patients using an evidence-based approach, to assure safety in the clinical and research environments, to facilitate efficiency in the workplace, and to accelerate knowledge discovery. Use-cases describing several areas of informatics activity will be given to illustrate current limitations that would benefit from medical physicist participation, and conversely areas in which informaticists may contribute to the solution. Topics to be discussed include radiation dose monitoring, process management and quality control, display technologies, business analytics techniques, and quantitative imaging. Quantitative imaging is increasingly becoming an essential part of biomedicalresearch as well as being incorporated into clinical diagnostic activities. Referring clinicians are asking for more objective information to be gleaned from the imaging tests that they order so that they may make the best clinical management decisions for their patients. Medical Physicists may be called upon to identify existing issues as well as develop, validate and implement new approaches and technologies to help move the field further toward quantitative imaging methods for the future. Biomedical imaging informatics tools and techniques such as standards, integration, data mining, cloud computing and new systems architectures, ontologies and lexicons, data visualization and navigation tools, and business analytics applications can be used to overcome some of the existing limitations. 1. Describe what is meant by Medical Imaging Informatics and understand why the medical physicist should care. 2. Identify existing limitations in information technologies with respect to Medical Physics, and conversely see how Informatics may assist the medical physicist in filling some of the current gaps in their activities. 3. Understand general informatics concepts and areas of investigation including imaging and workflow standards, systems integration, computing architectures, ontologies, data mining and business analytics, data visualization and human-computer interface tools, and the importance of quantitative imaging for the future of Medical Physics and Imaging Informatics. 4. Become familiar with on-going efforts to address current challenges facing future research into and clinical implementation of quantitative imaging applications. © 2012 American Association of Physicists in Medicine.

  10. Current practices in library/informatics instruction in academic libraries serving medical schools in the western United States: a three-phase action research study

    PubMed Central

    2013-01-01

    Background To conduct a systematic assessment of library and informatics training at accredited Western U.S. medical schools. To provide a structured description of core practices, detect trends through comparisons across institutions, and to identify innovative training approaches at the medical schools. Methods Action research study pursued through three phases. The first phase used inductive analysis on reported library and informatics skills training via publicly-facing websites at accredited medical schools and the academic health sciences libraries serving those medical schools. Phase Two consisted of a survey of the librarians who provide this training to undergraduate medical education students at the Western U.S. medical schools. The survey revealed gaps in forming a complete picture of current practices, thereby generating additional questions that were answered through the Phase Three in-depth interviews. Results Publicly-facing websites reviewed in Phase One offered uneven information about library and informatics training at Western U.S. medical schools. The Phase Two survey resulted in a 77% response rate. The survey produced a clearer picture of current practices of library and informatics training. The survey also determined the readiness of medical students to pass certain aspects of the United States Medical Licensure Exam. Most librarians interacted with medical school curricular leaders through either curricula committees or through individual contacts. Librarians averaged three (3) interventions for training within the four-year curricula with greatest emphasis upon the first and third years. Library/informatics training was integrated fully into the respective curricula in almost all cases. Most training involved active learning approaches, specifically within Problem-Based Learning or Evidence-Based Medicine contexts. The Phase Three interviews revealed that librarians are engaged with the medical schools' curricular leaders, they are respected for their knowledge and teaching skills, and that they need to continually adapt to changes in curricula. Conclusions This study offers a long overdue, systematic view of current practices of library/informatics training at Western U.S. medical schools. Medical educators, particularly curricular leaders, will find opportunities in this study's results for more productive collaborations with the librarians responsible for library and informatics training at their medical schools. PMID:24007301

  11. Providing Observation Context via Kernel Visualization and Informatics for Planning and Data Analysis

    NASA Astrophysics Data System (ADS)

    Kidd, J. N.; Selznick, S.; Hergenrother, C. W.

    2018-04-01

    From our lessons learned and SPICE expertise, we lay out the features and capabilities of a new web-based tool to provide an accessible platform to obtain context and informatics from a planetary mission's SPICE kernels.

  12. Genome Assembly Forensics: Metrics for Assessing Assembly Correctness (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Pop, Mihai

    2018-04-27

    University of Maryland's Mihai Pop on Genome Assembly Forensics: Metrics for Assessing Assembly Correctness at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  13. Information Science Education Between "Documentalization" and "Informatization".

    ERIC Educational Resources Information Center

    Seeger, Thomas; Wersig, Gernot

    1983-01-01

    Information work is considered from point of view of knowledge production, knowledge needs, and communication media. Developments in diffusion and transmission of knowledge, transitional stage between "documentalization" and "informatization," changing role of the information professional, new orientations in information field,…

  14. Memory Efficient Sequence Analysis Using Compressed Data Structures (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Simpson, Jared

    2018-01-24

    Wellcome Trust Sanger Institute's Jared Simpson on Memory efficient sequence analysis using compressed data structures at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  15. Consumer Health Informatics--integrating patients, providers, and professionals online.

    PubMed

    Klein-Fedyshin, Michele S

    2002-01-01

    Consumer Health Informatics (CHI) means different things to patients, health professionals, and health care systems. A broader perspective on this new and rapidly developing field will enable us to understand and better apply its advances. This article provides an overview of CHI discussing its evolution and driving forces, along with advanced applications such as Personal Health Records, Internet transmission of personal health data, clinical e-mail, online pharmacies, and shared decision-making tools. Consumer Health Informatics will become integrated with medical care, electronic medical records, and patient education to impact the whole process and business of health care.

  16. Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey

    PubMed Central

    Belle, Ashwin; Kon, Mark A.; Najarian, Kayvan

    2013-01-01

    The volumes of current patient data as well as their complexity make clinical decision making more challenging than ever for physicians and other care givers. This situation calls for the use of biomedical informatics methods to process data and form recommendations and/or predictions to assist such decision makers. The design, implementation, and use of biomedical informatics systems in the form of computer-aided decision support have become essential and widely used over the last two decades. This paper provides a brief review of such systems, their application protocols and methodologies, and the future challenges and directions they suggest. PMID:23431259

  17. Chemical Markup, XML and the World-Wide Web. 8. Polymer Markup Language.

    PubMed

    Adams, Nico; Winter, Jerry; Murray-Rust, Peter; Rzepa, Henry S

    2008-11-01

    Polymers are among the most important classes of materials but are only inadequately supported by modern informatics. The paper discusses the reasons why polymer informatics is considerably more challenging than small molecule informatics and develops a vision for the computer-aided design of polymers, based on modern semantic web technologies. The paper then discusses the development of Polymer Markup Language (PML). PML is an extensible language, designed to support the (structural) representation of polymers and polymer-related information. PML closely interoperates with Chemical Markup Language (CML) and overcomes a number of the previously identified challenges.

  18. RN, CIO: an executive informatics career.

    PubMed

    Staggers, Nancy; Lasome, Caterina E M

    2005-01-01

    The Chief Information Officer (CIO) position is a viable new career track for clinical informaticists. Nurses, especially informatics nurses, are uniquely positioned for the CIO role because of their operational knowledge of clinical processes, communication skills, systems thinking abilities, and knowledge about information structures and processes. This article describes essential knowledge and skills for the CIO executive position. Competencies not typical to nurses can be learned and developed, particularly strategic visioning and organizational finesse. This article concludes by describing career development steps toward the CIO position: leadership and management; healthcare operations; organizational finesse; and informatics knowledge, processes, methods, and structures.

  19. Geo-spatial Informatics in International Public Health Nursing Education.

    PubMed

    Kerr, Madeleine J; Honey, Michelle L L; Krzyzanowski, Brittany

    2016-01-01

    This poster describes results of an undergraduate nursing informatics experience. Students applied geo-spatial methods to community assessments in two urban regions of New Zealand and the United States. Students used the Omaha System standardized language to code their observations during a brief community assessment activity and entered their data into a mapping program developed in Esri ArcGIS Online, a geographic information system. Results will be displayed in tables and maps to allow comparison among the communities. The next generation of nurses can employ geo-spatial informatics methods to contribute to innovative community assessment, planning and policy development.

  20. Observations on sustainable and ubiquitous healthcare informatics from Florence Nightingale.

    PubMed

    Betts, Helen J; Wright, Graham

    2009-01-01

    As nurses around the world prepare to celebrate the centenary of the death of Florence Nightingale in 2010 this paper reviews her work on using information, especially statistics, to analyze and manage patient care and links that to current developments in informatics. It then examines assistive technologies and how they may impact on nursing practice in the future and links these developments to the writings of Florence Nightingale. The paper concludes by suggesting that in progressing towards sustainable and ubiquitous healthcare informatics we need to study history in order to learn from the lessons of Florence Nightingale and other healthcare pioneers.

  1. Informatics Essentials for DNPs.

    PubMed

    Jenkins, Melinda L

    2018-01-01

    Doctor of Nursing Practice (DNP) programs are proliferating around the US as advanced practice nursing programs evolve to build capacity by adding content on professional leadership, policy, and quality improvement to the traditional clinical content. One of the eight "Essentials" for DNP education is "Information systems/technology and patient care technology for the improvement and transformation of health care."[1] A required graduate course was revised and updated in 2017 to provide a foundation in clinical informatics for DNPs, as well as for nursing informatics specialists. Components of the online course, assignments, and free online resources linked to the DNP Essentials are described in this paper.

  2. Informatics and Standards for Nanomedicine Technology

    PubMed Central

    Thomas, Dennis G.; Klaessig, Fred; Harper, Stacey L.; Fritts, Martin; Hoover, Mark D.; Gaheen, Sharon; Stokes, Todd H.; Reznik-Zellen, Rebecca; Freund, Elaine T.; Klemm, Juli D.; Paik, David S.; Baker, Nathan A.

    2011-01-01

    There are several issues to be addressed concerning the management and effective use of information (or data), generated from nanotechnology studies in biomedical research and medicine. These data are large in volume, diverse in content, and are beset with gaps and ambiguities in the description and characterization of nanomaterials. In this work, we have reviewed three areas of nanomedicine informatics: information resources; taxonomies, controlled vocabularies, and ontologies; and information standards. Informatics methods and standards in each of these areas are critical for enabling collaboration, data sharing, unambiguous representation and interpretation of data, semantic (meaningful) search and integration of data; and for ensuring data quality, reliability, and reproducibility. In particular, we have considered four types of information standards in this review, which are standard characterization protocols, common terminology standards, minimum information standards, and standard data communication (exchange) formats. Currently, due to gaps and ambiguities in the data, it is also difficult to apply computational methods and machine learning techniques to analyze, interpret and recognize patterns in data that are high dimensional in nature, and also to relate variations in nanomaterial properties to variations in their chemical composition, synthesis, characterization protocols, etc. Progress towards resolving the issues of information management in nanomedicine using informatics methods and standards discussed in this review will be essential to the rapidly growing field of nanomedicine informatics. PMID:21721140

  3. Individualization, globalization and health--about sustainable information technologies and the aim of medical informatics.

    PubMed

    Haux, Reinhold

    2006-12-01

    This paper discusses aspects of information technologies for health care, in particular on transinstitutional health information systems (HIS) and on health-enabling technologies, with some consequences for the aim of medical informatics. It is argued that with the extended range of health information systems and the perspective of having adequate transinstitutional HIS architectures, a substantial contribution can be made to better patient-centered care, with possibilities ranging from regional, national to even global care. It is also argued that in applying health-enabling technologies, using ubiquitous, pervasive computing environments and ambient intelligence approaches, we can expect that in addition care will become more specific and tailored for the individual, and that we can achieve better personalized care. In developing health care systems towards transinstitutional HIS and health-enabling technologies, the aim of medical informatics, to contribute to the progress of the sciences and to high-quality, efficient, and affordable health care that does justice to the individual and to society, may be extended to also contributing to self-determined and self-sufficient (autonomous) life. Reference is made and examples are given from the Yearbook of Medical Informatics of the International Medical Informatics Association (IMIA) and from the work of Professor Jochen Moehr.

  4. Towards a web-based GIS for teaching geo-informatics at under-graduate level in developing countries: a case study of Iran

    NASA Astrophysics Data System (ADS)

    Mobasheri, A.; Vahidi, H.; Guan, Q.

    2014-04-01

    In developing countries, the number of experts and students in geo-informatics domain are very limited compared to experts and students of sciences that could benefit from geo-informatics. In this research, we study the possibility of providing an online education system for teaching geo-informatics at under-graduate level. The hypothesis is that in developing countries, such as Iran, a web-based geo-education system can greatly improve the quantity and quality of knowledge of students in undergraduate level, which is an important step that has to be made in regard of the famous "Geo for all" motto. As a technology for conducting natural and social studies, geo-informatics offers new ways of viewing, representing and analysing information for transformative learning and teaching. Therefore, we design and present a conceptual framework of an education system and elaborate its components as well as the free and open source services and software packages that could be used in this framework for a specific case study: the Web GIS course. The goal of the proposed framework is to develop experimental GI-services in a service-oriented platform for education purposes. Finally, the paper ends with concluding remarks and some tips for future research direction.

  5. A longitudinal social network analysis of the editorial boards of medical informatics and bioinformatics journals.

    PubMed

    Malin, Bradley; Carley, Kathleen

    2007-01-01

    The goal of this research is to learn how the editorial staffs of bioinformatics and medical informatics journals provide support for cross-community exposure. Models such as co-citation and co-author analysis measure the relationships between researchers; but they do not capture how environments that support knowledge transfer across communities are organized. In this paper, we propose a social network analysis model to study how editorial boards integrate researchers from disparate communities. We evaluate our model by building relational networks based on the editorial boards of approximately 40 journals that serve as research outlets in medical informatics and bioinformatics. We track the evolution of editorial relationships through a longitudinal investigation over the years 2000 through 2005. Our findings suggest that there are research journals that support the collocation of editorial board members from the bioinformatics and medical informatics communities. Network centrality metrics indicate that editorial board members are located in the intersection of the communities and that the number of individuals in the intersection is growing with time. Social network analysis methods provide insight into the relationships between the medical informatics and bioinformatics communities. The number of editorial board members facilitating the publication intersection of the communities has grown, but the intersection remains dependent on a small group of individuals and fragile.

  6. Big Data: Are Biomedical and Health Informatics Training Programs Ready? Contribution of the IMIA Working Group for Health and Medical Informatics Education.

