Sipes, Carolyn; Hunter, Kathleen; McGonigle, Dee; West, Karen; Hill, Taryn; Hebda, Toni
2017-12-01
Information technology use in healthcare delivery mandates a prepared workforce. The initial Health Information Technology Competencies tool resulted from a 2-year transatlantic effort by experts from the US and European Union to identify approaches to develop skills and knowledge needed by healthcare workers. It was determined that competencies must be identified before strategies are established, resulting in a searchable database of more than 1000 competencies representing five domains, five skill levels, and more than 250 roles. Health Information Technology Competencies is available at no cost and supports role- or competency-based queries. Health Information Technology Competencies developers suggest its use for curriculum planning, job descriptions, and professional development.The Chamberlain College of Nursing informatics research team examined Health Information Technology Competencies for its possible application to our research and our curricular development, comparing it originally with the TIGER-based Assessment of Nursing Informatics Competencies and Nursing Informatics Competency Assessment of Level 3 and Level 4 tools, which examine informatics competencies at four levels of nursing practice. Additional analysis involved the 2015 Nursing Informatics: Scope and Standards of Practice. Informatics is a Health Information Technology Competencies domain, so clear delineation of nursing-informatics competencies was expected. Researchers found TIGER-based Assessment of Nursing Informatics Competencies and Nursing Informatics Competency Assessment of Level 3 and Level 4 differed from Health Information Technology Competencies 2016 in focus, definitions, ascribed competencies, and defined levels of expertise. When Health Information Technology Competencies 2017 was compared against the nursing informatics scope and standards, researchers found an increase in the number of informatics competencies but not to a significant degree. This is not surprising, given that Health Information Technology Competencies includes all healthcare workers, while the TIGER-based Assessment of Nursing Informatics Competencies and Nursing Informatics Competency Assessment of Level 3 and Level 4 tools and the American Nurses Association Nursing Informatics: Scope and Standards of Practice are nurse specific. No clear cross mapping across these tools and the standards of nursing informatics practice exists. Further examination and review are needed to translate Health Information Technology Competencies as a viable tool for nursing informatics use in the US.
Time for TIGER to ROAR! Technology Informatics Guiding Education Reform.
O'Connor, Siobhan; Hubner, Ursula; Shaw, Toria; Blake, Rachelle; Ball, Marion
2017-11-01
Information Technology (IT) continues to evolve and develop with electronic devices and systems becoming integral to healthcare in every country. This has led to an urgent need for all professions working in healthcare to be knowledgeable and skilled in informatics. The Technology Informatics Guiding Education Reform (TIGER) Initiative was established in 2006 in the United States to develop key areas of informatics in nursing. One of these was to integrate informatics competencies into nursing curricula and life-long learning. In 2009, TIGER developed an informatics competency framework which outlines numerous IT competencies required for professional practice and this work helped increase the emphasis of informatics in nursing education standards in the United States. In 2012, TIGER expanded to the international community to help synthesise informatics competencies for nurses and pool educational resources in health IT. This transition led to a new interprofessional, interdisciplinary approach, as health informatics education needs to expand to other clinical fields and beyond. In tandem, a European Union (EU) - United States (US) Collaboration on eHealth began a strand of work which focuses on developing the IT skills of the health workforce to ensure technology can be adopted and applied in healthcare. One initiative within this is the EU*US eHealth Work Project, which started in 2016 and is mapping the current structure and gaps in health IT skills and training needs globally. It aims to increase educational opportunities by developing a model for open and scalable access to eHealth training programmes. With this renewed initiative to incorporate informatics into the education and training of nurses and other health professionals globally, it is time for educators, researchers, practitioners and policy makers to join in and ROAR with TIGER. Copyright © 2017 Elsevier Ltd. All rights reserved.
Office of Biological Informatics and Outreach geospatial technology activities
,
1998-01-01
The U.S. Geological Survey (USGS) Office of Biological Informatics and Outreach (OBIO) in Reston, Virginia, and its Center for Biological Informatics (CBI) in Denver, Colorado, provide leadership in the development and use of geospatial technologies to advance the Nation's biological science activities.
Biomedical informatics and the convergence of Nano-Bio-Info-Cogno (NBIC) technologies.
Martin-Sanchez, F; Maojo, V
2009-01-01
To analyze the role that biomedical informatics could play in the application of the NBIC Converging Technologies in the medical field and raise awareness of these new areas throughout the Biomedical Informatics community. Review of the literature and analysis of the reference documents in this domain from the biomedical informatics perspective. Detailing existing developments showing that partial convergence of technologies have already yielded relevant results in biomedicine (such as bioinformatics or biochips). Input from current projects in which the authors are involved is also used. Information processing is a key issue in enabling the convergence of NBIC technologies. Researchers in biomedical informatics are in a privileged position to participate and actively develop this new scientific direction. The experience of biomedical informaticians in five decades of research in the medical area and their involvement in the completion of the Human and other genome projects will help them participate in a similar role for the development of applications of converging technologies -particularly in nanomedicine. The proposed convergence will bring bridges between traditional disciplines. Particular attention should be placed on the ethical, legal, and social issues raised by the NBIC convergence. These technologies provide new directions for research and education in Biomedical Informatics placing a greater emphasis in multidisciplinary approaches.
[The Role and Function of Informatics Nurses in Information Technology Decision-Making].
Lee, Tso-Ying
2017-08-01
The medical environment has changed greatly with the coming of the information age, and, increasingly, the operating procedures for medical services have been altered in keeping with the trend toward mobile, paperless services. Informatization has the potential to improve the working efficiency of medical personnel, enhance patient care safety, and give medical organizations a positive image. Informatics nurses play an important role in the decision-making processes that accompany informatization. As one of the decision-making links in the information technology lifecycle, this role affects the success of the development and operation of information systems. The present paper examines the functions and professional knowledge that informatics nurses must possess during the technology lifecycle, the four stages of which include: planning, analysis, design/development/revision, and implementation/assessment/support/maintenance. The present paper further examines the decision-making shortcomings and errors that an informatics nurses may make during the decision-making process. We hope that this paper will serve as an effective and useful reference for informatics nurses during the informatization decision-making process.
Informatics and Technology in Resident Education.
Niehaus, William
2017-05-01
Biomedical or clinical informatics is the transdisciplinary field that studies and develops effective uses of biomedical data, information technology innovations, and medical knowledge for scientific inquiry, problem solving, and decision making, with an emphasis on improving human health. Given the ongoing advances in information technology, the field of informatics is becoming important to clinical practice and to residency education. This article will discuss how informatics is specifically relevant to residency education and the different ways to incorporate informatics into residency education, and will highlight applications of current technology in the context of residency education. How informatics can optimize communication for residents, promote information technology use, refine documentation techniques, reduce medical errors, and improve clinical decision making will be reviewed. It is hoped that this article will increase faculty and trainees' knowledge of the field of informatics, awareness of available technology, and will assist practitioners to maximize their ability to provide quality care to their patients. This article will also introduce the idea of incorporating informatics specialists into residency programs to help practitioners deliver more evidenced-based care and to further improve their efficiency. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Craniofacial imaging informatics and technology development.
Vannier, M W
2003-01-01
'Craniofacial imaging informatics' refers to image and related scientific data from the dentomaxillofacial complex, and application of 'informatics techniques' (derived from disciplines such as applied mathematics, computer science and statistics) to understand and organize the information associated with the data. Major trends in information technology determine the progress made in craniofacial imaging and informatics. These trends include industry consolidation, disruptive technologies, Moore's law, electronic atlases and on-line databases. Each of these trends is explained and documented, relative to their influence on craniofacial imaging. Craniofacial imaging is influenced by major trends that affect all medical imaging and related informatics applications. The introduction of cone beam craniofacial computed tomography scanners is an example of a disruptive technology entering the field. An important opportunity lies in the integration of biologic knowledge repositories with craniofacial images. The progress of craniofacial imaging will continue subject to limitations imposed by the underlying technologies, especially imaging informatics. Disruptive technologies will play a major role in the evolution of this field.
Toward an Informatics Research Agenda
Kaplan, Bonnie; Brennan, Patricia Flatley; Dowling, Alan F.; Friedman, Charles P.; Peel, Victor
2001-01-01
As we have advanced in medical informatics and created many impressive innovations, we also have learned that technologic developments are not sufficient to bring the value of computer and information technologies to health care systems. This paper proposes a model for improving how we develop and deploy information technology. The authors focus on trends in people, organizational, and social issues (POI/OSI), which are becoming more complex as both health care institutions and information technologies are changing rapidly. They outline key issues and suggest high-priority research areas. One dimension of the model concerns different organizational levels at which informatics applications are used. The other dimension draws on social science disciplines for their approaches to studying implications of POI/OSI in informatics. By drawing on a wide variety of research approaches and asking questions based in social science disciplines, the authors propose a research agenda for high-priority issues, so that the challenges they see ahead for informatics may be met better. PMID:11320068
Rigby, M; Ammenwerth, E; Talmon, J; Nykänen, P; Brender, J; de Keizer, N
2011-01-01
Health informatics is generally less committed to a scientific evidence-based approach than any other area of health science, which is an unsound position. Introducing the new Web 3.0 paradigms into health IT applications can unleash a further great potential, able to integrate and distribute data from multiple sources. The counter side is that it makes the user and the patient evermore dependent on the 'black box' of the system, and the re-use of the data remote from the author and initial context. Thus anticipatory consideration of uses, and proactive analysis of evidence of effects, are imperative, as only when a clinical technology can be proven to be trustworthy and safe should it be implemented widely - as is the case with other health technologies. To argue for promoting evidence-based health informatics as systems become more powerful and pro-active yet more dispersed and remote; and evaluation as the means of generating the necessary scientific evidence base. To present ongoing IMIA and EFMI initiatives in this field. Critical overview of recent developments in health informatics evaluation, alongside the precedents of other health technologies, summarising current initiatives and the new challenges presented by Health Informatics 3.0. Web 3.0 should be taken as an opportunity to move health informatics from being largely unaccountable to one of being an ethical and responsible science-based domain. Recent and planned activities of the EFMI and IMIA working groups have significantly progressed key initiatives. Concurrent with the emergence of Web 3.0 as a means of new-generation diffuse health information systems comes an increasing need for an evidence-based culture in health informatics.
A Nursing Informatics Research Agenda for 2008–18: Contextual Influences and Key Components
Bakken, Suzanne; Stone, Patricia W.; Larson, Elaine L.
2008-01-01
The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on three specific aspects of context - genomic health care, shifting research paradigms, and social (Web 2.0) technologies - that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008–18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context. PMID:18922269
Crossing the chasm: information technology to biomedical informatics.
Fahy, Brenda G; Balke, C William; Umberger, Gloria H; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L; Conigliaro, Joseph
2011-06-01
Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) "Roadmap for Medical Research." The Clinical and Translational Science Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH's translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology platforms of the enterprise clinical operations within academic health centers.This report details one academic health center's transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This article describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts.
Long distance education for croatian nurses with open source software.
Radenovic, Aleksandar; Kalauz, Sonja
2006-01-01
Croatian Nursing Informatics Association (CNIA) has been established as result of continuing work on promoting nursing informatics in Croatia. Main goals of CNIA are promoting nursing informatics and education of nurses about nursing informatics and using information technology in nursing process. CNIA in start of work is developed three courses from nursing informatics all designed with support of long distance education with open source software. Courses are: A - 'From Data to Wisdom', B - 'Introduction to Nursing Informatics' and C - 'Nursing Informatics I'. Courses A and B are obligatory for C course. Technology used to implement these online courses is based on the open source Learning Management System (LMS), Claroline, free online collaborative learning platform. Courses are divided in two modules/days. First module/day participants have classical approach to education and second day with E-learning from home. These courses represent first courses from nursing informatics' and first long distance education for nurses also.
Gray, Kathleen
2016-01-01
Health informatics has a major role to play in optimising the management and use of data, information and knowledge in health systems. As health systems undergo digital transformation, it is important to consider informatics approaches not only to curriculum content but also to the design of learning environments and learning activities for health professional learning and development. An example of such an informatics approach is the use of large-scale, integrated public health platforms on the Internet as part of health professional learning and development. This article describes selected examples of such platforms, with a focus on how they may influence the direction of health professional learning and development. Significance for public health The landscape of healthcare systems, public health systems, health research systems and professional education systems is fragmented, with many gaps and silos. More sophistication in the management of health data, information, and knowledge, based on public health informatics expertise, is needed to tackle key issues of prevention, promotion and policy-making. Platform technologies represent an emerging large-scale, highly integrated informatics approach to public health, combining the technologies of Internet, the web, the cloud, social technologies, remote sensing and/or mobile apps into an online infrastructure that can allow more synergies in work within and across these systems. Health professional curricula need updating so that the health workforce has a deep and critical understanding of the way that platform technologies are becoming the foundation of the health sector. PMID:27190977
Crossing the Chasm: Information Technology to Biomedical Informatics
Fahy, Brenda G.; Balke, C. William; Umberger, Gloria H.; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L.; Conigliaro, Joseph
2011-01-01
Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) “Roadmap for Medical Research.” The Clinical and Translational Research Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH’s translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology (IT) platforms of the enterprise clinical operations within academic health centers. This report details one academic health center’s transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This paper describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts. PMID:21383632
RADIOMICS.io | Informatics Technology for Cancer Research (ITCR)
RADIOMICS.io is a open source platform for informatics developments for radiographic phenotyping using automated algorithms, such as engineered features or using deep learning technologies. With this platform, we aim to establish a reference standard for radiomic analyses, provide a tested and maintained resource, and to grow the community of radiomic developers addressing critical needs in cancer research.
Military research needs in biomedical informatics.
Reifman, Jaques; Gilbert, Gary R; Fagan, Lawrence; Satava, Richard
2002-01-01
The 2001 U.S. Army Medical Research and Materiel Command (USAMRMC) Biomedical Informatics Roadmap Meeting was devoted to developing a strategic plan in four focus areas: Hospital and Clinical Informatics, E-Health, Combat Health Informatics, and Bioinformatics and Biomedical Computation. The driving force of this Roadmap Meeting was the recent accelerated pace of change in biomedical informatics in which emerging technologies have the potential to affect significantly the Army research portfolio and investment strategy in these focus areas. The meeting was structured so that the first two days were devoted to presentations from experts in the field, including representatives from the three services, other government agencies, academia, and the private sector, and the morning of the last day was devoted to capturing specific biomedical informatics research needs in the four focus areas. This white paper summarizes the key findings and recommendations and should be a powerful tool for the crafting of future requests for proposals to help align USAMRMC new strategic research investments with new developments and emerging technologies.
Outcomes management of mechanically ventilated patients: utilizing informatics technology.
Smith, K R
1998-11-01
This article examines an informatics system developed for outcomes management of the mechanically ventilated adult population, focusing on weaning the patient from mechanical ventilation. The link between medical informatics and outcomes management is discussed, along with the development of methods, tools, and data sets for outcomes management of the mechanically ventilated adult population at an acute care academic institution. Pros and cons of this system are identified, and specific areas for improvement of future health care outcomes medical informatics systems are discussed.
ERIC Educational Resources Information Center
Southwest Educational Development Lab., Austin, TX.
One of a series of booklets on disability research, this paper explores two major developments in the application of information technology: health care informatics and knowledge management. Both of these concepts focus on maximizing the value of, and access to, information resources. Both use technology to create interactive systems through which…
An Approach for All in Pharmacy Informatics Education.
Fox, Brent I; Flynn, Allen; Clauson, Kevin A; Seaton, Terry L; Breeden, Elizabeth
2017-03-25
Computerization is transforming health care. All clinicians are users of health information technology (HIT). Understanding fundamental principles of informatics, the field focused on information needs and uses, is essential if HIT is going to support improved patient outcomes. Informatics education for clinicians is a national priority. Additionally, some informatics experts are needed to bring about innovations in HIT. A common approach to pharmacy informatics education has been slow to develop. Meanwhile, accreditation standards for informatics in pharmacy education continue to evolve. A gap remains in the implementation of informatics education for all pharmacy students and it is unclear what expert informatics training should cover. In this article, we propose the first of two complementary approaches to informatics education in pharmacy: to incorporate fundamental informatics education into pharmacy curricula for all students. The second approach, to train those students interested in becoming informatics experts to design, develop, implement, and evaluate HIT, will be presented in a subsequent issue of the Journal .
An Approach for All in Pharmacy Informatics Education
Flynn, Allen; Clauson, Kevin A.; Seaton, Terry L.; Breeden, Elizabeth
2017-01-01
Computerization is transforming health care. All clinicians are users of health information technology (HIT). Understanding fundamental principles of informatics, the field focused on information needs and uses, is essential if HIT is going to support improved patient outcomes. Informatics education for clinicians is a national priority. Additionally, some informatics experts are needed to bring about innovations in HIT. A common approach to pharmacy informatics education has been slow to develop. Meanwhile, accreditation standards for informatics in pharmacy education continue to evolve. A gap remains in the implementation of informatics education for all pharmacy students and it is unclear what expert informatics training should cover. In this article, we propose the first of two complementary approaches to informatics education in pharmacy: to incorporate fundamental informatics education into pharmacy curricula for all students. The second approach, to train those students interested in becoming informatics experts to design, develop, implement, and evaluate HIT, will be presented in a subsequent issue of the Journal. PMID:28381898
Rebholz-Schuhman, Dietrich; Cameron, Graham; Clark, Dominic; van Mulligen, Erik; Coatrieux, Jean-Louis; Del Hoyo Barbolla, Eva; Martin-Sanchez, Fernando; Milanesi, Luciano; Porro, Ivan; Beltrame, Francesco; Tollis, Ioannis; Van der Lei, Johan
2007-03-08
The SYMBIOmatics Specific Support Action (SSA) is "an information gathering and dissemination activity" that seeks "to identify synergies between the bioinformatics and the medical informatics" domain to improve collaborative progress between both domains (ref. to http://www.symbiomatics.org). As part of the project experts in both research fields will be identified and approached through a survey. To provide input to the survey, the scientific literature was analysed to extract topics relevant to both medical informatics and bioinformatics. This paper presents results of a systematic analysis of the scientific literature from medical informatics research and bioinformatics research. In the analysis pairs of words (bigrams) from the leading bioinformatics and medical informatics journals have been used as indication of existing and emerging technologies and topics over the period 2000-2005 ("recent") and 1990-1990 ("past"). We identified emerging topics that were equally important to bioinformatics and medical informatics in recent years such as microarray experiments, ontologies, open source, text mining and support vector machines. Emerging topics that evolved only in bioinformatics were system biology, protein interaction networks and statistical methods for microarray analyses, whereas emerging topics in medical informatics were grid technology and tissue microarrays. We conclude that although both fields have their own specific domains of interest, they share common technological developments that tend to be initiated by new developments in biotechnology and computer science.
Rebholz-Schuhman, Dietrich; Cameron, Graham; Clark, Dominic; van Mulligen, Erik; Coatrieux, Jean-Louis; Del Hoyo Barbolla, Eva; Martin-Sanchez, Fernando; Milanesi, Luciano; Porro, Ivan; Beltrame, Francesco; Tollis, Ioannis; Van der Lei, Johan
2007-01-01
Background The SYMBIOmatics Specific Support Action (SSA) is "an information gathering and dissemination activity" that seeks "to identify synergies between the bioinformatics and the medical informatics" domain to improve collaborative progress between both domains (ref. to ). As part of the project experts in both research fields will be identified and approached through a survey. To provide input to the survey, the scientific literature was analysed to extract topics relevant to both medical informatics and bioinformatics. Results This paper presents results of a systematic analysis of the scientific literature from medical informatics research and bioinformatics research. In the analysis pairs of words (bigrams) from the leading bioinformatics and medical informatics journals have been used as indication of existing and emerging technologies and topics over the period 2000–2005 ("recent") and 1990–1990 ("past"). We identified emerging topics that were equally important to bioinformatics and medical informatics in recent years such as microarray experiments, ontologies, open source, text mining and support vector machines. Emerging topics that evolved only in bioinformatics were system biology, protein interaction networks and statistical methods for microarray analyses, whereas emerging topics in medical informatics were grid technology and tissue microarrays. Conclusion We conclude that although both fields have their own specific domains of interest, they share common technological developments that tend to be initiated by new developments in biotechnology and computer science. PMID:17430562
Marcelo, A; Adejumo, A; Luna, D
2011-01-01
Describe the issues surrounding health informatics in developing countries and the challenges faced by practitioners in building internal capacity. From these issues, the authors propose cost-effective strategies that can fast track health informatics development in these low to medium income countries (LMICs). The authors conducted a review of literature and consulted key opinion leaders who have experience with health informatics implementations around the world. Despite geographic and cultural differences, many LMICs share similar challenges and opportunities in developing health informatics. Partnerships, standards, and inter-operability are well known components of successful informatics programs. Establishing partnerships can be comprised of formal inter-institutional collaborations on training and research, collaborative open source software development, and effective use of social networking. Lacking legacy systems, LMICs can discuss standards and inter-operability more openly and have greater potential for success. Lastly, since cellphones are pervasive in developing countries, they can be leveraged as access points for delivering and documenting health services in remote under-served areas. Mobile health or mHealth gives LMICs a unique opportunity to leapfrog through most issues that have plagued health informatics in developed countries. By employing this proposed roadmap, LMICs can now develop capacity for health informatics using appropriate and cost-effective technologies.
Schaefbauer, Chris L; Campbell, Terrance R; Senteio, Charles; Siek, Katie A; Bakken, Suzanne; Veinot, Tiffany C
2016-01-01
Objective We compare 5 health informatics research projects that applied community-based participatory research (CBPR) approaches with the goal of extending existing CBPR principles to address issues specific to health informatics research. Materials and methods We conducted a cross-case analysis of 5 diverse case studies with 1 common element: integration of CBPR approaches into health informatics research. After reviewing publications and other case-related materials, all coauthors engaged in collaborative discussions focused on CBPR. Researchers mapped each case to an existing CBPR framework, examined each case individually for success factors and barriers, and identified common patterns across cases. Results Benefits of applying CBPR approaches to health informatics research across the cases included the following: developing more relevant research with wider impact, greater engagement with diverse populations, improved internal validity, more rapid translation of research into action, and the development of people. Challenges of applying CBPR to health informatics research included requirements to develop strong, sustainable academic-community partnerships and mismatches related to cultural and temporal factors. Several technology-related challenges, including needs to define ownership of technology outputs and to build technical capacity with community partners, also emerged from our analysis. Finally, we created several principles that extended an existing CBPR framework to specifically address health informatics research requirements. Conclusions Our cross-case analysis yielded valuable insights regarding CBPR implementation in health informatics research and identified valuable lessons useful for future CBPR-based research. The benefits of applying CBPR approaches can be significant, particularly in engaging populations that are typically underserved by health care and in designing patient-facing technology. PMID:26228766
Pre-School Teachers' Informatics and Information Literacy
ERIC Educational Resources Information Center
Tatkovic, Nevenka; Ruzic, Maja; Pecaric, Dilda
2006-01-01
The life and activities of every man in the period of transition from the second into the third millennium have been marked by epochal changes which appear as the consequence of scientific and technological revolution dominated by highly developed information and communication technology. Informatics and information education based on information…
ERIC Educational Resources Information Center
Kiss, Gabor
2012-01-01
An analysis of Information Technology knowledge of Hungarian and Romanian students was made with the help of a self developed web based Informatics Test. The goal of this research is an analysis of the Computer Science knowledge level of Hungarian and Romanian students attending a Science course or a Mathematics-Informatics course. Analysed was…
Informatics Competencies for Nursing and Healthcare Leaders
Westra, Bonnie L.; Delaney, Connie W.
2008-01-01
Historically, educational preparation did not address informatics competencies; thus managers, administrators, or executives may not be prepared to use or lead change in the use of health information technologies. A number of resources for informatics competencies exist, however, a comprehensive list addressing the unique knowledge and skills required in the role of a manager or administrator was not found. The purpose of this study was to develop informatics competencies for nursing leaders. A synthesis of the literature and a Delphi approach using three rounds of surveys with an expert panel resulted in identification of informatics competencies for nursing leaders that address computer skills, informatics knowledge, and informatics skills. PMID:18998803
The history of pathology informatics: A global perspective
Park, Seung; Parwani, Anil V.; Aller, Raymond D.; Banach, Lech; Becich, Michael J.; Borkenfeld, Stephan; Carter, Alexis B.; Friedman, Bruce A.; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron
2013-01-01
Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286
ERIC Educational Resources Information Center
Guo, Xuan
2016-01-01
The educational reform based on information technology at college has been paid high attention recently in China, which aims at using educational informatization to drive educational modernization and bringing online education into the reform and development strategy of the overall higher education. To promote the educational informatization is…
Geo-Engineering through Internet Informatics (GEMINI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doveton, John H.; Watney, W. Lynn
The program, for development and methodologies, was a 3-year interdisciplinary effort to develop an interactive, integrated Internet Website named GEMINI (Geo-Engineering Modeling through Internet Informatics) that would build real-time geo-engineering reservoir models for the Internet using the latest technology in Web applications.
Hincapie, Ana L; Cutler, Timothy W; Fingado, Amanda R
2016-08-25
Objective. To incorporate a pharmacy informatics program in the didactic curriculum of a team-based learning institution and to assess students' knowledge of and confidence with health informatics during the course. Design. A previously developed online pharmacy informatics course was adapted and implemented into a team-based learning (TBL) 3-credit-hour drug information course for doctor of pharmacy (PharmD) students in their second didactic year. During a period of five weeks (15 contact hours), students used the online pharmacy informatics modules as part of their readiness assurance process. Additional material was developed to comply with the TBL principles. Online pre/postsurveys were administered to evaluate knowledge gained and students' perceptions of the informatics program. Assessment. Eighty-three second-year students (84% response rate) completed the surveys. Participants' knowledge of electronic health records, computerized physician order entry, pharmacy information systems, and clinical decision support was significantly improved. Additionally, their confidence significantly improved in terms of describing health informatics terminology, describing the benefits and barriers of using health information technology, and understanding reasons for systematically processing health information. Conclusion. Students responded favorably to the incorporation of pharmacy informatics content into a drug information course using a TBL approach. Students met the learning objectives of seven thematic areas and had positive attitudes toward the course after its completion.
Public Policy and Health Informatics.
Bell, Katherine
2018-05-01
To provide an overview of the history of electronic health policy and identify significant laws that influence health informatics. US Department of Health and Human Services. The development of health information technology has influenced the process for delivering health care. Public policy and regulations are an important part of health informatics and establish the structure of electronic health systems. Regulatory bodies of the government initiate policies to ease the execution of electronic health record implementation. These same bureaucratic entities regulate the system to protect the rights of the patients and providers. Nurses should have an overall understanding of the system behind health informatics and be able to advocate for change. Nurses can utilize this information to optimize the use of health informatics and campaign for safe, effective, and efficient health information technology. Copyright © 2018 Elsevier Inc. All rights reserved.
An informatics research agenda to support precision medicine: seven key areas.
Tenenbaum, Jessica D; Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R
2016-07-01
The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM's vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.
IT Strategic Planning Workshops Develop Long-Term Goals | Poster
As part of NCI’s Research IT Strategic Planning efforts, a workshop was held on the NIH main campus in June. The main purpose of the workshop was to discuss ways to better integrate IT and informatics throughout NCI, and develop specific, high-level goals and related objectives that will drive the direction of IT and informatics support over the next five years. The initiative to integrate NCI’s IT and informatics is a collaboration between the Center for Biomedical Informatics and Information Technology (CBIIT), Office of Scientific Operations, Data Management Services, and the IT Operations Group.
Internet Technology in Electronic Commerce
NASA Astrophysics Data System (ADS)
Zhanys, A. B.; Tursinbaeva, A. F.
2018-05-01
Informatization is an active process of acquiring information as a valuable resource for development using Informatics tools in order to dramatically increase the intellectual level of civilization on this basis – humanistic reconstruction of the whole human life.
Oyri, Karl; Murray, Peter J
2005-12-01
Many health informatics organizations seem to be slow to take up the advantages of dynamic, web-based technologies for providing services to, and interaction with, their members; these are often the very technologies they promote for use within healthcare environments. This paper aims to introduce some of the many free/libre/open source (FLOSS) applications that are now available to develop interactive websites and dynamic online communities as part of the structure of health informatics organizations, and to show how the Open Source Nursing Informatics Working Group (OSNI) of the special interest group in nursing informatics of the International Medical Informatics Association (IMIA-NI) is using some of these tools to develop an online community of nurse informaticians through their website, at . Some background introduction to FLOSS applications is used for the benefit of those less familiar with such tools, and examples of some of the FLOSS content management systems (CMS) being used by OSNI are described. The experiences of the OSNI will facilitate a knowledgeable nursing contribution to the wider discussions on the applications of FLOSS within health and healthcare, and provides a model that many other groups could adopt.
Bloomrosen, Meryl; Detmer, Don E
2010-01-01
There is an increased level of activity in the biomedical and health informatics world (e-prescribing, electronic health records, personal health records) that, in the near future, will yield a wealth of available data that we can exploit meaningfully to strengthen knowledge building and evidence creation, and ultimately improve clinical and preventive care. The American Medical Informatics Association (AMIA) 2008 Health Policy Conference was convened to focus and propel discussions about informatics-enabled evidence-based care, clinical research, and knowledge management. Conference participants explored the potential of informatics tools and technologies to improve the evidence base on which providers and patients can draw to diagnose and treat health problems. The paper presents a model of an evidence continuum that is dynamic, collaborative, and powered by health informatics technologies. The conference's findings are described, and recommendations on terminology harmonization, facilitation of the evidence continuum in a "wired" world, development and dissemination of clinical practice guidelines and other knowledge support strategies, and the role of diverse stakeholders in the generation and adoption of evidence are presented.
Booth, Richard G
2016-01-01
The increased adoption and use of technology within healthcare and society has influenced the nursing informatics specialty in a multitude of fashions. Namely, the nursing informatics specialty currently faces a range of important decisions related to its knowledge base, established values and future directions - all of which are in need of development and future-proofing. In light of the increased use of automation, artificial intelligence and big data in healthcare, the specialty must also reconceptualize the roles of both nurses and informaticians to ensure that the nursing profession is ready to operate within future digitalized healthcare ecosystems. To explore these goals, the author of this manuscript outlines an examination of technological advancements currently taking place within healthcare, and also proposes implications for the nursing role and the nursing informatics specialty. Finally, recommendations and insights towards how the roles of nurses and informaticians might evolve or be shaped in the growing post-nursing informatics era are presented. Copyright © 2016 Longwoods Publishing.
Continuous quality improvement and medical informatics: the convergent synergy.
Werth, G R; Connelly, D P
1992-01-01
Continuous quality improvement (CQI) and medical informatics specialists need to converge their efforts to create synergy for improving health care. Health care CQI needs medical informatics' expertise and technology to build the information systems needed to manage health care organizations according to quality improvement principles. Medical informatics needs CQI's philosophy and methods to build health care information systems that can evolve to meet the changing needs of clinicians and other stakeholders. This paper explores the philosophical basis for convergence of CQI and medical informatics efforts, and then examines a clinical computer workstation development project that is applying a combined approach.
Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta
2016-01-01
The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.
Haux, Reinhold
2006-12-01
This paper discusses aspects of information technologies for health care, in particular on transinstitutional health information systems (HIS) and on health-enabling technologies, with some consequences for the aim of medical informatics. It is argued that with the extended range of health information systems and the perspective of having adequate transinstitutional HIS architectures, a substantial contribution can be made to better patient-centered care, with possibilities ranging from regional, national to even global care. It is also argued that in applying health-enabling technologies, using ubiquitous, pervasive computing environments and ambient intelligence approaches, we can expect that in addition care will become more specific and tailored for the individual, and that we can achieve better personalized care. In developing health care systems towards transinstitutional HIS and health-enabling technologies, the aim of medical informatics, to contribute to the progress of the sciences and to high-quality, efficient, and affordable health care that does justice to the individual and to society, may be extended to also contributing to self-determined and self-sufficient (autonomous) life. Reference is made and examples are given from the Yearbook of Medical Informatics of the International Medical Informatics Association (IMIA) and from the work of Professor Jochen Moehr.
Little, David R; Zapp, John A; Mullins, Henry C; Zuckerman, Alan E; Teasdale, Sheila; Johnson, Kevin B
2003-01-01
The Primary Care Informatics Working Group (PCIWG) of the American Medical Informatics Association (AMIA) has identified the absence of a national strategy for primary care informatics. Under PCIWG leadership, major national and international societies have come together to create the National Alliance for Primary Care Informatics (NAPCI), to promote a connection between the informatics community and the organisations that support primary care. The PCIWG clinical practice subcommittee has recognised the necessity of a global needs assessment, and proposed work in point-of-care technology, clinical vocabularies, and ambulatory electronic medical record development. Educational needs include a consensus statement on informatics competencies, recommendations for curriculum and teaching methods, and methodologies to evaluate their effectiveness. The research subcommittee seeks to define a primary care informatics research agenda, and to support and disseminate informatics research throughout the primary care community. The AMIA board of directors has enthusiastically endorsed the conceptual basis for this White Paper.
NASA Technical Reports Server (NTRS)
Cakir, Serhat
1994-01-01
In the last twenty years the rapid change in the informatics sector has had economic and social impact on private and government activities. The Supreme Council for Science and Technology of Turkey assigned highest priority to the informatics in its meeting in February 1993. With this advice TUBITAK (The Scientific and Technical Research Council of Turkey) intends to give a strong impulse to development of a research policy in this field.
Pharmacovigilance and Biomedical Informatics: A Model for Future Development.
Beninger, Paul; Ibara, Michael A
2016-12-01
The discipline of pharmacovigilance is rooted in the aftermath of the thalidomide tragedy of 1961. It has evolved as a result of collaborative efforts by many individuals and organizations, including physicians, patients, Health Authorities, universities, industry, the World Health Organization, the Council for International Organizations of Medical Sciences, and the International Conference on Harmonisation. Biomedical informatics is rooted in technologically based methodologies and has evolved at the speed of computer technology. The purpose of this review is to bring a novel lens to pharmacovigilance, looking at the evolution and development of the field of pharmacovigilance from the perspective of biomedical informatics, with the explicit goal of providing a foundation for discussion of the future direction of pharmacovigilance as a discipline. For this review, we searched [publication trend for the log 10 value of the numbers of publications identified in PubMed] using the key words [informatics (INF), pharmacovigilance (PV), phar-macovigilance þ informatics (PV þ INF)], for [study types] articles published between [1994-2015]. We manually searched the reference lists of identified articles for additional information. Biomedical informatics has made significant contributions to the infrastructural development of pharmacovigilance. However, there has not otherwise been a systematic assessment of the role of biomedical informatics in enhancing the field of pharmacovigilance, and there has been little cross-discipline scholarship. Rapidly developing innovations in biomedical informatics pose a challenge to pharmacovigilance in finding ways to include new sources of safety information, including social media, massively linked databases, and mobile and wearable wellness applications and sensors. With biomedical informatics as a lens, it is evident that certain aspects of pharmacovigilance are evolving more slowly. However, the high levels of mutual interest in both fields and intense global and economic external pressures offer opportunities for a future of closer collaboration. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.
ERIC Educational Resources Information Center
Jirat, Jiri; Cech, Petr; Znamenacek, Jiri; Simek, Miroslav; Skuta, Ctibor; Vanek, Tomas; Dibuszova, Eva; Nic, Miloslav; Svozil, Daniel
2013-01-01
Experience developing multidisciplinary bachelor's and master's curricula involving intertwined chemistry, informatics, and librarianship-editorship skills is described. The bachelor's curriculum was created in close cooperation of academic staff, library staff, and the publishing house staff (Institute of Chemical Technology Prague: a sole…
Analysis on Influencing Factors and Countermeasures for College Students' Network Entertainment
ERIC Educational Resources Information Center
Liu, Xiaohong; Wang, Lisi; Yang, Qiong
2012-01-01
Informatization, as a trend in the world's development nowadays, has become an important force to promote economic and social reforms. Since 1990s, information technology reforms have advanced dramatically. Along with the constant development of the information industry as well as the popularization of information network, informatization has been…
Murray, Peter J; Oyri, Karl
2005-01-01
Many health informatics organisations do not seem to use, on a practical basis, for the benefit of their activities and interaction with their members, the very technologies that they often promote for use within healthcare environments. In particular, many organisations seem to be slow to take up the benefits of interactive web technologies. This paper presents an introduction to some of the many free/libre and open source (FLOSS) applications currently available and using the LAMP - Linux, Apache, MySQL, PHP architecture - as a way of cheaply deploying reliable, scalable, and secure web applications. The experience of moving to applications using LAMP architecture, in particular that of the Open Source Nursing Informatics (OSNI) Working Group of the Special Interest Group in Nursing Informatics of the International Medical Informatics Association (IMIA-NI), in using PostNuke, a FLOSS Content Management System (CMS) illustrates many of the benefits of such applications. The experiences of the authors in installing and maintaining a large number of websites using FLOSS CMS to develop dynamic, interactive websites that facilitate real engagement with the members of IMIA-NI OSNI, the IMIA Open Source Working Group, and the Centre for Health Informatics Research and Development (CHIRAD), as well as other organisations, is used as the basis for discussing the potential benefits that could be realised by others within the health informatics community.
NASA Astrophysics Data System (ADS)
Vasina, A. V.
2017-01-01
The author of the article imparts pedagogical experience of realization of intersubject communications of school basic courses of informatics, technology and physics through research activity of students with the use of specialized programs for the development and studying of computer models of physical processes. The considered technique is based on the principles of independent scholar activity of students, intersubject communications such as educational disciplines of technology, physics and informatics; it helps to develop the research activity of students and a professional and practical orientation of education. As an example the lesson of modeling of flotation with the use of the environment "1C Physical simulator" is considered.
Combining medical informatics and bioinformatics toward tools for personalized medicine.
Sarachan, B D; Simmons, M K; Subramanian, P; Temkin, J M
2003-01-01
Key bioinformatics and medical informatics research areas need to be identified to advance knowledge and understanding of disease risk factors and molecular disease pathology in the 21 st century toward new diagnoses, prognoses, and treatments. Three high-impact informatics areas are identified: predictive medicine (to identify significant correlations within clinical data using statistical and artificial intelligence methods), along with pathway informatics and cellular simulations (that combine biological knowledge with advanced informatics to elucidate molecular disease pathology). Initial predictive models have been developed for a pilot study in Huntington's disease. An initial bioinformatics platform has been developed for the reconstruction and analysis of pathways, and work has begun on pathway simulation. A bioinformatics research program has been established at GE Global Research Center as an important technology toward next generation medical diagnostics. We anticipate that 21 st century medical research will be a combination of informatics tools with traditional biology wet lab research, and that this will translate to increased use of informatics techniques in the clinic.
An informatics research agenda to support precision medicine: seven key areas
Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R
2016-01-01
The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM’s vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. PMID:27107452
Bott, O J; Ammenwerth, E; Brigl, B; Knaup, P; Lang, E; Pilgram, R; Pfeifer, B; Ruderich, F; Wolff, A C; Haux, R; Kulikowski, C
2005-01-01
To review recent research efforts in the field of ubiquitous computing in health care. To identify current research trends and further challenges for medical informatics. Analysis of the contents of the Yearbook on Medical Informatics 2005 of the International Medical Informatics Association (IMIA). The Yearbook of Medical Informatics 2005 includes 34 original papers selected from 22 peer-reviewed scientific journals related to several distinct research areas: health and clinical management, patient records, health information systems, medical signal processing and biomedical imaging, decision support, knowledge representation and management, education and consumer informatics as well as bioinformatics. A special section on ubiquitous health care systems is devoted to recent developments in the application of ubiquitous computing in health care. Besides additional synoptical reviews of each of the sections the Yearbook includes invited reviews concerning E-Health strategies, primary care informatics and wearable healthcare. Several publications demonstrate the potential of ubiquitous computing to enhance effectiveness of health services delivery and organization. But ubiquitous computing is also a societal challenge, caused by the surrounding but unobtrusive character of this technology. Contributions from nearly all of the established sub-disciplines of medical informatics are demanded to turn the visions of this promising new research field into reality.
Including information technology project management in the nursing informatics curriculum.
Sockolow, Paulina; Bowles, Kathryn H
2008-01-01
Project management is a critical skill for nurse informaticists who are in prominent roles developing and implementing clinical information systems. It should be included in the nursing informatics curriculum, as evidenced by its inclusion in informatics competencies and surveys of important skills for informaticists. The University of Pennsylvania School of Nursing includes project management in two of the four courses in the master's level informatics minor. Course content includes the phases of the project management process; the iterative unified process methodology; and related systems analysis and project management skills. During the introductory course, students learn about the project plan, requirements development, project feasibility, and executive summary documents. In the capstone course, students apply the system development life cycle and project management skills during precepted informatics projects. During this in situ experience, students learn, the preceptors benefit, and the institution better prepares its students for the real world.
Psychometric Properties of the Canadian Nurse Informatics Competency Assessment Scale.
Kleib, Manal; Nagle, Lynn
2018-04-10
Assessment of nursing informatics competencies has gained momentum in the scholarly literature in response to the increased need for resources available to support informatics capacity in nursing. The purpose of this study was to examine the factor structure and internal consistency reliability of the Canadian Nurse Informatics Competency Assessment Scale, a newly developed 21-item measure based on published entry-to-practice informatics competencies for RNs. For this study, 2844 nurses completed the Canadian Nurse Informatics Competency Assessment Scale through a cross-sectional survey. Exploratory principal component analysis with oblique promax rotation revealed a four-component/factor structure for the 21-item Canadian Nurse Informatics Competency Assessment Scale, explaining 61.04% of the variance. Item loading per each component reflected the original Canadian Association of Schools of Nursing grouping of nursing informatics competency indicators, as per three key domains of competency: information and knowledge management (α = .85); professional and regulatory accountability (α = .81); and use of information and communication technology in the delivery of patient care (α = .87) with the exception of one item (Indicator 3), which loaded into the category of foundational information and communication technology skills (α = .81). This study provided preliminary evidence for the construct validity of the entry-to-practice competency domains and the factor structure and reliability of the Canadian Nurse Informatics Competency Assessment Scale among practicing nurses. Further testing among nurses in other settings and among nursing students is recommended.
Genetics, biometrics and the informatization of the body.
van der Ploeg, Irma
2007-01-01
"Genetics" is a term covering a wide set of theories, practices, and technologies, only some of which overlap with the practices and technologies of biometrics. In this paper some current technological developments relating to biometric applications of genetics will be highlighted. Next, the author will elaborate the notion of the informatization of the body, by means of a brief philosophical detour on the dualisms of language and reality, words and things. In the subsequent sections she will then draw out some of the questions relevant to the purposes of Biometrics Identification Technology Ethics (BITE), and discuss the ethical problems associated with the informatization of the body. There are, however some problems and limitations to the currently dominant ethical discourse to deal with all things ethical in relation to information technology in general, and biometrics or genetics in particular. The final section will discuss some of these meta-problems.
Massoudi, B L; Chester, K G
2017-08-01
Objectives: To survey advances in public and population health and epidemiology informatics over the past 18 months. Methods: We conducted a review of English-language research works conducted in the domain of public and population health informatics and published in MEDLINE or Web of Science between January 2015 and June 2016 where information technology or informatics was a primary subject or main component of the study methodology. Selected articles were presented using a thematic analysis based on the 2011 American Medical Informatics Association (AMIA) Public Health Informatics Agenda tracks as a typology. Results: Results are given within the context developed by Dixon et al., (2015) and key themes from the 2011 AMIA Public Health Informatics Agenda. Advances are presented within a socio-technical infrastructure undergirded by a trained, competent public health workforce, systems development to meet the business needs of the practice field, and research that evaluates whether those needs are adequately met. The ability to support and grow the infrastructure depends on financial sustainability. Conclusions: The fields of public health and population health informatics continue to grow, with the most notable developments focused on surveillance, workforce development, and linking to or providing clinical services, which encompassed population health informatics advances. Very few advances addressed the need to improve communication, coordination, and consistency with the field of informatics itself, as identified in the AMIA agenda. This will likely result in the persistence of the silos of public health information systems that currently exist. Future research activities need to aim toward a holistic approach of informatics across the enterprise. Georg Thieme Verlag KG Stuttgart.
Chonsilapawit, Teeraporn; Rungpragayphan, Suang
2016-10-01
Because hospital pharmacists have to deal with large amounts of health information and advanced information technology in practice, they must possess adequate skills and knowledge of informatics to operate efficiently. However, most current pharmacy curricula in Thailand barely address the principles and skills concerned with informatics, and Thai pharmacists usually acquire computer literacy and informatics skills through personal-interest training and self-study. In this study, we aimed to assess the skills and knowledge of informatics and the training needs of hospital pharmacists in Thailand, in order to improve curricular and professional development. A self-assessment postal survey of 73 questions was developed and distributed to the pharmacy departments of 601 hospitals throughout the country. Practicing hospital pharmacists were requested to complete and return the survey voluntarily. Within the 3 months of the survey period, a total of 805 out of 2002 surveys were returned. On average, respondents rated themselves as competent or better in the skills of basic computer operation, the Internet, information management, and communication. Understandably, they rated themselves at novice level for information technology and database design knowledge/skills, and at advanced beginner level for project, risk, and change management skills. Respondents believed that skills and knowledge of informatics were highly necessary for their work, and definitely needed training. Thai hospital pharmacists were confident in using computers and the Internet. They realized and appreciated their lack of informatics knowledge and skills, and needed more training. Pharmacy curricula and training should be developed accordingly. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Interdisciplinary innovations in biomedical and health informatics graduate education.
Demiris, G
2007-01-01
Biomedical and health informatics (BHI) is a rapidly growing domain that relies on the active collaboration with diverse disciplines and professions. Educational initiatives in BHI need to prepare students with skills and competencies that will allow them to function within and even facilitate interdisciplinary teams (IDT). This paper describes an interdisciplinary educational approach introduced into a BHI graduate curriculum that aims to prepare informatics researchers to lead IDT research. A case study of the "gerontechnology" research track is presented which highlights how the curriculum fosters collaboration with and understanding of the disciplines of Nursing, Engineering, Computer Science, and Health Administration. Gerontechnology is a new interdisciplinary field that focuses on the use of technology to support aging. Its aim is to explore innovative ways to use information technology and develop systems that support independency and increase quality of life for senior citizens. As a result of a large research group that explores "smart home" technologies and the use of information technology, we integrated this new domain into the curriculum providing a platform for computer scientists, engineers, nurses and physicians to explore challenges and opportunities with our informatics students and faculty. The interdisciplinary educational model provides an opportunity for health informatics students to acquire the skills for communication and collaboration with other disciplines. Numerous graduate and postgraduate students have already participated in this initiative. The evaluation model of this approach is presented. Interdisciplinary educational models are required for health informatics graduate education. Such models need to be innovative and reflect the needs and trends in the domains of health care and information technology.
Hussey, Pamela A; Kennedy, Margaret Ann
2016-05-01
A discussion on how informatics knowledge and competencies can enable nursing to instantiate transition to integrated models of care. Costs of traditional models of care are no longer sustainable consequent to the spiralling incidence and costs of chronic illness. The international community looks towards technology-enabled solutions to support a shift towards integrated patient-centred models of care. Discussion paper. A search of the literature was performed dating from 2000-2015 and a purposeful data sample based on relevance to building the discussion was included. The holistic perspective of nursing knowledge can support and advance integrated healthcare models. Informatics skills are key for the profession to play a leadership role in design, implementation and operation of next generation health care. However, evidence suggests that nursing engagement with informatics strategic development for healthcare provision is currently variable. A statistically significant need exists to progress health care towards integrated models of care. Strategic and tactical plans that are robustly pragmatic with nursing insights and expertise are an essential component to achieve effective healthcare provision. To avoid exclusion in the discourse dominated by management and technology experts, nursing leaders must develop and actively promote the advancement of nursing informatics skills. For knowledge in nursing practice to flourish in contemporary health care, nurse leaders will need to incorporate informatics for optimal translation and interpretation. Defined nursing leadership roles informed by informatics are essential to generate concrete solutions sustaining nursing practice in integrated care models. © 2016 John Wiley & Sons Ltd.
Informatics for maize research: What is possible, and what is practical?
USDA-ARS?s Scientific Manuscript database
The informatics tools and technologies developed to address problems in fields outside of biology often drive what becomes available to biologists. Within the biological sciences, research groups have made headway implementing tools to solve problems of interest to maize researchers, but we do not ...
Methodological approaches of health technology assessment.
Goodman, C S; Ahn, R
1999-12-01
In this era of evolving health care systems throughout the world, technology remains the substance of health care. Medical informatics comprises a growing contribution to the technologies used in the delivery and management of health care. Diverse, evolving technologies include artificial neural networks, computer-assisted surgery, computer-based patient records, hospital information systems, and more. Decision-makers increasingly demand well-founded information to determine whether or how to develop these technologies, allow them on the market, acquire them, use them, pay for their use, and more. The development and wider use of health technology assessment (HTA) reflects this demand. While HTA offers systematic, well-founded approaches for determining the value of medical informatics technologies, HTA must continue to adapt and refine its methods in response to these evolving technologies. This paper provides a basic overview of HTA principles and methods.
Goodman, Kenneth W; Gotham, Ivan J; Holmes, John H; Lang, Lisa; Miner, Kathleen; Potenziani, David D; Richards, Janise; Turner, Anne M; Fu, Paul C
2012-01-01
The AMIA Public Health Informatics 2011 Conference brought together members of the public health and health informatics communities to revisit the national agenda developed at the AMIA Spring Congress in 2001, assess the progress that has been made in the past decade, and develop recommendations to further guide the field. Participants met in five discussion tracks: technical framework; research and evaluation; ethics; education, professional training, and workforce development; and sustainability. Participants identified 62 recommendations, which clustered into three key themes related to the need to (1) enhance communication and information sharing within the public health informatics community, (2) improve the consistency of public health informatics through common public health terminologies, rigorous evaluation methodologies, and competency-based training, and (3) promote effective coordination and leadership that will champion and drive the field forward. The agenda and recommendations from the meeting will be disseminated and discussed throughout the public health and informatics communities. Both communities stand to gain much by working together to use these recommendations to further advance the application of information technology to improve health. PMID:22395299
NASA Astrophysics Data System (ADS)
Gyampoh-Vidogah, Regina; Moreton, Robert; Sallah, David
Health informatics has the potential to improve the quality and provision of care while reducing the cost of health care delivery. However, health informatics is often falsely regarded as synonymous with information management (IM). This chapter (i) provides a clear definition and characteristic benefits of health informatics and information management in the context of health care delivery, (ii) identifies and explains the difference between health informatics (HI) and managing knowledge (KM) in relation to informatics business strategy and (iii) elaborates the role of information communication technology (ICT) KM environment. This Chapter further examines how KM can be used to improve health service informatics costs, and identifies the factors that could affect its implementation and explains some of the reasons driving the development of electronic health record systems. This will assist in avoiding higher costs and errors, while promoting the continued industrialisation of KM delivery across health care communities.
