Sample records for information extraction method

  1. a Probability-Based Statistical Method to Extract Water Body of TM Images with Missing Information

    NASA Astrophysics Data System (ADS)

    Lian, Shizhong; Chen, Jiangping; Luo, Minghai

    2016-06-01

    Water information cannot be accurately extracted using TM images because true information is lost in some images because of blocking clouds and missing data stripes, thereby water information cannot be accurately extracted. Water is continuously distributed in natural conditions; thus, this paper proposed a new method of water body extraction based on probability statistics to improve the accuracy of water information extraction of TM images with missing information. Different disturbing information of clouds and missing data stripes are simulated. Water information is extracted using global histogram matching, local histogram matching, and the probability-based statistical method in the simulated images. Experiments show that smaller Areal Error and higher Boundary Recall can be obtained using this method compared with the conventional methods.

  2. Accurate facade feature extraction method for buildings from three-dimensional point cloud data considering structural information

    NASA Astrophysics Data System (ADS)

    Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia

    2018-05-01

    Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.

  3. [Application of regular expression in extracting key information from Chinese medicine literatures about re-evaluation of post-marketing surveillance].

    PubMed

    Wang, Zhifei; Xie, Yanming; Wang, Yongyan

    2011-10-01

    Computerizing extracting information from Chinese medicine literature seems more convenient than hand searching, which could simplify searching process and improve the accuracy. However, many computerized auto-extracting methods are increasingly used, regular expression is so special that could be efficient for extracting useful information in research. This article focused on regular expression applying in extracting information from Chinese medicine literature. Two practical examples were reported in this article about regular expression to extract "case number (non-terminology)" and "efficacy rate (subgroups for related information identification)", which explored how to extract information in Chinese medicine literature by means of some special research method.

  4. Research on Optimal Observation Scale for Damaged Buildings after Earthquake Based on Optimal Feature Space

    NASA Astrophysics Data System (ADS)

    Chen, J.; Chen, W.; Dou, A.; Li, W.; Sun, Y.

    2018-04-01

    A new information extraction method of damaged buildings rooted in optimal feature space is put forward on the basis of the traditional object-oriented method. In this new method, ESP (estimate of scale parameter) tool is used to optimize the segmentation of image. Then the distance matrix and minimum separation distance of all kinds of surface features are calculated through sample selection to find the optimal feature space, which is finally applied to extract the image of damaged buildings after earthquake. The overall extraction accuracy reaches 83.1 %, the kappa coefficient 0.813. The new information extraction method greatly improves the extraction accuracy and efficiency, compared with the traditional object-oriented method, and owns a good promotional value in the information extraction of damaged buildings. In addition, the new method can be used for the information extraction of different-resolution images of damaged buildings after earthquake, then to seek the optimal observation scale of damaged buildings through accuracy evaluation. It is supposed that the optimal observation scale of damaged buildings is between 1 m and 1.2 m, which provides a reference for future information extraction of damaged buildings.

  5. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  6. The Extraction of Post-Earthquake Building Damage Informatiom Based on Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wang, X.; Dou, A.; Wu, X.

    2018-04-01

    The seismic damage information of buildings extracted from remote sensing (RS) imagery is meaningful for supporting relief and effective reduction of losses caused by earthquake. Both traditional pixel-based and object-oriented methods have some shortcoming in extracting information of object. Pixel-based method can't make fully use of contextual information of objects. Object-oriented method faces problem that segmentation of image is not ideal, and the choice of feature space is difficult. In this paper, a new stratage is proposed which combines Convolution Neural Network (CNN) with imagery segmentation to extract building damage information from remote sensing imagery. the key idea of this method includes two steps. First to use CNN to predicate the probability of each pixel and then integrate the probability within each segmentation spot. The method is tested through extracting the collapsed building and uncollapsed building from the aerial image which is acquired in Longtoushan Town after Ms 6.5 Ludian County, Yunnan Province earthquake. The results show that the proposed method indicates its effectiveness in extracting damage information of buildings after earthquake.

  7. New Method for Knowledge Management Focused on Communication Pattern in Product Development

    NASA Astrophysics Data System (ADS)

    Noguchi, Takashi; Shiba, Hajime

    In the field of manufacturing, the importance of utilizing knowledge and know-how has been growing. To meet this background, there is a need for new methods to efficiently accumulate and extract effective knowledge and know-how. To facilitate the extraction of knowledge and know-how needed by engineers, we first defined business process information which includes schedule/progress information, document data, information about communication among parties concerned, and information which corresponds to these three types of information. Based on our definitions, we proposed an IT system (FlexPIM: Flexible and collaborative Process Information Management) to register and accumulate business process information with the least effort. In order to efficiently extract effective information from huge volumes of accumulated business process information, focusing attention on “actions” and communication patterns, we propose a new extraction method using communication patterns. And the validity of this method has been verified for some communication patterns.

  8. A extract method of mountainous area settlement place information from GF-1 high resolution optical remote sensing image under semantic constraints

    NASA Astrophysics Data System (ADS)

    Guo, H., II

    2016-12-01

    Spatial distribution information of mountainous area settlement place is of great significance to the earthquake emergency work because most of the key earthquake hazardous areas of china are located in the mountainous area. Remote sensing has the advantages of large coverage and low cost, it is an important way to obtain the spatial distribution information of mountainous area settlement place. At present, fully considering the geometric information, spectral information and texture information, most studies have applied object-oriented methods to extract settlement place information, In this article, semantic constraints is to be added on the basis of object-oriented methods. The experimental data is one scene remote sensing image of domestic high resolution satellite (simply as GF-1), with a resolution of 2 meters. The main processing consists of 3 steps, the first is pretreatment, including ortho rectification and image fusion, the second is Object oriented information extraction, including Image segmentation and information extraction, the last step is removing the error elements under semantic constraints, in order to formulate these semantic constraints, the distribution characteristics of mountainous area settlement place must be analyzed and the spatial logic relation between settlement place and other objects must be considered. The extraction accuracy calculation result shows that the extraction accuracy of object oriented method is 49% and rise up to 86% after the use of semantic constraints. As can be seen from the extraction accuracy, the extract method under semantic constraints can effectively improve the accuracy of mountainous area settlement place information extraction. The result shows that it is feasible to extract mountainous area settlement place information form GF-1 image, so the article proves that it has a certain practicality to use domestic high resolution optical remote sensing image in earthquake emergency preparedness.

  9. Information extraction system

    DOEpatents

    Lemmond, Tracy D; Hanley, William G; Guensche, Joseph Wendell; Perry, Nathan C; Nitao, John J; Kidwell, Paul Brandon; Boakye, Kofi Agyeman; Glaser, Ron E; Prenger, Ryan James

    2014-05-13

    An information extraction system and methods of operating the system are provided. In particular, an information extraction system for performing meta-extraction of named entities of people, organizations, and locations as well as relationships and events from text documents are described herein.

  10. Optimal Information Extraction of Laser Scanning Dataset by Scale-Adaptive Reduction

    NASA Astrophysics Data System (ADS)

    Zang, Y.; Yang, B.

    2018-04-01

    3D laser technology is widely used to collocate the surface information of object. For various applications, we need to extract a good perceptual quality point cloud from the scanned points. To solve the problem, most of existing methods extract important points based on a fixed scale. However, geometric features of 3D object come from various geometric scales. We propose a multi-scale construction method based on radial basis function. For each scale, important points are extracted from the point cloud based on their importance. We apply a perception metric Just-Noticeable-Difference to measure degradation of each geometric scale. Finally, scale-adaptive optimal information extraction is realized. Experiments are undertaken to evaluate the effective of the proposed method, suggesting a reliable solution for optimal information extraction of object.

  11. Longitudinal Analysis of New Information Types in Clinical Notes

    PubMed Central

    Zhang, Rui; Pakhomov, Serguei; Melton, Genevieve B.

    2014-01-01

    It is increasingly recognized that redundant information in clinical notes within electronic health record (EHR) systems is ubiquitous, significant, and may negatively impact the secondary use of these notes for research and patient care. We investigated several automated methods to identify redundant versus relevant new information in clinical reports. These methods may provide a valuable approach to extract clinically pertinent information and further improve the accuracy of clinical information extraction systems. In this study, we used UMLS semantic types to extract several types of new information, including problems, medications, and laboratory information. Automatically identified new information highly correlated with manual reference standard annotations. Methods to identify different types of new information can potentially help to build up more robust information extraction systems for clinical researchers as well as aid clinicians and researchers in navigating clinical notes more effectively and quickly identify information pertaining to changes in health states. PMID:25717418

  12. Acquiring 3-D information about thick objects from differential interference contrast images using texture extraction

    NASA Astrophysics Data System (ADS)

    Sierra, Heidy; Brooks, Dana; Dimarzio, Charles

    2010-07-01

    The extraction of 3-D morphological information about thick objects is explored in this work. We extract this information from 3-D differential interference contrast (DIC) images by applying a texture detection method. Texture extraction methods have been successfully used in different applications to study biological samples. A 3-D texture image is obtained by applying a local entropy-based texture extraction method. The use of this method to detect regions of blastocyst mouse embryos that are used in assisted reproduction techniques such as in vitro fertilization is presented as an example. Results demonstrate the potential of using texture detection methods to improve morphological analysis of thick samples, which is relevant to many biomedical and biological studies. Fluorescence and optical quadrature microscope phase images are used for validation.

  13. Study on identifying deciduous forest by the method of feature space transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexia; Wu, Pengfei

    2009-10-01

    The thematic remotely sensed information extraction is always one of puzzling nuts which the remote sensing science faces, so many remote sensing scientists devotes diligently to this domain research. The methods of thematic information extraction include two kinds of the visual interpretation and the computer interpretation, the developing direction of which is intellectualization and comprehensive modularization. The paper tries to develop the intelligent extraction method of feature space transformation for the deciduous forest thematic information extraction in Changping district of Beijing city. The whole Chinese-Brazil resources satellite images received in 2005 are used to extract the deciduous forest coverage area by feature space transformation method and linear spectral decomposing method, and the result from remote sensing is similar to woodland resource census data by Chinese forestry bureau in 2004.

  14. An Extraction Method of an Informative DOM Node from a Web Page by Using Layout Information

    NASA Astrophysics Data System (ADS)

    Tsuruta, Masanobu; Masuyama, Shigeru

    We propose an informative DOM node extraction method from a Web page for preprocessing of Web content mining. Our proposed method LM uses layout data of DOM nodes generated by a generic Web browser, and the learning set consists of hundreds of Web pages and the annotations of informative DOM nodes of those Web pages. Our method does not require large scale crawling of the whole Web site to which the target Web page belongs. We design LM so that it uses the information of the learning set more efficiently in comparison to the existing method that uses the same learning set. By experiments, we evaluate the methods obtained by combining one that consists of the method for extracting the informative DOM node both the proposed method and the existing methods, and the existing noise elimination methods: Heur removes advertisements and link-lists by some heuristics and CE removes the DOM nodes existing in the Web pages in the same Web site to which the target Web page belongs. Experimental results show that 1) LM outperforms other methods for extracting the informative DOM node, 2) the combination method (LM, {CE(10), Heur}) based on LM (precision: 0.755, recall: 0.826, F-measure: 0.746) outperforms other combination methods.

  15. Semantic Information Extraction of Lanes Based on Onboard Camera Videos

    NASA Astrophysics Data System (ADS)

    Tang, L.; Deng, T.; Ren, C.

    2018-04-01

    In the field of autonomous driving, semantic information of lanes is very important. This paper proposes a method of automatic detection of lanes and extraction of semantic information from onboard camera videos. The proposed method firstly detects the edges of lanes by the grayscale gradient direction, and improves the Probabilistic Hough transform to fit them; then, it uses the vanishing point principle to calculate the lane geometrical position, and uses lane characteristics to extract lane semantic information by the classification of decision trees. In the experiment, 216 road video images captured by a camera mounted onboard a moving vehicle were used to detect lanes and extract lane semantic information. The results show that the proposed method can accurately identify lane semantics from video images.

  16. Extracting laboratory test information from biomedical text

    PubMed Central

    Kang, Yanna Shen; Kayaalp, Mehmet

    2013-01-01

    Background: No previous study reported the efficacy of current natural language processing (NLP) methods for extracting laboratory test information from narrative documents. This study investigates the pathology informatics question of how accurately such information can be extracted from text with the current tools and techniques, especially machine learning and symbolic NLP methods. The study data came from a text corpus maintained by the U.S. Food and Drug Administration, containing a rich set of information on laboratory tests and test devices. Methods: The authors developed a symbolic information extraction (SIE) system to extract device and test specific information about four types of laboratory test entities: Specimens, analytes, units of measures and detection limits. They compared the performance of SIE and three prominent machine learning based NLP systems, LingPipe, GATE and BANNER, each implementing a distinct supervised machine learning method, hidden Markov models, support vector machines and conditional random fields, respectively. Results: Machine learning systems recognized laboratory test entities with moderately high recall, but low precision rates. Their recall rates were relatively higher when the number of distinct entity values (e.g., the spectrum of specimens) was very limited or when lexical morphology of the entity was distinctive (as in units of measures), yet SIE outperformed them with statistically significant margins on extracting specimen, analyte and detection limit information in both precision and F-measure. Its high recall performance was statistically significant on analyte information extraction. Conclusions: Despite its shortcomings against machine learning methods, a well-tailored symbolic system may better discern relevancy among a pile of information of the same type and may outperform a machine learning system by tapping into lexically non-local contextual information such as the document structure. PMID:24083058

  17. A rule-based named-entity recognition method for knowledge extraction of evidence-based dietary recommendations

    PubMed Central

    2017-01-01

    Evidence-based dietary information represented as unstructured text is a crucial information that needs to be accessed in order to help dietitians follow the new knowledge arrives daily with newly published scientific reports. Different named-entity recognition (NER) methods have been introduced previously to extract useful information from the biomedical literature. They are focused on, for example extracting gene mentions, proteins mentions, relationships between genes and proteins, chemical concepts and relationships between drugs and diseases. In this paper, we present a novel NER method, called drNER, for knowledge extraction of evidence-based dietary information. To the best of our knowledge this is the first attempt at extracting dietary concepts. DrNER is a rule-based NER that consists of two phases. The first one involves the detection and determination of the entities mention, and the second one involves the selection and extraction of the entities. We evaluate the method by using text corpora from heterogeneous sources, including text from several scientifically validated web sites and text from scientific publications. Evaluation of the method showed that drNER gives good results and can be used for knowledge extraction of evidence-based dietary recommendations. PMID:28644863

  18. Analysis of Technique to Extract Data from the Web for Improved Performance

    NASA Astrophysics Data System (ADS)

    Gupta, Neena; Singh, Manish

    2010-11-01

    The World Wide Web rapidly guides the world into a newly amazing electronic world, where everyone can publish anything in electronic form and extract almost all the information. Extraction of information from semi structured or unstructured documents, such as web pages, is a useful yet complex task. Data extraction, which is important for many applications, extracts the records from the HTML files automatically. Ontologies can achieve a high degree of accuracy in data extraction. We analyze method for data extraction OBDE (Ontology-Based Data Extraction), which automatically extracts the query result records from the web with the help of agents. OBDE first constructs an ontology for a domain according to information matching between the query interfaces and query result pages from different web sites within the same domain. Then, the constructed domain ontology is used during data extraction to identify the query result section in a query result page and to align and label the data values in the extracted records. The ontology-assisted data extraction method is fully automatic and overcomes many of the deficiencies of current automatic data extraction methods.

  19. Extracting Useful Semantic Information from Large Scale Corpora of Text

    ERIC Educational Resources Information Center

    Mendoza, Ray Padilla, Jr.

    2012-01-01

    Extracting and representing semantic information from large scale corpora is at the crux of computer-assisted knowledge generation. Semantic information depends on collocation extraction methods, mathematical models used to represent distributional information, and weighting functions which transform the space. This dissertation provides a…

  20. Extracting tissue deformation using Gabor filter banks

    NASA Astrophysics Data System (ADS)

    Montillo, Albert; Metaxas, Dimitris; Axel, Leon

    2004-04-01

    This paper presents a new approach for accurate extraction of tissue deformation imaged with tagged MR. Our method, based on banks of Gabor filters, adjusts (1) the aspect and (2) orientation of the filter"s envelope and adjusts (3) the radial frequency and (4) angle of the filter"s sinusoidal grating to extract information about the deformation of tissue. The method accurately extracts tag line spacing, orientation, displacement and effective contrast. Existing, non-adaptive methods often fail to recover useful displacement information in the proximity of tissue boundaries while our method works in the proximity of the boundaries. We also present an interpolation method to recover all tag information at a finer resolution than the filter bank parameters. Results are shown on simulated images of translating and contracting tissue.

  1. Mining of the social network extraction

    NASA Astrophysics Data System (ADS)

    Nasution, M. K. M.; Hardi, M.; Syah, R.

    2017-01-01

    The use of Web as social media is steadily gaining ground in the study of social actor behaviour. However, information in Web can be interpreted in accordance with the ability of the method such as superficial methods for extracting social networks. Each method however has features and drawbacks: it cannot reveal the behaviour of social actors, but it has the hidden information about them. Therefore, this paper aims to reveal such information in the social networks mining. Social behaviour could be expressed through a set of words extracted from the list of snippets.

  2. A Low-Storage-Consumption XML Labeling Method for Efficient Structural Information Extraction

    NASA Astrophysics Data System (ADS)

    Liang, Wenxin; Takahashi, Akihiro; Yokota, Haruo

    Recently, labeling methods to extract and reconstruct the structural information of XML data, which are important for many applications such as XPath query and keyword search, are becoming more attractive. To achieve efficient structural information extraction, in this paper we propose C-DO-VLEI code, a novel update-friendly bit-vector encoding scheme, based on register-length bit operations combining with the properties of Dewey Order numbers, which cannot be implemented in other relevant existing schemes such as ORDPATH. Meanwhile, the proposed method also achieves lower storage consumption because it does not require either prefix schema or any reserved codes for node insertion. We performed experiments to evaluate and compare the performance and storage consumption of the proposed method with those of the ORDPATH method. Experimental results show that the execution times for extracting depth information and parent node labels using the C-DO-VLEI code are about 25% and 15% less, respectively, and the average label size using the C-DO-VLEI code is about 24% smaller, comparing with ORDPATH.

  3. Weak characteristic information extraction from early fault of wind turbine generator gearbox

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoli; Liu, Xiuli

    2017-09-01

    Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on μ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and μ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance.

  4. Social network extraction based on Web: 3. the integrated superficial method

    NASA Astrophysics Data System (ADS)

    Nasution, M. K. M.; Sitompul, O. S.; Noah, S. A.

    2018-03-01

    The Web as a source of information has become part of the social behavior information. Although, by involving only the limitation of information disclosed by search engines in the form of: hit counts, snippets, and URL addresses of web pages, the integrated extraction method produces a social network not only trusted but enriched. Unintegrated extraction methods may produce social networks without explanation, resulting in poor supplemental information, or resulting in a social network of durmise laden, consequently unrepresentative social structures. The integrated superficial method in addition to generating the core social network, also generates an expanded network so as to reach the scope of relation clues, or number of edges computationally almost similar to n(n - 1)/2 for n social actors.

  5. [A customized method for information extraction from unstructured text data in the electronic medical records].

    PubMed

    Bao, X Y; Huang, W J; Zhang, K; Jin, M; Li, Y; Niu, C Z

    2018-04-18

    There is a huge amount of diagnostic or treatment information in electronic medical record (EMR), which is a concrete manifestation of clinicians actual diagnosis and treatment details. Plenty of episodes in EMRs, such as complaints, present illness, past history, differential diagnosis, diagnostic imaging, surgical records, reflecting details of diagnosis and treatment in clinical process, adopt Chinese description of natural language. How to extract effective information from these Chinese narrative text data, and organize it into a form of tabular for analysis of medical research, for the practical utilization of clinical data in the real world, is a difficult problem in Chinese medical data processing. Based on the EMRs narrative text data in a tertiary hospital in China, a customized information extracting rules learning, and rule based information extraction methods is proposed. The overall method consists of three steps, which includes: (1) Step 1, a random sample of 600 copies (including the history of present illness, past history, personal history, family history, etc.) of the electronic medical record data, was extracted as raw corpora. With our developed Chinese clinical narrative text annotation platform, the trained clinician and nurses marked the tokens and phrases in the corpora which would be extracted (with a history of diabetes as an example). (2) Step 2, based on the annotated corpora clinical text data, some extraction templates were summarized and induced firstly. Then these templates were rewritten using regular expressions of Perl programming language, as extraction rules. Using these extraction rules as basic knowledge base, we developed extraction packages in Perl, for extracting data from the EMRs text data. In the end, the extracted data items were organized in tabular data format, for later usage in clinical research or hospital surveillance purposes. (3) As the final step of the method, the evaluation and validation of the proposed methods were implemented in the National Clinical Service Data Integration Platform, and we checked the extraction results using artificial verification and automated verification combined, proved the effectiveness of the method. For all the patients with diabetes as diagnosed disease in the Department of Endocrine in the hospital, the medical history episode of these patients showed that, altogether 1 436 patients were dismissed in 2015, and a history of diabetes medical records extraction results showed that the recall rate was 87.6%, the accuracy rate was 99.5%, and F-Score was 0.93. For all the 10% patients (totally 1 223 patients) with diabetes by the dismissed dates of August 2017 in the same department, the extracted diabetes history extraction results showed that the recall rate was 89.2%, the accuracy rate was 99.2%, F-Score was 0.94. This study mainly adopts the combination of natural language processing and rule-based information extraction, and designs and implements an algorithm for extracting customized information from unstructured Chinese electronic medical record text data. It has better results than existing work.

  6. Smart Extraction and Analysis System for Clinical Research.

    PubMed

    Afzal, Muhammad; Hussain, Maqbool; Khan, Wajahat Ali; Ali, Taqdir; Jamshed, Arif; Lee, Sungyoung

    2017-05-01

    With the increasing use of electronic health records (EHRs), there is a growing need to expand the utilization of EHR data to support clinical research. The key challenge in achieving this goal is the unavailability of smart systems and methods to overcome the issue of data preparation, structuring, and sharing for smooth clinical research. We developed a robust analysis system called the smart extraction and analysis system (SEAS) that consists of two subsystems: (1) the information extraction system (IES), for extracting information from clinical documents, and (2) the survival analysis system (SAS), for a descriptive and predictive analysis to compile the survival statistics and predict the future chance of survivability. The IES subsystem is based on a novel permutation-based pattern recognition method that extracts information from unstructured clinical documents. Similarly, the SAS subsystem is based on a classification and regression tree (CART)-based prediction model for survival analysis. SEAS is evaluated and validated on a real-world case study of head and neck cancer. The overall information extraction accuracy of the system for semistructured text is recorded at 99%, while that for unstructured text is 97%. Furthermore, the automated, unstructured information extraction has reduced the average time spent on manual data entry by 75%, without compromising the accuracy of the system. Moreover, around 88% of patients are found in a terminal or dead state for the highest clinical stage of disease (level IV). Similarly, there is an ∼36% probability of a patient being alive if at least one of the lifestyle risk factors was positive. We presented our work on the development of SEAS to replace costly and time-consuming manual methods with smart automatic extraction of information and survival prediction methods. SEAS has reduced the time and energy of human resources spent unnecessarily on manual tasks.

  7. Integrating semantic information into multiple kernels for protein-protein interaction extraction from biomedical literatures.