    PubMed

    Otero, P; Hersh, W; Jai Ganesh, A U

    2014-08-15

    The growing volume and diversity of health and biomedical data indicate that the era of Big Data has arrived for healthcare. This has many implications for informatics, not only in terms of implementing and evaluating information systems, but also for the work and training of informatics researchers and professionals. This article addresses the question: What do biomedical and health informaticians working in analytics and Big Data need to know? We hypothesize a set of skills that we hope will be discussed among academic and other informaticians. The set of skills includes: Programming - especially with data-oriented tools, such as SQL and statistical programming languages; Statistics - working knowledge to apply tools and techniques; Domain knowledge - depending on one's area of work, bioscience or health care; and Communication - being able to understand needs of people and organizations, and articulate results back to them. Biomedical and health informatics educational programs must introduce concepts of analytics, Big Data, and the underlying skills to use and apply them into their curricula. The development of new coursework should focus on those who will become experts, with training aiming to provide skills in "deep analytical talent" as well as those who need knowledge to support such individuals.

  7. Introducing Kuhn et al.'s paper "Informatics and medicine: from molecules to populations" and invited papers on this special topic.

    PubMed

    Kulikowski, C A

    2008-01-01

    To introduce the paper by Kuhn et al. "Informatics and Medicine: From Molecules to Populations" and the papers that follow on this special topic in this issue of Methods of Information in Medicine, which opens a debate on the Kuhn et al. paper's assertions by an international panel of invited researchers in biomedical informatics. An introductory summary and comparative review of the Kuhn et al. paper and the debate papers, with some personal observations. The Kuhn et al. paper makes a strong case for interdisciplinary education in biomedical informatics across institutions at the graduate level, which could be strengthened by analysis of previous relevant interdisciplinary experiences elsewhere, and the challenges they have faced, which point to more pervasive and earlier-stage needs for both education and practice bridging the research and healthcare communities. The experts debating the Kuhn et al. paper strongly and broadly support the key recommendation of developing graduate education in biomedical informatics in a more comprehensive way, yet at the same time make some incisive comments about the limitations of the "positivistic" and excessively technological orientation of the paper, which could benefit from greater attention to the narrative and care-giving aspects of health practice, with more emphasis on its human and social aspects.

  8. The International Partnership for Health Informatics Education: lessons learned from six years of experience.

    PubMed

    Jaspers, M W M; Gardner, R M; Gatewood, L C; Haux, R; Schmidt, D; Wetter, T

    2005-01-01

    To inform the medical and health informatics community on the rational, goals, and the achievements of the International Partnership for Health Informatics Education--IPHIE, (I phi E), that was established at six universities in 1999. We elaborate on the overall goals of I phi E and describe the current state of affairs: the activities undertaken and faculty and student experience related to these activities. In addition we outline the lessons we have learned over these past six years and our plans for the future. I phi E members first started to collaborate by supporting and encouraging the exchange of talented students and faculty and by establishing joint master classes for honors students. Following the success of these activities, new initiatives were undertaken such as the organization of student workshops at medical informatics conferences and a joint course on strategic information management in hospitals in Europe. International partnerships such as I phi E take time to establish, and, if they are to be successful, maintaining leadership continuity is critically important. We are convinced that I phi E promotes professionalism of future medical informatics specialists. There will be a continuing growth of globalization in higher education. It will therefore become increasingly important to offer educational programs with international components.

  9. Discovering anomalous events from urban informatics data

    NASA Astrophysics Data System (ADS)

    Jayarajah, Kasthuri; Subbaraju, Vigneshwaran; Weerakoon, Dulanga; Misra, Archan; Tam, La Thanh; Athaide, Noel

    2017-05-01

    Singapore's "smart city" agenda is driving the government to provide public access to a broader variety of urban informatics sources, such as images from traffic cameras and information about buses servicing different bus stops. Such informatics data serves as probes of evolving conditions at different spatiotemporal scales. This paper explores how such multi-modal informatics data can be used to establish the normal operating conditions at different city locations, and then apply appropriate outlier-based analysis techniques to identify anomalous events at these selected locations. We will introduce the overall architecture of sociophysical analytics, where such infrastructural data sources can be combined with social media analytics to not only detect such anomalous events, but also localize and explain them. Using the annual Formula-1 race as our candidate event, we demonstrate a key difference between the discriminative capabilities of different sensing modes: while social media streams provide discriminative signals during or prior to the occurrence of such an event, urban informatics data can often reveal patterns that have higher persistence, including before and after the event. In particular, we shall demonstrate how combining data from (i) publicly available Tweets, (ii) crowd levels aboard buses, and (iii) traffic cameras can help identify the Formula-1 driven anomalies, across different spatiotemporal boundaries.

  10. Scalability of Comparative Analysis, Novel Algorithms and Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Mavrommatis, Kostas

    2017-12-22

    DOE JGI's Kostas Mavrommatis, chair of the Scalability of Comparative Analysis, Novel Algorithms and Tools panel, at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  11. Sequencing Single Cell Microbial Genomes with Microfluidic Amplifications Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Quake, Steve

    2018-02-02

    Stanford University's Steve Quake on "Sequencing Single Cell Microbial Genomes with Microfluidic Amplification Tools" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  12. 77 FR 65386 - Statement of Organization, Functions, and Delegations of Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... the administrative management areas. Informatics Research and Development Activity (CPM13). (1) Advances the field of public health informatics through applied research and innovation; (2) collaborates... conducts applied research and development activities, and evaluation projects that improve the ability of...

  13. Sequencing Single Cell Microbial Genomes with Microfluidic Amplifications Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quake, Steve

    2011-10-12

    Stanford University's Steve Quake on "Sequencing Single Cell Microbial Genomes with Microfluidic Amplification Tools" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  14. 78 FR 52770 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ... Project Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery--NEW... Services (OSELS), Public Health Surveillance and Informatics Program Office (PHSIPO), Informatics Research... Collection Request (Generic ICR): ``Generic Clearance for the Collection of Qualitative Feedback on Agency...

  15. Consumer Health Informatics: Past, Present, and Future of a Rapidly Evolving Domain.

    PubMed

    Demiris, G

    2016-05-20

    Consumer Health Informatics (CHI) is a rapidly growing domain within the field of biomedical and health informatics. The objective of this paper is to reflect on the past twenty five years and showcase informatics concepts and applications that led to new models of care and patient empowerment, and to predict future trends and challenges for the next 25 years. We discuss concepts and systems based on a review and analysis of published literature in the consumer health informatics domain in the last 25 years. The field was introduced with the vision that one day patients will be in charge of their own health care using informatics tools and systems. Scientific literature in the field originally focused on ways to assess the quality and validity of available printed health information, only to grow significantly to cover diverse areas such as online communities, social media, and shared decision-making. Concepts such as home telehealth, mHealth, and the quantified-self movement, tools to address transparency of health care organizations, and personal health records and portals provided significant milestones in the field. Consumers are able to actively participate in the decision-making process and to engage in health care processes and decisions. However, challenges such as health literacy and the digital divide have hindered us from maximizing the potential of CHI tools with a significant portion of underserved populations unable to access and utilize them. At the same time, at a global scale consumer tools can increase access to care for underserved populations in developing countries. The field continues to grow and emerging movements such as precision medicine and the sharing economy will introduce new opportunities and challenges.

  16. Applications of information and communications technologies to public health: A scoping review using the MeSH term: "public health informatics".

    PubMed

    Bhattarai, Arjun Kumar; Zarrin, Aein; Lee, Joon

    2017-01-01

    To investigate the public health domains, key informatics concepts, and information and communications technologies (ICTs) applied in articles that are tagged with the MeSH term "public health informatics" and primarily focus on applying ICTs to public health. The MeSH term "public health informatics" was searched on MEDLINE-PubMed. The results of the search were then screened in two steps in order to only include articles about applying ICTs to public health problems. First, articles were screened based on their titles and abstracts. Second, a full-text review was conducted to ensure the relevance of the included articles. All articles were charted based on public health domain, information technology, article type, and informatics concept. 515 articles were included. Communicable disease monitoring (N=235), public health policy and research (N=201), and public health awareness (N=85) constituted the majority of the articles. Inconsistent results were found regarding the validity of syndromic surveillance and the effectiveness of PHI integration within the healthcare systems. PHI articles with an ICT focus cover a wide range of themes. Collectively, the included articles emphasized the need for further research in interoperability, data quality, appropriate data sources, accessible health information, and communication. The limitations of the study include:1) only one database was searched; 2) by using MeSH tags as a selection criterion, PHI articles without the "public health informatics" MeSH term were excluded. Due to the multi-disciplinary nature of PHI, MeSH identifiers were not assigned consistently. Current MeSH-tagged articles indicate that a comprehensive approach is required to integrate PHI into the healthcare system.

  17. Using the Internet to Teach Health Informatics: A Case Study

    PubMed Central

    Holt, Alec; Gillies, John

    2001-01-01

    Background It is becoming increasingly important for health professionals to have an understanding of health informatics. Education in this area must support not only undergraduate students but also the many workers who graduated before informatics education was available in the undergraduate program. To be successful, such a program must allow currently-employed students with significant work and family commitments to enroll. Objectives The aim was to successfully create and teach a distance program in health informatics for the New Zealand environment. Methods Our students are primarily health professionals in full time employment. About 50% are doctors, about 25% nurses, and the rest include dentists, physiotherapists, and medical managers. Course material was delivered via the World Wide Web and CD-ROM. Communication between students and faculty, both synchronous and asynchronous, was carried out via the Internet. Results We have designed and taught a postgraduate Diploma of Health Informatics program using the Internet as a major communication medium. The course has been running since July 1998 and the first 10 students graduated in July 2000. About 45 students are currently enrolled in the course; we have had a dropout rate of 15% and a failure rate of 5%. Comparable dropout figures are hard to obtain, but a recent review has suggested that failure-to-complete rates of 30% to 33% may be expected. Conclusions Internet technology has provided an exciting educational challenge and opportunity. Providing a web-based health informatics course has not been without its frustrations and problems, including software compatibility issues, bandwidth limitations, and the rapid change in software and hardware. Despite these challenges, the use of Internet technology has been interesting for both staff and students, and a worthwhile alternative for delivering educational material and advice to students working from their own homes. PMID:11720968

  18. What’s Past is Prologue: A Scoping Review of Recent Public Health and Global Health Informatics Literature

    PubMed Central

    Dixon, Brian E.; Pina, Jamie; Kharrazi, Hadi; Gharghabi, Fardad; Richards, Janise

    2015-01-01

    Objective: To categorize and describe the public health informatics (PHI) and global health informatics (GHI) literature between 2012 and 2014. Methods: We conducted a semi-systematic review of articles published between January 2012 and September 2014 where information and communications technologies (ICT) was a primary subject of the study or a main component of the study methodology. Additional inclusion and exclusion criteria were used to filter PHI and GHI articles from the larger biomedical informatics domain. Articles were identified using MEDLINE as well as personal bibliographies from members of the American Medical Informatics Association PHI and GHI working groups. Results: A total of 85 PHI articles and 282 GHI articles were identified. While systems in PHI continue to support surveillance activities, we identified a shift towards support for prevention, environmental health, and public health care services. Furthermore, articles from the U.S. reveal a shift towards PHI applications at state and local levels. GHI articles focused on telemedicine, mHealth and eHealth applications. The development of adequate infrastructure to support ICT remains a challenge, although we identified a small but growing set of articles that measure the impact of ICT on clinical outcomes. Discussion: There is evidence of growth with respect to both implementation of information systems within the public health enterprise as well as a widening of scope within each informatics discipline. Yet the articles also illuminate the need for more primary research studies on what works and what does not as both searches yielded small numbers of primary, empirical articles. Conclusion: While the body of knowledge around PHI and GHI continues to mature, additional studies of higher quality are needed to generate the robust evidence base needed to support continued investment in ICT by governmental health agencies. PMID:26392846

  19. Open Access Publishing in the Field of Medical Informatics.

    PubMed

    Kuballa, Stefanie

    2017-05-01

    The open access paradigm has become an important approach in today's information and communication society. Funders and governments in different countries stipulate open access publications of funded research results. Medical informatics as part of the science, technology and medicine disciplines benefits from many research funds, such as National Institutes of Health in the US, Wellcome Trust in UK, German Research Foundation in Germany and many more. In this study an overview of the current open access programs and conditions of major journals in the field of medical informatics is presented. It was investigated whether there are suitable options and how they are shaped. Therefore all journals in Thomson Reuters Web of Science that were listed in the subject category "Medical Informatics" in 2014 were examined. An Internet research was conducted by investigating the journals' websites. It was reviewed whether journals offer an open access option with a subsequent check of conditions as for example the type of open access, the fees and the licensing. As a result all journals in the field of medical informatics that had an impact factor in 2014 offer an open access option. A predominantly consistent pricing range was determined with an average fee of 2.248 € and a median fee of 2.207 €. The height of a journals' open access fee did not correlate with the height of its Impact Factor. Hence, medical informatics journals have recognized the trend of open access publishing, though the vast majority of them are working with the hybrid method. Hybrid open access may however lead to problems in questions of double dipping and the often stipulated gold open access.

  20. HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).

    PubMed

    Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming

    Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.

  1. HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).

    PubMed

    Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming

    2015-12-01

    Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.

  2. Consumer Health Informatics: Past, Present, and Future of a Rapidly Evolving Domain

    PubMed Central

    2016-01-01

    Summary Objectives Consumer Health Informatics (CHI) is a rapidly growing domain within the field of biomedical and health informatics. The objective of this paper is to reflect on the past twenty five years and showcase informatics concepts and applications that led to new models of care and patient empowerment, and to predict future trends and challenges for the next 25 years. Methods We discuss concepts and systems based on a review and analysis of published literature in the consumer health informatics domain in the last 25 years. Results The field was introduced with the vision that one day patients will be in charge of their own health care using informatics tools and systems. Scientific literature in the field originally focused on ways to assess the quality and validity of available printed health information, only to grow significantly to cover diverse areas such as online communities, social media, and shared decision-making. Concepts such as home telehealth, mHealth, and the quantified-self movement, tools to address transparency of health care organizations, and personal health records and portals provided significant milestones in the field. Conclusion Consumers are able to actively participate in the decision-making process and to engage in health care processes and decisions. However, challenges such as health literacy and the digital divide have hindered us from maximizing the potential of CHI tools with a significant portion of underserved populations unable to access and utilize them. At the same time, at a global scale consumer tools can increase access to care for underserved populations in developing countries. The field continues to grow and emerging movements such as precision medicine and the sharing economy will introduce new opportunities and challenges. PMID:27199196

  3. Metagenome Assembly at the DOE JGI (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Chain, Patrick

    2018-01-25

    Patrick Chain of DOE JGI at LANL, Co-Chair of the Metagenome-specific Assembly session, on Metagenome Assembly at the DOE JGIat the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  4. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Crow, John

    2018-01-22

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  5. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doveton, John H.; Watney, W. Lynn

    The program, for development and methodologies, was a 3-year interdisciplinary effort to develop an interactive, integrated Internet Website named GEMINI (Geo-Engineering Modeling through Internet Informatics) that would build real-time geo-engineering reservoir models for the Internet using the latest technology in Web applications.