The exploration of the exhibition informatization
NASA Astrophysics Data System (ADS)
Zhang, Jiankang
2017-06-01
The construction and management of exhibition informatization is the main task and choke point during the process of Chinese exhibition industry’s transformation and promotion. There are three key points expected to realize a breakthrough during the construction of Chinese exhibition informatization, and the three aspects respectively are adopting service outsourcing to construct and maintain the database, adopting advanced chest card technology to collect various kinds of information, developing statistics analysis to maintain good cutomer relations. The success of Chinese exhibition informatization mainly calls for mature suppliers who can provide construction and maintenance of database, the proven technology, a sense of data security, advanced chest card technology, the ability of data mining and analysis and the ability to improve the exhibition service basing on the commercial information got from the data analysis. Several data security measures are expected to apply during the process of system developing, including the measures of the terminal data security, the internet data security, the media data security, the storage data security and the application data security. The informatization of this process is based on the chest card designing. At present, there are several types of chest card technology: bar code chest card; two-dimension code card; magnetic stripe chest card; smart-chip chest card. The information got from the exhibition data will help the organizers to make relevant service strategies, quantify the accumulated indexes of the customers, and improve the level of the customer’s satisfaction and loyalty, what’s more, the information can also provide more additional services like the commercial trips, VIP ceremonial reception.
The evolution of medical informatics in China: A retrospective study and lessons learned.
Lei, Jianbo; Meng, Qun; Li, Yuefeng; Liang, Minghui; Zheng, Kai
2016-08-01
In contrast to China's giant health information technology (HIT) market and tremendous investments in hospital information systems the contributions of Chinese scholars in medical informatics to the global community are very limited. China would like to have a more important position in the global medical informatics community. A better understanding of the differences between medical informatics research and education in China and the discipline that emerged abroad will better inform Chinese scholars to develop right strategies to advance the field in China and help identify an appropriate means to collaborate more closely with medical informatics scholars globally. For the first time, this paper divides the evolution of medical informatics in China into four stages based on changes in the core content of research, the educational orientation and other developmental characteristics. The four stages are infancy, incubation, primary establishment and formal establishment. This paper summarizes and reviews major supporting journals and publications, as well as major organizations. Finally, we analyze the main problems that exist in the current disciplinary development in China related to medical informatics research and education and offer suggestions for future improvement. The evolution of medical informatics shows a strong and traditional concentration on medical library/bibliographic information rather than medical (hospital information or patient information) information. Misdirected-concentration, a lack of formal medical informatics trained teaching staff and mistakenly positioning medical informatics as an undergraduate discipline are some of the problems inhibiting the development of medical informatics in China. These lessons should be shared and learned for the global community. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Evolution of Trends in European Medical Informatics
I. Mihalas, George
2014-01-01
This presentation attempts to analyze the trends in Medical Informatics along half a century, in the European socio-political and technological development context. Based on the major characteristics which seem dominant in some periods, a staging is proposed, with a description of each period – the context, major ideas, views and events. A summary of major features of each period is also added. This paper has an original presentation of the evolution of major trends in medical informatics. PMID:24648618
An information technology emphasis in biomedical informatics education.
Kane, Michael D; Brewer, Jeffrey L
2007-02-01
Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.
Chemical Markup, XML and the World-Wide Web. 8. Polymer Markup Language.
Adams, Nico; Winter, Jerry; Murray-Rust, Peter; Rzepa, Henry S
2008-11-01
Polymers are among the most important classes of materials but are only inadequately supported by modern informatics. The paper discusses the reasons why polymer informatics is considerably more challenging than small molecule informatics and develops a vision for the computer-aided design of polymers, based on modern semantic web technologies. The paper then discusses the development of Polymer Markup Language (PML). PML is an extensible language, designed to support the (structural) representation of polymers and polymer-related information. PML closely interoperates with Chemical Markup Language (CML) and overcomes a number of the previously identified challenges.
Observations on sustainable and ubiquitous healthcare informatics from Florence Nightingale.
Betts, Helen J; Wright, Graham
2009-01-01
As nurses around the world prepare to celebrate the centenary of the death of Florence Nightingale in 2010 this paper reviews her work on using information, especially statistics, to analyze and manage patient care and links that to current developments in informatics. It then examines assistive technologies and how they may impact on nursing practice in the future and links these developments to the writings of Florence Nightingale. The paper concludes by suggesting that in progressing towards sustainable and ubiquitous healthcare informatics we need to study history in order to learn from the lessons of Florence Nightingale and other healthcare pioneers.
MIRASS: medical informatics research activity support system using information mashup network.
Kiah, M L M; Zaidan, B B; Zaidan, A A; Nabi, Mohamed; Ibraheem, Rabiu
2014-04-01
The advancement of information technology has facilitated the automation and feasibility of online information sharing. The second generation of the World Wide Web (Web 2.0) enables the collaboration and sharing of online information through Web-serving applications. Data mashup, which is considered a Web 2.0 platform, plays an important role in information and communication technology applications. However, few ideas have been transformed into education and research domains, particularly in medical informatics. The creation of a friendly environment for medical informatics research requires the removal of certain obstacles in terms of search time, resource credibility, and search result accuracy. This paper considers three glitches that researchers encounter in medical informatics research; these glitches include the quality of papers obtained from scientific search engines (particularly, Web of Science and Science Direct), the quality of articles from the indices of these search engines, and the customizability and flexibility of these search engines. A customizable search engine for trusted resources of medical informatics was developed and implemented through data mashup. Results show that the proposed search engine improves the usability of scientific search engines for medical informatics. Pipe search engine was found to be more efficient than other engines.
Earth Science Informatics Comes of Age
NASA Technical Reports Server (NTRS)
Jodha, Siri; Khalsa, S.; Ramachandran, Rahul
2014-01-01
The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.
Nursing informatics competencies: bibliometric analysis.
Kokol, Peter; Blažun, Helena; Vošner, Janez; Saranto, Kaija
2014-01-01
Information and communication technology is developing rapidly and it is incorporated in many health care processes, but in spite of that fact we can still notice that nursing informatics competencies had received limited attention in basic nursing education curricula in Europe and especially in Eastern European countries. The purpose of the present paper is to present the results of a bibliometric analysis of the nursing informatics competencies scientific literature production. We applied the bibliometrics analysis to the corpus of 332 papers found in SCOPUS, related to nursing informatics competencies. The results showed that there is a positive trend in the number of published papers per year, indicating the increased research interest in nursing informatics competencies. Despite the fact that the first paper was published in Denmark, the most prolific country regarding the research in nursing informatics competencies is United States as are their institutions and authors.
This project is to develop, deploy, and disseminate a suite of open source tools and integrated informatics platform that will facilitate multi-scale, correlative analyses of high resolution whole slide tissue image data, spatially mapped genetics and molecular data for cancer research. This platform will play an essential role in supporting studies of tumor initiation, development, heterogeneity, invasion, and metastasis.
An informatics strategy for cancer care
Wright, J; Shogan, A; McCune, J; Stevens, S
2008-01-01
Whether transitioning from paper to electronic records or attempting to leverage data from existing systems for outcome studies, oncology practices face many challenges in defining and executing an informatics strategy. With the increasing costs of oncology treatments and expected changes in reimbursement rules, including requirements for evidence that supports physician decisions, it will become essential to collect data on treatment decisions and treatment efficacy to run a successful program. This study evaluates the current state of informatics systems available for use in oncology programs and focuses on developing an informatics strategy to meet the challenges introduced by expected changes in reimbursement rules and in medical and information technologies. PMID:21611003
A National Agenda for Public Health Informatics
Yasnoff, William A.; Overhage, J. Marc; Humphreys, Betsy L.; LaVenture, Martin
2001-01-01
The AMIA 2001 Spring Congress brought together members of the the public health and informatics communities to develop a national agenda for public health informatics. Discussions of funding and governance; architecture and infrastructure; standards and vocabulary; research, evaluation, and best practices; privacy, confidentiality, and security; and training and workforce resulted in 74 recommendations with two key themes—that all stakeholders need to be engaged in coordinated activities related to public health information architecture, standards, confidentiality, best practices, and research; and that informatics training is needed throughout the public health workforce. Implementation of this consensus agenda will help promote progress in the application of information technology to improve public health. PMID:11687561
Brault, Isabelle; Therriault, Pierre-Yves; St-Denis, Louise; Lebel, Paule
2015-01-01
To prepare future healthcare professionals to collaborate effectively, many universities have developed interprofessional education programs (IPE). Till date, these programs have been mostly courses or clinical simulation experiences. Few attempts have been made to pursue IPE in healthcare clinical settings. This article presents the results of a pilot project in which interprofessional learning activities (ILAs) were implemented during students' professional practicum and discusses the actual and potential use of informatics in the ILA implementation. We conducted a pilot study in four healthcare settings. Our analysis is based on focus group interviews with trainees, clinical supervisors, ILA coordinators, and education managers. Overall, ILAs led to better clarification of roles and understanding of each professional's specific expertise. Informatics was helpful for developing a common language about IPE between trainees and healthcare professionals; opportunities for future application of informatics were noted. Our results support the relevance of ILAs and the value of promoting professional exchanges between students of different professions, both in academia and in the clinical setting. Informatics appears to offer opportunities for networking among students from different professions and for team members' professional development. The use of technology facilitated communication among the participants.
Creativity as a Key Driver for Designing Context Sensitive Health Informatics.
Zhou, Chunfang; Nøhr, Christian
2017-01-01
In order to face the increasing challenges of complexity and uncertainty in practice of health care, this paper aims to discuss how creativity can contribute to design new technologies in health informatics systems. It will firstly introduce the background highlighting creativity as a missing element in recent studies on context sensitive health informatics. Secondly, the concept of creativity and its relationship with activities of technology design will be discussed from a socio-culture perspective. This will be thirdly followed by understanding the roles of creativity in designing new health informatics technologies for meeting needs of high context sensitivity. Finally, a series of potential strategies will be suggested to improve creativity among technology designers working in healthcare industries. Briefly, this paper innovatively bridges two areas studies on creativity and context sensitive health informatics by issues of technology design that also indicates its important significances for future research.
Integrating medical informatics into the medical undergraduate curriculum.
Khonsari, L S; Fabri, P J
1997-01-01
The advent of healthcare reform and the rapid application of new technologies have resulted in a paradigm shift in medical practice. Integrating medical Informatics into the full spectrum of medical education is a viral step toward implementing this new instructional model, a step required for the understanding and practice of modern medicine. We have developed an informatics curriculum, a new educational paradigm, and an intranet-based teaching module which are designed to enhance adult-learning principles, life-long self education, and evidence-based critical thinking. Thirty two, fourth year medical students have participated in a one month, full time, independent study focused on but not limited to four topics: mastering the windows-based environment, understanding hospital based information management systems, developing competence in using the internet/intranet and world wide web/HTML, and experiencing distance communication and TeleVideo networks. Each student has completed a clinically relevant independent study project utilizing technology mastered during the course. This initial curriculum offering was developed in conjunction with faculty from the College of Medicine, College of Engineering, College of Education, College of Business, College of Public Health. Florida Center of Instructional Technology, James A. Haley Veterans Hospital, Moffitt Cancer Center, Tampa General Hospital, GTE, Westshore Walk-in Clinic (paperless office), and the Florida Engineering Education Delivery System. Our second step toward the distributive integration process was the introduction of Medical Informatics to first, second and third year medical students. To date, these efforts have focused on undergraduate medical education. Our next step is to offer workshops in Informatics to college of medicine faculty, to residents in post graduate training programs (GME), and ultimately as a method of distance learning in continuing medical education (CME).
Audacious goals for health and biomedical informatics in the new millennium.
Greenes, R A; Lorenzi, N M
1998-01-01
The 1998 Scientific Symposium of the American College of Medical Informatics (ACMI) was devoted to developing visions for the future of health care and biomedicine and a strategic agenda for health and biomedical informatics in support of those visions. This symposium focus was prompted by the many major changes currently underway in health care delivery, education, and research, as well as in our health and biomedical enterprises, and by the constantly increasing role of information technology in both shaping and enabling these changes. The three audacious goals developed for 2008 are a virtual health care databank, a national health care knowledge base, and a personal clinical health record.
Haux, Reinhold
2017-01-01
In the era of digitization some new procedures play an increasing role for diagnosis as well as for therapy: informatics diagnostics and informatics therapeutics. Challenges for such procedures are described. It is discussed, when research on such diagnostics and therapeutics can be regarded as good research. Examples are mentioned for informatics diagnostics and informatics therapeutics, which are based on health-enabling technologies.
Health information technology and the medical school curriculum.
Triola, Marc M; Friedman, Erica; Cimino, Christopher; Geyer, Enid M; Wiederhorn, Jo; Mainiero, Crystal
2010-12-01
Medical schools must teach core biomedical informatics competencies that address health information technology (HIT), including explaining electronic medical record systems and computerized provider order entry systems and their role in patient safety; describing the research uses and limitations of a clinical data warehouse; understanding the concepts and importance of information system interoperability; explaining the difference between biomedical informatics and HIT; and explaining the ways clinical information systems can fail. Barriers to including these topics in the curricula include lack of teachers; the perception that informatics competencies are not applicable during preclinical courses and there is no place in the clerkships to teach them; and the legal and policy issues that conflict with students' need to develop skills. However, curricular reform efforts are creating opportunities to teach these topics with new emphasis on patient safety, team-based medical practice, and evidence-based care. Overarching HIT competencies empower our students to be lifelong technology learners.
ERIC Educational Resources Information Center
Ashrafi, Noushin; Kuilboer, Jean-Pierre; Joshi, Chaitanya; Ran, Iris; Pande, Priyanka
2014-01-01
The explosive advances in information technology combined with the current climate for health care reform have intensified the need for skilled individuals who can develop, understand, and manage medical information systems in organizations. Health Informatics facilitates quality care at a reasonable cost by allowing access to the right data by…
Autism Post-Mortem Neuroinformatic Resource: The Autism Tissue Program (ATP) Informatics Portal
ERIC Educational Resources Information Center
Brimacombe, Michael B.; Pickett, Richard; Pickett, Jane
2007-01-01
The Autism Tissue Program (ATP) was established to oversee and manage brain donations related to neurological research in autism. The ATP Informatics Portal (www.atpportal.org) is an integrated data access system based on Oracle technology, developed to provide access for researchers to information on this rare tissue resource. It also permits…
Big Data Application in Biomedical Research and Health Care: A Literature Review.
Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing
2016-01-01
Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care.
Big Data Application in Biomedical Research and Health Care: A Literature Review
Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing
2016-01-01
Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812
Meeting the challenges--the role of medical informatics in an ageing society.
Koch, Sabine
2006-01-01
The objective of this paper is to identify trends and new technological developments that appear due to an ageing society and to relate them to current research in the field of medical informatics. A survey of the current literature reveals that recent technological advances have been made in the fields of "telecare and home-monitoring", "smart homes and robotics" and "health information systems and knowledge management". Innovative technologies such as wearable devices, bio- and environmental sensors and mobile, humanoid robots do already exist and ambient assistant living environments are being created for an ageing society. However, those technologies have to be adapted to older people's self-care processes and coping strategies, and to support new ways of healthcare delivery. Medical informatics can support this process by providing the necessary information infrastructure, contribute to standardisation, interoperability and security issues and provide modelling and simulation techniques for educational purposes. Research fields of increasing importance with regard to an ageing society are, moreover, the fields of knowledge management, ubiquitous computing and human-computer interaction.
Evidence-based Patient Choice and Consumer health informatics in the Internet age
2001-01-01
In this paper we explore current access to and barriers to health information for consumers. We discuss how computers and other developments in information technology are ushering in the era of consumer health informatics , and the potential that lies ahead. It is clear that we witness a period in which the public will have unprecedented ability to access information and to participate actively in evidence-based health care. We propose that consumer health informatics be regarded as a whole new academic discipline, one that should be devoted to the exploration of the new possibilities that informatics is creating for consumers in relation to health and health care issues. PMID:11720961
A Review of User-Centered Design for Diabetes-Related Consumer Health Informatics Technologies
LeRouge, Cynthia; Wickramasinghe, Nilmini
2013-01-01
User-centered design (UCD) is well recognized as an effective human factor engineering strategy for designing ease of use in the total customer experience with products and information technology that has been applied specifically to health care information technology systems. We conducted a literature review to analyze the current research regarding the use of UCD methods and principles to support the development or evaluation of diabetes-related consumer health informatics technology (CHIT) initiatives. Findings indicate that (1) UCD activities have been applied across the technology development life cycle stages, (2) there are benefits to incorporating UCD to better inform CHIT development in this area, and (3) the degree of adoption of the UCD process is quite uneven across diabetes CHIT studies. In addition, few to no studies report on methods used across all phases of the life cycle with process detail. To address that void, the Appendix provides an illustrative case study example of UCD techniques across development stages. PMID:23911188
Custis, Laura M; Hawkins, Shelley Y; Thomason, Tanna R
2017-03-01
Integrated information systems and wireless technology have been increasingly incorporated into health care organizations with the premise that information technology will promote safe, high-quality, cost-effective patient care. With the advancement of technology, the level of expertise necessary to assume health care information technology roles has escalated. The purpose of this article is to describe a clinical residency project whereby students in a graduate degree health care informatics program successfully fulfilled program competencies through a faculty-lead research project focused on the use of home telehealth with a group of heart failure patients. Through the use of Donabedian's framework of structure, process, and outcomes, the health care informatics students completed essential learning activities deemed essential for transition into the role of an informatics specialist. Health care informatics educational leaders are encouraged to adapt this template of applied learning into their practices.
Sannikov, A G
2008-01-01
The assessment of the effectiveness of the informatization of the forensic psychiatric expertise service in the Tyumen oblast based on the data of the medical sociological research carried out by means of total questionnaire design of the forensic psychiatrists applied in repetition-free mode. The following basic positive outcomes of the informatization of the forensic psychiatric service are marked: the optimization of clinical, registering-accounting and managerial activities of the expert commissions; enhancement of the expertise staff's self-appraisal related to the mastering of information technologies; employees' formed will to implement the IT-technologies for the purpose of professional development. Besides the assessment of the effectiveness of the specialized service's informatization the results of the research can provide information on the optimal structure of the medical information systems.
Lorenzi, N M; Riley, R T
2000-01-01
As increasingly powerful informatics systems are designed, developed, and implemented, they inevitably affect larger, more heterogeneous groups of people and more organizational areas. In turn, the major challenges to system success are often more behavioral than technical. Successfully introducing such systems into complex health care organizations requires an effective blend of good technical and good organizational skills. People who have low psychological ownership in a system and who vigorously resist its implementation can bring a "technically best" system to its knees. However, effective leadership can sharply reduce the behavioral resistance to change-including to new technologies-to achieve a more rapid and productive introduction of informatics technology. This paper looks at four major areas-why information system failures occur, the core theories supporting change management, the practical applications of change management, and the change management efforts in informatics.
Technological Ecosystems in Health Informatics: A Brief Review Article.
Wu, Zhongmei; Zhang, Xiuxiu; Chen, Ying; Zhang, Yan
2016-09-01
The existing models of information technology in health sciences have full scope of betterment and extension. The high demand pressures, public expectations, advanced platforms all collectively contribute towards hospital environment, which has to be kept in kind while designing of advanced technological ecosystem for information technology. Moreover, for the smooth conduct and operation of information system advanced management avenues are also essential in hospitals. It is the top priority of every hospital to deal with the essential needs of care for patients within the available resources of human and financial outputs. In these situations of high demand, the technological ecosystems in health informatics come in to play and prove its importance and role. The present review article would enlighten all these aspects of these ecosystems in hospital management and health care informatics. We searched the electronic database of MEDLINE, EMBASE, and PubMed for clinical controlled trials, pre-clinical studies reporting utilizaiono of ecosysyem advances in health information technology. The primary outcome of eligible studies included confirmation of importance and role of advances ecosystems in health informatics. It was observed that technological ecosystems are the backbone of health informatics. Advancements in technological ecosystems are essential for proper functioning of health information system in clinical setting.
Weininger, Sandy; Jaffe, Michael B; Goldman, Julian M
2017-01-01
Medical device and health information technology systems are increasingly interdependent with users demanding increased interoperability. Related safety standards must be developed taking into account these systems' perspective. In this article, we describe the current development of medical device standards and the need for these standards to address medical device informatics. Medical device information should be gathered from a broad range of clinical scenarios to lay the foundation for safe medical device interoperability. Five clinical examples show how medical device informatics principles, if applied in the development of medical device standards, could help facilitate the development of safe interoperable medical device systems. These examples illustrate the clinical implications of the failure to capture important signals and device attributes. We provide recommendations relating to the coordination between historically separate standards development groups, some of which focus on safety and effectiveness and others focus on health informatics. We identify the need for a shared understanding among stakeholders and describe organizational structures to promote cooperation such that device-to-device interactions and related safety information are considered during standards development.
Weininger, Sandy; Jaffe, Michael B.; Goldman, Julian M
2016-01-01
Medical device and health information technology systems are increasingly interdependent with users demanding increased interoperability. Related safety standards must be developed taking into account this systems perspective. In this article we describe the current development of medical device standards and the need for these standards to address medical device informatics. Medical device information should be gathered from a broad range of clinical scenarios to lay the foundation for safe medical device interoperability. Five clinical examples show how medical device informatics principles, if applied in the development of medical device standards, could help facilitate the development of safe interoperable medical device systems. These examples illustrate the clinical implications of the failure to capture important signals and device attributes. We provide recommendations relating to the coordination between historically separate standards development groups; some which focus on safety and effectiveness, and others that focus on health informatics. We identify the need for a shared understanding among stakeholders and describe organizational structures to promote cooperation such that device-to-device interactions and related safety information are considered during standards development. PMID:27584685
Current Status of Nursing Informatics Education in Korea.
Jeon, Eunjoo; Kim, Jeongeun; Park, Hyeoun-Ae; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran
2016-04-01
This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses.
Current Status of Nursing Informatics Education in Korea
Jeon, Eunjoo; Kim, Jeongeun; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran
2016-01-01
Objectives This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. Methods A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. Results A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Conclusions Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses. PMID:27200224
A patient-focused framework integrating self-management and informatics.
Knight, Elizabeth P; Shea, Kimberly
2014-03-01
This article introduces a framework to (a) guide chronic illness self-management interventions through the integration of self-management and nursing informatics, (b) focus self-management research, and (c) promote ethical, patient-empowering technology use by practicing nurses. Existing theory and research focusing on chronic illness, self-management, health-enabling technology, and nursing informatics were reviewed and examined and key concepts were identified. A care paradigm focusing on concordance, rather than compliance, served as the overall guiding principle. This framework identifies key relationships among self-management (patient behaviors), health force (patient characteristics), and patient-defined goals. The role of health-enabling technology supporting these relationships is explored in the context of nursing informatics. The Empowerment Informatics framework can guide intervention design and evaluation and support practicing nurses' ethical use of technology as part of self-management support. Nurses worldwide provide support to patients who are living with chronic illnesses. As pressures related to cost and access to care increase, technology-enabled self-management interventions will become increasingly common. This patient-focused framework can guide nursing practice using technology that prioritizes patient needs. © 2013 Sigma Theta Tau International.
Telemedicine: The Practice of Medicine at a Distance. Resources in Technology.
ERIC Educational Resources Information Center
Reed, Philip A.
2003-01-01
Reviews developments in telemedicine and a number of related areas (telecommunications, virtual presence, informatics, artificial intelligence, robotics, materials science, and perceptual psychology). Provides learning activities for technology education. (SK)
ERIC Educational Resources Information Center
Marty, Paul F.; Rayward, W. Boyd; Twidale, Michael B.
2003-01-01
Discusses museum informatics that studies how information science and technology affect the museum environment. Examines digital technology; information organization and access; digitization, personal computers, and the Internet; data sharing; standards; social impacts of new technologies; collaboration; consortia; multimedia exhibits; virtual…
Building an educated health informatics workforce--the New Zealand experience.
Parry, David; Hunter, Inga; Honey, Michelle; Holt, Alec; Day, Karen; Kirk, Ray; Cullen, Rowena
2013-01-01
New Zealand has a rapidly expanding health information technology (IT) development industry and wide-ranging use of informatics, especially in the primary health sector. The New Zealand government through the National Health IT Board (NHITB) has promised to provide shared care health records of core information for all New Zealanders by 2014. One of the major barriers to improvement in IT use in healthcare is the dearth of trained and interested clinicians, management and technical workforce. Health Informatics New Zealand (HINZ) and the academic community in New Zealand are attempting to remedy this by raising awareness of health informatics at the "grass roots" level of the existing workforce via free "primer" workshops and by developing a sustainable cross-institutional model of educational opportunities. Support from the NHITB has been forthcoming, and the workshops started in early 2013, reaching out to clinical and other staff in post around New Zealand.
Technology for Innovation in Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetty, Indrin J.; Martel, Mary K., E-mail: mmartel@mdanderson.org; Jaffray, David A.
Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14,more » 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.« less
Technology for Innovation in Radiation Oncology.
Chetty, Indrin J; Martel, Mary K; Jaffray, David A; Benedict, Stanley H; Hahn, Stephen M; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A; Mankoff, David; Marks, Lawrence B; Ollendorf, Daniel; Paganetti, Harald; Ross, Brian; Siochi, Ramon Alfredo C; Timmerman, Robert D; Wong, John W
2015-11-01
Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled "Technology for Innovation in Radiation Oncology," which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic. Copyright © 2015 Elsevier Inc. All rights reserved.
Information science for the future: an innovative nursing informatics curriculum.
Travis, L; Flatley Brennan, P
1998-04-01
Health care is increasingly driven by information, and consequently, patient care will demand effective management of information. The report of the Priority Expert Panel E: Nursing Informatics and Enhancing Clinical Care Through Nursing Informatics challenges faculty to produce baccalaureate graduates who use information technologies to improve the patient care process and change health care. The challenge is to construct an evolving nursing informatics curriculum to provide nursing professionals with the foundation for affecting health care delivery. This article discusses the design, implementation, and evaluation of an innovative nursing informatics curriculum incorporated into a baccalaureate nursing program. The basic components of the curriculum framework are information, technology, and clinical care process. The presented integrated curriculum is effective in familiarizing students with informatics and encouraging them to think critically about using informatics in practice. The two groups of students who completed the four-course sequence will be discussed.
Hussein, R; Khalifa, A
2011-01-01
During the last decade, Egypt has experienced a revolution in the field of Information and Communication Technology (ICT) that has had a corresponding impact on the field of healthcare. Since 1993, the Information Technology Institute (ITI) has been leading the development of the Information Technology (IT) professional training and education in Egypt to produce top quality IT professionals who are considered now the backbone of the IT revolution in Egypt. For the past five years, ITI has been adopting the objective of building high caliber health professionals who can effectively serve the ever-growing information society. Academic links have been established with internationally renowned universities, e.g., Oregon Health and Science University (OHSU) in US, University of Leipzig in Germany, in addition those with the Egyptian Fellowship Board in order to enrich ITI Medical Informatics Education and Research. The ITI Biomedical and Health Informatics (BMHI) education and training programs target fresh graduates as well as life-long learners. Therefore, the program's learning objectives are framed within the context of the four specialization tracks: Healthcare Management (HCM), Biomedical Informatics Research (BMIR), Bioinformatics Professional (BIP), and Healthcare Professional (HCP). The ITI BMHI research projects tackle a wide-range of current challenges in this field, such as knowledge management in healthcare, providing tele-consultation services for diagnosis and treatment of infectious diseases for underserved regions in Egypt, and exploring the cultural and educational aspects of Nanoinformatics. Since 2006, ITI has been positively contributing to develop the discipline of BMHI in Egypt in order to support improved healthcare services.
Anderson, James G
2004-03-18
The purpose of this paper is to propose a case-based approach to instruction regarding ethical issues raised by the use of information technology (IT) in healthcare. These issues are rarely addressed in graduate degree and continuing professional education programs in health informatics. There are important reasons why ethical issues need to be addressed in informatics training. Ethical issues raised by the introduction of information technology affect practice and are ubiquitous. These issues are frequently among the most challenging to young practitioners who are ill prepared to deal with them in practice. First, the paper provides an overview of methods of moral reasoning that can be used to identify and analyze ethical problems in health informatics. Second, we provide a framework for defining cases that involve ethical issues and outline major issues raised by the use of information technology. Specific cases are used as examples of new dilemmas that are posed by the introduction of information technology in healthcare. These cases are used to illustrate how ethics can be integrated with the other elements of informatics training. The cases discussed here reflect day-to-day situations that arise in health settings that require decisions. Third, an approach that can be used to teach ethics in health informatics programs is outlined and illustrated.
North Carolina's Approach: Developing a Bio-Tech Workforce
ERIC Educational Resources Information Center
Smit, Norman
2004-01-01
States across the country are all chasing what are becoming known as "new-age" technologies. These are technologies such as biotechnology, nanotechnology, bio-informatics and others. These technologies offer the potential for long-term economic growth and well-paid jobs to employees working in these sectors. As these technologies mature,…
Future Direction of IMIA Standardization
Kimura, M.; Ogishima, S.; Shabo, A.; Kim, I. K.; Parisot, C.; de Faria Leao, B.
2014-01-01
Summary Objectives Standardization in the field of health informatics has increased its importance and global alliance for establishing interoperability and compatibility internationally. Standardization has been organized by standard development organizations (SDOs) such as ISO (International Organization for Standardization), CEN (European Committee for Standardization), IHE (Integrating the Healthcare Enterprise), and HL7 (Health Level 7), etc. This paper reports the status of these SDOs’ activities. Methods In this workshop, we reviewed the past activities and the current situation of standardization in health care informatics with the standard development organizations such as ISO, CEN, IHE, and HL7. Then we discussed the future direction of standardization in health informatics toward “future medicine” based on standardized technologies. Results We could share the status of each SDO through exchange of opinions in the workshop. Some WHO members joined our discussion to support this constructive activity. Conclusion At this meeting, the workshop speakers have been appointed as new members of the IMIA working groups of Standards in Health Care Informatics (WG16). We could reach to the conclusion that we collaborate for the international standardization in health informatics toward “future medicine”. PMID:25123729
Eardley, Debra L; Krumwiede, Kelly A; Secginli, Selda; Garner, Linda; DeBlieck, Conni; Cosansu, Gulhan; Nahcivan, Nursen O
2018-06-01
Advancements in healthcare systems include adoption of health information technology to ensure healthcare quality. Educators are challenged to determine strategies to integrate health information technology into nursing curricula for building a nursing workforce competent with electronic health records, standardized terminology, evidence-based practice, and evaluation. Nursing informatics, a growing specialty field, comprises health information technology relative to the profession of nursing. It is essential to integrate nursing informatics across nursing curricula to effectively position competent graduates in technology-laden healthcare environments. Nurse scholars developed and evaluated a nursing informatics case study assignment used in undergraduate level public health nursing courses. The assignment included an unfolding scenario followed by electronic health record charting using standardized terminology to guide the nursing process. The assignment was delivered either online or in class. Seventy-two undergraduate students completed the assignment and a posttest. Fifty-one students completed a satisfaction survey. Results indicated that students who completed the assignment online demonstrated a higher level of content mastery than those who completed the assignment in class. Content mastery was based on posttest results, which evaluated students' electronic health record charting for the nursing assessment, evidence-based interventions, and evaluations. This innovative approach may be valuable to educators in response to the National Academy of Sciences recommendations for healthcare education reform.
Research progress on quantum informatics and quantum computation
NASA Astrophysics Data System (ADS)
Zhao, Yusheng
2018-03-01
Quantum informatics is an emerging interdisciplinary subject developed by the combination of quantum mechanics, information science, and computer science in the 1980s. The birth and development of quantum information science has far-reaching significance in science and technology. At present, the application of quantum information technology has become the direction of people’s efforts. The preparation, storage, purification and regulation, transmission, quantum coding and decoding of quantum state have become the hotspot of scientists and technicians, which have a profound impact on the national economy and the people’s livelihood, technology and defense technology. This paper first summarizes the background of quantum information science and quantum computer and the current situation of domestic and foreign research, and then introduces the basic knowledge and basic concepts of quantum computing. Finally, several quantum algorithms are introduced in detail, including Quantum Fourier transform, Deutsch-Jozsa algorithm, Shor’s quantum algorithm, quantum phase estimation.
EVA Communications Avionics and Informatics
NASA Technical Reports Server (NTRS)
Carek, David Andrew
2005-01-01
The Glenn Research Center is investigating and developing technologies for communications, avionics, and information systems that will significantly enhance extra vehicular activity capabilities to support the Vision for Space Exploration. Several of the ongoing research and development efforts are described within this presentation including system requirements formulation, technology development efforts, trade studies, and operational concept demonstrations.
NASA Astrophysics Data System (ADS)
Mobasheri, A.; Vahidi, H.; Guan, Q.
2014-04-01
In developing countries, the number of experts and students in geo-informatics domain are very limited compared to experts and students of sciences that could benefit from geo-informatics. In this research, we study the possibility of providing an online education system for teaching geo-informatics at under-graduate level. The hypothesis is that in developing countries, such as Iran, a web-based geo-education system can greatly improve the quantity and quality of knowledge of students in undergraduate level, which is an important step that has to be made in regard of the famous "Geo for all" motto. As a technology for conducting natural and social studies, geo-informatics offers new ways of viewing, representing and analysing information for transformative learning and teaching. Therefore, we design and present a conceptual framework of an education system and elaborate its components as well as the free and open source services and software packages that could be used in this framework for a specific case study: the Web GIS course. The goal of the proposed framework is to develop experimental GI-services in a service-oriented platform for education purposes. Finally, the paper ends with concluding remarks and some tips for future research direction.
King, Samuel B.; Lapidus, Mariana
2015-01-01
Objective: The authors' goal was to assess changes in the role of librarians in informatics education from 2004 to 2013. This is a follow-up to “Metropolis Redux: The Unique Importance of Library Skills in Informatics,” a 2004 survey of informatics programs. Methods: An electronic survey was conducted in January 2013 and sent to librarians via the MEDLIB-L email discussion list, the library section of the American Association of Colleges of Pharmacy, the Medical Informatics Section of the Medical Library Association, the Information Technology Interest Group of the Association of College and Research Libraries/New England Region, and various library directors across the country. Results: Librarians from fifty-five institutions responded to the survey. Of these respondents, thirty-four included librarians in nonlibrary aspects of informatics training. Fifteen institutions have librarians participating in leadership positions in their informatics programs. Compared to the earlier survey, the role of librarians has evolved. Conclusions: Librarians possess skills that enable them to participate in informatics programs beyond a narrow library focus. Librarians currently perform significant leadership roles in informatics education. There are opportunities for librarian interdisciplinary collaboration in informatics programs. Implications: Informatics is much more than the study of technology. The information skills that librarians bring to the table enrich and broaden the study of informatics in addition to adding value to the library profession itself. PMID:25552939
King, Samuel B; Lapidus, Mariana
2015-01-01
The authors' goal was to assess changes in the role of librarians in informatics education from 2004 to 2013. This is a follow-up to "Metropolis Redux: The Unique Importance of Library Skills in Informatics," a 2004 survey of informatics programs. An electronic survey was conducted in January 2013 and sent to librarians via the MEDLIB-L email discussion list, the library section of the American Association of Colleges of Pharmacy, the Medical Informatics Section of the Medical Library Association, the Information Technology Interest Group of the Association of College and Research Libraries/New England Region, and various library directors across the country. Librarians from fifty-five institutions responded to the survey. Of these respondents, thirty-four included librarians in nonlibrary aspects of informatics training. Fifteen institutions have librarians participating in leadership positions in their informatics programs. Compared to the earlier survey, the role of librarians has evolved. Librarians possess skills that enable them to participate in informatics programs beyond a narrow library focus. Librarians currently perform significant leadership roles in informatics education. There are opportunities for librarian interdisciplinary collaboration in informatics programs. Informatics is much more than the study of technology. The information skills that librarians bring to the table enrich and broaden the study of informatics in addition to adding value to the library profession itself.
About the Cancer Biomarkers Research Group | Division of Cancer Prevention
The Cancer Biomarkers Research Group promotes research to identify, develop, and validate biological markers for early cancer detection and cancer risk assessment. Activities include development and validation of promising cancer biomarkers, collaborative databases and informatics systems, and new technologies or the refinement of existing technologies. NCI DCP News Note
History of health informatics: a global perspective.
Cesnik, Branko; Kidd, Michael R
2010-01-01
In considering a 'history' of Health Informatics it is important to be aware that the discipline encompasses a wide array of activities, products, research and theories. Health Informatics is as much a result of evolution as planned philosophy, having its roots in the histories of information technology and medicine. The process of its growth continues so that today's work is tomorrow's history. A 'historical' discussion of the area is its history to date, a report rather than a summation. As well as its successes, the history of Health Informatics is populated with visionary promises that have failed to materialise despite the best intentions. For those studying the subject or working in the field, the experiences of others' use of Information Technologies for the betterment of health care can provide a necessary perspective. This chapter starts by noting some of the major events and people that form a technological backdrop to Health Informatics and ends with some thoughts on the future. This chapter gives an educational overview of: * The history of computing * The beginnings of the health informatics discipline.
Clinical microbiology informatics.
Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron
2014-10-01
The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Clinical Microbiology Informatics
Sintchenko, Vitali; Rauch, Carol A.; Pantanowitz, Liron
2014-01-01
SUMMARY The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. PMID:25278581
Detmer, D E
2010-01-01
Substantial global and national commitment will be required for current healthcare systems and health professional practices to become learning care systems utilizing information and communications technology (ICT) empowered by informatics. To engage this multifaceted challenge, a vision is required that shifts the emphasis from silos of activities toward integrated systems. Successful systems will include a set of essential elements, e.g., a sufficient ICT infrastructure, evolving health care processes based on evidence and harmonized to local cultures, a fresh view toward educational preparation, sound and sustained policy support, and ongoing applied research and development. Increasingly, leaders are aware that ICT empowered by informatics must be an integral part of their national and regional visions. This paper sketches out the elements of what is needed in terms of objectives and some steps toward achieving them. It summarizes some of the progress that has been made to date by the American and International Medical Informatics Associations working separately as well as collaborating to conceptualize informatics capacity building in order to bring this vision to reality in low resource nations in particular.
Health Professionals' Views of Informatics Education
Staggers, Nancy; Gassert, Carole A.; Skiba, Diane J.
2000-01-01
Health care leaders emphasize the need to include information technology and informatics concepts in formal education programs, yet integration of informatics into health educational programs has progressed slowly. The AMIA 1999 Spring Congress was held to address informatics educational issues across health professions, including the educational needs in the various health professions, goals for health informatics education, and implementation strategies to achieve these goals. This paper presents the results from AMIA work groups focused on informatics education for non-informatics health professionals. In the categories of informatics needs, goals, and strategies, conference attendees suggested elements in these areas: educational responsibilities for faculty and students, organizational responsibilities, core computer skills and informatics knowledge, how to learn informatics skills, and resources required to implement educational strategies. PMID:11062228
Evidence-based practice for mere mortals: the role of informatics and health services research.
Sim, Ida; Sanders, Gillian D; McDonald, Kathryn M
2002-04-01
The poor translation of evidence into practice is a well-known problem. Hopes are high that information technology can help make evidence-based practice feasible for mere mortal physicians. In this paper, we draw upon the methods and perspectives of clinical practice, medical informatics, and health services research to analyze the gap between evidence and action, and to argue that computing systems for bridging this gap should incorporate both informatics and health services research expertise. We discuss 2 illustrative systems--trial banks and a web-based system to develop and disseminate evidence-based guidelines (alchemist)--and conclude with a research and training agenda.
Reflections on biomedical informatics: from cybernetics to genomic medicine and nanomedicine.
Maojo, Victor; Kulikowski, Casimir A
2006-01-01
Expanding on our previous analysis of Biomedical Informatics (BMI), the present perspective ranges from cybernetics to nanomedicine, based on its scientific, historical, philosophical, theoretical, experimental, and technological aspects as they affect systems developments, simulation and modelling, education, and the impact on healthcare. We then suggest that BMI is still searching for strong basic scientific principles around which it can crystallize. As -omic biological knowledge increasingly impacts the future of medicine, ubiquitous computing and informatics become even more essential, not only for the technological infrastructure, but as a part of the scientific enterprise itself. The Virtual Physiological Human and investigations into nanomedicine will surely produce yet more unpredictable opportunities, leading to significant changes in biomedical research and practice. As a discipline involved in making such advances possible, BMI is likely to need to re-define itself and extend its research horizons to meet the new challenges.
Clinical informatics in undergraduate teaching of health informatics.
Pantazi, Stefan V; Pantazi, Felicia; Daly, Karen
2011-01-01
We are reporting on a recent experience with Health Informatics (HI) teaching at undergraduate degree level to an audience of HI and Pharmacy students. The important insight is that effective teaching of clinical informatics must involve highly interactive, applied components in addition to the traditional theoretical material. This is in agreement with general literature underlining the importance of simulations and role playing in teaching and is well supported by our student evaluation results. However, the viability and sustainability of such approaches to teaching hinges on significant course preparation efforts. These efforts consist of time-consuming investigations of informatics technologies, applications and systems followed by the implementation of workable solutions to a wide range of technical problems. In effect, this approach to course development is an involved process that relies on a special form of applied research whose technical complexity could explain the dearth of published reports on similar approaches in HI education. Despite its difficulties, we argue that this approach can be used to set a baseline for clinical informatics training at undergraduate level and that its implications for HI education in Canada are of importance.
Career Paths of Pathology Informatics Fellowship Alumni.
Rudolf, Joseph W; Garcia, Christopher A; Hanna, Matthew G; Williams, Christopher L; Balis, Ulysses G; Pantanowitz, Liron; Tuthill, J Mark; Gilbertson, John R
2018-01-01
The alumni of today's Pathology Informatics and Clinical Informatics fellowships fill diverse roles in academia, large health systems, and industry. The evolving training tracks and curriculum of Pathology Informatics fellowships have been well documented. However, less attention has been given to the posttraining experiences of graduates from informatics training programs. Here, we examine the career paths of subspecialty fellowship-trained pathology informaticians. Alumni from four Pathology Informatics fellowship training programs were contacted for their voluntary participation in the study. We analyzed various components of training, and the subsequent career paths of Pathology Informatics fellowship alumni using data extracted from alumni provided curriculum vitae. Twenty-three out of twenty-seven alumni contacted contributed to the study. A majority had completed undergraduate study in science, technology, engineering, and math fields and combined track training in anatomic and clinical pathology. Approximately 30% (7/23) completed residency in a program with an in-house Pathology Informatics fellowship. Most completed additional fellowships (15/23) and many also completed advanced degrees (10/23). Common primary posttraining appointments included chief medical informatics officer (3/23), director of Pathology Informatics (10/23), informatics program director (2/23), and various roles in industry (3/23). Many alumni also provide clinical care in addition to their informatics roles (14/23). Pathology Informatics alumni serve on a variety of institutional committees, participate in national informatics organizations, contribute widely to scientific literature, and more than half (13/23) have obtained subspecialty certification in Clinical Informatics to date. Our analysis highlights several interesting phenomena related to the training and career trajectory of Pathology Informatics fellowship alumni. We note the long training track alumni complete in preparation for their careers. We believe flexible training pathways combining informatics and clinical training may help to alleviate the burden. We highlight the importance of in-house Pathology Informatics fellowships in promoting interest in informatics among residents. We also observe the many important leadership roles in academia, large community health systems, and industry available to early career alumni and believe this reflects a strong market for formally trained informaticians. We hope this analysis will be useful as we continue to develop the informatics fellowships to meet the future needs of our trainees and discipline.
[An Introduction to Methods for Evaluating Health Care Technology].
Lee, Ting-Ting
2015-06-01
The rapid and continual advance of healthcare technology makes ensuring that this technology is used effectively to achieve its original goals a critical issue. This paper presents three methods that may be applied by healthcare professionals in the evaluation of healthcare technology. These methods include: the perception/experiences of users, user work-pattern changes, and chart review or data mining. The first method includes two categories: using interviews to explore the user experience and using theory-based questionnaire surveys. The second method applies work sampling to observe the work pattern changes of users. The last method conducts chart reviews or data mining to analyze the designated variables. In conclusion, while evaluative feedback may be used to improve the design and development of healthcare technology applications, the informatics competency and informatics literacy of users may be further explored in future research.
2018 Informatics Tool Challenge Winners
DCEG announced six winners of the 2018 DCEG Informatics Tool Challenge, a competitive funding program that supports innovation to enhance epidemiological methods, data collection, analysis, and other research using modern technology and informatics. Learn more about the winning innovations.
Person-generated Data in Self-quantification. A Health Informatics Research Program.
Gray, Kathleen; Martin-Sanchez, Fernando J; Lopez-Campos, Guillermo H; Almalki, Manal; Merolli, Mark
2017-01-09
The availability of internet-connected mobile, wearable and ambient consumer technologies, direct-to-consumer e-services and peer-to-peer social media sites far outstrips evidence about the efficiency, effectiveness and efficacy of using them in healthcare applications. The aim of this paper is to describe one approach to build a program of health informatics research, so as to generate rich and robust evidence about health data and information processing in self-quantification and associated healthcare and health outcomes. The paper summarises relevant health informatics research approaches in the literature and presents an example of developing a program of research in the Health and Biomedical Informatics Centre (HaBIC) at the University of Melbourne. The paper describes this program in terms of research infrastructure, conceptual models, research design, research reporting and knowledge sharing. The paper identifies key outcomes from integrative and multiple-angle approaches to investigating the management of information and data generated by use of this Centre's collection of wearable, mobiles and other devices in health self-monitoring experiments. These research results offer lessons for consumers, developers, clinical practitioners and biomedical and health informatics researchers. Health informatics is increasingly called upon to make sense of emerging self-quantification and other digital health phenomena that are well beyond the conventions of healthcare in which the field of informatics originated and consolidated. To make a substantial contribution to optimise the aims, processes and outcomes of health self-quantification needs further work at scale in multi-centre collaborations for this Centre and for health informatics researchers generally.
Electronic Personal Health Record Use Among Nurses in the Nursing Informatics Community.
Gartrell, Kyungsook; Trinkoff, Alison M; Storr, Carla L; Wilson, Marisa L
2015-07-01
An electronic personal health record is a patient-centric tool that enables patients to securely access, manage, and share their health information with healthcare providers. It is presumed the nursing informatics community would be early adopters of electronic personal health record, yet no studies have been identified that examine the personal adoption of electronic personal health record's for their own healthcare. For this study, we sampled nurse members of the American Medical Informatics Association and the Healthcare Information and Management Systems Society with 183 responding. Multiple logistic regression analysis was used to identify those factors associated with electronic personal health record use. Overall, 72% were electronic personal health record users. Users tended to be older (aged >50 years), be more highly educated (72% master's or doctoral degrees), and hold positions as clinical informatics specialists or chief nursing informatics officers. Those whose healthcare providers used electronic health records were significantly more likely to use electronic personal health records (odds ratio, 5.99; 95% confidence interval, 1.40-25.61). Electronic personal health record users were significantly less concerned about privacy of health information online than nonusers (odds ratio, 0.32; 95% confidence interval, 0.14-0.70) adjusted for ethnicity, race, and practice region. Informatics nurses, with their patient-centered view of technology, are in prime position to influence development of electronic personal health records. Our findings can inform policy efforts to encourage informatics and other professional nursing groups to become leaders and users of electronic personal health record; such use could help them endorse and engage patients to use electronic personal health records. Having champions with expertise in and enthusiasm for the new technology can promote the adoptionof electronic personal health records among healthcare providers as well as their patients.
Bassi, Jesdeep; Kushniruk, Andre W; Borycki, Elizabeth M
2013-01-01
The discipline of health informatics is highly immersed in information technology, specifically health information systems. Students graduating from Bachelor degree programs in health informatics are expected to be familiar with a variety of systems upon entering the workforce. The adoption of systems like electronic medical records is on the rise across Canada, therefore it would be highly beneficial for students to have exposure to such systems in their coursework. While some individual instructors have done this to some extent on an ad hoc basis, formal strategies for EMR integration do not exist. A prominent framework for technology integration in learning that has been applied in many scientific disciplines is the Technological Pedagogical Content Knowledge (TPCK) framework. This paper describes how TPCK was used and applied as the guiding conceptual framework for exploring the integration of an educational EMR into undergraduate health informatics education.
Antecedents of the People and Organizational Aspects of Medical Informatics
Lorenzi, Nancy M.; Riley, Robert T.; Blyth, Andrew J. C.; Southon, Gray; Dixon, Bradley J.
1997-01-01
Abstract People and organizational issues are critical in both implementing medical informatics systems and in dealing with the altered organizations that new systems often create. The people and organizational issues area—like medical informatics itself—is a blend of many disciplines. The academic disciplines of psychology, sociology, social psychology, social anthropology, organizational behavior and organizational development, management, and cognitive sciences are rich with research with significant potential to ease the introduction and on-going use of information technology in today's complex health systems. These academic areas contribute research data and core information for better understanding of such issues as the importance of and processes for creating future direction; managing a complex change process; effective strategies for involving individuals and groups in the informatics effort; and effectively managing the altered organization. This article reviews the behavioral and business referent disciplines that can potentially contribute to improved implementations and on-going management of change in the medical informatics arena. PMID:9067874
Dykes, Patricia C; Hurley, Ann C; Brown, Suzanne; Carr, Robyn; Cashen, Margaret; Collins, Rita; Cook, Robyn; Currie, Leanne; Docherty, Charles; Ensio, Anneli; Foster, Joanne; Hardiker, Nicholas R; Honey, Michelle L L; Killalea, Rosaleen; Murphy, Judy; Saranto, Kaija; Sensmeier, Joyce; Weaver, Charlotte
2009-01-01
In 2005, the Healthcare Information Management Systems Society (HIMSS) Nursing Informatics Community developed a survey to measure the impact of health information technology (HIT), the I-HIT Scale, on the role of nurses and interdisciplinary communication in hospital settings. In 2007, nursing informatics colleagues from Australia, England, Finland, Ireland, New Zealand, Scotland and the United States formed a research collaborative to validate the I-HIT across countries. All teams have completed construct and face validation in their countries. Five out of six teams have initiated reliability testing by practicing nurses. This paper reports the international collaborative's validation of the I-HIT Scale completed to date.
Balka, E
2003-01-01
While recognized that global actors influence health information system design, studies of health informatics have largely focused on micro politics of technology design and implementation. Here a problematic patient care information system (PCIS) is discussed in relation to federal and provincial policies and corporate strategies to demonstrate that our understanding of health informatics can be enhanced by linking micro studies of health informatics to larger macro contexts. Interviews and document study. Although the extent to which federal initiatives influenced (or failed to influence) provincial and hospital initiatives remains debateable, events initiated at one level (the hospital's decision to implement software, initiated at the organizational level) are influenced (perhaps indirectly) by developments in other contexts (federal/macro changes gave an initiative more weight; provincial initiatives such as the Labour Accord altered the industrial relations environment in which system development occurred). Micro-studies of work practice, invaluable in addressing interactions between technologies, users and work practices, often fail to account for the historic reach of global actors, although it is often these historic circumstances that contribute to present-day interactions between user, information system and organization, and that find expression - often indirectly - in daily work practices.