    PubMed

    Li, Lishuang; Zhang, Panpan; Zheng, Tianfu; Zhang, Hongying; Jiang, Zhenchao; Huang, Degen

    2014-01-01

    Protein-Protein Interaction (PPI) extraction is an important task in the biomedical information extraction. Presently, many machine learning methods for PPI extraction have achieved promising results. However, the performance is still not satisfactory. One reason is that the semantic resources were basically ignored. In this paper, we propose a multiple-kernel learning-based approach to extract PPIs, combining the feature-based kernel, tree kernel and semantic kernel. Particularly, we extend the shortest path-enclosed tree kernel (SPT) by a dynamic extended strategy to retrieve the richer syntactic information. Our semantic kernel calculates the protein-protein pair similarity and the context similarity based on two semantic resources: WordNet and Medical Subject Heading (MeSH). We evaluate our method with Support Vector Machine (SVM) and achieve an F-score of 69.40% and an AUC of 92.00%, which show that our method outperforms most of the state-of-the-art systems by integrating semantic information.

  8. Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning.

    PubMed

    Feng, Yuntian; Zhang, Hongjun; Hao, Wenning; Chen, Gang

    2017-01-01

    We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured texts, which represent the state in the decision process. By designing the reward function per step, our proposed method can pass the information of entity extraction to relation extraction and obtain feedback in order to extract entities and relations simultaneously. Firstly, we use bidirectional LSTM to model the context information, which realizes preliminary entity extraction. On the basis of the extraction results, attention based method can represent the sentences that include target entity pair to generate the initial state in the decision process. Then we use Tree-LSTM to represent relation mentions to generate the transition state in the decision process. Finally, we employ Q -Learning algorithm to get control policy π in the two-step decision process. Experiments on ACE2005 demonstrate that our method attains better performance than the state-of-the-art method and gets a 2.4% increase in recall-score.

  9. Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning

    PubMed Central

    Zhang, Hongjun; Chen, Gang

    2017-01-01

    We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured texts, which represent the state in the decision process. By designing the reward function per step, our proposed method can pass the information of entity extraction to relation extraction and obtain feedback in order to extract entities and relations simultaneously. Firstly, we use bidirectional LSTM to model the context information, which realizes preliminary entity extraction. On the basis of the extraction results, attention based method can represent the sentences that include target entity pair to generate the initial state in the decision process. Then we use Tree-LSTM to represent relation mentions to generate the transition state in the decision process. Finally, we employ Q-Learning algorithm to get control policy π in the two-step decision process. Experiments on ACE2005 demonstrate that our method attains better performance than the state-of-the-art method and gets a 2.4% increase in recall-score. PMID:28894463

  10. Extracting important information from Chinese Operation Notes with natural language processing methods.

    PubMed

    Wang, Hui; Zhang, Weide; Zeng, Qiang; Li, Zuofeng; Feng, Kaiyan; Liu, Lei

    2014-04-01

    Extracting information from unstructured clinical narratives is valuable for many clinical applications. Although natural Language Processing (NLP) methods have been profoundly studied in electronic medical records (EMR), few studies have explored NLP in extracting information from Chinese clinical narratives. In this study, we report the development and evaluation of extracting tumor-related information from operation notes of hepatic carcinomas which were written in Chinese. Using 86 operation notes manually annotated by physicians as the training set, we explored both rule-based and supervised machine-learning approaches. Evaluating on unseen 29 operation notes, our best approach yielded 69.6% in precision, 58.3% in recall and 63.5% F-score. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Using text mining techniques to extract phenotypic information from the PhenoCHF corpus

    PubMed Central

    2015-01-01

    Background Phenotypic information locked away in unstructured narrative text presents significant barriers to information accessibility, both for clinical practitioners and for computerised applications used for clinical research purposes. Text mining (TM) techniques have previously been applied successfully to extract different types of information from text in the biomedical domain. They have the potential to be extended to allow the extraction of information relating to phenotypes from free text. Methods To stimulate the development of TM systems that are able to extract phenotypic information from text, we have created a new corpus (PhenoCHF) that is annotated by domain experts with several types of phenotypic information relating to congestive heart failure. To ensure that systems developed using the corpus are robust to multiple text types, it integrates text from heterogeneous sources, i.e., electronic health records (EHRs) and scientific articles from the literature. We have developed several different phenotype extraction methods to demonstrate the utility of the corpus, and tested these methods on a further corpus, i.e., ShARe/CLEF 2013. Results Evaluation of our automated methods showed that PhenoCHF can facilitate the training of reliable phenotype extraction systems, which are robust to variations in text type. These results have been reinforced by evaluating our trained systems on the ShARe/CLEF corpus, which contains clinical records of various types. Like other studies within the biomedical domain, we found that solutions based on conditional random fields produced the best results, when coupled with a rich feature set. Conclusions PhenoCHF is the first annotated corpus aimed at encoding detailed phenotypic information. The unique heterogeneous composition of the corpus has been shown to be advantageous in the training of systems that can accurately extract phenotypic information from a range of different text types. Although the scope of our annotation is currently limited to a single disease, the promising results achieved can stimulate further work into the extraction of phenotypic information for other diseases. The PhenoCHF annotation guidelines and annotations are publicly available at https://code.google.com/p/phenochf-corpus. PMID:26099853

  12. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    PubMed Central

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  13. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters.

    PubMed

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.

  14. Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN.

    PubMed

    Liu, Chang; Cheng, Gang; Chen, Xihui; Pang, Yusong

    2018-05-11

    Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears.

  15. Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN

    PubMed Central

    Cheng, Gang; Chen, Xihui

    2018-01-01

    Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears. PMID:29751671

  16. Integration of forward-looking infrared (FLIR) and traffic information for moving obstacle detection with integrity

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Vana, Sudha; Bhattacharya, Sumit; Uijt de Haag, Maarten

    2009-05-01

    This paper discusses the integration of Forward-looking Infrared (FLIR) and traffic information from, for example, the Automatic Dependent Surveillance - Broadcast (ADS-B) or the Traffic Information Service-Broadcast (TIS-B). The goal of this integration method is to obtain an improved state estimate of a moving obstacle within the Field-of-View of the FLIR with added integrity. The focus of the paper will be on the approach phase of the flight. The paper will address methods to extract moving objects from the FLIR imagery and geo-reference these objects using outputs of both the onboard Global Positioning System (GPS) and the Inertial Navigation System (INS). The proposed extraction method uses a priori airport information and terrain databases. Furthermore, state information from the traffic information sources will be extracted and integrated with the state estimates from the FLIR. Finally, a method will be addressed that performs a consistency check between both sources of traffic information. The methods discussed in this paper will be evaluated using flight test data collected with a Gulfstream V in Reno, NV (GVSITE) and simulated ADS-B.

  17. SW-846 Test Method 3200: Mercury Species Fractionation and Quantification by Microwave Assisted Extraction, Selective Solvent Extraction and/or Solid Phase Extraction

    EPA Pesticide Factsheets

    a sequential extraction and separation procedure that maybe used in conjunction with a determinative method to differentiate mercury species that arepresent in soils and sediments. provides information on both total mercury andvarious mercury species.

  18. Extracting information from the text of electronic medical records to improve case detection: a systematic review

    PubMed Central

    Carroll, John A; Smith, Helen E; Scott, Donia; Cassell, Jackie A

    2016-01-01

    Background Electronic medical records (EMRs) are revolutionizing health-related research. One key issue for study quality is the accurate identification of patients with the condition of interest. Information in EMRs can be entered as structured codes or unstructured free text. The majority of research studies have used only coded parts of EMRs for case-detection, which may bias findings, miss cases, and reduce study quality. This review examines whether incorporating information from text into case-detection algorithms can improve research quality. Methods A systematic search returned 9659 papers, 67 of which reported on the extraction of information from free text of EMRs with the stated purpose of detecting cases of a named clinical condition. Methods for extracting information from text and the technical accuracy of case-detection algorithms were reviewed. Results Studies mainly used US hospital-based EMRs, and extracted information from text for 41 conditions using keyword searches, rule-based algorithms, and machine learning methods. There was no clear difference in case-detection algorithm accuracy between rule-based and machine learning methods of extraction. Inclusion of information from text resulted in a significant improvement in algorithm sensitivity and area under the receiver operating characteristic in comparison to codes alone (median sensitivity 78% (codes + text) vs 62% (codes), P = .03; median area under the receiver operating characteristic 95% (codes + text) vs 88% (codes), P = .025). Conclusions Text in EMRs is accessible, especially with open source information extraction algorithms, and significantly improves case detection when combined with codes. More harmonization of reporting within EMR studies is needed, particularly standardized reporting of algorithm accuracy metrics like positive predictive value (precision) and sensitivity (recall). PMID:26911811

  19. A method for automatically extracting infectious disease-related primers and probes from the literature

    PubMed Central

    2010-01-01

    Background Primer and probe sequences are the main components of nucleic acid-based detection systems. Biologists use primers and probes for different tasks, some related to the diagnosis and prescription of infectious diseases. The biological literature is the main information source for empirically validated primer and probe sequences. Therefore, it is becoming increasingly important for researchers to navigate this important information. In this paper, we present a four-phase method for extracting and annotating primer/probe sequences from the literature. These phases are: (1) convert each document into a tree of paper sections, (2) detect the candidate sequences using a set of finite state machine-based recognizers, (3) refine problem sequences using a rule-based expert system, and (4) annotate the extracted sequences with their related organism/gene information. Results We tested our approach using a test set composed of 297 manuscripts. The extracted sequences and their organism/gene annotations were manually evaluated by a panel of molecular biologists. The results of the evaluation show that our approach is suitable for automatically extracting DNA sequences, achieving precision/recall rates of 97.98% and 95.77%, respectively. In addition, 76.66% of the detected sequences were correctly annotated with their organism name. The system also provided correct gene-related information for 46.18% of the sequences assigned a correct organism name. Conclusions We believe that the proposed method can facilitate routine tasks for biomedical researchers using molecular methods to diagnose and prescribe different infectious diseases. In addition, the proposed method can be expanded to detect and extract other biological sequences from the literature. The extracted information can also be used to readily update available primer/probe databases or to create new databases from scratch. PMID:20682041

  20. Missing binary data extraction challenges from Cochrane reviews in mental health and Campbell reviews with implications for empirical research.

    PubMed

    Spineli, Loukia M

    2017-12-01

    Tο report challenges encountered during the extraction process from Cochrane reviews in mental health and Campbell reviews and to indicate their implications on the empirical performance of different methods to handle missingness. We used a collection of meta-analyses on binary outcomes collated from a previous work on missing outcome data. To evaluate the accuracy of their extraction, we developed specific criteria pertaining to the reporting of missing outcome data in systematic reviews. Using the most popular methods to handle missing binary outcome data, we investigated the implications of the accuracy of the extracted meta-analysis on the random-effects meta-analysis results. Of 113 meta-analyses from Cochrane reviews, 60 (53%) were judged as "unclearly" extracted (ie, no information on the outcome of completers but available information on how missing participants were handled) and 42 (37%) as "unacceptably" extracted (ie, no information on the outcome of completers as well as no information on how missing participants were handled). For the remaining meta-analyses, it was judged that data were "acceptably" extracted (ie, information on the completers' outcome was provided for all trials). Overall, "unclear" extraction overestimated the magnitude of the summary odds ratio and the between-study variance and additionally inflated the uncertainty of both meta-analytical parameters. The only eligible Campbell review was judged as "unclear." Depending on the extent of missingness, the reporting quality of the systematic reviews can greatly affect the accuracy of the extracted meta-analyses and by extent, the empirical performance of different methods to handle missingness. Copyright © 2017 John Wiley & Sons, Ltd.

  1. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories.

    PubMed

    Yang, Wei; Ai, Tinghua; Lu, Wei

    2018-04-19

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  2. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories

    PubMed Central

    Yang, Wei

    2018-01-01

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality. PMID:29671792

  3. Enhancing to method for extracting Social network by the relation existence

    NASA Astrophysics Data System (ADS)

    Elfida, Maria; Matyuso Nasution, M. K.; Sitompul, O. S.

    2018-01-01

    To get the trusty information about the social network extracted from the Web requires a reliable method, but for optimal resultant required the method that can overcome the complexity of information resources. This paper intends to reveal ways to overcome the constraints of social network extraction leading to high complexity by identifying relationships among social actors. By changing the treatment of the procedure used, we obtain the complexity is smaller than the previous procedure. This has also been demonstrated in an experiment by using the denial sample.

  4. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information.

    PubMed

    Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko

    2017-12-28

    Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.

  5. Rule Extracting based on MCG with its Application in Helicopter Power Train Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, M.; Hu, N. Q.; Qin, G. J.

    2011-07-01

    In order to extract decision rules for fault diagnosis from incomplete historical test records for knowledge-based damage assessment of helicopter power train structure. A method that can directly extract the optimal generalized decision rules from incomplete information based on GrC was proposed. Based on semantic analysis of unknown attribute value, the granule was extended to handle incomplete information. Maximum characteristic granule (MCG) was defined based on characteristic relation, and MCG was used to construct the resolution function matrix. The optimal general decision rule was introduced, with the basic equivalent forms of propositional logic, the rules were extracted and reduction from incomplete information table. Combined with a fault diagnosis example of power train, the application approach of the method was present, and the validity of this method in knowledge acquisition was proved.

  6. The algorithm of fast image stitching based on multi-feature extraction

    NASA Astrophysics Data System (ADS)

    Yang, Chunde; Wu, Ge; Shi, Jing

    2018-05-01

    This paper proposed an improved image registration method combining Hu-based invariant moment contour information and feature points detection, aiming to solve the problems in traditional image stitching algorithm, such as time-consuming feature points extraction process, redundant invalid information overload and inefficiency. First, use the neighborhood of pixels to extract the contour information, employing the Hu invariant moment as similarity measure to extract SIFT feature points in those similar regions. Then replace the Euclidean distance with Hellinger kernel function to improve the initial matching efficiency and get less mismatching points, further, estimate affine transformation matrix between the images. Finally, local color mapping method is adopted to solve uneven exposure, using the improved multiresolution fusion algorithm to fuse the mosaic images and realize seamless stitching. Experimental results confirm high accuracy and efficiency of method proposed in this paper.

  7. The Agent of extracting Internet Information with Lead Order

    NASA Astrophysics Data System (ADS)

    Mo, Zan; Huang, Chuliang; Liu, Aijun

    In order to carry out e-commerce better, advanced technologies to access business information are in need urgently. An agent is described to deal with the problems of extracting internet information that caused by the non-standard and skimble-scamble structure of Chinese websites. The agent designed includes three modules which respond to the process of extracting information separately. A method of HTTP tree and a kind of Lead algorithm is proposed to generate a lead order, with which the required web can be retrieved easily. How to transform the extracted information structuralized with natural language is also discussed.

  8. [The application of spectral geological profile in the alteration mapping].

    PubMed

    Li, Qing-Ting; Lin, Qi-Zhong; Zhang, Bing; Lu, Lin-Lin

    2012-07-01

    Geological section can help validating and understanding of the alteration information which is extracted from remote sensing images. In the paper, the concept of spectral geological profile was introduced based on the principle of geological section and the method of spectral information extraction. The spectral profile can realize the storage and vision of spectra along the geological profile, but the spectral geological spectral profile includes more information besides the information of spectral profile. The main object of spectral geological spectral profile is to obtain the distribution of alteration types and content of minerals along the profile which can be extracted from spectra measured by field spectrometer, especially for the spatial distribution and mode of alteration association. Technical method and work flow of alteration information extraction was studied for the spectral geological profile. The spectral geological profile was set up using the ground reflectance spectra and the alteration information was extracted from the remote sensing image with the help of typical spectra geological profile. At last the meaning and effect of the spectral geological profile was discussed.

  9. Automatic information extraction from unstructured mammography reports using distributed semantics.

    PubMed

    Gupta, Anupama; Banerjee, Imon; Rubin, Daniel L

    2018-02-01

    To date, the methods developed for automated extraction of information from radiology reports are mainly rule-based or dictionary-based, and, therefore, require substantial manual effort to build these systems. Recent efforts to develop automated systems for entity detection have been undertaken, but little work has been done to automatically extract relations and their associated named entities in narrative radiology reports that have comparable accuracy to rule-based methods. Our goal is to extract relations in a unsupervised way from radiology reports without specifying prior domain knowledge. We propose a hybrid approach for information extraction that combines dependency-based parse tree with distributed semantics for generating structured information frames about particular findings/abnormalities from the free-text mammography reports. The proposed IE system obtains a F 1 -score of 0.94 in terms of completeness of the content in the information frames, which outperforms a state-of-the-art rule-based system in this domain by a significant margin. The proposed system can be leveraged in a variety of applications, such as decision support and information retrieval, and may also easily scale to other radiology domains, since there is no need to tune the system with hand-crafted information extraction rules. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. [Study on Information Extraction of Clinic Expert Information from Hospital Portals].

    PubMed

    Zhang, Yuanpeng; Dong, Jiancheng; Qian, Danmin; Geng, Xingyun; Wu, Huiqun; Wang, Li

    2015-12-01

    Clinic expert information provides important references for residents in need of hospital care. Usually, such information is hidden in the deep web and cannot be directly indexed by search engines. To extract clinic expert information from the deep web, the first challenge is to make a judgment on forms. This paper proposes a novel method based on a domain model, which is a tree structure constructed by the attributes of search interfaces. With this model, search interfaces can be classified to a domain and filled in with domain keywords. Another challenge is to extract information from the returned web pages indexed by search interfaces. To filter the noise information on a web page, a block importance model is proposed. The experiment results indicated that the domain model yielded a precision 10.83% higher than that of the rule-based method, whereas the block importance model yielded an F₁ measure 10.5% higher than that of the XPath method.

  11. A novel murmur-based heart sound feature extraction technique using envelope-morphological analysis

    NASA Astrophysics Data System (ADS)

    Yao, Hao-Dong; Ma, Jia-Li; Fu, Bin-Bin; Wang, Hai-Yang; Dong, Ming-Chui

    2015-07-01

    Auscultation of heart sound (HS) signals serves as an important primary approach to diagnose cardiovascular diseases (CVDs) for centuries. Confronting the intrinsic drawbacks of traditional HS auscultation, computer-aided automatic HS auscultation based on feature extraction technique has witnessed explosive development. Yet, most existing HS feature extraction methods adopt acoustic or time-frequency features which exhibit poor relationship with diagnostic information, thus restricting the performance of further interpretation and analysis. Tackling such a bottleneck problem, this paper innovatively proposes a novel murmur-based HS feature extraction method since murmurs contain massive pathological information and are regarded as the first indications of pathological occurrences of heart valves. Adapting discrete wavelet transform (DWT) and Shannon envelope, the envelope-morphological characteristics of murmurs are obtained and three features are extracted accordingly. Validated by discriminating normal HS and 5 various abnormal HS signals with extracted features, the proposed method provides an attractive candidate in automatic HS auscultation.

  12. Summary of water body extraction methods based on ZY-3 satellite

    NASA Astrophysics Data System (ADS)

    Zhu, Yu; Sun, Li Jian; Zhang, Chuan Yin

    2017-12-01

    Extracting from remote sensing images is one of the main means of water information extraction. Affected by spectral characteristics, many methods can be not applied to the satellite image of ZY-3. To solve this problem, we summarize the extraction methods for ZY-3 and analyze the extraction results of existing methods. According to the characteristics of extraction results, the method of WI& single band threshold and the method of texture filtering based on probability statistics are explored. In addition, the advantages and disadvantages of all methods are compared, which provides some reference for the research of water extraction from images. The obtained conclusions are as follows. 1) NIR has higher water sensitivity, consequently when the surface reflectance in the study area is less similar to water, using single band threshold method or multi band operation can obtain the ideal effect. 2) Compared with the water index and HIS optimal index method, object extraction method based on rules, which takes into account not only the spectral information of the water, but also space and texture feature constraints, can obtain better extraction effect, yet the image segmentation process is time consuming and the definition of the rules requires a certain knowledge. 3) The combination of the spectral relationship and water index can eliminate the interference of the shadow to a certain extent. When there is less small water or small water is not considered in further study, texture filtering based on probability statistics can effectively reduce the noises in result and avoid mixing shadows or paddy field with water in a certain extent.

  13. Active learning for ontological event extraction incorporating named entity recognition and unknown word handling.

    PubMed

    Han, Xu; Kim, Jung-jae; Kwoh, Chee Keong

    2016-01-01

    Biomedical text mining may target various kinds of valuable information embedded in the literature, but a critical obstacle to the extension of the mining targets is the cost of manual construction of labeled data, which are required for state-of-the-art supervised learning systems. Active learning is to choose the most informative documents for the supervised learning in order to reduce the amount of required manual annotations. Previous works of active learning, however, focused on the tasks of entity recognition and protein-protein interactions, but not on event extraction tasks for multiple event types. They also did not consider the evidence of event participants, which might be a clue for the presence of events in unlabeled documents. Moreover, the confidence scores of events produced by event extraction systems are not reliable for ranking documents in terms of informativity for supervised learning. We here propose a novel committee-based active learning method that supports multi-event extraction tasks and employs a new statistical method for informativity estimation instead of using the confidence scores from event extraction systems. Our method is based on a committee of two systems as follows: We first employ an event extraction system to filter potential false negatives among unlabeled documents, from which the system does not extract any event. We then develop a statistical method to rank the potential false negatives of unlabeled documents 1) by using a language model that measures the probabilities of the expression of multiple events in documents and 2) by using a named entity recognition system that locates the named entities that can be event arguments (e.g. proteins). The proposed method further deals with unknown words in test data by using word similarity measures. We also apply our active learning method for the task of named entity recognition. We evaluate the proposed method against the BioNLP Shared Tasks datasets, and show that our method can achieve better performance than such previous methods as entropy and Gibbs error based methods and a conventional committee-based method. We also show that the incorporation of named entity recognition into the active learning for event extraction and the unknown word handling further improve the active learning method. In addition, the adaptation of the active learning method into named entity recognition tasks also improves the document selection for manual annotation of named entities.

  14. Using text mining techniques to extract phenotypic information from the PhenoCHF corpus.

    PubMed

    Alnazzawi, Noha; Thompson, Paul; Batista-Navarro, Riza; Ananiadou, Sophia

    2015-01-01

    Phenotypic information locked away in unstructured narrative text presents significant barriers to information accessibility, both for clinical practitioners and for computerised applications used for clinical research purposes. Text mining (TM) techniques have previously been applied successfully to extract different types of information from text in the biomedical domain. They have the potential to be extended to allow the extraction of information relating to phenotypes from free text. To stimulate the development of TM systems that are able to extract phenotypic information from text, we have created a new corpus (PhenoCHF) that is annotated by domain experts with several types of phenotypic information relating to congestive heart failure. To ensure that systems developed using the corpus are robust to multiple text types, it integrates text from heterogeneous sources, i.e., electronic health records (EHRs) and scientific articles from the literature. We have developed several different phenotype extraction methods to demonstrate the utility of the corpus, and tested these methods on a further corpus, i.e., ShARe/CLEF 2013. Evaluation of our automated methods showed that PhenoCHF can facilitate the training of reliable phenotype extraction systems, which are robust to variations in text type. These results have been reinforced by evaluating our trained systems on the ShARe/CLEF corpus, which contains clinical records of various types. Like other studies within the biomedical domain, we found that solutions based on conditional random fields produced the best results, when coupled with a rich feature set. PhenoCHF is the first annotated corpus aimed at encoding detailed phenotypic information. The unique heterogeneous composition of the corpus has been shown to be advantageous in the training of systems that can accurately extract phenotypic information from a range of different text types. Although the scope of our annotation is currently limited to a single disease, the promising results achieved can stimulate further work into the extraction of phenotypic information for other diseases. The PhenoCHF annotation guidelines and annotations are publicly available at https://code.google.com/p/phenochf-corpus.