  6. Medical informatics and telemedicine: A vision

    NASA Technical Reports Server (NTRS)

    Clemmer, Terry P.

    1991-01-01

    The goal of medical informatics is to improve care. This requires the commitment and harmonious collaboration between the computer scientists and clinicians and an integrated database. The vision described is how medical information systems are going to impact the way medical care is delivered in the future.

  7. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crow, John

    2012-06-01

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  8. Comparison of Normalized and Unnormalized Single Cell and Population Assemblies (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Hugenholtz, Phil

    2018-02-12

    University of Queensland's Phil Hugenholtz on "Comparison of Normalized and Unnormalized Single Cell and Population Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  9. National Pharmaceutical Stockpile drill analysis using XML data collection on wireless Java phones.

    PubMed

    Karras, B T; Huq, S Huq; Bliss, D; Lober, W B

    2002-01-01

    This study describes an informatics effort to track subjects through a National Pharmaceutical Stockpile (NPS) distribution drill. The drill took place in Seattle on 1/24/2002. Washington and the State Department of Health are among the first in the nation to stage a NPS drill testing the distribution of medications to mock patients, thereby testing the treatment capacity of the plan given a post-anthrax exposure scenario. The goal of the Public Health Informatics Group at the University of Washington (www.phig.washington.edu) was to use informatics approaches to monitor subject numbers and elapsed time. This study compares accuracy of time measurements using a mobile phone Java application to traditional paper recording in a live drill of the NPS. Pearson correlation = 1.0 in 2 of 3 stations. Differences in last station measurements can be explained by delay in recording of the exit time. We discuss development of the application itself and lessons learned. (MeSH Bioterrorism, Informatics, Public Health)

  10. Core informatics competencies for clinical and translational scientists: what do our customers and collaborators need to know?

    PubMed Central

    Valenta, Annette L; Meagher, Emma A; Tachinardi, Umberto

    2016-01-01

    Since the inception of the Clinical and Translational Science Award (CTSA) program in 2006, leaders in education across CTSA sites have been developing and updating core competencies for Clinical and Translational Science (CTS) trainees. By 2009, 14 competency domains, including biomedical informatics, had been identified and published. Since that time, the evolution of the CTSA program, changes in the practice of CTS, the rapid adoption of electronic health records (EHRs), the growth of biomedical informatics, the explosion of big data, and the realization that some of the competencies had proven to be difficult to apply in practice have made it clear that the competencies should be updated. This paper describes the process undertaken and puts forth a new set of competencies that has been recently endorsed by the Clinical Research Informatics Workgroup of AMIA. In addition to providing context and background for the current version of the competencies, we hope this will serve as a model for revision of competencies over time. PMID:27121608

  11. Big data: the next frontier for innovation in therapeutics and healthcare.

    PubMed

    Issa, Naiem T; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2014-05-01

    Advancements in genomics and personalized medicine not only effect healthcare delivery from patient and provider standpoints, but also reshape biomedical discovery. We are in the era of the '-omics', wherein an individual's genome, transcriptome, proteome and metabolome can be scrutinized to the finest resolution to paint a personalized biochemical fingerprint that enables tailored treatments, prognoses, risk factors, etc. Digitization of this information parlays into 'big data' informatics-driven evidence-based medical practice. While individualized patient management is a key beneficiary of next-generation medical informatics, this data also harbors a wealth of novel therapeutic discoveries waiting to be uncovered. 'Big data' informatics allows for networks-driven systems pharmacodynamics whereby drug information can be coupled to cellular- and organ-level physiology for determining whole-body outcomes. Patient '-omics' data can be integrated for ontology-based data-mining for the discovery of new biological associations and drug targets. Here we highlight the potential of 'big data' informatics for clinical pharmacology.

  12. Big data: the next frontier for innovation in therapeutics and healthcare

    PubMed Central

    Issa, Naiem T; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2015-01-01

    Advancements in genomics and personalized medicine not only effect healthcare delivery from patient and provider standpoints, but also reshape biomedical discovery. We are in the era of the “-omics”, wherein an individual’s genome, transcriptome, proteome and metabolome can be scrutinized to the finest resolution to paint a personalized biochemical fingerprint that enables tailored treatments, prognoses, risk factors, etc. Digitization of this information parlays into “big data” informatics-driven evidence-based medical practice. While individualized patient management is a key beneficiary of next-generation medical informatics, this data also harbors a wealth of novel therapeutic discoveries waiting to be uncovered. “Big data” informatics allows for networks-driven systems pharmacodynamics whereby drug information can be coupled to cellular- and organ-level physiology for determining whole-body outcomes. Patient “-omics” data can be integrated for ontology-based data-mining for the discovery of new biological associations and drug targets. Here we highlight the potential of “big data” informatics for clinical pharmacology. PMID:24702684

  13. The European community and its standardization efforts in medical informatics

    NASA Astrophysics Data System (ADS)

    Mattheus, Rudy A.

    1992-07-01

    A summary of the CEN TC 251/4 ''Medical Imaging and Multi-Media'' activities will be given. CEN is the European standardization institute, TC 251 deals with medical informatics. Standardization is a condition for the wide scale use of health care and medical informatics and for the creation of a common market. In the last two years, three important categories-- namely, the Commission of the European Communities with their programs and the mandates, the medical informaticians through their European professional federation, and the national normalization institutes through the European committee--have shown to be aware of this problem and have taken actions. As a result, a number of AIM (Advanced Informatics in Medicine), CEC sponsored projects, the CEC mandates to CEN and EWOS, the EFMI working group on standardization, the technical committee of CEN, and the working groups and project teams of CEN and EWOS are working on the subject. On overview of the CEN TC 251/4 ''Medical Imaging and Multi-Media'' activities will be given, including their relation to other work.

  14. The Relationship of Genetics, Nursing Practice, and Informatics Tools in 6-Mercaptopurine Dosing in Pediatric Oncology [Formula: see text].

    PubMed

    Haylett, Wendy J

    An antileukemic agent prescribed for pediatric oncology patients during the maintenance phase of therapy for acute lymphoblastic leukemia, 6-mercaptopurine (6-MP), is highly influenced by genetic variations in the thiopurine S-methyltransferase enzyme. As such, 6-MP must be dosed so that patients with 1 or 2 inactive thiopurine S-methyltransferase alleles will not incur an increased risk for myelosuppression or other toxicities. Informatics tools such as clinical decision support systems are useful for the application of this and similar pharmacogenetics information to the realm of nursing and clinical practice for safe and effective patient care. This article will discuss pharmacogenetics and the associated use of 6-MP; present implications for nursing practice; identify informatics tools such as clinical decision support systems, which can greatly enhance the care of patients whose treatment is based on critical genetic information; and examine the relationship of genetics, nursing practice, and informatics for 6-MP dosing in pediatric oncology.

  15. Design of a Community-Engaged Health Informatics Platform with an Architecture of Participation.

    PubMed

    Millery, Mari; Ramos, Wilson; Lien, Chueh; Aguirre, Alejandra N; Kukafka, Rita

    2015-01-01

    Community-engaged health informatics (CEHI) applies information technology and participatory approaches to improve the health of communities. Our objective was to translate the concept of CEHI into a usable and replicable informatics platform that will facilitate community-engaged practice and research. The setting is a diverse urban neighborhood in New York City. The methods included community asset mapping, stakeholder interviews, logic modeling, analysis of affordances in open-source tools, elicitation of use cases and requirements, and a survey of early adopters. Based on synthesis of data collected, GetHealthyHeigths.org (GHH) was developed using open-source LAMP stack and Drupal content management software. Drupal's organic groups module was used for novel participatory functionality, along with detailed user roles and permissions. Future work includes evaluation of GHH and its impact on agency and service networks. We plan to expand GHH with additional functionality to further support CEHI by combining informatics solutions with community engagement to improve health.

  16. Design of a Community-Engaged Health Informatics Platform with an Architecture of Participation

    PubMed Central

    Millery, Mari; Ramos, Wilson; Lien, Chueh; Aguirre, Alejandra N.; Kukafka, Rita

    2015-01-01

    Community-engaged health informatics (CEHI) applies information technology and participatory approaches to improve the health of communities. Our objective was to translate the concept of CEHI into a usable and replicable informatics platform that will facilitate community-engaged practice and research. The setting is a diverse urban neighborhood in New York City. The methods included community asset mapping, stakeholder interviews, logic modeling, analysis of affordances in open-source tools, elicitation of use cases and requirements, and a survey of early adopters. Based on synthesis of data collected, GetHealthyHeigths.org (GHH) was developed using open-source LAMP stack and Drupal content management software. Drupal’s organic groups module was used for novel participatory functionality, along with detailed user roles and permissions. Future work includes evaluation of GHH and its impact on agency and service networks. We plan to expand GHH with additional functionality to further support CEHI by combining informatics solutions with community engagement to improve health. PMID:26958227

  17. Research-based Curricula in the Context of 21st Century Data Science

    NASA Astrophysics Data System (ADS)

    Fox, P. A.

    2017-12-01

    When the Informatics revolution began again a little more than 10 years ago (longer for bio-informatics) geosciences (or Earth and Space Sciences) was paying attention via international attention from the Electronic Geophysical Year (eGY) and related endeavours (IPY, IYPE, IHY). The research agenda was in the spotlight, or moreso what Earth and Space Science informatics, cast in emergent escience or cyber-infrastructures, could benefit from was the main focus of attention and funding. At the time almost all "Xinformatics" efforts were novel in their discipline or traditionally defined. However, a broader research and education agenda was clearly needed. At the same time, a much more cross-disciplinary field; data science emerged. In this presentation, we relate the development, delivery and assessment of research oriented informatics, data science and their specializations into geoscience education in generak and as undertaken at RPI over the last nine years. We conclude with a longitudinal view of the impacts on career paths in the 21st century

  18. The Biodiversity Informatics Potential Index

    PubMed Central

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to contribute to filling gaps in digitized biodiversity data; (b) assisting countries potentially in need (for example mega-diverse) to mobilize resources and collect data that could be used in decision-making; and (c) allowing identification of which biodiversity informatics-resourced countries could afford to assist countries lacking in biodiversity informatics capacity, and which data-rich countries should benefit most from such help. PMID:22373233

  19. Advancing Climate Change and Impacts Science Through Climate Informatics

    NASA Astrophysics Data System (ADS)

    Lenhardt, W.; Pouchard, L. C.; King, A. W.; Branstetter, M. L.; Kao, S.; Wang, D.

    2010-12-01

    This poster will outline the work to date on developing a climate informatics capability at Oak Ridge National Laboratory (ORNL). The central proposition of this effort is that the application of informatics and information science to the domain of climate change science is an essential means to bridge the realm of high performance computing (HPC) and domain science. The goal is to facilitate knowledge capture and the creation of new scientific insights. For example, a climate informatics capability will help with the understanding and use of model results in domain sciences that were not originally in the scope. From there, HPC can also benefit from feedback as the new approaches may lead to better parameterization in the models. In this poster we will summarize the challenges associated with climate change science that can benefit from the systematic application of informatics and we will highlight our work to date in creating the climate informatics capability to address these types of challenges. We have identified three areas that are particularly challenging in the context of climate change science: 1) integrating model and observational data across different spatial and temporal scales, 2) model linkages, i.e. climate models linked to other models such as hydrologic models, and 3) model diagnostics. Each of these has a methodological component and an informatics component. Our project under way at ORNL seeks to develop new approaches and tools in the context of linking climate change and water issues. We are basing our work on the following four use cases: 1) Evaluation/test of CCSM4 biases in hydrology (precipitation, soil water, runoff, river discharge) over the Rio Grande Basin. User: climate modeler. 2) Investigation of projected changes in hydrology of Rio Grande Basin using the VIC (Variable Infiltration Capacity Macroscale) Hydrologic Model. User: watershed hydrologist/modeler. 3) Impact of climate change on agricultural productivity of the Rio Grande Basin. User: climate impact scientist, agricultural economist. 4) Renegotiation of the 1944 “Treaty for the Utilization of Waters of the Colorado and Tijuana Rivers and of the Rio Grande”. User: A US State Department analyst or their counterpart in Mexico.

  20. Audacious goals for health and biomedical informatics in the new millennium.

    PubMed

    Greenes, R A; Lorenzi, N M

    1998-01-01

    The 1998 Scientific Symposium of the American College of Medical Informatics (ACMI) was devoted to developing visions for the future of health care and biomedicine and a strategic agenda for health and biomedical informatics in support of those visions. This symposium focus was prompted by the many major changes currently underway in health care delivery, education, and research, as well as in our health and biomedical enterprises, and by the constantly increasing role of information technology in both shaping and enabling these changes. The three audacious goals developed for 2008 are a virtual health care databank, a national health care knowledge base, and a personal clinical health record.

  1. Evidence-based practice for mere mortals: the role of informatics and health services research.

    PubMed

    Sim, Ida; Sanders, Gillian D; McDonald, Kathryn M

    2002-04-01

    The poor translation of evidence into practice is a well-known problem. Hopes are high that information technology can help make evidence-based practice feasible for mere mortal physicians. In this paper, we draw upon the methods and perspectives of clinical practice, medical informatics, and health services research to analyze the gap between evidence and action, and to argue that computing systems for bridging this gap should incorporate both informatics and health services research expertise. We discuss 2 illustrative systems--trial banks and a web-based system to develop and disseminate evidence-based guidelines (alchemist)--and conclude with a research and training agenda.

  2. Design of e-Science platform for biomedical imaging research cross multiple academic institutions and hospitals

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin

    2012-02-01

    More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.

  3. Contemporary cybernetics and its facets of cognitive informatics and computational intelligence.

    PubMed

    Wang, Yingxu; Kinsner, Witold; Zhang, Du

    2009-08-01

    This paper explores the architecture, theoretical foundations, and paradigms of contemporary cybernetics from perspectives of cognitive informatics (CI) and computational intelligence. The modern domain and the hierarchical behavioral model of cybernetics are elaborated at the imperative, autonomic, and cognitive layers. The CI facet of cybernetics is presented, which explains how the brain may be mimicked in cybernetics via CI and neural informatics. The computational intelligence facet is described with a generic intelligence model of cybernetics. The compatibility between natural and cybernetic intelligence is analyzed. A coherent framework of contemporary cybernetics is presented toward the development of transdisciplinary theories and applications in cybernetics, CI, and computational intelligence.