Dreher, H Michael; Cornelius, Fran; Draper, Judy; Pitkar, Harshad; Manco, Janet; Song, Il-Yeol
2006-01-01
Phase I of our Gerontological Reasoning Informatics Project (GRIP) began in the summer of 2002 when all 37 senior undergraduate nursing students in our accelerated BSN nursing program were given PDAs. These students were oriented to use a digitalized geriatric nursing assessment tool embedded into their PDA in a variety of geriatric clinical agencies. This informatics project was developed to make geriatric nursing more technology oriented and focused on seven modules of geriatric assessment: intellect (I), nutrition (N), self-concept (S), physical activity (P), interpersonal functioning (I), restful sleep (R), and elimination (E)--INSPIRE. Through phase II and now phase III, the GRIP Project has become a major collaboration between the College of Nursing & Health Professions and College of Information Science and Technology at Drexel University. The digitalized geriatric nursing health assessment tool has undergone a second round of reliability and validity testing and is now used to conduct a 20 minute comprehensive geriatric health assessment on the PDA, making our undergraduate gerontology course the most high tech clinical course in our nursing curriculum.
Medical Informatics in Academic Health Science Centers.
ERIC Educational Resources Information Center
Frisse, Mark E.
1992-01-01
An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…
The State of Information and Communication Technology and Health Informatics in Ghana
Achampong, Emmanuel Kusi
2012-01-01
Information and Communication Technology (ICT) has become a major tool in delivery of health services and has had an innovative impact on quality of life. ICT is affecting the way healthcare is delivered to clients. In this paper, we discuss the state of ICT and health informatics in Ghana. We also discuss the state of various relevant infrastructures for the successful implementation of ehealth projects. We analyse the past and present state of health informatics in Ghana, in comparison to other African countries. We also review the challenges facing successful implementation of health informatics projects in Ghana and suggest possible solutions. PMID:23569633
A Study on Teaching Quality of Taiwan Government Training Civil Servants with Educational Technology
ERIC Educational Resources Information Center
Hsiao, Luke H. C.
2012-01-01
When economic globalization, informatization, and marketization are rapidly developing, the world is reaching the globally industrial society based on information technology. In such a fierce competition, human resource is gradually placed on the critical role. This study aims to: (1) understand the present situation of Educational Technology and…
Massive Open Online Course for Health Informatics Education
2014-01-01
Objectives This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). Methods The Health Informatics Forum is one of examples of MOOCs through a social networking site for educating health informatics students and professionals. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. Results The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Conclusions Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost. PMID:24872906
Massive open online course for health informatics education.
Paton, Chris
2014-04-01
This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). The Health Informatics Forum is a social networking site for educating health informatics students and professionals [corrected]. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost.
2000-08-01
The International Medical Informatics Association (IMIA) agreed on international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in health and medical informatics (HMI), particularly international activities in educating HMI specialists and the sharing of courseware. The IMIA recommendations centre on educational needs for healthcare professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in healthcare (physicians, nurses, HMI professionals, ...), 2) type of specialisation in health and medical informatics (IT users, HMI specialists) and 3) stage of career progression (bachelor, master, ...). Learning outcomes are defined in terms of knowledge and practical skills for healthcare professionals in their role (a) as IT user and (b) as HMI specialist. Recommendations are given for courses/course tracks in HMI as part of educational programs in medicine, nursing, healthcare management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in HMI (with bachelor, master or doctor degree). To support education in HMI, IMIA offers to award a certificate for high quality HMI education and supports information exchange on programs and courses in HMI through a WWW server of its Working Group on Health and Medical Informatics Education (http:www.imia.org/wg1).
Anogeianaki, Antonia; Ilonidis, George; Anogianakis, George; Lianguris, John; Katsaros, Kyriakos; Pseftogianni, Dimitra; Klisarova, Anelia; Negrev, Negrin
2004-01-01
DIMNET is a training mechanism for a region of central Europe. The aim is to upgrade the information technology skills of local hospital personnel and preserve their employability following the introduction of medical informatics. DIMNET uses Internet-based virtual classrooms to provide a 200-hour training course in medical informatics. Training takes place in the cities of Drama, Kavala, Xanthi and Varna. So far, more than 600 people have benefited from the programme. Initial results are encouraging. DIMNET promotes a new vocational training culture in the Balkans and is supported by local governments that perceive health-care as a fulcrum for economic development.
Introduction: Forecasting Informatics Competencies for Nurses in the Future of Connected Health.
Murphy, Judy; Goossen, William
2017-01-01
This introduction to the book discusses how the topic of competencies for nurses in a world of connected health needs to be addressed at the curriculum level to achieve the specific competencies for various roles, including practicing nurse, nurse teacher, nurse leader, and nursing informatics specialists. It looks back at milestone publications from the international Nursing Informatics post conferences that still serve a purpose for inspiring developments today and looks forward to the way nurses can use connected health to improve the health and health care for their patients. Specific emerging topics in health information technology are addressed as well, such as semantics, genetics, big data, eHealth and social media.
2016-01-01
Background Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. Objectives The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. Methods A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. Results The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one’s choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Conclusions Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines. PMID:26912288
Gray, Kathleen; Sockolow, Paulina
2016-02-24
Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.
The operating room of the future: white paper summation.
Moses, Gerald R; Farr, James O
2003-01-01
On November 8 and 9, 2001, leading experts in patient safety, medical informatics, advanced surgical devices, telesurgery, and surgical facilities met to formulate strategic directions for the "OR of the Future" in both military and civilian healthcare. The meeting was co-hosted by the Telemedicine and Advanced Technology Research Center (TATRC) part of the U.S. Army Medical Research and Materiel Command at Fort Detrick, and the University of Maryland Medical Center. Researchers, surgeons, and experts in the field of operating room (OR) technology addressed the current state of research and technological developments. Experts in (1) patient safety, (2) medical informatics, (3) advanced surgical devices, (4) telesurgery, and (5) surgical facilities met in focused work groups to develop a proposed research agenda for each content area. Afterwards, each focused group agreed to develop a 'White Paper' on each specific area, addressing the current and future prospectus. In addition, they attempted to provide a recommended research roadmap for the 'OR of the Future.'
GIMI: the past, the present and the future.
Simpson, Andrew; Power, David; Russell, Douglas; Slaymaker, Mark; Bailey, Vernon; Tromans, Chris; Brady, Michael; Tarassenko, Lionel
2010-08-28
In keeping with the theme of this year's e-Science All Hands Meeting--past, present and future--we consider the motivation for, the current status of, and the future directions for, the technologies developed within the GIMI (Generic Infrastructure for Medical Informatics) project. This analysis provides insights into how some key problems in data federation may be addressed. GIMI was funded by the UK's Technology Strategy Board with the intention of developing a service-oriented framework to facilitate the secure sharing and aggregation of heterogeneous data from disparate sources to support a range of healthcare applications. The project, which was led by the University of Oxford, involved collaboration from the National Cancer Research Institute Informatics Initiative, Loughborough University, University College London, t+ Medical, Siemens Molecular Imaging and IBM UK.
Wellbeing Understanding in High Quality Healthcare Informatics and Telepractice.
Fiorini, Rodolfo A; De Giacomo, Piero; L'Abate, Luciano
2016-01-01
The proper use of healthcare informatics technology and multidimensional conceptual clarity are fundamental to create and boost outstanding clinical and telepractice results. Avoiding even terminology ambiguities is mandatory for high quality of care service. For instance, well-being or wellbeing is a different way to write the same concept only, or there is a good deal of ambiguity around the meanings of these terms the way they are written. In personal health, healthcare and healthcare informatics, this kind of ambiguity and lack of conceptual clarity has been called out repeatedly over the past 50 years. It is time to get the right, terse scenario. We present a brief review to develop and achieve ultimate wellbeing understanding for practical high quality healthcare informatics and telepractice application. This article presents an innovative point of view on deeper wellbeing understanding towards its increased clinical effective application.
Innovation in transformative nursing leadership: nursing informatics competencies and roles.
Remus, Sally; Kennedy, Margaret Ann
2012-12-01
In a recent brief to the Canadian Nurses Association's National Expert Commission on the Health of Our Nation, the Academy of Canadian Executive Nurses (ACEN) discussed leadership needs in the Canadian healthcare system, and promoted the pivotal role of nursing executives in transforming Canada's healthcare system into an integrated patient-centric system. Included among several recommendations was the need to develop innovative leadership competencies that enable nurse leaders to lead and advance transformative health system change. This paper focuses on an emerging "avant-garde executive leadership competency" recommended for today's health leaders to guide health system transformation. Specifically, this competency is articulated as "state of the art communication and technology savvy," and it implies linkages between nursing informatics competencies and transformational leadership roles for nurse executive. The authors of this paper propose that distinct nursing informatics competencies are required to augment traditional executive skills to support transformational outcomes of safe, integrated, high-quality care delivery through knowledge-driven care. International trends involving nursing informatics competencies and the evolution of new corporate informatics roles, such as chief nursing informatics officers (CNIOs), are demonstrating value and advanced transformational leadership as nursing executive roles that are informed by clinical data. Copyright © 2013 Longwoods Publishing.
Four "E"pochs: The Story of Informatization.
ERIC Educational Resources Information Center
Duff, Alistair S.
2003-01-01
Informatization is a term of Japanese provenance denoting major systemic change from the application of information technology. Proposes a theory of post-war informatization focusing on information services in libraries, specifically computerized information retrieval. Describes four electronic epochs: offline, online, CD-ROM, and Internet, and…
MO-C-BRCD-03: The Role of Informatics in Medical Physics and Vice Versa.
Andriole, K
2012-06-01
Like Medical Physics, Imaging Informatics encompasses concepts touching every aspect of the imaging chain from image creation, acquisition, management and archival, to image processing, analysis, display and interpretation. The two disciplines are in fact quite complementary, with similar goals to improve the quality of care provided to patients using an evidence-based approach, to assure safety in the clinical and research environments, to facilitate efficiency in the workplace, and to accelerate knowledge discovery. Use-cases describing several areas of informatics activity will be given to illustrate current limitations that would benefit from medical physicist participation, and conversely areas in which informaticists may contribute to the solution. Topics to be discussed include radiation dose monitoring, process management and quality control, display technologies, business analytics techniques, and quantitative imaging. Quantitative imaging is increasingly becoming an essential part of biomedicalresearch as well as being incorporated into clinical diagnostic activities. Referring clinicians are asking for more objective information to be gleaned from the imaging tests that they order so that they may make the best clinical management decisions for their patients. Medical Physicists may be called upon to identify existing issues as well as develop, validate and implement new approaches and technologies to help move the field further toward quantitative imaging methods for the future. Biomedical imaging informatics tools and techniques such as standards, integration, data mining, cloud computing and new systems architectures, ontologies and lexicons, data visualization and navigation tools, and business analytics applications can be used to overcome some of the existing limitations. 1. Describe what is meant by Medical Imaging Informatics and understand why the medical physicist should care. 2. Identify existing limitations in information technologies with respect to Medical Physics, and conversely see how Informatics may assist the medical physicist in filling some of the current gaps in their activities. 3. Understand general informatics concepts and areas of investigation including imaging and workflow standards, systems integration, computing architectures, ontologies, data mining and business analytics, data visualization and human-computer interface tools, and the importance of quantitative imaging for the future of Medical Physics and Imaging Informatics. 4. Become familiar with on-going efforts to address current challenges facing future research into and clinical implementation of quantitative imaging applications. © 2012 American Association of Physicists in Medicine.
Method for technology-delivered healthcare measures.
Kramer-Jackman, Kelli Lee; Popkess-Vawter, Sue
2011-12-01
Current healthcare literature lacks development and evaluation methods for research and practice measures administered by technology. Researchers with varying levels of informatics experience are developing technology-delivered measures because of the numerous advantages they offer. Hasty development of technology-delivered measures can present issues that negatively influence administration and psychometric properties. The Method for Technology-delivered Healthcare Measures is designed to systematically guide the development and evaluation of technology-delivered measures. The five-step Method for Technology-delivered Healthcare Measures includes establishment of content, e-Health literacy, technology delivery, expert usability, and participant usability. Background information and Method for Technology-delivered Healthcare Measures steps are detailed.
1982-11-01
Pihilips lIiAO i:l ()(xxsclrn prtixics, tor full -tcsr storagec onr ultra high dkrisit\\ I cad-tirtl digit al optical tiascrl discs, wiul th. fxast rctricx...activity, and hence gain full employment in other sectors of the society. The whole issue of the employment effects of informatics will be taken up later in...mini- and micro-computers and of more or less intelligent peripherals. However, this is still doubtful unless a full compre- hension of the political
The goal of this Funding Opportunity Announcement (FOA) is to advance surveillance science by supporting the development of new and innovative tools and methods for more efficient, detailed, timely, and accurate data collection by cancer registries. Specifically, the FOA seeks applications for projects to develop, adapt, apply, scale-up, and validate tools and methods to improve the collection and integration cancer registry data and to expand the data items collected. Population-based central cancer registries (a partnership must involve at least two different registries).
Learning just-in-time in medical informatics.
Sancho, J J; Sanz, F
2000-01-01
Just-in-time learning (JITL) methodology has been applied to many areas of knowledge acquisition and dissemination. The paradigm is a challenge to the traditional classroom course-oriented approach with the aim to shorten the learning time, increasing the efficiency of the learning process, improve availability and save money. The information technology tools and platforms have been heavily involved to develop and deliver JITL. This paper discusses the main characteristics of JITL with regard to its implementation to teaching Medical Informatics.
Genomics Community Resources | Informatics Technology for Cancer Research (ITCR)
To facilitate genomic research and the dissemination of its products, National Human Genome Research Institute (NHGRI) supports genomic resources that are crucial for basic research, disease studies, model organism studies, and other biomedical research. Awards under this FOA will support the development and distribution of genomic resources that will be valuable for the broad research community, using cost-effective approaches. Such resources include (but are not limited to) databases and informatics resources (such as human and model organism databases, ontologies, and analysi
Supporting Friendly Atmosphere in a Classroom by Technology Implementation
ERIC Educational Resources Information Center
Lukaš, Mirko
2014-01-01
Extremely rapid development of information technology and the lack of monopoly in the technological market have resulted in a sudden price reduction of the informatic equipment and gadgets enabling them to be used in all segments of a human life, hence the education as well. In the modern, digital era it is almost impossible to make any…
Visualization of the IMIA Yearbook of Medical Informatics Publications over the Last 25 Years
Tam-Tham, H.; Minty, E. P.
2016-01-01
Summary Background The last 25 years have been a period of innovation in the area of medical informatics. The International Medical Informatics Association (IMIA) has published, every year for the last quarter century, the Yearbook of Medical Informatics, collating selected papers from various journals in an attempt to provide a summary of the academic medical informatics literature. The objective of this paper is to visualize the evolution of the medical informatics field over the last 25 years according to the frequency of word occurrences in the papers published in the IMIA Yearbook of Medical Informatics. Methods A literature review was conducted examining the IMIA Yearbook of Medical Informatics between 1992 and 2015. These references were collated into a reference manager application to examine the literature using keyword searches, word clouds, and topic clustering. The data was considered in its entirety, as well as segregated into 3 time periods to examine the evolution of main trends over time. Several methods were used, including word clouds, cluster maps, and custom developed web-based information dashboards. Results The literature search resulted in a total of 1210 references published in the Yearbook, of which 213 references were excluded, resulting in 997 references for visualization. Overall, we found that publications were more technical and methods-oriented between 1992 and 1999; more clinically and patient-oriented between 2000 and 2009; and noted the emergence of “big data”, decision support, and global health in the past decade between 2010 and 2015. Dashboards were additionally created to show individual reference data, as well as, aggregated information. Conclusion Medical informatics is a vast and expanding area with new methods and technologies being researched, implemented, and evaluated. Determining visualization approaches that enhance our understanding of literature is an active area of research, and like medical informatics, is constantly evolving as new software and algorithms are developed. This paper examined several approaches for visualizing the medical informatics literature to show historical trends, associations, and aggregated summarized information to illustrate the state and changes in the IMIA Yearbook publications over the last quarter century. PMID:27362591
Visualization of the IMIA Yearbook of Medical Informatics Publications over the Last 25 Years.
Yergens, D W; Tam-Tham, H; Minty, E P
2016-06-30
The last 25 years have been a period of innovation in the area of medical informatics. The International Medical Informatics Association (IMIA) has published, every year for the last quarter century, the Yearbook of Medical Informatics, collating selected papers from various journals in an attempt to provide a summary of the academic medical informatics literature. The objective of this paper is to visualize the evolution of the medical informatics field over the last 25 years according to the frequency of word occurrences in the papers published in the IMIA Yearbook of Medical Informatics. A literature review was conducted examining the IMIA Yearbook of Medical Informatics between 1992 and 2015. These references were collated into a reference manager application to examine the literature using keyword searches, word clouds, and topic clustering. The data was considered in its entirety, as well as segregated into 3 time periods to examine the evolution of main trends over time. Several methods were used, including word clouds, cluster maps, and custom developed web-based information dashboards. The literature search resulted in a total of 1210 references published in the Yearbook, of which 213 references were excluded, resulting in 997 references for visualization. Overall, we found that publications were more technical and methods-oriented between 1992 and 1999; more clinically and patient-oriented between 2000 and 2009; and noted the emergence of "big data", decision support, and global health in the past decade between 2010 and 2015. Dashboards were additionally created to show individual reference data, as well as, aggregated information. Medical informatics is a vast and expanding area with new methods and technologies being researched, implemented, and evaluated. Determining visualization approaches that enhance our understanding of literature is an active area of research, and like medical informatics, is constantly evolving as new software and algorithms are developed. This paper examined several approaches for visualizing the medical informatics literature to show historical trends, associations, and aggregated summarized information to illustrate the state and changes in the IMIA Yearbook publications over the last quarter century.
Collen, M F
1994-01-01
This article summarizes the origins of informatics, which is based on the science, engineering, and technology of computer hardware, software, and communications. In just four decades, from the 1950s to the 1990s, computer technology has progressed from slow, first-generation vacuum tubes, through the invention of the transistor and its incorporation into microprocessor chips, and ultimately, to fast, fourth-generation very-large-scale-integrated silicon chips. Programming has undergone a parallel transformation, from cumbersome, first-generation, machine languages to efficient, fourth-generation application-oriented languages. Communication has evolved from simple copper wires to complex fiberoptic cables in computer-linked networks. The digital computer has profound implications for the development and practice of clinical medicine. PMID:7719803
Robertson, Merryn; Callen, Joanne
The profile of health information managers (HIMs) employed within one metropolitan area health service in New South Wales (NSW) was identified, together with which information technology and health informatics knowledge and skills they possess, and which ones they require in their workplace. The subjects worked in a variety of roles: 26% were employed in the area's Information Systems Division developing and implementing point-of-care clinical systems. Health information managers perceived they needed further continuing and formal education in point-of-care clinical systems, decision support systems, the electronic health record, privacy and security, health data collections, and database applications.
[Information and communication technologies in nursing].
Kern, Josipa
2014-03-01
The application of information and communication technologies (ICT) in nursing is an integral part of the educational curriculum at the university graduate level of nursing, but also part of scientific and professional meetings on nursing informatics. As part of seminars, students are obliged to choose e-health topics from their working environment, to show them and discuss with colleagues. The same is happening at meeting on nursing informatics. Selected papers on the issue are chosen to cover information literacy of nurses, examples of e-nursing, ICT infrastructure, the possible future developments and organizational aspects of e-health at healthcare institutions. Among others, special attention is paid to improving the quality of work in nursing.
Informatics and the Organization of Education.
ERIC Educational Resources Information Center
van Weert, Tom J.
1992-01-01
Defines informatics as both a pure and an applied science dealing with information technology and its uses and examines the organization of education from two different perspectives: how applications of informatics may impact on education, forcing it to change; and how the educational system may deal with problems to effectively integrate…
Technology: nursing the system. Technology and the potential for entrepreneurship.
Simpson, R L
1997-10-01
Many nurses are stepping beyond the boundaries of traditional practice and creating their own business or service centers. New entrepreneurial opportunities include working on computer-based patient records, providing consulting services, developing policies and more. Getting involved--joining informatics groups, taking classes--is the first step.
Commentaries on “Informatics and Medicine: From Molecules to Populations”
Altman, R. B.; Balling, R.; Brinkley, J. F.; Coiera, E.; Consorti, F.; Dhansay, M. A.; Geissbuhler, A.; Hersh, W.; Kwankam, S. Y.; Lorenzi, N. M.; Martin-Sanchez, F.; Mihalas, G. I.; Shahar, Y.; Takabayashi, K.; Wiederhold, G.
2009-01-01
Summary Objective To discuss interdisciplinary research and education in the context of informatics and medicine by commenting on the paper of Kuhn et al. “Informatics and Medicine: From Molecules to Populations”. Method Inviting an international group of experts in biomedical and health informatics and related disciplines to comment on this paper. Results and Conclusions The commentaries include a wide range of reasoned arguments and original position statements which, while strongly endorsing the educational needs identified by Kuhn et al., also point out fundamental challenges that are very specific to the unusual combination of scientific, technological, personal and social problems characterizing biomedical informatics. They point to the ultimate objectives of managing difficult human health problems, which are unlikely to yield to technological solutions alone. The psychological, societal, and environmental components of health and disease are emphasized by several of the commentators, setting the stage for further debate and constructive suggestions. PMID:18690363
2004-01-01
The International Medical Informatics Association (IMIA) agreed on international recommendations in health informatics / medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in health and medical informatics (HMI), particularly international activities in educating HMI specialists and the sharing of courseware. The IMIA recommendations centre on educational needs for health care professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in health care (physicians, nurses, HMI professionals, ...), 2) type of specialisation in health and medical informatics (IT users, HMI specialists) and 3) stage of career progression (bachelor, master, ...). Learning outcomes are defined in terms of knowledge and practical skills for health care professionals in their role (a) as IT user and (b) as HMI specialist. Recommendations are given for courses/course tracks in HMI as part of educational programs in medicine, nursing, health care management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in HMI (with bachelor, master or doctor degree). To support education in HMI, IMIA offers to award a certificate for high quality HMI education and supports information exchange on programs and courses in HMI through a WWW server of its Working Group on Health and Medical Informatics Education (http://www.imia.org/wg1).
A Repository of Codes of Ethics and Technical Standards in Health Informatics
Zaïane, Osmar R.
2014-01-01
We present a searchable repository of codes of ethics and standards in health informatics. It is built using state-of-the-art search algorithms and technologies. The repository will be potentially beneficial for public health practitioners, researchers, and software developers in finding and comparing ethics topics of interest. Public health clinics, clinicians, and researchers can use the repository platform as a one-stop reference for various ethics codes and standards. In addition, the repository interface is built for easy navigation, fast search, and side-by-side comparative reading of documents. Our selection criteria for codes and standards are two-fold; firstly, to maintain intellectual property rights, we index only codes and standards freely available on the internet. Secondly, major international, regional, and national health informatics bodies across the globe are surveyed with the aim of understanding the landscape in this domain. We also look at prevalent technical standards in health informatics from major bodies such as the International Standards Organization (ISO) and the U. S. Food and Drug Administration (FDA). Our repository contains codes of ethics from the International Medical Informatics Association (IMIA), the iHealth Coalition (iHC), the American Health Information Management Association (AHIMA), the Australasian College of Health Informatics (ACHI), the British Computer Society (BCS), and the UK Council for Health Informatics Professions (UKCHIP), with room for adding more in the future. Our major contribution is enhancing the findability of codes and standards related to health informatics ethics by compilation and unified access through the health informatics ethics repository. PMID:25422725
Hu, Hai; Brzeski, Henry; Hutchins, Joe; Ramaraj, Mohan; Qu, Long; Xiong, Richard; Kalathil, Surendran; Kato, Rand; Tenkillaya, Santhosh; Carney, Jerry; Redd, Rosann; Arkalgudvenkata, Sheshkumar; Shahzad, Kashif; Scott, Richard; Cheng, Hui; Meadow, Stephen; McMichael, John; Sheu, Shwu-Lin; Rosendale, David; Kvecher, Leonid; Ahern, Stephen; Yang, Song; Zhang, Yonghong; Jordan, Rick; Somiari, Stella B; Hooke, Jeffrey; Shriver, Craig D; Somiari, Richard I; Liebman, Michael N
2004-10-01
The Windber Research Institute is an integrated high-throughput research center employing clinical, genomic and proteomic platforms to produce terabyte levels of data. We use biomedical informatics technologies to integrate all of these operations. This report includes information on a multi-year, multi-phase hybrid data warehouse project currently under development in the Institute. The purpose of the warehouse is to host the terabyte-level of internal experimentally generated data as well as data from public sources. We have previously reported on the phase I development, which integrated limited internal data sources and selected public databases. Currently, we are completing phase II development, which integrates our internal automated data sources and develops visualization tools to query across these data types. This paper summarizes our clinical and experimental operations, the data warehouse development, and the challenges we have faced. In phase III we plan to federate additional manual internal and public data sources and then to develop and adapt more data analysis and mining tools. We expect that the final implementation of the data warehouse will greatly facilitate biomedical informatics research.
Lehmann, C U; Longhurst, C A; Hersh, W; Mohan, V; Levy, B P; Embi, P J; Finnell, J T; Turner, A M; Martin, R; Williamson, J; Munger, B
2015-01-01
In the US, the new subspecialty of Clinical Informatics focuses on systems-level improvements in care delivery through the use of health information technology (HIT), data analytics, clinical decision support, data visualization and related tools. Clinical informatics is one of the first subspecialties in medicine open to physicians trained in any primary specialty. Clinical Informatics benefits patients and payers such as Medicare and Medicaid through its potential to reduce errors, increase safety, reduce costs, and improve care coordination and efficiency. Even though Clinical Informatics benefits patients and payers, because GME funding from the Centers for Medicare and Medicaid Services (CMS) has not grown at the same rate as training programs, the majority of the cost of training new Clinical Informaticians is currently paid by academic health science centers, which is unsustainable. To maintain the value of HIT investments by the government and health care organizations, we must train sufficient leaders in Clinical Informatics. In the best interest of patients, payers, and the US society, it is therefore critical to find viable financial models for Clinical Informatics fellowship programs. To support the development of adequate training programs in Clinical Informatics, we request that the Centers for Medicare and Medicaid Services (CMS) issue clarifying guidance that would allow accredited ACGME institutions to bill for clinical services delivered by fellows at the fellowship program site within their primary specialty.
ERIC Educational Resources Information Center
Hilty, Donald M.; Benjamin, Sheldon; Briscoe, Gregory; Hales, Deborah J.; Boland, Robert J.; Luo, John S.; Chan, Carlyle H.; Kennedy, Robert S.; Karlinsky, Harry; Gordon, Daniel B.; Yellowlees, Peter M.; Yager, Joel
2006-01-01
Objective: This article provides an overview of how trainees, faculty, and institutions use technology for acquiring knowledge, skills, and attitudes for practicing modern medicine. Method: The authors reviewed the literature on medical education, technology, and change, and identify the key themes and make recommendations for implementing…
Genomic Data Commons and Genomic Cloud Pilots - Google Hangout
Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.
ERIC Educational Resources Information Center
Williams, Kate
2012-01-01
The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…
ERIC Educational Resources Information Center
Longenecker, Herbert E., Jr.; Campbell, S. Matt; Landry, Jeffrey P.; Pardue, Harold; Daigle, Roy J.
2012-01-01
In addition to being a relevant program for health information technology workers, a recently proposed Health Informatics program was designed with additional objectives in mind: that the program is compatible with the IS 2010 Model Curriculum and that it satisfies the International Medical Informatics Association recommendation for undergraduate…
The Interactions Between Clinical Informatics and Bioinformatics
Altman, Russ B.
2000-01-01
For the past decade, Stanford Medical Informatics has combined clinical informatics and bioinformatics research and training in an explicit way. The interest in applying informatics techniques to both clinical problems and problems in basic science can be traced to the Dendral project in the 1960s. Having bioinformatics and clinical informatics in the same academic unit is still somewhat unusual and can lead to clashes of clinical and basic science cultures. Nevertheless, the benefits of this organization have recently become clear, as the landscape of academic medicine in the next decades has begun to emerge. The author provides examples of technology transfer between clinical informatics and bioinformatics that illustrate how they complement each other. PMID:10984462
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2017-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss recent developments in data preservation and provenance.
Informatics competencies for nurse leaders: protocol for a scoping review.
Kassam, Iman; Nagle, Lynn; Strudwick, Gillian
2017-12-14
Globally, health information technologies are now being used by nurses in a variety of settings. However, nurse leaders often do not have the necessary strategic and tactical informatics competencies to adequately ensure their effective adoption and use. Although informatics competencies and competency frameworks have been identified and developed, to date there has not been review or consolidation of the work completed in this area. In order to address this gap, a scoping review is being conducted. The objectives of this scoping review are to: (1) identify informatics competencies of relevance to nurse leaders, (2) identify frameworks or theories that have been used to develop informatics competencies for nurse leaders, (3) identify instruments used to assess the informatics competencies of nurse leaders and (4) examine the psychometric properties of identified instruments. Using the Arksey and O'Malley five-step framework, a literature review will be conducted using a scoping review methodology. The search will encompass academic and grey literature and include two primary databases and five secondary databases. Identified studies and documents will be independently screened for eligibility by two reviewers. Data from the studies and documents will be extracted and compiled into a chart. Qualitative data will be subject to a thematic analysis and descriptive statistics applied to the quantitative data. Ethical approval was not required for this study. Results will be used to inform a future study designed to validate an instrument used to evaluate informatics competencies for nurse leaders within a Canadian context. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Felkey, B G
1997-02-01
The application of informatics in a health system in general and to pharmacy in particular is discussed. Informatics is the use of information technology to enhance the quality of care, facilitate accountability, and assist in cost containment. Tying the pieces of health care into a seamless system using informatics principles yields a more rational approach to caregiving. A four-layer hierarchy of information systems can be found in any health system: layer 1, the foundational layer formed by a transaction-processing system; 2, the management information system; 3, decision support; and 4, advanced informatics applications such as expert systems. Other industries appear to be ahead of health care in investing in informatics applications. Pharmacy is one of the key health care professions that must adopt informatics. A stepwise structure for pharmacy informatics has been proposed; it consists of establishing a relationship with the patient, establishing a database, listing and ranking problems, choosing among alternatives, and planning and monitoring. Informatics should be approached by determining where the department is going strategically. Informatics standards will be needed. Pharmacists will need to use informatics to enhance their worth on the health care team and to improve patient care.
Informatics for the Modern Intensive Care Unit.
Anderson, Diana C; Jackson, Ashley A; Halpern, Neil A
Advanced informatics systems can help improve health care delivery and the environment of care for critically ill patients. However, identifying, testing, and deploying advanced informatics systems can be quite challenging. These processes often require involvement from a collaborative group of health care professionals of varied disciplines with knowledge of the complexities related to designing the modern and "smart" intensive care unit (ICU). In this article, we explore the connectivity environment within the ICU, middleware technologies to address a host of patient care initiatives, and the core informatics concepts necessary for both the design and implementation of advanced informatics systems.
Integrated Energy Solutions Research | Integrated Energy Solutions | NREL
that spans the height and width of the wall they are facing. Decision Science and Informatics Enabling decision makers with rigorous, technology-neutral, data-backed decision support to maximize the impact of security in energy systems through analysis, decision support, advanced energy technology development, and
APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES IN MEDICAL EDUCATION
Al-Tamimi, Dalal M.
2003-01-01
The recognition that information and communication technologies should play an increasingly important role in medical education is a key to educating physicians in the 21st century. Computer use in medical education includes, Internet hypermedia/multimedia technologies, medical informatics, distance learning and telemedicine. Adaptation to the use of these technologies should ideally start from the elementary school level. Medical schools must introduce medical informatics courses very early in the medical curriculum. Teachers will need regular CME courses to prepare and update themselves with the changing circumstances. Our infrastructure must be prepared for the new developments with computer labs, basic skill labs, close circuit television facilities, virtual class rooms, smart class rooms, simulated teaching facilities, and distance teaching by tele-techniques. Our existing manpower including, doctors, nurses, technicians, librarians, and administration personal require hands-on training, while new recruitment will have to emphasize compulsory knowledge of and familiarity with information technology. This paper highlights these subjects in detail as a means to prepare us to meet the challenges of the 21st century. PMID:23011983
NASA Astrophysics Data System (ADS)
Cheng, Po-Hsun; Chen, Sao-Jie; Lai, Jin-Shin; Lai, Feipei
This paper illustrates a feasible health informatics domain knowledge management process which helps gather useful technology information and reduce many knowledge misunderstandings among engineers who have participated in the IBM mainframe rightsizing project at National Taiwan University (NTU) Hospital. We design an asynchronously sharing mechanism to facilitate the knowledge transfer and our health informatics domain knowledge management process can be used to publish and retrieve documents dynamically. It effectively creates an acceptable discussion environment and even lessens the traditional meeting burden among development engineers. An overall description on the current software development status is presented. Then, the knowledge management implementation of health information systems is proposed.
Informatics: essential infrastructure for quality assessment and improvement in nursing.
Henry, S B
1995-01-01
In recent decades there have been major advances in the creation and implementation of information technologies and in the development of measures of health care quality. The premise of this article is that informatics provides essential infrastructure for quality assessment and improvement in nursing. In this context, the term quality assessment and improvement comprises both short-term processes such as continuous quality improvement (CQI) and long-term outcomes management. This premise is supported by 1) presentation of a historical perspective on quality assessment and improvement; 2) delineation of the types of data required for quality assessment and improvement; and 3) description of the current and potential uses of information technology in the acquisition, storage, transformation, and presentation of quality data, information, and knowledge. PMID:7614118
Eleven quick tips for architecting biomedical informatics workflows with cloud computing.
Cole, Brian S; Moore, Jason H
2018-03-01
Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.
Eleven quick tips for architecting biomedical informatics workflows with cloud computing
Moore, Jason H.
2018-01-01
Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world’s largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction. PMID:29596416
Design of a Community-Engaged Health Informatics Platform with an Architecture of Participation.
Millery, Mari; Ramos, Wilson; Lien, Chueh; Aguirre, Alejandra N; Kukafka, Rita
2015-01-01
Community-engaged health informatics (CEHI) applies information technology and participatory approaches to improve the health of communities. Our objective was to translate the concept of CEHI into a usable and replicable informatics platform that will facilitate community-engaged practice and research. The setting is a diverse urban neighborhood in New York City. The methods included community asset mapping, stakeholder interviews, logic modeling, analysis of affordances in open-source tools, elicitation of use cases and requirements, and a survey of early adopters. Based on synthesis of data collected, GetHealthyHeigths.org (GHH) was developed using open-source LAMP stack and Drupal content management software. Drupal's organic groups module was used for novel participatory functionality, along with detailed user roles and permissions. Future work includes evaluation of GHH and its impact on agency and service networks. We plan to expand GHH with additional functionality to further support CEHI by combining informatics solutions with community engagement to improve health.
Design of a Community-Engaged Health Informatics Platform with an Architecture of Participation
Millery, Mari; Ramos, Wilson; Lien, Chueh; Aguirre, Alejandra N.; Kukafka, Rita
2015-01-01
Community-engaged health informatics (CEHI) applies information technology and participatory approaches to improve the health of communities. Our objective was to translate the concept of CEHI into a usable and replicable informatics platform that will facilitate community-engaged practice and research. The setting is a diverse urban neighborhood in New York City. The methods included community asset mapping, stakeholder interviews, logic modeling, analysis of affordances in open-source tools, elicitation of use cases and requirements, and a survey of early adopters. Based on synthesis of data collected, GetHealthyHeigths.org (GHH) was developed using open-source LAMP stack and Drupal content management software. Drupal’s organic groups module was used for novel participatory functionality, along with detailed user roles and permissions. Future work includes evaluation of GHH and its impact on agency and service networks. We plan to expand GHH with additional functionality to further support CEHI by combining informatics solutions with community engagement to improve health. PMID:26958227
Innovative designs for the smart ICU: Part 3: Advanced ICU informatics.
Halpern, Neil A
2014-04-01
This third and final installment of this series on innovative designs for the smart ICU addresses the steps involved in conceptualizing, actualizing, using, and maintaining the advanced ICU informatics infrastructure and systems. The smart ICU comprehensively and electronically integrates the patient in the ICU with all aspects of care, displays data in a variety of formats, converts data to actionable information, uses data proactively to enhance patient safety, and monitors the ICU environment to facilitate patient care and ICU management. The keys to success in this complex informatics design process include an understanding of advanced informatics concepts, sophisticated planning, installation of a robust infrastructure capable of both connectivity and interoperability, and implementation of middleware solutions that provide value. Although new technologies commonly appear compelling, they are also complicated and challenging to incorporate within existing or evolving hospital informatics systems. Therefore, careful analysis, deliberate testing, and a phased approach to the implementation of innovative technologies are necessary to achieve the multilevel solutions of the smart ICU.
PREFACE: International Workshop on Statistical-Mechanical Informatics 2007 (IW-SMI 2007)
NASA Astrophysics Data System (ADS)
Hukushima, Koji; Kabashima, Yoshiyuki; Nishimori, Hidetoshi; Tanaka, Toshiyuki
2007-06-01
Information theory and statistical mechanics have numerous fundamental similarities. One typical example is the concept of entropy, which is shared by both fields. However, despite this proximity, these fields have developed almost independently of each other and in the absence of extensive collaboration. Things are now changing: in recent years we have seen an increase in the number of breakthroughs in research activities that have employed the standard knowledge or techniques from one discipline and applied them to another. This implies an importance, as a methodology for conducting research, in the appropriate utilization of the underlying structural similarities between the two fields. Researchers have shown rapidly increasing interest in cross-disciplinary research initiatives. Nevertheless, as a consequence of the relatively independent development histories of these fields, there are still barriers between them that hinder the exchange of information and efficient collaborative activities. The International Workshop on Statistical-Mechanical Informatics (IW-SMI2007) has been organized in response to this situation. This workshop, held at Pa-ru-ru Plaza Kyoto, Kyoto, Japan, 16-19 September 2007, and sponsored by the Grant-in-Aid for Scientific Research on Priority Areas 'Deepening and Expansion of Statistical Mechanical Informatics (DEX-SMI)' (Head investigator: Yoshiyuki Kabashima, Tokyo Institute of Technology) (Project WWW page: http://dex-smi.sp.dis.titech.ac.jp/DEX-SMI), was intended to provide leading researchers with strong interdisciplinary interests in informatics and statistical mechanics with the opportunity to engage in intensive discussions. The aim of the workshop was to form a solid basis for overcoming the barriers that exist between the two fields by sharing the well-established expertise in each field, to discuss possible future directions, and to offer researchers the opportunity to exchange ideas that may lead to joint research initiatives. We would like to thank the contributors of the workshop as well as all the participants, who have enjoyed the workshop as well as their stay in Kyoto, one of the most historic cities in Japan. This successful workshop will stimulate further development of the interdisciplinary research field of informatics and statistical mechanics. Koji Hukushima Yoshiyuki Kabashima Hidetoshi Nishimori Toshiyuki Tanaka Editors The IW-SMI 2007 Organizing Committee Toshiyuki Tanaka, General Chair (Kyoto University) Yoshiyuki Kabashima, Vice-General Chair (Tokyo Institute of Technology) Koji Hukushima, Program Chair (University of Tokyo) Hidetoshi Nishimori (Tokyo Institute of Technology) Masato Okada (University of Tokyo) Kazuyuki Tanaka (Tohoku University) Tadashi Wadayama (Nagoya Institute of Technology)
Informatics Essentials for DNPs.
Jenkins, Melinda L
2018-01-01
Doctor of Nursing Practice (DNP) programs are proliferating around the US as advanced practice nursing programs evolve to build capacity by adding content on professional leadership, policy, and quality improvement to the traditional clinical content. One of the eight "Essentials" for DNP education is "Information systems/technology and patient care technology for the improvement and transformation of health care."[1] A required graduate course was revised and updated in 2017 to provide a foundation in clinical informatics for DNPs, as well as for nursing informatics specialists. Components of the online course, assignments, and free online resources linked to the DNP Essentials are described in this paper.
EPA'S TOXICOGENOMICS PARTNERSHIPS ACROSS GOVERNMENT, ACADEMIA AND INDUSTRY
Genomics, proteomics and metabonomics technologies are transforming the science of toxicology, and concurrent advances in computing and informatics are providing management and analysis solutions for this onslaught of toxicogenomic data. EPA has been actively developing an intra...
Kuchma, V R; Tkachuk, E A; Tarmaeva, I Yu
The transition to a new stage of the development - the information society is an objective reality and has an influence on all areas of the activity of the society, including the establishment of a child as an object of the hygienic research. In conditions of the general informatization of the society, the appearance of so-called “clip thinking,” explains the maladjustment of educational technologies to mechanisms of children ’ and teenagers ’perception and is confirmed by the growth of the school pathology and the gain in the morbidity rate. In the investigation on the example of the educational institutions of Irkutsk it was executed the evaluation of the impact of the intensification of informatization of education and personal development. For the investigation there were formed 2 groups ofpreschools with different levels of informatization in the same preschool institution of the central district of the city of Irkutsk but in different periods of time. In total there were observed 211 children aged of 5.5 to 6.5 years. For the study the influence of the intensification (and informatization of training there were formed 2 groups of small schoolchildren with different levels of intensification (and informatization) of education. The total number of cases accountedfor 465 children aged of 7-9 years. There were suggested methodical approaches to the estimation of the health status of the children, with taking into account the inevitable influence offactors of informatization and the intensification of education. The performed investigations have allowed to reveal the following tendencies in the shaping of the psychophysical state of health and development of children: an increase of level of informatization of education and personal and accomplishment; intensification of learning working; reduction of the attention level; imagination and visual divergence; capability to the linear differentiation and construction of inferences; fear to fail to meet the expectations of surrounding people and low resistance to stress; the increase speed of data processing along with fall in quality; the gain in hyperactivity.
The Future of Public Health Informatics: Alternative Scenarios and Recommended Strategies
Edmunds, Margo; Thorpe, Lorna; Sepulveda, Martin; Bezold, Clem; Ross, David A.
2014-01-01
Background: In October 2013, the Public Health Informatics Institute (PHII) and Institute for Alternative Futures (IAF) convened a multidisciplinary group of experts to evaluate forces shaping public health informatics (PHI) in the United States, with the aim of identifying upcoming challenges and opportunities. The PHI workshop was funded by the Robert Wood Johnson Foundation as part of its larger strategic planning process for public health and primary care. Workshop Context: During the two-day workshop, nine experts from the public and private sectors analyzed and discussed the implications of four scenarios regarding the United States economy, health care system, information technology (IT) sector, and their potential impacts on public health in the next 10 years, by 2023. Workshop participants considered the potential role of the public health sector in addressing population health challenges in each scenario, and then identified specific informatics goals and strategies needed for the sector to succeed in this role. Recommendations and Conclusion: Participants developed recommendations for the public health informatics field and for public health overall in the coming decade. These included the need to rely more heavily on intersectoral collaborations across public and private sectors, to improve data infrastructure and workforce capacity at all levels of the public health enterprise, to expand the evidence base regarding effectiveness of informatics-based public health initiatives, and to communicate strategically with elected officials and other key stakeholders regarding the potential for informatics-based solutions to have an impact on population health. PMID:25848630
Kushniruk, Andre; Borycki, Elizabeth; Armstrong, Brian; Kuo, Mu-Hsing
2012-01-01
The paper describes the authors' work in the area of health informatics (HI) education involving emerging health information technologies. A range of information technologies promise to modernize health care. Foremost among these are electronic health records (EHRs), which are expected to significantly improve and streamline health care practice. Major national and international efforts are currently underway to increase EHR adoption. However, there have been numerous issues affecting the widespread use of such information technology, ranging from a complex array of technical problems to social issues. This paper describes work in the integration of information technologies directly into the education and training of HI students at both the undergraduate and graduate level. This has included work in (a) the development of Web-based computer tools and platforms to allow students to have hands-on access to the latest technologies and (b) development of interdisciplinary educational models that can be used to guide integrating information technologies into HI education. The paper describes approaches that allow for remote hands-on access by HI students to a range of EHRs and related technology. To date, this work has been applied in HI education in a variety of ways. Several approaches for integration of this essential technology into HI education and training are discussed, along with future directions for the integration of EHR technology into improving and informing the education of future health and HI professionals.
Knowledge, Skills, and Resources for Pharmacy Informatics Education
Fox, Brent I.; Flynn, Allen J.; Fortier, Christopher R.; Clauson, Kevin A.
2011-01-01
Pharmacy has an established history of technology use to support business processes. Pharmacy informatics education within doctor of pharmacy programs, however, is inconsistent, despite its inclusion as a requirement in the 2007 Accreditation Council for Pharmacy Education Standards and Guidelines. This manuscript describes pharmacy informatics knowledge and skills that all graduating pharmacy students should possess, conceptualized within the framework of the medication use process. Additionally, we suggest core source materials and specific learning activities to support pharmacy informatics education. We conclude with a brief discussion of emerging changes in the practice model. These changes are facilitated by pharmacy informatics and will inevitably become commonplace in our graduates’ practice environment. PMID:21829267
Knowledge, skills, and resources for pharmacy informatics education.
Fox, Brent I; Flynn, Allen J; Fortier, Christopher R; Clauson, Kevin A
2011-06-10
Pharmacy has an established history of technology use to support business processes. Pharmacy informatics education within doctor of pharmacy programs, however, is inconsistent, despite its inclusion as a requirement in the 2007 Accreditation Council for Pharmacy Education Standards and Guidelines. This manuscript describes pharmacy informatics knowledge and skills that all graduating pharmacy students should possess, conceptualized within the framework of the medication use process. Additionally, we suggest core source materials and specific learning activities to support pharmacy informatics education. We conclude with a brief discussion of emerging changes in the practice model. These changes are facilitated by pharmacy informatics and will inevitably become commonplace in our graduates' practice environment.
Tree-mendous Timber Evaluation
NASA Technical Reports Server (NTRS)
2004-01-01
Funded and administered by NASA, the Affiliated Research Center (ARC) program transfers geospatial technologies from the Space Agency and participating universities to commercial companies, non-profit and trade organizations, and tribal governments. The origins of the ARC program date back to 1988, when NASA's Stennis Space Center initiated the Visiting Investigator Program to bring industry closer to spatial information technologies. The success of this trial program led to an expansion into the ARC program, whose goal is to enhance competitiveness of U.S. industries through more efficient use of remote sensing and related technologies. NASA's ARC program served as the foundation for the development of International Hardwood Resources, which then grew into Falcon Informatics with the acquisition of a technology from a European software company and a change of business models. Doylestown, Pennsylvania-based Falcon Informatics is now a world-leading information services company that combines in-depth timber industry experience with state-of-the-art software to serve the needs of national governments, international paper companies, and timber-investment management organizations.
The Datafication of Everything - Even Toilets.
Lun, Kwok-Chan
2018-04-22
Health informatics has benefitted from the development of Info-Communications Technology (ICT) over the last fifty years. Advances in ICT in healthcare have now started to spur advances in Data Technology as hospital information systems, electronic health and medical records, mobile devices, social media and Internet Of Things (IOT) are making a substantial impact on the generation of data. It is timely for healthcare institutions to recognize data as a corporate asset and promote a data-driven culture within the institution. It is both strategic and timely for IMIA, as an international organization in health informatics, to take the lead to promote a data-driven culture in healthcare organizations. This can be achieved by expanding the terms of reference of its existing Working Group on Data Mining and Big Data Analysis to include (1) data analytics with special reference to healthcare, (2) big data tools and solutions, (3) bridging information technology and data technology and (4) data quality issues and challenges. Georg Thieme Verlag KG Stuttgart.
Informatics for Secondary Education: A Curriculum for Schools.
ERIC Educational Resources Information Center
International Federation for Information Processing, Geneva (Switzerland).
UNESCO (United Nations Educational, Scientific and Cultural Organization) aims to ensure that all countries, both developed and developing, have access to the best educational facilities necessary to prepare young people to play a full role in modern society. Understanding information technology (IT) and mastering IT's basic skills and concepts…
ERIC Educational Resources Information Center
Tingoy, Ozhan; Gulluoglu, Sabri Serkan
2011-01-01
This article presents a quantitative study on attitudes toward the usage of Information Technology related tools and applications. The study was conducted at a private university, Turkey, with 97 female and 113 male students involved as participants. They were each presented with a questionnaire to relate their attitudes toward IT and after…
Integrating information literacy across a BSN curriculum.
Flood, Lisa Sue; Gasiewicz, Nanci; Delpier, Terry
2010-02-01
Although research regarding effective informatics teaching strategies is sparse and informatics competencies have not yet been finalized, nurse educators have been challenged to include informatics throughout the curriculum. Nurse educators are confronted with how best to incorporate informatics into an already burgeoning curriculum. This article offers a systematic approach to incorporating information literacy, a vital component of informatics, across a baccalaureate of science in nursing curriculum. Motivated by the Institute of Medicine report, guided by the initial Technology Informatics Guiding Education Reform competency framework, and using the specific Quality and Safety Education for Nurses informatics competencies, the proposed integrated approach emphasizes clinical applications. The five assignments are designed to incrementally increase students' abilities to recognize the need for information (i.e., knowledge); advance students' abilities to locate, evaluate, and use information (i.e., skills); and foster a positive appreciation for information literacy (i.e., attitudes) when planning safe, effective patient care. Copyright 2010, SLACK Incorporated.
Shaw, Nicola; McGuire, Suzanne
2017-06-23
The purpose of this literature review is to understand geographical information systems (GIS) and how they can be applied to public health informatics, medical informatics, and epidemiology. Relevant papers that reflected the use of geographical information systems (GIS) in health research were identified from four academic databases: Academic Search Complete, BioMed Central, PubMed Central, and Scholars Portal, as well as Google Scholar. The search strategy used was to identify articles with "geographic information systems", "GIS", "public health", "medical informatics", "epidemiology", and "health geography" as main subject headings or text words in titles and abstracts. Papers published between 1997 and 2014 were considered and a total of 39 articles were included to inform the authors on the use of GIS technologies in health informatics research. The main applications of GIS in health informatics and epidemiology include disease surveillance, health risk analysis, health access and planning, and community health profiling. GIS technologies can significantly improve quality and efficiency in health research as substantial connections can be made between a population's health and their geographical location. Gains in health informatics can be made when GIS are applied through research, however, improvements need to occur in the quantity and quality of data input for these systems to ensure better geographical health maps are used so that proper conclusions between public health and environmental factors may be made.
Emerging medical informatics research trends detection based on MeSH terms.