  15. Information extraction from multi-institutional radiology reports.

    PubMed

    Hassanpour, Saeed; Langlotz, Curtis P

    2016-01-01

    The radiology report is the most important source of clinical imaging information. It documents critical information about the patient's health and the radiologist's interpretation of medical findings. It also communicates information to the referring physicians and records that information for future clinical and research use. Although efforts to structure some radiology report information through predefined templates are beginning to bear fruit, a large portion of radiology report information is entered in free text. The free text format is a major obstacle for rapid extraction and subsequent use of information by clinicians, researchers, and healthcare information systems. This difficulty is due to the ambiguity and subtlety of natural language, complexity of described images, and variations among different radiologists and healthcare organizations. As a result, radiology reports are used only once by the clinician who ordered the study and rarely are used again for research and data mining. In this work, machine learning techniques and a large multi-institutional radiology report repository are used to extract the semantics of the radiology report and overcome the barriers to the re-use of radiology report information in clinical research and other healthcare applications. We describe a machine learning system to annotate radiology reports and extract report contents according to an information model. This information model covers the majority of clinically significant contents in radiology reports and is applicable to a wide variety of radiology study types. Our automated approach uses discriminative sequence classifiers for named-entity recognition to extract and organize clinically significant terms and phrases consistent with the information model. We evaluated our information extraction system on 150 radiology reports from three major healthcare organizations and compared its results to a commonly used non-machine learning information extraction method. We also evaluated the generalizability of our approach across different organizations by training and testing our system on data from different organizations. Our results show the efficacy of our machine learning approach in extracting the information model's elements (10-fold cross-validation average performance: precision: 87%, recall: 84%, F1 score: 85%) and its superiority and generalizability compared to the common non-machine learning approach (p-value<0.05). Our machine learning information extraction approach provides an effective automatic method to annotate and extract clinically significant information from a large collection of free text radiology reports. This information extraction system can help clinicians better understand the radiology reports and prioritize their review process. In addition, the extracted information can be used by researchers to link radiology reports to information from other data sources such as electronic health records and the patient's genome. Extracted information also can facilitate disease surveillance, real-time clinical decision support for the radiologist, and content-based image retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Uncovering the essential links in online commercial networks

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Fang, Meiling; Shao, Junming; Shang, Mingsheng

    2016-09-01

    Recommender systems are designed to effectively support individuals' decision-making process on various web sites. It can be naturally represented by a user-object bipartite network, where a link indicates that a user has collected an object. Recently, research on the information backbone has attracted researchers' interests, which is a sub-network with fewer nodes and links but carrying most of the relevant information. With the backbone, a system can generate satisfactory recommenda- tions while saving much computing resource. In this paper, we propose an enhanced topology-aware method to extract the information backbone in the bipartite network mainly based on the information of neighboring users and objects. Our backbone extraction method enables the recommender systems achieve more than 90% of the accuracy of the top-L recommendation, however, consuming only 20% links. The experimental results show that our method outperforms the alternative backbone extraction methods. Moreover, the structure of the information backbone is studied in detail. Finally, we highlight that the information backbone is one of the most important properties of the bipartite network, with which one can significantly improve the efficiency of the recommender system.

  17. Application of Machine Learning in Urban Greenery Land Cover Extraction

    NASA Astrophysics Data System (ADS)

    Qiao, X.; Li, L. L.; Li, D.; Gan, Y. L.; Hou, A. Y.

    2018-04-01

    Urban greenery is a critical part of the modern city and the greenery coverage information is essential for land resource management, environmental monitoring and urban planning. It is a challenging work to extract the urban greenery information from remote sensing image as the trees and grassland are mixed with city built-ups. In this paper, we propose a new automatic pixel-based greenery extraction method using multispectral remote sensing images. The method includes three main steps. First, a small part of the images is manually interpreted to provide prior knowledge. Secondly, a five-layer neural network is trained and optimised with the manual extraction results, which are divided to serve as training samples, verification samples and testing samples. Lastly, the well-trained neural network will be applied to the unlabelled data to perform the greenery extraction. The GF-2 and GJ-1 high resolution multispectral remote sensing images were used to extract greenery coverage information in the built-up areas of city X. It shows a favourable performance in the 619 square kilometers areas. Also, when comparing with the traditional NDVI method, the proposed method gives a more accurate delineation of the greenery region. Due to the advantage of low computational load and high accuracy, it has a great potential for large area greenery auto extraction, which saves a lot of manpower and resources.

  18. Research on Crowdsourcing Emergency Information Extraction of Based on Events' Frame

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Wang, Jizhou; Ma, Weijun; Mao, Xi

    2018-01-01

    At present, the common information extraction method cannot extract the structured emergency event information accurately; the general information retrieval tool cannot completely identify the emergency geographic information; these ways also do not have an accurate assessment of these results of distilling. So, this paper proposes an emergency information collection technology based on event framework. This technique is to solve the problem of emergency information picking. It mainly includes emergency information extraction model (EIEM), complete address recognition method (CARM) and the accuracy evaluation model of emergency information (AEMEI). EIEM can be structured to extract emergency information and complements the lack of network data acquisition in emergency mapping. CARM uses a hierarchical model and the shortest path algorithm and allows the toponomy pieces to be joined as a full address. AEMEI analyzes the results of the emergency event and summarizes the advantages and disadvantages of the event framework. Experiments show that event frame technology can solve the problem of emergency information drawing and provides reference cases for other applications. When the emergency disaster is about to occur, the relevant departments query emergency's data that has occurred in the past. They can make arrangements ahead of schedule which defense and reducing disaster. The technology decreases the number of casualties and property damage in the country and world. This is of great significance to the state and society.

  19. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery.

    PubMed

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-07-19

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics.

  20. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery

    PubMed Central

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-01-01

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics. PMID:27447631

  1. Mild extraction methods using aqueous glucose solution for the analysis of natural dyes in textile artefacts dyed with Dyer's madder (Rubia tinctorum L.).

    PubMed

    Ford, Lauren; Henderson, Robert L; Rayner, Christopher M; Blackburn, Richard S

    2017-03-03

    Madder (Rubia tinctorum L.) has been widely used as a red dye throughout history. Acid-sensitive colorants present in madder, such as glycosides (lucidin primeveroside, ruberythric acid, galiosin) and sensitive aglycons (lucidin), are degraded in the textile back extraction process; in previous literature these sensitive molecules are either absent or present in only low concentrations due to the use of acid in typical textile back extraction processes. Anthraquinone aglycons alizarin and purpurin are usually identified in analysis following harsh back extraction methods, such those using solvent mixtures with concentrated hydrochloric acid at high temperatures. Use of softer extraction techniques potentially allows for dye components present in madder to be extracted without degradation, which can potentially provide more information about the original dye profile, which varies significantly between madder varieties, species and dyeing technique. Herein, a softer extraction method involving aqueous glucose solution was developed and compared to other back extraction techniques on wool dyed with root extract from different varieties of Rubia tinctorum. Efficiencies of the extraction methods were analysed by HPLC coupled with diode array detection. Acidic literature methods were evaluated and they generally caused hydrolysis and degradation of the dye components, with alizarin, lucidin, and purpurin being the main compounds extracted. In contrast, extraction in aqueous glucose solution provides a highly effective method for extraction of madder dyed wool and is shown to efficiently extract lucidin primeveroside and ruberythric acid without causing hydrolysis and also extract aglycons that are present due to hydrolysis during processing of the plant material. Glucose solution is a favourable extraction medium due to its ability to form extensive hydrogen bonding with glycosides present in madder, and displace them from the fibre. This new glucose method offers an efficient process that preserves these sensitive molecules and is a step-change in analysis of madder dyed textiles as it can provide further information about historical dye preparation and dyeing processes that current methods cannot. The method also efficiently extracts glycosides in artificially aged samples, making it applicable for museum textile artefacts. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Mars Target Encyclopedia: Information Extraction for Planetary Science

    NASA Astrophysics Data System (ADS)

    Wagstaff, K. L.; Francis, R.; Gowda, T.; Lu, Y.; Riloff, E.; Singh, K.

    2017-06-01

    Mars surface targets / and published compositions / Seek and ye will find. We used text mining methods to extract information from LPSC abstracts about the composition of Mars surface targets. Users can search by element, mineral, or target.

  3. Techniques for information extraction from compressed GPS traces : final report.

    DOT National Transportation Integrated Search

    2015-12-31

    Developing techniques for extracting information requires a good understanding of methods used to compress the traces. Many techniques for compressing trace data : consisting of position (i.e., latitude/longitude) and time values have been developed....

  4. Research of building information extraction and evaluation based on high-resolution remote-sensing imagery

    NASA Astrophysics Data System (ADS)

    Cao, Qiong; Gu, Lingjia; Ren, Ruizhi; Wang, Lang

    2016-09-01

    Building extraction currently is important in the application of high-resolution remote sensing imagery. At present, quite a few algorithms are available for detecting building information, however, most of them still have some obvious disadvantages, such as the ignorance of spectral information, the contradiction between extraction rate and extraction accuracy. The purpose of this research is to develop an effective method to detect building information for Chinese GF-1 data. Firstly, the image preprocessing technique is used to normalize the image and image enhancement is used to highlight the useful information in the image. Secondly, multi-spectral information is analyzed. Subsequently, an improved morphological building index (IMBI) based on remote sensing imagery is proposed to get the candidate building objects. Furthermore, in order to refine building objects and further remove false objects, the post-processing (e.g., the shape features, the vegetation index and the water index) is employed. To validate the effectiveness of the proposed algorithm, the omission errors (OE), commission errors (CE), the overall accuracy (OA) and Kappa are used at final. The proposed method can not only effectively use spectral information and other basic features, but also avoid extracting excessive interference details from high-resolution remote sensing images. Compared to the original MBI algorithm, the proposed method reduces the OE by 33.14% .At the same time, the Kappa increase by 16.09%. In experiments, IMBI achieved satisfactory results and outperformed other algorithms in terms of both accuracies and visual inspection

  5. Fully Convolutional Network Based Shadow Extraction from GF-2 Imagery

    NASA Astrophysics Data System (ADS)

    Li, Z.; Cai, G.; Ren, H.

    2018-04-01

    There are many shadows on the high spatial resolution satellite images, especially in the urban areas. Although shadows on imagery severely affect the information extraction of land cover or land use, they provide auxiliary information for building extraction which is hard to achieve a satisfactory accuracy through image classification itself. This paper focused on the method of building shadow extraction by designing a fully convolutional network and training samples collected from GF-2 satellite imagery in the urban region of Changchun city. By means of spatial filtering and calculation of adjacent relationship along the sunlight direction, the small patches from vegetation or bridges have been eliminated from the preliminary extracted shadows. Finally, the building shadows were separated. The extracted building shadow information from the proposed method in this paper was compared with the results from the traditional object-oriented supervised classification algorihtms. It showed that the deep learning network approach can improve the accuracy to a large extent.

  6. Clinic expert information extraction based on domain model and block importance model.

    PubMed

    Zhang, Yuanpeng; Wang, Li; Qian, Danmin; Geng, Xingyun; Yao, Dengfu; Dong, Jiancheng

    2015-11-01

    To extract expert clinic information from the Deep Web, there are two challenges to face. The first one is to make a judgment on forms. A novel method based on a domain model, which is a tree structure constructed by the attributes of query interfaces is proposed. With this model, query interfaces can be classified to a domain and filled in with domain keywords. Another challenge is to extract information from response Web pages indexed by query interfaces. To filter the noisy information on a Web page, a block importance model is proposed, both content and spatial features are taken into account in this model. The experimental results indicate that the domain model yields a precision 4.89% higher than that of the rule-based method, whereas the block importance model yields an F1 measure 10.5% higher than that of the XPath method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Automatic Extraction of Urban Built-Up Area Based on Object-Oriented Method and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Li, L.; Zhou, H.; Wen, Q.; Chen, T.; Guan, F.; Ren, B.; Yu, H.; Wang, Z.

    2018-04-01

    Built-up area marks the use of city construction land in the different periods of the development, the accurate extraction is the key to the studies of the changes of urban expansion. This paper studies the technology of automatic extraction of urban built-up area based on object-oriented method and remote sensing data, and realizes the automatic extraction of the main built-up area of the city, which saves the manpower cost greatly. First, the extraction of construction land based on object-oriented method, the main technical steps include: (1) Multi-resolution segmentation; (2) Feature Construction and Selection; (3) Information Extraction of Construction Land Based on Rule Set, The characteristic parameters used in the rule set mainly include the mean of the red band (Mean R), Normalized Difference Vegetation Index (NDVI), Ratio of residential index (RRI), Blue band mean (Mean B), Through the combination of the above characteristic parameters, the construction site information can be extracted. Based on the degree of adaptability, distance and area of the object domain, the urban built-up area can be quickly and accurately defined from the construction land information without depending on other data and expert knowledge to achieve the automatic extraction of the urban built-up area. In this paper, Beijing city as an experimental area for the technical methods of the experiment, the results show that: the city built-up area to achieve automatic extraction, boundary accuracy of 2359.65 m to meet the requirements. The automatic extraction of urban built-up area has strong practicality and can be applied to the monitoring of the change of the main built-up area of city.

  8. A combination of feature extraction methods with an ensemble of different classifiers for protein structural class prediction problem.

    PubMed

    Dehzangi, Abdollah; Paliwal, Kuldip; Sharma, Alok; Dehzangi, Omid; Sattar, Abdul

    2013-01-01

    Better understanding of structural class of a given protein reveals important information about its overall folding type and its domain. It can also be directly used to provide critical information on general tertiary structure of a protein which has a profound impact on protein function determination and drug design. Despite tremendous enhancements made by pattern recognition-based approaches to solve this problem, it still remains as an unsolved issue for bioinformatics that demands more attention and exploration. In this study, we propose a novel feature extraction model that incorporates physicochemical and evolutionary-based information simultaneously. We also propose overlapped segmented distribution and autocorrelation-based feature extraction methods to provide more local and global discriminatory information. The proposed feature extraction methods are explored for 15 most promising attributes that are selected from a wide range of physicochemical-based attributes. Finally, by applying an ensemble of different classifiers namely, Adaboost.M1, LogitBoost, naive Bayes, multilayer perceptron (MLP), and support vector machine (SVM) we show enhancement of the protein structural class prediction accuracy for four popular benchmarks.

  9. Waterbodies Extraction from LANDSAT8-OLI Imagery Using Awater Indexs-Guied Stochastic Fully-Connected Conditional Random Field Model and the Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xu, L.

    2018-04-01

    One of the most important applications of remote sensing classification is water extraction. The water index (WI) based on Landsat images is one of the most common ways to distinguish water bodies from other land surface features. But conventional WI methods take into account spectral information only form a limited number of bands, and therefore the accuracy of those WI methods may be constrained in some areas which are covered with snow/ice, clouds, etc. An accurate and robust water extraction method is the key to the study at present. The support vector machine (SVM) using all bands spectral information can reduce for these classification error to some extent. Nevertheless, SVM which barely considers spatial information is relatively sensitive to noise in local regions. Conditional random field (CRF) which considers both spatial information and spectral information has proven to be able to compensate for these limitations. Hence, in this paper, we develop a systematic water extraction method by taking advantage of the complementarity between the SVM and a water index-guided stochastic fully-connected conditional random field (SVM-WIGSFCRF) to address the above issues. In addition, we comprehensively evaluate the reliability and accuracy of the proposed method using Landsat-8 operational land imager (OLI) images of one test site. We assess the method's performance by calculating the following accuracy metrics: Omission Errors (OE) and Commission Errors (CE); Kappa coefficient (KP) and Total Error (TE). Experimental results show that the new method can improve target detection accuracy under complex and changeable environments.

  10. Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier

    NASA Technical Reports Server (NTRS)

    Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco

    2000-01-01

    A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.

  11. Feature extraction for document text using Latent Dirichlet Allocation

    NASA Astrophysics Data System (ADS)

    Prihatini, P. M.; Suryawan, I. K.; Mandia, IN

    2018-01-01

    Feature extraction is one of stages in the information retrieval system that used to extract the unique feature values of a text document. The process of feature extraction can be done by several methods, one of which is Latent Dirichlet Allocation. However, researches related to text feature extraction using Latent Dirichlet Allocation method are rarely found for Indonesian text. Therefore, through this research, a text feature extraction will be implemented for Indonesian text. The research method consists of data acquisition, text pre-processing, initialization, topic sampling and evaluation. The evaluation is done by comparing Precision, Recall and F-Measure value between Latent Dirichlet Allocation and Term Frequency Inverse Document Frequency KMeans which commonly used for feature extraction. The evaluation results show that Precision, Recall and F-Measure value of Latent Dirichlet Allocation method is higher than Term Frequency Inverse Document Frequency KMeans method. This shows that Latent Dirichlet Allocation method is able to extract features and cluster Indonesian text better than Term Frequency Inverse Document Frequency KMeans method.

  12. Applying high resolution remote sensing image and DEM to falling boulder hazard assessment

    NASA Astrophysics Data System (ADS)

    Huang, Changqing; Shi, Wenzhong; Ng, K. C.

    2005-10-01

    Boulder fall hazard assessing generally requires gaining the boulder information. The extensive mapping and surveying fieldwork is a time-consuming, laborious and dangerous conventional method. So this paper proposes an applying image processing technology to extract boulder and assess boulder fall hazard from high resolution remote sensing image. The method can replace the conventional method and extract the boulder information in high accuracy, include boulder size, shape, height and the slope and aspect of its position. With above boulder information, it can be satisfied for assessing, prevention and cure boulder fall hazard.

  13. An effective image classification method with the fusion of invariant feature and a new color descriptor

    NASA Astrophysics Data System (ADS)

    Mansourian, Leila; Taufik Abdullah, Muhamad; Nurliyana Abdullah, Lili; Azman, Azreen; Mustaffa, Mas Rina

    2017-02-01

    Pyramid Histogram of Words (PHOW), combined Bag of Visual Words (BoVW) with the spatial pyramid matching (SPM) in order to add location information to extracted features. However, different PHOW extracted from various color spaces, and they did not extract color information individually, that means they discard color information, which is an important characteristic of any image that is motivated by human vision. This article, concatenated PHOW Multi-Scale Dense Scale Invariant Feature Transform (MSDSIFT) histogram and a proposed Color histogram to improve the performance of existing image classification algorithms. Performance evaluation on several datasets proves that the new approach outperforms other existing, state-of-the-art methods.

  14. Information extraction from full text scientific articles: where are the keywords?

    PubMed

    Shah, Parantu K; Perez-Iratxeta, Carolina; Bork, Peer; Andrade, Miguel A

    2003-05-29

    To date, many of the methods for information extraction of biological information from scientific articles are restricted to the abstract of the article. However, full text articles in electronic version, which offer larger sources of data, are currently available. Several questions arise as to whether the effort of scanning full text articles is worthy, or whether the information that can be extracted from the different sections of an article can be relevant. In this work we addressed those questions showing that the keyword content of the different sections of a standard scientific article (abstract, introduction, methods, results, and discussion) is very heterogeneous. Although the abstract contains the best ratio of keywords per total of words, other sections of the article may be a better source of biologically relevant data.

  15. Synchrosqueezing an effective method for analyzing Doppler radar physiological signals.

    PubMed

    Yavari, Ehsan; Rahman, Ashikur; Jia Xu; Mandic, Danilo P; Boric-Lubecke, Olga

    2016-08-01

    Doppler radar can monitor vital sign wirelessly. Respiratory and heart rate have time-varying behavior. Capturing the rate variability provides crucial physiological information. However, the common time-frequency methods fail to detect key information. We investigate Synchrosqueezing method to extract oscillatory components of the signal with time varying spectrum. Simulation and experimental result shows the potential of the proposed method for analyzing signals with complex time-frequency behavior like physiological signals. Respiration and heart signals and their components are extracted with higher resolution and without any pre-filtering and signal conditioning.

  16. [An object-based information extraction technology for dominant tree species group types].

    PubMed

    Tian, Tian; Fan, Wen-yi; Lu, Wei; Xiao, Xiang

    2015-06-01

    Information extraction for dominant tree group types is difficult in remote sensing image classification, howevers, the object-oriented classification method using high spatial resolution remote sensing data is a new method to realize the accurate type information extraction. In this paper, taking the Jiangle Forest Farm in Fujian Province as the research area, based on the Quickbird image data in 2013, the object-oriented method was adopted to identify the farmland, shrub-herbaceous plant, young afforested land, Pinus massoniana, Cunninghamia lanceolata and broad-leave tree types. Three types of classification factors including spectral, texture, and different vegetation indices were used to establish a class hierarchy. According to the different levels, membership functions and the decision tree classification rules were adopted. The results showed that the method based on the object-oriented method by using texture, spectrum and the vegetation indices achieved the classification accuracy of 91.3%, which was increased by 5.7% compared with that by only using the texture and spectrum.

  17. Comparison of manual and automated nucleic acid extraction methods from clinical specimens for microbial diagnosis purposes.

    PubMed

    Wozniak, Aniela; Geoffroy, Enrique; Miranda, Carolina; Castillo, Claudia; Sanhueza, Francia; García, Patricia

    2016-11-01

    The choice of nucleic acids (NAs) extraction method for molecular diagnosis in microbiology is of major importance because of the low microbial load, different nature of microorganisms, and clinical specimens. The NA yield of different extraction methods has been mostly studied using spiked samples. However, information from real human clinical specimens is scarce. The purpose of this study was to compare the performance of a manual low-cost extraction method (Qiagen kit or salting-out extraction method) with the automated high-cost MagNAPure Compact method. According to cycle threshold values for different pathogens, MagNAPure is as efficient as Qiagen for NA extraction from noncomplex clinical specimens (nasopharyngeal swab, skin swab, plasma, respiratory specimens). In contrast, according to cycle threshold values for RNAseP, MagNAPure method may not be an appropriate method for NA extraction from blood. We believe that MagNAPure versatility reduced risk of cross-contamination and reduced hands-on time compensates its high cost. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Real time system design of motor imagery brain-computer interface based on multi band CSP and SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Li, Xiaoqin; Bian, Yan

    2018-04-01

    Motion imagery (MT) is an effective method to promote the recovery of limbs in patients after stroke. Though an online MT brain computer interface (BCT) system, which apply MT, can enhance the patient's participation and accelerate their recovery process. The traditional method deals with the electroencephalogram (EEG) induced by MT by common spatial pattern (CSP), which is used to extract information from a frequency band. Tn order to further improve the classification accuracy of the system, information of two characteristic frequency bands is extracted. The effectiveness of the proposed feature extraction method is verified by off-line analysis of competition data and the analysis of online system.