  4. A short history of the beginnings of hospital information systems in Argentina.

    PubMed

    Yácubsohn, V

    2012-01-01

    To describe the development of early health information systems in Argentina and their impact on the development of professional societies in the discipline The first hospital information systems and health surveillance systems in Argentina are described and related to the rise of professional organizations for health informatics. The early health information systems in Argentina are related to precursor developments in medical informatics. Argentina saw a number of hospital information systems developed starting in 1977, which had an important influence on the practice and experience in medical informatics in the country, and the participation of Argentine professionals in national, regional, and international activities in the field.

  5. Metagenomics, metaMicrobesOnline and Kbase Data Integration (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Dehal, Paramvir

    2018-02-06

    Berkeley Lab's Paramvir Dehal on "Managing and Storing large Datasets in MicrobesOnline, metaMicrobesOnline and the DOE Knowledgebase" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  6. Informatics for maize research: What is possible, and what is practical?

    USDA-ARS?s Scientific Manuscript database

    The informatics tools and technologies developed to address problems in fields outside of biology often drive what becomes available to biologists. Within the biological sciences, research groups have made headway implementing tools to solve problems of interest to maize researchers, but we do not ...

  7. Internet in the Indian Context.

    ERIC Educational Resources Information Center

    Rao, Sizigendi Subba

    This paper presents briefly the concept of the Internet and lists the Internet service providers in India (Education and Research Network from Department of Electronics, National Informatics Network from National Informatics Center, Gateway Internet Access Service from Videsh Sanchar Nigam Limited, and SOFTNET from Software Technology Parks India)…

  8. Microcomputers and Informatics Education at the University Level.

    ERIC Educational Resources Information Center

    Boyanov, Todor

    1984-01-01

    Because of the widespread use of microcomputers in Bulgaria, informatics education for all college students is considered both possible and necessary. Uses of microcomputers in various disciplines are described, including those in mathematics/mechanics, the experimental sciences, and humanities. Brief comments on computer-assisted-learning and…

  9. An Abridged History of Medical Informatics Education in Europe

    PubMed Central

    Hasman, Arie; Mantas, John; Zarubina, Tatyana

    2014-01-01

    This contribution presents the development of medical informatics education in Europe. It does not discuss all developments that took place. Rather it discerns several themes that indicate the progress in the field, starting from the initiation phase to the final quality control phase. PMID:24648617

  10. 78 FR 37834 - Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics... Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data Access Request. 0925-NEW...

  11. The Dragon’s Reach: An Assessment of the People’s Republic of China’s Expeditionary Capabilities

    DTIC Science & Technology

    2015-05-21

    concepts of active defense, local war under conditions of informatization , and people’s war.46 Active defense is the focus on defending national...under condition of informatization , which focuses on a 45 Anthony Cordesman, Chinese Military

  12. Introduction to Metagenomics at DOE JGI (Opening Remarks for the Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Kyrpides, Nikos [DOE JGI

    2018-05-30

    After a quick introduction by DOE JGI Director Eddy Rubin, DOE JGI's Nikos Kyrpides delivers the opening remarks at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  13. Knowledge management and informatics considerations for comparative effectiveness research: a case-driven exploration.

    PubMed

    Embi, Peter J; Hebert, Courtney; Gordillo, Gayle; Kelleher, Kelly; Payne, Philip R O

    2013-08-01

    As clinical data are increasingly collected and stored electronically, their potential use for comparative effectiveness research (CER) grows. Despite this promise, challenges face those wishing to leverage such data. In this paper we aim to enumerate some of the knowledge management and informatics issues common to such data reuse. After reviewing the current state of knowledge regarding biomedical informatics challenges and best practices related to CER, we then present 2 research projects at our institution. We analyze these and highlight several common themes and challenges related to the conduct of CER studies. Finally, we represent these emergent themes. The informatics challenges commonly encountered by those conducting CER studies include issues related to data information and knowledge management (eg, data reuse, data preparation) as well as those related to people and organizational issues (eg, sociotechnical factors and organizational factors). Examples of these are described in further detail and a formal framework for describing these findings is presented. Significant challenges face researchers attempting to use often diverse and heterogeneous datasets for CER. These challenges must be understood in order to be dealt with successfully and can often be overcome with the appropriate use of informatics best practices. Many research and policy questions remain to be answered in order to realize the full potential of the increasingly electronic clinical data available for such research.

  14. Trends in biomedical informatics: automated topic analysis of JAMIA articles.

    PubMed

    Han, Dong; Wang, Shuang; Jiang, Chao; Jiang, Xiaoqian; Kim, Hyeon-Eui; Sun, Jimeng; Ohno-Machado, Lucila

    2015-11-01

    Biomedical Informatics is a growing interdisciplinary field in which research topics and citation trends have been evolving rapidly in recent years. To analyze these data in a fast, reproducible manner, automation of certain processes is needed. JAMIA is a "generalist" journal for biomedical informatics. Its articles reflect the wide range of topics in informatics. In this study, we retrieved Medical Subject Headings (MeSH) terms and citations of JAMIA articles published between 2009 and 2014. We use tensors (i.e., multidimensional arrays) to represent the interaction among topics, time and citations, and applied tensor decomposition to automate the analysis. The trends represented by tensors were then carefully interpreted and the results were compared with previous findings based on manual topic analysis. A list of most cited JAMIA articles, their topics, and publication trends over recent years is presented. The analyses confirmed previous studies and showed that, from 2012 to 2014, the number of articles related to MeSH terms Methods, Organization & Administration, and Algorithms increased significantly both in number of publications and citations. Citation trends varied widely by topic, with Natural Language Processing having a large number of citations in particular years, and Medical Record Systems, Computerized remaining a very popular topic in all years. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Informatics Futures in Dental Education and Research: Quality Assurance.

    ERIC Educational Resources Information Center

    Crall, James J.

    1991-01-01

    The paper addresses the potential of informatics to patient care quality assurance curricula, focusing on (1) terminology and developments related to quality of care evaluations; (2) criticisms of traditional approaches; (3) limitations of existing data sources for quality assurance in dentistry; and (4) quality assurance considerations in…

  16. Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Li, Weizhong

    2018-02-12

    San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  17. An Informatics Approach to Establishing a Sustainable Public Health Community

    ERIC Educational Resources Information Center

    Kriseman, Jeffrey Michael

    2012-01-01

    This work involved the analysis of a public health system, and the design, development and deployment of enterprise informatics architecture, and sustainable community methods to address problems with the current public health system. Specifically, assessment of the Nationally Notifiable Disease Surveillance System (NNDSS) was instrumental in…

  18. Entrepreneurial Health Informatics for Computer Science and Information Systems Students

    ERIC Educational Resources Information Center

    Lawler, James; Joseph, Anthony; Narula, Stuti

    2014-01-01

    Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…

  19. Effectiveness of various public private partnership pavement rehabilitation treatments: A big data informatics survival analysis of pavement service life : final report.

    DOT National Transportation Integrated Search

    2017-09-29

    Past research efforts have used a wide variety of methodological approaches to analyze pavement performance indicators, pavement rehabilitation treatments, and pavement service life. Using big data informatics methods, the intent of this study is to ...

  20. Visualizing the Structure of Medical Informatics Using Term Co-Occurrence Analysis.

    ERIC Educational Resources Information Center

    Morris, Theodore Allan

    2000-01-01

    Examines the structure of medical informatics and the relationship between biomedicine and information science and information technology. Uses co-occurrence analysis of subject headings assigned to items indexed for MEDLINE as well as multidimensional scaling to show seven to eight broad multidisciplinary subject clusters. (Contains 28…

  1. Introduction to 3D Graphics through Excel

    ERIC Educational Resources Information Center

    Benacka, Jan

    2013-01-01

    The article presents a method of explaining the principles of 3D graphics through making a revolvable and sizable orthographic parallel projection of cuboid in Excel. No programming is used. The method was tried in fourteen 90 minute lessons with 181 participants, which were Informatics teachers, undergraduates of Applied Informatics and gymnasium…

  2. One Burn, One Standard

    DTIC Science & Technology

    2014-09-01

    Johannes Kepler University Linz Software GmbH Research Department Medical Informatics Hagenberg, Austria Herbert L. Haller, MD Trauma Hospital Linz of...0000000000000004 Address correspondence to M. Giretzlehner, PhD, Johannes Kepler University Linz, RISC Software GmbH, Research Department Medical Informatics, Softwarepark 35, 4232 Hagenberg, Austria. One Burn, One Standard LETTER TO THE EDITOR

  3. Nursing Informatics Competency Program

    ERIC Educational Resources Information Center

    Dunn, Kristina

    2017-01-01

    Currently, C Hospital lacks a standardized nursing informatics competency program to validate nurses' skills and knowledge in using electronic medical records (EMRs). At the study locale, the organization is about to embark on the implementation of a new, more comprehensive EMR system. All departments will be required to use the new EMR, unlike…

  4. Designing Biomedical Informatics Infrastructure for Clinical and Translational Science

    ERIC Educational Resources Information Center

    La Paz Lillo, Ariel Isaac

    2009-01-01

    Clinical and Translational Science (CTS) rests largely on information flowing smoothly at multiple levels, in multiple directions, across multiple locations. Biomedical Informatics (BI) is seen as a backbone that helps to manage information flows for the translation of knowledge generated and stored in silos of basic science into bedside…

  5. Pre-School Teachers' Informatics and Information Literacy

    ERIC Educational Resources Information Center

    Tatkovic, Nevenka; Ruzic, Maja; Pecaric, Dilda

    2006-01-01

    The life and activities of every man in the period of transition from the second into the third millennium have been marked by epochal changes which appear as the consequence of scientific and technological revolution dominated by highly developed information and communication technology. Informatics and information education based on information…

  6. WE-E-12A-01: Medical Physics 1.0 to 2.0: MRI, Displays, Informatics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickens, D; Flynn, M; Peck, D

    Medical Physics 2.0 is a bold vision for an existential transition of clinical imaging physics in face of the new realities of value-based and evidence-based medicine, comparative effectiveness, and meaningful use. It speaks to how clinical imaging physics can expand beyond traditional insular models of inspection and acceptance testing, oriented toward compliance, towards team-based models of operational engagement, prospective definition and assurance of effective use, and retrospective evaluation of clinical performance. Organized into four sessions of the AAPM, this particular session focuses on three specific modalities as outlined below. MRI 2.0: This presentation will look into the future of clinicalmore » MR imaging and what the clinical medical physicist will need to be doing as the technology of MR imaging evolves. Many of the measurement techniques used today will need to be expanded to address the advent of higher field imaging systems and dedicated imagers for specialty applications. Included will be the need to address quality assurance and testing metrics for multi-channel MR imagers and hybrid devices such as MR/PET systems. New pulse sequences and acquisition methods, increasing use of MR spectroscopy, and real-time guidance procedures will place the burden on the medical physicist to define and use new tools to properly evaluate these systems, but the clinical applications must be understood so that these tools are use correctly. Finally, new rules, clinical requirements, and regulations will mean that the medical physicist must actively work to keep her/his sites compliant and must work closely with physicians to ensure best performance of these systems. Informatics Display 1.0 to 2.0: Medical displays are an integral part of medical imaging operation. The DICOM and AAPM (TG18) efforts have led to clear definitions of performance requirements of monochrome medical displays that can be followed by medical physicists to ensure proper performance. However, effective implementation of that oversight has been challenging due to the number and extend of medical displays in use at a facility. The advent of color display and mobile displays has added additional challenges to the task of the medical physicist. This informatics display lecture first addresses the current display guidelines (the 1.0 paradigm) and further outlines the initiatives and prospects for color and mobile displays (the 2.0 paradigm). Informatics Management 1.0 to 2.0: Imaging informatics is part of every radiology practice today. Imaging informatics covers everything from the ordering of a study, through the data acquisition and processing, display and archiving, reporting of findings and the billing for the services performed. The standardization of the processes used to manage the information and methodologies to integrate these standards is being developed and advanced continuously. These developments are done in an open forum and imaging organizations and professionals all have a part in the process. In the Informatics Management presentation, the flow of information and the integration of the standards used in the processes will be reviewed. The role of radiologists and physicists in the process will be discussed. Current methods (the 1.0 paradigm) and evolving methods (the 2.0 paradigm) for validation of informatics systems function will also be discussed. Learning Objectives: Identify requirements for improving quality assurance and compliance tools for advanced and hybrid MRI systems. Identify the need for new quality assurance metrics and testing procedures for advanced systems. Identify new hardware systems and new procedures needed to evaluate MRI systems. Understand the components of current medical physics expectation for medical displays. Understand the role and prospect fo medical physics for color and mobile display devices. Understand different areas of imaging informatics and the methodology for developing informatics standards. Understand the current status of informatics standards and the role of physicists and radiologists in the process, and the current technology for validating the function of these systems.« less

  7. Informatic search strategies to discover analogues and variants of natural product archetypes.

    PubMed

    Johnston, Chad W; Connaty, Alex D; Skinnider, Michael A; Li, Yong; Grunwald, Alyssa; Wyatt, Morgan A; Kerr, Russell G; Magarvey, Nathan A

    2016-03-01

    Natural products are a crucial source of antimicrobial agents, but reliance on low-resolution bioactivity-guided approaches has led to diminishing interest in discovery programmes. Here, we demonstrate that two in-house automated informatic platforms can be used to target classes of biologically active natural products, specifically, peptaibols. We demonstrate that mass spectrometry-based informatic approaches can be used to detect natural products with high sensitivity, identifying desired agents present in complex microbial extracts. Using our specialised software packages, we could elaborate specific branches of chemical space, uncovering new variants of trichopolyn and demonstrating a way forward in mining natural products as a valuable source of potential pharmaceutical agents.

  8. Open source bioimage informatics for cell biology.

    PubMed

    Swedlow, Jason R; Eliceiri, Kevin W

    2009-11-01

    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery.

  9. A training network for introducing telemedicine, telecare and hospital informatics in the Adriatic-Danube-Black Sea region.

    PubMed

    Anogeianaki, Antonia; Ilonidis, George; Anogianakis, George; Lianguris, John; Katsaros, Kyriakos; Pseftogianni, Dimitra; Klisarova, Anelia; Negrev, Negrin

    2004-01-01

    DIMNET is a training mechanism for a region of central Europe. The aim is to upgrade the information technology skills of local hospital personnel and preserve their employability following the introduction of medical informatics. DIMNET uses Internet-based virtual classrooms to provide a 200-hour training course in medical informatics. Training takes place in the cities of Drama, Kavala, Xanthi and Varna. So far, more than 600 people have benefited from the programme. Initial results are encouraging. DIMNET promotes a new vocational training culture in the Balkans and is supported by local governments that perceive health-care as a fulcrum for economic development.