Lyu, Peng-Hui; Yao, Qiang; Mao, Jin; Zhang, Shi-Jing
2015-01-01
The aim of this study is to analyze the research trends of medical informatics over the last 12 years. A new method based on MeSH terms was proposed to identify emerging topics and trends of medical informatics research. Informetric methods and visualization technologies were applied to investigate research trends of medical informatics. The metric of perspective factor (PF) embedding MeSH terms was appropriately employed to assess the perspective quality for journals. The emerging MeSH terms have changed dramatically over the last 12 years, identifying two stages of medical informatics: the "medical imaging stage" and the "medical informatics stage". The focus of medical informatics has shifted from acquisition and storage of healthcare data by integrating computational, informational, cognitive and organizational sciences to semantic analysis for problem solving and clinical decision-making. About 30 core journals were determined by Bradford's Law in the last 3 years in this area. These journals, with high PF values, have relative high perspective quality and lead the trend of medical informatics.
Wells, Stewart; Bullen, Chris
2008-01-01
This article describes the near failure of an information technology (IT) system designed to support a government-funded, primary care-based hepatitis B screening program in New Zealand. Qualitative methods were used to collect data and construct an explanatory model. Multiple incorrect assumptions were made about participants, primary care workflows and IT capacity, software vendor user knowledge, and the health IT infrastructure. Political factors delayed system development and it was implemented untested, almost failing. An intensive rescue strategy included system modifications, relaxation of data validity rules, close engagement with software vendors, and provision of intensive on-site user support. This case study demonstrates that consideration of the social, political, technological, and health care contexts is important for successful implementation of public health informatics projects.
Unintended Consequences of Sensor, Signal, and Imaging Informatics: New Problems and New Solutions.
Hughes, C; Voros, S; Moreau-Gaudry, A
2016-11-10
This synopsis presents a selection for the IMIA (International Medical Informatics Association) Yearbook 2016 of excellent research in the broad field of Sensor, Signal and Imaging Informatics published in the year 2015, with a focus on Unintended consequences: new problems and new solutions. We performed a systematic initial selection and a double blind peer review process to find the best papers in this domain published in 2015, from the PubMed and Web of Science databases. The set of MesH keywords used was provided by experts. The constant advances in medical technology allow ever more relevant diagnostic and therapeutic approaches to be designed. Nevertheless, there is a need to acquire expert knowledge of these innovations in order to identify precociously new associated problems for which new solutions need to be designed and developed.
Krive, Jacob
2015-01-01
Despite the fast pace of recent innovation within the health information technology and research informatics domains, there remains a large gap between research and academia, while interest in translating research innovations into implementations in the patient care settings is lacking. This is due to absence of common outcomes and performance measurement targets, with health information technology industry employing financial and operational measures and academia focusing on patient outcome concerns. The paper introduces methodology for and roadmap to introduction of common objectives as a way to encourage better collaboration between industry and academia using patient outcomes as a composite measure of demonstrated success from health information systems investments. Along the way, the concept of economics of health informatics, or "infonomics," is introduced to define a new way of mapping future technology investments in accordance with projected clinical impact.
Informatics for practicing anatomical pathologists: marking a new era in pathology practice.
Gabril, Manal Y; Yousef, George M
2010-03-01
Informatics can be defined as using highly advanced technologies to improve patient diagnosis or management. Pathology informatics had evolved as a response to the overwhelming amount of information that was available, in an attempt to better use and maintain them. The most commonly used tools of informatics can be classified into digital imaging, telepathology, as well as Internet and electronic data mining. Digital imaging is the storage of anatomical pathology information, either gross pictures or microscopic slides, in an electronic format. These images can be used for education, archival, diagnosis, and consultation. Virtual microscopy is the more advanced form of digital imaging with enhanced efficiency and accessibility. Telepathology is now increasingly becoming a useful tool in anatomical pathology practice. Different types of telepathology communications are available for both diagnostic and consultation services. The spectrum of applications of informatics in the field of anatomical pathology is broad and encompasses medical education, clinical services, and pathology research. Informatics is now settling on solid ground as an important tool for pathology teaching, with digital teaching becoming the standard tool in many institutions. After a slow start, we now witness the transition of informatics from the research bench to bedside. As we are moving into a new era of extensive pathology informatics utilization, several challenges have to be addressed, including the cost of the new technology, legal issues, and resistance of pathologists. It is clear from the current evidence that pathology informatics will continue to grow and have a major role in the future of our specialty. However, it is also clear that it is not going to fully replace the human factor or the regular microscope.
Joshi, Ashish; Perin, Douglas Marcel Puricelli
2012-01-01
The objective of this study was to explore public health informatics (PHI) training programs that currently exist to meet the growing demand for a trained global workforce. We used several search engines, scientific databases, and the websites of informatics organizations; sources included PubMed, Google, the American Medical Informatics Organization, and the International Medical Informatics Organization. The search was conducted from May to July 2011 and from January to February 2012 using key words such as informatics, public health informatics, or biomedical informatics along with academic programs, training, certificate, graduate programs, or postgraduate programs. Course titles and catalog descriptions were gathered from the program or institution websites. Variables included PHI program categories, location and mode of delivery, program credits, and costs. Each course was then categorized based on its title and description as available on the Internet. Finally, we matched course titles and descriptions with the competencies for PHIs determined by Centers for Disease Control and Prevention (CDC). Descriptive analysis was performed to report means and frequency distributions for continuous and categorical variables. Stratified analysis was performed to explore average credits and cost per credit among both the public and private institutions. Fifteen PHI programs were identified across 13 different institutions, the majority of which were US-based. The average number of credits and the associated costs required to obtain PHI training were much higher in private as compared to public institutions. The study results suggest that a need for online contextual and cost-effective PHI training programs exists to address the growing needs of professionals worldwide who are using technology to improve public health in their respective countries.
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2015-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata
Methods for Addressing Technology-induced Errors: The Current State.
Borycki, E; Dexheimer, J W; Hullin Lucay Cossio, C; Gong, Y; Jensen, S; Kaipio, J; Kennebeck, S; Kirkendall, E; Kushniruk, A W; Kuziemsky, C; Marcilly, R; Röhrig, R; Saranto, K; Senathirajah, Y; Weber, J; Takeda, H
2016-11-10
The objectives of this paper are to review and discuss the methods that are being used internationally to report on, mitigate, and eliminate technology-induced errors. The IMIA Working Group for Health Informatics for Patient Safety worked together to review and synthesize some of the main methods and approaches associated with technology- induced error reporting, reduction, and mitigation. The work involved a review of the evidence-based literature as well as guideline publications specific to health informatics. The paper presents a rich overview of current approaches, issues, and methods associated with: (1) safe HIT design, (2) safe HIT implementation, (3) reporting on technology-induced errors, (4) technology-induced error analysis, and (5) health information technology (HIT) risk management. The work is based on research from around the world. Internationally, researchers have been developing methods that can be used to identify, report on, mitigate, and eliminate technology-induced errors. Although there remain issues and challenges associated with the methodologies, they have been shown to improve the quality and safety of HIT. Since the first publications documenting technology-induced errors in healthcare in 2005, we have seen in a short 10 years researchers develop ways of identifying and addressing these types of errors. We have also seen organizations begin to use these approaches. Knowledge has been translated into practice in a short ten years whereas the norm for other research areas is of 20 years.
Arocha, Jose F; Hoffman-Goetz, Laurie
2012-12-01
As information technology becomes more widely used by people for health-care decisions, training in consumer and public health informatics will be important for health practitioners working directly with the public. Using information from 74 universities and colleges across Canada, we searched websites and online calendars for programmes (undergraduate, graduate) regarding availability and scope of education in programmes, courses and topics geared to public health and/or consumer health informatics. Of the 74 institutions searched, 31 provided some content relevant to health informatics (HI) and 8 institutions offered full HI-related programmes. Of these 8 HI programmes, only 1 course was identified with content relevant to public health informatics and 1 with content about consumer health informatics. Some institutions (n = 22) - which do not offer HI-degree programmes - provide health informatics-related courses, including one on consumer health informatics. We found few programmes, courses or topic areas within courses in Canadian universities and colleges that focus on consumer or public health informatics education. Given the increasing emphasis on personal responsibility for health and health-care decision-making, skills training for health professionals who help consumers navigate the Internet should be considered in health informatics education.
Nursing informatics: the trend of the future.
Nagelkerk, J; Ritola, P M; Vandort, P J
1998-01-01
Nursing informatics is a combination of computer, information, and nursing sciences. This new and expanding field addresses the efficient and effective use of information for nurses. Preparing nurses for computerization is essential to confront an explosion of sophisticated computerized technology in the workplace. It is critical in a competitive health care market for preparing nurses to use the most cost-effective methods. A model is presented that identifies six essential factors for preparing nurses for computerization. Strong leadership, effective communication, organized training sessions, established time frames, planned change, and tailored software are the essential factors to consider for development of a successful educational program.
Steps in Moving Evidence-Based Health Informatics from Theory to Practice.
Rigby, Michael; Magrabi, Farah; Scott, Philip; Doupi, Persephone; Hypponen, Hannele; Ammenwerth, Elske
2016-10-01
To demonstrate and promote the importance of applying a scientific process to health IT design and implementation, and of basing this on research principles and techniques. A review by international experts linked to the IMIA Working Group on Technology Assessment and Quality Development. Four approaches are presented, linking to the creation of national professional expectations, adherence to research-based standards, quality assurance approaches to ensure safety, and scientific measurement of impact. Solely marketing- and aspiration-based approaches to health informatics applications are no longer ethical or acceptable when scientifically grounded evidence-based approaches are available and in use.
Educating medical students as competent users of health information technologies: the MSOP data.
McGowan, Julie J; Passiment, Morgan; Hoffman, Helene M
2007-01-01
As more health information technologies become part of the health care environment, the need for physicians with medical informatics competencies is growing. In 2006, a survey was created to determine the degree to which the Association of American Medical College's Medical School Objectives Project (MSOP) medical informatics competencies had been incorporated into medical school curricula in the United States. a web-based tool was used to create the survey; medical education deans or their designees were requested to complete the survey. Analysis focused on the clinician, researcher, and manager roles of physicians. Seventy usable surveys were returned. Many of the objectives were stated in the schools' respective curricula and the competencies were being evaluated. However, only a few schools taught and assessed the medical informatics objectives that required interaction with health information. To insure that physicians have the knowledge, skills, and attitudes to effectively and efficiently interact with today's health information technologies, more medical informatics concepts need to be included and assessed in all undergraduate medical education curricula in the United States.
Information and informatics literacy: skills, timing, and estimates of competence.
Scott, C S; Schaad, D C; Mandel, L S; Brock, D M; Kim, S
2000-01-01
Computing and biomedical informatics technologies are providing almost instantaneous access to vast amounts of possibly relevant information. Although students are entering medical school with increasingly sophisticated basic technological skills, medical educators must determine what curricular enhancements are needed to prepare learners for the world of electronic information. The purpose was to examine opinions of academic affairs and informatics administrators, curriculum deans and recently matriculated medical students about prematriculation competence and medical education learning expectations. Two surveys were administered: an Information Literacy Survey for curriculum/informatics deans and a Computing Skills Survey for entering medical students. Results highlight differences of opinion about entering competencies. They also indicate that medical school administrators believe that most basic information skills fall within the domain of undergraduate medical education. Further investigations are needed to determine precise entry-level skills and whether information literacy will increase as a result of rising levels of technical competence.
Medical informatics as a market for IS/IT.
Morris, Theodore Allan
2002-01-01
Medical informatics is "the application of information science and information technology to the theoretical and practical problems of biomedical research, clinical practice, and medical education." A key difference between the two streams lies in their perspectives of "What Is Important in MI to Me?" MI may be seen as the marketplace where biomedicine consumes products and services provided by information science and information technology. PMID:12463882
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
2015-12-01
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
Development of grid-like applications for public health using Web 2.0 mashup techniques.
Scotch, Matthew; Yip, Kevin Y; Cheung, Kei-Hoi
2008-01-01
Development of public health informatics applications often requires the integration of multiple data sources. This process can be challenging due to issues such as different file formats, schemas, naming systems, and having to scrape the content of web pages. A potential solution to these system development challenges is the use of Web 2.0 technologies. In general, Web 2.0 technologies are new internet services that encourage and value information sharing and collaboration among individuals. In this case report, we describe the development and use of Web 2.0 technologies including Yahoo! Pipes within a public health application that integrates animal, human, and temperature data to assess the risk of West Nile Virus (WNV) outbreaks. The results of development and testing suggest that while Web 2.0 applications are reasonable environments for rapid prototyping, they are not mature enough for large-scale public health data applications. The application, in fact a "systems of systems," often failed due to varied timeouts for application response across web sites and services, internal caching errors, and software added to web sites by administrators to manage the load on their servers. In spite of these concerns, the results of this study demonstrate the potential value of grid computing and Web 2.0 approaches in public health informatics.
ERIC Educational Resources Information Center
Parker, Kevin R.; Srinivasan, Sankara Subramanian; Houghton, Robert F.; Kordzadeh, Nima; Bozan, Karoly; Ottaway, Thomas; Davey, Bill
2017-01-01
Curriculum development is particularly challenging in computing-related disciplines as the computing industry changes more quickly than most. As information technology degrees have become relatively pervasive, some institutions that offer information systems degrees have recognized a need to develop specialist studies in information systems. This…
Methodical Bases for the Regional Information Potential Estimation
ERIC Educational Resources Information Center
Ashmarina, Svetlana I.; Khasaev, Gabibulla R.; Mantulenko, Valentina V.; Kasarin, Stanislav V.; Dorozhkin, Evgenij M.
2016-01-01
The relevance of the investigated problem is caused by the need to assess the implementation of informatization level of the region and the insufficient development of the theoretical, content-technological, scientific and methodological aspects of the assessment of the region's information potential. The aim of the research work is to develop a…
Kulikowski, C A
2008-01-01
To introduce the paper by Kuhn et al. "Informatics and Medicine: From Molecules to Populations" and the papers that follow on this special topic in this issue of Methods of Information in Medicine, which opens a debate on the Kuhn et al. paper's assertions by an international panel of invited researchers in biomedical informatics. An introductory summary and comparative review of the Kuhn et al. paper and the debate papers, with some personal observations. The Kuhn et al. paper makes a strong case for interdisciplinary education in biomedical informatics across institutions at the graduate level, which could be strengthened by analysis of previous relevant interdisciplinary experiences elsewhere, and the challenges they have faced, which point to more pervasive and earlier-stage needs for both education and practice bridging the research and healthcare communities. The experts debating the Kuhn et al. paper strongly and broadly support the key recommendation of developing graduate education in biomedical informatics in a more comprehensive way, yet at the same time make some incisive comments about the limitations of the "positivistic" and excessively technological orientation of the paper, which could benefit from greater attention to the narrative and care-giving aspects of health practice, with more emphasis on its human and social aspects.
ExpoCastDB: A Publicly Accessible Database for Observational Exposure Data
The application of environmental informatics tools for human health risk assessment will require the development of advanced exposure information technology resources. Exposure data for chemicals is often not readily accessible. There is a pressing need for easily accessible, che...
ERIC Educational Resources Information Center
He, Shaoyi
2003-01-01
Provides a brief survey of informatics, defined as the application of information technology to various fields, with respect to its historical background, disciplinary identity, fundamental aspects, applications, and challenges. Highlights include biological, clinical, dental, environmental, geomatics, health, legal, management, medical, museum,…
Information Technology Education for Health Professionals: Opportunities and Challenges.
ERIC Educational Resources Information Center
Haque, Syed S.; Gibson, David M.
1998-01-01
Describes surveys of potential health-care employers and health-care professionals to identify the need for biomedical informatics programs. Outlines a certificate program, master of science in biomedicine and nursing informatics, and a Ph.D. program. (SK)
Mantas, John; Ammenwerth, Elske; Demiris, George; Hasman, Arie; Haux, Reinhold; Hersh, William; Hovenga, Evelyn; Lun, K C; Marin, Heimar; Martin-Sanchez, Fernando; Wright, Graham
2010-01-07
Objective: The International Medical Informatics Association (IMIA) agreed on revising the existing international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in biomedical and health informatics (BMHI), particularly international activities in educating BMHI specialists and the sharing of courseware. Method: An IMIA task force, nominated in 2006, worked on updating the recommendations' first version. These updates have been broadly discussed and refined by members of IMIA's National Member Societies, IMIA's Academic Institutional Members and by members of IMIA's Working Group on Health and Medical Informatics Education. Results and Conclusions: The IMIA recommendations center on educational needs for health care professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in health care (e.g. physicians, nurses, BMHI professionals), 2) type of specialization in BMHI (IT users, BMHI specialists), and 3) stage of career progression (bachelor, master, doctorate). Learning outcomes are defined in terms of knowledge and practical skills for health care professionals in their role a) as IT user and b) as BMHI specialist. Recommendations are given for courses/course tracks in BMHI as part of educational programs in medicine, nursing, health care management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in BMHI (with bachelor, master or doctor degree). To support education in BMHI, IMIA offers to award a certificate for high-quality BMHI education. It supports information exchange on programs and courses in BMHI through its Working Group on Health and Medical Informatics Education.
Customizing Laboratory Information Systems: Closing the Functionality Gap.
Gershkovich, Peter; Sinard, John H
2015-09-01
Highly customizable laboratory information systems help to address great variations in laboratory workflows, typical in Pathology. Often, however, built-in customization tools are not sufficient to add all of the desired functionality and improve systems interoperability. Emerging technologies and advances in medicine often create a void in functionality that we call a functionality gap. These gaps have distinct characteristics—a persuasive need to change the way a pathology group operates, the general availability of technology to address the missing functionality, the absence of this technology from your laboratory information system, and inability of built-in customization tools to address it. We emphasize the pervasive nature of these gaps, the role of pathology informatics in closing them, and suggest methods on how to achieve that. We found that a large number of the papers in the Journal of Pathology Informatics are concerned with these functionality gaps, and an even larger proportion of electronic posters and abstracts presented at the Pathology Informatics Summit conference each year deal directly with these unmet needs in pathology practice. A rapid, continuous, and sustainable approach to closing these gaps is critical for Pathology to provide the highest quality of care, adopt new technologies, and meet regulatory and financial challenges. The key element of successfully addressing functionality gaps is gap ownership—the ability to control the entire pathology information infrastructure with access to complementary systems and components. In addition, software developers with detailed domain expertise, equipped with right tools and methodology can effectively address these needs as they emerge.
Nursing informatics, outcomes, and quality improvement.
Charters, Kathleen G
2003-08-01
Nursing informatics actively supports nursing by providing standard language systems, databases, decision support, readily accessible research results, and technology assessments. Through normalized datasets spanning an entire enterprise or other large demographic, nursing informatics tools support improvement of healthcare by answering questions about patient outcomes and quality improvement on an enterprise scale, and by providing documentation for business process definition, business process engineering, and strategic planning. Nursing informatics tools provide a way for advanced practice nurses to examine their practice and the effect of their actions on patient outcomes. Analysis of patient outcomes may lead to initiatives for quality improvement. Supported by nursing informatics tools, successful advance practice nurses leverage their quality improvement initiatives against the enterprise strategic plan to gain leadership support and resources.
Better informed in clinical practice - a brief overview of dental informatics.
Reynolds, P A; Harper, J; Dunne, S
2008-03-22
Uptake of dental informatics has been hampered by technical and user issues. Innovative systems have been developed, but usability issues have affected many. Advances in technology and artificial intelligence are now producing clinically useful systems, although issues still remain with adapting computer interfaces to the dental practice working environment. A dental electronic health record has become a priority in many countries, including the UK. However, experience shows that any dental electronic health record (EHR) system cannot be subordinate to, or a subset of, a medical record. Such a future dental EHR is likely to incorporate integrated care pathways. Future best dental practice will increasingly depend on computer-based support tools, although disagreement remains about the effectiveness of current support tools. Over the longer term, future dental informatics tools will incorporate dynamic, online evidence-based medicine (EBM) tools, and promise more adaptive, patient-focused and efficient dental care with educational advantages in training.
Sustainable health systems: addressing three key areas.
Chhanabhai, Prajesh N; Holt, Alec; Benwell, George
2007-01-01
In the modern context sustainable health systems are being developed using the newest technological and communication technologies. This is proving to be a great success for the growth of Health Informatics and healthcare improvement. However this revolution is not being reached by a lot of the world population. This paper will address the importance of closing the Digital Divide, Empowerment of health consumers and the importance of converging communications. Key areas in the development of a truly sustainable health system.
NASA Astrophysics Data System (ADS)
Zhi, Wang; Kongan, Wu
2018-06-01
"Beautiful rural construction" is a systematic project, rural energy is one of the important contents of its construction. In accordance with the concept of eco-friendly construction, Beijing carried out a thorough "structural adjustment of rural energy optimization," "Earthquake energy-saving projects of rural housing" and other measures. By conventional heating technology research in Beijing 13 counties and 142 villages, we predict the future of rural energy will further the implementation of solar heating, electric heating and other new green energy technologies. It is suggested to establish the "Beijing Rural Information Service Platform" and "Beautiful Rural Information Resource Bank" through the means of informatization, which will greatly strengthen the regulation and control of rural people-land relationship and realize the systematic optimization, making the cities and villages have. Space for human survival and sustainable development.
Patel, Vimla L; Yoskowitz, Nicole A; Arocha, Jose F; Shortliffe, Edward H
2009-02-01
Theoretical and methodological advances in the cognitive and learning sciences can greatly inform curriculum and instruction in biomedicine and also educational programs in biomedical informatics. It does so by addressing issues such as the processes related to comprehension of medical information, clinical problem-solving and decision-making, and the role of technology. This paper reviews these theories and methods from the cognitive and learning sciences and their role in addressing current and future needs in designing curricula, largely using illustrative examples drawn from medical education. The lessons of this past work are also applicable, however, to biomedical and health professional curricula in general, and to biomedical informatics training, in particular. We summarize empirical studies conducted over two decades on the role of memory, knowledge organization and reasoning as well as studies of problem-solving and decision-making in medical areas that inform curricular design. The results of this research contribute to the design of more informed curricula based on empirical findings about how people learn and think, and more specifically, how expertise is developed. Similarly, the study of practice can also help to shape theories of human performance, technology-based learning, and scientific and professional collaboration that extend beyond the domain of medicine. Just as biomedical science has revolutionized health care practice, research in the cognitive and learning sciences provides a scientific foundation for education in biomedicine, the health professions, and biomedical informatics.
Informatics for patient safety: a nursing research perspective.
Bakken, Suzanne
2006-01-01
In Crossing the Quality Chasm, the Institute of Medicine (IOM) Committee on Quality of Health Care in America identified the critical role of information technology in designing a health system that produces care that is "safe, effective, patient-centered, timely, efficient, and equitable" (Committee on Quality of Health Care in America, 2001, p. 164). A subsequent IOM report contends that improved information systems are essential to a new health care delivery system that "both prevents errors and learns from them when they occur" (Committee on Data Standards for Patient Safety, 2004, p. 1). This review specifically highlights the role of informatics processes and information technology in promoting patient safety and summarizes relevant nursing research. First, the components of an informatics infrastructure for patient safety are described within the context of the national framework for delivering consumer-centric and information-rich health care and using the National Health Information Infrastructure (NHII) (Thompson & Brailer, 2004). Second, relevant nursing research is summarized; this includes research studies that contributed to the development of selected infrastructure components as well as studies specifically focused on patient safety. Third, knowledge gaps and opportunities for nursing research are identified for each main topic. The health information technologies deployed as part of the national framework must support nursing practice in a manner that enables prevention of medical errors and promotion of patient safety and contributes to the development of practice-based nursing knowledge as well as best practices for patient safety. The seminal work that has been completed to date is necessary, but not sufficient, to achieve this objective.
Geo-spatial Service and Application based on National E-government Network Platform and Cloud
NASA Astrophysics Data System (ADS)
Meng, X.; Deng, Y.; Li, H.; Yao, L.; Shi, J.
2014-04-01
With the acceleration of China's informatization process, our party and government take a substantive stride in advancing development and application of digital technology, which promotes the evolution of e-government and its informatization. Meanwhile, as a service mode based on innovative resources, cloud computing may connect huge pools together to provide a variety of IT services, and has become one relatively mature technical pattern with further studies and massive practical applications. Based on cloud computing technology and national e-government network platform, "National Natural Resources and Geospatial Database (NRGD)" project integrated and transformed natural resources and geospatial information dispersed in various sectors and regions, established logically unified and physically dispersed fundamental database and developed national integrated information database system supporting main e-government applications. Cross-sector e-government applications and services are realized to provide long-term, stable and standardized natural resources and geospatial fundamental information products and services for national egovernment and public users.
Warner, D; Sale, J; Viirre, E
1996-01-01
Recent trends in healthcare informatics and telemedicine indicate that systems are being developed with a primary focus on technology and business, not on the process of medicine itself. Distributed Medical Intelligence promotes the development of an integrative medical communication system which addresses the process of providing expert medical knowledge to the point of need.
Tools and Methods for Teaching Informatics at School: An Advanced Logo Course.
ERIC Educational Resources Information Center
Nikolov, Rumen
1992-01-01
Describes a course in educational informatics for preservice teachers and students in educational software development that emphasizes the use of LOGO, and summarizes course modules that cover tools and methods for teaching informatics, informatics curriculum design, introducing the basic notions of informatics, integrating informatics into the…
Evidence-based Practice for Mere Mortals
Sim, Ida; Sanders, Gillian D; McDonald, Kathryn M
2002-01-01
The poor translation of evidence into practice is a well-known problem. Hopes are high that information technology can help make evidence-based practice feasible for mere mortal physicians. In this paper, we draw upon the methods and perspectives of clinical practice, medical informatics, and health services research to analyze the gap between evidence and action, and to argue that computing systems for bridging this gap should incorporate both informatics and health services research expertise. We discuss 2 illustrative systems—trial banks and a web-based system to develop and disseminate evidence-based guidelines (alchemist)— and conclude with a research and training agenda. PMID:11972727
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2017-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.
Bhattarai, Arjun Kumar; Zarrin, Aein; Lee, Joon
2017-01-01
To investigate the public health domains, key informatics concepts, and information and communications technologies (ICTs) applied in articles that are tagged with the MeSH term "public health informatics" and primarily focus on applying ICTs to public health. The MeSH term "public health informatics" was searched on MEDLINE-PubMed. The results of the search were then screened in two steps in order to only include articles about applying ICTs to public health problems. First, articles were screened based on their titles and abstracts. Second, a full-text review was conducted to ensure the relevance of the included articles. All articles were charted based on public health domain, information technology, article type, and informatics concept. 515 articles were included. Communicable disease monitoring (N=235), public health policy and research (N=201), and public health awareness (N=85) constituted the majority of the articles. Inconsistent results were found regarding the validity of syndromic surveillance and the effectiveness of PHI integration within the healthcare systems. PHI articles with an ICT focus cover a wide range of themes. Collectively, the included articles emphasized the need for further research in interoperability, data quality, appropriate data sources, accessible health information, and communication. The limitations of the study include:1) only one database was searched; 2) by using MeSH tags as a selection criterion, PHI articles without the "public health informatics" MeSH term were excluded. Due to the multi-disciplinary nature of PHI, MeSH identifiers were not assigned consistently. Current MeSH-tagged articles indicate that a comprehensive approach is required to integrate PHI into the healthcare system.
Methods for Addressing Technology-Induced Errors: The Current State
Dexheimer, J. W.; Hullin Lucay Cossio, C.; Gong, Y.; Jensen, S.; Kaipio, J.; Kennebeck, S.; Kirkendall, E.; Kushniruk, A. W.; Kuziemsky, C.; Marcilly, R.; Röhrig, R.; Saranto, K.; Senathirajah, Y.; Weber, J.; Takeda, H.
2016-01-01
Summary Objectives The objectives of this paper are to review and discuss the methods that are being used internationally to report on, mitigate, and eliminate technology-induced errors. Methods The IMIA Working Group for Health Informatics for Patient Safety worked together to review and synthesize some of the main methods and approaches associated with technology-induced error reporting, reduction, and mitigation. The work involved a review of the evidence-based literature as well as guideline publications specific to health informatics. Results The paper presents a rich overview of current approaches, issues, and methods associated with: (1) safe HIT design, (2) safe HIT implementation, (3) reporting on technology-induced errors, (4) technology-induced error analysis, and (5) health information technology (HIT) risk management. The work is based on research from around the world. Conclusions Internationally, researchers have been developing methods that can be used to identify, report on, mitigate, and eliminate technology-induced errors. Although there remain issues and challenges associated with the methodologies, they have been shown to improve the quality and safety of HIT. Since the first publications documenting technology-induced errors in healthcare in 2005, we have seen in a short 10 years researchers develop ways of identifying and addressing these types of errors. We have also seen organizations begin to use these approaches. Knowledge has been translated into practice in a short ten years whereas the norm for other research areas is of 20 years. PMID:27830228
ERIC Educational Resources Information Center
Harnisch, Delwyn L.; Comstock, Sharon L.; Bruce, Bertram C.
2014-01-01
The development of critical scientific literacy in primary and secondary school classrooms requires authentic inquiry with a basis in the real world. Pairing scientists with educators and employing informatics and visualization tools are two successful ways to achieve this. This article is based on rich data collected over eight years from middle…
ERIC Educational Resources Information Center
Hilty, Lorenz M.; Huber, Patrizia
2018-01-01
Purpose: Sustainable development (SD) does not usually form part of the curriculum of ICT-related study programs such as Computer Science, Information Technology, Information Systems, and Informatics. However, many topics form a bridge between SD and ICT and could potentially be integrated into ICT-related study programs. This paper reports the…
Developing Workforce Capacity in Public Health Informatics: Core Competencies and Curriculum Design
Wholey, Douglas R.; LaVenture, Martin; Rajamani, Sripriya; Kreiger, Rob; Hedberg, Craig; Kenyon, Cynthia
2018-01-01
We describe a master’s level public health informatics (PHI) curriculum to support workforce development. Public health decision-making requires intensive information management to organize responses to health threats and develop effective health education and promotion. PHI competencies prepare the public health workforce to design and implement these information systems. The objective for a Master’s and Certificate in PHI is to prepare public health informaticians with the competencies to work collaboratively with colleagues in public health and other health professions to design and develop information systems that support population health improvement. The PHI competencies are drawn from computer, information, and organizational sciences. A curriculum is proposed to deliver the competencies and result of a pilot PHI program is presented. Since the public health workforce needs to use information technology effectively to improve population health, it is essential for public health academic institutions to develop and implement PHI workforce training programs. PMID:29770321
Developing Workforce Capacity in Public Health Informatics: Core Competencies and Curriculum Design.
Wholey, Douglas R; LaVenture, Martin; Rajamani, Sripriya; Kreiger, Rob; Hedberg, Craig; Kenyon, Cynthia
2018-01-01
We describe a master's level public health informatics (PHI) curriculum to support workforce development. Public health decision-making requires intensive information management to organize responses to health threats and develop effective health education and promotion. PHI competencies prepare the public health workforce to design and implement these information systems. The objective for a Master's and Certificate in PHI is to prepare public health informaticians with the competencies to work collaboratively with colleagues in public health and other health professions to design and develop information systems that support population health improvement. The PHI competencies are drawn from computer, information, and organizational sciences. A curriculum is proposed to deliver the competencies and result of a pilot PHI program is presented. Since the public health workforce needs to use information technology effectively to improve population health, it is essential for public health academic institutions to develop and implement PHI workforce training programs.
Health Informatics Scientists' Perception About Big Data Technology.
Minou, John; Routsis, Fotios; Gallos, Parisis; Mantas, John
2017-01-01
The aim of this paper is to present the perceptions of the Health Informatics Scientists about the Big Data Technology in Healthcare. An empirical study was conducted among 46 scientists to assess their knowledge about the Big Data Technology and their perceptions about using this technology in healthcare. Based on the study findings, 86.7% of the scientists had knowledge of Big data Technology. Furthermore, 59.1% of the scientists believed that Big Data Technology refers to structured data. Additionally, 100% of the population believed that Big Data Technology can be implemented in Healthcare. Finally, the majority does not know any cases of use of Big Data Technology in Greece while 57,8% of the them mentioned that they knew use cases of the Big Data Technology abroad.
Boulton, Elisabeth; Hawley-Hague, Helen; Vereijken, Beatrix; Clifford, Amanda; Guldemond, Nick; Pfeiffer, Klaus; Hall, Alex; Chesani, Federico; Mellone, Sabato; Bourke, Alan; Todd, Chris
2016-06-01
Recent Cochrane reviews on falls and fall prevention have shown that it is possible to prevent falls in older adults living in the community and in care facilities. Technologies aimed at fall detection, assessment, prediction and prevention are emerging, yet there has been no consistency in describing or reporting on interventions using technologies. With the growth of eHealth and data driven interventions, a common language and classification is required. The FARSEEING Taxonomy of Technologies was developed as a tool for those in the field of biomedical informatics to classify and characterise components of studies and interventions. The Taxonomy Development Group (TDG) comprised experts from across Europe. Through face-to-face meetings and contributions via email, five domains were developed, modified and agreed: Approach; Base; Components of outcome measures; Descriptors of technologies; and Evaluation. Each domain included sub-domains and categories with accompanying definitions. The classification system was tested against published papers and further amendments undertaken, including development of an online tool. Six papers were classified by the TDG with levels of consensus recorded. Testing the taxonomy with papers highlighted difficulties in definitions across international healthcare systems, together with differences of TDG members' backgrounds. Definitions were clarified and amended accordingly, but some difficulties remained. The taxonomy and manual were large documents leading to a lengthy classification process. The development of the online application enabled a much simpler classification process, as categories and definitions appeared only when relevant. Overall consensus for the classified papers was 70.66%. Consensus scores increased as modifications were made to the taxonomy. The FARSEEING Taxonomy of Technologies presents a common language, which should now be adopted in the field of biomedical informatics. In developing the taxonomy as an online tool, it has become possible to continue to develop and modify the classification system to incorporate new technologies and interventions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Branch, B. D.; Raskin, R. G.; Rock, B.; Gagnon, M.; Lecompte, M. A.; Hayden, L. B.
2009-12-01
With the nation challenged to comply with Executive Order 12906 and its needs to augment the Science, Technology, Engineering and Mathematics (STEM) pipeline, applied focus on geosciences pipelines issue may be at risk. The Geosciences pipeline may require intentional K-12 standard course of study consideration in the form of project based, science based and evidenced based learning. Thus, the K-12 to geosciences to informatics pipeline may benefit from an earth science experience that utilizes a community based “learning by doing” approach. Terms such as Community GIS, Community Remotes Sensing, and Community Based Ontology development are termed Community Informatics. Here, approaches of interdisciplinary work to promote and earth science literacy are affordable, consisting of low cost equipment that renders GIS/remote sensing data processing skills necessary in the workforce. Hence, informal community ontology development may evolve or mature from a local community towards formal scientific community collaboration. Such consideration may become a means to engage educational policy towards earth science paradigms and needs, specifically linking synergy among Math, Computer Science, and Earth Science disciplines.
Gaining support from health disciplines and other stakeholders.
Murphy, Jeannette
2004-01-01
The Health industry employs health professionals from many disciplines all of whom need to have a basic understanding of health informatics principles and how information technologies may be used to improved health service delivery and patient/community/population health outcomes. This is not well understood by the workforce as a whole resulting in a low demand for health informatics education. Many health service managers and policy makers do not appreciate the power and potential usefulness of all health related information and the many technologies now available. This impacts on decisions regarding their acquisition, implementation and staff training/education support. This chapter includes recommended strategies on how to best overcome such knowledge deficits so that greater support for Health Informatics education is achieved.
PREFACE: International Workshop on Statistical-Mechanical Informatics 2008 (IW-SMI 2008)
NASA Astrophysics Data System (ADS)
Hayashi, Masahito; Inoue, Jun-ichi; Kabashima, Yoshiyuki; Tanaka, Kazuyuki
2009-01-01
Statistical mechanical informatics (SMI) is an approach that applies physics to information science, in which many-body problems in information processing are tackled using statistical mechanics methods. In the last decade, the use of SMI has resulted in great advances in research into classical information processing, in particular, theories of information and communications, probabilistic inference and combinatorial optimization problems. It is expected that the success of SMI can be extended to quantum systems. The importance of many-body problems is also being recognized in quantum information theory (QIT), for which quantification of entanglement of bipartite systems has recently been almost completely established after considerable effort. SMI and QIT are sufficiently well developed that it is now appropriate to consider applying SMI to quantum systems and developing many-body theory in QIT. This combination of SMI and QIT is highly likely to contribute significantly to the development of both research fields. The International Workshop on Statistical-Mechanical Informatics has been organized in response to this situation. This workshop, held at Sendai International Conference Center, Sendai, Japan, 14-17 September 2008, and sponsored by the Grant-in-Aid for Scientific Research on Priority Areas `Deepening and Expansion of Statistical Mechanical Informatics (DEX-SMI)' (Head investigator: Yoshiyuki Kabashima, Tokyo Institute of Technology) (Project http://dex-smi.sp.dis.titech.ac.jp/DEX-SMI), was intended to provide leading researchers with strong interdisciplinary interests in QIT and SMI with the opportunity to engage in intensive discussions. The aim of the workshop was to expand SMI to quantum systems and QIT research on quantum (entangled) many-body systems, to discuss possible future directions, and to offer researchers the opportunity to exchange ideas that may lead to joint research initiatives. We would like to thank the contributors of the workshop as well as all the participants, who have enjoyed the workshop as well as their stay in Sendai, one of the most beautiful cities in Japan. This successful workshop will stimulate further development of the interdisciplinary research field of QIT and SMI. Masahito Hayashi, Jun-ichi Inoue, Yoshiyuki Kabashima and Kazuyuki Tanaka Editors The IW-SMI 2008 Organizing Committee Kazuyuki Tanaka, General Chair (Tohoku University) Yoshiyuki Kabashima, Vice-General Chair (Tokyo Institute of Technology) Jun-ichi Inoue, Program Chair (Hokkaido University) Masahito Hayashi, Pulications Chair (Tohoku University) Hidetoshi Nishimori (Tokyo Institute of Technology) Toshiyuki Tanaka (Kyoto University)
WE-E-12A-01: Medical Physics 1.0 to 2.0: MRI, Displays, Informatics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickens, D; Flynn, M; Peck, D
Medical Physics 2.0 is a bold vision for an existential transition of clinical imaging physics in face of the new realities of value-based and evidence-based medicine, comparative effectiveness, and meaningful use. It speaks to how clinical imaging physics can expand beyond traditional insular models of inspection and acceptance testing, oriented toward compliance, towards team-based models of operational engagement, prospective definition and assurance of effective use, and retrospective evaluation of clinical performance. Organized into four sessions of the AAPM, this particular session focuses on three specific modalities as outlined below. MRI 2.0: This presentation will look into the future of clinicalmore » MR imaging and what the clinical medical physicist will need to be doing as the technology of MR imaging evolves. Many of the measurement techniques used today will need to be expanded to address the advent of higher field imaging systems and dedicated imagers for specialty applications. Included will be the need to address quality assurance and testing metrics for multi-channel MR imagers and hybrid devices such as MR/PET systems. New pulse sequences and acquisition methods, increasing use of MR spectroscopy, and real-time guidance procedures will place the burden on the medical physicist to define and use new tools to properly evaluate these systems, but the clinical applications must be understood so that these tools are use correctly. Finally, new rules, clinical requirements, and regulations will mean that the medical physicist must actively work to keep her/his sites compliant and must work closely with physicians to ensure best performance of these systems. Informatics Display 1.0 to 2.0: Medical displays are an integral part of medical imaging operation. The DICOM and AAPM (TG18) efforts have led to clear definitions of performance requirements of monochrome medical displays that can be followed by medical physicists to ensure proper performance. However, effective implementation of that oversight has been challenging due to the number and extend of medical displays in use at a facility. The advent of color display and mobile displays has added additional challenges to the task of the medical physicist. This informatics display lecture first addresses the current display guidelines (the 1.0 paradigm) and further outlines the initiatives and prospects for color and mobile displays (the 2.0 paradigm). Informatics Management 1.0 to 2.0: Imaging informatics is part of every radiology practice today. Imaging informatics covers everything from the ordering of a study, through the data acquisition and processing, display and archiving, reporting of findings and the billing for the services performed. The standardization of the processes used to manage the information and methodologies to integrate these standards is being developed and advanced continuously. These developments are done in an open forum and imaging organizations and professionals all have a part in the process. In the Informatics Management presentation, the flow of information and the integration of the standards used in the processes will be reviewed. The role of radiologists and physicists in the process will be discussed. Current methods (the 1.0 paradigm) and evolving methods (the 2.0 paradigm) for validation of informatics systems function will also be discussed. Learning Objectives: Identify requirements for improving quality assurance and compliance tools for advanced and hybrid MRI systems. Identify the need for new quality assurance metrics and testing procedures for advanced systems. Identify new hardware systems and new procedures needed to evaluate MRI systems. Understand the components of current medical physics expectation for medical displays. Understand the role and prospect fo medical physics for color and mobile display devices. Understand different areas of imaging informatics and the methodology for developing informatics standards. Understand the current status of informatics standards and the role of physicists and radiologists in the process, and the current technology for validating the function of these systems.« less
Shenson, Jared Andrew; Adams, Ryan Christopher; Ahmed, S Toufeeq; Spickard, Anderson
2015-09-17
As technology in medical education expands from teaching tool to crucial component of curricular programming, new demands arise to innovate and optimize educational technology. While the expectations of today's digital native students are significant, their experience and unique insights breed new opportunities to involve them as stakeholders in tackling educational technology challenges. The objective of this paper is to present our experience with a novel medical student-led and faculty-supported technology committee that was developed at Vanderbilt University School of Medicine to harness students' valuable input in a comprehensive fashion. Key lessons learned through the initial successes and challenges of implementing our model are also discussed. A committee was established with cooperation of school administration, a faculty advisor with experience launching educational technologies, and a group of students passionate about this domain. Committee membership is sustained through annual selective recruitment of interested students. The committee serves 4 key functions: acting as liaisons between students and administration; advising development of institutional educational technologies; developing, piloting, and assessing new student-led educational technologies; and promoting biomedical and educational informatics within the school community. Participating students develop personally and professionally, contribute to program implementation, and extend the field's understanding by pursuing research initiatives. The institution benefits from rapid improvements to educational technologies that meet students' needs and enhance learning opportunities. Students and the institution also gain from fostering a campus culture of awareness and innovation in informatics and medical education. The committee's success hinges on member composition, school leadership buy-in, active involvement in institutional activities, and support for committee initiatives. Students should have an integral role in advancing medical education technology to improve training for 21st-century physicians. The student technology committee model provides a framework for this integration, can be readily implemented at other institutions, and creates immediate value for students, faculty, information technology staff, and the school community.
Adams, Ryan Christopher; Ahmed, S. Toufeeq; Spickard, Anderson
2015-01-01
Background As technology in medical education expands from teaching tool to crucial component of curricular programming, new demands arise to innovate and optimize educational technology. While the expectations of today’s digital native students are significant, their experience and unique insights breed new opportunities to involve them as stakeholders in tackling educational technology challenges. Objective The objective of this paper is to present our experience with a novel medical student-led and faculty-supported technology committee that was developed at Vanderbilt University School of Medicine to harness students’ valuable input in a comprehensive fashion. Key lessons learned through the initial successes and challenges of implementing our model are also discussed. Methods A committee was established with cooperation of school administration, a faculty advisor with experience launching educational technologies, and a group of students passionate about this domain. Committee membership is sustained through annual selective recruitment of interested students. Results The committee serves 4 key functions: acting as liaisons between students and administration; advising development of institutional educational technologies; developing, piloting, and assessing new student-led educational technologies; and promoting biomedical and educational informatics within the school community. Participating students develop personally and professionally, contribute to program implementation, and extend the field’s understanding by pursuing research initiatives. The institution benefits from rapid improvements to educational technologies that meet students’ needs and enhance learning opportunities. Students and the institution also gain from fostering a campus culture of awareness and innovation in informatics and medical education. The committee’s success hinges on member composition, school leadership buy-in, active involvement in institutional activities, and support for committee initiatives. Conclusions Students should have an integral role in advancing medical education technology to improve training for 21st-century physicians. The student technology committee model provides a framework for this integration, can be readily implemented at other institutions, and creates immediate value for students, faculty, information technology staff, and the school community. PMID:27731843
Teaching undergraduate nursing students critical thinking: An innovative informatics strategy.
Warren, Judith J; Connors, Helen R; Weaver, Charlotte; Simpson, Roy
2006-01-01
Simulated e-Health Delivery System (SEEDS) uses a clinical information system (CIS) to teach students how to process data from virtual patient case studies and work with information technology. SEEDS was developed in response to the Institute of Medicine recommendation that students be taught about information systems in order to improve quality patient care and reduce errors. Curriculum implications, implementation of the system, and technology challenges are discussed.
Internet in the Indian Context.
ERIC Educational Resources Information Center
Rao, Sizigendi Subba
This paper presents briefly the concept of the Internet and lists the Internet service providers in India (Education and Research Network from Department of Electronics, National Informatics Network from National Informatics Center, Gateway Internet Access Service from Videsh Sanchar Nigam Limited, and SOFTNET from Software Technology Parks India)…
Computational Approaches to Phenotyping
Lussier, Yves A.; Liu, Yang
2007-01-01
The recent completion of the Human Genome Project has made possible a high-throughput “systems approach” for accelerating the elucidation of molecular underpinnings of human diseases, and subsequent derivation of molecular-based strategies to more effectively prevent, diagnose, and treat these diseases. Although altered phenotypes are among the most reliable manifestations of altered gene functions, research using systematic analysis of phenotype relationships to study human biology is still in its infancy. This article focuses on the emerging field of high-throughput phenotyping (HTP) phenomics research, which aims to capitalize on novel high-throughput computation and informatics technology developments to derive genomewide molecular networks of genotype–phenotype associations, or “phenomic associations.” The HTP phenomics research field faces the challenge of technological research and development to generate novel tools in computation and informatics that will allow researchers to amass, access, integrate, organize, and manage phenotypic databases across species and enable genomewide analysis to associate phenotypic information with genomic data at different scales of biology. Key state-of-the-art technological advancements critical for HTP phenomics research are covered in this review. In particular, we highlight the power of computational approaches to conduct large-scale phenomics studies. PMID:17202287
The Renewed Promise of Medical Informatics
2016-01-01
Summary The promise of the field of Medical Informatics has been great and its impact has been significant. In 1999, the Yearbook editors of the International Medical Informatics Association (IMIA) - also the authors of the present paper - sought to assess this impact by selecting a number of seminal papers in the field, and asking experts to comment on these articles. In particular, it was requested whether and how the expectations, represented by these papers, had been fulfilled since their publication several decades earlier. Each expert was also invited to comment on what might be expected in the future. In the present paper, these areas are briefly reviewed again. Where did these early papers have an impact and where were they not as successful as originally expected? It should be noted that the extraordinary developments in computer technology observed in the last two decades could not have been foreseen by these early researchers. In closing, some of the possibilities and limitations of research in medical informatics are outlined in the context of a framework that considers six levels of computer applications in medicine and health care. For each level, some predictions are made for the future, concluded with thoughts on fruitful areas for ongoing research in the field. PMID:27199195
The Renewed Promise of Medical Informatics.
van Bemmel, J H; McCray, A T
2016-05-20
The promise of the field of Medical Informatics has been great and its impact has been significant. In 1999, the Yearbook editors of the International Medical Informatics Association (IMIA) - also the authors of the present paper - sought to assess this impact by selecting a number of seminal papers in the field, and asking experts to comment on these articles. In particular, it was requested whether and how the expectations, represented by these papers, had been fulfilled since their publication several decades earlier. Each expert was also invited to comment on what might be expected in the future. In the present paper, these areas are briefly reviewed again. Where did these early papers have an impact and where were they not as successful as originally expected? It should be noted that the extraordinary developments in computer technology observed in the last two decades could not have been foreseen by these early researchers. In closing, some of the possibilities and limitations of research in medical informatics are outlined in the context of a framework that considers six levels of computer applications in medicine and health care. For each level, some predictions are made for the future, concluded with thoughts on fruitful areas for ongoing research in the field.
Kaltoft, Mette Kjer
2013-01-01
All healthcare visions, including that of The TIGER (Technology-Informatics-Guiding-Educational-Reform) Initiative envisage a crucial role for nursing. However, its 7 descriptive pillars do not address the disconnect between Nursing Informatics and Nursing Ethics and their distinct communities in the clinical-disciplinary landscape. Each sees itself as providing decision support by way of information inputs and ethical insights, respectively. Both have reasons - ideological, professional, institutional - for their task construction, but this simultaneously disables each from engaging fully in the point-of-(care)-decision. Increased pressure for translating 'evidence-based' research findings into 'ethically-sound', 'value-based' and 'patient-centered' practice requires rethinking the model implicit in conventional knowledge translation and informatics practice in all disciplines, including nursing. The aim is to aid 'how nurses and other health care scientists more clearly identify clinical and other relevant data that can be captured to inform future comparative effectiveness research. 'A prescriptive, theory-based discipline of '(Nursing) Decisionics' expands the Grid for Volunteer Development of TIGER's newly launched virtual learning environment (VLE). This provides an enhanced TIGER-vision for educational reform to deliver ethically coherent, person-centered care transparently.
Sittig, Dean F.; Hazlehurst, Brian L.; Brown, Jeffrey; Murphy, Shawn; Rosenman, Marc; Tarczy-Hornoch, Peter; Wilcox, Adam B.
2012-01-01
Comparative Effectiveness Research (CER) has the potential to transform the current healthcare delivery system by identifying the most effective medical and surgical treatments, diagnostic tests, disease prevention methods and ways to deliver care for specific clinical conditions. To be successful, such research requires the identification, capture, aggregation, integration, and analysis of disparate data sources held by different institutions with diverse representations of the relevant clinical events. In an effort to address these diverse demands, there have been multiple new designs and implementations of informatics platforms that provide access to electronic clinical data and the governance infrastructure required for inter-institutional CER. The goal of this manuscript is to help investigators understand why these informatics platforms are required and to compare and contrast six, large-scale, recently funded, CER-focused informatics platform development efforts. We utilized an 8-dimension, socio-technical model of health information technology use to help guide our work. We identified six generic steps that are necessary in any distributed, multi-institutional CER project: data identification, extraction, modeling, aggregation, analysis, and dissemination. We expect that over the next several years these projects will provide answers to many important, and heretofore unanswerable, clinical research questions. PMID:22692259
Assessing the current state of dental informatics in saudi arabia: the new frontier.
Al-Nasser, Lubna; Al-Ehaideb, Ali; Househ, Mowafa
2014-01-01
Dental informatics is an emerging field that has the potential to transform the dental profession. This study aims to summarize the current applications of dental informatics in Saudi Arabia and to identify the challenges facing expansion of dental informatics in the Saudi context. Search for published articles and specialized forum entries was conducted, as well as interviews with dental professionals familiar with the topic. Results indicated that digital radiography/analysis and administrative management of dental practice are the commonest applications used. Applications in Saudi dental education included: web-based learning systems, computer-based assessments and virtual technology for clinical skills' teaching. Patients' education software, electronic dental/oral health records and the potential of dental research output from electronic databases are yet to be achieved in Saudi Arabia. Challenges facing Saudi dental informatics include: lack of IT infrastructure/support, social acceptability and financial cost. Several initiatives are taken towards the research in dental informatics. Still, more investments are needed to fully achieve the potential of various application of informatics in dental education, practice and research.