  19. A rapid extraction of landslide disaster information research based on GF-1 image

    NASA Astrophysics Data System (ADS)

    Wang, Sai; Xu, Suning; Peng, Ling; Wang, Zhiyi; Wang, Na

    2015-08-01

    In recent years, the landslide disasters occurred frequently because of the seismic activity. It brings great harm to people's life. It has caused high attention of the state and the extensive concern of society. In the field of geological disaster, landslide information extraction based on remote sensing has been controversial, but high resolution remote sensing image can improve the accuracy of information extraction effectively with its rich texture and geometry information. Therefore, it is feasible to extract the information of earthquake- triggered landslides with serious surface damage and large scale. Taking the Wenchuan county as the study area, this paper uses multi-scale segmentation method to extract the landslide image object through domestic GF-1 images and DEM data, which uses the estimation of scale parameter tool to determine the optimal segmentation scale; After analyzing the characteristics of landslide high-resolution image comprehensively and selecting spectrum feature, texture feature, geometric features and landform characteristics of the image, we can establish the extracting rules to extract landslide disaster information. The extraction results show that there are 20 landslide whose total area is 521279.31 .Compared with visual interpretation results, the extraction accuracy is 72.22%. This study indicates its efficient and feasible to extract earthquake landslide disaster information based on high resolution remote sensing and it provides important technical support for post-disaster emergency investigation and disaster assessment.

  20. Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm.

    PubMed

    Khushaba, Rami N; Kodagoda, Sarath; Lal, Sara; Dissanayake, Gamini

    2011-01-01

    Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-- 97% on an average across all subjects.

  1. Data assimilation to extract soil moisture information from SMAP observations

    USDA-ARS?s Scientific Manuscript database

    This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP) observations. Neural Network(NN) and physically-based SMAP soil moisture retrievals were assimilated into the NASA Catchment model over the contiguous United Sta...

  2. Use of Information--LMC Connection

    ERIC Educational Resources Information Center

    Darrow, Rob

    2005-01-01

    Note taking plays an important part in the correct extracting of information from reference sources. The "Cornell Note Taking Method" initially developed as a method of taking notes during a lecture is well suited for taking notes from print sources and is one of the best "Use of Information" methods.

  3. A research of road centerline extraction algorithm from high resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Yushan; Xu, Tingfa

    2017-09-01

    Satellite remote sensing technology has become one of the most effective methods for land surface monitoring in recent years, due to its advantages such as short period, large scale and rich information. Meanwhile, road extraction is an important field in the applications of high resolution remote sensing images. An intelligent and automatic road extraction algorithm with high precision has great significance for transportation, road network updating and urban planning. The fuzzy c-means (FCM) clustering segmentation algorithms have been used in road extraction, but the traditional algorithms did not consider spatial information. An improved fuzzy C-means clustering algorithm combined with spatial information (SFCM) is proposed in this paper, which is proved to be effective for noisy image segmentation. Firstly, the image is segmented using the SFCM. Secondly, the segmentation result is processed by mathematical morphology to remover the joint region. Thirdly, the road centerlines are extracted by morphology thinning and burr trimming. The average integrity of the centerline extraction algorithm is 97.98%, the average accuracy is 95.36% and the average quality is 93.59%. Experimental results show that the proposed method in this paper is effective for road centerline extraction.

  4. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas

    PubMed Central

    Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming

    2015-01-01

    Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832

  5. Scorebox extraction from mobile sports videos using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Kim, Wonjun; Park, Jimin; Kim, Changick

    2008-08-01

    Scorebox plays an important role in understanding contents of sports videos. However, the tiny scorebox may give the small-display-viewers uncomfortable experience in grasping the game situation. In this paper, we propose a novel framework to extract the scorebox from sports video frames. We first extract candidates by using accumulated intensity and edge information after short learning period. Since there are various types of scoreboxes inserted in sports videos, multiple attributes need to be used for efficient extraction. Based on those attributes, the optimal information gain is computed and top three ranked attributes in terms of information gain are selected as a three-dimensional feature vector for Support Vector Machines (SVM) to distinguish the scorebox from other candidates, such as logos and advertisement boards. The proposed method is tested on various videos of sports games and experimental results show the efficiency and robustness of our proposed method.

  6. Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging.

    PubMed

    Hong, Keehoon; Hong, Jisoo; Jung, Jae-Hyun; Park, Jae-Hyeung; Lee, Byoungho

    2010-05-24

    We propose a new method for rectifying a geometrical distortion in the elemental image set and extracting an accurate lens lattice lines by projective image transformation. The information of distortion in the acquired elemental image set is found by Hough transform algorithm. With this initial information of distortions, the acquired elemental image set is rectified automatically without the prior knowledge on the characteristics of pickup system by stratified image transformation procedure. Computer-generated elemental image sets with distortion on purpose are used for verifying the proposed rectification method. Experimentally-captured elemental image sets are optically reconstructed before and after the rectification by the proposed method. The experimental results support the validity of the proposed method with high accuracy of image rectification and lattice extraction.

  7. Automated ancillary cancer history classification for mesothelioma patients from free-text clinical reports

    PubMed Central

    Wilson, Richard A.; Chapman, Wendy W.; DeFries, Shawn J.; Becich, Michael J.; Chapman, Brian E.

    2010-01-01

    Background: Clinical records are often unstructured, free-text documents that create information extraction challenges and costs. Healthcare delivery and research organizations, such as the National Mesothelioma Virtual Bank, require the aggregation of both structured and unstructured data types. Natural language processing offers techniques for automatically extracting information from unstructured, free-text documents. Methods: Five hundred and eight history and physical reports from mesothelioma patients were split into development (208) and test sets (300). A reference standard was developed and each report was annotated by experts with regard to the patient’s personal history of ancillary cancer and family history of any cancer. The Hx application was developed to process reports, extract relevant features, perform reference resolution and classify them with regard to cancer history. Two methods, Dynamic-Window and ConText, for extracting information were evaluated. Hx’s classification responses using each of the two methods were measured against the reference standard. The average Cohen’s weighted kappa served as the human benchmark in evaluating the system. Results: Hx had a high overall accuracy, with each method, scoring 96.2%. F-measures using the Dynamic-Window and ConText methods were 91.8% and 91.6%, which were comparable to the human benchmark of 92.8%. For the personal history classification, Dynamic-Window scored highest with 89.2% and for the family history classification, ConText scored highest with 97.6%, in which both methods were comparable to the human benchmark of 88.3% and 97.2%, respectively. Conclusion: We evaluated an automated application’s performance in classifying a mesothelioma patient’s personal and family history of cancer from clinical reports. To do so, the Hx application must process reports, identify cancer concepts, distinguish the known mesothelioma from ancillary cancers, recognize negation, perform reference resolution and determine the experiencer. Results indicated that both information extraction methods tested were dependant on the domain-specific lexicon and negation extraction. We showed that the more general method, ConText, performed as well as our task-specific method. Although Dynamic- Window could be modified to retrieve other concepts, ConText is more robust and performs better on inconclusive concepts. Hx could greatly improve and expedite the process of extracting data from free-text, clinical records for a variety of research or healthcare delivery organizations. PMID:21031012

  8. Text extraction method for historical Tibetan document images based on block projections

    NASA Astrophysics Data System (ADS)

    Duan, Li-juan; Zhang, Xi-qun; Ma, Long-long; Wu, Jian

    2017-11-01

    Text extraction is an important initial step in digitizing the historical documents. In this paper, we present a text extraction method for historical Tibetan document images based on block projections. The task of text extraction is considered as text area detection and location problem. The images are divided equally into blocks and the blocks are filtered by the information of the categories of connected components and corner point density. By analyzing the filtered blocks' projections, the approximate text areas can be located, and the text regions are extracted. Experiments on the dataset of historical Tibetan documents demonstrate the effectiveness of the proposed method.

  9. Comparison of Two Simplification Methods for Shoreline Extraction from Digital Orthophoto Images

    NASA Astrophysics Data System (ADS)

    Bayram, B.; Sen, A.; Selbesoglu, M. O.; Vārna, I.; Petersons, P.; Aykut, N. O.; Seker, D. Z.

    2017-11-01

    The coastal ecosystems are very sensitive to external influences. Coastal resources such as sand dunes, coral reefs and mangroves has vital importance to prevent coastal erosion. Human based effects also threats the coastal areas. Therefore, the change of coastal areas should be monitored. Up-to-date, accurate shoreline information is indispensable for coastal managers and decision makers. Remote sensing and image processing techniques give a big opportunity to obtain reliable shoreline information. In the presented study, NIR bands of seven 1:5000 scaled digital orthophoto images of Riga Bay-Latvia have been used. The Object-oriented Simple Linear Clustering method has been utilized to extract shoreline of Riga Bay. Bend and Douglas-Peucker methods have been used to simplify the extracted shoreline to test the effect of both methods. Photogrammetrically digitized shoreline has been taken as reference data to compare obtained results. The accuracy assessment has been realised by Digital Shoreline Analysis tool. As a result, the achieved shoreline by the Bend method has been found closer to the extracted shoreline with Simple Linear Clustering method.

  10. Built-up Areas Extraction in High Resolution SAR Imagery based on the method of Multiple Feature Weighted Fusion

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.

    2015-06-01

    Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.

  11. Semi-Supervised Recurrent Neural Network for Adverse Drug Reaction mention extraction.

    PubMed

    Gupta, Shashank; Pawar, Sachin; Ramrakhiyani, Nitin; Palshikar, Girish Keshav; Varma, Vasudeva

    2018-06-13

    Social media is a useful platform to share health-related information due to its vast reach. This makes it a good candidate for public-health monitoring tasks, specifically for pharmacovigilance. We study the problem of extraction of Adverse-Drug-Reaction (ADR) mentions from social media, particularly from Twitter. Medical information extraction from social media is challenging, mainly due to short and highly informal nature of text, as compared to more technical and formal medical reports. Current methods in ADR mention extraction rely on supervised learning methods, which suffer from labeled data scarcity problem. The state-of-the-art method uses deep neural networks, specifically a class of Recurrent Neural Network (RNN) which is Long-Short-Term-Memory network (LSTM). Deep neural networks, due to their large number of free parameters rely heavily on large annotated corpora for learning the end task. But in the real-world, it is hard to get large labeled data, mainly due to the heavy cost associated with the manual annotation. To this end, we propose a novel semi-supervised learning based RNN model, which can leverage unlabeled data also present in abundance on social media. Through experiments we demonstrate the effectiveness of our method, achieving state-of-the-art performance in ADR mention extraction. In this study, we tackle the problem of labeled data scarcity for Adverse Drug Reaction mention extraction from social media and propose a novel semi-supervised learning based method which can leverage large unlabeled corpus available in abundance on the web. Through empirical study, we demonstrate that our proposed method outperforms fully supervised learning based baseline which relies on large manually annotated corpus for a good performance.

  12. A weighted information criterion for multiple minor components and its adaptive extraction algorithms.

    PubMed

    Gao, Yingbin; Kong, Xiangyu; Zhang, Huihui; Hou, Li'an

    2017-05-01

    Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Research of infrared laser based pavement imaging and crack detection

    NASA Astrophysics Data System (ADS)

    Hong, Hanyu; Wang, Shu; Zhang, Xiuhua; Jing, Genqiang

    2013-08-01

    Road crack detection is seriously affected by many factors in actual applications, such as some shadows, road signs, oil stains, high frequency noise and so on. Due to these factors, the current crack detection methods can not distinguish the cracks in complex scenes. In order to solve this problem, a novel method based on infrared laser pavement imaging is proposed. Firstly, single sensor laser pavement imaging system is adopted to obtain pavement images, high power laser line projector is well used to resist various shadows. Secondly, the crack extraction algorithm which has merged multiple features intelligently is proposed to extract crack information. In this step, the non-negative feature and contrast feature are used to extract the basic crack information, and circular projection based on linearity feature is applied to enhance the crack area and eliminate noise. A series of experiments have been performed to test the proposed method, which shows that the proposed automatic extraction method is effective and advanced.

  14. Steroid hormones in environmental matrices: extraction method comparison.

    PubMed

    Andaluri, Gangadhar; Suri, Rominder P S; Graham, Kendon

    2017-11-09

    The U.S. Environmental Protection Agency (EPA) has developed methods for the analysis of steroid hormones in water, soil, sediment, and municipal biosolids by HRGC/HRMS (EPA Method 1698). Following the guidelines provided in US-EPA Method 1698, the extraction methods were validated with reagent water and applied to municipal wastewater, surface water, and municipal biosolids using GC/MS/MS for the analysis of nine most commonly detected steroid hormones. This is the first reported comparison of the separatory funnel extraction (SFE), continuous liquid-liquid extraction (CLLE), and Soxhlet extraction methods developed by the U.S. EPA. Furthermore, a solid phase extraction (SPE) method was also developed in-house for the extraction of steroid hormones from aquatic environmental samples. This study provides valuable information regarding the robustness of the different extraction methods. Statistical analysis of the data showed that SPE-based methods provided better recovery efficiencies and lower variability of the steroid hormones followed by SFE. The analytical methods developed in-house for extraction of biosolids showed a wide recovery range; however, the variability was low (≤ 7% RSD). Soxhlet extraction and CLLE are lengthy procedures and have been shown to provide highly variably recovery efficiencies. The results of this study are guidance for better sample preparation strategies in analytical methods for steroid hormone analysis, and SPE adds to the choice in environmental sample analysis.

  15. Method of Grassland Information Extraction Based on Multi-Level Segmentation and Cart Model

    NASA Astrophysics Data System (ADS)

    Qiao, Y.; Chen, T.; He, J.; Wen, Q.; Liu, F.; Wang, Z.

    2018-04-01

    It is difficult to extract grassland accurately by traditional classification methods, such as supervised method based on pixels or objects. This paper proposed a new method combing the multi-level segmentation with CART (classification and regression tree) model. The multi-level segmentation which combined the multi-resolution segmentation and the spectral difference segmentation could avoid the over and insufficient segmentation seen in the single segmentation mode. The CART model was established based on the spectral characteristics and texture feature which were excavated from training sample data. Xilinhaote City in Inner Mongolia Autonomous Region was chosen as the typical study area and the proposed method was verified by using visual interpretation results as approximate truth value. Meanwhile, the comparison with the nearest neighbor supervised classification method was obtained. The experimental results showed that the total precision of classification and the Kappa coefficient of the proposed method was 95 % and 0.9, respectively. However, the total precision of classification and the Kappa coefficient of the nearest neighbor supervised classification method was 80 % and 0.56, respectively. The result suggested that the accuracy of classification proposed in this paper was higher than the nearest neighbor supervised classification method. The experiment certificated that the proposed method was an effective extraction method of grassland information, which could enhance the boundary of grassland classification and avoid the restriction of grassland distribution scale. This method was also applicable to the extraction of grassland information in other regions with complicated spatial features, which could avoid the interference of woodland, arable land and water body effectively.

  16. Audio feature extraction using probability distribution function

    NASA Astrophysics Data System (ADS)

    Suhaib, A.; Wan, Khairunizam; Aziz, Azri A.; Hazry, D.; Razlan, Zuradzman M.; Shahriman A., B.

    2015-05-01

    Voice recognition has been one of the popular applications in robotic field. It is also known to be recently used for biometric and multimedia information retrieval system. This technology is attained from successive research on audio feature extraction analysis. Probability Distribution Function (PDF) is a statistical method which is usually used as one of the processes in complex feature extraction methods such as GMM and PCA. In this paper, a new method for audio feature extraction is proposed which is by using only PDF as a feature extraction method itself for speech analysis purpose. Certain pre-processing techniques are performed in prior to the proposed feature extraction method. Subsequently, the PDF result values for each frame of sampled voice signals obtained from certain numbers of individuals are plotted. From the experimental results obtained, it can be seen visually from the plotted data that each individuals' voice has comparable PDF values and shapes.

  17. An automatic rat brain extraction method based on a deformable surface model.

    PubMed

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. High-resolution extraction of particle size via Fourier Ptychography

    NASA Astrophysics Data System (ADS)

    Li, Shengfu; Zhao, Yu; Chen, Guanghua; Luo, Zhenxiong; Ye, Yan

    2017-11-01

    This paper proposes a method which can extract the particle size information with a resolution beyond λ/NA. This is achieved by applying Fourier Ptychographic (FP) ideas to the present problem. In a typical FP imaging platform, a 2D LED array is used as light sources for angle-varied illuminations, a series of low-resolution images was taken by a full sequential scan of the array of LEDs. Here, we demonstrate the particle size information is extracted by turning on each single LED on a circle. The simulated results show that the proposed method can reduce the total number of images, without loss of reliability in the results.

  19. Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhong, Ruofei; Tang, Tao; Wang, Liuzhao; Liu, Xianlin

    2017-08-01

    Pavement markings provide an important foundation as they help to keep roads users safe. Accurate and comprehensive information about pavement markings assists the road regulators and is useful in developing driverless technology. Mobile light detection and ranging (LiDAR) systems offer new opportunities to collect and process accurate pavement markings’ information. Mobile LiDAR systems can directly obtain the three-dimensional (3D) coordinates of an object, thus defining spatial data and the intensity of (3D) objects in a fast and efficient way. The RGB attribute information of data points can be obtained based on the panoramic camera in the system. In this paper, we present a novel method process to automatically extract pavement markings using multiple attribute information of the laser scanning point cloud from the mobile LiDAR data. This method process utilizes a differential grayscale of RGB color, laser pulse reflection intensity, and the differential intensity to identify and extract pavement markings. We utilized point cloud density to remove the noise and used morphological operations to eliminate the errors. In the application, we tested our method process on different sections of roads in Beijing, China, and Buffalo, NY, USA. The results indicated that both correctness (p) and completeness (r) were higher than 90%. The method process of this research can be applied to extract pavement markings from huge point cloud data produced by mobile LiDAR.

  20. Text-in-context: a method for extracting findings in mixed-methods mixed research synthesis studies.

    PubMed

    Sandelowski, Margarete; Leeman, Jennifer; Knafl, Kathleen; Crandell, Jamie L

    2013-06-01

    Our purpose in this paper is to propose a new method for extracting findings from research reports included in mixed-methods mixed research synthesis studies. International initiatives in the domains of systematic review and evidence synthesis have been focused on broadening the conceptualization of evidence, increased methodological inclusiveness and the production of evidence syntheses that will be accessible to and usable by a wider range of consumers. Initiatives in the general mixed-methods research field have been focused on developing truly integrative approaches to data analysis and interpretation. The data extraction challenges described here were encountered, and the method proposed for addressing these challenges was developed, in the first year of the ongoing (2011-2016) study: Mixed-Methods Synthesis of Research on Childhood Chronic Conditions and Family. To preserve the text-in-context of findings in research reports, we describe a method whereby findings are transformed into portable statements that anchor results to relevant information about sample, source of information, time, comparative reference point, magnitude and significance and study-specific conceptions of phenomena. The data extraction method featured here was developed specifically to accommodate mixed-methods mixed research synthesis studies conducted in nursing and other health sciences, but reviewers might find it useful in other kinds of research synthesis studies. This data extraction method itself constitutes a type of integration to preserve the methodological context of findings when statements are read individually and in comparison to each other. © 2012 Blackwell Publishing Ltd.

  1. Morphometric information to reduce the semantic gap in the characterization of microscopic images of thyroid nodules.

    PubMed

    Macedo, Alessandra A; Pessotti, Hugo C; Almansa, Luciana F; Felipe, Joaquim C; Kimura, Edna T

    2016-07-01

    The analyses of several systems for medical-imaging processing typically support the extraction of image attributes, but do not comprise some information that characterizes images. For example, morphometry can be applied to find new information about the visual content of an image. The extension of information may result in knowledge. Subsequently, results of mappings can be applied to recognize exam patterns, thus improving the accuracy of image retrieval and allowing a better interpretation of exam results. Although successfully applied in breast lesion images, the morphometric approach is still poorly explored in thyroid lesions due to the high subjectivity thyroid examinations. This paper presents a theoretical-practical study, considering Computer Aided Diagnosis (CAD) and Morphometry, to reduce the semantic discontinuity between medical image features and human interpretation of image content. The proposed method aggregates the content of microscopic images characterized by morphometric information and other image attributes extracted by traditional object extraction algorithms. This method carries out segmentation, feature extraction, image labeling and classification. Morphometric analysis was included as an object extraction method in order to verify the improvement of its accuracy for automatic classification of microscopic images. To validate this proposal and verify the utility of morphometric information to characterize thyroid images, a CAD system was created to classify real thyroid image-exams into Papillary Cancer, Goiter and Non-Cancer. Results showed that morphometric information can improve the accuracy and precision of image retrieval and the interpretation of results in computer-aided diagnosis. For example, in the scenario where all the extractors are combined with the morphometric information, the CAD system had its best performance (70% of precision in Papillary cases). Results signalized a positive use of morphometric information from images to reduce semantic discontinuity between human interpretation and image characterization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Sugarcane Crop Extraction Using Object-Oriented Method from ZY-3 High Resolution Satellite Tlc Image

    NASA Astrophysics Data System (ADS)

    Luo, H.; Ling, Z. Y.; Shao, G. Z.; Huang, Y.; He, Y. Q.; Ning, W. Y.; Zhong, Z.

    2018-04-01

    Sugarcane is one of the most important crops in Guangxi, China. As the development of satellite remote sensing technology, more remotely sensed images can be used for monitoring sugarcane crop. With the help of Three Line Camera (TLC) images, wide coverage and stereoscopic mapping ability, Chinese ZY-3 high resolution stereoscopic mapping satellite is useful in attaining more information for sugarcane crop monitoring, such as spectral, shape, texture difference between forward, nadir and backward images. Digital surface model (DSM) derived from ZY-3 TLC images are also able to provide height information for sugarcane crop. In this study, we make attempt to extract sugarcane crop from ZY-3 images, which are acquired in harvest period. Ortho-rectified TLC images, fused image, DSM are processed for our extraction. Then Object-oriented method is used in image segmentation, example collection, and feature extraction. The results of our study show that with the help of ZY-3 TLC image, the information of sugarcane crop in harvest time can be automatic extracted, with an overall accuracy of about 85.3 %.

  3. Models Extracted from Text for System-Software Safety Analyses

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2010-01-01

    This presentation describes extraction and integration of requirements information and safety information in visualizations to support early review of completeness, correctness, and consistency of lengthy and diverse system safety analyses. Software tools have been developed and extended to perform the following tasks: 1) extract model parts and safety information from text in interface requirements documents, failure modes and effects analyses and hazard reports; 2) map and integrate the information to develop system architecture models and visualizations for safety analysts; and 3) provide model output to support virtual system integration testing. This presentation illustrates the methods and products with a rocket motor initiation case.

  4. Event extraction of bacteria biotopes: a knowledge-intensive NLP-based approach

    PubMed Central

    2012-01-01

    Background Bacteria biotopes cover a wide range of diverse habitats including animal and plant hosts, natural, medical and industrial environments. The high volume of publications in the microbiology domain provides a rich source of up-to-date information on bacteria biotopes. This information, as found in scientific articles, is expressed in natural language and is rarely available in a structured format, such as a database. This information is of great importance for fundamental research and microbiology applications (e.g., medicine, agronomy, food, bioenergy). The automatic extraction of this information from texts will provide a great benefit to the field. Methods We present a new method for extracting relationships between bacteria and their locations using the Alvis framework. Recognition of bacteria and their locations was achieved using a pattern-based approach and domain lexical resources. For the detection of environment locations, we propose a new approach that combines lexical information and the syntactic-semantic analysis of corpus terms to overcome the incompleteness of lexical resources. Bacteria location relations extend over sentence borders, and we developed domain-specific rules for dealing with bacteria anaphors. Results We participated in the BioNLP 2011 Bacteria Biotope (BB) task with the Alvis system. Official evaluation results show that it achieves the best performance of participating systems. New developments since then have increased the F-score by 4.1 points. Conclusions We have shown that the combination of semantic analysis and domain-adapted resources is both effective and efficient for event information extraction in the bacteria biotope domain. We plan to adapt the method to deal with a larger set of location types and a large-scale scientific article corpus to enable microbiologists to integrate and use the extracted knowledge in combination with experimental data. PMID:22759462

  5. Assigning Polarity to Causal Information in Financial Articles on Business Performance of Companies

    NASA Astrophysics Data System (ADS)

    Sakai, Hiroyuki; Masuyama, Shigeru

    We propose a method of assigning polarity to causal information extracted from Japanese financial articles concerning business performance of companies. Our method assigns polarity (positive or negative) to causal information in accordance with business performance, e.g. “zidousya no uriage ga koutyou: (Sales of cars are good)” (The polarity positive is assigned in this example). We may use causal expressions assigned polarity by our method, e.g., to analyze content of articles concerning business performance circumstantially. First, our method classifies articles concerning business performance into positive articles and negative articles. Using them, our method assigns polarity (positive or negative) to causal information extracted from the set of articles concerning business performance. Although our method needs training dataset for classifying articles concerning business performance into positive and negative ones, our method does not need a training dataset for assigning polarity to causal information. Hence, even if causal information not appearing in the training dataset for classifying articles concerning business performance into positive and negative ones exist, our method is able to assign it polarity by using statistical information of this classified sets of articles. We evaluated our method and confirmed that it attained 74.4% precision and 50.4% recall of assigning polarity positive, and 76.8% precision and 61.5% recall of assigning polarity negative, respectively.