  10. The impact of informatics on nursing education: a review of the literature.

    PubMed

    Ainsley, Bonnie; Brown, Abbie

    2009-05-01

    On the basis of a study by the Institute of Medicine, the current health care system is facing several challenges that may be addressed by changes in health professions education. The study focused on integration of five core competencies into health professions education, one of which was informatics. This critical analysis investigates current use of technology and online instructional strategies in nursing education. It also explores the potential impact of integration of informatics into nursing education to increase the cognitive skills of nurses to promote evidence-based nursing. Advantages and disadvantages of using online education in the instruction of nursing students and recommendations for best online practices in nursing education are discussed.

  11. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankit; Choudhary, Alok

    2016-05-01

    Our ability to collect "big data" has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery. The need for data informatics is also emphasized by the Materials Genome Initiative (MGI), further boosting the emerging field of materials informatics. In this article, we look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models (property prediction) and inverse models (materials discovery). Such analytics can significantly reduce time-to-insight and accelerate cost-effective materials discovery, which is the goal of MGI.

  12. Interdisciplinary training to build an informatics workforce for precision medicine

    PubMed Central

    Williams, Marc S.; Ritchie, Marylyn D.; Payne, Philip R.O.

    2015-01-01

    The proposed Precision Medicine Initiative has the potential to transform medical care in the future through a shift from interventions based on evidence from population studies and empiric response to ones that account for a range of individual factors that more reliably predict response and outcomes for the patient. Many things are needed to realize this vision, but one of the most critical is an informatics workforce that has broad interdisciplinary training in basic science, applied research and clinical implementation. Current approaches to informatics training do not support this requirement. We present a collaborative model of training that has the potential to produce a workforce prepared for the challenges of implementing precision medicine. PMID:27054076

  13. Informatics and computational strategies for the study of lipids.

    PubMed

    Yetukuri, Laxman; Ekroos, Kim; Vidal-Puig, Antonio; Oresic, Matej

    2008-02-01

    Recent advances in mass spectrometry (MS)-based techniques for lipidomic analysis have empowered us with the tools that afford studies of lipidomes at the systems level. However, these techniques pose a number of challenges for lipidomic raw data processing, lipid informatics, and the interpretation of lipidomic data in the context of lipid function and structure. Integration of lipidomic data with other systemic levels, such as genomic or proteomic, in the context of molecular pathways and biophysical processes provides a basis for the understanding of lipid function at the systems level. The present report, based on the limited literature, is an update on a young but rapidly emerging field of lipid informatics and related pathway reconstruction strategies.

  14. Introduction: Forecasting Informatics Competencies for Nurses in the Future of Connected Health.

    PubMed

    Murphy, Judy; Goossen, William

    2017-01-01

    This introduction to the book discusses how the topic of competencies for nurses in a world of connected health needs to be addressed at the curriculum level to achieve the specific competencies for various roles, including practicing nurse, nurse teacher, nurse leader, and nursing informatics specialists. It looks back at milestone publications from the international Nursing Informatics post conferences that still serve a purpose for inspiring developments today and looks forward to the way nurses can use connected health to improve the health and health care for their patients. Specific emerging topics in health information technology are addressed as well, such as semantics, genetics, big data, eHealth and social media.

  15. MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Sakakibara, Yasumbumi

    2018-02-13

    Keio University's Yasumbumi Sakakibara on "MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  16. Developing and Implementing a Combined Chemistry and Informatics Curriculum for Undergraduate and Graduate Students in the Czech Republic

    ERIC Educational Resources Information Center

    Jirat, Jiri; Cech, Petr; Znamenacek, Jiri; Simek, Miroslav; Skuta, Ctibor; Vanek, Tomas; Dibuszova, Eva; Nic, Miloslav; Svozil, Daniel

    2013-01-01

    Experience developing multidisciplinary bachelor's and master's curricula involving intertwined chemistry, informatics, and librarianship-editorship skills is described. The bachelor's curriculum was created in close cooperation of academic staff, library staff, and the publishing house staff (Institute of Chemical Technology Prague: a sole…

  17. Examining the Impact of Non-Technical Security Management Factors on Information Security Management in Health Informatics

    ERIC Educational Resources Information Center

    Imam, Abbas H.

    2013-01-01

    Complexity of information security has become a major issue for organizations due to incessant threats to information assets. Healthcare organizations are particularly concerned with security owing to the inherent vulnerability of sensitive information assets in health informatics. While the non-technical security management elements have been at…

  18. Testing Algorithmic Skills in Traditional and Non-Traditional Programming Environments

    ERIC Educational Resources Information Center

    Csernoch, Mária; Biró, Piroska; Máth, János; Abari, Kálmán

    2015-01-01

    The Testing Algorithmic and Application Skills (TAaAS) project was launched in the 2011/2012 academic year to test first year students of Informatics, focusing on their algorithmic skills in traditional and non-traditional programming environments, and on the transference of their knowledge of Informatics from secondary to tertiary education. The…

  19. Perceptions and Experiences of Baccalaureate Nursing Program Leaders Related to Nursing Informatics

    ERIC Educational Resources Information Center

    Larson, Lisa R.

    2017-01-01

    Nursing program leadership for integrating nursing informatics (NI) into curricula is essential. NI is a specialty that combines nursing science, computer science, and information science to manage health information and improve patient health outcomes (American Nurses Association, 2008). Approximately 98,000 patient deaths per year occur due to…

  20. Innovative Methods in Teaching Programming for Future Informatics Teachers

    ERIC Educational Resources Information Center

    Majherová, Janka; Králík, Václav

    2017-01-01

    In the training of future informatics teachers the students obtain experience with different methods of programming. As well, the students become familiar with programming by using the robotic system Lego Mindstorms. However, the small number of Lego systems available is a limiting factor for the teaching process. Use of virtual robotic…

  1. The Alzheimer’s Disease Neuroimaging Initiative Informatics Core: A Decade in Review

    PubMed Central

    Toga, Arthur W.; Crawford, Karen L.

    2015-01-01

    The Informatics Core of the Alzheimer’s Diseases Neuroimaging Initiative (ADNI) has coordinated data integration and dissemination for a continually growing and complex dataset in which both data contributors and recipients span institutions, scientific disciplines and geographic boundaries. This article provides an update on the accomplishments and future plans. PMID:26194316

  2. MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakakibara, Yasumbumi

    2011-10-13

    Keio University's Yasumbumi Sakakibara on "MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  3. DOE JGI Quality Metrics; Approaches to Scaling and Improving Metagenome Assembly (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Alex; Brown, C. Titus

    2011-10-13

    DOE JGI's Alex Copeland on "DOE JGI Quality Metrics" and Michigan State University's C. Titus Brown on "Approaches to Scaling and Improving Metagenome Assembly" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  4. Action Research on College English Writing Based on Information Technology from the Perspective of MOOCs

    ERIC Educational Resources Information Center

    Guo, Xuan

    2016-01-01

    The educational reform based on information technology at college has been paid high attention recently in China, which aims at using educational informatization to drive educational modernization and bringing online education into the reform and development strategy of the overall higher education. To promote the educational informatization is…

  5. DOE JGI Quality Metrics; Approaches to Scaling and Improving Metagenome Assembly (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Copeland, Alex; Brown, C. Titus

    2018-04-27

    DOE JGI's Alex Copeland on "DOE JGI Quality Metrics" and Michigan State University's C. Titus Brown on "Approaches to Scaling and Improving Metagenome Assembly" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  6. Visualizing the Structure of Medical Informatics Using Term Co-Occurrence Analysis: II. INSPEC Perspective.

    ERIC Educational Resources Information Center

    Morris, Theodore

    2001-01-01

    Term co-occurrence analysis of INSPEC classification codes and thesaurus terms used to index Medical Informatics literature reveals an information science and technology perspective on the field, to accompany the biomedical perspective previously reported. This study continues the search for a better understanding of the structure of Medical…

  7. Students' Knowledge, Opinions, and Behaviors Concerning Dental Informatics and Computer Applications.

    ERIC Educational Resources Information Center

    Lang, W. Paul; And Others

    1992-01-01

    A survey of 95 first-year and 91 fourth-year dental students concerning informatics and computer applications in dentistry investigated knowledge of terms and concepts related to hardware, software, electronic communication, and dental applications; opinions concerning use of the technology; and extent of experience in 4 areas of use. (MSE)

  8. Analysis on Influencing Factors and Countermeasures for College Students' Network Entertainment

    ERIC Educational Resources Information Center

    Liu, Xiaohong; Wang, Lisi; Yang, Qiong

    2012-01-01

    Informatization, as a trend in the world's development nowadays, has become an important force to promote economic and social reforms. Since 1990s, information technology reforms have advanced dramatically. Along with the constant development of the information industry as well as the popularization of information network, informatization has been…

  9. Health Informatics as an ABET-CAC Accreditable IS Program

    ERIC Educational Resources Information Center

    Landry, Jeffrey P.; Daigle, Roy J.; Pardue, Harold; Longenecker, Herbert E., Jr.; Campbell, S. Matt

    2012-01-01

    This paper builds on prior work defending innovative information systems programs as ABET-accreditable. A proposal for a four-year degree program in health informatics, initiated at the authors' university to combat enrollment declines and to therefore help information systems to survive and thrive, is described. The program proposal is then…

  10. Informatics Teaching from the Students' Point of View

    ERIC Educational Resources Information Center

    Zahorec, Jan; Haskova, Alena

    2013-01-01

    Branches of science and technical/engineering study have for a long time been the less favoured disciplines and students have not been interested in studying them. Informatics/computer education, based on its character, belongs to these disciplines, but on the contrary it belongs rather to the group of popular school subjects. The paper presents…

  11. Contemporary Issues in Medicine--Medical Informatics and Population Health: Report II of the Medical School Objectives Project.

    ERIC Educational Resources Information Center

    Academic Medicine, 1999

    1999-01-01

    The report of the Association of American Medical Colleges' Medical School Objectives Program presents the work of two expert panels. One, on medical informatics, identified five important physician roles: lifelong learner, clinician, educator, researcher, and manager. Another panel established a definition for "population health…

  12. Teacher Perception on Educational Informatics Network: A Qualitative Study of a Turkish Anatolian High School

    ERIC Educational Resources Information Center

    Karalar, Halit; Dogan, Ugur

    2017-01-01

    FATIH Project carried out by the Turkish government is one of the comprehensive technology integration project in the World. With this project, interactive boards, tablets and multifunctional printers have been distributed to schools and Internet infrastructure of schools improved. EIN (Educational Informatics Network) platform, known as EBA…

  13. Treating the Healthcare Workforce Crisis: A Prescription for a Health Informatics Curriculum

    ERIC Educational Resources Information Center

    Campbell, S. Matt; Pardue, J. Harold; Longenecker, Herbert E., Jr.; Barnett, H. Les; Landry, Jeffrey P.

    2012-01-01

    A serious need exists for information systems workers who have an understanding of the healthcare environment. Traditional information systems degree programs do not adequately prepare students to enter the healthcare environment. In this paper, we propose a curriculum for a baccalaureate health informatics degree that combines the technical and…

  14. Medical Informatics Specialty in the Developed English-Speaking Countries: The Terminology Comparative Analysis

    ERIC Educational Resources Information Center

    Kobryn, Nadia

    2015-01-01

    The article studies the development process of medical informatics specialty terminology as the ground for further research into foreign countries' experience, including the Canadian one, of specialists' professional training in the field of MI. The study determines the origin and chief stages of the formation and development of the medical…

  15. 76 FR 24889 - Submission for OMB Review; Comment Request; Cancer Biomedical Informatics Grid® (caBIG®) Support...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... the Office of Management and Budget (OMB) a request to review and approve the information collection...: The NCI Center for Biomedical Informatics and Information Technology (CBIIT) launched the enterprise...] Enterprise Support Network (ESN), including the caBIG [supreg] Support Service Provider (SSP) Program. The ca...

  16. Trends in biomedical informatics: most cited topics from recent years

    PubMed Central

    Kim, Hyeon-Eui; Jiang, Xiaoqian; Kim, Jihoon

    2011-01-01

    Biomedical informatics is a young, highly interdisciplinary field that is evolving quickly. It is important to know which published topics in generalist biomedical informatics journals elicit the most interest from the scientific community, and whether this interest changes over time, so that journals can better serve their readers. It is also important to understand whether free access to biomedical informatics articles impacts their citation rates in a significant way, so authors can make informed decisions about unlock fees, and journal owners and publishers understand the implications of open access. The topics and JAMIA articles from years 2009 and 2010 that have been most cited according to the Web of Science are described. To better understand the effects of free access in article dissemination, the number of citations per month after publication for articles published in 2009 versus 2010 was compared, since there was a significant change in free access to JAMIA articles between those years. Results suggest that there is a positive association between free access and citation rate for JAMIA articles. PMID:22180873

  17. Health Informatics via Machine Learning for the Clinical Management of Patients.

    PubMed

    Clifton, D A; Niehaus, K E; Charlton, P; Colopy, G W

    2015-08-13

    To review how health informatics systems based on machine learning methods have impacted the clinical management of patients, by affecting clinical practice. We reviewed literature from 2010-2015 from databases such as Pubmed, IEEE xplore, and INSPEC, in which methods based on machine learning are likely to be reported. We bring together a broad body of literature, aiming to identify those leading examples of health informatics that have advanced the methodology of machine learning. While individual methods may have further examples that might be added, we have chosen some of the most representative, informative exemplars in each case. Our survey highlights that, while much research is taking place in this high-profile field, examples of those that affect the clinical management of patients are seldom found. We show that substantial progress is being made in terms of methodology, often by data scientists working in close collaboration with clinical groups. Health informatics systems based on machine learning are in their infancy and the translation of such systems into clinical management has yet to be performed at scale.

  18. Evidence-based Practice. Findings from the Section on Education and Consumer Health Informatics.

    PubMed

    Staccini, P; Douali, N

    2013-01-01

    To provide an overview of outstanding current research conducted in Education and Consumer Informatics. Synopsis of the articles on education and consumer health informatics published in 2012 and selected for the IMIA Yearbook of Medical Informatics 2013. Architecture of monitoring or telehealth information systems for patients with chronic disease must include wireless devices to aid in the collection of personal data. Data acquisition technologies have an impact on patients' willingness to participate in telehealth programmes. Patients are more likely to prefer mobile applications over web-based applications. Social media is widely used by clinicians. Especially younger clinicians use it for personal purposes and for reference materials retrieval. Questions remain on optimal training requirements and on the effects on clinician behavior and on patient outcomes. A high level of e-Health literacy by patients will promote increased adoption and utilization of personal health records. The selected articles highlight the need for training of clinicians to become aware of existing telehealth systems, in order to correctly inform and guide patients to take part in telehealth systems and adopt personal healthcare records (PHR).