Education review: applied medical informatics--informatics in medical education.
Naeymi-Rad, F; Trace, D; Moidu, K; Carmony, L; Booden, T
1994-05-01
The importance of informatics training within a health sciences program is well recognized and is being implemented on an increasing scale. At Chicago Medical School (CMS), the Informatics program incorporates information technology at every stage of medical education. First-year students are offered an elective in computer topics that concentrate on basic computer literacy. Second-year students learn information management such as entry and information retrieval skills. For example, during the Introduction to Clinical Medicine course, the student is exposed to the Intelligent Medical Record-Entry (IMR-E), allowing the student to enter and organize information gathered from patient encounters. In the third year, students in the Internal Medicine rotation at Norwalk Hospital use Macintosh power books to enter and manage their patients. Patient data gathered by the student are stored in a local server in Norwalk Hospital. In the final year, we teach students the role of informatics in clinical decision making. The present senior class at CMS has been exposed to the power of medical informatics tools for several years. The use of these informatics tools at the point of care is stressed.
Innovative Software Tools Measure Behavioral Alertness
NASA Technical Reports Server (NTRS)
2014-01-01
To monitor astronaut behavioral alertness in space, Johnson Space Center awarded Philadelphia-based Pulsar Informatics Inc. SBIR funding to develop software to be used onboard the International Space Station. Now used by the government and private companies, the technology has increased revenues for the firm by an average of 75 percent every year.
Identification of single-nucleotide variants in RNA-seq data. Current version focuses on detection of RNA editing sites without requiring genome sequence data. New version is under development to separately identify RNA editing sites and genetic variants using RNA-seq data alone.
Information revolution in nursing and health care: educating for tomorrow's challenge.
Kooker, B M; Richardson, S S
1994-06-01
Current emphasis on the national electronic highway and a national health database for comparative health care reporting demonstrates society's increasing reliance on information technology. The efficient electronic processing and managing of data, information, and knowledge are critical for survival in tomorrow's health care organization. To take a leadership role in this information revolution, informatics nurse specialists must possess competencies that incorporate information science, computer science, and nursing science for successful information system development. In selecting an appropriate informatics educational program or to hire an individual capable of meeting this challenge, nurse administrators must look for the following technical knowledge and skill set: information management principles, system development life cycle, programming languages, file design and access, hardware and network architecture, project management skills, and leadership abilities.
Entrepreneurial Health Informatics for Computer Science and Information Systems Students
ERIC Educational Resources Information Center
Lawler, James; Joseph, Anthony; Narula, Stuti
2014-01-01
Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…
Visualizing the Structure of Medical Informatics Using Term Co-Occurrence Analysis.
ERIC Educational Resources Information Center
Morris, Theodore Allan
2000-01-01
Examines the structure of medical informatics and the relationship between biomedicine and information science and information technology. Uses co-occurrence analysis of subject headings assigned to items indexed for MEDLINE as well as multidimensional scaling to show seven to eight broad multidisciplinary subject clusters. (Contains 28…
Information technology challenges of biodiversity and ecosystems informatics
Schnase, J.L.; Cushing, J.; Frame, M.; Frondorf, A.; Landis, E.; Maier, D.; Silberschatz, A.
2003-01-01
Computer scientists, biologists, and natural resource managers recently met to examine the prospects for advancing computer science and information technology research by focusing on the complex and often-unique challenges found in the biodiversity and ecosystem domain. The workshop and its final report reveal that the biodiversity and ecosystem sciences are fundamentally information sciences and often address problems having distinctive attributes of scale and socio-technical complexity. The paper provides an overview of the emerging field of biodiversity and ecosystem informatics and demonstrates how the demands of biodiversity and ecosystem research can advance our understanding and use of information technologies.
PearlTrees web-based interface for teaching informatics in the radiology residency
NASA Astrophysics Data System (ADS)
Licurse, Mindy Y.; Cook, Tessa S.
2014-03-01
Radiology and imaging informatics education have rapidly evolved over the past few decades. With the increasing recognition that future growth and maintenance of radiology practices will rely heavily on radiologists with fundamentally sound informatics skills, the onus falls on radiology residency programs to properly implement and execute an informatics curriculum. In addition, the American Board of Radiology may choose to include even more informatics on the new board examinations. However, the resources available for didactic teaching and guidance most especially at the introductory level are widespread and varied. Given the breadth of informatics, a centralized web-based interface designed to serve as an adjunct to standardized informatics curriculums as well as a stand-alone for other interested audiences is desirable. We present the development of a curriculum using PearlTrees, an existing web-interface based on the concept of a visual interest graph that allows users to collect, organize, and share any URL they find online as well as to upload photos and other documents. For our purpose, the group of "pearls" includes informatics concepts linked by appropriate hierarchal relationships. The curriculum was developed using a combination of our institution's current informatics fellowship curriculum, the Practical Imaging Informatics textbook1 and other useful online resources. After development of the initial interface and curriculum has been publicized, we anticipate that involvement by the informatics community will help promote collaborations and foster mentorships at all career levels.
The role of informatics in patient-centered care and personalized medicine.
Hanna, Matthew G; Pantanowitz, Liron
2017-06-01
The practice of cytopathology has dramatically changed due to advances in genomics and information technology. Cytology laboratories have accordingly become increasingly dependent on pathology informatics support to meet the emerging demands of precision medicine. Pathology informatics deals with information technology in the laboratory, and the impact of this technology on workflow processes and staff who interact with these tools. This article covers the critical role that laboratory information systems, electronic medical records, and digital imaging plays in patient-centered personalized medicine. The value of integrated diagnostic reports, clinical decision support, and the use of whole-slide imaging to better evaluate cytology samples destined for molecular testing is discussed. Image analysis that offers more precise and quantitative measurements in cytology is addressed, as well as the role of bioinformatics tools to cope with Big Data from next-generation sequencing. This article also highlights the barriers to the widespread adoption of these disruptive technologies due to regulatory obstacles, limited commercial solutions, poor interoperability, and lack of standardization. Cancer Cytopathol 2017;125(6 suppl):494-501. © 2017 American Cancer Society. © 2017 American Cancer Society.
Assessing information technologies for health.
Kulikowski, C; Haux, R
2006-01-01
To provide an editorial introduction to the 2006 IMIA Yearbook of Medical Informatics with an overview of its contents and contributors. A brief overview of the main theme of 'Assessing Information Technology for Health Care', and an outline of the purposes, readership, contents, new format, and acknowledgment of contributions for the 2006 IMIA Yearbook. Assessing information technology (IT) in biomedicine and health care is emphasized in a number of survey and review articles. Synopses of a selection of best papers for the past 12 months are included, as are original papers on the history of medical informatics by pioneers in the field, and selected research and education programs. Information about IMIA and its constituent societies is given, as well as the authors, reviewers, and advisors to the Yearbook. The 2006 IMIA Yearbook of Medical Informatics highlights as its theme one of the most significant yet difficult aspects of information technology in health: the assessment of IT as part of the complex enterprise of biomedical research and practice. It is being published in a new format with a wide range of original survey and review articles.
Blockchain distributed ledger technologies for biomedical and health care applications.
Kuo, Tsung-Ting; Kim, Hyeon-Eui; Ohno-Machado, Lucila
2017-11-01
To introduce blockchain technologies, including their benefits, pitfalls, and the latest applications, to the biomedical and health care domains. Biomedical and health care informatics researchers who would like to learn about blockchain technologies and their applications in the biomedical/health care domains. The covered topics include: (1) introduction to the famous Bitcoin crypto-currency and the underlying blockchain technology; (2) features of blockchain; (3) review of alternative blockchain technologies; (4) emerging nonfinancial distributed ledger technologies and applications; (5) benefits of blockchain for biomedical/health care applications when compared to traditional distributed databases; (6) overview of the latest biomedical/health care applications of blockchain technologies; and (7) discussion of the potential challenges and proposed solutions of adopting blockchain technologies in biomedical/health care domains. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.
A national survey on the current status of informatics residency education in pharmacy.
Blash, Anthony; Saltsman, Connie L; Steil, Condit
2017-11-01
Upon completion of their post-graduate training, pharmacy informatics residents need to be prepared to interact with clinical and technology experts in the new healthcare environment. This study describes pharmacy informatics residency programs within the United States. Preliminary information for all pharmacy informatics residency programs was accessed from program webpages. An email was sent out to programs asking them to respond to a six-item questionnaire. This questionnaire was designed to elicit information on attributes of the program, behaviors of the preceptors and residents, and attitudes of the residency directors. Of 22 pharmacy informatics residencies identified, nineteen (86%) participated. Twenty (91%) were second post-graduate year (PGY2) residencies. Ten (45%) were accredited by the American Society of Health-System Pharmacists (ASHP), while eight (36%) were candidates for accreditation. Hospital (17/22, 77%) and administrative offices (3/22, 14%) were the predominant training sites for pharmacy informatics residents. Large institutions were the predominant training environment for the pharmacy informatics resident, with 19 of 22 (86%) institutions reporting a licensed bed count of 500 or more. The median (range) number of informatics preceptors at a site was six to eight. Regarding barriers to pharmacy informatics residency education, residency directors reported that residents did not feel prepared based on the limited availability of curricular offerings. In the United States, relatively few residencies are explicitly focused on pharmacy informatics. Most of these are accredited and hospital affiliated, especially with large institutions (>500 beds). Copyright © 2017 Elsevier Inc. All rights reserved.
Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron
2017-01-01
-Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics has been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. -To develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills, and meets Accreditation Council for Graduate Medical Education Informatics Milestones. -The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. -Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). -PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time.
Catley, Christina; McGregor, Carolyn; Percival, Jennifer; Curry, Joanne; James, Andrew
2008-01-01
This paper presents a multi-dimensional approach to knowledge translation, enabling results obtained from a survey evaluating the uptake of Information Technology within Neonatal Intensive Care Units to be translated into knowledge, in the form of health informatics capacity audits. Survey data, having multiple roles, patient care scenarios, levels, and hospitals, is translated using a structured data modeling approach, into patient journey models. The data model is defined such that users can develop queries to generate patient journey models based on a pre-defined Patient Journey Model architecture (PaJMa). PaJMa models are then analyzed to build capacity audits. Capacity audits offer a sophisticated view of health informatics usage, providing not only details of what IT solutions a hospital utilizes, but also answering the questions: when, how and why, by determining when the IT solutions are integrated into the patient journey, how they support the patient information flow, and why they improve the patient journey.
Building a Culture of Health Informatics Innovation and Entrepreneurship: A New Frontier.
Househ, Mowafa; Alshammari, Riyad; Almutairi, Mariam; Jamal, Amr; Alshoaib, Saleh
2015-01-01
Entrepreneurship and innovation within the health informatics (HI) scientific community are relatively sluggish when compared to other disciplines such as computer science and engineering. Healthcare in general, and specifically, the health informatics scientific community needs to embrace more innovative and entrepreneurial practices. In this paper, we explore the concepts of innovation and entrepreneurship as they apply to the health informatics scientific community. We also outline several strategies to improve the culture of innovation and entrepreneurship within the health informatics scientific community such as: (I) incorporating innovation and entrepreneurship in health informatics education; (II) creating strong linkages with industry and healthcare organizations; (III) supporting national health innovation and entrepreneurship competitions; (IV) creating a culture of innovation and entrepreneurship within healthcare organizations; (V) developing health informatics policies that support innovation and entrepreneurship based on internationally recognized standards; and (VI) develop an health informatics entrepreneurship ecosystem. With these changes, we conclude that embracing health innovation and entrepreneurship may be more readily accepted over the long-term within the health informatics scientific community.
Yee, Kwang Chien; Wong, Ming Chao; Turner, Paul
2017-01-01
Stimulating sustained behavioural change through information and technology has been an aim of much health informatics research. Traditional approaches use technology to mediate communications between health professionals and patients. More recent lifestyle technologies engage the patient directly with information and advice - but what of the phenomena that is Pokémon Go - does it point to another way of achieving health benefits through fun? This paper aims to explore some of the conceptual questions for health informatics stimulated by the phenomenal popularity of Pokémon Go. The paper is grounded analysis of data generated through a preliminary participatory observational study in Australia.
Chau, Cheuk Wing; Leung, Eman
2017-01-01
The aging population creates tremendous pressure to healthcare. To resolve, scholars recognized the solution to this challenge is integrated care. To facilitate integrated care, health information technologies (HIT) is a critical enabler. This paper will first review how technology enhanced integrated care, and review on the existing literatures in system effective use and the three key external factors that enable HIT implementation. Applying Burton-Jones and Volkoff's contextualized theories of effective use of HIT to understand the role of health informatics and technology in the unique context of Hong Kong, we have conducted a case study research to identify the levers for improving HK integration of care through HIT.
Informatics Enabled Behavioral Medicine in Oncology
Hesse, Bradford W.; Suls, Jerry M.
2011-01-01
For the practicing physician, the behavioral implications of preventing, diagnosing, and treating cancer are many and varied. Fortunately, an enhanced capacity in informatics may help create a redesigned ecosystem in which applying evidence-based principles from behavioral medicine will become a routine part of care. Innovation to support this evolution will be spurred by the “meaningful use” criteria stipulated by the Health Information Technology for Economic and Clinical Health (HITECH) Act of 2009, and by focused research and development efforts within the broader health information ecosystem. The implications for how to better integrate evidence-based principles in behavioral medicine into oncology care through both spheres of development are discussed within the framework of the cancer control continuum. The promise of using the data collected through these tools to accelerate discovery in psycho-oncology is also discussed. If nurtured appropriately, these developments should help accelerate successes against cancer by altering the behavioral milieu. PMID:21799329
NASA Astrophysics Data System (ADS)
Aerodynamics, flight, structures and materials, space technology and remote sensing, informatics, environment, energy supply, and equipment, were studied. Research for the Fokker-50 and 100 projects and related development of a measuring, recording, and data processing system for aircraft are described. Damage tolerance of aircraft structures and materials such as carbon/epoxy laminates with outer plies of glass, Aramid and carbon fabric, titanium alloys, and carbon fiber composites, were investigated. Fluid physics research, spacecraft attitude control system tests, and thermal vacuum research were carried out. The development of a multispectral CCD scanner, synthetic aperture radar, and side-looking airborne radar, were studied. A program to integrate aerospace informatics disciplines is described. Air traffic noise calculations, and windpower utilization research were executed. A simulation system for the satellite navigation system NAVSAT was developed. A low-speed wind tunnel LST 3x2.25 was commissioned.
Skiba, Diane J; Barton, Amy J; Knapfel, Sarah; Moore, Gina; Trinkley, Katy
2014-01-01
The iTEAM goal is to prepare advanced practice nurses, physicians and pharmacists with the interprofessional (IP) core competencies (informatics, patient centric, quality-focused, evidence based care) to provide technology enhanced collaborative care by: offering technology enhanced learning opportunities through a required informatics course, advanced practice courses (team based experiences with both standardized and virtual patients) and team based clinical experiences including e-health experiences. The innovative features of iTEAM project will be achieved through use of social media strategies, a web accessible Electronic Health Records (EHRs) system, a Virtual Clinic/Hospital in Second Life, various e-health applications including traditional telehealth tools and consumer oriented tools such as patient portals, social media consumer groups and mobile health (m-health) applications for health and wellness functions. It builds upon the schools' rich history of IP education and includes clinical partners, such as the VA and other clinical sites focused on care for underserved patient populations.
ERIC Educational Resources Information Center
Morris, Theodore
2001-01-01
Term co-occurrence analysis of INSPEC classification codes and thesaurus terms used to index Medical Informatics literature reveals an information science and technology perspective on the field, to accompany the biomedical perspective previously reported. This study continues the search for a better understanding of the structure of Medical…
ERIC Educational Resources Information Center
Lang, W. Paul; And Others
1992-01-01
A survey of 95 first-year and 91 fourth-year dental students concerning informatics and computer applications in dentistry investigated knowledge of terms and concepts related to hardware, software, electronic communication, and dental applications; opinions concerning use of the technology; and extent of experience in 4 areas of use. (MSE)
ERIC Educational Resources Information Center
Karalar, Halit; Dogan, Ugur
2017-01-01
FATIH Project carried out by the Turkish government is one of the comprehensive technology integration project in the World. With this project, interactive boards, tablets and multifunctional printers have been distributed to schools and Internet infrastructure of schools improved. EIN (Educational Informatics Network) platform, known as EBA…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
... the Office of Management and Budget (OMB) a request to review and approve the information collection...: The NCI Center for Biomedical Informatics and Information Technology (CBIIT) launched the enterprise...] Enterprise Support Network (ESN), including the caBIG [supreg] Support Service Provider (SSP) Program. The ca...
Voxels in the Brain: Neuroscience, Informatics and Changing Notions of Objectivity.
ERIC Educational Resources Information Center
Beaulieu, Anne
2001-01-01
Examines a subset of tools (atlases of the brain) developed in the Human Brain Project (HBP) in order to understand how the use of these tools changes the practice of science. Discusses the redefinition of what constitutes 'objective' neuroscientific knowledge according to both technological possibilities built into these tools and the constraints…
Future Scenarios Regarding Tablet Computer Usage in Education and Writing
ERIC Educational Resources Information Center
Karadag, Ruhan; Kayabasi, Bekir
2013-01-01
Today, one of the most important sources forcing the educational institutions to alteration is the developments in informatics and communication technologies. Among these alterations, the internet and the tablet computers, which may cause a vital transformation in the history of education, are of importance. Making assumptions, based on today,…
Collins, Sarah
2016-01-01
Due to rapid advances in technology, HIT competencies for nursing leaders require frequent attention and updating from experts in the field to ensure relevance to nursing leaders' work. This workshop will target nursing informatics researchers and leaders to: 1) learn methods and findings from a study validating a Self-Assessment Scale for Nursing Informatics Competencies for Nurse Leaders, 2) generate awareness of the Self-Assessment scale, 3) discuss strategies for maintenance of competencies overtime and 4) identify strategies to engage nursing leaders in this pursuit.
Magrabi, F; Ammenwerth, E; Hyppönen, H; de Keizer, N; Nykänen, P; Rigby, M; Scott, P; Talmon, J; Georgiou, A
2016-11-10
With growing use of IT by healthcare professionals and patients, the opportunity for any unintended effects of technology to disrupt care health processes and outcomes is intensified. The objectives of this position paper by the IMIA Working Group (WG) on Technology Assessment and Quality Development are to highlight how our ongoing initiatives to enhance evaluation are also addressing the unintended consequences of health IT. Review of WG initiatives Results: We argue that an evidence-based approach underpinned by rigorous evaluation is fundamental to the safe and effective use of IT, and for detecting and addressing its unintended consequences in a timely manner. We provide an overview of our ongoing initiatives to strengthen study design, execution and reporting by using evaluation frameworks and guidelines which can enable better characterization and monitoring of unintended consequences, including the Good Evaluation Practice Guideline in Health Informatics (GEP-HI) and the Statement on Reporting of Evaluation Studies in Health Informatics (STARE-HI). Indicators to benchmark the adoption and impact of IT can similarly be used to monitor unintended effects on healthcare structures, processes and outcome. We have also developed EvalDB, a web-based database of evaluation studies to promulgate evidence about unintended effects and are developing the content for courses to improve training in health IT evaluation. Evaluation is an essential ingredient for the effective use of IT to improve healthcare quality and patient safety. WG resources and skills development initiatives can facilitate a proactive and evidence-based approach to detecting and addressing the unintended effects of health IT.
Smartphone as a personal, pervasive health informatics services platform: literature review.
Wac, K
2012-01-01
The article provides an overview of current trends in personal sensor, signal and imaging informatics, that are based on emerging mobile computing and communications technologies enclosed in a smartphone and enabling the provision of personal, pervasive health informatics services. The article reviews examples of these trends from the PubMed and Google scholar literature search engines, which, by no means claim to be complete, as the field is evolving and some recent advances may not be documented yet. There exist critical technological advances in the surveyed smartphone technologies, employed in provision and improvement of diagnosis, acute and chronic treatment and rehabilitation health services, as well as in education and training of healthcare practitioners. However, the most emerging trend relates to a routine application of these technologies in a prevention/wellness sector, helping its users in self-care to stay healthy. Smartphone-based personal health informatics services exist, but still have a long way to go to become an everyday, personalized healthcare-provisioning tool in the medical field and in a clinical practice. Key main challenge for their widespread adoption involve lack of user acceptance striving from variable credibility and reliability of applications and solutions as they a) lack evidence- based approach; b) have low levels of medical professional involvement in their design and content; c) are provided in an unreliable way, influencing negatively its usability; and, in some cases, d) being industry-driven, hence exposing bias in information provided, for example towards particular types of treatment or intervention procedures.
Information technology principles for management, reporting, and research.
Gillam, Michael; Rothenhaus, Todd; Smith, Vernon; Kanhouwa, Meera
2004-11-01
Information technology holds the promise to enhance the ability of individuals and organizations to manage emergency departments, improve data sharing and reporting, and facilitate research. The Society for Academic Emergency Medicine (SAEM) Consensus Committee has identified nine principles to outline a path of optimal features and designs for current and future information technology systems. The principles roughly summarized include the following: utilize open database standards with clear data dictionaries, provide administrative access to necessary data, appoint and recognize individuals with emergency department informatics expertise, allow automated alert and proper identification for enrollment of cases into research, provide visual and statistical tools and training to analyze data, embed automated configurable alarm functionality for clinical and nonclinical systems, allow multiexport standard and format configurable reporting, strategically acquire mission-critical equipment that is networked and capable of automated feedback regarding functional status and location, and dedicate resources toward informatics research and development. The SAEM Consensus Committee concludes that the diligent application of these principles will enhance emergency department management, reporting, and research and ultimately improve the quality of delivered health care.
Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron
2016-01-01
Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics have been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: The objective of the study is to develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:27563486
Dixon, Brian E.; Pina, Jamie; Kharrazi, Hadi; Gharghabi, Fardad; Richards, Janise
2015-01-01
Objective: To categorize and describe the public health informatics (PHI) and global health informatics (GHI) literature between 2012 and 2014. Methods: We conducted a semi-systematic review of articles published between January 2012 and September 2014 where information and communications technologies (ICT) was a primary subject of the study or a main component of the study methodology. Additional inclusion and exclusion criteria were used to filter PHI and GHI articles from the larger biomedical informatics domain. Articles were identified using MEDLINE as well as personal bibliographies from members of the American Medical Informatics Association PHI and GHI working groups. Results: A total of 85 PHI articles and 282 GHI articles were identified. While systems in PHI continue to support surveillance activities, we identified a shift towards support for prevention, environmental health, and public health care services. Furthermore, articles from the U.S. reveal a shift towards PHI applications at state and local levels. GHI articles focused on telemedicine, mHealth and eHealth applications. The development of adequate infrastructure to support ICT remains a challenge, although we identified a small but growing set of articles that measure the impact of ICT on clinical outcomes. Discussion: There is evidence of growth with respect to both implementation of information systems within the public health enterprise as well as a widening of scope within each informatics discipline. Yet the articles also illuminate the need for more primary research studies on what works and what does not as both searches yielded small numbers of primary, empirical articles. Conclusion: While the body of knowledge around PHI and GHI continues to mature, additional studies of higher quality are needed to generate the robust evidence base needed to support continued investment in ICT by governmental health agencies. PMID:26392846
The COST Action IC0604 "Telepathology Network in Europe" (EURO-TELEPATH).
García-Rojo, Marcial; Gonçalves, Luís; Blobel, Bernd
2012-01-01
The COST Action IC0604 "Telepathology Network in Europe" (EURO-TELEPATH) is a European COST Action that has been running from 2007 to 2011. COST Actions are funded by the COST (European Cooperation in the field of Scientific and Technical Research) Agency, supported by the Seventh Framework Programme for Research and Technological Development (FP7), of the European Union. EURO-TELEPATH's main objectives were evaluating and validating the common technological framework and communication standards required to access, transmit and manage digital medical records by pathologists and other medical professionals in a networked environment. The project was organized in four working groups. orking Group 1 "Business modeling in pathology" has designed main pathology processes - Frozen Study, Formalin Fixed Specimen Study, Telepathology, Cytology, and Autopsy -using Business Process Modeling Notation (BPMN). orking Group 2 "Informatics standards in pathology" has been dedicated to promoting the development and application of informatics standards in pathology, collaborating with Integrating the Healthcare Enterprise (IHE), Digital Imaging and Communications in Medicine (DICOM), Health Level Seven (HL7), and other standardization bodies. Working Group 3 "Images: Analysis, Processing, Retrieval and Management" worked on the use of virtual or digital slides that are fostering the use of image processing and analysis in pathology not only for research purposes, but also in daily practice. Working Group 4 "Technology and Automation in Pathology" was focused on studying the adequacy of current existing technical solutions, including, e.g., the quality of images obtained by slide scanners, or the efficiency of image analysis applications. Major outcome of this action are the collaboration with international health informatics standardization bodies to foster the development of standards for digital pathology, offering a new approach for workflow analysis, based in business process modeling. Health terminology standardization research has become a topic of high interest. Future research work should focus on standardization of automatic image analysis and tissue microarrays imaging.
Three Decades of Research on Computer Applications in Health Care
Michael Fitzmaurice, J.; Adams, Karen; Eisenberg, John M.
2002-01-01
The Agency for Healthcare Research and Quality and its predecessor organizations—collectively referred to here as AHRQ—have a productive history of funding research and development in the field of medical informatics, with grant investments since 1968 totaling $107 million. Many computerized interventions that are commonplace today, such as drug interaction alerts, had their genesis in early AHRQ initiatives. This review provides a historical perspective on AHRQ investment in medical informatics research. It shows that grants provided by AHRQ resulted in achievements that include advancing automation in the clinical laboratory and radiology, assisting in technology development (computer languages, software, and hardware), evaluating the effectiveness of computer-based medical information systems, facilitating the evolution of computer-aided decision making, promoting computer-initiated quality assurance programs, backing the formation and application of comprehensive data banks, enhancing the management of specific conditions such as HIV infection, and supporting health data coding and standards initiatives. Other federal agencies and private organizations have also supported research in medical informatics, some earlier and to a greater degree than AHRQ. The results and relative roles of these related efforts are beyond the scope of this review. PMID:11861630
Vancea, Mihaela; Solé-Casals, Jordi
2016-08-01
Population ageing is one of the major social and economic challenges of our contemporary societies. With the advent of the information society, new research and technological developments have been promoted in the field of assistive technologies and information and communication technologies of benefit to elderly people. This article examines the potentialities of new informatics developments in generating solutions to better address elderly people's daily-life, especially those with chronic illness and/or low autonomy. The authours attempt to propose a research agenda, by exposing various strengts and weaknesses of eHealth innovations for elderly, mainly grounded in secondary sources analysis.
Pediatric palliative care and eHealth opportunities for patient-centered care.
Madhavan, Subha; Sanders, Amy E; Chou, Wen-Ying Sylvia; Shuster, Alex; Boone, Keith W; Dente, Mark A; Shad, Aziza T; Hesse, Bradford W
2011-05-01
Pediatric palliative care currently faces many challenges including unnecessary pain from insufficiently personalized treatment, doctor-patient communication breakdowns, and a paucity of usable patient-centric information. Recent advances in informatics for consumer health through eHealth initiatives have the potential to bridge known communication gaps, but overall these technologies remain under-utilized in practice. This paper seeks to identify effective uses of existing and developing health information technology (HIT) to improve communications and care within the clinical setting. A needs analysis was conducted by surveying seven pediatric oncology patients and their extended support network at the Lombardi Pediatric Clinic at Georgetown University Medical Center in May and June of 2010. Needs were mapped onto an existing inventory of emerging HIT technologies to assess what existing informatics solutions could effectively bridge these gaps. Through the patient interviews, a number of communication challenges and needs in pediatric palliative cancer care were identified from the interconnected group perspective surrounding each patient. These gaps mapped well, in most cases, to existing or emerging cyberinfrastructure. However, adoption and adaptation of appropriate technologies could improve, including for patient-provider communication, behavioral support, pain assessment, and education, all through integration within existing work flows. This study provides a blueprint for more optimal use of HIT technologies, effectively utilizing HIT standards-based technology solutions to improve communication. This research aims to further stimulate the development and adoption of interoperable, standardized technologies and delivery of context-sensitive information to substantially improve the quality of care patients receive within pediatric palliative care clinics and other settings. Copyright © 2011 American Journal of Preventive Medicine. All rights reserved.
The deployment of information systems and information technology in field hospitals.
Crowe, Ian R J; Naguib, Raouf N G
2010-01-01
Information systems and related technologies continue to develop and have become an integral part of healthcare provision and hospital care in particular. Field hospitals typically operate in the most austere and difficult of conditions and have yet to fully exploit related technologies. This paper addresses those aspects of healthcare informatics, healthcare knowledge management and lean healthcare that can be applied to field hospitals, with a view to improving patient care. The aim is to provide a vision for the deployment of information systems and information technology in field hospitals, using the British Army's field hospital as a representative model.
Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T.; Becich, Michael J.
2014-01-01
This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics will be critical to assuring their success as leaders in the era of big data and personalized medicine. PMID:24860688
Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J
2014-01-01
This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics will be critical to assuring their success as leaders in the era of big data and personalized medicine.
Sapci, A H; Sapci, H A
2017-10-01
This article aimed to evaluate the effectiveness of newly established innovative smart home healthcare and health informatics laboratories, and a novel laboratory course that focuses on experiential health informatics training, and determine students' self-confidence to operate wireless home health monitoring devices before and after the hands-on laboratory course. Two web-based pretraining and posttraining questionnaires were sent to 64 students who received hands-on training with wireless remote patient monitoring devices in smart home healthcare and health informatics laboratories. All 64 students completed the pretraining survey (100% response rate), and 49 students completed the posttraining survey (76% response rate). The quantitative data analysis showed that 95% of students had an interest in taking more hands-on laboratory courses. Sixty-seven percent of students had no prior experience with medical image, physiological data acquisition, storage, and transmission protocols. After the hands-on training session, 75.51% of students expressed improved confidence about training patients to measure blood pressure monitor using wireless devices. Ninety percent of students preferred to use a similar experiential approach in their future learning experience. Additionally, the qualitative data analysis demonstrated that students were expecting to have more courses with hands-on exercises and integration of technology-enabled delivery and patient monitoring concepts into the curriculum. This study demonstrated that the multidisciplinary smart home healthcare and health informatics training laboratories and the hands-on exercises improved students' technology adoption rates and their self-confidence in using wireless patient monitoring devices. Schattauer GmbH Stuttgart.
Communication and collaboration technologies.
Cheeseman, Susan E
2012-01-01
This is the third in a series of columns exploring health information technology (HIT) in the neonatal intensive care unit (NICU). The first column provided background information on the implementation of information technology throughout the health care delivery system, as well as the requisite informatics competencies needed for nurses to fully engage in the digital era of health care. The second column focused on information and resources to master basic computer competencies described by the TIGER initiative (Technology Informatics Guiding Education Reform) as learning about computers, computer networks, and the transfer of data.1 This column will provide additional information related to basic computer competencies, focusing on communication and collaboration technologies. Computers and the Internet have transformed the way we communicate and collaborate. Electronic communication is the ability to exchange information through the use of computer equipment and software.2 Broadly defined, any technology that facilitates linking one or more individuals together is a collaborative tool. Collaboration using technology encompasses an extensive range of applications that enable groups of individuals to work together including e-mail, instant messaging (IM ), and several web applications collectively referred to as Web 2.0 technologies. The term Web 2.0 refers to web applications where users interact and collaborate with each other in a collective exchange of ideas generating content in a virtual community. Examples of Web 2.0 technologies include social networking sites, blogs, wikis, video sharing sites, and mashups. Many organizations are developing collaborative strategies and tools for employees to connect and interact using web-based social media technologies.3.
Fuad, Anis; Sanjaya, Guardian Yoki; Lazuardi, Lutfan; Rahmanti, Annisa Ristya; Hsu, Chien-Yeh
2013-01-01
Public health informatics has been defined as the systematic application of information and computer science and technology to public health practice, research, and learning [1]. Unfortunately, limited reports exist concerning to the capacity building strategies to improve public health informatics workforce in limited-resources setting. In Indonesia, only three universities, including Universitas Gadjah Mada (UGM), offer master degree program on related public health informatics discipline. UGM started a new dedicated master program on Health Management Information Systems in 2005, under the auspice of the Graduate Program of Public Health at the Faculty of Medicine. This is the first tracer study to the alumni aiming to a) identify the gaps between curriculum and the current jobs and b) describe their perception on public health informatics competencies. We distributed questionnaires to 114 alumni with 36.84 % response rate. Despite low response rate, this study provided valuable resources to set up appropriate competencies, curriculum and capacity building strategies of public health informatics workforce in Indonesia.
Medical Informatics Education & Research in Greece.
Chouvarda, I; Maglaveras, N
2015-08-13
This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated.
Critical social theory as a model for the informatics curriculum for nursing.
Wainwright, P; Jones, P G
2000-01-01
It is widely acknowledged that the education and training of nurses in information management and technology is problematic. Drawing from recent research this paper presents a theoretical framework within which the nature of the problems faced by nurses in the use of information may be analyzed. This framework, based on the critical social theory of Habermas, also provides a model for the informatics curriculum. The advantages of problem based learning and multi-media web-based technologies for the delivery of learning materials within this area are also discussed.
ERIC Educational Resources Information Center
Vitinš, Maris; Rasnacs, Oskars
2012-01-01
Information and communications technologies today are used in virtually any university course when students prepare their papers. ICT is also needed after people are graduated from university and enter the job market. This author is an instructor in the field of informatics related to health care and social sciences at the Riga Stradins…
Active Learning Methods in Programming for Non-IT Students
ERIC Educational Resources Information Center
Mironova, Olga; Amitan, Irina; Vilipõld, Jüri; Saar, Merike
2016-01-01
The purpose of this study is to demonstrate a teaching approach and some teaching strategies in an Informatics course for the first-year non-IT students at the Department of Informatics of Tallinn University of Technology, Estonia. The authors suggest some solutions for making the course, which is usually complicated, more dynamic and attractive,…
A decadal view of biodiversity informatics: challenges and priorities
2013-01-01
Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species. It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible. This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens’ science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike. PMID:23587026
A decadal view of biodiversity informatics: challenges and priorities.
Hardisty, Alex; Roberts, Dave; Addink, Wouter; Aelterman, Bart; Agosti, Donat; Amaral-Zettler, Linda; Ariño, Arturo H; Arvanitidis, Christos; Backeljau, Thierry; Bailly, Nicolas; Belbin, Lee; Berendsohn, Walter; Bertrand, Nic; Caithness, Neil; Campbell, David; Cochrane, Guy; Conruyt, Noël; Culham, Alastair; Damgaard, Christian; Davies, Neil; Fady, Bruno; Faulwetter, Sarah; Feest, Alan; Field, Dawn; Garnier, Eric; Geser, Guntram; Gilbert, Jack; Grosche; Grosser, David; Hardisty, Alex; Herbinet, Bénédicte; Hobern, Donald; Jones, Andrew; de Jong, Yde; King, David; Knapp, Sandra; Koivula, Hanna; Los, Wouter; Meyer, Chris; Morris, Robert A; Morrison, Norman; Morse, David; Obst, Matthias; Pafilis, Evagelos; Page, Larry M; Page, Roderic; Pape, Thomas; Parr, Cynthia; Paton, Alan; Patterson, David; Paymal, Elisabeth; Penev, Lyubomir; Pollet, Marc; Pyle, Richard; von Raab-Straube, Eckhard; Robert, Vincent; Roberts, Dave; Robertson, Tim; Rovellotti, Olivier; Saarenmaa, Hannu; Schalk, Peter; Schaminee, Joop; Schofield, Paul; Sier, Andy; Sierra, Soraya; Smith, Vince; van Spronsen, Edwin; Thornton-Wood, Simon; van Tienderen, Peter; van Tol, Jan; Tuama, Éamonn Ó; Uetz, Peter; Vaas, Lea; Vignes Lebbe, Régine; Vision, Todd; Vu, Duong; De Wever, Aaike; White, Richard; Willis, Kathy; Young, Fiona
2013-04-15
Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species.It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible.This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens' science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike.
Martin-Sanchez, Fernando; Rowlands, David; Schaper, Louise; Hansen, David
2017-01-01
The Certified Health Informatician Australasia (CHIA) program consists of an online exam, which aims to test whether a candidate has the knowledge and skills that are identified in the competencies framework to perform as a health informatics professional. The CHIA Health Informatics Competencies Framework provides the context in which the questions for the exam have been developed. The core competencies for health informatics that are tested in the exam have been developed with reference to similar programs by the American Medical Informatics Association, the International Medical Informatics Association and COACH, Canada's Health Informatics Association, and builds on the previous work done by the Australian Health Informatics Education Council. This paper shows how the development of this competency framework is helping to raise the profile of health informaticians in Australasia, contributing to a wider recognition of the profession, and defining more clearly the body of knowledge underpinning this discipline. This framework can also be used as a set of guidelines for recruiting purposes, definitions of career pathways, or the design of educational and training activities. We discuss here the current status of the program, its resultsandprospectsfor the future.
Nursing Informatics Certification Worldwide: History, Pathway, Roles, and Motivation
Cummins, M. R.; Gundlapalli, A. V.; Murray, P.; Park, H.-A.; Lehmann, C. U.
2016-01-01
Summary Introduction Official recognition and certification for informatics professionals are essential aspects of workforce development. Objective: To describe the history, pathways, and nuances of certification in nursing informatics across the globe; compare and contrast those with board certification in clinical informatics for physicians. Methods (1) A review of the representative literature on informatics certification and related competencies for nurses and physicians, and relevant websites for nursing informatics associations and societies worldwide; (2) similarities and differences between certification processes for nurses and physicians, and (3) perspectives on roles for nursing informatics professionals in healthcare Results The literature search for ‘nursing informatics certification’ yielded few results in PubMed; Google Scholar yielded a large number of citations that extended to magazines and other non-peer reviewed sources. Worldwide, there are several nursing informatics associations, societies, and workgroups dedicated to nursing informatics associated with medical/health informatics societies. A formal certification program for nursing informatics appears to be available only in the United States. This certification was established in 1992, in concert with the formation and definition of nursing informatics as a specialty practice of nursing by the American Nurses Association. Although informatics is inherently interprofessional, certification pathways for nurses and physicians have developed separately, following long-standing professional structures, training, and pathways aligned with clinical licensure and direct patient care. There is substantial similarity with regard to the skills and competencies required for nurses and physicians to obtain informatics certification in their respective fields. Nurses may apply for and complete a certification examination if they have experience in the field, regardless of formal training. Increasing numbers of informatics nurses are pursuing certification. Conclusions The pathway to certification is clear and well-established for U.S. based informatics nurses. The motivation for obtaining and maintaining nursing informatics certification appears to be stronger for nurses who do not have an advanced informatics degree. The primary difference between nursing and physician certification pathways relates to the requirement of formal training and level of informatics practice. Nurse informatics certification requires no formal education or training and verifies knowledge and skill at a more basic level. Physician informatics certification validates informatics knowledge and skill at a more advanced level; currently this requires documentation of practice and experience in clinical informatics and in the future will require successful completion of an accredited two-year fellowship in clinical informatics. For the profession of nursing, a graduate degree in nursing or biomedical informatics validates specialty knowledge at a level more comparable to the physician certification. As the field of informatics and its professional organization structures mature, a common certification pathway may be appropriate. Nurses, physicians, and other healthcare professionals with informatics training and certification are needed to contribute their expertise in clinical operations, teaching, research, and executive leadership. PMID:27830261
Developing Informatics Tools and Strategies for Consumer-centered Health Communication
Keselman, Alla; Logan, Robert; Smith, Catherine Arnott; Leroy, Gondy; Zeng-Treitler, Qing
2008-01-01
As the emphasis on individuals' active partnership in health care grows, so does the public's need for effective, comprehensible consumer health resources. Consumer health informatics has the potential to provide frameworks and strategies for designing effective health communication tools that empower users and improve their health decisions. This article presents an overview of the consumer health informatics field, discusses promising approaches to supporting health communication, and identifies challenges plus direction for future research and development. The authors' recommendations emphasize the need for drawing upon communication and social science theories of information behavior, reaching out to consumers via a range of traditional and novel formats, gaining better understanding of the public's health information needs, and developing informatics solutions for tailoring resources to users' needs and competencies. This article was written as a scholarly outreach and leadership project by members of the American Medical Informatics Association's Consumer Health Informatics Working Group. PMID:18436895
Safdari, Reza; Shahmoradi, Leila; Hosseini-Beheshti, Molouk-Sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad
2015-10-01
Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics' sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics.
ERIC Educational Resources Information Center
Bates, A. W.
By the year 2000, European higher education institutions must achieve the following aims: resolve the conflict between the social demand for education and costs of higher education without lowering standards; provide continuing education to cope with rapid technological change and increased leisure and/or unemployment; build even closer links…
ERIC Educational Resources Information Center
Stahlhut, Richard W.; Gosbee, John W.; Gardner-Bonneau, Daryle J.
1997-01-01
Describes development of a curriculum in medical information science that focuses on practical problems in clinical medicine rather than details of information technology. Design was guided by identification of six key clinical challenges that must be addressed by practitioners in the near future and by examination of past failures of informatics…
Cancer Slide Digital Archive (CDSA) | Informatics Technology for Cancer Research (ITCR)
The CDSA is a web-based platform to support the sharing, managment and analysis of digital pathology data. The Emory Instance currently hosts over 23,000 images from The Cancer Genome Atlas, and the software is being developed within the ITCR grant to be deployable as a digital pathology platform for other labs and Cancer Institutes.
Cholewka, Patricia A; Mohr, Bernard
2009-01-01
Nursing students at New York City College of Technology are assigned client care experiences that focus on common alterations in health status. However, due to the unpredictability of client census within any healthcare facility, it is not possible for all students to have the same opportunity to care for clients with specific medical conditions. But with the use of patient simulators in a dedicated Clinical Simulation Laboratory setting, students can be universally, consistently, and repeatedly exposed to programmed scenarios that connect theory with the clinical environment. Outcomes from using patient simulators include improved nursing knowledge base, enhanced critical thinking, reflective learning, and increased understanding of information technology for using a Personal Digital Assistant and documenting care by means of an electronic Patient Record System. An innovative nursing education model using a wireless, inter-connective data network was developed by this college in response to the need for increasing nursing informatics competencies and critical thinking skills by students in preparation for client care.
PhenStat | Informatics Technology for Cancer Research (ITCR)
PhenStat is a freely available R package that provides a variety of statistical methods for the identification of phenotypic associations from model organisms developed for the International Mouse Phenotyping Consortium (IMPC at www.mousephenotype.org ). The methods have been developed for high throughput phenotyping pipelines implemented across various experimental designs with an emphasis on managing temporal variation and is being adapted for analysis with PDX mouse strains.
A strategic vision for telemedicine and medical informatics in space flight
NASA Technical Reports Server (NTRS)
Williams, D. R.; Bashshur, R. L.; Pool, S. L.; Doarn, C. R.; Merrell, R. C.; Logan, J. S.
2000-01-01
This Workshop was designed to assist in the ongoing development and application of telemedicine and medical informatics to support extended space flight. Participants included specialists in telemedicine and medical/health informatics (terrestrial and space) medicine from NASA, federal agencies, academic centers, and research and development institutions located in the United States and several other countries. The participants in the working groups developed vision statements, requirements, approaches, and recommendations pertaining to developing and implementing a strategy pertaining to telemedicine and medical informatics. Although some of the conclusions and recommendations reflect ongoing work at NASA, others provided new insight and direction that may require a reprioritization of current NASA efforts in telemedicine and medical informatics. This, however, was the goal of the Workshop. NASA is seeking other perspectives and views from leading practitioners in the fields of telemedicine and medical informatics to invigorate an essential and high-priority component of the International Space Station and future extended exploration missions. Subsequent workshops will further define and refine the general findings and recommendations achieved here. NASA's ultimate aim is to build a sound telemedicine and medical informatics operational system to provide the best medical care available for astronauts going to Mars and beyond.
A strategic vision for telemedicine and medical informatics in space flight.
Williams, D R; Bashshur, R L; Pool, S L; Doarn, C R; Merrell, R C; Logan, J S
2000-01-01
This Workshop was designed to assist in the ongoing development and application of telemedicine and medical informatics to support extended space flight. Participants included specialists in telemedicine and medical/health informatics (terrestrial and space) medicine from NASA, federal agencies, academic centers, and research and development institutions located in the United States and several other countries. The participants in the working groups developed vision statements, requirements, approaches, and recommendations pertaining to developing and implementing a strategy pertaining to telemedicine and medical informatics. Although some of the conclusions and recommendations reflect ongoing work at NASA, others provided new insight and direction that may require a reprioritization of current NASA efforts in telemedicine and medical informatics. This, however, was the goal of the Workshop. NASA is seeking other perspectives and views from leading practitioners in the fields of telemedicine and medical informatics to invigorate an essential and high-priority component of the International Space Station and future extended exploration missions. Subsequent workshops will further define and refine the general findings and recommendations achieved here. NASA's ultimate aim is to build a sound telemedicine and medical informatics operational system to provide the best medical care available for astronauts going to Mars and beyond.
Biomedical informatics training at the University of Wisconsin-Madison.
Severtson, D J; Pape, L; Page, C D; Shavlik, J W; Phillips, G N; Flatley Brennan, P
2007-01-01
The purpose of this paper is to describe biomedical informatics training at the University of Wisconsin-Madison (UW-Madison). We reviewed biomedical informatics training, research, and faculty/trainee participation at UW-Madison. There are three primary approaches to training 1) The Computation & Informatics in Biology & Medicine Training Program, 2) formal biomedical informatics offered by various campus departments, and 3) individualized programs. Training at UW-Madison embodies the features of effective biomedical informatics training recommended by the American College of Medical Informatics that were delineated as: 1) curricula that integrate experiences among computational sciences and application domains, 2) individualized and interdisciplinary cross-training among a diverse cadre of trainees to develop key competencies that he or she does not initially possess, 3) participation in research and development activities, and 4) exposure to a range of basic informational and computational sciences. The three biomedical informatics training approaches immerse students in multidisciplinary training and education that is supported by faculty trainers who participate in collaborative research across departments. Training is provided across a range of disciplines and available at different training stages. Biomedical informatics training at UW-Madison illustrates how a large research University, with multiple departments across biological, computational and health fields, can provide effective and productive biomedical informatics training via multiple bioinformatics training approaches.
Geo-Informatics in India: Major Milestones and Present Scenario
NASA Astrophysics Data System (ADS)
Gupta, S.; Karnatak, H.; Raju, P. L. N.
2016-06-01
Geo-informatics has emerged globally as a useful tool to address spatial problems with significant societal implications that require integrative and innovative approaches for analysis, modelling, managing, and archiving of extensive and diverse data sets. Breakneck technological development and availability of satellite based data and information services in public domain along with real time geo-data n through participatory approaches, in the two last decades have led to a sea-change in our know-how of our natural resources and their effective management at various levels. It has led to a realization that every phenomena and requirement in our day to day life has some spatial, or geographic component that can be predicted and governed more effectively through geoinformatics tool. India also has come a long way in effective utilization of geoinformatics for various applications. This quantum leap owes its foundation in a humble beginning about half century back and almost parallel developments in the country's space programme to a current level where it touches almost all areas of life and living. Though geoinformatics technology (GIT) is believed to reach satisfactory level in the country, Indian geospatial community faces critical challenges with respect to research, education and training along with enhanced the access to the stakeholders and mobilization of the workforce, that are crucial in further penetration of this technology in context to India's development. In this paper we have critically reviewed milestones of GI development and its current utilization status in Indian context.
Chu, Larry F; Young, Chelsea; Zamora, Abby; Kurup, Viji; Macario, Alex
2010-04-01
Informatics is a broad field encompassing artificial intelligence, cognitive science, computer science, information science, and social science. The goal of this review is to illustrate how Web 2.0 information technologies could be used to improve anesthesia education. Educators in all specialties of medicine are increasingly studying Web 2.0 technologies to maximize postgraduate medical education of housestaff. These technologies include microblogging, blogs, really simple syndication (RSS) feeds, podcasts, wikis, and social bookmarking and networking. 'Anesthesia 2.0' reflects our expectation that these technologies will foster innovation and interactivity in anesthesia-related web resources which embraces the principles of openness, sharing, and interconnectedness that represent the Web 2.0 movement. Although several recent studies have shown benefits of implementing these systems into medical education, much more investigation is needed. Although direct practice and observation in the operating room are essential, Web 2.0 technologies hold great promise to innovate anesthesia education and clinical practice such that the resident learner need not be in a classroom for a didactic talk, or even in the operating room to see how an arterial line is properly placed. Thoughtful research to maximize implementation of these technologies should be a priority for development by academic anesthesiology departments. Web 2.0 and advanced informatics resources will be part of physician lifelong learning and clinical practice.
Khan, Sharib A; McFarlane, Delano J; Li, Jianhua; Ancker, Jessica S; Hutchinson, Carly; Cohall, Alwyn; Kukafka, Rita
2007-10-11
Consumer health informatics has emerged as a strategy to inform and empower patients for self management of their health. The emergence of and explosion in use of user-generated online media (e.g.,blogs) has created new opportunities to inform and educate people about healthy living. Under a prevention research project, we are developing a website that utilizes social content collaboration mediums in conjunction with open-source technologies to create a community-driven resource that provides users with tailored health information.
Information management and informatics: need for a modern pathology service.
Jones, Rick; O'Connor, John
2004-05-01
Requirements for information technology in pathology now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, "informatics"--the art and science of turning data into useful information--is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology--whether in implementing processes for pathology modernization, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients--which requires critical assessment of the ever-increasing volume of information available--can also benefit greatly from appropriate use of informatics. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerized order entry, data security and recovery, and audit. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this paper.
A current perspective on medical informatics and health sciences librarianship.
Perry, Gerald J; Roderer, Nancy K; Assar, Soraya
2005-04-01
The article offers a current perspective on medical informatics and health sciences librarianship. The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as "boundary spanners," incorporating human factors that unite technology with health care delivery.
Fossum, Mariann; Fruhling, Ann; Moe, Carl Erik; Thompson, Cheryl Bagley
2017-04-01
A cross-countries and interprofessional novel approach for delivering an international interdisciplinary graduate health informatics course online is presented. Included in this discussion are the challenges, lessons learned, and pedagogical recommendations from the experiences of teaching the course. Four professors from three different fields and from three universities collaborated in offering an international health informatics course for an interdisciplinary group of 18 US and seven Norwegian students. Highly motivated students and professors, an online technology infrastructure that supported asynchronously communication and course delivery, the ability to adapt the curriculum to meet the pedagogy requirements at all universities, and the support of higher administration for international collaboration were enablers for success. This project demonstrated the feasibility and advantages of an interdisciplinary, interprofessional, and cross-countries approach in teaching health informatics online. Students were able to establish relationships and conduct professional conversations across disciplines and international boundaries using content management software. This graduate course can be used as a part of informatics, computer science, and/or health science programs.