  6. Road Damage Extraction from Post-Earthquake Uav Images Assisted by Vector Data

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Dou, A.

    2018-04-01

    Extraction of road damage information after earthquake has been regarded as urgent mission. To collect information about stricken areas, Unmanned Aerial Vehicle can be used to obtain images rapidly. This paper put forward a novel method to detect road damage and bring forward a coefficient to assess road accessibility. With the assistance of vector road data, image data of the Jiuzhaigou Ms7.0 Earthquake is tested. In the first, the image is clipped according to vector buffer. Then a large-scale segmentation is applied to remove irrelevant objects. Thirdly, statistics of road features are analysed, and damage information is extracted. Combining with the on-filed investigation, the extraction result is effective.

  7. A novel image watermarking method based on singular value decomposition and digital holography

    NASA Astrophysics Data System (ADS)

    Cai, Zhishan

    2016-10-01

    According to the information optics theory, a novel watermarking method based on Fourier-transformed digital holography and singular value decomposition (SVD) is proposed in this paper. First of all, a watermark image is converted to a digital hologram using the Fourier transform. After that, the original image is divided into many non-overlapping blocks. All the blocks and the hologram are decomposed using SVD. The singular value components of the hologram are then embedded into the singular value components of each block using an addition principle. Finally, SVD inverse transformation is carried out on the blocks and hologram to generate the watermarked image. The watermark information embedded in each block is extracted at first when the watermark is extracted. After that, an averaging operation is carried out on the extracted information to generate the final watermark information. Finally, the algorithm is simulated. Furthermore, to test the encrypted image's resistance performance against attacks, various attack tests are carried out. The results show that the proposed algorithm has very good robustness against noise interference, image cut, compression, brightness stretching, etc. In particular, when the image is rotated by a large angle, the watermark information can still be extracted correctly.

  8. An Extended Spectral-Spatial Classification Approach for Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Akbari, D.

    2017-11-01

    In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.

  9. Novel method of extracting motion from natural movies.

    PubMed

    Suzuki, Wataru; Ichinohe, Noritaka; Tani, Toshiki; Hayami, Taku; Miyakawa, Naohisa; Watanabe, Satoshi; Takeichi, Hiroshige

    2017-11-01

    The visual system in primates can be segregated into motion and shape pathways. Interaction occurs at multiple stages along these pathways. Processing of shape-from-motion and biological motion is considered to be a higher-order integration process involving motion and shape information. However, relatively limited types of stimuli have been used in previous studies on these integration processes. We propose a new algorithm to extract object motion information from natural movies and to move random dots in accordance with the information. The object motion information is extracted by estimating the dynamics of local normal vectors of the image intensity projected onto the x-y plane of the movie. An electrophysiological experiment on two adult common marmoset monkeys (Callithrix jacchus) showed that the natural and random dot movies generated with this new algorithm yielded comparable neural responses in the middle temporal visual area. In principle, this algorithm provided random dot motion stimuli containing shape information for arbitrary natural movies. This new method is expected to expand the neurophysiological and psychophysical experimental protocols to elucidate the integration processing of motion and shape information in biological systems. The novel algorithm proposed here was effective in extracting object motion information from natural movies and provided new motion stimuli to investigate higher-order motion information processing. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.

    PubMed

    Xu, Wenxuan; Zhang, Li; Lu, Yaping

    2016-06-01

    The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Extraction of Vertical Profiles of Atmospheric Variables from Gridded Binary, Edition 2 (GRIB2) Model Output Files

    DTIC Science & Technology

    2018-01-18

    processing. Specifically, the method described herein uses wgrib2 commands along with a Python script or program to produce tabular text files that in...It makes use of software that is readily available and can be implemented on many computer systems combined with relatively modest additional...example), extracts appropriate information, and lists the extracted information in a readable tabular form. The Python script used here is described in

  12. Information Fusion - Methods and Aggregation Operators

    NASA Astrophysics Data System (ADS)

    Torra, Vicenç

    Information fusion techniques are commonly applied in Data Mining and Knowledge Discovery. In this chapter, we will give an overview of such applications considering their three main uses. This is, we consider fusion methods for data preprocessing, model building and information extraction. Some aggregation operators (i.e. particular fusion methods) and their properties are briefly described as well.

  13. a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, H.; Chen, Q.; Liu, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.

  14. EDGE COMPUTING AND CONTEXTUAL INFORMATION FOR THE INTERNET OF THINGS SENSORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Levente

    Interpreting sensor data require knowledge about sensor placement and the surrounding environment. For a single sensor measurement, it is easy to document the context by visual observation, however for millions of sensors reporting data back to a server, the contextual information needs to be automatically extracted from either data analysis or leveraging complimentary data sources. Data layers that overlap spatially or temporally with sensor locations, can be used to extract the context and to validate the measurement. To minimize the amount of data transmitted through the internet, while preserving signal information content, two methods are explored; computation at the edgemore » and compressed sensing. We validate the above methods on wind and chemical sensor data (1) eliminate redundant measurement from wind sensors and (2) extract peak value of a chemical sensor measuring a methane plume. We present a general cloud based framework to validate sensor data based on statistical and physical modeling and contextual data extracted from geospatial data.« less

  15. A New Self-Constrained Inversion Method of Potential Fields Based on Probability Tomography

    NASA Astrophysics Data System (ADS)

    Sun, S.; Chen, C.; WANG, H.; Wang, Q.

    2014-12-01

    The self-constrained inversion method of potential fields uses a priori information self-extracted from potential field data. Differing from external a priori information, the self-extracted information are generally parameters derived exclusively from the analysis of the gravity and magnetic data (Paoletti et al., 2013). Here we develop a new self-constrained inversion method based on probability tomography. Probability tomography doesn't need any priori information, as well as large inversion matrix operations. Moreover, its result can describe the sources, especially the distribution of which is complex and irregular, entirely and clearly. Therefore, we attempt to use the a priori information extracted from the probability tomography results to constrain the inversion for physical properties. The magnetic anomaly data was taken as an example in this work. The probability tomography result of magnetic total field anomaly(ΔΤ) shows a smoother distribution than the anomalous source and cannot display the source edges exactly. However, the gradients of ΔΤ are with higher resolution than ΔΤ in their own direction, and this characteristic is also presented in their probability tomography results. So we use some rules to combine the probability tomography results of ∂ΔΤ⁄∂x, ∂ΔΤ⁄∂y and ∂ΔΤ⁄∂z into a new result which is used for extracting a priori information, and then incorporate the information into the model objective function as spatial weighting functions to invert the final magnetic susceptibility. Some magnetic synthetic examples incorporated with and without a priori information extracted from the probability tomography results were made to do comparison, results of which show that the former are more concentrated and with higher resolution of the source body edges. This method is finally applied in an iron mine in China with field measured ΔΤ data and performs well. ReferencesPaoletti, V., Ialongo, S., Florio, G., Fedi, M. & Cella, F., 2013. Self-constrained inversion of potential fields, Geophys J Int.This research is supported by the Fundamental Research Funds for Institute for Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences (Grant Nos. WHS201210 and WHS201211).

  16. Enhancing biomedical text summarization using semantic relation extraction.

    PubMed

    Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao

    2011-01-01

    Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization.

  17. Construction of Green Tide Monitoring System and Research on its Key Techniques

    NASA Astrophysics Data System (ADS)

    Xing, B.; Li, J.; Zhu, H.; Wei, P.; Zhao, Y.

    2018-04-01

    As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.

  18. Comparison of methods of extracting information for meta-analysis of observational studies in nutritional epidemiology.

    PubMed

    Bae, Jong-Myon

    2016-01-01

    A common method for conducting a quantitative systematic review (QSR) for observational studies related to nutritional epidemiology is the "highest versus lowest intake" method (HLM), in which only the information concerning the effect size (ES) of the highest category of a food item is collected on the basis of its lowest category. However, in the interval collapsing method (ICM), a method suggested to enable a maximum utilization of all available information, the ES information is collected by collapsing all categories into a single category. This study aimed to compare the ES and summary effect size (SES) between the HLM and ICM. A QSR for evaluating the citrus fruit intake and risk of pancreatic cancer and calculating the SES by using the HLM was selected. The ES and SES were estimated by performing a meta-analysis using the fixed-effect model. The directionality and statistical significance of the ES and SES were used as criteria for determining the concordance between the HLM and ICM outcomes. No significant differences were observed in the directionality of SES extracted by using the HLM or ICM. The application of the ICM, which uses a broader information base, yielded more-consistent ES and SES, and narrower confidence intervals than the HLM. The ICM is advantageous over the HLM owing to its higher statistical accuracy in extracting information for QSR on nutritional epidemiology. The application of the ICM should hence be recommended for future studies.

  19. [Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].

    PubMed

    Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing

    2015-10-01

    Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.

  20. Machinery running state identification based on discriminant semi-supervised local tangent space alignment for feature fusion and extraction

    NASA Astrophysics Data System (ADS)

    Su, Zuqiang; Xiao, Hong; Zhang, Yi; Tang, Baoping; Jiang, Yonghua

    2017-04-01

    Extraction of sensitive features is a challenging but key task in data-driven machinery running state identification. Aimed at solving this problem, a method for machinery running state identification that applies discriminant semi-supervised local tangent space alignment (DSS-LTSA) for feature fusion and extraction is proposed. Firstly, in order to extract more distinct features, the vibration signals are decomposed by wavelet packet decomposition WPD, and a mixed-domain feature set consisted of statistical features, autoregressive (AR) model coefficients, instantaneous amplitude Shannon entropy and WPD energy spectrum is extracted to comprehensively characterize the properties of machinery running state(s). Then, the mixed-dimension feature set is inputted into DSS-LTSA for feature fusion and extraction to eliminate redundant information and interference noise. The proposed DSS-LTSA can extract intrinsic structure information of both labeled and unlabeled state samples, and as a result the over-fitting problem of supervised manifold learning and blindness problem of unsupervised manifold learning are overcome. Simultaneously, class discrimination information is integrated within the dimension reduction process in a semi-supervised manner to improve sensitivity of the extracted fusion features. Lastly, the extracted fusion features are inputted into a pattern recognition algorithm to achieve the running state identification. The effectiveness of the proposed method is verified by a running state identification case in a gearbox, and the results confirm the improved accuracy of the running state identification.

  1. Passive Polarimetric Information Processing for Target Classification

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz; Sadjadi, Farzad

    Polarimetric sensing is an area of active research in a variety of applications. In particular, the use of polarization diversity has been shown to improve performance in automatic target detection and recognition. Within the diverse scope of polarimetric sensing, the field of passive polarimetric sensing is of particular interest. This chapter presents several new methods for gathering in formation using such passive techniques. One method extracts three-dimensional (3D) information and surface properties using one or more sensors. Another method extracts scene-specific algebraic expressions that remain unchanged under polariza tion transformations (such as along the transmission path to the sensor).

  2. [An Extraction and Recognition Method of the Distributed Optical Fiber Vibration Signal Based on EMD-AWPP and HOSA-SVM Algorithm].

    PubMed

    Zhang, Yanjun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong

    2016-02-01

    Given that the traditional signal processing methods can not effectively distinguish the different vibration intrusion signal, a feature extraction and recognition method of the vibration information is proposed based on EMD-AWPP and HOSA-SVM, using for high precision signal recognition of distributed fiber optic intrusion detection system. When dealing with different types of vibration, the method firstly utilizes the adaptive wavelet processing algorithm based on empirical mode decomposition effect to reduce the abnormal value influence of sensing signal and improve the accuracy of signal feature extraction. Not only the low frequency part of the signal is decomposed, but also the high frequency part the details of the signal disposed better by time-frequency localization process. Secondly, it uses the bispectrum and bicoherence spectrum to accurately extract the feature vector which contains different types of intrusion vibration. Finally, based on the BPNN reference model, the recognition parameters of SVM after the implementation of the particle swarm optimization can distinguish signals of different intrusion vibration, which endows the identification model stronger adaptive and self-learning ability. It overcomes the shortcomings, such as easy to fall into local optimum. The simulation experiment results showed that this new method can effectively extract the feature vector of sensing information, eliminate the influence of random noise and reduce the effects of outliers for different types of invasion source. The predicted category identifies with the output category and the accurate rate of vibration identification can reach above 95%. So it is better than BPNN recognition algorithm and improves the accuracy of the information analysis effectively.

  3. Development and application of traffic flow information collecting and analysis system based on multi-type video

    NASA Astrophysics Data System (ADS)

    Lu, Mujie; Shang, Wenjie; Ji, Xinkai; Hua, Mingzhuang; Cheng, Kuo

    2015-12-01

    Nowadays, intelligent transportation system (ITS) has already become the new direction of transportation development. Traffic data, as a fundamental part of intelligent transportation system, is having a more and more crucial status. In recent years, video observation technology has been widely used in the field of traffic information collecting. Traffic flow information contained in video data has many advantages which is comprehensive and can be stored for a long time, but there are still many problems, such as low precision and high cost in the process of collecting information. This paper aiming at these problems, proposes a kind of traffic target detection method with broad applicability. Based on three different ways of getting video data, such as aerial photography, fixed camera and handheld camera, we develop a kind of intelligent analysis software which can be used to extract the macroscopic, microscopic traffic flow information in the video, and the information can be used for traffic analysis and transportation planning. For road intersections, the system uses frame difference method to extract traffic information, for freeway sections, the system uses optical flow method to track the vehicles. The system was applied in Nanjing, Jiangsu province, and the application shows that the system for extracting different types of traffic flow information has a high accuracy, it can meet the needs of traffic engineering observations and has a good application prospect.

  4. Text-in-Context: A Method for Extracting Findings in Mixed-Methods Mixed Research Synthesis Studies

    PubMed Central

    Leeman, Jennifer; Knafl, Kathleen; Crandell, Jamie L.

    2012-01-01

    Aim Our purpose in this paper is to propose a new method for extracting findings from research reports included in mixed-methods mixed research synthesis studies. Background International initiatives in the domains of systematic review and evidence synthesis have been focused on broadening the conceptualization of evidence, increased methodological inclusiveness and the production of evidence syntheses that will be accessible to and usable by a wider range of consumers. Initiatives in the general mixed-methods research field have been focused on developing truly integrative approaches to data analysis and interpretation. Data source The data extraction challenges described here were encountered and the method proposed for addressing these challenges was developed, in the first year of the ongoing (2011–2016) study: Mixed-Methods Synthesis of Research on Childhood Chronic Conditions and Family. Discussion To preserve the text-in-context of findings in research reports, we describe a method whereby findings are transformed into portable statements that anchor results to relevant information about sample, source of information, time, comparative reference point, magnitude and significance and study-specific conceptions of phenomena. Implications for nursing The data extraction method featured here was developed specifically to accommodate mixed-methods mixed research synthesis studies conducted in nursing and other health sciences, but reviewers might find it useful in other kinds of research synthesis studies. Conclusion This data extraction method itself constitutes a type of integration to preserve the methodological context of findings when statements are read individually and in comparison to each other. PMID:22924808

  5. Optimization-based method for automated road network extraction

    DOT National Transportation Integrated Search

    2001-09-18

    Automated road information extraction has significant applicability in transportation. : It provides a means for creating, maintaining, and updating transportation network databases that : are needed for purposes ranging from traffic management to au...

  6. A color fusion method of infrared and low-light-level images based on visual perception

    NASA Astrophysics Data System (ADS)

    Han, Jing; Yan, Minmin; Zhang, Yi; Bai, Lianfa

    2014-11-01

    The color fusion images can be obtained through the fusion of infrared and low-light-level images, which will contain both the information of the two. The fusion images can help observers to understand the multichannel images comprehensively. However, simple fusion may lose the target information due to inconspicuous targets in long-distance infrared and low-light-level images; and if targets extraction is adopted blindly, the perception of the scene information will be affected seriously. To solve this problem, a new fusion method based on visual perception is proposed in this paper. The extraction of the visual targets ("what" information) and parallel processing mechanism are applied in traditional color fusion methods. The infrared and low-light-level color fusion images are achieved based on efficient typical targets learning. Experimental results show the effectiveness of the proposed method. The fusion images achieved by our algorithm can not only improve the detection rate of targets, but also get rich natural information of the scenes.

  7. A Discriminant Distance Based Composite Vector Selection Method for Odor Classification

    PubMed Central

    Choi, Sang-Il; Jeong, Gu-Min

    2014-01-01

    We present a composite vector selection method for an effective electronic nose system that performs well even in noisy environments. Each composite vector generated from a electronic nose data sample is evaluated by computing the discriminant distance. By quantitatively measuring the amount of discriminative information in each composite vector, composite vectors containing informative variables can be distinguished and the final composite features for odor classification are extracted using the selected composite vectors. Using the only informative composite vectors can be also helpful to extract better composite features instead of using all the generated composite vectors. Experimental results with different volatile organic compound data show that the proposed system has good classification performance even in a noisy environment compared to other methods. PMID:24747735

  8. Text feature extraction based on deep learning: a review.

    PubMed

    Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan

    2017-01-01

    Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.

  9. Histogram of gradient and binarized statistical image features of wavelet subband-based palmprint features extraction

    NASA Astrophysics Data System (ADS)

    Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab

    2017-11-01

    Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.

  10. A randomized control trial comparing the visual and verbal communication methods for reducing fear and anxiety during tooth extraction.

    PubMed

    Gazal, Giath; Tola, Ahmed W; Fareed, Wamiq M; Alnazzawi, Ahmad A; Zafar, Muhammad S

    2016-04-01

    To evaluate the value of using the visual information for reducing the level of dental fear and anxiety in patients undergoing teeth extraction under LA. A total of 64 patients were indiscriminately allotted to solitary of the study groups following reading the information sheet and signing the formal consent. If patient was in the control group, only verbal information and routine warnings were provided. If patient was in the study group, tooth extraction video was showed. The level of dental fear and anxiety was detailed by the patients on customary 100 mm visual analog scales (VAS), with "no dental fear and anxiety" (0 mm) and "severe dental distress and unease" (100 mm). Evaluation of dental apprehension and fretfulness was made pre-operatively, following visual/verbal information and post-extraction. There was a substantial variance among the mean dental fear and anxiety scores for both groups post-extraction (p-value < 0.05). Patients in tooth extraction video group were more comfortable after dental extraction than verbal information and routine warning group. For tooth extraction video group there were major decreases in dental distress and anxiety scores between the pre-operative and either post video information scores or postoperative scores (p-values < 0.05). Younger patients recorded higher dental fear and anxiety scores than older ones (P < 0.05). Dental fear and anxiety associated with dental extractions under local anesthesia can be reduced by showing a tooth extraction video to the patients preoperatively.

  11. Improving the Accuracy of Attribute Extraction using the Relatedness between Attribute Values

    NASA Astrophysics Data System (ADS)

    Bollegala, Danushka; Tani, Naoki; Ishizuka, Mitsuru

    Extracting attribute-values related to entities from web texts is an important step in numerous web related tasks such as information retrieval, information extraction, and entity disambiguation (namesake disambiguation). For example, for a search query that contains a personal name, we can not only return documents that contain that personal name, but if we have attribute-values such as the organization for which that person works, we can also suggest documents that contain information related to that organization, thereby improving the user's search experience. Despite numerous potential applications of attribute extraction, it remains a challenging task due to the inherent noise in web data -- often a single web page contains multiple entities and attributes. We propose a graph-based approach to select the correct attribute-values from a set of candidate attribute-values extracted for a particular entity. First, we build an undirected weighted graph in which, attribute-values are represented by nodes, and the edge that connects two nodes in the graph represents the degree of relatedness between the corresponding attribute-values. Next, we find the maximum spanning tree of this graph that connects exactly one attribute-value for each attribute-type. The proposed method outperforms previously proposed attribute extraction methods on a dataset that contains 5000 web pages.

  12. X-ray phase contrast tomography by tracking near field speckle

    PubMed Central

    Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal

    2015-01-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237

  13. Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification

    NASA Astrophysics Data System (ADS)

    Gao, Hui

    2018-04-01

    The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.

  14. [Technologies for Complex Intelligent Clinical Data Analysis].

    PubMed

    Baranov, A A; Namazova-Baranova, L S; Smirnov, I V; Devyatkin, D A; Shelmanov, A O; Vishneva, E A; Antonova, E V; Smirnov, V I

    2016-01-01

    The paper presents the system for intelligent analysis of clinical information. Authors describe methods implemented in the system for clinical information retrieval, intelligent diagnostics of chronic diseases, patient's features importance and for detection of hidden dependencies between features. Results of the experimental evaluation of these methods are also presented. Healthcare facilities generate a large flow of both structured and unstructured data which contain important information about patients. Test results are usually retained as structured data but some data is retained in the form of natural language texts (medical history, the results of physical examination, and the results of other examinations, such as ultrasound, ECG or X-ray studies). Many tasks arising in clinical practice can be automated applying methods for intelligent analysis of accumulated structured array and unstructured data that leads to improvement of the healthcare quality. the creation of the complex system for intelligent data analysis in the multi-disciplinary pediatric center. Authors propose methods for information extraction from clinical texts in Russian. The methods are carried out on the basis of deep linguistic analysis. They retrieve terms of diseases, symptoms, areas of the body and drugs. The methods can recognize additional attributes such as "negation" (indicates that the disease is absent), "no patient" (indicates that the disease refers to the patient's family member, but not to the patient), "severity of illness", disease course", "body region to which the disease refers". Authors use a set of hand-drawn templates and various techniques based on machine learning to retrieve information using a medical thesaurus. The extracted information is used to solve the problem of automatic diagnosis of chronic diseases. A machine learning method for classification of patients with similar nosology and the methodfor determining the most informative patients'features are also proposed. Authors have processed anonymized health records from the pediatric center to estimate the proposed methods. The results show the applicability of the information extracted from the texts for solving practical problems. The records ofpatients with allergic, glomerular and rheumatic diseases were used for experimental assessment of the method of automatic diagnostic. Authors have also determined the most appropriate machine learning methods for classification of patients for each group of diseases, as well as the most informative disease signs. It has been found that using additional information extracted from clinical texts, together with structured data helps to improve the quality of diagnosis of chronic diseases. Authors have also obtained pattern combinations of signs of diseases. The proposed methods have been implemented in the intelligent data processing system for a multidisciplinary pediatric center. The experimental results show the availability of the system to improve the quality of pediatric healthcare.