  19. Developing an Open Source, Reusable Platform for Distributed Collaborative Information Management in the Early Detection Research Network

    NASA Technical Reports Server (NTRS)

    Hart, Andrew F.; Verma, Rishi; Mattmann, Chris A.; Crichton, Daniel J.; Kelly, Sean; Kincaid, Heather; Hughes, Steven; Ramirez, Paul; Goodale, Cameron; Anton, Kristen; hide

    2012-01-01

    For the past decade, the NASA Jet Propulsion Laboratory, in collaboration with Dartmouth University has served as the center for informatics for the Early Detection Research Network (EDRN). The EDRN is a multi-institution research effort funded by the U.S. National Cancer Institute (NCI) and tasked with identifying and validating biomarkers for the early detection of cancer. As the distributed network has grown, increasingly formal processes have been developed for the acquisition, curation, storage, and dissemination of heterogeneous research information assets, and an informatics infrastructure has emerged. In this paper we discuss the evolution of EDRN informatics, its success as a mechanism for distributed information integration, and the potential sustainability and reuse benefits of emerging efforts to make the platform components themselves open source. We describe our experience transitioning a large closed-source software system to a community driven, open source project at the Apache Software Foundation, and point to lessons learned that will guide our present efforts to promote the reuse of the EDRN informatics infrastructure by a broader community.

  20. Materials Informatics: Statistical Modeling in Material Science.

    PubMed

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Educating medical students as competent users of health information technologies: the MSOP data.

    PubMed

    McGowan, Julie J; Passiment, Morgan; Hoffman, Helene M

    2007-01-01

    As more health information technologies become part of the health care environment, the need for physicians with medical informatics competencies is growing. In 2006, a survey was created to determine the degree to which the Association of American Medical College's Medical School Objectives Project (MSOP) medical informatics competencies had been incorporated into medical school curricula in the United States. a web-based tool was used to create the survey; medical education deans or their designees were requested to complete the survey. Analysis focused on the clinician, researcher, and manager roles of physicians. Seventy usable surveys were returned. Many of the objectives were stated in the schools' respective curricula and the competencies were being evaluated. However, only a few schools taught and assessed the medical informatics objectives that required interaction with health information. To insure that physicians have the knowledge, skills, and attitudes to effectively and efficiently interact with today's health information technologies, more medical informatics concepts need to be included and assessed in all undergraduate medical education curricula in the United States.

  2. The Need to Apply Medical Device Informatics in Developing Standards for Safe Interoperable Medical Systems.

    PubMed

    Weininger, Sandy; Jaffe, Michael B; Goldman, Julian M

    2017-01-01

    Medical device and health information technology systems are increasingly interdependent with users demanding increased interoperability. Related safety standards must be developed taking into account these systems' perspective. In this article, we describe the current development of medical device standards and the need for these standards to address medical device informatics. Medical device information should be gathered from a broad range of clinical scenarios to lay the foundation for safe medical device interoperability. Five clinical examples show how medical device informatics principles, if applied in the development of medical device standards, could help facilitate the development of safe interoperable medical device systems. These examples illustrate the clinical implications of the failure to capture important signals and device attributes. We provide recommendations relating to the coordination between historically separate standards development groups, some of which focus on safety and effectiveness and others focus on health informatics. We identify the need for a shared understanding among stakeholders and describe organizational structures to promote cooperation such that device-to-device interactions and related safety information are considered during standards development.

  3. The Need to Apply Medical Device Informatics in Developing Standards for Safe Interoperable Medical Systems

    PubMed Central

    Weininger, Sandy; Jaffe, Michael B.; Goldman, Julian M

    2016-01-01

    Medical device and health information technology systems are increasingly interdependent with users demanding increased interoperability. Related safety standards must be developed taking into account this systems perspective. In this article we describe the current development of medical device standards and the need for these standards to address medical device informatics. Medical device information should be gathered from a broad range of clinical scenarios to lay the foundation for safe medical device interoperability. Five clinical examples show how medical device informatics principles, if applied in the development of medical device standards, could help facilitate the development of safe interoperable medical device systems. These examples illustrate the clinical implications of the failure to capture important signals and device attributes. We provide recommendations relating to the coordination between historically separate standards development groups; some which focus on safety and effectiveness, and others that focus on health informatics. We identify the need for a shared understanding among stakeholders and describe organizational structures to promote cooperation such that device-to-device interactions and related safety information are considered during standards development. PMID:27584685

  4. Integrating Governance of Research Informatics and Health Care IT Across an Enterprise: Experiences from the Trenches.

    PubMed

    Embi, Peter J; Tachinardi, Umberto; Lussier, Yves; Starren, Justin; Silverstein, Jonathan

    2013-01-01

    Advances in health information technology and biomedical informatics have laid the groundwork for significant improvements in healthcare and biomedical research. For instance, Electronic Health Records can help improve the delivery of evidence-based care, enhance quality, and contribute to discoveries and evidence generation. Despite this promise, there are many challenges to achieving the vision and missions of our healthcare and research enterprises. Given the challenges inherent in doing so, institutions are increasingly moving to establish dedicated leadership and governance models charged with designing, deploying and leveraging various information resources to advance research and advanced care activities at AHCs. Some institutions have even created a new leadership position to oversee such activities, such as the Chief Research Information Officer. This panel will include research informatics leaders discussing their experiences from the proverbial trenches as they work to operationalize such cross-mission governance models. Panelists will start by providing an overview their respective positions and environments, discuss their experiences, and share lessons learned through their work at the intersection of clinical and translational research informatics and Health IT.

  5. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology

    PubMed Central

    Latendresse, Mario; Paley, Suzanne M.; Krummenacker, Markus; Ong, Quang D.; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M.; Caspi, Ron

    2016-01-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. PMID:26454094

  6. Online cancer communities as informatics intervention for social support: conceptualization, characterization, and impact

    PubMed Central

    O’Carroll Bantum, Erin; Owen, Jason; Bakken, Suzanne; Elhadad, Noémie

    2017-01-01

    Objectives: The Internet and social media are revolutionizing how social support is exchanged and perceived, making online health communities (OHCs) one of the most exciting research areas in health informatics. This paper aims to provide a framework for organizing research of OHCs and help identify questions to explore for future informatics research. Based on the framework, we conceptualize OHCs from a social support standpoint and identify variables of interest in characterizing community members. For the sake of this tutorial, we focus our review on online cancer communities. Target audience: The primary target audience is informaticists interested in understanding ways to characterize OHCs, their members, and the impact of participation, and in creating tools to facilitate outcome research of OHCs. OHC designers and moderators are also among the target audience for this tutorial. Scope: The tutorial provides an informatics point of view of online cancer communities, with social support as their leading element. We conceptualize OHCs according to 3 major variables: type of support, source of support, and setting in which the support is exchanged. We summarize current research and synthesize the findings for 2 primary research questions on online cancer communities: (1) the impact of using online social support on an individual's health, and (2) the characteristics of the community, its members, and their interactions. We discuss ways in which future research in informatics in social support and OHCs can ultimately benefit patients. PMID:27402140

  7. The Use of RESTful Web Services in Medical Informatics and Clinical Research and Its Implementation in Europe.

    PubMed

    Aerts, Jozef

    2017-01-01

    RESTful web services nowadays are state-of-the-art in business transactions over the internet. They are however not very much used in medical informatics and in clinical research, especially not in Europe. To make an inventory of RESTful web services that can be used in medical informatics and clinical research, including those that can help in patient empowerment in the DACH region and in Europe, and to develop some new RESTful web services for use in clinical research and regulatory review. A literature search on available RESTful web services has been performed and new RESTful web services have been developed on an application server using the Java language. Most of the web services found originate from institutes and organizations in the USA, whereas no similar web services could be found that are made available by European organizations. New RESTful web services have been developed for LOINC codes lookup, for UCUM conversions and for use with CDISC Standards. A comparison is made between "top down" and "bottom up" web services, the latter meant to answer concrete questions immediately. The lack of RESTful web services made available by European organizations in healthcare and medical informatics is striking. RESTful web services may in short future play a major role in medical informatics, and when localized for the German language and other European languages, can help to considerably facilitate patient empowerment. This however requires an EU equivalent of the US National Library of Medicine.

  8. Data Analysis and Data Mining: Current Issues in Biomedical Informatics

    PubMed Central

    Bellazzi, Riccardo; Diomidous, Marianna; Sarkar, Indra Neil; Takabayashi, Katsuhiko; Ziegler, Andreas; McCray, Alexa T.

    2011-01-01

    Summary Background Medicine and biomedical sciences have become data-intensive fields, which, at the same time, enable the application of data-driven approaches and require sophisticated data analysis and data mining methods. Biomedical informatics provides a proper interdisciplinary context to integrate data and knowledge when processing available information, with the aim of giving effective decision-making support in clinics and translational research. Objectives To reflect on different perspectives related to the role of data analysis and data mining in biomedical informatics. Methods On the occasion of the 50th year of Methods of Information in Medicine a symposium was organized, that reflected on opportunities, challenges and priorities of organizing, representing and analysing data, information and knowledge in biomedicine and health care. The contributions of experts with a variety of backgrounds in the area of biomedical data analysis have been collected as one outcome of this symposium, in order to provide a broad, though coherent, overview of some of the most interesting aspects of the field. Results The paper presents sections on data accumulation and data-driven approaches in medical informatics, data and knowledge integration, statistical issues for the evaluation of data mining models, translational bioinformatics and bioinformatics aspects of genetic epidemiology. Conclusions Biomedical informatics represents a natural framework to properly and effectively apply data analysis and data mining methods in a decision-making context. In the future, it will be necessary to preserve the inclusive nature of the field and to foster an increasing sharing of data and methods between researchers. PMID:22146916

  9. Evidence appraisal: a scoping review, conceptual framework, and research agenda.

    PubMed

    Goldstein, Andrew; Venker, Eric; Weng, Chunhua

    2017-11-01

    Critical appraisal of clinical evidence promises to help prevent, detect, and address flaws related to study importance, ethics, validity, applicability, and reporting. These research issues are of growing concern. The purpose of this scoping review is to survey the current literature on evidence appraisal to develop a conceptual framework and an informatics research agenda. We conducted an iterative literature search of Medline for discussion or research on the critical appraisal of clinical evidence. After title and abstract review, 121 articles were included in the analysis. We performed qualitative thematic analysis to describe the evidence appraisal architecture and its issues and opportunities. From this analysis, we derived a conceptual framework and an informatics research agenda. We identified 68 themes in 10 categories. This analysis revealed that the practice of evidence appraisal is quite common but is rarely subjected to documentation, organization, validation, integration, or uptake. This is related to underdeveloped tools, scant incentives, and insufficient acquisition of appraisal data and transformation of the data into usable knowledge. The gaps in acquiring appraisal data, transforming the data into actionable information and knowledge, and ensuring its dissemination and adoption can be addressed with proven informatics approaches. Evidence appraisal faces several challenges, but implementing an informatics research agenda would likely help realize the potential of evidence appraisal for improving the rigor and value of clinical evidence. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. Nursing domain of CI governance: recommendations for health IT adoption and optimization.

    PubMed

    Collins, Sarah A; Alexander, Dana; Moss, Jacqueline

    2015-05-01

    There is a lack of recommended models for clinical informatics (CI) governance that can facilitate successful health information technology implementation. To understand existing CI governance structures and provide a model with recommended roles, partnerships, and councils based on perspectives of nursing informatics leaders. We conducted a cross-sectional study through administering a survey via telephone to facilitate semistructured interviews from June 2012 through November 2012. We interviewed 12 nursing informatics leaders, across the United States, currently serving in executive- or director-level CI roles at integrated health care systems that have pioneered electronic health records implementation projects. We found the following 4 themes emerge: (1) Interprofessional partnerships are essential. (2) Critical role-based levels of practice and competencies need to be defined. (3) Integration into existing clinical infrastructure facilitates success. (4) CI governance is an evolving process. We described specific lessons learned and a model of CI governance with recommended roles, partnerships, and councils from the perspective of nursing informatics leaders. Applied CI work is highly interprofessional with patient safety implications that heighten the need for best practice models for governance structures, adequate resource allocation, and role-based competencies. Overall, there is a notable lack of a centralized CI group comprised of formally trained informaticians to provide expertise and promote adherence to informatics principles within EHR implementation governance structures. Our model of the nursing domain of CI governance with recommended roles, partnerships, and councils provides a starting point that should be further explored and validated. Not only can the model be used to understand, shape, and standardize roles, competencies, and structures within CI practice for nursing, it can be used within other clinical domains and by other informaticians. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Social care informatics as an essential part of holistic health care: a call for action.

    PubMed

    Rigby, Michael; Hill, Penny; Koch, Sabine; Keeling, Debbie

    2011-08-01

    The authors identified the need for a cross-disciplinary research view of issues to ensure an integrated citizen-centric support to achieve optimal health of individual citizens and, in particular, the role of informatics to inform and coordinate support towards integrated and holistic care. An Exploratory Workshop was approved and sponsored by the European Science Foundation. Twenty-three participants from 15 countries attended, covering a full range of health, social care and informatics professions and disciplines. The participants found strong common ground in identifying key issues to be addressed if citizens with compromised health are to receive integrated and coordinated support to a common set of objectives, while also ensuring appropriate choice and support for citizen, family and other informal carers. At the same time, optimal health was identified as a fundamental human right, and that achieving this is a necessary priority of a caring society. Moreover, Europe has a commitment to researching and developing health informatics (e-health), though not yet giving a priority to this integration of health and social care. Specifically the following main informatics challenges to be addressed were identified: (1) to identify available information and communication needs related to different scenarios of use in the intersection between health and social care, (2) to develop and map shared ontologies, and standards for integration and/or brokerage, (3) to enable planned information access and sharing, shaping a system of trust where the patient is an active partner and policies are established considering all partners/interests, (4) to investigate the use of automatic/intelligent knowledge based and context-relevant services, and (5) empowering the citizen (or their selected agent) as co-producer through modern informatics tools, while carefully avoiding selective disempowerment of the most vulnerable. The Exploratory Workshop resulted in a unanimous Declaration for action, which is presented appended to this paper. Copyright © 2011. Published by Elsevier Ireland Ltd.

  12. Building a Privacy, Ethics, and Data Access Framework for Real World Computerised Medical Record System Data: A Delphi Study. Contribution of the Primary Health Care Informatics Working Group.