Opportunities at the Intersection of Bioinformatics and Health Informatics
Miller, Perry L.
2000-01-01
This paper provides a “viewpoint discussion” based on a presentation made to the 2000 Symposium of the American College of Medical Informatics. It discusses potential opportunities for researchers in health informatics to become involved in the rapidly growing field of bioinformatics, using the activities of the Yale Center for Medical Informatics as a case study. One set of opportunities occurs where bioinformatics research itself intersects with the clinical world. Examples include the correlations between individual genetic variation with clinical risk factors, disease presentation, and differential response to treatment; and the implications of including genetic test results in the patient record, which raises clinical decision support issues as well as legal and ethical issues. A second set of opportunities occurs where bioinformatics research can benefit from the technologic expertise and approaches that informaticians have used extensively in the clinical arena. Examples include database organization and knowledge representation, data mining, and modeling and simulation. Microarray technology is discussed as a specific potential area for collaboration. Related questions concern how best to establish collaborations with bioscientists so that the interests and needs of both sets of researchers can be met in a synergistic fashion, and the most appropriate home for bioinformatics in an academic medical center. PMID:10984461
Maddox, Thomas M; Albert, Nancy M; Borden, William B; Curtis, Lesley H; Ferguson, T Bruce; Kao, David P; Marcus, Gregory M; Peterson, Eric D; Redberg, Rita; Rumsfeld, John S; Shah, Nilay D; Tcheng, James E
2017-04-04
The learning healthcare system uses health information technology and the health data infrastructure to apply scientific evidence at the point of clinical care while simultaneously collecting insights from that care to promote innovation in optimal healthcare delivery and to fuel new scientific discovery. To achieve these goals, the learning healthcare system requires systematic redesign of the current healthcare system, focusing on 4 major domains: science and informatics, patient-clinician partnerships, incentives, and development of a continuous learning culture. This scientific statement provides an overview of how these learning healthcare system domains can be realized in cardiovascular disease care. Current cardiovascular disease care innovations in informatics, data uses, patient engagement, continuous learning culture, and incentives are profiled. In addition, recommendations for next steps for the development of a learning healthcare system in cardiovascular care are presented. © 2017 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Robinson, Niall; Tomlinson, Jacob; Prudden, Rachel; Hilson, Alex; Arribas, Alberto
2017-04-01
The Met Office Informatics Lab is a small multidisciplinary team which sits between science, technology and design. Our mission is simply "to make Met Office data useful" - a deliberately broad objective. Our prototypes often trial cutting edge technologies, and so far have included projects such as virtual reality data visualisation in the web browser, bots and natural language interfaces, and artificially intelligent weather warnings. In this talk we focus on our latest project, Jade, a big data analysis platform in the cloud. It is a powerful, flexible and simple to use implementation which makes extensive use of technologies such as Jupyter, Dask, containerisation, Infrastructure as Code, and auto-scaling. Crucially, Jade is flexible enough to be used for a diverse set of applications: it can present weather forecast information to meteorologists and allow climate scientists to analyse big data sets, but it is also effective for analysing non-geospatial data. As well as making data useful, the Informatics Lab also trials new working practises. In this presentation, we will talk about our experience of making a group like the Lab successful.
Studying technology use as social practice: the untapped potential of ethnography
2011-01-01
Information and communications technologies (ICTs) in healthcare are often introduced with expectations of higher-quality, more efficient, and safer care. Many fail to meet these expectations. We argue here that the well-documented failures of ICTs in healthcare are partly attributable to the philosophical foundations of much health informatics research. Positivistic assumptions underpinning the design, implementation and evaluation of ICTs (in particular the notion that technology X has an impact which can be measured and reproduced in new settings), and the deterministic experimental and quasi-experimental study designs which follow from these assumptions, have inherent limitations when ICTs are part of complex social practices involving multiple human actors. We suggest that while experimental and quasi-experimental studies have an important place in health informatics research overall, ethnography is the preferred methodological approach for studying ICTs introduced into complex social systems. But for ethnographic approaches to be accepted and used to their full potential, many in the health informatics community will need to revisit their philosophical assumptions about what counts as research rigor. PMID:21521535
Synergy and sensibility: a course on entrepreneurship in gerotechnologies.
Lorenzen-Huber, Lesa; Allen, Patricia; Kennedy-Armbruster, Carol
2010-01-01
"Health, Technology, and Aging" is a course developed to address three significant contemporary trends: aging populations, increasingly ubiquitous technology, and the economic imperative to encourage entrepreneurship. Course content is a blend of gerontology, informatics, and entrepreneurship designed for nonbusiness majors. Six interdisciplinary faculty modeled synergistic teamwork for the student teams. Findings suggest that students appreciated the interdisciplinary approach to teaching and learning and perceived gerotechnology as a promising market for business development. An external panel of judges scored student projects as well described, persuasive, and creative. Two plans of the four projects were judged to have potential for funding.
Hilty, Donald M; Hales, Deborah J; Briscoe, Greg; Benjamin, Sheldon; Boland, Robert J; Luo, John S; Chan, Carlyle H; Kennedy, Robert S; Karlinsky, Harry; Gordon, Daniel B; Yager, Joel; Yellowlees, Peter M
2006-01-01
This article provides a brief overview of important issues for educators regarding medical education and technology. The literature describes key concepts, prototypical technology tools, and model programs. A work group of psychiatric educators was convened three times by phone conference to discuss the literature. Findings were presented to and input was received from the 2005 Summit on Medical Student Education by APA and the American Directors of Medical Student Education in Psychiatry. Knowledge of, skills in, and attitudes toward medical informatics are important to life-long learning and modern medical practice. A needs assessment is a starting place, since student, faculty, institution, and societal factors bear consideration. Technology needs to "fit" into a curriculum in order to facilitate learning and teaching. Learning about computers and applying computer technology to education and clinical care are key steps in computer literacy for physicians.
Using the Internet to Teach Health Informatics: A Case Study
Holt, Alec; Gillies, John
2001-01-01
Background It is becoming increasingly important for health professionals to have an understanding of health informatics. Education in this area must support not only undergraduate students but also the many workers who graduated before informatics education was available in the undergraduate program. To be successful, such a program must allow currently-employed students with significant work and family commitments to enroll. Objectives The aim was to successfully create and teach a distance program in health informatics for the New Zealand environment. Methods Our students are primarily health professionals in full time employment. About 50% are doctors, about 25% nurses, and the rest include dentists, physiotherapists, and medical managers. Course material was delivered via the World Wide Web and CD-ROM. Communication between students and faculty, both synchronous and asynchronous, was carried out via the Internet. Results We have designed and taught a postgraduate Diploma of Health Informatics program using the Internet as a major communication medium. The course has been running since July 1998 and the first 10 students graduated in July 2000. About 45 students are currently enrolled in the course; we have had a dropout rate of 15% and a failure rate of 5%. Comparable dropout figures are hard to obtain, but a recent review has suggested that failure-to-complete rates of 30% to 33% may be expected. Conclusions Internet technology has provided an exciting educational challenge and opportunity. Providing a web-based health informatics course has not been without its frustrations and problems, including software compatibility issues, bandwidth limitations, and the rapid change in software and hardware. Despite these challenges, the use of Internet technology has been interesting for both staff and students, and a worthwhile alternative for delivering educational material and advice to students working from their own homes. PMID:11720968
The socioeconomic aspects of information technology for health care with emphasis on radiology.
Sistrom, Chris
2005-04-01
Information technology is the key to cost effective and error free medical care in the United States and the only problem is that there is not enough of it yet. During the past 15 years, billions of dollars have been spent on information technology for health care with very little benefit but significant adverse effects on patients, physicians, and nurses. The truth about health care information technology (HIT) probably lies somewhere between these extreme statements, representing technophile and skeptical views, respectively. There is no doubt that computer and communication hardware has reached a state of sophistication and availability in which any and all necessary information can be generated, stored, and distributed to health care workers in support of their patient care tasks. The barriers to rapid and widespread development and diffusion of cost effective and practically useful HIT are exclusively related to human factors. This article explores some of the organizational, cultural, cognitive, and economic forces that interact to influence success of HIT initiatives in health care organizations. A key point to be recognized is that the intrinsically handcrafted nature of health care work combined with high degrees of complexity and contingency make it impossible to "computerize" with the same ease and completeness of other industries. The major thrust of the argument is that designers of information systems and health care informatics managers must meet needs of patients and care providers. The software they create and implement should promote, support, and enhance the existing processes of health care rather than seeking to dictate how direct care providers should do their work. Instead of looking for "buy in" from physicians and nurses, the informatics community must return the authority over functional specification of patient care information systems to them--where it belonged in the first place. This same lesson about computer technology and organizational politics is also being learned in the business community, where executives are reclaiming responsibility for mission critical informatics decisions.
Geospatial resources for supporting data standards, guidance and best practice in health informatics
2011-01-01
Background The 1980s marked the occasion when Geographical Information System (GIS) technology was broadly introduced into the geo-spatial community through the establishment of a strong GIS industry. This technology quickly disseminated across many countries, and has now become established as an important research, planning and commercial tool for a wider community that includes organisations in the public and private health sectors. The broad acceptance of GIS technology and the nature of its functionality have meant that numerous datasets have been created over the past three decades. Most of these datasets have been created independently, and without any structured documentation systems in place. However, search and retrieval systems can only work if there is a mechanism for datasets existence to be discovered and this is where proper metadata creation and management can greatly help. This situation must be addressed through support mechanisms such as Web-based portal technologies, metadata editor tools, automation, metadata standards and guidelines and collaborative efforts with relevant individuals and organisations. Engagement with data developers or administrators should also include a strategy of identifying the benefits associated with metadata creation and publication. Findings The establishment of numerous Spatial Data Infrastructures (SDIs), and other Internet resources, is a testament to the recognition of the importance of supporting good data management and sharing practices across the geographic information community. These resources extend to health informatics in support of research, public services and teaching and learning. This paper identifies many of these resources available to the UK academic health informatics community. It also reveals the reluctance of many spatial data creators across the wider UK academic community to use these resources to create and publish metadata, or deposit their data in repositories for sharing. The Go-Geo! service is introduced as an SDI developed to provide UK academia with the necessary resources to address the concerns surrounding metadata creation and data sharing. The Go-Geo! portal, Geodoc metadata editor tool, ShareGeo spatial data repository, and a range of other support resources, are described in detail. Conclusions This paper describes a variety of resources available for the health research and public health sector to use for managing and sharing their data. The Go-Geo! service is one resource which offers an SDI for the eclectic range of disciplines using GIS in UK academia, including health informatics. The benefits of data management and sharing are immense, and in these times of cost restraints, these resources can be seen as solutions to find cost savings which can be reinvested in more research. PMID:21269487
Preface - Access to Knowledge Revisited
Humphreys, Betsy L.
2016-01-01
Summary Objective To review and update the Preface to the 1998 Yearbook of Medical Informatics, which had as its Special Topic “Health Informatics and the Internet”. Method Assessment of the accuracy of predictions made in 1998 and consideration of key developments in informatics since that time. Results Predictions made in 1998 were generally accurate regarding reduced dependence on keyboards, expansion of multimedia, medical data privacy policy development, impact of molecular biology on knowledge and treatment of neoplasms, and use of imaging and informatics to advance understanding of brain structure and function. Key developments since 1998 include the huge increase in publicly available electronic information; acknowledgement by leaders in government and science of the importance of biomedical informatics to societal goals for health, health care, and scientific discovery; the influence of the public in promoting clinical research transparency and free access to government-funded research results; the long-awaited arrival of electronic health records; and the “Cloud” as a 21st century reformulation of contracting out the computer center. Conclusions There are many challenging and important problems that deserve the attention of the informatics community. Informatics researchers will be best served by embracing a very broad definition of medical informatics and by promoting public understanding of the field. PMID:27199193
Valdez, Rupa S; Holden, Richard J; Novak, Laurie L; Veinot, Tiffany C
2015-01-01
Designing patient-centered consumer health informatics (CHI) applications requires understanding and creating alignment with patients' and their family members' health-related activities, referred to here as 'patient work'. A patient work approach to CHI draws on medical social science and human factors engineering models and simultaneously attends to patients, their family members, activities, and context. A patient work approach extends existing approaches to CHI design that are responsive to patients' biomedical realities and personal skills and behaviors. It focuses on the embeddedness of patients' health management in larger processes and contexts and prioritizes patients' perspectives on illness management. Future research is required to advance (1) theories of patient work, (2) methods for assessing patient work, and (3) techniques for translating knowledge of patient work into CHI application design. Advancing a patient work approach within CHI is integral to developing and deploying consumer-facing technologies that are integrated with patients' everyday lives. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com. For numbered affiliations see end of article.
Fuller, Sherrilynne; Garcia, Patricia J; Holmes, King K; Kimball, Ann Marie
2010-01-01
Well-trained people are urgently needed to tackle global health challenges through information and communication technologies. In this report, AMAUTA, a joint international collaborative training program between the Universidad Peruana Cayetano Heredia and the University of Washington, which has been training Peruvian health professionals in biomedical and health informatics since 1999, is described. Four short-term courses have been organized in Lima, offering training to more than 200 graduate-level students. Long-term training to masters or doctorate level has been undertaken by eight students at the University of Washington. A combination of short-term and long-term strategies was found to be effective for enhancing institutional research and training enterprise. The AMAUTA program promoted the development and institution of informatics research and training capacity in Peru, and has resulted in a group of trained people playing important roles at universities, non-government offices, and the Ministry of Health in Peru. At present, the hub is being extended into Latin American countries, promoting South-to-South collaborations. PMID:20595317
Health Information Technology as a Universal Donor to Bioethics Education.
Goodman, Kenneth W
2017-04-01
Health information technology, sometimes called biomedical informatics, is the use of computers and networks in the health professions. This technology has become widespread, from electronic health records to decision support tools to patient access through personal health records. These computational and information-based tools have engendered their own ethics literature and now present an opportunity to shape the standard medical and nursing ethics curricula. It is suggested that each of four core components in the professional education of clinicians-privacy, end-of-life care, access to healthcare and valid consent, and clinician-patient communication-offers an opportunity to leverage health information technology for curricular improvement. Using informatics in ethics education freshens ethics pedagogy and increases its utility, and does so without additional demands on overburdened curricula.
Vancea, Mihaela; Solé-Casals, Jordi
2016-01-01
Population ageing is one of the major social and economic challenges of our contemporary societies. With the advent of the information society, new research and technological developments have been promoted in the field of assistive technologies and information and communication technologies of benefit to elderly people. This article examines the potentialities of new informatics developments in generating solutions to better address elderly people’s daily-life, especially those with chronic illness and/or low autonomy. The authours attempt to propose a research agenda, by exposing various strengts and weaknesses of eHealth innovations for elderly, mainly grounded in secondary sources analysis. PMID:27493837
Addressing informatics challenges in Translational Research with workflow technology.
Beaulah, Simon A; Correll, Mick A; Munro, Robin E J; Sheldon, Jonathan G
2008-09-01
Interest in Translational Research has been growing rapidly in recent years. In this collision of different data, technologies and cultures lie tremendous opportunities for the advancement of science and business for organisations that are able to integrate, analyse and deliver this information effectively to users. Workflow-based integration and analysis systems are becoming recognised as a fast and flexible way to build applications that are tailored to scientific areas, yet are built on a common platform. Workflow systems are allowing organisations to meet the key informatics challenges in Translational Research and improve disease understanding and patient care.
Medical Informatics Education & Research in Greece
Chouvarda, I.
2015-01-01
Summary Objectives This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. Methods With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Results Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Conclusions Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated. PMID:26123910
King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N
2017-01-01
The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.
King, Andrew J.; Fisher, Arielle M.; Becich, Michael J.; Boone, David N.
2017-01-01
The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist. PMID:28400991
Incorporating healthcare informatics into the strategic planning process in nursing education.
Sackett, Kay; Jones, Janice; Erdley, W Scott
2005-01-01
The purpose of this article is to describe the incorporation of healthcare informatics into the strategic planning process in nursing education. An exemplar from the University at Buffalo, the State University of New York School of Nursing, is interwoven throughout the article. The challenges and successes inherent in a paradigm shift embracing the multifaceted adoption of technology in higher education are illustrated. The paradigm shift that necessitated this change, the need for informatics standards and competencies identified by regulatory agencies and the relationship of the triad mission of the Academy which includes research, teaching and service are then elucidated. Information pertinent to the strategic planning process is described including the use of a strengths, weaknesses, opportunities and threats (SWOT) analysis to facilitate the integration of a healthcare informatics model into a nursing curriculum.
Hübner, Ursula; Shaw, Toria; Thye, Johannes; Egbert, Nicole; Marin, Heimar; Ball, Marion
2016-01-01
Informatics competencies of the health care workforce must meet the requirements of inter-professional process and outcome oriented provision of care. In order to help nursing education transform accordingly, the TIGER Initiative deployed an international survey, with participation from 21 countries, to evaluate and prioritise a broad list of core competencies for nurses in five domains: 1) nursing management, 2) information technology (IT) management in nursing, 3) interprofessional coordination of care, 4) quality management, and 5) clinical nursing. Informatics core competencies were found highly important for all domains. In addition, this project compiled eight national cases studies from Austria, Finland, Germany, Ireland, New Zealand, the Philippines, Portugal, and Switzerland that reflected the country specific perspective. These findings will lead us to an international framework of informatics recommendations.
Creedon, Sile A; Cummins, Ann Maria
2012-05-01
Experiences gained from delivering a Health Informatics for Nurses course in a school of nursing and midwifery in a university teaching hospital in Ireland suggest that Web-based courses may facilitate an enhanced understanding of course content. Nursing education must recognize the importance of information and communication technology in nursing to prepare the nursing and midwifery profession to embrace current advances in information and communication technology in healthcare in Ireland, and ultimately to benefit patient care.
Diabetes Information Technology: Designing Informatics Systems to Catalyze Change in Clinical Care
Lester, William T.; Zai, Adrian H.; Chueh, Henry C.; Grant, Richard W.
2008-01-01
Current computerized reminder and decision support systems intended to improve diabetes care have had a limited effect on clinical outcomes. Increasing pressures on health care networks to meet standards of diabetes care have created an environment where information technology systems for diabetes management are often created under duress, appended to existing clinical systems, and poorly integrated into the existing workflow. After defining the components of diabetes disease management, the authors present an eight-step conceptual framework to guide the development of more effective diabetes information technology systems for translating clinical information into clinical action. PMID:19885355
The Impact of Imaging Informatics Fellowships.
Liao, Geraldine J; Nagy, Paul G; Cook, Tessa S
2016-08-01
Imaging informatics (II) is an area within clinical informatics that is particularly important in the field of radiology. Provider groups have begun employing dedicated radiologist-informaticists to bridge medical, information technology and administrative functions, and academic institutions are meeting this demand through formal II fellowships. However, little is known about how these programs influence graduates' careers and perceptions about professional development. We electronically surveyed 26 graduates from US II fellowships and consensus leaders in the II community-many of whom were subspecialty diagnostic radiologists (68%) employed within academic institutions (48%)-about the perceived impact of II fellowships on career development and advancement. All graduates felt that II fellowship made them more valuable to employers, with the majority of reporting ongoing II roles (78%) and continued used of competencies (61%) and skills (56%) gained during fellowship in their current jobs. Other key benefits included access to mentors, protected time for academic work, networking opportunities, and positive impacts of annual compensation. Of respondents without II fellowship training, all would recommend fellowships to current trainees given the ability to gain a "still rare" but "essential skill set" that is "critical for future leaders in radiology" and "better job opportunities." While some respondents felt that II fellowships needed further formalization and standardization, most (85%) disagreed with requiring a 2-year II fellowship in order to qualify for board certification in clinical informatics. Instead, most believed that fellowships should be integrated with clinical residency or fellowship training while preserving formal didactics and unstructured project time. More work is needed to understand existing variations in II fellowship training structure and identify the optimal format for programs targeted at radiologists.
Bioinformatics and Medical Informatics: Collaborations on the Road to Genomic Medicine?
Maojo, Victor; Kulikowski, Casimir A.
2003-01-01
In this report, the authors compare and contrast medical informatics (MI) and bioinformatics (BI) and provide a viewpoint on their complementarities and potential for collaboration in various subfields. The authors compare MI and BI along several dimensions, including: (1) historical development of the disciplines, (2) their scientific foundations, (3) data quality and analysis, (4) integration of knowledge and databases, (5) informatics tools to support practice, (6) informatics methods to support research (signal processing, imaging and vision, and computational modeling, (7) professional and patient continuing education, and (8) education and training. It is pointed out that, while the two disciplines differ in their histories, scientific foundations, and methodologic approaches to research in various areas, they nevertheless share methods and tools, which provides a basis for exchange of experience in their different applications. MI expertise in developing health care applications and the strength of BI in biological “discovery science” complement each other well. The new field of biomedical informatics (BMI) holds great promise for developing informatics methods that will be crucial in the development of genomic medicine. The future of BMI will be influenced strongly by whether significant advances in clinical practice and biomedical research come about from separate efforts in MI and BI, or from emerging, hybrid informatics subdisciplines at their interface. PMID:12925552
The increasing use of electronic health records (EHRs) by cancer centers nationwide has led to the tremendous growth of repositories containing unstructured, free text notes. These notes include clinical concepts that cannot be found anywhere else in the EHR, and these concepts are needed to characterize a patient’s specific ‘phenotype’.
ERIC Educational Resources Information Center
McCarthy, Gavan; Evans, Joanne
2007-01-01
This article examines the evolution of a national register of the archives of science and technology in Australia and the related development of an archival informatics focused initially on people and their relationships to archival materials. The register was created in 1985 as an in-house tool for the Australian Science Archives Project of the…
Yokohama, Noriya; Tsuchimoto, Tadashi; Oishi, Masamichi; Itou, Katsuya
2007-01-20
It has been noted that the downtime of medical informatics systems is often long. Many systems encounter downtimes of hours or even days, which can have a critical effect on daily operations. Such systems remain especially weak in the areas of database and medical imaging data. The scheme design shows the three-layer architecture of the system: application, database, and storage layers. The application layer uses the DICOM protocol (Digital Imaging and Communication in Medicine) and HTTP (Hyper Text Transport Protocol) with AJAX (Asynchronous JavaScript+XML). The database is designed to decentralize in parallel using cluster technology. Consequently, restoration of the database can be done not only with ease but also with improved retrieval speed. In the storage layer, a network RAID (Redundant Array of Independent Disks) system, it is possible to construct exabyte-scale parallel file systems that exploit storage spread. Development and evaluation of the test-bed has been successful in medical information data backup and recovery in a network environment. This paper presents a schematic design of the new medical informatics system that can be accommodated from a recovery and the dynamic Web application for medical imaging distribution using AJAX.
Norman, Cameron
2004-01-01
EHealth has developed largely from an interdisciplinary framework and, as such, does not have a “home” discipline. The absence of this home discipline has allowed eHealth research to be published widely in journals ranging from the medical sciences, to engineering, to social science or to business and policy studies. The result of this fragmented, decentralized literature base is that researchers are not always aware of important papers published in other areas and journals. With this issue the Journal of Medical Internet Research is inaugurating a new article category which we call “CATCH-IT Reports” (Critically Appraised Topics in Communication, Health Informatics, and Technology). We hope these reports will draw attention to important work published in other (sometimes obscure) journals, provide a platform for discussion around results and methodological issues in eHealth research, and help to develop a framework for evidence-based eHealth. CATCH-IT Reports arise from “journal club” - like sessions founded in February 2003 at the Centre for Global eHealth Innovation. We invite other research institutions to create similar journal clubs and to write up and submit to this journal critiques in the form of CATCH-IT Reports.
Park, Seung; Parwani, Anil; Macpherson, Trevor; Pantanowitz, Liron
2012-01-01
The need for informatics and genomics training in pathology is critical, yet limited resources for such training are available. In this study we sought to critically test the hypothesis that the incorporation of a wiki (a collaborative writing and publication tool with roots in "Web 2.0") in a combined informatics and genomics course could both (1) serve as an interactive, collaborative educational resource and reference and (2) actively engage trainees by requiring the creation and sharing of educational materials. A 2-week full-time course at our institution covering genomics, research, and pathology informatics (GRIP) was taught by 36 faculty to 18 second- and third-year pathology residents. The course content included didactic lectures and hands-on demonstrations of technology (e.g., whole-slide scanning, telepathology, and statistics software). Attendees were given pre- and posttests. Residents were trained to use wiki technology (MediaWiki) and requested to construct a wiki about the GRIP course by writing comprehensive online review articles on assigned lectures. To gauge effectiveness, pretest and posttest scores for our course were compared with scores from the previous 7 years from the predecessor course (limited to informatics) given at our institution that did not utilize wikis. Residents constructed 59 peer-reviewed collaborative wiki articles. This group showed a 25% improvement (standard deviation 12%) in test scores, which was greater than the 16% delta recorded in the prior 7 years of our predecessor course (P = 0.006). Our use of wiki technology provided a wiki containing high-quality content that will form the basis of future pathology informatics and genomics courses and proved to be an effective teaching tool, as evidenced by the significant rise in our resident posttest scores. Data from this project provide support for the notion that active participation in content creation is an effective mechanism for mastery of content. Future residents taking this course will continue to build on this wiki, keeping content current, and thereby benefit from this collaborative teaching tool.
Park, Seung; Parwani, Anil; MacPherson, Trevor; Pantanowitz, Liron
2012-01-01
Background: The need for informatics and genomics training in pathology is critical, yet limited resources for such training are available. In this study we sought to critically test the hypothesis that the incorporation of a wiki (a collaborative writing and publication tool with roots in “Web 2.0”) in a combined informatics and genomics course could both (1) serve as an interactive, collaborative educational resource and reference and (2) actively engage trainees by requiring the creation and sharing of educational materials. Materials and Methods: A 2-week full-time course at our institution covering genomics, research, and pathology informatics (GRIP) was taught by 36 faculty to 18 second- and third-year pathology residents. The course content included didactic lectures and hands-on demonstrations of technology (e.g., whole-slide scanning, telepathology, and statistics software). Attendees were given pre- and posttests. Residents were trained to use wiki technology (MediaWiki) and requested to construct a wiki about the GRIP course by writing comprehensive online review articles on assigned lectures. To gauge effectiveness, pretest and posttest scores for our course were compared with scores from the previous 7 years from the predecessor course (limited to informatics) given at our institution that did not utilize wikis. Results: Residents constructed 59 peer-reviewed collaborative wiki articles. This group showed a 25% improvement (standard deviation 12%) in test scores, which was greater than the 16% delta recorded in the prior 7 years of our predecessor course (P = 0.006). Conclusions: Our use of wiki technology provided a wiki containing high-quality content that will form the basis of future pathology informatics and genomics courses and proved to be an effective teaching tool, as evidenced by the significant rise in our resident posttest scores. Data from this project provide support for the notion that active participation in content creation is an effective mechanism for mastery of content. Future residents taking this course will continue to build on this wiki, keeping content current, and thereby benefit from this collaborative teaching tool. PMID:23024891
Towards the integration of medical informatics education for clinicians into the medical curriculum.
Lungeanu, Diana; Tractenberg, Rochelle E; Bersan, Otilia S; Mihalas, George I
2009-01-01
In the context of an existing first year, one-semester mandatory course of medical informatics (MI) for medical students, we tested an interactive teaching approach in parallel with the traditional academic program. After six semesters (at the beginning of the clinical stage) we collected feedback from the former students in the two parallel programs (with anonymous questionnaires comprising both subjectively-rated items and open-ended questions). We conclude that an introductory course on information and communication technology and information skills can be useful at the beginning of the medical curriculum, while an interactive, problem-based-learning-type MI course should be included during the clinical stage. Early development of these skills, and their use/utility across the curriculum, are important aspects of integrating MI education into clinical training.
[A new vision of nursing: the evolution and development of nursing informatics].
Feng, Rung-Chuang; Yeh, Yu-Ting
2014-08-01
Technology development trends in the 21st century are increasingly focused on the development of interdisciplinary applications. Advanced information technology may be applied to integrate nursing care information, simplify nursing processes, and reduce the time spent on work tasks, thereby increasing the amount of time that clinical personnel are available to care for patients and ensuring that patients are provided with high-quality and personalized care services. The development of nursing information began in Taiwan in 2003 and has since expanded and thrived. The ability of nursing information to connect formerly insular national nursing communities promotes the international visibility of Taiwan. The rapid development of nursing information in Taiwan, resulting in the production of informative and outstanding results, has received worldwide attention. The Taiwan Nursing Informatics Association was established in 2006 to nurture nursing information professionals, develop and apply information technology in the health care domain, and facilitate international nursing information exchanges. The association actively promotes nursing information in the areas of administration, education, research, and clinical practice, thereby integrating nursing with empirical applications to enhance the service quality and management of nursing and increase the benefits of nursing teaching and research. To convert information into knowledge, the association develops individualized strategies for managing mobile care and employs an interagency network to exchange and reintegrate resources, establishing active, intelligent nursing based on network characteristics and an empirical foundation. The mid- and long-term objectives of the association involve introducing cloud computing and facilitating the meaningful use of nursing information in both public and government settings, thereby creating a milestone of developing and expanding nursing information unique to Taiwan.
Bits and bytes: the future of radiology lies in informatics and information technology.
Brink, James A; Arenson, Ronald L; Grist, Thomas M; Lewin, Jonathan S; Enzmann, Dieter
2017-09-01
Advances in informatics and information technology are sure to alter the practice of medical imaging and image-guided therapies substantially over the next decade. Each element of the imaging continuum will be affected by substantial increases in computing capacity coincident with the seamless integration of digital technology into our society at large. This article focuses primarily on areas where this IT transformation is likely to have a profound effect on the practice of radiology. • Clinical decision support ensures consistent and appropriate resource utilization. • Big data enables correlation of health information across multiple domains. • Data mining advances the quality of medical decision-making. • Business analytics allow radiologists to maximize the benefits of imaging resources.
Developing a Capstone Course within a Health Informatics Program
Hackbarth, Gary; Cata, Teuta; Cole, Laura
2012-01-01
This article discusses the ongoing development of a health informatics capstone program in a Midwest university from the hiring of a program coordinator to the development of a capstone course, through initial student results. University health informatics programs require a strong academic program to be successful but also require a spirited program coordinator to manage resources and organize an effective capstone course. This is particularly true of health informatics master's programs that support health industry career fields, whereby employers can locate and work with a pool of qualified applicants. The analysis of students’ logs confirms that students’ areas of focus and concern are consistent with course objectives and company work requirements during the work-study portion of the student capstone project. The article further discusses lessons learned and future improvements to be made in the health informatics capstone course. PMID:22783150
The Chief Clinical Informatics Officer (CCIO)
Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U
2016-01-01
Summary Introduction The emerging operational role of the “Chief Clinical Informatics Officer” (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). Background The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. Discussion An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. Conclusion A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science. PMID:27081413
Kannry, Joseph; Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U
2016-01-01
The emerging operational role of the "Chief Clinical Informatics Officer" (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science.
Eysenbach, Gunther
2010-01-01
Peer-reviewed journals remain important vehicles for knowledge transfer and dissemination in health informatics, yet, their format, processes and business models are changing only slowly. Up to the end of last century, it was common for individual researchers and scientific organizations to leave the business of knowledge transfer to professional publishers, signing away their rights to the works in the process, which in turn impeded wider dissemination. Traditional medical informatics journals are poorly cited and the visibility and uptake of articles beyond the medical informatics community remain limited. In 1999, the Journal of Medical Internet Research (JMIR; http://www.jmir.org) was launched, featuring several innovations including 1) ownership and copyright retained by the authors, 2) electronic-only, "lean" non-for-profit publishing, 3) openly accessible articles with a reversed business model (author pays instead of reader pays), 4) technological innovations such as automatic XML tagging and reference checking, on-the-fly PDF generation from XML, etc., enabling wide distribution in various bibliographic and full-text databases. In the past 10 years, despite limited resources, the journal has emerged as a leading journal in health informatics, and is presently ranked the top journal in the medical informatics and health services research categories by impact factor. The paper summarizes some of the features of the Journal, and uses bibliometric and access data to compare the influence of the Journal on the discipline of medical informatics and other disciplines. While traditional medical informatics journals are primarily cited by other Medical Informatics journals (33%-46% of citations), JMIR papers are to a more often cited by "end-users" (policy, public health, clinical journals), which may be partly attributable to the "open access advantage".
Toward a framework for computer-mediated collaborative design in medical informatics.
Patel, V L; Kaufman, D R; Allen, V G; Shortliffe, E H; Cimino, J J; Greenes, R A
1999-09-01
The development and implementation of enabling tools and methods that provide ready access to knowledge and information are among the central goals of medical informatics. The need for multi-institutional collaboration in the development of such tools and methods is increasingly being recognized. Collaboration involves communication, which typically involves individuals who work together at the same location. With the evolution of electronic modalities for communication, we seek to understand the role that such technologies can play in supporting collaboration, especially when the participants are geographically separated. Using the InterMed Collaboratory as a subject of study, we have analyzed their activities as an exercise in computer- and network-mediated collaborative design. We report on the cognitive, sociocultural, and logistical issues encountered when scientists from diverse organizations and backgrounds use communications technologies while designing and implementing shared products. Results demonstrate that it is important to match carefully the content with the mode of communication, identifying, for example, suitable uses of E-mail, conference calls, and face-to-face meetings. The special role of leaders in guiding and facilitating the group activities can also be seen, regardless of the communication setting in which the interactions occur. Most important is the proper use of technology to support the evolution of a shared vision of group goals and methods, an element that is clearly necessary before successful collaborative designs can proceed.
Safdari, Reza; Shahmoradi, Leila; Hosseini-beheshti, Molouk-sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad
2015-01-01
Introduction: Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. Materials and Methods: This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. Findings: In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics’ sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Results and Discussion: Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics. PMID:26635440
Wiesner, Martin; Griebel, Lena; Becker, Kurt; Pobiruchin, Monika
2016-01-01
Consumer Health Informatics (CHI) is a relatively new and interdisciplinary field in Medical Informatics. It focuses on consumer- rather than professional-centered services. However, the definitions and understanding of a) what is a "consumer"? or b) what is health technology in the context of CHI? and c) what factors and actors influence the usage of eHealth services? vary widely. The CHI special interest group (SIG) - associated with the German Association for Medical Informatics, Biometry and Epidemiology - conducted two workshops in 2015 to improve the common understanding on these topics. The workshop outcomes, the derived CHI-specific meta model and examples how to apply this model are presented in this paper. The model supports the definition of multi-actor contexts, as it not solely reflects the conventional patient-physician relationship but also allows for the description of second health market providers.
The state and profile of open source software projects in health and medical informatics.
Janamanchi, Balaji; Katsamakas, Evangelos; Raghupathi, Wullianallur; Gao, Wei
2009-07-01
Little has been published about the application profiles and development patterns of open source software (OSS) in health and medical informatics. This study explores these issues with an analysis of health and medical informatics related OSS projects on SourceForge, a large repository of open source projects. A search was conducted on the SourceForge website during the period from May 1 to 15, 2007, to identify health and medical informatics OSS projects. This search resulted in a sample of 174 projects. A Java-based parser was written to extract data for several of the key variables of each project. Several visually descriptive statistics were generated to analyze the profiles of the OSS projects. Many of the projects have sponsors, implying a growing interest in OSS among organizations. Sponsorship, we discovered, has a significant impact on project success metrics. Nearly two-thirds of the projects have a restrictive license type. Restrictive licensing may indicate tighter control over the development process. Our sample includes a wide range of projects that are at various stages of development (status). Projects targeted towards the advanced end user are primarily focused on bio-informatics, data formats, database and medical science applications. We conclude that there exists an active and thriving OSS development community that is focusing on health and medical informatics. A wide range of OSS applications are in development, from bio-informatics to hospital information systems. A profile of OSS in health and medical informatics emerges that is distinct and unique to the health care field. Future research can focus on OSS acceptance and diffusion and impact on cost, efficiency and quality of health care.
Informatics and the Clinical Laboratory
Jones, Richard G; Johnson, Owen A; Batstone, Gifford
2014-01-01
The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, ‘Informatics’ – the art and science of turning data into useful information – is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology – whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients – which requires critical assessment of the ever-increasing volume of information available – can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that there is a need to rethink the architecture of pathology systems and in particular to address the changed environment in which electronic patient record systems are maturing rapidly. The opportunity for laboratory-based informaticians to work collaboratively with clinical systems developers to embed clinically intelligent decision support systems should not be missed. PMID:25336763
A current perspective on medical informatics and health sciences librarianship
Perry, Gerald J.; Roderer, Nancy K.; Assar, Soraya
2005-01-01
Objective: The article offers a current perspective on medical informatics and health sciences librarianship. Narrative: The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Summary: Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as “boundary spanners,” incorporating human factors that unite technology with health care delivery. PMID:15858622
ERIC Educational Resources Information Center
International Academy for Information Management.
This document presents the proceedings of the International Academy for Information Management's International Conference on Informatics Education and Research (ICIER), held December 14-16, 2001 in New Orleans, Louisiana. The keynote address was given by Joseph A. Grace, Jr., founding and current President of the Louisiana Technology Council.…
Refining a self-assessment of informatics competency scale using Mokken scaling analysis.
Yoon, Sunmoo; Shaffer, Jonathan A; Bakken, Suzanne
2015-01-01
Healthcare environments are increasingly implementing health information technology (HIT) and those from various professions must be competent to use HIT in meaningful ways. In addition, HIT has been shown to enable interprofessional approaches to health care. The purpose of this article is to describe the refinement of the Self-Assessment of Nursing Informatics Competencies Scale (SANICS) using analytic techniques based upon item response theory (IRT) and discuss its relevance to interprofessional education and practice. In a sample of 604 nursing students, the 93-item version of SANICS was examined using non-parametric IRT. The iterative modeling procedure included 31 steps comprising: (1) assessing scalability, (2) assessing monotonicity, (3) assessing invariant item ordering, and (4) expert input. SANICS was reduced to an 18-item hierarchical scale with excellent reliability. Fundamental skills for team functioning and shared decision making among team members (e.g. "using monitoring systems appropriately," "describing general systems to support clinical care") had the highest level of difficulty, and "demonstrating basic technology skills" had the lowest difficulty level. Most items reflect informatics competencies relevant to all health professionals. Further, the approaches can be applied to construct a new hierarchical scale or refine an existing scale related to informatics attitudes or competencies for various health professions.
The Chinese Politics of Communication Technology: Utility, State Building and Control
ERIC Educational Resources Information Center
Su, Dan
2012-01-01
This study provides an examination into the formulation and construction of information and communication technology policy in China. It traces the rise of information technology and the "informatization" drive in China's political rhetoric, and identifies the changes and trajectory of information and communication technology in China's…
SWOT Analysis on Medical Informatics and Development Strategies
ERIC Educational Resources Information Center
Ma, Xiaoyan; Han, Zhongdong; Ma, Hua
2015-01-01
This article aims at clarifying the strategic significance of developing medical informatics, conducting SWOT analysis on this discipline and hence establishing the strategic objectives and focal points for its development.
Improving Evaluation to Address the Unintended Consequences of Health Information Technology:
Ammenwerth, E.; Hyppönen, H.; de Keizer, N.; Nykänen, P.; Rigby, M.; Scott, P.; Talmon, J.; Georgiou, A.
2016-01-01
Summary Background and objectives With growing use of IT by healthcare professionals and patients, the opportunity for any unintended effects of technology to disrupt care health processes and outcomes is intensified. The objectives of this position paper by the IMIA Working Group (WG) on Technology Assessment and Quality Development are to highlight how our ongoing initiatives to enhance evaluation are also addressing the unintended consequences of health IT. Methods Review of WG initiatives Results We argue that an evidence-based approach underpinned by rigorous evaluation is fundamental to the safe and effective use of IT, and for detecting and addressing its unintended consequences in a timely manner. We provide an overview of our ongoing initiatives to strengthen study design, execution and reporting by using evaluation frameworks and guidelines which can enable better characterization and monitoring of unintended consequences, including the Good Evaluation Practice Guideline in Health Informatics (GEP-HI) and the Statement on Reporting of Evaluation Studies in Health Informatics (STARE-HI). Indicators to benchmark the adoption and impact of IT can similarly be used to monitor unintended effects on healthcare structures, processes and outcome. We have also developed EvalDB, a web-based database of evaluation studies to promulgate evidence about unintended effects and are developing the content for courses to improve training in health IT evaluation. Conclusion Evaluation is an essential ingredient for the effective use of IT to improve healthcare quality and patient safety. WG resources and skills development initiatives can facilitate a proactive and evidence-based approach to detecting and addressing the unintended effects of health IT. PMID:27830232
Health-Enabling and Ambient Assistive Technologies: Past, Present, Future.
Haux, R; Koch, S; Lovell, N H; Marschollek, M; Nakashima, N; Wolf, K-H
2016-06-30
During the last decades, health-enabling and ambient assistive technologies became of considerable relevance for new informatics-based forms of diagnosis, prevention, and therapy. To describe the state of the art of health-enabling and ambient assistive technologies in 1992 and today, and its evolution over the last 25 years as well as to project where the field is expected to be in the next 25 years. In the context of this review, we define health-enabling and ambient assistive technologies as ambiently used sensor-based information and communication technologies, aiming at contributing to a person's health and health care as well as to her or his quality of life. Systematic review of all original articles with research focus in all volumes of the IMIA Yearbook of Medical Informatics. Surveying authors independently on key projects and visions as well as on their lessons learned in the context of health-enabling and ambient assistive technologies and summarizing their answers. Surveying authors independently on their expectations for the future and summarizing their answers. IMIA Yearbook papers containing statements on health-enabling and ambient assistive technologies appear first in 2002. These papers form a minor part of published research articles in medical informatics. However, during recent years the number of articles published has increased significantly. Key projects were identified. There was a clear progress on the use of technologies. However proof of diagnostic relevance and therapeutic efficacy remains still limited. Reforming health care processes and focussing more on patient needs are required. Health-enabling and ambient assistive technologies remain an important field for future health care and for interdisciplinary research. More and more publications assume that a person's home and their interaction therein, are becoming important components in health care provision, assessment, and management.
Health-Enabling and Ambient Assistive Technologies: Past, Present, Future
2016-01-01
Summary Background During the last decades, health-enabling and ambient assistive technologies became of considerable relevance for new informatics-based forms of diagnosis, prevention, and therapy. Objectives To describe the state of the art of health-enabling and ambient assistive technologies in 1992 and today, and its evolution over the last 25 years as well as to project where the field is expected to be in the next 25 years. In the context of this review, we define health-enabling and ambient assistive technologies as ambiently used sensor-based information and communication technologies, aiming at contributing to a person’s health and health care as well as to her or his quality of life. Methods Systematic review of all original articles with research focus in all volumes of the IMIA Yearbook of Medical Informatics. Surveying authors independently on key projects and visions as well as on their lessons learned in the context of health-enabling and ambient assistive technologies and summarizing their answers. Surveying authors independently on their expectations for the future and summarizing their answers. Results IMIA Yearbook papers containing statements on health-enabling and ambient assistive technologies appear first in 2002. These papers form a minor part of published research articles in medical informatics. However, during recent years the number of articles published has increased significantly. Key projects were identified. There was a clear progress on the use of technologies. However proof of diagnostic relevance and therapeutic efficacy remains still limited. Reforming health care processes and focussing more on patient needs are required. Conclusions Health-enabling and ambient assistive technologies remain an important field for future health care and for interdisciplinary research. More and more publications assume that a person‘s home and their interaction therein, are becoming important components in health care provision, assessment, and management. PMID:27362588
USSR Report, Cybernetics, Computers and Automation Technology
1987-04-02
Communication Channel (NTR: PROBLEMY I RESHENIYA, No 14, 22 Jul-4 Aug 86) 52 EDUCATION Informatics and the National Information Resource (I. Chebotaru...the method of actions, which were successful in the past. The experience of previous developments is implemented in the prototype programs. Many data...of the converter lining, due to reduction of ferroalloy consumption, oxygen consumption and energy resource consumption and due to a decrease of
Menopause on the Internet: building knowledge and community on-line.
MacPherson, K I
1997-09-01
Computers are ubiquitous throughout the developed world. Diverse discourses address the pros and cons of using this technology in higher education. Nursing has extensively used informatics but has not, as yet, been involved to any extent in teaching on the Internet. I argue that nurse educators should use computer technology to present substantive and rigorous courses that deal with complex issues, using menopause as an example. A for-credit menopause course I taught via e-mail is used to illustrate the possibility of building knowledge and a sense of community on the Internet.
Ellis, Beverley; Roberts, Jean; Cooper, Helen
2007-01-01
This case study report of the establishment of a national repository of multi-media materials describes the creation process, the challenges faced in putting it into operation and the opportunities for the future. The initial resource has been incorporated under standard library and knowledge management practices. A collaborative action research method was used with active experts in the domain to determine the requirements and priorities for further development. The National Health Informatics Collection (NatHIC) is now accessible and the further issues are being addressed by inclusion in future University and NHS strategic plans. Ultimately the Collection will link with other facilities that contribute to the description and maintenance of effective informatics in support of health globally. The issues raised about the National Health Informatics Collection as established in the UK have resonance with the challenges of capturing the overall historic development of an emerging discipline in any country.
Medical libraries, bioinformatics, and networked information: a coming convergence?
Lynch, C
1999-10-01
Libraries will be changed by technological and social developments that are fueled by information technology, bioinformatics, and networked information. Libraries in highly focused settings such as the health sciences are at a pivotal point in their development as the synthesis of historically diverse and independent information sources transforms health care institutions. Boundaries are breaking down between published literature and research data, between research databases and clinical patient data, and between consumer health information and professional literature. This paper focuses on the dynamics that are occurring with networked information sources and the roles that libraries will need to play in the world of medical informatics in the early twenty-first century.
The usability axiom of medical information systems.
Pantazi, Stefan V; Kushniruk, Andre; Moehr, Jochen R
2006-12-01
In this article we begin by connecting the concept of simplicity of user interfaces of information systems with that of usability, and the concept of complexity of the problem-solving in information systems with the concept of usefulness. We continue by stating "the usability axiom" of medical information technology: information systems must be, at the same time, usable and useful. We then try to show why, given existing technology, the axiom is a paradox and we continue with analysing and reformulating it several times, from more fundamental information processing perspectives. We underline the importance of the concept of representation and demonstrate the need for context-dependent representations. By means of thought experiments and examples, we advocate the need for context-dependent information processing and argue for the relevance of algorithmic information theory and case-based reasoning in this context. Further, we introduce the notion of concept spaces and offer a pragmatic perspective on context-dependent representations. We conclude that the efficient management of concept spaces may help with the solution to the medical information technology paradox. Finally, we propose a view of informatics centred on the concepts of context-dependent information processing and management of concept spaces that aligns well with existing knowledge centric definitions of informatics in general and medical informatics in particular. In effect, our view extends M. Musen's proposal and proposes a definition of Medical Informatics as context-dependent medical information processing. The axiom that medical information systems must be, at the same time, useful and usable, is a paradox and its investigation by means of examples and thought experiments leads to the recognition of the crucial importance of context-dependent information processing. On the premise that context-dependent information processing equates to knowledge processing, this view defines Medical Informatics as a context-dependent medical information processing which aligns well with existing knowledge centric definitions of our field.
Röhrig, R; Stausberg, J; Dugas, M
2013-01-01
The aim of this project is to develop a catalogue of competency-based learning objectives "Medical Informatics" for undergraduate medical education (abbreviated NKLM-MI in German). The development followed a multi-level annotation and consensus process. For each learning objective a reason why a physician needs this competence was required. In addition, each objective was categorized according to the competence context (A = covered by medical informatics, B = core subject of medical informatics, C = optional subject of medical informatics), the competence level (1 = referenced knowledge, 2 = applied knowledge, 3 = routine knowledge) and a CanMEDS competence role (medical expert, communicator, collaborator, manager, health advocate, professional, scholar). Overall 42 objectives in seven areas (medical documentation and information processing, medical classifications and terminologies, information systems in healthcare, health telematics and telemedicine, data protection and security, access to medical knowledge and medical signal-/image processing) were identified, defined and consented. With the NKLM-MI the competences in the field of medical informatics vital to a first year resident physician are identified, defined and operationalized. These competencies are consistent with the recommendations of the International Medical Informatics Association (IMIA). The NKLM-MI will be submitted to the National Competence-Based Learning Objectives for Undergraduate Medical Education. The next step is implementation of these objectives by the faculties.
Visibility of medical informatics regarding bibliometric indices and databases
2011-01-01
Background The quantitative study of the publication output (bibliometrics) deeply influences how scientific work is perceived (bibliometric visibility). Recently, new bibliometric indices and databases have been established, which may change the visibility of disciplines, institutions and individuals. This study examines the effects of the new indices on the visibility of Medical Informatics. Methods By objective criteria, three sets of journals are chosen, two representing Medical Informatics and a third addressing Internal Medicine as a benchmark. The availability of index data (index coverage) and the aggregate scores of these corpora are compared for journal-related (Journal impact factor, Eigenfactor metrics, SCImago journal rank) and author-related indices (Hirsch-index, Egghes G-index). Correlation analysis compares the dependence of author-related indices. Results The bibliometric visibility depended on the research focus and the citation database: Scopus covers more journals relevant for Medical Informatics than ISI/Thomson Reuters. Journals focused on Medical Informatics' methodology were negatively affected by the Eigenfactor metrics, while the visibility profited from an interdisciplinary research focus. The correlation between Hirsch-indices computed on citation databases and the Internet was strong. Conclusions The visibility of smaller technology-oriented disciplines like Medical Informatics is changed by the new bibliometric indices and databases possibly leading to suitably changed publication strategies. Freely accessible author-related indices enable an easy and adequate individual assessment. PMID:21496230
Twenty Years of Society of Medical Informatics of B&H and the Journal Acta Informatica Medica
Masic, Izet
2012-01-01
In 2012, Health/Medical informatics profession celebrates five jubilees in Bosnia and Herzegovina: a) Thirty five years from the introduction of the first automatic manipulation of data; b) Twenty five years from establishing Society for Medical Informatics BiH; c) Twenty years from establishing scientific and professional journal of the Society for Medical Informatics of Bosnia and Herzegovina „Acta Informatica Medica“; d) Twenty years from establishing first Cathdra for Medical Informatics on biomedical faculties in Bosnia and Herzegovina and e) Ten years from the introduction of “Distance learning” in medical curriculum. All of the five mentioned activities in the area of Medical informatics had special importance and gave appropriate contribution in the development of Health/Medical informatics in Bosnia And Herzegovina. PMID:23322947
Twenty years of society of medical informatics of b&h and the journal acta informatica medica.