  15. Information retrieval and terminology extraction in online resources for patients with diabetes.

    PubMed

    Seljan, Sanja; Baretić, Maja; Kucis, Vlasta

    2014-06-01

    Terminology use, as a mean for information retrieval or document indexing, plays an important role in health literacy. Specific types of users, i.e. patients with diabetes need access to various online resources (on foreign and/or native language) searching for information on self-education of basic diabetic knowledge, on self-care activities regarding importance of dietetic food, medications, physical exercises and on self-management of insulin pumps. Automatic extraction of corpus-based terminology from online texts, manuals or professional papers, can help in building terminology lists or list of "browsing phrases" useful in information retrieval or in document indexing. Specific terminology lists represent an intermediate step between free text search and controlled vocabulary, between user's demands and existing online resources in native and foreign language. The research aiming to detect the role of terminology in online resources, is conducted on English and Croatian manuals and Croatian online texts, and divided into three interrelated parts: i) comparison of professional and popular terminology use ii) evaluation of automatic statistically-based terminology extraction on English and Croatian texts iii) comparison and evaluation of extracted terminology performed on English manual using statistical and hybrid approaches. Extracted terminology candidates are evaluated by comparison with three types of reference lists: list created by professional medical person, list of highly professional vocabulary contained in MeSH and list created by non-medical persons, made as intersection of 15 lists. Results report on use of popular and professional terminology in online diabetes resources, on evaluation of automatically extracted terminology candidates in English and Croatian texts and on comparison of statistical and hybrid extraction methods in English text. Evaluation of automatic and semi-automatic terminology extraction methods is performed by recall, precision and f-measure.

  16. Analysis of Financial Markets' Fluctuation by Textual Information

    NASA Astrophysics Data System (ADS)

    Izumi, Kiyoshi; Goto, Takashi; Matsui, Tohgoroh

    In this study, we proposed a new text-mining methods for long-term market analysis. Using our method, we analyzed monthly price data of financial markets; Japanese government bond market, Japanese stock market, and the yen-dollar market. First we extracted feature vectors from monthly reports of Bank of Japan. Then, trends of each market were estimated by regression analysis using the feature vectors. As a result, determination coefficients were over 75%, and market trends were explained well by the information that was extracted from textual data. We compared the predictive power of our method among the markets. As a result, the method could estimate JGB market best and the stock market is the second.

  17. Text mining in livestock animal science: introducing the potential of text mining to animal sciences.

    PubMed

    Sahadevan, S; Hofmann-Apitius, M; Schellander, K; Tesfaye, D; Fluck, J; Friedrich, C M

    2012-10-01

    In biological research, establishing the prior art by searching and collecting information already present in the domain has equal importance as the experiments done. To obtain a complete overview about the relevant knowledge, researchers mainly rely on 2 major information sources: i) various biological databases and ii) scientific publications in the field. The major difference between the 2 information sources is that information from databases is available, typically well structured and condensed. The information content in scientific literature is vastly unstructured; that is, dispersed among the many different sections of scientific text. The traditional method of information extraction from scientific literature occurs by generating a list of relevant publications in the field of interest and manually scanning these texts for relevant information, which is very time consuming. It is more than likely that in using this "classical" approach the researcher misses some relevant information mentioned in the literature or has to go through biological databases to extract further information. Text mining and named entity recognition methods have already been used in human genomics and related fields as a solution to this problem. These methods can process and extract information from large volumes of scientific text. Text mining is defined as the automatic extraction of previously unknown and potentially useful information from text. Named entity recognition (NER) is defined as the method of identifying named entities (names of real world objects; for example, gene/protein names, drugs, enzymes) in text. In animal sciences, text mining and related methods have been briefly used in murine genomics and associated fields, leaving behind other fields of animal sciences, such as livestock genomics. The aim of this work was to develop an information retrieval platform in the livestock domain focusing on livestock publications and the recognition of relevant data from cattle and pigs. For this purpose, the rather noncomprehensive resources of pig and cattle gene and protein terminologies were enriched with orthologue synonyms, integrated in the NER platform, ProMiner, which is successfully used in human genomics domain. Based on the performance tests done, the present system achieved a fair performance with precision 0.64, recall 0.74, and F(1) measure of 0.69 in a test scenario based on cattle literature.

  18. Segmentation of brain volume based on 3D region growing by integrating intensity and edge for image-guided surgery

    NASA Astrophysics Data System (ADS)

    Tsagaan, Baigalmaa; Abe, Keiichi; Goto, Masahiro; Yamamoto, Seiji; Terakawa, Susumu

    2006-03-01

    This paper presents a segmentation method of brain tissues from MR images, invented for our image-guided neurosurgery system under development. Our goal is to segment brain tissues for creating biomechanical model. The proposed segmentation method is based on 3-D region growing and outperforms conventional approaches by stepwise usage of intensity similarities between voxels in conjunction with edge information. Since the intensity and the edge information are complementary to each other in the region-based segmentation, we use them twice by performing a coarse-to-fine extraction. First, the edge information in an appropriate neighborhood of the voxel being considered is examined to constrain the region growing. The expanded region of the first extraction result is then used as the domain for the next processing. The intensity and the edge information of the current voxel only are utilized in the final extraction. Before segmentation, the intensity parameters of the brain tissues as well as partial volume effect are estimated by using expectation-maximization (EM) algorithm in order to provide an accurate data interpretation into the extraction. We tested the proposed method on T1-weighted MR images of brain and evaluated the segmentation effectiveness comparing the results with ground truths. Also, the generated meshes from the segmented brain volume by using mesh generating software are shown in this paper.

  19. Terrain Extraction by Integrating Terrestrial Laser Scanner Data and Spectral Information

    NASA Astrophysics Data System (ADS)

    Lau, C. L.; Halim, S.; Zulkepli, M.; Azwan, A. M.; Tang, W. L.; Chong, A. K.

    2015-10-01

    The extraction of true terrain points from unstructured laser point cloud data is an important process in order to produce an accurate digital terrain model (DTM). However, most of these spatial filtering methods just utilizing the geometrical data to discriminate the terrain points from nonterrain points. The point cloud filtering method also can be improved by using the spectral information available with some scanners. Therefore, the objective of this study is to investigate the effectiveness of using the three-channel (red, green and blue) of the colour image captured from built-in digital camera which is available in some Terrestrial Laser Scanner (TLS) for terrain extraction. In this study, the data acquisition was conducted at a mini replica landscape in Universiti Teknologi Malaysia (UTM), Skudai campus using Leica ScanStation C10. The spectral information of the coloured point clouds from selected sample classes are extracted for spectral analysis. The coloured point clouds which within the corresponding preset spectral threshold are identified as that specific feature point from the dataset. This process of terrain extraction is done through using developed Matlab coding. Result demonstrates that a higher spectral resolution passive image is required in order to improve the output. This is because low quality of the colour images captured by the sensor contributes to the low separability in spectral reflectance. In conclusion, this study shows that, spectral information is capable to be used as a parameter for terrain extraction.

  20. a New Multi-Spectral Threshold Normalized Difference Water Index Mst-Ndwi Water Extraction Method - a Case Study in Yanhe Watershed

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Zhao, H.; Hao, H.; Wang, C.

    2018-05-01

    Accurate remote sensing water extraction is one of the primary tasks of watershed ecological environment study. Since the Yanhe water system has typical characteristics of a small water volume and narrow river channel, which leads to the difficulty for conventional water extraction methods such as Normalized Difference Water Index (NDWI). A new Multi-Spectral Threshold segmentation of the NDWI (MST-NDWI) water extraction method is proposed to achieve the accurate water extraction in Yanhe watershed. In the MST-NDWI method, the spectral characteristics of water bodies and typical backgrounds on the Landsat/TM images have been evaluated in Yanhe watershed. The multi-spectral thresholds (TM1, TM4, TM5) based on maximum-likelihood have been utilized before NDWI water extraction to realize segmentation for a division of built-up lands and small linear rivers. With the proposed method, a water map is extracted from the Landsat/TM images in 2010 in China. An accuracy assessment is conducted to compare the proposed method with the conventional water indexes such as NDWI, Modified NDWI (MNDWI), Enhanced Water Index (EWI), and Automated Water Extraction Index (AWEI). The result shows that the MST-NDWI method generates better water extraction accuracy in Yanhe watershed and can effectively diminish the confusing background objects compared to the conventional water indexes. The MST-NDWI method integrates NDWI and Multi-Spectral Threshold segmentation algorithms, with richer valuable information and remarkable results in accurate water extraction in Yanhe watershed.

  1. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.

    PubMed

    Zarei, Roozbeh; He, Jing; Siuly, Siuly; Zhang, Yanchun

    2017-07-01

    Feature extraction of EEG signals plays a significant role in Brain-computer interface (BCI) as it can significantly affect the performance and the computational time of the system. The main aim of the current work is to introduce an innovative algorithm for acquiring reliable discriminating features from EEG signals to improve classification performances and to reduce the time complexity. This study develops a robust feature extraction method combining the principal component analysis (PCA) and the cross-covariance technique (CCOV) for the extraction of discriminatory information from the mental states based on EEG signals in BCI applications. We apply the correlation based variable selection method with the best first search on the extracted features to identify the best feature set for characterizing the distribution of mental state signals. To verify the robustness of the proposed feature extraction method, three machine learning techniques: multilayer perceptron neural networks (MLP), least square support vector machine (LS-SVM), and logistic regression (LR) are employed on the obtained features. The proposed methods are evaluated on two publicly available datasets. Furthermore, we evaluate the performance of the proposed methods by comparing it with some recently reported algorithms. The experimental results show that all three classifiers achieve high performance (above 99% overall classification accuracy) for the proposed feature set. Among these classifiers, the MLP and LS-SVM methods yield the best performance for the obtained feature. The average sensitivity, specificity and classification accuracy for these two classifiers are same, which are 99.32%, 100%, and 99.66%, respectively for the BCI competition dataset IVa and 100%, 100%, and 100%, for the BCI competition dataset IVb. The results also indicate the proposed methods outperform the most recently reported methods by at least 0.25% average accuracy improvement in dataset IVa. The execution time results show that the proposed method has less time complexity after feature selection. The proposed feature extraction method is very effective for getting representatives information from mental states EEG signals in BCI applications and reducing the computational complexity of classifiers by reducing the number of extracted features. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Extracting information in spike time patterns with wavelets and information theory.

    PubMed

    Lopes-dos-Santos, Vítor; Panzeri, Stefano; Kayser, Christoph; Diamond, Mathew E; Quian Quiroga, Rodrigo

    2015-02-01

    We present a new method to assess the information carried by temporal patterns in spike trains. The method first performs a wavelet decomposition of the spike trains, then uses Shannon information to select a subset of coefficients carrying information, and finally assesses timing information in terms of decoding performance: the ability to identify the presented stimuli from spike train patterns. We show that the method allows: 1) a robust assessment of the information carried by spike time patterns even when this is distributed across multiple time scales and time points; 2) an effective denoising of the raster plots that improves the estimate of stimulus tuning of spike trains; and 3) an assessment of the information carried by temporally coordinated spikes across neurons. Using simulated data, we demonstrate that the Wavelet-Information (WI) method performs better and is more robust to spike time-jitter, background noise, and sample size than well-established approaches, such as principal component analysis, direct estimates of information from digitized spike trains, or a metric-based method. Furthermore, when applied to real spike trains from monkey auditory cortex and from rat barrel cortex, the WI method allows extracting larger amounts of spike timing information. Importantly, the fact that the WI method incorporates multiple time scales makes it robust to the choice of partly arbitrary parameters such as temporal resolution, response window length, number of response features considered, and the number of available trials. These results highlight the potential of the proposed method for accurate and objective assessments of how spike timing encodes information. Copyright © 2015 the American Physiological Society.

  3. Effective Information Extraction Framework for Heterogeneous Clinical Reports Using Online Machine Learning and Controlled Vocabularies

    PubMed Central

    Zheng, Shuai; Ghasemzadeh, Nima; Hayek, Salim S; Quyyumi, Arshed A

    2017-01-01

    Background Extracting structured data from narrated medical reports is challenged by the complexity of heterogeneous structures and vocabularies and often requires significant manual effort. Traditional machine-based approaches lack the capability to take user feedbacks for improving the extraction algorithm in real time. Objective Our goal was to provide a generic information extraction framework that can support diverse clinical reports and enables a dynamic interaction between a human and a machine that produces highly accurate results. Methods A clinical information extraction system IDEAL-X has been built on top of online machine learning. It processes one document at a time, and user interactions are recorded as feedbacks to update the learning model in real time. The updated model is used to predict values for extraction in subsequent documents. Once prediction accuracy reaches a user-acceptable threshold, the remaining documents may be batch processed. A customizable controlled vocabulary may be used to support extraction. Results Three datasets were used for experiments based on report styles: 100 cardiac catheterization procedure reports, 100 coronary angiographic reports, and 100 integrated reports—each combines history and physical report, discharge summary, outpatient clinic notes, outpatient clinic letter, and inpatient discharge medication report. Data extraction was performed by 3 methods: online machine learning, controlled vocabularies, and a combination of these. The system delivers results with F1 scores greater than 95%. Conclusions IDEAL-X adopts a unique online machine learning–based approach combined with controlled vocabularies to support data extraction for clinical reports. The system can quickly learn and improve, thus it is highly adaptable. PMID:28487265

  4. Extracting Objects for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors

    PubMed Central

    Ramon Soria, Pablo; Bevec, Robert; Arrue, Begoña C.; Ude, Aleš; Ollero, Aníbal

    2016-01-01

    Giving unmanned aerial vehicles (UAVs) the possibility to manipulate objects vastly extends the range of possible applications. This applies to rotary wing UAVs in particular, where their capability of hovering enables a suitable position for in-flight manipulation. Their manipulation skills must be suitable for primarily natural, partially known environments, where UAVs mostly operate. We have developed an on-board object extraction method that calculates information necessary for autonomous grasping of objects, without the need to provide the model of the object’s shape. A local map of the work-zone is generated using depth information, where object candidates are extracted by detecting areas different to our floor model. Their image projections are then evaluated using support vector machine (SVM) classification to recognize specific objects or reject bad candidates. Our method builds a sparse cloud representation of each object and calculates the object’s centroid and the dominant axis. This information is then passed to a grasping module. Our method works under the assumption that objects are static and not clustered, have visual features and the floor shape of the work-zone area is known. We used low cost cameras for creating depth information that cause noisy point clouds, but our method has proved robust enough to process this data and return accurate results. PMID:27187413

  5. Extracting Objects for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors.

    PubMed

    Ramon Soria, Pablo; Bevec, Robert; Arrue, Begoña C; Ude, Aleš; Ollero, Aníbal

    2016-05-14

    Giving unmanned aerial vehicles (UAVs) the possibility to manipulate objects vastly extends the range of possible applications. This applies to rotary wing UAVs in particular, where their capability of hovering enables a suitable position for in-flight manipulation. Their manipulation skills must be suitable for primarily natural, partially known environments, where UAVs mostly operate. We have developed an on-board object extraction method that calculates information necessary for autonomous grasping of objects, without the need to provide the model of the object's shape. A local map of the work-zone is generated using depth information, where object candidates are extracted by detecting areas different to our floor model. Their image projections are then evaluated using support vector machine (SVM) classification to recognize specific objects or reject bad candidates. Our method builds a sparse cloud representation of each object and calculates the object's centroid and the dominant axis. This information is then passed to a grasping module. Our method works under the assumption that objects are static and not clustered, have visual features and the floor shape of the work-zone area is known. We used low cost cameras for creating depth information that cause noisy point clouds, but our method has proved robust enough to process this data and return accurate results.

  6. User-centered evaluation of Arizona BioPathway: an information extraction, integration, and visualization system.

    PubMed

    Quiñones, Karin D; Su, Hua; Marshall, Byron; Eggers, Shauna; Chen, Hsinchun

    2007-09-01

    Explosive growth in biomedical research has made automated information extraction, knowledge integration, and visualization increasingly important and critically needed. The Arizona BioPathway (ABP) system extracts and displays biological regulatory pathway information from the abstracts of journal articles. This study uses relations extracted from more than 200 PubMed abstracts presented in a tabular and graphical user interface with built-in search and aggregation functionality. This paper presents a task-centered assessment of the usefulness and usability of the ABP system focusing on its relation aggregation and visualization functionalities. Results suggest that our graph-based visualization is more efficient in supporting pathway analysis tasks and is perceived as more useful and easier to use as compared to a text-based literature-viewing method. Relation aggregation significantly contributes to knowledge-acquisition efficiency. Together, the graphic and tabular views in the ABP Visualizer provide a flexible and effective interface for pathway relation browsing and analysis. Our study contributes to pathway-related research and biological information extraction by assessing the value of a multiview, relation-based interface that supports user-controlled exploration of pathway information across multiple granularities.

  7. Extraction of reduced alteration information based on Aster data: a case study of the Bashibulake uranium ore district

    NASA Astrophysics Data System (ADS)

    Ye, Fa-wang; Liu, De-chang

    2008-12-01

    Practices of sandstone-type uranium exploration in recent years in China indicate that the uranium mineralization alteration information is of great importance for selecting a new uranium target or prospecting in outer area of the known uranium ore district. Taking a case study of BASHIBULAKE uranium ore district, this paper mainly presents the technical minds and methods of extracting the reduced alteration information by oil and gas in BASHIBULAKE ore district using ASTER data. First, the regional geological setting and study status in BASHIBULAKE uranium ore district are introduced in brief. Then, the spectral characteristics of altered sandstone and un-altered sandstone in BASHIBULAKE ore district are analyzed deeply. Based on the spectral analysis, two technical minds to extract the remote sensing reduced alteration information are proposed, and the un-mixing method is introduced to process ASTER data to extract the reduced alteration information in BASHIBULAKE ore district. From the enhanced images, three remote sensing anomaly zones are discovered, and their geological and prospecting significances are further made sure by taking the advantages of multi-bands in SWIR of ASTER data. Finally, the distribution and intensity of the reduced alteration information in Cretaceous system and its relationship with the genesis of uranium deposit are discussed, the specific suggestions for uranium prospecting orientation in outer of BASHIBULAKE ore district are also proposed.

  8. Comparative Efficiency of the Fenwick Can and Schuiling Centrifuge in Extracting Nematode Cysts from Different Soil Types

    PubMed Central

    Bellvert, Joaquim; Crombie, Kieran; Horgan, Finbarr G.

    2008-01-01

    The Fenwick can and Schuiling centrifuge are widely used to extract nematode cysts from soil samples. The comparative efficiencies of these two methods during cyst extraction have not been determined for different soil types under different cyst densities. Such information is vital for statutory laboratories that must choose a method for routine, high-throughput soil monitoring. In this study, samples of different soil types seeded with varying densities of potato cyst nematode (Globodera rostochiensis) cysts were processed using both methods. In one experiment, with 200 ml samples, recovery was similar between methods. In a second experiment with 500 ml samples, cyst recovery was higher using the Schuiling centrifuge. For each method and soil type, cyst extraction efficiency was similar across all densities tested. Extraction was efficient from pure sand (Fenwick 72%, Schuiling 84%) and naturally sandy soils (Fenwick 62%, Schuiling 73%), but was significantly less efficient from clay-soil (Fenwick 42%, Schuiling 44%) and peat-soil with high organic matter content (Fenwick 35%, Schuiling 33%). Residual moisture (<10% w/w) in samples prior to analyses reduced extraction efficiency, particularly for sand and sandy soils. For each soil type and method, there were significant linear relationships between the number of cysts extracted and the numbers of cysts in the samples. We discuss the advantages and disadvantages of each extraction method for cyst extraction in statutory soil laboratories. PMID:19259516

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Levente

    Interpreting sensor data require knowledge about sensor placement and the surrounding environment. For a single sensor measurement, it is easy to document the context by visual observation, however for millions of sensors reporting data back to a server, the contextual information needs to be automatically extracted from either data analysis or leveraging complimentary data sources. Data layers that overlap spatially or temporally with sensor locations, can be used to extract the context and to validate the measurement. To minimize the amount of data transmitted through the internet, while preserving signal information content, two methods are explored; computation at the edgemore » and compressed sensing. We validate the above methods on wind and chemical sensor data (1) eliminate redundant measurement from wind sensors and (2) extract peak value of a chemical sensor measuring a methane plume. We present a general cloud based framework to validate sensor data based on statistical and physical modeling and contextual data extracted from geospatial data.« less

  10. Quantification method for the appearance of melanin pigmentation using independent component analysis

    NASA Astrophysics Data System (ADS)

    Ojima, Nobutoshi; Okiyama, Natsuko; Okaguchi, Saya; Tsumura, Norimichi; Nakaguchi, Toshiya; Hori, Kimihiko; Miyake, Yoichi

    2005-04-01

    In the cosmetics industry, skin color is very important because skin color gives a direct impression of the face. In particular, many people suffer from melanin pigmentation such as liver spots and freckles. However, it is very difficult to evaluate melanin pigmentation using conventional colorimetric values because these values contain information on various skin chromophores simultaneously. Therefore, it is necessary to extract information of the chromophore of individual skins independently as density information. The isolation of the melanin component image based on independent component analysis (ICA) from a single skin image was reported in 2003. However, this technique has not developed a quantification method for melanin pigmentation. This paper introduces a quantification method based on the ICA of a skin color image to isolate melanin pigmentation. The image acquisition system we used consists of commercially available equipment such as digital cameras and lighting sources with polarized light. The images taken were analyzed using ICA to extract the melanin component images, and Laplacian of Gaussian (LOG) filter was applied to extract the pigmented area. As a result, for skin images including those showing melanin pigmentation and acne, the method worked well. Finally, the total amount of extracted area had a strong correspondence to the subjective rating values for the appearance of pigmentation. Further analysis is needed to recognize the appearance of pigmentation concerning the size of the pigmented area and its spatial gradation.

  11. Feasibility of Extracting Key Elements from ClinicalTrials.gov to Support Clinicians' Patient Care Decisions.

    PubMed

    Kim, Heejun; Bian, Jiantao; Mostafa, Javed; Jonnalagadda, Siddhartha; Del Fiol, Guilherme

    2016-01-01

    Motivation: Clinicians need up-to-date evidence from high quality clinical trials to support clinical decisions. However, applying evidence from the primary literature requires significant effort. Objective: To examine the feasibility of automatically extracting key clinical trial information from ClinicalTrials.gov. Methods: We assessed the coverage of ClinicalTrials.gov for high quality clinical studies that are indexed in PubMed. Using 140 random ClinicalTrials.gov records, we developed and tested rules for the automatic extraction of key information. Results: The rate of high quality clinical trial registration in ClinicalTrials.gov increased from 0.2% in 2005 to 17% in 2015. Trials reporting results increased from 3% in 2005 to 19% in 2015. The accuracy of the automatic extraction algorithm for 10 trial attributes was 90% on average. Future research is needed to improve the algorithm accuracy and to design information displays to optimally present trial information to clinicians.