    PubMed

    Liyanage, H; Liaw, S-T; Di Iorio, C T; Kuziemsky, C; Schreiber, R; Terry, A L; de Lusignan, S

    2016-11-10

    Privacy, ethics, and data access issues pose significant challenges to the timely delivery of health research. Whilst the fundamental drivers to ensure that data access is ethical and satisfies privacy requirements are similar, they are often dealt with in varying ways by different approval processes. To achieve a consensus across an international panel of health care and informatics professionals on an integrated set of privacy and ethics principles that could accelerate health data access in data-driven health research projects. A three-round consensus development process was used. In round one, we developed a baseline framework for privacy, ethics, and data access based on a review of existing literature in the health, informatics, and policy domains. This was further developed using a two-round Delphi consensus building process involving 20 experts who were members of the International Medical Informatics Association (IMIA) and European Federation of Medical Informatics (EFMI) Primary Health Care Informatics Working Groups. To achieve consensus we required an extended Delphi process. The first round involved feedback on and development of the baseline framework. This consisted of four components: (1) ethical principles, (2) ethical guidance questions, (3) privacy and data access principles, and (4) privacy and data access guidance questions. Round two developed consensus in key areas of the revised framework, allowing the building of a newly, more detailed and descriptive framework. In the final round panel experts expressed their opinions, either as agreements or disagreements, on the ethics and privacy statements of the framework finding some of the previous round disagreements to be surprising in view of established ethical principles. This study develops a framework for an integrated approach to ethics and privacy. Privacy breech risk should not be considered in isolation but instead balanced by potential ethical benefit.

  13. Design and Evaluation of a Health-Focused Personal Informatics Application with Support for Generalized Goal Management

    ERIC Educational Resources Information Center

    Medynskiy, Yevgeniy

    2012-01-01

    The practice of health self-management offers behavioral and problem-solving strategies that can effectively promote responsibility for one's own wellbeing, improve one's health outcomes, and decrease the cost of health services. Personal informatics applications support health self-management by allowing their users to easily track…

  14. RADIOMICS.io | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    RADIOMICS.io is a open source platform for informatics developments for radiographic phenotyping using automated algorithms, such as engineered features or using deep learning technologies. With this platform, we aim to establish a reference standard for radiomic analyses, provide a tested and maintained resource, and to grow the community of radiomic developers addressing critical needs in cancer research.

  15. Evaluation of the Cow Rumen Metagenome: Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Sczyrba, Alex

    2018-02-13

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  16. Development, Implementation, and Evaluation of Health Informatics Masters Program at KSAU-HS University, Saudi Arabia

    ERIC Educational Resources Information Center

    Majid, Altuwaijri

    2007-01-01

    The Saudi health sector has witnessed a significant progress in recent decades with some Saudi hospitals receiving international recognition. However, this progress has not been accompanied by the same advancement in the health informatics field whose applications have become a necessity for hospitals in order to achieve important objectives such…

  17. General Orientation to New Knowledge Utilization Fields of Informatics, Knowledge Management, and Information Technology.

    ERIC Educational Resources Information Center

    Southwest Educational Development Lab., Austin, TX.

    One of a series of booklets on disability research, this paper explores two major developments in the application of information technology: health care informatics and knowledge management. Both of these concepts focus on maximizing the value of, and access to, information resources. Both use technology to create interactive systems through which…

  18. Health Informatics in the Classroom: An Empirical Study to Investigate Higher Education's Response to Healthcare Transformation

    ERIC Educational Resources Information Center

    Ashrafi, Noushin; Kuilboer, Jean-Pierre; Joshi, Chaitanya; Ran, Iris; Pande, Priyanka

    2014-01-01

    The explosive advances in information technology combined with the current climate for health care reform have intensified the need for skilled individuals who can develop, understand, and manage medical information systems in organizations. Health Informatics facilitates quality care at a reasonable cost by allowing access to the right data by…

  19. A New Pedagogical Design for Geo-Informatics Courses Using an E-Training Support System

    ERIC Educational Resources Information Center

    Eldin, Ahmed Sharaf; ElNahry, Alaa H.; Elsayed, Adel; Ibrahim, Rania Elsayed

    2014-01-01

    The current study seeks to introduce a new pedagogical design for geo-informatics courses using an e-training support system. Laurillard's conversational approach based on conceptual representation for both instructor and learner was used to form the framework. As the current study specifically interested in training as a special form for…

  20. Autism Post-Mortem Neuroinformatic Resource: The Autism Tissue Program (ATP) Informatics Portal

    ERIC Educational Resources Information Center

    Brimacombe, Michael B.; Pickett, Richard; Pickett, Jane

    2007-01-01

    The Autism Tissue Program (ATP) was established to oversee and manage brain donations related to neurological research in autism. The ATP Informatics Portal (www.atpportal.org) is an integrated data access system based on Oracle technology, developed to provide access for researchers to information on this rare tissue resource. It also permits…

  1. Bebras--A Sustainable Community Building Model for the Concept Based Learning of Informatics and Computational Thinking

    ERIC Educational Resources Information Center

    Dagiene, Valentina; Stupuriene, Gabriele

    2016-01-01

    As an international informatics contest, or challenge, Bebras has started the second decade of its existence. The contest attracts more and more countries every year, recently there have been over 40 participating countries. From a single contest-focused annual event Bebras developed to a multifunctional challenge and an activities-based…

  2. Evaluation of the Cow Rumen Metagenome: Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sczyrba, Alex

    2011-10-13

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  3. Preparation of Speciality-Integrated Assignments in Informatics Study Courses at the Higher Education Level

    ERIC Educational Resources Information Center

    Vitinš, Maris; Rasnacs, Oskars

    2012-01-01

    Information and communications technologies today are used in virtually any university course when students prepare their papers. ICT is also needed after people are graduated from university and enter the job market. This author is an instructor in the field of informatics related to health care and social sciences at the Riga Stradins…

  4. Score Calculation in Informatics Contests Using Multiple Criteria Decision Methods

    ERIC Educational Resources Information Center

    Skupiene, Jurate

    2011-01-01

    The Lithuanian Informatics Olympiad is a problem solving contest for high school students. The work of each contestant is evaluated in terms of several criteria, where each criterion is measured according to its own scale (but the same scale for each contestant). Several jury members are involved in the evaluation. This paper analyses the problem…

  5. The Integration of Nursing Informatics in Delaware Nursing Education Programs

    ERIC Educational Resources Information Center

    Wheeler, Bernadette

    2016-01-01

    Over the past decade, there has been a conversion to electronic health records (EHRs) in an effort to improve patient care, access, and efficiency. The goal, which has been supported by federal initiatives, is to meaningfully use informatics to improve the safety and quality of patient care as a major force in improving healthcare. How nurses…

  6. Insights from a User-Centered Approach to Computerized Guidelines for Chronic Disease

    ERIC Educational Resources Information Center

    Shaten, Barbara Jessica

    2011-01-01

    For more than two decades, the medical informatics community has worked towards representing evidence-based guidelines in computer code, intended to be executed at the point of care. The purpose is to close the gap between evidence of best medical practices and the care that patients receive. Most informatics work has taken a…

  7. Teaching Media Design by Using Scrum. A Qualitative Study within a Media Informatics Elective Course

    ERIC Educational Resources Information Center

    Herrmann, Ines; Münster, Sander; Tietz, Vincent; Uhlemann, Rainer

    2017-01-01

    Cross-disciplinary skills are today's key skills for media informatics students to gain employment after graduation. However, such problem-based learning projects almost never take place due to organizational struggles. The authors suggest Scrum, a framework that is increasingly used in software engineering, as a solution for the challenges. Scrum…

  8. Bio-Nanocombinatoric Synthesis and Quorum Sensing

    DTIC Science & Technology

    2015-10-09

    inputs and biotemplating of nanomaterials; and 3) informatic /analytical feedback, which provides output measurement refinement 15. SUBJECT TERMS 16...nanomaterials; and 3) informatic /analytical feedback, which provides output measurement and refinement. To this end, we have successfully generated...microfibers. 5   Basic features of the experimental system and observations of the multicompartment structures: We can encapsulate oil droplets in

  9. Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Canon, Shane

    2018-01-24

    DOE JGI's Zhong Wang, chair of the High-performance Computing session, gives a brief introduction before Berkeley Lab's Shane Canon talks about "Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  10. Active Learning Methods in Programming for Non-IT Students

    ERIC Educational Resources Information Center

    Mironova, Olga; Amitan, Irina; Vilipõld, Jüri; Saar, Merike

    2016-01-01

    The purpose of this study is to demonstrate a teaching approach and some teaching strategies in an Informatics course for the first-year non-IT students at the Department of Informatics of Tallinn University of Technology, Estonia. The authors suggest some solutions for making the course, which is usually complicated, more dynamic and attractive,…

  11. Systematic Review of Medical Informatics-Supported Medication Decision Making.

    PubMed

    Melton, Brittany L

    2017-01-01

    This systematic review sought to assess the applications and implications of current medical informatics-based decision support systems related to medication prescribing and use. Studies published between January 2006 and July 2016 which were indexed in PubMed and written in English were reviewed, and 39 studies were ultimately included. Most of the studies looked at computerized provider order entry or clinical decision support systems. Most studies examined decision support systems as a means of reducing errors or risk, particularly associated with medication prescribing, whereas a few studies evaluated the impact medical informatics-based decision support systems have on workflow or operations efficiency. Most studies identified benefits associated with decision support systems, but some indicate there is room for improvement.

  12. Practice-Based Knowledge Discovery for Comparative Effectiveness Research: An Organizing Framework

    PubMed Central

    Lucero, Robert J.; Bakken, Suzanne

    2014-01-01

    Electronic health information systems can increase the ability of health-care organizations to investigate the effects of clinical interventions. The authors present an organizing framework that integrates outcomes and informatics research paradigms to guide knowledge discovery in electronic clinical databases. They illustrate its application using the example of hospital acquired pressure ulcers (HAPU). The Knowledge Discovery through Informatics for Comparative Effectiveness Research (KDI-CER) framework was conceived as a heuristic to conceptualize study designs and address potential methodological limitations imposed by using a single research perspective. Advances in informatics research can play a complementary role in advancing the field of outcomes research including CER. The KDI-CER framework can be used to facilitate knowledge discovery from routinely collected electronic clinical data. PMID:25278645

  13. Open source bioimage informatics for cell biology

    PubMed Central

    Swedlow, Jason R.; Eliceiri, Kevin W.

    2009-01-01

    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery. PMID:19833518

  14. Information warehouse - a comprehensive informatics platform for business, clinical, and research applications.

    PubMed

    Kamal, Jyoti; Liu, Jianhua; Ostrander, Michael; Santangelo, Jennifer; Dyta, Ravi; Rogers, Patrick; Mekhjian, Hagop S

    2010-11-13

    Since its inception in 1997, the IW (Information Warehouse) at the Ohio State University Medical Center (OSUMC) has gradually transformed itself from a single purpose business decision support system to a comprehensive informatics platform supporting basic, clinical, and translational research. The IW today is the combination of four integrated components: a clinical data repository containing over a million patients; a research data repository housing various research specific data; an application development platform for building business and research enabling applications; a business intelligence environment assisting in reporting in all function areas. The IW is structured and encoded using standard terminologies such as SNOMED-CT, ICD, and CPT. The IW is an important component of OSUMC's Clinical and Translational Science Award (CTSA) informatics program.

  15. Informatics and physics intersubject communications in the 7th and 8th grades of the basics level by means of computer modeling

    NASA Astrophysics Data System (ADS)

    Vasina, A. V.

    2017-01-01

    The author of the article imparts pedagogical experience of realization of intersubject communications of school basic courses of informatics, technology and physics through research activity of students with the use of specialized programs for the development and studying of computer models of physical processes. The considered technique is based on the principles of independent scholar activity of students, intersubject communications such as educational disciplines of technology, physics and informatics; it helps to develop the research activity of students and a professional and practical orientation of education. As an example the lesson of modeling of flotation with the use of the environment "1C Physical simulator" is considered.

  16. Emergence of a new consumer health informatics framework: introducing the healthcare organization.

    PubMed

    Reid, Paulette; Borycki, Elizabeth M

    2011-01-01

    Healthcare consumers are increasingly seeking reliable forms of health information on the Internet that can be used to support health related decision-making. Frameworks that have been developed and tested in the field of health informatics have attempted to describe the effects of the Internet upon the health care consumer and physician relationship. More recently, health care organizations are responding by providing information such as hospital wait lists or strategies for self-managing disease, and this information is being provided on organizational web-sites. The authors of this paper propose that current conceptualizations of the relationship between the Internet, physicians and patients are limited from a consumer informatics perspective and may need to be extended to include healthcare organizations.

  17. Medical image informatics infrastructure design and applications.

    PubMed

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  18. Gaining support from health disciplines and other stakeholders.

    PubMed

    Murphy, Jeannette

    2004-01-01

    The Health industry employs health professionals from many disciplines all of whom need to have a basic understanding of health informatics principles and how information technologies may be used to improved health service delivery and patient/community/population health outcomes. This is not well understood by the workforce as a whole resulting in a low demand for health informatics education. Many health service managers and policy makers do not appreciate the power and potential usefulness of all health related information and the many technologies now available. This impacts on decisions regarding their acquisition, implementation and staff training/education support. This chapter includes recommended strategies on how to best overcome such knowledge deficits so that greater support for Health Informatics education is achieved.

  19. Translational informatics: an industry perspective.

    PubMed

    Cantor, Michael N

    2012-01-01

    Translational informatics (TI) is extremely important for the pharmaceutical industry, especially as the bar for regulatory approval of new medications is set higher and higher. This paper will explore three specific areas in the drug development lifecycle, from tools developed by precompetitive consortia to standardized clinical data collection to the effective delivery of medications using clinical decision support, in which TI has a major role to play. Advancing TI will require investment in new tools and algorithms, as well as ensuring that translational issues are addressed early in the design process of informatics projects, and also given higher weight in funding or publication decisions. Ultimately, the source of translational tools and differences between academia and industry are secondary, as long as they move towards the shared goal of improving health.

  20. Eco-informatics for decision makers advancing a research agenda

    USGS Publications Warehouse

    Cushing, J.B.; Wilson, T.; Brandt, L.; Gregg, V.; Spengler, S.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schnase, J.L.; Schweik, C.; Sonntag, W.; ,

    2005-01-01

    Resource managers often face significant information technology (IT) problems when integrating ecological or environmental information to make decisions. At a workshop sponsored by the NSF and USGS in December 2004, university researchers, natural resource managers, and information managers met to articulate IT problems facing ecology and environmental decision makers. Decision making IT problems were identified in five areas: 1) policy, 2) data presentation, 3) data gaps, 4) tools, and 5) indicators. To alleviate those problems, workshop participants recommended specific informatics research in modeling and simulation, data quality, information integration and ontologies, and social and human aspects. This paper reports the workshop findings, and briefly compares these with research that traditionally falls under the emerging eco-informatics rubric. ?? Springer-Verlag Berlin Heidelberg 2005.