Masic, Izet
2012-03-01
In 2012, Health/Medical informatics profession celebrates five jubilees in Bosnia and Herzegovina: a) Thirty five years from the introduction of the first automatic manipulation of data; b) Twenty five years from establishing Society for Medical Informatics BiH; c) Twenty years from establishing scientific and professional journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica"; d) Twenty years from establishing first Cathdra for Medical Informatics on biomedical faculties in Bosnia and Herzegovina and e) Ten years from the introduction of "Distance learning" in medical curriculum. All of the five mentioned activities in the area of Medical informatics had special importance and gave appropriate contribution in the development of Health/Medical informatics in Bosnia And Herzegovina.
The impact of informatics on nursing education: a review of the literature.
Ainsley, Bonnie; Brown, Abbie
2009-05-01
On the basis of a study by the Institute of Medicine, the current health care system is facing several challenges that may be addressed by changes in health professions education. The study focused on integration of five core competencies into health professions education, one of which was informatics. This critical analysis investigates current use of technology and online instructional strategies in nursing education. It also explores the potential impact of integration of informatics into nursing education to increase the cognitive skills of nurses to promote evidence-based nursing. Advantages and disadvantages of using online education in the instruction of nursing students and recommendations for best online practices in nursing education are discussed.
An overview of medical informatics education in China.
Hu, Dehua; Sun, Zhenling; Li, Houqing
2013-05-01
To outline the history of medical informatics education in the People's Republic of China, systematically analyze the current status of medical informatics education at different academic levels (bachelor's, master's, and doctoral), and suggest reasonable strategies for the further development of the field in China. The development of medical informatics education was divided into three stages, defined by changes in the specialty's name. Systematic searches of websites for material related to the specialty of medical informatics were then conducted. For undergraduate education, the websites surveyed included the website of the Ministry of Education of the People's Republic of China (MOE) and those of universities or colleges identified using the baidu.com search engine. For postgraduate education, the websites included China's Graduate Admissions Information Network (CGAIN) and the websites of the universities or their schools or faculties. Specialties were selected on the basis of three criteria: (1) for undergraduate education, the name of specialty or program was medical informatics or medical information or information management and information system; for postgraduate education, medical informatics or medical information; (2) the specialty was approved and listed by the MOE; (3) the specialty was set up by a medical college or medical university, or a school of medicine of a comprehensive university. The information abstracted from the websites included the year of program approval and listing, the university/college, discipline catalog, discipline, specialty, specialty code, objectives, and main courses. A total of 55 program offerings for undergraduate education, 27 for master's-level education, and 5 for PhD-level education in medical informatics were identified and assessed in China. The results indicate that medical informatics education, a specialty rooted in medical library and information science education in China, has grown significantly in that country over the past 10 years. Frequent changes in the specialty's name and an unclear identity have hampered the visibility of this educational specialty and impeded its development. There is a noticeable imbalance in the distribution of degree programs in medical informatics in different disciplines, with the majority falling under information management. There is also an uneven distribution of the specialty settings of medical informatics at the various academic levels (bachelor's, master's, and doctoral). In addition, the objectives and curriculum design of medical informatics education differ from one university to another and also from those of foreign universities or colleges. It is recommended that China (1) treat medical informatics as a priority "must-have" discipline to build in China, (2) establish its own independent, balanced degree programs, (3) set up a specialty of "medical informatics" under the "medicine" category, (4) explore curriculum integration with international medical informatics education, and (5) establish and improve medical informatics education system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A FASTQ compressor based on integer-mapped k-mer indexing for biologist.
Zhang, Yeting; Patel, Khyati; Endrawis, Tony; Bowers, Autumn; Sun, Yazhou
2016-03-15
Next generation sequencing (NGS) technologies have gained considerable popularity among biologists. For example, RNA-seq, which provides both genomic and functional information, has been widely used by recent functional and evolutionary studies, especially in non-model organisms. However, storing and transmitting these large data sets (primarily in FASTQ format) have become genuine challenges, especially for biologists with little informatics experience. Data compression is thus a necessity. KIC, a FASTQ compressor based on a new integer-mapped k-mer indexing method, was developed (available at http://www.ysunlab.org/kic.jsp). It offers high compression ratio on sequence data, outstanding user-friendliness with graphic user interfaces, and proven reliability. Evaluated on multiple large RNA-seq data sets from both human and plants, it was found that the compression ratio of KIC had exceeded all major generic compressors, and was comparable to those of the latest dedicated compressors. KIC enables researchers with minimal informatics training to take advantage of the latest sequence compression technologies, easily manage large FASTQ data sets, and reduce storage and transmission cost. Copyright © 2015 Elsevier B.V. All rights reserved.
Multicenter breast cancer collaborative registry.
Sherman, Simon; Shats, Oleg; Fleissner, Elizabeth; Bascom, George; Yiee, Kevin; Copur, Mehmet; Crow, Kate; Rooney, James; Mateen, Zubeena; Ketcham, Marsha A; Feng, Jianmin; Sherman, Alexander; Gleason, Michael; Kinarsky, Leo; Silva-Lopez, Edibaldo; Edney, James; Reed, Elizabeth; Berger, Ann; Cowan, Kenneth
2011-01-01
The Breast Cancer Collaborative Registry (BCCR) is a multicenter web-based system that efficiently collects and manages a variety of data on breast cancer (BC) patients and BC survivors. This registry is designed as a multi-tier web application that utilizes Java Servlet/JSP technology and has an Oracle 11g database as a back-end. The BCCR questionnaire has accommodated standards accepted in breast cancer research and healthcare. By harmonizing the controlled vocabulary with the NCI Thesaurus (NCIt) or Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT), the BCCR provides a standardized approach to data collection and reporting. The BCCR has been recently certified by the National Cancer Institute's Center for Biomedical Informatics and Information Technology (NCI CBIIT) as a cancer Biomedical Informatics Grid (caBIG(®)) Bronze Compatible product.The BCCR is aimed at facilitating rapid and uniform collection of critical information and biological samples to be used in developing diagnostic, prevention, treatment, and survivorship strategies against breast cancer. Currently, seven cancer institutions are participating in the BCCR that contains data on almost 900 subjects (BC patients and survivors, as well as individuals at high risk of getting BC).
Multicenter Breast Cancer Collaborative Registry
Sherman, Simon; Shats, Oleg; Fleissner, Elizabeth; Bascom, George; Yiee, Kevin; Copur, Mehmet; Crow, Kate; Rooney, James; Mateen, Zubeena; Ketcham, Marsha A.; Feng, Jianmin; Sherman, Alexander; Gleason, Michael; Kinarsky, Leo; Silva-Lopez, Edibaldo; Edney, James; Reed, Elizabeth; Berger, Ann; Cowan, Kenneth
2011-01-01
The Breast Cancer Collaborative Registry (BCCR) is a multicenter web-based system that efficiently collects and manages a variety of data on breast cancer (BC) patients and BC survivors. This registry is designed as a multi-tier web application that utilizes Java Servlet/JSP technology and has an Oracle 11g database as a back-end. The BCCR questionnaire has accommodated standards accepted in breast cancer research and healthcare. By harmonizing the controlled vocabulary with the NCI Thesaurus (NCIt) or Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT), the BCCR provides a standardized approach to data collection and reporting. The BCCR has been recently certified by the National Cancer Institute’s Center for Biomedical Informatics and Information Technology (NCI CBIIT) as a cancer Biomedical Informatics Grid (caBIG®) Bronze Compatible product. The BCCR is aimed at facilitating rapid and uniform collection of critical information and biological samples to be used in developing diagnostic, prevention, treatment, and survivorship strategies against breast cancer. Currently, seven cancer institutions are participating in the BCCR that contains data on almost 900 subjects (BC patients and survivors, as well as individuals at high risk of getting BC). PMID:21918596
Holden, Richard J; Kulanthaivel, Anand; Purkayastha, Saptarshi; Goggins, Kathryn M; Kripalani, Sunil
2017-12-01
Personas are a canonical user-centered design method increasingly used in health informatics research. Personas-empirically-derived user archetypes-can be used by eHealth designers to gain a robust understanding of their target end users such as patients. To develop biopsychosocial personas of older patients with heart failure using quantitative analysis of survey data. Data were collected using standardized surveys and medical record abstraction from 32 older adults with heart failure recently hospitalized for acute heart failure exacerbation. Hierarchical cluster analysis was performed on a final dataset of n=30. Nonparametric analyses were used to identify differences between clusters on 30 clustering variables and seven outcome variables. Six clusters were produced, ranging in size from two to eight patients per cluster. Clusters differed significantly on these biopsychosocial domains and subdomains: demographics (age, sex); medical status (comorbid diabetes); functional status (exhaustion, household work ability, hygiene care ability, physical ability); psychological status (depression, health literacy, numeracy); technology (Internet availability); healthcare system (visit by home healthcare, trust in providers); social context (informal caregiver support, cohabitation, marital status); and economic context (employment status). Tabular and narrative persona descriptions provide an easy reference guide for informatics designers. Personas development using approaches such as clustering of structured survey data is an important tool for health informatics professionals. We describe insights from our study of patients with heart failure, then recommend a generic ten-step personas development process. Methods strengths and limitations of the study and of personas development generally are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Informatic innovations in glycobiology: relevance to drug discovery.
Mamitsuka, Hiroshi
2008-02-01
The recent development and applications of tree-based informatics on glycans have accelerated the biological analysis on glycans, particularly from structural viewpoints. We review three major aspects of recent informatics innovations on glycan structures: maturity of well-organized databases on glycan structures linking with other biological information, implementation of glycan structure matching algorithms and extensive development of methods for mining frequent patterns from glycan structures.
Teaching Informatics to Prelicensure, RN-to-BSN, and Graduate Level Students.
Vottero, Beth
Teaching nursing informatics to students in associate, baccalaureate, RN-BSN, and graduate nursing programs poses challenges for curriculum design, as well as developing appropriate instruction and assessment methods. The current state of nursing informatics education provides opportunities for unique instructional design and assessment techniques. Key course content is provided with suggestions for teaching informatics that focus on leveling for prelicensure, RN-BSN, and graduate nursing programs.
Standard Health Level Seven for Odontological Digital Imaging.
Abril-Gonzalez, Mauricio; Portilla, Fernando A; Jaramillo-Mejia, Marta C
2017-01-01
A guide for the implementation of dental digital imaging reports was developed and validated through the International Standard of Health Informatics-Health Level Seven (HL7), achieving interoperability with an electronic system that keeps dental records. Digital imaging benefits patients, who can view previous close-ups of dental examinations; providers, because of greater efficiency in managing information; and insurers, because of improved accessibility, patient monitoring, and more efficient cost management. Finally, imaging is beneficial for the dentist who can be more agile in the diagnosis and treatment of patients using this tool. The guide was developed under the parameters of an HL7 standard. It was necessary to create a group of dentists and three experts in information and communication technologies from different institutions. Diagnostic images scanned with conventional radiology or from a radiovisiograph can be converted to Digital Imaging and Communications in Medicine (DICOM) format, while also retaining patient information. The guide shows how the information of the health record of the patient and the information of the dental image could be standardized in a Clinical Dental Record document using international informatics standard like HL7-V3-CDA document (dental document Level 2). Since it is an informatics standardized document, it could be sent, stored, or displayed using different devices-personal computers or mobile devices-independent of the platform used. Interoperability using dental images and dental record systems reduces adverse events, increases security for the patient, and makes more efficient use of resources. This article makes a contribution to the field of telemedicine in dental informatics. In addition to that, the results could be a reference for projects of electronic medical records when the dental documents are part of them.
The networked health enterprise: a vision for 2008.
Stead, W W
1998-01-01
Informatics and information technology hold the promise of a consumer-centered health enterprise--one that provides quality care at a cost society is willing to pay; one where need-based, adaptive, competency-based learning results in cost-effectiveness of health education; one where team-based health and learning on demand, coupled with monitoring of process outcomes and network access to expertise, guarantee quality. The barriers to this promise are the professional guilds, the cross-subsidies that support the health enterprise of 1998, and the lack of respect for privacy. Collectively, the informatics community needs to develop a compelling vision that will galvanize the health community to action. If the health community does not step up to this challenge, consumers will take advantage of disintermediation. Empowered by the network, they will go outside the system into hands that meet their needs.
Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru
Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie
2008-01-01
Background New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. Methods We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Results Forty-three participants enrolled in the course – 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1–5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Conclusion Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success. PMID:18194533
Milic, Natasa M; Ilic, Nikola; Stanisavljevic, Dejana M; Cirkovic, Andja M; Milin, Jelena S; Bukumiric, Zoran M; Milic, Nikola V; Savic, Marko D; Ristic, Sara M; Trajkovic, Goran Z
2018-01-01
Education is undergoing profound changes due to permanent technological innovations. This paper reports the results of a pilot study aimed at developing, implementing and evaluating the course, "Applicative Use of Information and Communication Technologies (ICT) in Medicine," upon medical school entry. The Faculty of Medicine, University of Belgrade, introduced a curriculum reform in 2014 that included the implementation of the course, "Applicative Use of ICT in Medicine" for first year medical students. The course was designed using a blended learning format to introduce the concepts of Web-based learning environments. Data regarding student knowledge, use and attitudes towards ICT were prospectively collected for the classes of 2015/16 and 2016/17. The teaching approach was supported by multimedia didactic materials using Moodle LMS. The overall quality of the course was also assessed. The five level Likert scale was used to measure attitudes related to ICT. In total, 1110 students were assessed upon medical school entry. A small number of students (19%) had previous experience with e-learning. Students were largely in agreement that informatics is needed in medical education, and that it is also useful for doctors (4.1±1.0 and 4.1±0.9, respectively). Ability in informatics and use of the Internet in education in the adjusted multivariate regression model were significantly associated with positive student attitudes toward ICT. More than 80% of students stated that they had learned to evaluate medical information and would use the Internet to search medical literature as an additional source for education. The majority of students (77%) agreed that a blended learning approach facilitates access to learning materials and enables time independent learning (72%). Implementing the blended learning course, "Applicative Use of ICT in Medicine," may bridge the gap between medicine and informatics upon medical school entry. Students displayed positive attitudes towards using ICT and gained adequate skills necessary to function effectively in an information-rich environment.
Ilic, Nikola; Stanisavljevic, Dejana M.; Cirkovic, Andja M.; Milin, Jelena S.; Bukumiric, Zoran M.; Milic, Nikola V.; Savic, Marko D.; Ristic, Sara M.; Trajkovic, Goran Z.
2018-01-01
Education is undergoing profound changes due to permanent technological innovations. This paper reports the results of a pilot study aimed at developing, implementing and evaluating the course, "Applicative Use of Information and Communication Technologies (ICT) in Medicine," upon medical school entry. The Faculty of Medicine, University of Belgrade, introduced a curriculum reform in 2014 that included the implementation of the course, “Applicative Use of ICT in Medicine” for first year medical students. The course was designed using a blended learning format to introduce the concepts of Web-based learning environments. Data regarding student knowledge, use and attitudes towards ICT were prospectively collected for the classes of 2015/16 and 2016/17. The teaching approach was supported by multimedia didactic materials using Moodle LMS. The overall quality of the course was also assessed. The five level Likert scale was used to measure attitudes related to ICT. In total, 1110 students were assessed upon medical school entry. A small number of students (19%) had previous experience with e-learning. Students were largely in agreement that informatics is needed in medical education, and that it is also useful for doctors (4.1±1.0 and 4.1±0.9, respectively). Ability in informatics and use of the Internet in education in the adjusted multivariate regression model were significantly associated with positive student attitudes toward ICT. More than 80% of students stated that they had learned to evaluate medical information and would use the Internet to search medical literature as an additional source for education. The majority of students (77%) agreed that a blended learning approach facilitates access to learning materials and enables time independent learning (72%). Implementing the blended learning course, "Applicative Use of ICT in Medicine," may bridge the gap between medicine and informatics upon medical school entry. Students displayed positive attitudes towards using ICT and gained adequate skills necessary to function effectively in an information-rich environment. PMID:29684042
Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru.
Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie
2008-01-14
New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Forty-three participants enrolled in the course - 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1-5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success.
Introducing information technologies into medical education: activities of the AAMC.
Salas, A A; Anderson, M B
1997-03-01
Previous articles in this column have discussed how new information technologies are revolutionizing medical education. In this article, two staff members from the Association of American Medical College's Division of Medical Education discuss how the Association (the AAMC) is working both to support the introduction of new technologies into medical education and to facilitate dialogue on information technology and curriculum issues among AAMC constituents and staff. The authors describe six AAMC initiatives related to computing in medical education: the Medical School Objectives Project, the National Curriculum Database Project, the Information Technology and Medical Education Project, a professional development program for chief information officers, the AAMC ACCESS Data Collection and Dissemination System, and the internal Staff Interest Group on Medical Informatics and Medical Education.
Health care, ethics, and information technologies.
Curtin, Leah
2002-06-01
This essay explores how ethics, computing, and health care intersect in medical informatics. It discusses the power technology places in the hands of health care professionals and the ethical problems they may encounter as a result of that power.
Reusable data in public health data-bases-problems encountered in Danish Children's Database.
Høstgaard, Anna Marie; Pape-Haugaard, Louise
2012-01-01
Denmark have unique health informatics databases e.g. "The Children's Database", which since 2009 holds data on all Danish children from birth until 17 years of age. In the current set-up a number of potential sources of errors exist - both technical and human-which means that the data is flawed. This gives rise to erroneous statistics and makes the data unsuitable for research purposes. In order to make the data usable, it is necessary to develop new methods for validating the data generation process at the municipal/regional/national level. In the present ongoing research project, two research areas are combined: Public Health Informatics and Computer Science, and both ethnographic as well as system engineering research methods are used. The project is expected to generate new generic methods and knowledge about electronic data collection and transmission in different social contexts and by different social groups and thus to be of international importance, since this is sparsely documented in the Public Health Informatics perspective. This paper presents the preliminary results, which indicate that health information technology used ought to be subject for redesign, where a thorough insight into the work practices should be point of departure.
Towards health informatics 3.0. Editorial.
Kulikowski, Casimir A; Geissbuhler, Antoine
2011-01-01
To provide an editorial introduction to the 2011 IMIA Yearbook of Medical Informatics with an overview of its contents and contributors. A brief overview of the main theme, and an outline of the purposes, contents, format, and acknowledgment of contributions for the 2011 IMIA Yearbook. This 2011 issue of the IMIA Yearbook highlights important developments in the development of Web 3.0 capabilities that are increasing in Health Informatics, impacting the activities in research, education and practice in this interdisciplinary field. There has been steady progress towards introducing semantics into informatics systems through more sophisticated representations of knowledge in their underlying information. Health Informatics 3.0 capabilities are identified from the recent literature, illustrated by selected papers published during the past 12 months, and articles reported by IMIA Working Groups. Surveys of the main research sub-fields in biomedical informatics in the Yearbook provide an overview of progress and current challenges across the spectrum of the discipline, focusing on Web 3.0 challenges and opportunities.
Sockolow, P S; Crawford, P R; Lehmann, H P
2012-01-01
Our forthcoming national experiment in increased health information technology (HIT) adoption funded by the American Recovery and Reinvestment Act of 2009 will require a comprehensive approach to evaluating HIT. The quality of evaluation studies of HIT to date reveals a need for broader evaluation frameworks that limits the generalizability of findings and the depth of lessons learned. Develop an informatics evaluation framework for health information technology (HIT) integrating components of health services research (HSR) evaluation and informatics evaluation to address identified shortcomings in available HIT evaluation frameworks. A systematic literature review updated and expanded the exhaustive review by Ammenwerth and deKeizer (AdK). From retained studies, criteria were elicited and organized into classes within a framework. The resulting Health Information Technology Research-based Evaluation Framework (HITREF) was used to guide clinician satisfaction survey construction, multi-dimensional analysis of data, and interpretation of findings in an evaluation of a vanguard community health care EHR. The updated review identified 128 electronic health record (EHR) evaluation studies and seven evaluation criteria not in AdK: EHR Selection/Development/Training; Patient Privacy Concerns; Unintended Consequences/ Benefits; Functionality; Patient Satisfaction with EHR; Barriers/Facilitators to Adoption; and Patient Satisfaction with Care. HITREF was used productively and was a complete evaluation framework which included all themes that emerged. We can recommend to future EHR evaluators that they consider adding a complete, research-based HIT evaluation framework, such as HITREF, to their evaluation tools suite to monitor HIT challenges as the federal government strives to increase HIT adoption.
From bed to bench: bridging from informatics practice to theory: an exploratory analysis.
Haux, R; Lehmann, C U
2014-01-01
In 2009, Applied Clinical Informatics (ACI)--focused on applications in clinical informatics--was launched as a companion journal to Methods of Information in Medicine (MIM). Both journals are official journals of the International Medical Informatics Association. To explore which congruencies and interdependencies exist in publications from theory to practice and from practice to theory and to determine existing gaps. Major topics discussed in ACI and MIM were analyzed. We explored if the intention of publishing companion journals to provide an information bridge from informatics theory to informatics practice and vice versa could be supported by this model. In this manuscript we will report on congruencies and interdependences from practice to theory and on major topics in MIM. Retrospective, prolective observational study on recent publications of ACI and MIM. All publications of the years 2012 and 2013 were indexed and analyzed. Hundred and ninety-six publications were analyzed (ACI 87, MIM 109). In MIM publications, modelling aspects as well as methodological and evaluation approaches for the analysis of data, information, and knowledge in biomedicine and health care were frequently raised - and often discussed from an interdisciplinary point of view. Important themes were ambient-assisted living, anatomic spatial relations, biomedical informatics as scientific discipline, boosting, coding, computerized physician order entry, data analysis, grid and cloud computing, health care systems and services, health-enabling technologies, health information search, health information systems, imaging, knowledge-based decision support, patient records, signal analysis, and web science. Congruencies between journals could be found in themes, but with a different focus on content. Interdependencies from practice to theory, found in these publications, were only limited. Bridging from informatics theory to practice and vice versa remains a major component of successful research and practice as well as a major challenge.
Discussion on informatization teaching of certain radar transmitter
NASA Astrophysics Data System (ADS)
Liang, Guanhui; Lv, Guizhou; Meng, Yafeng
2017-04-01
With the development of informatization, the traditional teaching method of certain radar transmitter is more and more difficult to meet the need of cultivating new type of high-quality military talents. This paper first analyzes the problems traditional teaching method of certain radar transmitter, and then puts forward the strategy of informatization teaching, and finally elaborates the concrete steps and contents of informatization teaching. Using the multimedia maintenance training system, information simulation training system and network courses and other informatization means, effectively improves the master degree to radar transmitter by trainees, but also lays a good foundation for repair in the next step.
Food Safety Informatics: A Public Health Imperative
Tucker, Cynthia A.; Larkin, Stephanie N.; Akers, Timothy A.
2011-01-01
To date, little has been written about the implementation of utilizing food safety informatics as a technological tool to protect consumers, in real-time, against foodborne illnesses. Food safety outbreaks have become a major public health problem, causing an estimated 48 million illnesses, 128,000 hospitalizations, and 3,000 deaths in the U.S. each year. Yet, government inspectors/regulators that monitor foodservice operations struggle with how to collect, organize, and analyze data; implement, monitor, and enforce safe food systems. Currently, standardized technologies have not been implemented to efficiently establish “near-in-time” or “just-in-time” electronic awareness to enhance early detection of public health threats regarding food safety. To address the potential impact of collection, organization and analyses of data in a foodservice operation, a wireless food safety informatics (FSI) tool was pilot tested at a university student foodservice center. The technological platform in this test collected data every six minutes over a 24 hour period, across two primary domains: time and temperatures within freezers, walk-in refrigerators and dry storage areas. The results of this pilot study briefly illustrated how technology can assist in food safety surveillance and monitoring by efficiently detecting food safety abnormalities related to time and temperatures so that efficient and proper response in “real time” can be addressed to prevent potential foodborne illnesses. PMID:23569605
Bioimage informatics for experimental biology
Swedlow, Jason R.; Goldberg, Ilya G.; Eliceiri, Kevin W.
2012-01-01
Over the last twenty years there have been great advances in light microscopy with the result that multi-dimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition are reportedly frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remains largely unsolved. Like the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges and discuss our own vision for future development of bioimage informatics solution. PMID:19416072
Medical informatics in morocco.
Bouhaddou, O; Bennani Othmani, M; Diouny, S
2013-01-01
Informatics is an essential tool for helping to transform healthcare from a paper-based to a digital sector. This article explores the state-of-the-art of health informatics in Morocco. Specifically, it aims to give a general overview of the Moroccan healthcare system, the challenges it is facing, and the efforts undertaken by the informatics community and Moroccan government in terms of education, research and practice to reform the country's health sector. Through the experience of establishing Medical Informatics as a medical specialty in 2008, creating a Moroccan Medical Informatics Association in 2010 and holding a first national congress took place in April 2012, the authors present their assessment of some important priorities for health informatics in Morocco. These Moroccan initiatives are facilitating collaboration in education, research, and implementation of clinical information systems. In particular, the stakeholders have recognized the need for a national coordinator office and the development of a national framework for standards and interoperability. For developing countries like Morocco, new health IT approaches like mobile health and trans-media health advertising could help optimize scarce resources, improve access to rural areas and focus on the most prevalent health problems, optimizing health care access, quality, and cost for Morocco population.
Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning
NASA Technical Reports Server (NTRS)
Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott
2014-01-01
The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.
The Informatics Opportunities at the Intersection of Patient Safety and Clinical Informatics
Kilbridge, Peter M.; Classen, David C.
2008-01-01
Health care providers have a basic responsibility to protect patients from accidental harm. At the institutional level, creating safe health care organizations necessitates a systematic approach. Effective use of informatics to enhance safety requires the establishment and use of standards for concept definitions and for data exchange, development of acceptable models for knowledge representation, incentives for adoption of electronic health records, support for adverse event detection and reporting, and greater investment in research at the intersection of informatics and patient safety. Leading organizations have demonstrated that health care informatics approaches can improve safety. Nevertheless, significant obstacles today limit optimal application of health informatics to safety within most provider environments. The authors offer a series of recommendations for addressing these challenges. PMID:18436896
Veterans Administration Databases
The Veterans Administration Information Resource Center provides database and informatics experts, customer service, expert advice, information products, and web technology to VA researchers and others.
Bahensky, James A; Moreau, Brian; Frieden, Rob; Ward, Marcia M
2008-01-01
Critical access hospitals often have limited financial and personnel resources to implement today's healthcare IT solutions. Two CAHs in rural Iowa overcame these obstacles and found innovative ways to implement information technology. These hospitals earned recognition from Hospitals & Health Network's Most Wired Magazine for excellence in business processes, customer service, safety and quality, work force management, and public health and safety. Though the hospitals come from different environments-one is part of a system and the other is independent-both exemplify best practices on how to use healthcare IT solutions; engage clinicians from a community setting in informatics decisions; integrate technology into an organization's strategic directions; and support healthcare IT environments.
Haux, Reinhold; Hein, Andreas; Kolb, Gerald; Künemund, Harald; Eichelberg, Marco
2014-01-01
This Special Issue of Informatics for Health and Social Care is presenting outcomes of the Lower Saxony Research Network Design of Environments for Ageing (abbreviated as GAL), probably one of the largest inter- and multidisciplinary research projects on aging and technology. In order to investigate and provide answers on whether new information and communication technologies can contribute to keeping, or even improving quality of life, health and self-sufficiency in ageing societies through new ways of living and new forms of care, GAL had been established as a five-year research project, running from 2008 to 2013. Ambient-assisted living technologies in personal and home environments were especially important. During the five years of research in GAL, more than seventy researchers from computer science, economics, engineering, geriatrics, gerontology, informatics, medicine, nursing science and rehabilitation pedagogy intensively collaborated in finding answers.
Eco-informatics for decision makers advancing a research agenda
Cushing, J.B.; Wilson, T.; Brandt, L.; Gregg, V.; Spengler, S.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schnase, J.L.; Schweik, C.; Sonntag, W.; ,
2005-01-01
Resource managers often face significant information technology (IT) problems when integrating ecological or environmental information to make decisions. At a workshop sponsored by the NSF and USGS in December 2004, university researchers, natural resource managers, and information managers met to articulate IT problems facing ecology and environmental decision makers. Decision making IT problems were identified in five areas: 1) policy, 2) data presentation, 3) data gaps, 4) tools, and 5) indicators. To alleviate those problems, workshop participants recommended specific informatics research in modeling and simulation, data quality, information integration and ontologies, and social and human aspects. This paper reports the workshop findings, and briefly compares these with research that traditionally falls under the emerging eco-informatics rubric. ?? Springer-Verlag Berlin Heidelberg 2005.
Imaging has enormous untapped potential to improve cancer research through software to extract and process morphometric and functional biomarkers. In the era of non-cytotoxic treatment agents, multi- modality image-guided ablative therapies and rapidly evolving computational resources, quantitative imaging software can be transformative in enabling minimally invasive, objective and reproducible evaluation of cancer treatment response. Post-processing algorithms are integral to high-throughput analysis and fine- grained differentiation of multiple molecular targets.
Sahoo, Satya S; Zhang, Guo-Qiang; Lhatoo, Samden D
2013-08-01
The epilepsy community increasingly recognizes the need for a modern classification system that can also be easily integrated with effective informatics tools. The 2010 reports by the United States President's Council of Advisors on Science and Technology (PCAST) identified informatics as a critical resource to improve quality of patient care, drive clinical research, and reduce the cost of health services. An effective informatics infrastructure for epilepsy, which is underpinned by a formal knowledge model or ontology, can leverage an ever increasing amount of multimodal data to improve (1) clinical decision support, (2) access to information for patients and their families, (3) easier data sharing, and (4) accelerate secondary use of clinical data. Modeling the recommendations of the International League Against Epilepsy (ILAE) classification system in the form of an epilepsy domain ontology is essential for consistent use of terminology in a variety of applications, including electronic health records systems and clinical applications. In this review, we discuss the data management issues in epilepsy and explore the benefits of an ontology-driven informatics infrastructure and its role in adoption of a "data-driven" paradigm in epilepsy research. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Sahoo, Satya S.; Zhang, Guo-Qiang; Lhatoo, Samden D.
2013-01-01
Summary The epilepsy community increasingly recognizes the need for a modern classification system that can also be easily integrated with effective informatics tools. The 2010 reports by the United States President's Council of Advisors on Science and Technology (PCAST) identified informatics as a critical resource to improve quality of patient care, drive clinical research, and reduce the cost of health services. An effective informatics infrastructure for epilepsy, which is underpinned by a formal knowledge model or ontology, can leverage an ever increasing amount of multimodal data to improve (1) clinical decision support, (2) access to information for patients and their families, (3) easier data sharing, and (4) accelerate secondary use of clinical data. Modeling the recommendations of the International League Against Epilepsy (ILAE) classification system in the form of an epilepsy domain ontology is essential for consistent use of terminology in a variety of applications, including electronic health records systems and clinical applications. In this review, we discuss the data management issues in epilepsy and explore the benefits of an ontology-driven informatics infrastructure and its role in adoption of a “data-driven” paradigm in epilepsy research. PMID:23647220
McIntosh, Leslie D; Zabarovskaya, Connie; Uhlmansiek, Mary
2015-01-01
Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders.
Are Visual Informatics Actually Useful in Practice: A Study in a Film Studies Context
NASA Astrophysics Data System (ADS)
Mohamad Ali, Nazlena; Smeaton, Alan F.
This paper describes our work in examining the question of whether providing a visual informatics application in an educational scenario, in particular, providing video content analysis, does actually yield real benefit in practice. We provide a new software tool in the domain of movie content analysis technologies for use by students of film studies students at Dublin City University, and we try to address the research question of measuring the 'benefit' from the use of these technologies to students. We examine their real practices in studying for the module using our advanced application as compared to using conventional DVD browsing of movie content. In carrying out this experiment, we found that students have better essay outcomes, higher satisfactions levels and the mean time spent on movie analyzing is longer with the new technologies.
Present and Future Trends in Consumer Health Informatics and Patient-Generated Health Data.
Lai, A M; Hsueh, P-Y S; Choi, Y K; Austin, R R
2017-08-01
Objectives: Consumer Health Informatics (CHI) and the use of Patient-Generated Health Data (PGHD) are rapidly growing focus areas in healthcare. The objective of this paper is to briefly review the literature that has been published over the past few years and to provide a sense of where the field is going. Methods: We searched PubMed and the ACM Digital Library for articles published between 2014 and 2016 on the topics of CHI and PGHD. The results of the search were screened for relevance and categorized into a set of common themes. We discuss the major topics covered in these articles. Results: We retrieved 65 articles from our PubMed query and 32 articles from our ACM Digital Library query. After a review of titles, we were left with 47 articles to conduct our full article survey of the activities in CHI and PGHD. We have summarized these articles and placed them into major categories of activity. Within the domain of consumer health informatics, articles focused on mobile health and patient-generated health data comprise the majority of the articles published in recent years. Conclusions: Current evidence indicates that technological advancements and the widespread availability of affordable consumer-grade devices are fueling research into using PGHD for better care. As we observe a growing number of (pilot) developments using various mobile health technologies to collect PGHD, major gaps still exist in how to use the data by both patients and providers. Further research is needed to understand the impact of PGHD on clinical outcomes. Georg Thieme Verlag KG Stuttgart.
Devoe, Jennifer E; Sears, Abigail
2013-01-01
Creating integrated, comprehensive care practices requires access to data and informatics expertise. Information technology (IT) resources are not readily available to individual practices. One model of shared IT resources and learning is a "patient-centered medical village." We describe the OCHIN Community Health Information Network as an example of this model; community practices have come together collectively to form an organization that leverages shared IT expertise, resources, and data, providing members with the means to fully capitalize on new technologies that support improved care. This collaborative facilitates the identification of "problem sheds" through surveillance of network-wide data, enables shared learning regarding best practices, and provides a "community laboratory" for practice-based research. As an example of a community of solution, OCHIN uses health IT and data-sharing innovations to enhance partnerships between public health leaders, clinicians in community health centers, informatics experts, and policy makers. OCHIN community partners benefit from the shared IT resource (eg, a linked electronic health record, centralized data warehouse, informatics, and improvement expertise). This patient-centered medical village provides (1) the collective mechanism to build community-tailored IT solutions, (2) "neighbors" to share data and improvement strategies, and (3) infrastructure to support innovations based on electronic health records across communities, using experimental approaches.
A Collaborative Data Scientist Framework for both Primary and Secondary Education
NASA Astrophysics Data System (ADS)
Branch, B. D.
2011-12-01
The earth science data educational pipeline may be dependent on K-20 outcomes. Thus, a challenge for earth science and space informatics education or generational knowledge transfer consideration may be a non-existing or cost prohibitive pedagogical earth science reality. Such may require a technological infrastructure, a validated assessment system, and collaboration among stakeholders of primary and secondary education. Moreover, the K-20 paradigms may engage separate science and technology preparation standards when fundamental informatics requires an integrated pedagogical approach. In simple terms, a collaborative earth science training program for a subset of disciplines may a pragmatics means for formal data scientist training that is sustainable as technology evolves and data-sharing policy becomes a norm of data literacy. As the Group Earth Observation Systems of Systems (GEOSS) has a 10-work plan, educational stakeholders may find funding avenues if government can see earth science data training as a valuable job skill and societal need. This proposed framework suggested that ontological literacy, database management and storage management and data sharing capability are fundamental informatics concepts of this proposed framework where societal engagement is incited. Here all STEM disciplines could incite an integrated approach to mature such as learning metrics in their matriculation and assessment systems. The NSF's Earth Cube and Europe's WISE may represent best cased for such framework implementation.
Raja Ikram, Raja Rina; Abd Ghani, Mohd Khanapi; Abdullah, Noraswaliza
2015-11-01
This paper shall first investigate the informatics areas and applications of the four Traditional Medicine systems - Traditional Chinese Medicine (TCM), Ayurveda, Traditional Arabic and Islamic Medicine and Traditional Malay Medicine. Then, this paper shall examine the national informatics infrastructure initiatives in the four respective countries that support the Traditional Medicine systems. Challenges of implementing informatics in Traditional Medicine Systems shall also be discussed. The literature was sourced from four databases: Ebsco Host, IEEE Explore, Proquest and Google scholar. The search term used was "Traditional Medicine", "informatics", "informatics infrastructure", "traditional Chinese medicine", "Ayurveda", "traditional Arabic and Islamic medicine", and "traditional malay medicine". A combination of the search terms above was also executed to enhance the searching process. A search was also conducted in Google to identify miscellaneous books, publications, and organization websites using the same terms. Amongst major advancements in TCM and Ayurveda are bioinformatics, development of Traditional Medicine databases for decision system support, data mining and image processing. Traditional Chinese Medicine differentiates itself from other Traditional Medicine systems with documented ISO Standards to support the standardization of TCM. Informatics applications in Traditional Arabic and Islamic Medicine are mostly ehealth applications that focus more on spiritual healing, Islamic obligations and prophetic traditions. Literature regarding development of health informatics to support Traditional Malay Medicine is still insufficient. Major informatics infrastructure that is common in China and India are automated insurance payment systems for Traditional Medicine treatment. National informatics infrastructure in Middle East and Malaysia mainly cater for modern medicine. Other infrastructure such as telemedicine and hospital information systems focus its implementation in modern medicine or are not implemented and strategized at a national level to support Traditional Medicine. Informatics may not be able to address all the emerging areas of Traditional Medicine because the concepts in Traditional Medicine system of medicine are different from modern system, though the aim may be same, i.e., to give relief to the patient. Thus, there is a need to synthesize Traditional Medicine systems and informatics with involvements from modern system of medicine. Future research works may include filling the gaps of informatics areas and integrate national informatics infrastructure with established Traditional Medicine systems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Paradigm Shift or Annoying Distraction
Spallek, H.; O’Donnell, J.; Clayton, M.; Anderson, P.; Krueger, A.
2010-01-01
Web 2.0 technologies, known as social media, social technologies or Web 2.0, have emerged into the mainstream. As they grow, these new technologies have the opportunity to influence the methods and procedures of many fields. This paper focuses on the clinical implications of the growing Web 2.0 technologies. Five developing trends are explored: information channels, augmented reality, location-based mobile social computing, virtual worlds and serious gaming, and collaborative research networks. Each trend is discussed based on their utilization and pattern of use by healthcare providers or healthcare organizations. In addition to explorative research for each trend, a vignette is presented which provides a future example of adoption. Lastly each trend lists several research challenge questions for applied clinical informatics. PMID:23616830
Workflow based framework for life science informatics.
Tiwari, Abhishek; Sekhar, Arvind K T
2007-10-01
Workflow technology is a generic mechanism to integrate diverse types of available resources (databases, servers, software applications and different services) which facilitate knowledge exchange within traditionally divergent fields such as molecular biology, clinical research, computational science, physics, chemistry and statistics. Researchers can easily incorporate and access diverse, distributed tools and data to develop their own research protocols for scientific analysis. Application of workflow technology has been reported in areas like drug discovery, genomics, large-scale gene expression analysis, proteomics, and system biology. In this article, we have discussed the existing workflow systems and the trends in applications of workflow based systems.
A Synthesis of Students' Theses in the Accredited HHSI Master's Programme.
Kinnunen, Ulla-Mari; Saranto, Kaija
2018-01-01
Education in Health Informatics (HI) has been a key priority to guarantee knowledge and skills for professionals working in healthcare settings. One of the early academic models to teach HI are the recommendations provided by the International Medical Informatics Association. The paper describes the curriculum developed for master's degrees and the status of a paradigm used in informatics education, as well as research in the health and human services fields. The aim is to synthesise the methodological focuses in students' theses and discuss the future needs for development. The paradigm guides informatics research. The research focuses, questions and applied research methods were coded for 152 master's degree theses. Based on the results, the most often used method was qualitative. The most frequent research area was steering and organising of information management in work processes. The results guide teachers in supervising the theses of the Health and Human Services Informatics (HHSI) programme and tutoring new students.
Biomedical and Health Informatics Education – the IMIA Years
2016-01-01
Summary Objective This paper presents the development of medical informatics education during the years from the establishment of the International Medical Informatics Association (IMIA) until today. Method A search in the literature was performed using search engines and appropriate keywords as well as a manual selection of papers. The search covered English language papers and was limited to search on papers title and abstract only. Results The aggregated papers were analyzed on the basis of the subject area, origin, time span, and curriculum development, and conclusions were drawn. Conclusions From the results, it is evident that IMIA has played a major role in comparing and integrating the Biomedical and Health Informatics educational efforts across the different levels of education and the regional distribution of educators and institutions. A large selection of references is presented facilitating future work on the field of education in biomedical and health informatics. PMID:27488405
Valdez, Rupa S; Holden, Richard J; Novak, Laurie L; Veinot, Tiffany C
2015-01-01
Designing patient-centered consumer health informatics (CHI) applications requires understanding and creating alignment with patients’ and their family members’ health-related activities, referred to here as ‘patient work’. A patient work approach to CHI draws on medical social science and human factors engineering models and simultaneously attends to patients, their family members, activities, and context. A patient work approach extends existing approaches to CHI design that are responsive to patients’ biomedical realities and personal skills and behaviors. It focuses on the embeddedness of patients’ health management in larger processes and contexts and prioritizes patients’ perspectives on illness management. Future research is required to advance (1) theories of patient work, (2) methods for assessing patient work, and (3) techniques for translating knowledge of patient work into CHI application design. Advancing a patient work approach within CHI is integral to developing and deploying consumer-facing technologies that are integrated with patients’ everyday lives. PMID:25125685
Biodiversity informatics: managing and applying primary biodiversity data.
Soberón, Jorge; Peterson, A Townsend
2004-01-01
Recently, advances in information technology and an increased willingness to share primary biodiversity data are enabling unprecedented access to it. By combining presences of species data with electronic cartography via a number of algorithms, estimating niches of species and their areas of distribution becomes feasible at resolutions one to three orders of magnitude higher than it was possible a few years ago. Some examples of the power of that technique are presented. For the method to work, limitations such as lack of high-quality taxonomic determination, precise georeferencing of the data and availability of high-quality and updated taxonomic treatments of the groups must be overcome. These are discussed, together with comments on the potential of these biodiversity informatics techniques not only for fundamental studies but also as a way for developing countries to apply state of the art bioinformatic methods and large quantities of data, in practical ways, to tackle issues of biodiversity management. PMID:15253354
Stead, William W.; Miller, Randolph A.; Musen, Mark A.; Hersh, William R.
2000-01-01
The vision of integrating information—from a variety of sources, into the way people work, to improve decisions and process—is one of the cornerstones of biomedical informatics. Thoughts on how this vision might be realized have evolved as improvements in information and communication technologies, together with discoveries in biomedical informatics, and have changed the art of the possible. This review identified three distinct generations of “integration” projects. First-generation projects create a database and use it for multiple purposes. Second-generation projects integrate by bringing information from various sources together through enterprise information architecture. Third-generation projects inter-relate disparate but accessible information sources to provide the appearance of integration. The review suggests that the ideas developed in the earlier generations have not been supplanted by ideas from subsequent generations. Instead, the ideas represent a continuum of progress along the three dimensions of workflow, structure, and extraction. PMID:10730596
Women's health nursing in the context of the National Health Information Infrastructure.
Jenkins, Melinda L; Hewitt, Caroline; Bakken, Suzanne
2006-01-01
Nurses must be prepared to participate in the evolving National Health Information Infrastructure and the changes that will consequently occur in health care practice and documentation. Informatics technologies will be used to develop electronic health records with integrated decision support features that will likely lead to enhanced health care quality and safety. This paper provides a summary of the National Health Information Infrastructure and highlights electronic health records and decision support systems within the context of evidence-based practice. Activities at the Columbia University School of Nursing designed to prepare nurses with the necessary informatics competencies to practice in a National Health Information Infrastructure-enabled health care system are described. Data are presented from electronic (personal digital assistant) encounter logs used in our Women's Health Nurse Practitioner program to support evidence-based advanced practice nursing care. Implications for nursing practice, education, and research in the evolving National Health Information Infrastructure are discussed.
The Biomarker Knowledge System Informatics Pilot Project goal will develop network interfaces among databases that contain information about existing clinical populations and biospecimens and data relating to those specimens that are important in biomarker assay validation. This protocol comprises one of two that will comprise the Moffitt participation in the Biomarker Knowledge System Informatics Pilot Project. THIS PROTOCOL (58) is the Sput-Epi Database.
The Informatics Challenges Facing Biobanks: A Perspective from a United Kingdom Biobanking Network
Groves, Martin; Jordan, Lee B.; Stobart, Hilary; Purdie, Colin A.; Thompson, Alastair M
2015-01-01
The challenges facing biobanks are changing from simple collections of materials to quality-assured fit-for-purpose clinically annotated samples. As a result, informatics awareness and capabilities of a biobank are now intrinsically related to quality. A biobank may be considered a data repository, in the form of raw data (the unprocessed samples), data surrounding the samples (processing and storage conditions), supplementary data (such as clinical annotations), and an increasing ethical requirement for biobanks to have a mechanism for researchers to return their data. The informatics capabilities of a biobank are no longer simply knowing sample locations; instead the capabilities will become a distinguishing factor in the ability of a biobank to provide appropriate samples. There is an increasing requirement for biobanking systems (whether in-house or commercially sourced) to ensure the informatics systems stay apace with the changes being experienced by the biobanking community. In turn, there is a requirement for the biobanks to have a clear informatics policy and directive that is embedded into the wider decision making process. As an example, the Breast Cancer Campaign Tissue Bank in the UK was a collaboration between four individual and diverse biobanks in the UK, and an informatics platform has been developed to address the challenges of running a distributed network. From developing such a system there are key observations about what can or cannot be achieved by informatics in isolation. This article will highlight some of the lessons learned during this development process. PMID:26418270
The Virginia Henderson International Nursing Library: resource for nurse administrators.
Graves, J R
1997-01-01
This article describes the major knowledge resource of the Virginia Henderson International Nursing Library, The Registry of Nursing. The first part of this article examines informatics issues and is accompanied by examples of retrieval from a typical bibliographic database and a retrieval from the Registry of Nursing Research using case mix, both as a subject heading and as a research variable. The second part of the article examines the interaction of informatics and technology used in the Registry and presents some other Library resources.
Integrating Electronic Health Record Competencies into Undergraduate Health Informatics Education.
Borycki, Elizabeth M; Griffith, Janessa; Kushniruk, Andre W
2016-01-01
In this paper we report on our findings arising from a qualitative, interview study of students' experiences in an undergraduate health informatics program. Our findings suggest that electronic health record competencies need to be integrated into an undergraduate curriculum. Participants suggested that there is a need to educate students about the use of the EHR, followed by best practices around interface design, workflow, and implementation with this work culminating in students spearheading the design of the technology as part of their educational program of study.
Application of multimedia image technology in engineering report demonstration system
NASA Astrophysics Data System (ADS)
Lili, Jiang
2018-03-01
With the rapid development of global economic integration, people’s strong desire for a wide range of global exchanges and interactions has been promoted, and there are more unprecedented convenient means for people to know the world and even to transform the world. At this stage, we realize that the traditional mode of work has become difficult to adapt to the changing trends of the world and informatization, multimedia, science and technology have become the mainstream of the times. Therefore, this paper will mainly analyze the present situation of the project report demonstration system and the key points of the work and put forward with pertinence specific application strategy of the integration with multimedia image technology.
Maintaining Registered Nurses' Currency in Informatics
ERIC Educational Resources Information Center
Strawn, Jennifer Alaine
2017-01-01
Technology has changed how registered nurses (RNs) provide care at the bedside. As more technologies are utilized to improve quality of care, safety of care, maximize efficiencies, and decrease costs of care, one must question how well the information technologies (IT) are fully integrated and utilized by the front-line bedside nurse in his or her…
ERIC Educational Resources Information Center
Marty, Paul F.
1999-01-01
Examines the sociotechnological impact of introducing advanced information technology into the Spurlock Museum, a museum of world history and culture at the University of Illinois. Addresses implementation of such methodologies as computer-supported cooperative work and computer-mediated communication in the museum environment. Emphasizes the…
Archived human tissues are an essential resource for translational research. Formalin-fixed, paraffin embedded (FFPE) tissues from cancer patients are used in a wide range of assays, including RT-PCR, SNP profiling, multiplex biomarkers, imaging biomarkers, targeted exome, whole exome, and whole genome sequencing. Remainder FFPE tissues generated during patient care are ‘retrospective'; use of these tissues under specific conditions does not require consent.
The Big Data Revolution: Opportunities for Chief Nurse Executives.
Remus, Sally
2016-01-01
Informatics competency adoption is a recognized issue across nursing roles in digital health practice settings. Further, it has been suggested that the health system's inability to reap the promised benefits of electronic health/patient records is, in part, a manifestation of inadequate development of informatics competency by chief nurse executives (CNEs) and other clinicians (Amendola 2008; Simpson 2013). This paper will focus on CNE informatics competency and nursing knowledge development as it pertains to the Big Data revolution. With the paper's aim of showing how CNEs armed with informatics competency can harness the full potential of Big Data offering new opportunities for nursing knowledge development in their clinical transformation roles as eHealth project sponsors. It is proposed that informatics-savvy CNEs are the new transformational leaders of the digital age who will have the advantage to successfully advocate for nurses in leading 21st-century health systems. Also, transformational CNEs armed with informatics competency will position nurses and the nursing profession to achieve its future vision, where nurses are perceived by patients and professionals alike as knowledge workers, providing the leadership essential for safe, quality care and demonstrating nursing's unique contributions to fiscal health through clinically relevant, evidence-based practices (McBride 2005b). Copyright © 2016 Longwoods Publishing.
Building the foundations of an informatics agenda for global health - 2011 workshop report.
Mirza, Muzna; Kratz, Mary; Medeiros, Donna; Pina, Jamie; Richards, Janise; Zhang, Xiaohui; Fraser, Hamish; Bailey, Christopher; Krishnamurthy, Ramesh
2012-01-01
Strengthening the capacity of public health systems to protect and promote the health of the global population continues to be essential in an increasingly connected world. Informatics practices and principles can play an important role for improving global health response capacity. A critical step is to develop an informatics agenda for global health so that efforts can be prioritized and important global health issues addressed. With the aim of building a foundation for this agenda, the authors developed a workshop to examine the evidence in this domain, recognize the gaps, and document evidence-based recommendations. On 21 August 2011, at the 2011 Public Health Informatics Conference in Atlanta, GA, USA, a four-hour interactive workshop was conducted with 85 participants from 15 countries representing governmental organizations, private sector companies, academia, and non-governmental organizations. The workshop discussion followed an agenda of a plenary session - planning and agenda setting - and four tracks: Policy and governance; knowledge management, collaborative networks and global partnerships; capacity building; and globally reusable resources: metrics, tools, processes, templates, and digital assets. Track discussions examined the evidence base and the participants' experience to gather information about the current status, compelling and potential benefits, challenges, barriers, and gaps for global health informatics as well as document opportunities and recommendations. This report provides a summary of the discussions and key recommendations as a first step towards building an informatics agenda for global health. Attention to the identified topics and issues is expected to lead to measurable improvements in health equity, health outcomes, and impacts on population health. We propose the workshop report be used as a foundation for the development of the full agenda and a detailed roadmap for global health informatics activities based on further contribution from key stakeholders. The global health informatics agenda and roadmap can provide guidance to countries for developing and enhancing their individual and regional agendas.