  12. Enhancing Biomedical Text Summarization Using Semantic Relation Extraction

    PubMed Central

    Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao

    2011-01-01

    Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization. PMID:21887336

  13. Three-dimensional information extraction from GaoFen-1 satellite images for landslide monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Shixin; Yang, Baolin; Zhou, Yi; Wang, Futao; Zhang, Rui; Zhao, Qing

    2018-05-01

    To more efficiently use GaoFen-1 (GF-1) satellite images for landslide emergency monitoring, a Digital Surface Model (DSM) can be generated from GF-1 across-track stereo image pairs to build a terrain dataset. This study proposes a landslide 3D information extraction method based on the terrain changes of slope objects. The slope objects are mergences of segmented image objects which have similar aspects; and the terrain changes are calculated from the post-disaster Digital Elevation Model (DEM) from GF-1 and the pre-disaster DEM from GDEM V2. A high mountain landslide that occurred in Wenchuan County, Sichuan Province is used to conduct a 3D information extraction test. The extracted total area of the landslide is 22.58 ha; the displaced earth volume is 652,100 m3; and the average sliding direction is 263.83°. The accuracies of them are 0.89, 0.87 and 0.95, respectively. Thus, the proposed method expands the application of GF-1 satellite images to the field of landslide emergency monitoring.

  14. Point Cloud Classification of Tesserae from Terrestrial Laser Data Combined with Dense Image Matching for Archaeological Information Extraction

    NASA Astrophysics Data System (ADS)

    Poux, F.; Neuville, R.; Billen, R.

    2017-08-01

    Reasoning from information extraction given by point cloud data mining allows contextual adaptation and fast decision making. However, to achieve this perceptive level, a point cloud must be semantically rich, retaining relevant information for the end user. This paper presents an automatic knowledge-based method for pre-processing multi-sensory data and classifying a hybrid point cloud from both terrestrial laser scanning and dense image matching. Using 18 features including sensor's biased data, each tessera in the high-density point cloud from the 3D captured complex mosaics of Germigny-des-prés (France) is segmented via a colour multi-scale abstraction-based featuring extracting connectivity. A 2D surface and outline polygon of each tessera is generated by a RANSAC plane extraction and convex hull fitting. Knowledge is then used to classify every tesserae based on their size, surface, shape, material properties and their neighbour's class. The detection and semantic enrichment method shows promising results of 94% correct semantization, a first step toward the creation of an archaeological smart point cloud.

  15. Considering context: reliable entity networks through contextual relationship extraction

    NASA Astrophysics Data System (ADS)

    David, Peter; Hawes, Timothy; Hansen, Nichole; Nolan, James J.

    2016-05-01

    Existing information extraction techniques can only partially address the problem of exploiting unreadable-large amounts text. When discussion of events and relationships is limited to simple, past-tense, factual descriptions of events, current NLP-based systems can identify events and relationships and extract a limited amount of additional information. But the simple subset of available information that existing tools can extract from text is only useful to a small set of users and problems. Automated systems need to find and separate information based on what is threatened or planned to occur, has occurred in the past, or could potentially occur. We address the problem of advanced event and relationship extraction with our event and relationship attribute recognition system, which labels generic, planned, recurring, and potential events. The approach is based on a combination of new machine learning methods, novel linguistic features, and crowd-sourced labeling. The attribute labeler closes the gap between structured event and relationship models and the complicated and nuanced language that people use to describe them. Our operational-quality event and relationship attribute labeler enables Warfighters and analysts to more thoroughly exploit information in unstructured text. This is made possible through 1) More precise event and relationship interpretation, 2) More detailed information about extracted events and relationships, and 3) More reliable and informative entity networks that acknowledge the different attributes of entity-entity relationships.

  16. Modular continuous wavelet processing of biosignals: extracting heart rate and oxygen saturation from a video signal

    PubMed Central

    2016-01-01

    A novel method of extracting heart rate and oxygen saturation from a video-based biosignal is described. The method comprises a novel modular continuous wavelet transform approach which includes: performing the transform, undertaking running wavelet archetyping to enhance the pulse information, extraction of the pulse ridge time–frequency information [and thus a heart rate (HRvid) signal], creation of a wavelet ratio surface, projection of the pulse ridge onto the ratio surface to determine the ratio of ratios from which a saturation trending signal is derived, and calibrating this signal to provide an absolute saturation signal (SvidO2). The method is illustrated through its application to a video photoplethysmogram acquired during a porcine model of acute desaturation. The modular continuous wavelet transform-based approach is advocated by the author as a powerful methodology to deal with noisy, non-stationary biosignals in general. PMID:27382479

  17. An Estimation Approach to Extract Multimedia Information in Distributed Steganographic Images

    DTIC Science & Technology

    2007-07-01

    image steganography (DIS) [8] is a new method of concealing secret information in several host images , leaving...distributed image steganography , steganalysis, estimation, image quality matrix 1 Introduction Steganography is a method that hides secret information...used to sufficiently hide a secret image . Another emerging image steganographic technique is referred to as distributed image steganography

  18. Bearing diagnostics: A method based on differential geometry

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wang, Zili; Lu, Chen; Wang, Zhipeng

    2016-12-01

    The structures around bearings are complex, and the working environment is variable. These conditions cause the collected vibration signals to become nonlinear, non-stationary, and chaotic characteristics that make noise reduction, feature extraction, fault diagnosis, and health assessment significantly challenging. Thus, a set of differential geometry-based methods with superiorities in nonlinear analysis is presented in this study. For noise reduction, the Local Projection method is modified by both selecting the neighborhood radius based on empirical mode decomposition and determining noise subspace constrained by neighborhood distribution information. For feature extraction, Hessian locally linear embedding is introduced to acquire manifold features from the manifold topological structures, and singular values of eigenmatrices as well as several specific frequency amplitudes in spectrograms are extracted subsequently to reduce the complexity of the manifold features. For fault diagnosis, information geometry-based support vector machine is applied to classify the fault states. For health assessment, the manifold distance is employed to represent the health information; the Gaussian mixture model is utilized to calculate the confidence values, which directly reflect the health status. Case studies on Lorenz signals and vibration datasets of bearings demonstrate the effectiveness of the proposed methods.

  19. Extracting Information about the Rotator Cuff from Magnetic Resonance Images Using Deterministic and Random Techniques

    PubMed Central

    De Los Ríos, F. A.; Paluszny, M.

    2015-01-01

    We consider some methods to extract information about the rotator cuff based on magnetic resonance images; the study aims to define an alternative method of display that might facilitate the detection of partial tears in the supraspinatus tendon. Specifically, we are going to use families of ellipsoidal triangular patches to cover the humerus head near the affected area. These patches are going to be textured and displayed with the information of the magnetic resonance images using the trilinear interpolation technique. For the generation of points to texture each patch, we propose a new method that guarantees the uniform distribution of its points using a random statistical method. Its computational cost, defined as the average computing time to generate a fixed number of points, is significantly lower as compared with deterministic and other standard statistical techniques. PMID:25650281

  20. Automated prostate cancer localization without the need for peripheral zone extraction using multiparametric MRI.

    PubMed

    Liu, Xin; Yetik, Imam Samil

    2011-06-01

    Multiparametric magnetic resonance imaging (MRI) has been shown to have higher localization accuracy than transrectal ultrasound (TRUS) for prostate cancer. Therefore, automated cancer segmentation using multiparametric MRI is receiving a growing interest, since MRI can provide both morphological and functional images for tissue of interest. However, all automated methods to this date are applicable to a single zone of the prostate, and the peripheral zone (PZ) of the prostate needs to be extracted manually, which is a tedious and time-consuming job. In this paper, our goal is to remove the need of PZ extraction by incorporating the spatial and geometric information of prostate tumors with multiparametric MRI derived from T2-weighted MRI, diffusion-weighted imaging (DWI) and dynamic contrast enhanced MRI (DCE-MRI). In order to remove the need of PZ extraction, the authors propose a new method to incorporate the spatial information of the cancer. This is done by introducing a new feature called location map. This new feature is constructed by applying a nonlinear transformation to the spatial position coordinates of each pixel, so that the location map implicitly represents the geometric position of each pixel with respect to the prostate region. Then, this new feature is combined with multiparametric MR images to perform tumor localization. The proposed algorithm is applied to multiparametric prostate MRI data obtained from 20 patients with biopsy-confirmed prostate cancer. The proposed method which does not need the masks of PZ was found to have prostate cancer detection specificity of 0.84, sensitivity of 0.80 and dice coefficient value of 0.42. The authors have found that fusing the spatial information allows us to obtain tumor outline without the need of PZ extraction with a considerable success (better or similar performance to methods that require manual PZ extraction). Our experimental results quantitatively demonstrate the effectiveness of the proposed method, depicting that the proposed method has a slightly better or similar localization performance compared to methods which require the masks of PZ.

  1. Scene text recognition in mobile applications by character descriptor and structure configuration.

    PubMed

    Yi, Chucai; Tian, Yingli

    2014-07-01

    Text characters and strings in natural scene can provide valuable information for many applications. Extracting text directly from natural scene images or videos is a challenging task because of diverse text patterns and variant background interferences. This paper proposes a method of scene text recognition from detected text regions. In text detection, our previously proposed algorithms are applied to obtain text regions from scene image. First, we design a discriminative character descriptor by combining several state-of-the-art feature detectors and descriptors. Second, we model character structure at each character class by designing stroke configuration maps. Our algorithm design is compatible with the application of scene text extraction in smart mobile devices. An Android-based demo system is developed to show the effectiveness of our proposed method on scene text information extraction from nearby objects. The demo system also provides us some insight into algorithm design and performance improvement of scene text extraction. The evaluation results on benchmark data sets demonstrate that our proposed scheme of text recognition is comparable with the best existing methods.

  2. Screening antimicrobial activity of various extracts of Urtica dioica.

    PubMed

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to antimicrobial activity extracts from extraction method I (33 out of 152 of crude extracts) and 6.82% from extraction method II (13 out of 190 of crude extracts). However, crude extracts from method I exhibited better antimicrobial activity against the Gram-positive bacteria than the Gram-negative bacteria. The positive results on medicinal plants screening for antibacterial activity constitutes primary information for further phytochemical and pharmacological studies. Therefore, the extracts could be suitable as antimicrobial agents in pharmaceutical and food industry.

  3. Instantaneous Coastline Extraction from LIDAR Point Cloud and High Resolution Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhoing, L.; Lai, Z.; Gan, Z.

    2018-04-01

    A new method was proposed for instantaneous waterline extraction in this paper, which combines point cloud geometry features and image spectral characteristics of the coastal zone. The proposed method consists of follow steps: Mean Shift algorithm is used to segment the coastal zone of high resolution remote sensing images into small regions containing semantic information;Region features are extracted by integrating LiDAR data and the surface area of the image; initial waterlines are extracted by α-shape algorithm; a region growing algorithm with is taking into coastline refinement, with a growth rule integrating the intensity and topography of LiDAR data; moothing the coastline. Experiments are conducted to demonstrate the efficiency of the proposed method.

  4. Automatic drawing for traffic marking with MMS LIDAR intensity

    NASA Astrophysics Data System (ADS)

    Takahashi, G.; Takeda, H.; Shimano, Y.

    2014-05-01

    Upgrading the database of CYBER JAPAN has been strategically promoted because the "Basic Act on Promotion of Utilization of Geographical Information", was enacted in May 2007. In particular, there is a high demand for road information that comprises a framework in this database. Therefore, road inventory mapping work has to be accurate and eliminate variation caused by individual human operators. Further, the large number of traffic markings that are periodically maintained and possibly changed require an efficient method for updating spatial data. Currently, we apply manual photogrammetry drawing for mapping traffic markings. However, this method is not sufficiently efficient in terms of the required productivity, and data variation can arise from individual operators. In contrast, Mobile Mapping Systems (MMS) and high-density Laser Imaging Detection and Ranging (LIDAR) scanners are rapidly gaining popularity. The aim in this study is to build an efficient method for automatically drawing traffic markings using MMS LIDAR data. The key idea in this method is extracting lines using a Hough transform strategically focused on changes in local reflection intensity along scan lines. However, also note that this method processes every traffic marking. In this paper, we discuss a highly accurate and non-human-operator-dependent method that applies the following steps: (1) Binarizing LIDAR points by intensity and extracting higher intensity points; (2) Generating a Triangulated Irregular Network (TIN) from higher intensity points; (3) Deleting arcs by length and generating outline polygons on the TIN; (4) Generating buffers from the outline polygons; (5) Extracting points from the buffers using the original LIDAR points; (6) Extracting local-intensity-changing points along scan lines using the extracted points; (7) Extracting lines from intensity-changing points through a Hough transform; and (8) Connecting lines to generate automated traffic marking mapping data.

  5. Automatic Detection and Recognition of Craters Based on the Spectral Features of Lunar Rocks and Minerals

    NASA Astrophysics Data System (ADS)

    Ye, L.; Xu, X.; Luan, D.; Jiang, W.; Kang, Z.

    2017-07-01

    Crater-detection approaches can be divided into four categories: manual recognition, shape-profile fitting algorithms, machine-learning methods and geological information-based analysis using terrain and spectral data. The mainstream method is Shape-profile fitting algorithms. Many scholars throughout the world use the illumination gradient information to fit standard circles by least square method. Although this method has achieved good results, it is difficult to identify the craters with poor "visibility", complex structure and composition. Moreover, the accuracy of recognition is difficult to be improved due to the multiple solutions and noise interference. Aiming at the problem, we propose a method for the automatic extraction of impact craters based on spectral characteristics of the moon rocks and minerals: 1) Under the condition of sunlight, the impact craters are extracted from MI by condition matching and the positions as well as diameters of the craters are obtained. 2) Regolith is spilled while lunar is impacted and one of the elements of lunar regolith is iron. Therefore, incorrectly extracted impact craters can be removed by judging whether the crater contains "non iron" element. 3) Craters which are extracted correctly, are divided into two types: simple type and complex type according to their diameters. 4) Get the information of titanium and match the titanium distribution of the complex craters with normal distribution curve, then calculate the goodness of fit and set the threshold. The complex craters can be divided into two types: normal distribution curve type of titanium and non normal distribution curve type of titanium. We validated our proposed method with MI acquired by SELENE. Experimental results demonstrate that the proposed method has good performance in the test area.

  6. Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras.

    PubMed

    Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-03-16

    The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body.

  7. The research of road and vehicle information extraction algorithm based on high resolution remote sensing image

    NASA Astrophysics Data System (ADS)

    Zhou, Tingting; Gu, Lingjia; Ren, Ruizhi; Cao, Qiong

    2016-09-01

    With the rapid development of remote sensing technology, the spatial resolution and temporal resolution of satellite imagery also have a huge increase. Meanwhile, High-spatial-resolution images are becoming increasingly popular for commercial applications. The remote sensing image technology has broad application prospects in intelligent traffic. Compared with traditional traffic information collection methods, vehicle information extraction using high-resolution remote sensing image has the advantages of high resolution and wide coverage. This has great guiding significance to urban planning, transportation management, travel route choice and so on. Firstly, this paper preprocessed the acquired high-resolution multi-spectral and panchromatic remote sensing images. After that, on the one hand, in order to get the optimal thresholding for image segmentation, histogram equalization and linear enhancement technologies were applied into the preprocessing results. On the other hand, considering distribution characteristics of road, the normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used to suppress water and vegetation information of preprocessing results. Then, the above two processing result were combined. Finally, the geometric characteristics were used to completed road information extraction. The road vector extracted was used to limit the target vehicle area. Target vehicle extraction was divided into bright vehicles extraction and dark vehicles extraction. Eventually, the extraction results of the two kinds of vehicles were combined to get the final results. The experiment results demonstrated that the proposed algorithm has a high precision for the vehicle information extraction for different high resolution remote sensing images. Among these results, the average fault detection rate was about 5.36%, the average residual rate was about 13.60% and the average accuracy was approximately 91.26%.

  8. Semantic information extracting system for classification of radiological reports in radiology information system (RIS)

    NASA Astrophysics Data System (ADS)

    Shi, Liehang; Ling, Tonghui; Zhang, Jianguo

    2016-03-01

    Radiologists currently use a variety of terminologies and standards in most hospitals in China, and even there are multiple terminologies being used for different sections in one department. In this presentation, we introduce a medical semantic comprehension system (MedSCS) to extract semantic information about clinical findings and conclusion from free text radiology reports so that the reports can be classified correctly based on medical terms indexing standards such as Radlex or SONMED-CT. Our system (MedSCS) is based on both rule-based methods and statistics-based methods which improve the performance and the scalability of MedSCS. In order to evaluate the over all of the system and measure the accuracy of the outcomes, we developed computation methods to calculate the parameters of precision rate, recall rate, F-score and exact confidence interval.

  9. Portable microwave assisted extraction: An original concept for green analytical chemistry.

    PubMed

    Perino, Sandrine; Petitcolas, Emmanuel; de la Guardia, Miguel; Chemat, Farid

    2013-11-08

    This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Event extraction of bacteria biotopes: a knowledge-intensive NLP-based approach.

    PubMed

    Ratkovic, Zorana; Golik, Wiktoria; Warnier, Pierre

    2012-06-26

    Bacteria biotopes cover a wide range of diverse habitats including animal and plant hosts, natural, medical and industrial environments. The high volume of publications in the microbiology domain provides a rich source of up-to-date information on bacteria biotopes. This information, as found in scientific articles, is expressed in natural language and is rarely available in a structured format, such as a database. This information is of great importance for fundamental research and microbiology applications (e.g., medicine, agronomy, food, bioenergy). The automatic extraction of this information from texts will provide a great benefit to the field. We present a new method for extracting relationships between bacteria and their locations using the Alvis framework. Recognition of bacteria and their locations was achieved using a pattern-based approach and domain lexical resources. For the detection of environment locations, we propose a new approach that combines lexical information and the syntactic-semantic analysis of corpus terms to overcome the incompleteness of lexical resources. Bacteria location relations extend over sentence borders, and we developed domain-specific rules for dealing with bacteria anaphors. We participated in the BioNLP 2011 Bacteria Biotope (BB) task with the Alvis system. Official evaluation results show that it achieves the best performance of participating systems. New developments since then have increased the F-score by 4.1 points. We have shown that the combination of semantic analysis and domain-adapted resources is both effective and efficient for event information extraction in the bacteria biotope domain. We plan to adapt the method to deal with a larger set of location types and a large-scale scientific article corpus to enable microbiologists to integrate and use the extracted knowledge in combination with experimental data.

  11. A defocus-information-free autostereoscopic three-dimensional (3D) digital reconstruction method using direct extraction of disparity information (DEDI)

    NASA Astrophysics Data System (ADS)

    Li, Da; Cheung, Chifai; Zhao, Xing; Ren, Mingjun; Zhang, Juan; Zhou, Liqiu

    2016-10-01

    Autostereoscopy based three-dimensional (3D) digital reconstruction has been widely applied in the field of medical science, entertainment, design, industrial manufacture, precision measurement and many other areas. The 3D digital model of the target can be reconstructed based on the series of two-dimensional (2D) information acquired by the autostereoscopic system, which consists multiple lens and can provide information of the target from multiple angles. This paper presents a generalized and precise autostereoscopic three-dimensional (3D) digital reconstruction method based on Direct Extraction of Disparity Information (DEDI) which can be used to any transform autostereoscopic systems and provides accurate 3D reconstruction results through error elimination process based on statistical analysis. The feasibility of DEDI method has been successfully verified through a series of optical 3D digital reconstruction experiments on different autostereoscopic systems which is highly efficient to perform the direct full 3D digital model construction based on tomography-like operation upon every depth plane with the exclusion of the defocused information. With the absolute focused information processed by DEDI method, the 3D digital model of the target can be directly and precisely formed along the axial direction with the depth information.

  12. [Study on infrared spectrum change of Ganoderma lucidum and its extracts].

    PubMed

    Chen, Zao-Xin; Xu, Yong-Qun; Chen, Xiao-Kang; Huang, Dong-Lan; Lu, Wen-Guan

    2013-05-01

    From the determination of the infrared spectra of four substances (original ganoderma lucidum and ganoderma lucidum water extract, 95% ethanol extract and petroleum ether extract), it was found that the infrared spectrum can carry systematic chemical information and basically reflects the distribution of each component of the analyte. Ganoderma lucidum and its extracts can be distinguished according to the absorption peak area ratio of 3 416-3 279, 1 541 and 723 cm(-1) to 2 935-2 852 cm(-1). A method of calculating the information entropy of the sample set with Euclidean distance was proposed, the relationship between the information entropy and the amount of chemical information carried by the sample set was discussed, and the authors come to a conclusion that sample set of original ganoderma lucidum carry the most abundant chemical information. The infrared spectrum set of original ganoderma lucidum has better clustering effect on ganoderma atrum, Cyan ganoderma, ganoderma multiplicatum and ganoderma lucidum when making hierarchical cluster analysis of 4 sample set. The results show that infrared spectrum carries the chemical information of the material structure and closely relates to the chemical composition of the system. The higher the value of information entropy, the much richer the chemical information and the more the benefit for pattern recognition. This study has a guidance function to the construction of the sample set in pattern recognition.

  13. Gas chromatography-mass spectrometry of biofluids and extracts.

    PubMed

    Emwas, Abdul-Hamid M; Al-Talla, Zeyad A; Yang, Yang; Kharbatia, Najeh M

    2015-01-01

    Gas chromatography-mass spectrometry (GC-MS) has been widely used in metabonomics analyses of biofluid samples. Biofluids provide a wealth of information about the metabolism of the whole body and from multiple regions of the body that can be used to study general health status and organ function. Blood serum and blood plasma, for example, can provide a comprehensive picture of the whole body, while urine can be used to monitor the function of the kidneys, and cerebrospinal fluid (CSF) will provide information about the status of the brain and central nervous system (CNS). Different methods have been developed for the extraction of metabolites from biofluids, these ranging from solvent extracts, acids, heat denaturation, and filtration. These methods vary widely in terms of efficiency of protein removal and in the number of metabolites extracted. Consequently, for all biofluid-based metabonomics studies, it is vital to optimize and standardize all steps of sample preparation, including initial extraction of metabolites. In this chapter, recommendations are made of the optimum experimental conditions for biofluid samples for GC-MS, with a particular focus on blood serum and plasma samples.