  1. The exploration of the exhibition informatization

    NASA Astrophysics Data System (ADS)

    Zhang, Jiankang

    2017-06-01

    The construction and management of exhibition informatization is the main task and choke point during the process of Chinese exhibition industry’s transformation and promotion. There are three key points expected to realize a breakthrough during the construction of Chinese exhibition informatization, and the three aspects respectively are adopting service outsourcing to construct and maintain the database, adopting advanced chest card technology to collect various kinds of information, developing statistics analysis to maintain good cutomer relations. The success of Chinese exhibition informatization mainly calls for mature suppliers who can provide construction and maintenance of database, the proven technology, a sense of data security, advanced chest card technology, the ability of data mining and analysis and the ability to improve the exhibition service basing on the commercial information got from the data analysis. Several data security measures are expected to apply during the process of system developing, including the measures of the terminal data security, the internet data security, the media data security, the storage data security and the application data security. The informatization of this process is based on the chest card designing. At present, there are several types of chest card technology: bar code chest card; two-dimension code card; magnetic stripe chest card; smart-chip chest card. The information got from the exhibition data will help the organizers to make relevant service strategies, quantify the accumulated indexes of the customers, and improve the level of the customer’s satisfaction and loyalty, what’s more, the information can also provide more additional services like the commercial trips, VIP ceremonial reception.

  2. Research Strategies for Biomedical and Health Informatics

    PubMed Central

    Kulikowski, Casimir A.; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra Neil; Leong, Tze Yun; McCray, Alexa T.

    2017-01-01

    Summary Background Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. Objectives To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Methods Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. Results A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. Conclusions The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes. PMID:28119991

  3. Usability test of an internet-based informatics tool for diabetes care providers: the comprehensive diabetes management program.

    PubMed

    Fonda, Stephanie J; Paulsen, Christine A; Perkins, Joan; Kedziora, Richard J; Rodbard, David; Bursell, Sven-Erik

    2008-02-01

    Research suggests Internet-based care management tools are associated with improvements in care and patient outcomes. However, although such tools change workflow, rarely is their usability addressed and reported. This article presents a usability study of an Internet-based informatics application called the Comprehensive Diabetes Management Program (CDMP), developed by content experts and technologists. Our aim is to demonstrate a process for conducting a usability study of such a tool and to report results. We conducted the usability test with six diabetes care providers under controlled conditions. Each provider worked with the CDMP in a single session using a "think aloud" process. Providers performed standardized tasks with fictitious patient data, and we observed how they approached these tasks, documenting verbalizations and subjective ratings. The providers then completed a usability questionnaire and interviews. Overall, the scores on the usability questionnaire were neutral to favorable. For specific subdomains of the questionnaire, the providers' reported problems with the application's ease of use, performance, and support features, but were satisfied with its visual appeal and content. The results from the observational and interview data indicated areas for improvement, particularly in navigation and terminology. The usability study identified several issues for improvement, confirming the need for usability testing of Internet-based informatics applications, even those developed by experts. To our knowledge, there have been no other usability studies of an Internet-based informatics application with the functionality of the CDMP. Such studies can form the foundation for translation of Internet-based medical informatics tools into clinical practice.

  4. Milestones: Critical Elements in Clinical Informatics Fellowship Programs

    PubMed Central

    Lehmann, Christoph U.; Munger, Benson

    2016-01-01

    Summary Background Milestones refer to points along a continuum of a competency from novice to expert. Resident and fellow assessment and program evaluation processes adopted by the ACGME include the mandate that programs report the educational progress of residents and fellows twice annually utilizing Milestones developed by a specialty specific ACGME working group of experts. Milestones in clinical training programs are largely unmapped to specific assessment tools. Residents and fellows are mainly assessed using locally derived assessment instruments. These assessments are then reviewed by the Clinical Competency Committee which assigns and reports trainee ratings using the specialty specific reporting Milestones. Methods and Results The challenge and opportunity facing the nascent specialty of Clinical Informatics is how to optimally utilize this framework across a growing number of accredited fellowships. The authors review how a mapped milestone framework, in which each required sub-competency is mapped to a single milestone assessment grid, can enable the use of milestones for multiple uses including individualized learning plans, fellow assessments, and program evaluation. Furthermore, such a mapped strategy will foster the ability to compare fellow progress within and between Clinical Informatics Fellowships in a structured and reliable fashion. Clinical Informatics currently has far less variability across programs and thus could easily utilize a more tightly defined set of milestones with a clear mapping to sub-competencies. This approach would enable greater standardization of assessment instruments and processes across programs while allowing for variability in how those sub-competencies are taught. Conclusions A mapped strategy for Milestones offers significant advantages for Clinical Informatics programs. PMID:27081414

  5. Automation and Networking of Public Libraries in India Using the E-Granthalaya Software from the National Informatics Centre

    ERIC Educational Resources Information Center

    Matoria, Ram Kumar; Upadhyay, P. K.; Moni, Madaswamy

    2007-01-01

    Purpose: To describe the development of the library management system, e-Granthalaya, for public libraries in India. This is an initiative of the Indian government's National Informatics Centre (NIC). The paper outlines the challenges and the potential of a full-scale deployment of this software at a national level. Design/methodology/approach:…

  6. Informatics Education in Different Disciplines at University Level: Case Study--A Survey of Students' Attitude toward Informatics Technologies

    ERIC Educational Resources Information Center

    Tingoy, Ozhan; Gulluoglu, Sabri Serkan

    2011-01-01

    This article presents a quantitative study on attitudes toward the usage of Information Technology related tools and applications. The study was conducted at a private university, Turkey, with 97 female and 113 male students involved as participants. They were each presented with a questionnaire to relate their attitudes toward IT and after…

  7. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Stepanauskas, Ramunas

    2018-02-06

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  8. Requirements for Realizing the Full Potential of Informatics in the Field of Health Care.

    ERIC Educational Resources Information Center

    Wittenstrom, John C.

    1991-01-01

    The paper proposes a zero concept, health-oriented approach to applying informatics to two health care problems: first, the lack of easily understood and used terminology linking health problems and interventions to the concept of "health"; and second, the lack of a unifying principle on which to base all aspects of health care. (DB)

  9. A National Informatics Agenda for Nursing Education and Practice. Report to the Secretary of the Department of Health & Human Services.

    ERIC Educational Resources Information Center

    National Advisory Council on Nurse Education and Practice, Rockville, MD.

    Nursing informatics is a specialty whose activities center around information management and processing for the nursing profession. The Division of Nursing of the U.S. Department of Health and Human Services and the National Advisory Council on Nurse Education and Practice (NACNEP) recognized a need to identify initiatives that would more…

  10. Proceedings of the International Academy for Information Management (IAIM) Annual Conference: International Conference on Informatics Education Research (ICIER) (17th, Barcelona, Spain, December 13-15, 2002).

    ERIC Educational Resources Information Center

    International Academy for Information Management.

    The International Conference on Informatics Education Research (ICIER 2002) sponsored by the International Academy for Information Management (IAIM) provides a forum in which educators, researchers and practitioners in information systems can exchange ideas, techniques, and applications of pedagogy and can react to issues with significant…

  11. Fellowship training at John Hopkins: programs leading to careers in librarianship and informatics as informaticians or informationists.

    PubMed

    Campbell, Jayne M; Roderer, Nancy K

    2005-01-01

    Preparing librarians to meet the information challenges faced in the current and future health care environments is critical. At Johns Hopkins University, three NLM-funded fellowship programs provide opportunities for librarians to utilize the rich environments of the Welch Medical Library and the Division of Health Sciences Informatics in support of life-long learning.

  12. A Pilot Study on Concurrent Learning/Teaching Model (CLTM) for Online and In-Class Informatics Students

    ERIC Educational Resources Information Center

    Liu, Feng; Stapleton, Colleen; Stephen, Jacqueline

    2017-01-01

    The Informatics program at Mercer University is offered at four regional academic centers located throughout the state of Georgia. We serve non-traditional students who have primary responsibilities such as caring for family, working, and participating in their communities. We aim to offer availability and access to all required courses, access to…

  13. Using Eye Tracking as a Tool to Teach Informatics Students the Importance of User Centered Design

    ERIC Educational Resources Information Center

    Gelderblom, Helene; Adebesin, Funmi; Brosens, Jacques; Kruger, Rendani

    2017-01-01

    In this article the authors describe how they incorporate eye tracking in a human-computer interaction (HCI) course that forms part of a postgraduate Informatics degree. The focus is on an eye tracking assignment that involves student groups performing usability evaluation studies for real world clients. Over the past three years the authors have…

  14. Assessing the Training and Operational Proficiency of China’s Aerospace Forces: Selections from the Inaugural Conference of the China Aerospace Studies Institute (CASI)

    DTIC Science & Technology

    2016-01-01

    available at www.jamestown.org: • “PLA Air Force Aviator Recruitment, Education, and Training,” Kenneth W. Allen • “Building a Strong Informatized ...on U.S. Experience .................................................. 34 Defining Integrated Joint Operations: The Role of Informatization and System...75 Petroleum, Oil , and Lubricant Network

  15. Cognitive engineering and health informatics: Applications and intersections.

    PubMed

    Hettinger, A Zachary; Roth, Emilie M; Bisantz, Ann M

    2017-03-01

    Cognitive engineering is an applied field with roots in both cognitive science and engineering that has been used to support design of information displays, decision support, human-automation interaction, and training in numerous high risk domains ranging from nuclear power plant control to transportation and defense systems. Cognitive engineering provides a set of structured, analytic methods for data collection and analysis that intersect with and complement methods of Cognitive Informatics. These methods support discovery of aspects of the work that make performance challenging, as well as the knowledge, skills, and strategies that experts use to meet those challenges. Importantly, cognitive engineering methods provide novel representations that highlight the inherent complexities of the work domain and traceable links between the results of cognitive analyses and actionable design requirements. This article provides an overview of relevant cognitive engineering methods, and illustrates how they have been applied to the design of health information technology (HIT) systems. Additionally, although cognitive engineering methods have been applied in the design of user-centered informatics systems, methods drawn from informatics are not typically incorporated into a cognitive engineering analysis. This article presents a discussion regarding ways in which data-rich methods can inform cognitive engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The need of a multi-actor perspective to understand expectations from virtual presence: managing elderly homecare informatics.

    PubMed

    Mettler, Tobias; Vimarlund, Vivian

    2011-12-01

    Different studies have analysed a wide range of use cases and scenarios for using IT-based services in homecare settings for elderly people. In most instances, the impact of such services has been studied using a one-dimensional approach, either focusing on the benefits for the patient or health service provider. The objective of this contribution is to explore a model for identifying and understanding outcomes of IT-based homecare services from a multi-actor perspective. In order to better understand the state of the art in homecare informatics, we conducted a literature review. We use experiences from previous research in the area of informatics to develop the proposed model. The proposed model consists of four core activities 'identify involved actors', 'understand consequences', 'clarify contingencies', 'take corrective actions', and one additional activity 'brainstorming IT use'. The primary goal of innovating organisations, processes and services in homecare informatics today, is to offer continued care, better decision support both to practitioners and patients, as well as effective distribution of resources. A multi-actor analysis perspective is needed to understand utility determination for the involved stakeholders.

  17. The Renewed Promise of Medical Informatics

    PubMed Central

    2016-01-01

    Summary The promise of the field of Medical Informatics has been great and its impact has been significant. In 1999, the Yearbook editors of the International Medical Informatics Association (IMIA) - also the authors of the present paper - sought to assess this impact by selecting a number of seminal papers in the field, and asking experts to comment on these articles. In particular, it was requested whether and how the expectations, represented by these papers, had been fulfilled since their publication several decades earlier. Each expert was also invited to comment on what might be expected in the future. In the present paper, these areas are briefly reviewed again. Where did these early papers have an impact and where were they not as successful as originally expected? It should be noted that the extraordinary developments in computer technology observed in the last two decades could not have been foreseen by these early researchers. In closing, some of the possibilities and limitations of research in medical informatics are outlined in the context of a framework that considers six levels of computer applications in medicine and health care. For each level, some predictions are made for the future, concluded with thoughts on fruitful areas for ongoing research in the field. PMID:27199195

  18. Opportunities at the Intersection of Bioinformatics and Health Informatics

    PubMed Central

    Miller, Perry L.

    2000-01-01

    This paper provides a “viewpoint discussion” based on a presentation made to the 2000 Symposium of the American College of Medical Informatics. It discusses potential opportunities for researchers in health informatics to become involved in the rapidly growing field of bioinformatics, using the activities of the Yale Center for Medical Informatics as a case study. One set of opportunities occurs where bioinformatics research itself intersects with the clinical world. Examples include the correlations between individual genetic variation with clinical risk factors, disease presentation, and differential response to treatment; and the implications of including genetic test results in the patient record, which raises clinical decision support issues as well as legal and ethical issues. A second set of opportunities occurs where bioinformatics research can benefit from the technologic expertise and approaches that informaticians have used extensively in the clinical arena. Examples include database organization and knowledge representation, data mining, and modeling and simulation. Microarray technology is discussed as a specific potential area for collaboration. Related questions concern how best to establish collaborations with bioscientists so that the interests and needs of both sets of researchers can be met in a synergistic fashion, and the most appropriate home for bioinformatics in an academic medical center. PMID:10984461

  19. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.

    PubMed

    Karp, Peter D; Latendresse, Mario; Paley, Suzanne M; Krummenacker, Markus; Ong, Quang D; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M; Caspi, Ron

    2016-09-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. The Renewed Promise of Medical Informatics.

    PubMed

    van Bemmel, J H; McCray, A T

    2016-05-20

    The promise of the field of Medical Informatics has been great and its impact has been significant. In 1999, the Yearbook editors of the International Medical Informatics Association (IMIA) - also the authors of the present paper - sought to assess this impact by selecting a number of seminal papers in the field, and asking experts to comment on these articles. In particular, it was requested whether and how the expectations, represented by these papers, had been fulfilled since their publication several decades earlier. Each expert was also invited to comment on what might be expected in the future. In the present paper, these areas are briefly reviewed again. Where did these early papers have an impact and where were they not as successful as originally expected? It should be noted that the extraordinary developments in computer technology observed in the last two decades could not have been foreseen by these early researchers. In closing, some of the possibilities and limitations of research in medical informatics are outlined in the context of a framework that considers six levels of computer applications in medicine and health care. For each level, some predictions are made for the future, concluded with thoughts on fruitful areas for ongoing research in the field.

Top