Building the Foundations of an Informatics Agenda for Global Health - 2011 Workshop Report
Mirza, Muzna; Kratz, Mary; Medeiros, Donna; Pina, Jamie; Richards, Janise; Zhang, Xiaohui; Fraser, Hamish; Bailey, Christopher; Krishnamurthy, Ramesh
2012-01-01
Strengthening the capacity of public health systems to protect and promote the health of the global population continues to be essential in an increasingly connected world. Informatics practices and principles can play an important role for improving global health response capacity. A critical step is to develop an informatics agenda for global health so that efforts can be prioritized and important global health issues addressed. With the aim of building a foundation for this agenda, the authors developed a workshop to examine the evidence in this domain, recognize the gaps, and document evidence-based recommendations. On 21 August 2011, at the 2011 Public Health Informatics Conference in Atlanta, GA, USA, a four-hour interactive workshop was conducted with 85 participants from 15 countries representing governmental organizations, private sector companies, academia, and non-governmental organizations. The workshop discussion followed an agenda of a plenary session - planning and agenda setting - and four tracks: Policy and governance; knowledge management, collaborative networks and global partnerships; capacity building; and globally reusable resources: metrics, tools, processes, templates, and digital assets. Track discussions examined the evidence base and the participants’ experience to gather information about the current status, compelling and potential benefits, challenges, barriers, and gaps for global health informatics as well as document opportunities and recommendations. This report provides a summary of the discussions and key recommendations as a first step towards building an informatics agenda for global health. Attention to the identified topics and issues is expected to lead to measurable improvements in health equity, health outcomes, and impacts on population health. We propose the workshop report be used as a foundation for the development of the full agenda and a detailed roadmap for global health informatics activities based on further contribution from key stakeholders. The global health informatics agenda and roadmap can provide guidance to countries for developing and enhancing their individual and regional agendas. PMID:23569628
Bright, T J
2013-01-01
Many informatics studies use content analysis to generate functional requirements for system development. Explication of this translational process from qualitative data to functional requirements can strengthen the understanding and scientific rigor when applying content analysis in informatics studies. To describe a user-centered approach transforming emergent themes derived from focus group data into functional requirements for informatics solutions and to illustrate these methods to the development of an antibiotic clinical decision support system (CDS). THE APPROACH CONSISTED OF FIVE STEPS: 1) identify unmet therapeutic planning information needs via Focus Group Study-I, 2) develop a coding framework of therapeutic planning themes to refine the domain scope to antibiotic therapeutic planning, 3) identify functional requirements of an antibiotic CDS system via Focus Group Study-II, 4) discover informatics solutions and functional requirements from coded data, and 5) determine the types of information needed to support the antibiotic CDS system and link with the identified informatics solutions and functional requirements. The coding framework for Focus Group Study-I revealed unmet therapeutic planning needs. Twelve subthemes emerged and were clustered into four themes; analysis indicated a need for an antibiotic CDS intervention. Focus Group Study-II included five types of information needs. Comments from the Barrier/Challenge to information access and Function/Feature themes produced three informatics solutions and 13 functional requirements of an antibiotic CDS system. Comments from the Patient, Institution, and Domain themes generated required data elements for each informatics solution. This study presents one example explicating content analysis of focus group data and the analysis process to functional requirements from narrative data. Illustration of this 5-step method was used to develop an antibiotic CDS system, resolving unmet antibiotic prescribing needs. As a reusable approach, these techniques can be refined and applied to resolve unmet information needs with informatics interventions in additional domains.
Bright, T.J.
2013-01-01
Summary Background Many informatics studies use content analysis to generate functional requirements for system development. Explication of this translational process from qualitative data to functional requirements can strengthen the understanding and scientific rigor when applying content analysis in informatics studies. Objective To describe a user-centered approach transforming emergent themes derived from focus group data into functional requirements for informatics solutions and to illustrate these methods to the development of an antibiotic clinical decision support system (CDS). Methods The approach consisted of five steps: 1) identify unmet therapeutic planning information needs via Focus Group Study-I, 2) develop a coding framework of therapeutic planning themes to refine the domain scope to antibiotic therapeutic planning, 3) identify functional requirements of an antibiotic CDS system via Focus Group Study-II, 4) discover informatics solutions and functional requirements from coded data, and 5) determine the types of information needed to support the antibiotic CDS system and link with the identified informatics solutions and functional requirements. Results The coding framework for Focus Group Study-I revealed unmet therapeutic planning needs. Twelve subthemes emerged and were clustered into four themes; analysis indicated a need for an antibiotic CDS intervention. Focus Group Study-II included five types of information needs. Comments from the Barrier/Challenge to information access and Function/Feature themes produced three informatics solutions and 13 functional requirements of an antibiotic CDS system. Comments from the Patient, Institution, and Domain themes generated required data elements for each informatics solution. Conclusion This study presents one example explicating content analysis of focus group data and the analysis process to functional requirements from narrative data. Illustration of this 5-step method was used to develop an antibiotic CDS system, resolving unmet antibiotic prescribing needs. As a reusable approach, these techniques can be refined and applied to resolve unmet information needs with informatics interventions in additional domains. PMID:24454586
ERIC Educational Resources Information Center
Hilty, Donald M.; Hales, Deborah J.; Briscoe, Greg; Benjamin, Sheldon; Boland, Robert J.; Luo, John S.; Chan, Carlyle H.; Kennedy, Robert S.; Karlinsky, Harry; Gordon, Daniel B.; Yager, Joel; Yellowlees, Peter M.
2006-01-01
Objective: This article provides a brief overview of important issues for educators regarding medical education and technology. Methods: The literature describes key concepts, prototypical technology tools, and model programs. A work group of psychiatric educators was convened three times by phone conference to discuss the literature. Findings…
A molecular informatics view on best practice in multi-parameter compound optimization.
Lusher, Scott J; McGuire, Ross; Azevedo, Rita; Boiten, Jan-Willem; van Schaik, Rene C; de Vlieg, Jacob
2011-07-01
The difference between biologically active molecules and drugs is that the latter balance an array of related and unrelated properties required for administration to patients. Inevitability, during optimization, some of these multiple factors will conflict. Although informatics has a crucial role in addressing the challenges of modern compound optimization, it is arguably still undervalued and underutilized. We present here some of the basic requirements of multi-parameter drug design, the crucial role of informatics and examples of favorable practice. The most crucial of these best practices are the need for informaticians to align their technologies and insights directly to discovery projects and for all scientists in drug discovery to become more proficient in the use of in silico methods. Copyright © 2011 Elsevier Ltd. All rights reserved.
Discovery of Novel NOx Catalysts for CIDI Applications by High-throughput Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blint, Richard J.
DOE project DE-PS26-00NT40758 has developed very active, lean exhaust, NOx reduction catalysts that have been tested on the discovery system, laboratory reactors and engine dynamometer systems. The goal of this project is the development of effective, affordable NOx reduction catalysts for lean combustion engines in the US light duty vehicle market which can meet Tier II emission standards with hydrocarbons based reductants for reducing NOx. General Motors (prime contractor) along with subcontractors BASF (Engelhard) (a catalytic converter developer) and ACCELRYS (an informatics supplier) carried out this project which began in August of 2002. BASF (Engelhard) has run over 16,000 testsmore » of 6100 possible catalytic materials on a high throughput discovery system suitable for automotive catalytic materials. Accelrys developed a new database informatics system which allowed material tracking and data mining. A program catalyst was identified and evaluated at all levels of the program. Dynamometer evaluations of the program catalyst both with and without additives show 92% NOx conversions on the HWFET, 76% on the US06, 60% on the cold FTP and 65% on the Set 13 heavy duty test using diesel fuel. Conversions of over 92% on the heavy duty FTP using ethanol as a second fluid reductant have been measured. These can be competitive with both of the alternative lean NOx reduction technologies presently in the market. Conversions of about 80% were measured on the EUDC for lean gasoline applications without using active dosing to adjust the C:N ratio for optimum NOx reduction at all points in the certification cycle. A feasibility analysis has been completed and demonstrates the advantages and disadvantages of the technology using these materials compared with other potential technologies. The teaming agreements among the partners contain no obstacles to commercialization of new technologies to any potential catalyst customers.« less
Eppig, Janan T
2017-07-01
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.
Eppig, Janan T.
2017-01-01
Abstract The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. PMID:28838066
McIntosh, Leslie D.; Zabarovskaya, Connie; Uhlmansiek, Mary
2015-01-01
Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders. PMID:26306252
Byrd, Gary D; Winkelstein, Peter
2014-10-01
Based on the authors' shared interest in the interprofessional challenges surrounding health information management, this study explores the degree to which librarians, informatics professionals, and core health professionals in medicine, nursing, and public health share common ethical behavior norms grounded in moral principles. Using the "Principlism" framework from a widely cited textbook of biomedical ethics, the authors analyze the statements in the ethical codes for associations of librarians (Medical Library Association [MLA], American Library Association, and Special Libraries Association), informatics professionals (American Medical Informatics Association [AMIA] and American Health Information Management Association), and core health professionals (American Medical Association, American Nurses Association, and American Public Health Association). This analysis focuses on whether and how the statements in these eight codes specify core moral norms (Autonomy, Beneficence, Non-Maleficence, and Justice), core behavioral norms (Veracity, Privacy, Confidentiality, and Fidelity), and other norms that are empirically derived from the code statements. These eight ethical codes share a large number of common behavioral norms based most frequently on the principle of Beneficence, then on Autonomy and Justice, but rarely on Non-Maleficence. The MLA and AMIA codes share the largest number of common behavioral norms, and these two associations also share many norms with the other six associations. The shared core of behavioral norms among these professions, all grounded in core moral principles, point to many opportunities for building effective interprofessional communication and collaboration regarding the development, management, and use of health information resources and technologies.
NASA Technical Reports Server (NTRS)
Arnold, S. M.
2006-01-01
Materials property information such as composition and thermophysical/mechanical properties abound in the literature. Oftentimes, however, the corresponding response curves from which these data are determined are missing or at the very least difficult to retrieve. Further, the paradigm for collecting materials property information has historically centered on (1) properties for materials comparison/selection purposes and (2) input requirements for conventional design/analysis methods. However, just as not all materials are alike or equal, neither are all constitutive models (and thus design/ analysis methods) equal; each model typically has its own specific and often unique required materials parameters, some directly measurable and others indirectly measurable. Therefore, the type and extent of materials information routinely collected is not always sufficient to meet the current, much less future, needs of the materials modeling community. Informatics has been defined as the science concerned with gathering, manipulating, storing, retrieving, and classifying recorded information. A key aspect of informatics is its focus on understanding problems and applying information technology as needed to address those problems. The primary objective of this article is to highlight the need for a paradigm shift in materials data collection, analysis, and dissemination so as to maximize the impact on both practitioners and researchers. Our hope is to identify and articulate what constitutes "sufficient" data content (i.e., quality and quantity) for developing, characterizing, and validating sophisticated nonlinear time- and history-dependent (hereditary) constitutive models. Likewise, the informatics infrastructure required for handling the potentially massive amounts of materials data will be discussed.
Veinot, Tiffany C; Campbell, Terrance R; Kruger, Daniel J; Grodzinski, Alison
2013-01-01
We investigated the user requirements of African-American youth (aged 14-24 years) to inform the design of a culturally appropriate, network-based informatics intervention for the prevention of HIV and other sexually transmitted infections (STI). We conducted 10 focus groups with 75 African-American youth from a city with high HIV/STI prevalence. Data analyses involved coding using qualitative content analysis procedures and memo writing. Unexpectedly, the majority of participants' design recommendations concerned trust. Youth expressed distrust towards people and groups, which was amplified within the context of information technology-mediated interactions about HIV/STI. Participants expressed distrust in the reliability of condoms and the accuracy of HIV tests. They questioned the benevolence of many institutions, and some rejected authoritative HIV/STI information. Therefore, reputational information, including rumor, influenced HIV/STI-related decision making. Participants' design requirements also focused on trust-related concerns. Accordingly, we developed a novel trust-centered design framework to guide intervention design. Current approaches to online trust for health informatics do not consider group-level trusting patterns. Yet, trust was the central intervention-relevant issue among African-American youth, suggesting an important focus for culturally informed design. Our design framework incorporates: intervention objectives (eg, network embeddedness, participation); functional specifications (eg, decision support, collective action, credible question and answer services); and interaction design (eg, member control, offline network linkages, optional anonymity). Trust is a critical focus for HIV/STI informatics interventions for young African Americans. Our design framework offers practical, culturally relevant, and systematic guidance to designers to reach this underserved group better.
Byrd, Gary D.; Winkelstein, Peter
2014-01-01
Objective: Based on the authors' shared interest in the interprofessional challenges surrounding health information management, this study explores the degree to which librarians, informatics professionals, and core health professionals in medicine, nursing, and public health share common ethical behavior norms grounded in moral principles. Methods: Using the “Principlism” framework from a widely cited textbook of biomedical ethics, the authors analyze the statements in the ethical codes for associations of librarians (Medical Library Association [MLA], American Library Association, and Special Libraries Association), informatics professionals (American Medical Informatics Association [AMIA] and American Health Information Management Association), and core health professionals (American Medical Association, American Nurses Association, and American Public Health Association). This analysis focuses on whether and how the statements in these eight codes specify core moral norms (Autonomy, Beneficence, Non-Maleficence, and Justice), core behavioral norms (Veracity, Privacy, Confidentiality, and Fidelity), and other norms that are empirically derived from the code statements. Results: These eight ethical codes share a large number of common behavioral norms based most frequently on the principle of Beneficence, then on Autonomy and Justice, but rarely on Non-Maleficence. The MLA and AMIA codes share the largest number of common behavioral norms, and these two associations also share many norms with the other six associations. Implications: The shared core of behavioral norms among these professions, all grounded in core moral principles, point to many opportunities for building effective interprofessional communication and collaboration regarding the development, management, and use of health information resources and technologies. PMID:25349543
The impact of Health Information Technology (I-HIT) Scale: the Australian results.
Cook, Robyn; Foster, Joanne
2009-01-01
One of role of the nurse in the clinical setting is that of co-ordinating communication across the healthcare team. On a daily basis nurses interact with the person receiving care, their family members, and multiple care providers thus placing the nurse in the central position with access to a vast array of information on the person. Through this nurses have historically functioned as "information repositories". With the advent of Health Information Technology (HIT) tools there is a potential that HIT could impact interdisciplinary communication, practice efficiency and effectiveness, relationships and workflow in acute care settings [1][3]. In 2005, the HIMSS Nursing Informatics Community developed the I-HIT Scale to measure the impact of HIT on the nursing role and interdisciplinary communication in USA hospitals. In 2007, nursing informatics colleagues from Australia, Finland, Ireland, New Zealand, Scotland and the USA formed a research collaborative to validate the I-HIT in six additional countries. This paper will discuss the background, methodology, results and implications from the Australian I-HIT survey of over 1,100 nurses. The results are currently being analyzed and will be presented at the conference.
Information Technology Outside Health Care
Tuttle, Mark S.
1999-01-01
Non-health-care uses of information technology (IT) provide important lessons for health care informatics that are often overlooked because of the focus on the ways in which health care is different from other domains. Eight examples of IT use outside health care provide a context in which to examine the content and potential relevance of these lessons. Drawn from personal experience, five books, and two interviews, the examples deal with the role of leadership, academia, the private sector, the government, and individuals working in large organizations. The interviews focus on the need to manage technologic change. The lessons shed light on how to manage complexity, create and deploy standards, empower individuals, and overcome the occasional “wrongness” of conventional wisdom. One conclusion is that any health care informatics self-examination should be outward-looking and focus on the role of health care IT in the larger context of the evolving uses of IT in all domains. PMID:10495095
An Assessment of Imaging Informatics for Precision Medicine in Cancer.
Chennubhotla, C; Clarke, L P; Fedorov, A; Foran, D; Harris, G; Helton, E; Nordstrom, R; Prior, F; Rubin, D; Saltz, J H; Shalley, E; Sharma, A
2017-08-01
Objectives: Precision medicine requires the measurement, quantification, and cataloging of medical characteristics to identify the most effective medical intervention. However, the amount of available data exceeds our current capacity to extract meaningful information. We examine the informatics needs to achieve precision medicine from the perspective of quantitative imaging and oncology. Methods: The National Cancer Institute (NCI) organized several workshops on the topic of medical imaging and precision medicine. The observations and recommendations are summarized herein. Results: Recommendations include: use of standards in data collection and clinical correlates to promote interoperability; data sharing and validation of imaging tools; clinician's feedback in all phases of research and development; use of open-source architecture to encourage reproducibility and reusability; use of challenges which simulate real-world situations to incentivize innovation; partnership with industry to facilitate commercialization; and education in academic communities regarding the challenges involved with translation of technology from the research domain to clinical utility and the benefits of doing so. Conclusions: This article provides a survey of the role and priorities for imaging informatics to help advance quantitative imaging in the era of precision medicine. While these recommendations were drawn from oncology, they are relevant and applicable to other clinical domains where imaging aids precision medicine. Georg Thieme Verlag KG Stuttgart.
A short history of the beginnings of hospital information systems in Argentina.
Yácubsohn, V
2012-01-01
To describe the development of early health information systems in Argentina and their impact on the development of professional societies in the discipline The first hospital information systems and health surveillance systems in Argentina are described and related to the rise of professional organizations for health informatics. The early health information systems in Argentina are related to precursor developments in medical informatics. Argentina saw a number of hospital information systems developed starting in 1977, which had an important influence on the practice and experience in medical informatics in the country, and the participation of Argentine professionals in national, regional, and international activities in the field.
Design and evaluation of the ONC health information technology curriculum
Mohan, Vishnu; Abbott, Patricia; Acteson, Shelby; Berner, Eta S; Devlin, Corkey; Hammond, William E; Kukafka, Rita; Hersh, William
2014-01-01
Objective As part of the Heath Information Technology for Economic and Clinical Health (HITECH) Act, the Office of the National Coordinator for Health Information Technology (ONC) implemented its Workforce Development Program, which included initiatives to train health information technology (HIT) professionals in 12 workforce roles, half of them in community colleges. To achieve this, the ONC tasked five universities with established informatics programs with creating curricular materials that could be used by community colleges. The five universities created 20 components that were made available for downloading from the National Training and Dissemination Center (NTDC) website. This paper describes an evaluation of the curricular materials by its intended audience of educators. Methods We measured the quantity of downloads from the NTDC site and administered a survey about the curricular materials to its registered users to determine use patterns and user characteristics. The survey was evaluated using mixed methods. Registered users downloaded nearly half a million units or components from the NTDC website. We surveyed these 9835 registered users. Results 1269 individuals completed all or part of the survey, of whom 339 identified themselves as educators (26.7% of all respondents). This paper addresses the survey responses of educators. Discussion Successful aspects of the curriculum included its breadth, convenience, hands-on and course planning capabilities. Several areas were identified for potential improvement. Conclusions The ONC HIT curriculum met its goals for community college programs and will likely continue to be a valuable resource for the larger informatics community in the future. PMID:23831832
Design and evaluation of the ONC health information technology curriculum.
Mohan, Vishnu; Abbott, Patricia; Acteson, Shelby; Berner, Eta S; Devlin, Corkey; Hammond, William E; Kukafka, Rita; Hersh, William
2014-01-01
As part of the Heath Information Technology for Economic and Clinical Health (HITECH) Act, the Office of the National Coordinator for Health Information Technology (ONC) implemented its Workforce Development Program, which included initiatives to train health information technology (HIT) professionals in 12 workforce roles, half of them in community colleges. To achieve this, the ONC tasked five universities with established informatics programs with creating curricular materials that could be used by community colleges. The five universities created 20 components that were made available for downloading from the National Training and Dissemination Center (NTDC) website. This paper describes an evaluation of the curricular materials by its intended audience of educators. We measured the quantity of downloads from the NTDC site and administered a survey about the curricular materials to its registered users to determine use patterns and user characteristics. The survey was evaluated using mixed methods. Registered users downloaded nearly half a million units or components from the NTDC website. We surveyed these 9835 registered users. 1269 individuals completed all or part of the survey, of whom 339 identified themselves as educators (26.7% of all respondents). This paper addresses the survey responses of educators. Successful aspects of the curriculum included its breadth, convenience, hands-on and course planning capabilities. Several areas were identified for potential improvement. The ONC HIT curriculum met its goals for community college programs and will likely continue to be a valuable resource for the larger informatics community in the future.
Nurse Leadership and Informatics Competencies: Shaping Transformation of Professional Practice.
Kennedy, Margaret Ann; Moen, Anne
2017-01-01
Nurse leaders must demonstrate capacities and develop specific informatics competencies in order to provide meaningful leadership and support ongoing transformation of the healthcare system. Concurrently, staff informatics competencies must be planned and fostered to support critical principles of transformation and patient safety in practice, advance evidence-informed practice, and enable nursing to flourish in complex digital environments across the healthcare continuum. In addition to nurse leader competencies, two key aspects of leadership and informatics competencies will be addressed in this chapter - namely, the transformation of health care and preparation of the nursing workforce.
Nursing Informatics Training in Undergraduate Nursing Programs in Peru.
Condor, Daniel F; Sanchez Alvarez, Katherine; Bidman, Austin A
2018-01-01
Nursing informatics training has been progressively developing as a field in Latin America, each country with diverse approaches to its implementation. In Peru, this process has not yet taken place, so it is necessary to determine how universities are performing in this regard. We conducted a search to describe if universities provide training in computer nursing or similar. There are 72 universities offering professional nursing training, with only 24% of these providing any specific course in nursing informatics. Training undergraduates in nursing informatics improves the skillset of licensed nurses.
The NIH Common Fund Human Biomolecular Atlas Program (HuBMAP) aims to develop a framework for functional mapping the human body with cellular resolution to enhance our understanding of cellular organization-function. HuBMAP will accelerate the development of the next generation of tools and techniques to generate 3D tissue maps using validated high-content, high-throughput imaging and omics assays, and establish an open data platform for integrating, visualizing data to build multi-dimensional maps.
An Invitation to Collaborate: The SPIRIT Open Source Health Care Portal
Bray, Brian; Molin, Joseph Dal
2001-01-01
The SPIRIT portal is a web site resulting from a joint project of the European Commission 5th Framework Research Programme for Information Society Technologies, Minoru Development (France), Conecta srl (Italy), and Sistema Information Systems (Italy). The portal indexes and disseminates free software, serves as a meeting point for health care informatics researchers, and provides collaboration services to health care innovators. This poster session describes the services of the portal and invites researchers to join a worldwide collaborative community developing evidence based health care solutions.
Informatics and Standards for Nanomedicine Technology
Thomas, Dennis G.; Klaessig, Fred; Harper, Stacey L.; Fritts, Martin; Hoover, Mark D.; Gaheen, Sharon; Stokes, Todd H.; Reznik-Zellen, Rebecca; Freund, Elaine T.; Klemm, Juli D.; Paik, David S.; Baker, Nathan A.
2011-01-01
There are several issues to be addressed concerning the management and effective use of information (or data), generated from nanotechnology studies in biomedical research and medicine. These data are large in volume, diverse in content, and are beset with gaps and ambiguities in the description and characterization of nanomaterials. In this work, we have reviewed three areas of nanomedicine informatics: information resources; taxonomies, controlled vocabularies, and ontologies; and information standards. Informatics methods and standards in each of these areas are critical for enabling collaboration, data sharing, unambiguous representation and interpretation of data, semantic (meaningful) search and integration of data; and for ensuring data quality, reliability, and reproducibility. In particular, we have considered four types of information standards in this review, which are standard characterization protocols, common terminology standards, minimum information standards, and standard data communication (exchange) formats. Currently, due to gaps and ambiguities in the data, it is also difficult to apply computational methods and machine learning techniques to analyze, interpret and recognize patterns in data that are high dimensional in nature, and also to relate variations in nanomaterial properties to variations in their chemical composition, synthesis, characterization protocols, etc. Progress towards resolving the issues of information management in nanomedicine using informatics methods and standards discussed in this review will be essential to the rapidly growing field of nanomedicine informatics. PMID:21721140
Applications of the pipeline environment for visual informatics and genomics computations
2011-01-01
Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102
Investigating the Use of Social Media by University Undergraduate Informatics Programs in Malaysia
ERIC Educational Resources Information Center
Lim, Jane See Yin; Agostinho, Shirley; Harper, Barry; Chicharo, Joe F.
2013-01-01
The use of digital technologies in higher education has been driven by a number of underlying assumptions about the affordances of the available technology for social interaction and learning. This trend has not only been advocated by administrators who may argue for digital technologies as a catalyst for pedagogical change and engagement, but…
The Jubilee of Medical Informatics in Bosnia and Herzegovina - 20 Years Anniversary
Masic, Izet
2009-01-01
CONFLICT OF INTEREST: NONE DECLARED Last two years, the health informatics profession celebrated five jubilees in Bosnia and Herzegovina: thirty years from the introduction of the first automatic manipulation of data, twenty years from the establishment of Society for Medical Informatics BiH, fifteen years from the establishment of the Scientific and Professional Journal of the Society for Medical Informatics of Bosnia and Herzegovina „Acta Informatica Medica“, fifteen years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina and five years on from the introduction of the method of “Distance learning” in medical curriculum. The author of this article are eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period. PMID:24133382
The jubilee of medical informatics in bosnia and herzegovina - 20 years anniversary.
Masic, Izet
2009-01-01
NONE DECLARED LAST TWO YEARS, THE HEALTH INFORMATICS PROFESSION CELEBRATED FIVE JUBILEES IN BOSNIA AND HERZEGOVINA: thirty years from the introduction of the first automatic manipulation of data, twenty years from the establishment of Society for Medical Informatics BiH, fifteen years from the establishment of the Scientific and Professional Journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica", fifteen years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina and five years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article are eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.
Cost of an informatics-based diabetes management program.
Blanchfield, Bonnie B; Grant, Richard W; Estey, Greg A; Chueh, Henry C; Gazelle, G Scott; Meigs, James B
2006-01-01
The relatively high cost of information technology systems may be a barrier to hospitals thinking of adopting this technology. The experiences of early adopters may facilitate decision making for hospitals less able to risk their limited resources. This study identifies the costs to design, develop, implement, and operate an innovative informatics-based registry and disease management system (POPMAN) to manage type 2 diabetes in a primary care setting. The various cost components of POPMAN were systematically identified and collected. POPMAN cost 450,000 dollars to develop and operate over 3.5 years (1999-2003). Approximately 250,000 dollars of these costs are one-time expenditures or sunk costs. Annual operating costs are expected to range from 90,000 dollars to 110,000 dollars translating to approximately 90 dollars per patient for a 1,200 patient registry. The cost of POPMAN is comparable to the costs of other quality-improving interventions for patients with diabetes. Modifications to POPMAN for adaptation to other chronic diseases or to interface with new electronic medical record systems will require additional investment but should not be as high as initial development costs. POPMAN provides a means of tracking progress against negotiated quality targets, allowing hospitals to negotiate pay for performance incentives with insurers that may exceed the annual operating cost of POPMAN. As a result, the quality of care of patients with diabetes through use of POPMAN could be improved at a minimal net cost to hospitals.
77 FR 65386 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
... the administrative management areas. Informatics Research and Development Activity (CPM13). (1) Advances the field of public health informatics through applied research and innovation; (2) collaborates... conducts applied research and development activities, and evaluation projects that improve the ability of...
This proposal develops scalable R / Bioconductor software infrastructure and data resources to integrate complex, heterogeneous, and large cancer genomic experiments. The falling cost of genomic assays facilitates collection of multiple data types (e.g., gene and transcript expression, structural variation, copy number, methylation, and microRNA data) from a set of clinical specimens. Furthermore, substantial resources are now available from large consortium activities like The Cancer Genome Atlas (TCGA).
As sequencing costs continue to decline, a torrent of cancer genomic data is looming. Very soon, our ability to deeply investigate the cancer genome will outpace our ability to correlate these changes with the phenotypes that they produce. We propose the advanced development and extension of a software platform for performing deep phenotype extraction directly from clinical text of cancer patients, with the goal of enabling translational cancer research and precision medicine.
Open Source software and social networks: disruptive alternatives for medical imaging.
Ratib, Osman; Rosset, Antoine; Heuberger, Joris
2011-05-01
In recent decades several major changes in computer and communication technology have pushed the limits of imaging informatics and PACS beyond the traditional system architecture providing new perspectives and innovative approach to a traditionally conservative medical community. Disruptive technologies such as the world-wide-web, wireless networking, Open Source software and recent emergence of cyber communities and social networks have imposed an accelerated pace and major quantum leaps in the progress of computer and technology infrastructure applicable to medical imaging applications. This paper reviews the impact and potential benefits of two major trends in consumer market software development and how they will influence the future of medical imaging informatics. Open Source software is emerging as an attractive and cost effective alternative to traditional commercial software developments and collaborative social networks provide a new model of communication that is better suited to the needs of the medical community. Evidence shows that successful Open Source software tools have penetrated the medical market and have proven to be more robust and cost effective than their commercial counterparts. Developed by developers that are themselves part of the user community, these tools are usually better adapted to the user's need and are more robust than traditional software programs being developed and tested by a large number of contributing users. This context allows a much faster and more appropriate development and evolution of the software platforms. Similarly, communication technology has opened up to the general public in a way that has changed the social behavior and habits adding a new dimension to the way people communicate and interact with each other. The new paradigms have also slowly penetrated the professional market and ultimately the medical community. Secure social networks allowing groups of people to easily communicate and exchange information is a new model that is particularly suitable for some specific groups of healthcare professional and for physicians. It has also changed the expectations of how patients wish to communicate with their physicians. Emerging disruptive technologies and innovative paradigm such as Open Source software are leading the way to a new generation of information systems that slowly will change the way physicians and healthcare providers as well as patients will interact and communicate in the future. The impact of these new technologies is particularly effective in image communication, PACS and teleradiology. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Putilov, A. V.; Bugaenko, M. V.; Timokhin, D. V.
2017-01-01
In the article approaches to the modernization of the national education system with the use of IT-technologies are offered, the review of the problems and obstacles of such modernization is held and concrete steps on the adaptation of the educational process to the labor market requirements are stated. On the basis of the previously proposed model of "economic cross" strategic directions of informatization of the educational process are defined, the analysis of conditions and intensity of the use of IT-technologies at the time of this writing is conducted, the recommendations on the improvement of known modernization tools and the development of new ones for Russian education are developed.
DeVoe, Jennifer E.; Sears, Abigail
2013-01-01
Creating integrated, comprehensive care practices requires access to data and informatics expertise. Information technology (IT) resources are not readily available to individual practices. One model of shared IT resources and learning is a “patient-centered medical village.” We describe the OCHIN Community Health Information Network as an example of this model where community practices have come together collectively to form an organization which leverages shared IT expertise, resources, and data, providing members with the means to fully capitalize on new technologies that support improved care. This collaborative facilitates the identification of “problem-sheds” through surveillance of network-wide data, enables shared learning regarding best practices, and provides a “community laboratory” for practice-based research. As an example of a Community of Solution, OCHIN utilizes health IT and data-sharing innovations to enhance partnerships between public health leaders, community health center clinicians, informatics experts, and policy makers. OCHIN community partners benefit from the shared IT resource (e.g. a linked electronic health record (EHR), centralized data warehouse, informatics and improvement expertise). This patient-centered medical village provides (1) the collective mechanism to build community tailored IT solutions, (2) “neighbors” to share data and improvement strategies, and (3) infrastructure to support EHR-based innovations across communities, using experimental approaches. PMID:23657695
Evidence-based Practice. Findings from the Section on Education and Consumer Health Informatics.
Staccini, P; Douali, N
2013-01-01
To provide an overview of outstanding current research conducted in Education and Consumer Informatics. Synopsis of the articles on education and consumer health informatics published in 2012 and selected for the IMIA Yearbook of Medical Informatics 2013. Architecture of monitoring or telehealth information systems for patients with chronic disease must include wireless devices to aid in the collection of personal data. Data acquisition technologies have an impact on patients' willingness to participate in telehealth programmes. Patients are more likely to prefer mobile applications over web-based applications. Social media is widely used by clinicians. Especially younger clinicians use it for personal purposes and for reference materials retrieval. Questions remain on optimal training requirements and on the effects on clinician behavior and on patient outcomes. A high level of e-Health literacy by patients will promote increased adoption and utilization of personal health records. The selected articles highlight the need for training of clinicians to become aware of existing telehealth systems, in order to correctly inform and guide patients to take part in telehealth systems and adopt personal healthcare records (PHR).
Embi, Peter J; Tachinardi, Umberto; Lussier, Yves; Starren, Justin; Silverstein, Jonathan
2013-01-01
Advances in health information technology and biomedical informatics have laid the groundwork for significant improvements in healthcare and biomedical research. For instance, Electronic Health Records can help improve the delivery of evidence-based care, enhance quality, and contribute to discoveries and evidence generation. Despite this promise, there are many challenges to achieving the vision and missions of our healthcare and research enterprises. Given the challenges inherent in doing so, institutions are increasingly moving to establish dedicated leadership and governance models charged with designing, deploying and leveraging various information resources to advance research and advanced care activities at AHCs. Some institutions have even created a new leadership position to oversee such activities, such as the Chief Research Information Officer. This panel will include research informatics leaders discussing their experiences from the proverbial trenches as they work to operationalize such cross-mission governance models. Panelists will start by providing an overview their respective positions and environments, discuss their experiences, and share lessons learned through their work at the intersection of clinical and translational research informatics and Health IT.
Bioconductor | Informatics Technology for Cancer Research (ITCR)
Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data. R/Bioconductor will be enhanced to meet the increasing complexity of multiassay cancer genomics experiments.
PREFACE: International Workshop on Statistical-Mechanical Informatics 2010
NASA Astrophysics Data System (ADS)
Inoue, Jun-ichi; Kabashima, Yoshiyuki; Tanaka, Kazuyuki; Tanaka, Toshiyuki
2010-04-01
Everything that exists in the natural world is made up of several types of elementary particles. However, we cannot understand nature simply by identifying the properties of these particles. This is because collections of the particles sometimes exhibit completely unexpected collective phenomena, quite independently of the individual particles' properties. In the physical sciences, the importance of focusing on the properties of objects composed of a large number of constituents is reflected in the phrase, "More is different." The main concept of the research project, the Grant-in-Aid for Scientific Research on Priority Areas `Deepening and Expansion of Statistical Mechanical Informatics (DEX-SMI)' (Head Investigator: Yoshiyuki Kabashima, Tokyo Institute of Technology) (Project Webpage DEX-SMI), launched in 2006, was to introduce this perspective into information science under the common slogan, "More is different in informatics as well." As milestones in the research activity, the International Workshop on Statistical-Mechanical Informatics (IW-SMI) was held annually, featuring studies of information and communication (2007), quantum information (2008), and bioinformatics (2009). The workshop series provided fruitful opportunities for leading researchers of various disciplines to interact with one another, which led to several collaborative studies. The final workshop, IW-SMI2010, was held at Shiran Kaikan, Kyoto University, Kyoto, Japan, on 7-10 March 2010 to wrap up the achievements of the four years of activity in the DEX-SMI research project. This workshop also aimed to bring together leading researchers in the physical and information sciences to discuss possible future directions for further exploring the successes of DEX-SMI. We would like to thank the contributors of the workshop as well as all the participants. We hope that the successes of IW-SMI2010 and DEX-SMI will lead to further development of this highly vigorous interdisciplinary field between statistical mechanics and information science. Editors Jun-ichi Inoue Yoshiyuki Kabashima Kazuyuki Tanaka Toshiyuki Tanaka The IW-SMI 2010 Organizing Committee: Masato Okada (University of Tokyo) Yoshiyuki Kabashima, General Chair (Tokyo Institute of Technology) Shin Ishii (Kyoto University) Jun-ichi Inoue, Publications Chair (Hokkaido University) Kazuyuki Tanaka (Tohoku University) Toshiyuki Tanaka, Vice-General Chair (Kyoto University)
About the Beginnings of Medical Informatics in Europe
Roger France, Francis
2014-01-01
The term “Informatics” was created in 1962 from two words, information and automatic, and covers all techniques, information concepts and applications of computers. Among them, medicine is the field where we will describe some factors of development in Europe since the late sixties. It took some time for obtaining the acceptance of this new terminology worldwide, but today medical informatics is a well defined discipline which had a tremendous development last decades. This paper tries to recall the context and events from the beginning of medical informatics in Europe. PMID:24648614
ERIC Educational Resources Information Center
Kobryn, Nadia
2015-01-01
The article studies the development process of medical informatics specialty terminology as the ground for further research into foreign countries' experience, including the Canadian one, of specialists' professional training in the field of MI. The study determines the origin and chief stages of the formation and development of the medical…
Fatigue Solutions for Maintenance: From Science to Workplace Reality
2011-12-01
John Hall IAMAW Jim Hein AWP-204 William (Bill) Johnson AIR-100 Charles (Bob) Kelley AJW-341 Daniel Mollicone Pulsar Informatics, Inc. Thomas...That Fit Industry. Dr. Daniel Mollicone, President and Chief Executive Officer for Pulsar Informatics, Inc., presented research on the use of...FAA Maintenance Fatigue applied R&D program has worked with Pulsar Informatics to develop a software system that helps individuals assess their
Energy-Saving Optimization of Water Supply Pumping Station Life Cycle Based on BIM Technology
NASA Astrophysics Data System (ADS)
Qun, Miao; Wang, Jiayuan; Liu, Chao
2017-12-01
In the urban water supply system, pump station is the main unit of energy consumption. In the background of pushing forward the informatization in China, using BIM technology in design, construction and operations of water supply pumping station, can break through the limitations of the traditional model and effectively achieve the goal of energy conservation and emissions reduction. This work researches the way to solve energy-saving optimization problems in the process of whole life cycle of water supply pumping station based on BIM technology, and put forward the feasible strategies of BIM application in order to realize the healthy and sustainable development goals by establishing the BIM model of water supply pumping station of Qingdao Guzhenkou water supply project.
[Quantitative data analysis for live imaging of bone.
Seno, Shigeto
Bone tissue is a hard tissue, it was difficult to observe the interior of the bone tissue alive. With the progress of microscopic technology and fluorescent probe technology in recent years, it becomes possible to observe various activities of various cells forming bone society. On the other hand, the quantitative increase in data and the diversification and complexity of the images makes it difficult to perform quantitative analysis by visual inspection. It has been expected to develop a methodology for processing microscopic images and data analysis. In this article, we introduce the research field of bioimage informatics which is the boundary area of biology and information science, and then outline the basic image processing technology for quantitative analysis of live imaging data of bone.
Informational technologies in modern educational structure
NASA Astrophysics Data System (ADS)
Fedyanin, A. B.
2017-01-01
The article represents the structure of informational technologies complex that is applied in modern school education, describes the most important educational methods, shows the results of their implementation. It represents the forms and methods of educational process informative support usage, examined in respects of different aspects of their using that take into account also the psychological features of students. A range of anxious facts and dangerous trends connected with the usage and distribution of the informational technologies that are to be taken into account in the educational process of informatization is also indicated in the article. Materials of the article are based on the experience of many years in operation and development of the informational educational sphere on the basis of secondary school of the physics and mathematics specialization.
The Cancer Analysis Virtual Machine (CAVM) project will leverage cloud technology, the UCSC Cancer Genomics Browser, and the Galaxy analysis workflow system to provide investigators with a flexible, scalable platform for hosting, visualizing and analyzing their own genomic data.
How to Use TCM Informatics to Study Traditional Chinese Medicine in Big Data Age.
Shi, Cheng; Gong, Qing-Yue; Zhou, Jinhai
2017-01-01
This paper introduces the characteristics and complexity of traditional Chinese medicine (TCM) data, considers that modern big data processing technology has brought new opportunities for the research of TCM, and gives some ideas and methods to apply big data technology in TCM.
Research on College English Teachers' Information Literacy in Information Environment
ERIC Educational Resources Information Center
Du, Yan-xia
2017-01-01
The new technology revolution based on Internet, information and communication technology has triggered an upsurge of educational information in the world, including English learning and teaching. The improvement of teacher's information literacy is the key to the success of the current educational informatization reform. From the perspectives of…
Rural TeleHealth: Telemedicine, Distance Education and Informatics for Rural Health Care.
ERIC Educational Resources Information Center
Western Interstate Commission for Higher Education, Boulder, CO. Western Cooperative for Educational Communications.
This document provides an overview of the various telecommunications and information technologies available for rural communities to use in their health care systems. The first section explains the principal technologies of telecommunications such as the telephone, computer networking, audiographics, and video. It describes transmission systems…
Selling health data: de-identification, privacy, and speech.
Kaplan, Bonnie
2015-07-01
Two court cases that involve selling prescription data for pharmaceutical marketing affect biomedical informatics, patient and clinician privacy, and regulation. Sorrell v. IMS Health Inc. et al. in the United States and R v. Department of Health, Ex Parte Source Informatics Ltd. in the United Kingdom concern privacy and health data protection, data de-identification and reidentification, drug detailing (marketing), commercial benefit from the required disclosure of personal information, clinician privacy and the duty of confidentiality, beneficial and unsavory uses of health data, regulating health technologies, and considering data as speech. Individuals should, at the very least, be aware of how data about them are collected and used. Taking account of how those data are used is needed so societal norms and law evolve ethically as new technologies affect health data privacy and protection.
A Roadmap for caGrid, an Enterprise Grid Architecture for Biomedical Research
Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Hong, Neil Chue
2012-01-01
caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG™) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123
A roadmap for caGrid, an enterprise Grid architecture for biomedical research.
Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil
2008-01-01
caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.
An Abridged History of Medical Informatics Education in Europe
Hasman, Arie; Mantas, John; Zarubina, Tatyana
2014-01-01
This contribution presents the development of medical informatics education in Europe. It does not discuss all developments that took place. Rather it discerns several themes that indicate the progress in the field, starting from the initiation phase to the final quality control phase. PMID:24648617
Training Multidisciplinary Biomedical Informatics Students: Three Years of Experience
van Mulligen, Erik M.; Cases, Montserrat; Hettne, Kristina; Molero, Eva; Weeber, Marc; Robertson, Kevin A.; Oliva, Baldomero; de la Calle, Guillermo; Maojo, Victor
2008-01-01
Objective The European INFOBIOMED Network of Excellence 1 recognized that a successful education program in biomedical informatics should include not only traditional teaching activities in the basic sciences but also the development of skills for working in multidisciplinary teams. Design A carefully developed 3-year training program for biomedical informatics students addressed these educational aspects through the following four activities: (1) an internet course database containing an overview of all Medical Informatics and BioInformatics courses, (2) a BioMedical Informatics Summer School, (3) a mobility program based on a ‘brokerage service’ which published demands and offers, including funding for research exchange projects, and (4) training challenges aimed at the development of multi-disciplinary skills. Measurements This paper focuses on experiences gained in the development of novel educational activities addressing work in multidisciplinary teams. The training challenges described here were evaluated by asking participants to fill out forms with Likert scale based questions. For the mobility program a needs assessment was carried out. Results The mobility program supported 20 exchanges which fostered new BMI research, resulted in a number of peer-reviewed publications and demonstrated the feasibility of this multidisciplinary BMI approach within the European Union. Students unanimously indicated that the training challenge experience had contributed to their understanding and appreciation of multidisciplinary teamwork. Conclusion The training activities undertaken in INFOBIOMED have contributed to a multi-disciplinary BMI approach. It is our hope that this work might provide an impetus for training efforts in Europe, and yield a new generation of biomedical informaticians. PMID:18096914
Lopez, Marianne Hamilton; Holve, Erin; Sarkar, Indra Neil; Segal, Courtney
2012-07-01
Technological advances in clinical informatics have made large amounts of data accessible and potentially useful for research. As a result, a burgeoning literature addresses efforts to bridge the fields of health services research and biomedical informatics. The Electronic Data Methods Forum review examines peer-reviewed literature at the intersection of comparative effectiveness research and clinical informatics. The authors are specifically interested in characterizing this literature and identifying cross-cutting themes and gaps in the literature. A 3-step systematic literature search was conducted, including a structured search of PubMed, manual reviews of articles from selected publication lists, and manual reviews of research activities based on prospective electronic clinical data. Two thousand four hundred thirty-five citations were identified as potentially relevant. Ultimately, a full-text review was performed for 147 peer-reviewed papers. One hundred thirty-two articles were selected for inclusion in the review. Of these, 88 articles are the focus of the discussion in this paper. Three types of articles were identified, including papers that: (1) provide historical context or frameworks for using clinical informatics for research, (2) describe platforms and projects, and (3) discuss issues, challenges, and applications of natural language processing. In addition, 2 cross-cutting themes emerged: the challenges of conducting research in the absence of standardized ontologies and data collection; and unique data governance concerns related to the transfer, storage, deidentification, and access to electronic clinical data. Finally, the authors identified several current gaps on important topics such as the use of clinical informatics for cohort identification, cloud computing, and single point access to research data.
Early experiences of accredited clinical informatics fellowships.
Longhurst, Christopher A; Pageler, Natalie M; Palma, Jonathan P; Finnell, John T; Levy, Bruce P; Yackel, Thomas R; Mohan, Vishnu; Hersh, William R
2016-07-01
Since the launch of the clinical informatics subspecialty for physicians in 2013, over 1100 physicians have used the practice and education pathways to become board-certified in clinical informatics. Starting in 2018, only physicians who have completed a 2-year clinical informatics fellowship program accredited by the Accreditation Council on Graduate Medical Education will be eligible to take the board exam. The purpose of this viewpoint piece is to describe the collective experience of the first four programs accredited by the Accreditation Council on Graduate Medical Education and to share lessons learned in developing new fellowship programs in this novel medical subspecialty. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
New study program: Interdisciplinary Postgraduate Specialist Study in Medical Informatics.
Hercigonja-Szekeres, Mira; Simić, Diana; Božikov, Jadranka; Vondra, Petra
2014-01-01
Paper presents an overview of the EU funded Project of Curriculum Development for Interdisciplinary Postgraduate Specialist Study in Medical Informatics named MEDINFO to be introduced in Croatia. The target group for the program is formed by professionals in any of the areas of medicine, IT professionals working on applications of IT for health and researchers and teachers in medical informatics. In addition to Croatian students, the program will also provide opportunity for enrolling students from a wider region of Southeast Europe. Project partners are two faculties of the University of Zagreb - Faculty of Organization and Informatics from Varaždin and School of Medicine, Andrija Štampar School of Public Health from Zagreb with the Croatian Society for Medical Informatics, Croatian Chamber of Economy, and Ericsson Nikola Tesla Company as associates.
Veinot, Tiffany C; Campbell, Terrance R; Kruger, Daniel J; Grodzinski, Alison
2013-01-01
Objective We investigated the user requirements of African-American youth (aged 14–24 years) to inform the design of a culturally appropriate, network-based informatics intervention for the prevention of HIV and other sexually transmitted infections (STI). Materials and Methods We conducted 10 focus groups with 75 African-American youth from a city with high HIV/STI prevalence. Data analyses involved coding using qualitative content analysis procedures and memo writing. Results Unexpectedly, the majority of participants’ design recommendations concerned trust. Youth expressed distrust towards people and groups, which was amplified within the context of information technology-mediated interactions about HIV/STI. Participants expressed distrust in the reliability of condoms and the accuracy of HIV tests. They questioned the benevolence of many institutions, and some rejected authoritative HIV/STI information. Therefore, reputational information, including rumor, influenced HIV/STI-related decision making. Participants’ design requirements also focused on trust-related concerns. Accordingly, we developed a novel trust-centered design framework to guide intervention design. Discussion Current approaches to online trust for health informatics do not consider group-level trusting patterns. Yet, trust was the central intervention-relevant issue among African-American youth, suggesting an important focus for culturally informed design. Our design framework incorporates: intervention objectives (eg, network embeddedness, participation); functional specifications (eg, decision support, collective action, credible question and answer services); and interaction design (eg, member control, offline network linkages, optional anonymity). Conclusions Trust is a critical focus for HIV/STI informatics interventions for young African Americans. Our design framework offers practical, culturally relevant, and systematic guidance to designers to reach this underserved group better. PMID:23512830
Requirements report for SSTO vertical take-off/horizontal landing vehicle
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
This document describes the detailed design requirements and design criteria to support Structures/TPS Technology development for SSTO winged vehicle configurations that use vertical take-off and horizontal landing and deliver 25,000 lb payloads to a 220 nm circular orbit at an inclination of 51.6 degrees or 40,000 lb payloads to a 150 nm circular orbit at a 28.5 degree of inclination. This document will be updated on a timely basis as informatIon becomes available throughout the project.
Requirements report for SSTO vertical take-off/horizontal landing vehicle
NASA Astrophysics Data System (ADS)
Greenberg, H. S.
1994-07-01
This document describes the detailed design requirements and design criteria to support Structures/TPS Technology development for SSTO winged vehicle configurations that use vertical take-off and horizontal landing and deliver 25,000 lb payloads to a 220 nm circular orbit at an inclination of 51.6 degrees or 40,000 lb payloads to a 150 nm circular orbit at a 28.5 degree of inclination. This document will be updated on a timely basis as informatIon becomes available throughout the project.
Metabolomics: beyond biomarkers and towards mechanisms
Johnson, Caroline H.; Ivanisevic, Julijana; Siuzdak, Gary
2017-01-01
Metabolomics, which is the profiling of metabolites in biofluids, cells and tissues, is routinely applied as a tool for biomarker discovery. Owing to innovative developments in informatics and analytical technologies, and the integration of orthogonal biological approaches, it is now possible to expand metabolomic analyses to understand the systems-level effects of metabolites. Moreover, because of the inherent sensitivity of metabolomics, subtle alterations in biological pathways can be detected to provide insight into the mechanisms that underlie various physiological conditions and aberrant processes, including diseases. PMID:26979502
The Tumor Imaging Metrics Core (TIMC), a CCSG Shared-Resource of the Dana-Farber/Harvard Cancer Center, has developed software for managing the workflow and image measurements for oncology clinical trials. This system currently is in use across the five Harvard hospitals to manage over 600 active clinical trials, with 800 users, and has been licensed and implemented at several other Cancer Centers, including Yale, Utah/Huntsman Cancer Institute, and UW/Seattle Cancer Care Alliance.
Our goal is to construct a publicly available computational radiomics system for the objective and automated extraction of quantitative imaging features that we believe will yield biomarkers of greater prognostic value compared with routinely extracted descriptors of tumor size. We will create a generalized, open, portable, and extensible radiomics platform that is widely applicable across cancer types and imaging modalities and describe how we will use lung and head and neck cancers as models to validate our developments.