  14. Evaluating Health Information Systems Using Ontologies

    PubMed Central

    Anderberg, Peter; Larsson, Tobias C; Fricker, Samuel A; Berglund, Johan

    2016-01-01

    Background There are several frameworks that attempt to address the challenges of evaluation of health information systems by offering models, methods, and guidelines about what to evaluate, how to evaluate, and how to report the evaluation results. Model-based evaluation frameworks usually suggest universally applicable evaluation aspects but do not consider case-specific aspects. On the other hand, evaluation frameworks that are case specific, by eliciting user requirements, limit their output to the evaluation aspects suggested by the users in the early phases of system development. In addition, these case-specific approaches extract different sets of evaluation aspects from each case, making it challenging to collectively compare, unify, or aggregate the evaluation of a set of heterogeneous health information systems. Objectives The aim of this paper is to find a method capable of suggesting evaluation aspects for a set of one or more health information systems—whether similar or heterogeneous—by organizing, unifying, and aggregating the quality attributes extracted from those systems and from an external evaluation framework. Methods On the basis of the available literature in semantic networks and ontologies, a method (called Unified eValuation using Ontology; UVON) was developed that can organize, unify, and aggregate the quality attributes of several health information systems into a tree-style ontology structure. The method was extended to integrate its generated ontology with the evaluation aspects suggested by model-based evaluation frameworks. An approach was developed to extract evaluation aspects from the ontology that also considers evaluation case practicalities such as the maximum number of evaluation aspects to be measured or their required degree of specificity. The method was applied and tested in Future Internet Social and Technological Alignment Research (FI-STAR), a project of 7 cloud-based eHealth applications that were developed and deployed across European Union countries. Results The relevance of the evaluation aspects created by the UVON method for the FI-STAR project was validated by the corresponding stakeholders of each case. These evaluation aspects were extracted from a UVON-generated ontology structure that reflects both the internally declared required quality attributes in the 7 eHealth applications of the FI-STAR project and the evaluation aspects recommended by the Model for ASsessment of Telemedicine applications (MAST) evaluation framework. The extracted evaluation aspects were used to create questionnaires (for the corresponding patients and health professionals) to evaluate each individual case and the whole of the FI-STAR project. Conclusions The UVON method can provide a relevant set of evaluation aspects for a heterogeneous set of health information systems by organizing, unifying, and aggregating the quality attributes through ontological structures. Those quality attributes can be either suggested by evaluation models or elicited from the stakeholders of those systems in the form of system requirements. The method continues to be systematic, context sensitive, and relevant across a heterogeneous set of health information systems. PMID:27311735

  15. A new automated spectral feature extraction method and its application in spectral classification and defective spectra recovery

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Guo, Ping; Luo, A.-Li

    2017-03-01

    Spectral feature extraction is a crucial procedure in automated spectral analysis. This procedure starts from the spectral data and produces informative and non-redundant features, facilitating the subsequent automated processing and analysis with machine-learning and data-mining techniques. In this paper, we present a new automated feature extraction method for astronomical spectra, with application in spectral classification and defective spectra recovery. The basic idea of our approach is to train a deep neural network to extract features of spectra with different levels of abstraction in different layers. The deep neural network is trained with a fast layer-wise learning algorithm in an analytical way without any iterative optimization procedure. We evaluate the performance of the proposed scheme on real-world spectral data. The results demonstrate that our method is superior regarding its comprehensive performance, and the computational cost is significantly lower than that for other methods. The proposed method can be regarded as a new valid alternative general-purpose feature extraction method for various tasks in spectral data analysis.

  16. The use of analytical sedimentation velocity to extract thermodynamic linkage.

    PubMed

    Cole, James L; Correia, John J; Stafford, Walter F

    2011-11-01

    For 25 years, the Gibbs Conference on Biothermodynamics has focused on the use of thermodynamics to extract information about the mechanism and regulation of biological processes. This includes the determination of equilibrium constants for macromolecular interactions by high precision physical measurements. These approaches further reveal thermodynamic linkages to ligand binding events. Analytical ultracentrifugation has been a fundamental technique in the determination of macromolecular reaction stoichiometry and energetics for 85 years. This approach is highly amenable to the extraction of thermodynamic couplings to small molecule binding in the overall reaction pathway. In the 1980s this approach was extended to the use of sedimentation velocity techniques, primarily by the analysis of tubulin-drug interactions by Na and Timasheff. This transport method necessarily incorporates the complexity of both hydrodynamic and thermodynamic nonideality. The advent of modern computational methods in the last 20 years has subsequently made the analysis of sedimentation velocity data for interacting systems more robust and rigorous. Here we review three examples where sedimentation velocity has been useful at extracting thermodynamic information about reaction stoichiometry and energetics. Approaches to extract linkage to small molecule binding and the influence of hydrodynamic nonideality are emphasized. These methods are shown to also apply to the collection of fluorescence data with the new Aviv FDS. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The use of analytical sedimentation velocity to extract thermodynamic linkage

    PubMed Central

    Cole, James L.; Correia, John J.; Stafford, Walter F.

    2011-01-01

    For 25 years, the Gibbs Conference on Biothermodynamics has focused on the use of thermodynamics to extract information about the mechanism and regulation of biological processes. This includes the determination of equilibrium constants for macromolecular interactions by high precision physical measurements. These approaches further reveal thermodynamic linkages to ligand binding events. Analytical ultracentrifugation has been a fundamental technique in the determination of macromolecular reaction stoichiometry and energetics for 85 years. This approach is highly amenable to the extraction of thermodynamic couplings to small molecule binding in the overall reaction pathway. In the 1980’s this approach was extended to the use of sedimentation velocity techniques, primarily by the analysis of tubulin-drug interactions by Na and Timasheff. This transport method necessarily incorporates the complexity of both hydrodynamic and thermodynamic nonideality. The advent of modern computational methods in the last 20 years has subsequently made the analysis of sedimentation velocity data for interacting systems more robust and rigorous. Here we review three examples where sedimentation velocity has been useful at extracting thermodynamic information about reaction stoichiometry and energetics. Approaches to extract linkage to small molecule binding and the influence of hydrodynamic nonideality are emphasized. These methods are shown to also apply to the collection of fluorescence data with the new Aviv FDS. PMID:21703752

  18. Non-causal spike filtering improves decoding of movement intention for intracortical BCIs

    PubMed Central

    Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.

    2014-01-01

    Background Multiple types of neural signals are available for controlling assistive devices through brain-computer interfaces (BCIs). Intracortically-recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. Conclusions Non-causally filtering neural signals prior to extracting threshold crossing events may be a simple yet effective way to condition intracortically recorded neural activity for direct control of external devices through BCIs. PMID:25128256

  19. Change Detection in High-Resolution Remote Sensing Images Using Levene-Test and Fuzzy Evaluation

    NASA Astrophysics Data System (ADS)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Liu, H. J.

    2018-04-01

    High-resolution remote sensing images possess complex spatial structure and rich texture information, according to these, this paper presents a new method of change detection based on Levene-Test and Fuzzy Evaluation. It first got map-spots by segmenting two overlapping images which had been pretreated, extracted features such as spectrum and texture. Then, changed information of all map-spots which had been treated by the Levene-Test were counted to obtain the candidate changed regions, hue information (H component) was extracted through the IHS Transform and conducted change vector analysis combined with the texture information. Eventually, the threshold was confirmed by an iteration method, the subject degrees of candidate changed regions were calculated, and final change regions were determined. In this paper experimental results on multi-temporal ZY-3 high-resolution images of some area in Jiangsu Province show that: Through extracting map-spots of larger difference as the candidate changed regions, Levene-Test decreases the computing load, improves the precision of change detection, and shows better fault-tolerant capacity for those unchanged regions which are of relatively large differences. The combination of Hue-texture features and fuzzy evaluation method can effectively decrease omissions and deficiencies, improve the precision of change detection.

  20. A preliminary approach to creating an overview of lactoferrin multi-functionality utilizing a text mining method.

    PubMed

    Shimazaki, Kei-ichi; Kushida, Tatsuya

    2010-06-01

    Lactoferrin is a multi-functional metal-binding glycoprotein that exhibits many biological functions of interest to many researchers from the fields of clinical medicine, dentistry, pharmacology, veterinary medicine, nutrition and milk science. To date, a number of academic reports concerning the biological activities of lactoferrin have been published and are easily accessible through public data repositories. However, as the literature is expanding daily, this presents challenges in understanding the larger picture of lactoferrin function and mechanisms. In order to overcome the "analysis paralysis" associated with lactoferrin information, we attempted to apply a text mining method to the accumulated lactoferrin literature. To this end, we used the information extraction system GENPAC (provided by Nalapro Technologies Inc., Tokyo). This information extraction system uses natural language processing and text mining technology. This system analyzes the sentences and titles from abstracts stored in the PubMed database, and can automatically extract binary relations that consist of interactions between genes/proteins, chemicals and diseases/functions. We expect that such information visualization analysis will be useful in determining novel relationships among a multitude of lactoferrin functions and mechanisms. We have demonstrated the utilization of this method to find pathways of lactoferrin participation in neovascularization, Helicobacter pylori attack on gastric mucosa, atopic dermatitis and lipid metabolism.

  1. Multi-scale image segmentation method with visual saliency constraints and its application

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yu, Jie; Sun, Kaimin

    2018-03-01

    Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.

  2. System for definition of the central-chest vasculature

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2009-02-01

    Accurate definition of the central-chest vasculature from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. For instance, the aorta and pulmonary artery help in automatic definition of the Mountain lymph-node stations for lung-cancer staging. This work presents a system for defining major vascular structures in the central chest. The system provides automatic methods for extracting the aorta and pulmonary artery and semi-automatic methods for extracting the other major central chest arteries/veins, such as the superior vena cava and azygos vein. Automatic aorta and pulmonary artery extraction are performed by model fitting and selection. The system also extracts certain vascular structure information to validate outputs. A semi-automatic method extracts vasculature by finding the medial axes between provided important sites. Results of the system are applied to lymph-node station definition and guidance of bronchoscopic biopsy.

  3. Comparative Study of the Effect of Sample Pretreatment and Extraction on the Determination of Flavonoids from Lemon (Citrus limon)

    PubMed Central

    Ledesma-Escobar, Carlos A.; Priego-Capote, Feliciano; Luque de Castro, María D.

    2016-01-01

    Background Flavonoids have shown to exert multiple beneficial effects on human health, being also appreciated by both food and pharmaceutical industries. Citrus fruits are a key source of flavonoids, thus promoting studies to obtain them. Characteristics of these studies are the discrepancies among sample pretreatments and among extraction methods, and also the scant number of comparative studies developed so far. Objective Evaluate the effect of both the sample pretreatment and the extraction method on the profile of flavonoids isolated from lemon. Results Extracts from fresh, lyophilized and air-dried samples obtained by shaking extraction (SE), ultrasound-assisted extraction (USAE), microwave-assisted extraction (MAE) and superheated liquid extraction (SHLE) were analyzed by LC–QTOF MS/MS, and 32 flavonoids were tentatively identified using MS/MS information. ANOVA applied to the data from fresh and dehydrated samples and from extraction by the different methods revealed that 26 and 32 flavonoids, respectively, were significant (p≤0.01). The pairwise comparison (Tukey HSD; p≤0.01) showed that lyophilized samples are more different from fresh samples than from air-dried samples; also, principal component analysis (PCA) showed a clear discrimination among sample pretreatment strategies and suggested that such differences are mainly created by the abundance of major flavonoids. On the other hand, pairwise comparison of extraction methods revealed that USAE and MAE provided quite similar extracts, being SHLE extracts different from the other two. In this case, PCA showed a clear discrimination among extraction methods, and their position in the scores plot suggests a lower abundance of flavonoids in the extracts from SHLE. In the two PCA the loadings plots revealed a trend to forming groups according to flavonoid aglycones. Conclusions The present study shows clear discrimination caused by both sample pretreatments and extraction methods. Under the studied conditions, liophilization provides extracts with higher amounts of flavonoids, and USAE is the best method for isolation of these compounds, followed by MAE and SE. On the contrary, the SHLE method was the less favorable to extract flavonoids from citrus owing to degradation. PMID:26807979

  4. An Overview of Biomolecular Event Extraction from Scientific Documents

    PubMed Central

    Vanegas, Jorge A.; Matos, Sérgio; González, Fabio; Oliveira, José L.

    2015-01-01

    This paper presents a review of state-of-the-art approaches to automatic extraction of biomolecular events from scientific texts. Events involving biomolecules such as genes, transcription factors, or enzymes, for example, have a central role in biological processes and functions and provide valuable information for describing physiological and pathogenesis mechanisms. Event extraction from biomedical literature has a broad range of applications, including support for information retrieval, knowledge summarization, and information extraction and discovery. However, automatic event extraction is a challenging task due to the ambiguity and diversity of natural language and higher-level linguistic phenomena, such as speculations and negations, which occur in biological texts and can lead to misunderstanding or incorrect interpretation. Many strategies have been proposed in the last decade, originating from different research areas such as natural language processing, machine learning, and statistics. This review summarizes the most representative approaches in biomolecular event extraction and presents an analysis of the current state of the art and of commonly used methods, features, and tools. Finally, current research trends and future perspectives are also discussed. PMID:26587051

  5. The comparison and analysis of extracting video key frame

    NASA Astrophysics Data System (ADS)

    Ouyang, S. Z.; Zhong, L.; Luo, R. Q.

    2018-05-01

    Video key frame extraction is an important part of the large data processing. Based on the previous work in key frame extraction, we summarized four important key frame extraction algorithms, and these methods are largely developed by comparing the differences between each of two frames. If the difference exceeds a threshold value, take the corresponding frame as two different keyframes. After the research, the key frame extraction based on the amount of mutual trust is proposed, the introduction of information entropy, by selecting the appropriate threshold values into the initial class, and finally take a similar mean mutual information as a candidate key frame. On this paper, several algorithms is used to extract the key frame of tunnel traffic videos. Then, with the analysis to the experimental results and comparisons between the pros and cons of these algorithms, the basis of practical applications is well provided.

  6. Feasibility of Extracting Key Elements from ClinicalTrials.gov to Support Clinicians’ Patient Care Decisions

    PubMed Central

    Kim, Heejun; Bian, Jiantao; Mostafa, Javed; Jonnalagadda, Siddhartha; Del Fiol, Guilherme

    2016-01-01

    Motivation: Clinicians need up-to-date evidence from high quality clinical trials to support clinical decisions. However, applying evidence from the primary literature requires significant effort. Objective: To examine the feasibility of automatically extracting key clinical trial information from ClinicalTrials.gov. Methods: We assessed the coverage of ClinicalTrials.gov for high quality clinical studies that are indexed in PubMed. Using 140 random ClinicalTrials.gov records, we developed and tested rules for the automatic extraction of key information. Results: The rate of high quality clinical trial registration in ClinicalTrials.gov increased from 0.2% in 2005 to 17% in 2015. Trials reporting results increased from 3% in 2005 to 19% in 2015. The accuracy of the automatic extraction algorithm for 10 trial attributes was 90% on average. Future research is needed to improve the algorithm accuracy and to design information displays to optimally present trial information to clinicians. PMID:28269867

  7. Multivariate EMD and full spectrum based condition monitoring for rotating machinery

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaomin; Patel, Tejas H.; Zuo, Ming J.

    2012-02-01

    Early assessment of machinery health condition is of paramount importance today. A sensor network with sensors in multiple directions and locations is usually employed for monitoring the condition of rotating machinery. Extraction of health condition information from these sensors for effective fault detection and fault tracking is always challenging. Empirical mode decomposition (EMD) is an advanced signal processing technology that has been widely used for this purpose. Standard EMD has the limitation in that it works only for a single real-valued signal. When dealing with data from multiple sensors and multiple health conditions, standard EMD faces two problems. First, because of the local and self-adaptive nature of standard EMD, the decomposition of signals from different sources may not match in either number or frequency content. Second, it may not be possible to express the joint information between different sensors. The present study proposes a method of extracting fault information by employing multivariate EMD and full spectrum. Multivariate EMD can overcome the limitations of standard EMD when dealing with data from multiple sources. It is used to extract the intrinsic mode functions (IMFs) embedded in raw multivariate signals. A criterion based on mutual information is proposed for selecting a sensitive IMF. A full spectral feature is then extracted from the selected fault-sensitive IMF to capture the joint information between signals measured from two orthogonal directions. The proposed method is first explained using simple simulated data, and then is tested for the condition monitoring of rotating machinery applications. The effectiveness of the proposed method is demonstrated through monitoring damage on the vane trailing edge of an impeller and rotor-stator rub in an experimental rotor rig.

  8. Review on the Extraction Methods of Crude oil from all Generation Biofuels in last few Decades

    NASA Astrophysics Data System (ADS)

    Bhargavi, G.; Nageswara Rao, P.; Renganathan, S.

    2018-03-01

    The ever growing demand for the energy fuels, economy of oil, depletion of energy resources and environmental protection are the inevitable challenges required to be solved meticulously in future decades in order to sustain the life of humans and other creatures. Switching to alternate fuels that are renewable, biodegradable, economically and environmentally friendly can quench the minimum thirst of fuel demands, in addition to mitigation of climate changes. At this moment, production of biofuels has got prominence. The term biofuels broadly refer to the fuels derived from living matter either animals or plants. Among the competent biofuels, biodiesel is one of the promising alternates for diesel engines. Biodiesel is renewable, environmentally friendly, safe to use with wide applications and biodegradable. Due to which, it has become a major focus of intensive global research and development of alternate energy. The present review has been focused specifically on biodiesel. Concerning to the biodiesel production, the major steps includes lipid extraction followed by esterification/transesterification. For the extraction of lipids, several extraction techniques have been put forward irrespective of the generations and feed stocks used. This review provides theoretical background on the two major extraction methods, mechanical and chemical extraction methods. The practical issues of each extraction method such as efficiency of extraction, extraction time, oil sources and its pros and cons are discussed. It is conceived that congregating information on oil extraction methods may helpful in further research advancements to ease biofuel production.

  9. Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav

    2014-03-01

    Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.

  10. a Novel Deep Convolutional Neural Network for Spectral-Spatial Classification of Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Li, N.; Wang, C.; Zhao, H.; Gong, X.; Wang, D.

    2018-04-01

    Spatial and spectral information are obtained simultaneously by hyperspectral remote sensing. Joint extraction of these information of hyperspectral image is one of most import methods for hyperspectral image classification. In this paper, a novel deep convolutional neural network (CNN) is proposed, which extracts spectral-spatial information of hyperspectral images correctly. The proposed model not only learns sufficient knowledge from the limited number of samples, but also has powerful generalization ability. The proposed framework based on three-dimensional convolution can extract spectral-spatial features of labeled samples effectively. Though CNN has shown its robustness to distortion, it cannot extract features of different scales through the traditional pooling layer that only have one size of pooling window. Hence, spatial pyramid pooling (SPP) is introduced into three-dimensional local convolutional filters for hyperspectral classification. Experimental results with a widely used hyperspectral remote sensing dataset show that the proposed model provides competitive performance.

  11. Road extraction from aerial images using a region competition algorithm.

    PubMed

    Amo, Miriam; Martínez, Fernando; Torre, Margarita

    2006-05-01

    In this paper, we present a user-guided method based on the region competition algorithm to extract roads, and therefore we also provide some clues concerning the placement of the points required by the algorithm. The initial points are analyzed in order to find out whether it is necessary to add more initial points, and this process will be based on image information. Not only is the algorithm able to obtain the road centerline, but it also recovers the road sides. An initial simple model is deformed by using region growing techniques to obtain a rough road approximation. This model will be refined by region competition. The result of this approach is that it delivers the simplest output vector information, fully recovering the road details as they are on the image, without performing any kind of symbolization. Therefore, we tried to refine a general road model by using a reliable method to detect transitions between regions. This method is proposed in order to obtain information for feeding large-scale Geographic Information System.

  12. Urban Boundary Extraction and Urban Sprawl Measurement Using High-Resolution Remote Sensing Images: a Case Study of China's Provincial

    NASA Astrophysics Data System (ADS)

    Wang, H.; Ning, X.; Zhang, H.; Liu, Y.; Yu, F.

    2018-04-01

    Urban boundary is an important indicator for urban sprawl analysis. However, methods of urban boundary extraction were inconsistent, and construction land or urban impervious surfaces was usually used to represent urban areas with coarse-resolution images, resulting in lower precision and incomparable urban boundary products. To solve above problems, a semi-automatic method of urban boundary extraction was proposed by using high-resolution image and geographic information data. Urban landscape and form characteristics, geographical knowledge were combined to generate a series of standardized rules for urban boundary extraction. Urban boundaries of China's 31 provincial capitals in year 2000, 2005, 2010 and 2015 were extracted with above-mentioned method. Compared with other two open urban boundary products, accuracy of urban boundary in this study was the highest. Urban boundary, together with other thematic data, were integrated to measure and analyse urban sprawl. Results showed that China's provincial capitals had undergone a rapid urbanization from year 2000 to 2015, with the area change from 6520 square kilometres to 12398 square kilometres. Urban area of provincial capital had a remarkable region difference and a high degree of concentration. Urban land became more intensive in general. Urban sprawl rate showed inharmonious with population growth rate. About sixty percent of the new urban areas came from cultivated land. The paper provided a consistent method of urban boundary extraction and urban sprawl measurement using high-resolution remote sensing images. The result of urban sprawl of China's provincial capital provided valuable urbanization information for government and public.

  13. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature

    PubMed Central

    Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar

    2017-01-01

    Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems. PMID:29099838

  14. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature.

    PubMed

    Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar

    2017-01-01

    Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems.

  15. Evaluating Health Information Systems Using Ontologies.

    PubMed

    Eivazzadeh, Shahryar; Anderberg, Peter; Larsson, Tobias C; Fricker, Samuel A; Berglund, Johan

    2016-06-16

    There are several frameworks that attempt to address the challenges of evaluation of health information systems by offering models, methods, and guidelines about what to evaluate, how to evaluate, and how to report the evaluation results. Model-based evaluation frameworks usually suggest universally applicable evaluation aspects but do not consider case-specific aspects. On the other hand, evaluation frameworks that are case specific, by eliciting user requirements, limit their output to the evaluation aspects suggested by the users in the early phases of system development. In addition, these case-specific approaches extract different sets of evaluation aspects from each case, making it challenging to collectively compare, unify, or aggregate the evaluation of a set of heterogeneous health information systems. The aim of this paper is to find a method capable of suggesting evaluation aspects for a set of one or more health information systems-whether similar or heterogeneous-by organizing, unifying, and aggregating the quality attributes extracted from those systems and from an external evaluation framework. On the basis of the available literature in semantic networks and ontologies, a method (called Unified eValuation using Ontology; UVON) was developed that can organize, unify, and aggregate the quality attributes of several health information systems into a tree-style ontology structure. The method was extended to integrate its generated ontology with the evaluation aspects suggested by model-based evaluation frameworks. An approach was developed to extract evaluation aspects from the ontology that also considers evaluation case practicalities such as the maximum number of evaluation aspects to be measured or their required degree of specificity. The method was applied and tested in Future Internet Social and Technological Alignment Research (FI-STAR), a project of 7 cloud-based eHealth applications that were developed and deployed across European Union countries. The relevance of the evaluation aspects created by the UVON method for the FI-STAR project was validated by the corresponding stakeholders of each case. These evaluation aspects were extracted from a UVON-generated ontology structure that reflects both the internally declared required quality attributes in the 7 eHealth applications of the FI-STAR project and the evaluation aspects recommended by the Model for ASsessment of Telemedicine applications (MAST) evaluation framework. The extracted evaluation aspects were used to create questionnaires (for the corresponding patients and health professionals) to evaluate each individual case and the whole of the FI-STAR project. The UVON method can provide a relevant set of evaluation aspects for a heterogeneous set of health information systems by organizing, unifying, and aggregating the quality attributes through ontological structures. Those quality attributes can be either suggested by evaluation models or elicited from the stakeholders of those systems in the form of system requirements. The method continues to be systematic, context sensitive, and relevant across a heterogeneous set of health information systems.

  16. Light Microscopy at Maximal Precision

    NASA Astrophysics Data System (ADS)

    Bierbaum, Matthew; Leahy, Brian D.; Alemi, Alexander A.; Cohen, Itai; Sethna, James P.

    2017-10-01

    Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI). As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10-100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.

  17. Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry.

    PubMed

    Aprea, Eugenio; Gika, Helen; Carlin, Silvia; Theodoridis, Georgios; Vrhovsek, Urska; Mattivi, Fulvio

    2011-07-15

    A headspace SPME GC-TOF-MS method was developed for the acquisition of metabolite profiles of apple volatiles. As a first step, an experimental design was applied to find out the most appropriate conditions for the extraction of apple volatile compounds by SPME. The selected SPME method was applied in profiling of four different apple varieties by GC-EI-TOF-MS. Full scan GC-MS data were processed by MarkerLynx software for peak picking, normalisation, alignment and feature extraction. Advanced chemometric/statistical techniques (PCA and PLS-DA) were used to explore data and extract useful information. Characteristic markers of each variety were successively identified using the NIST library thus providing useful information for variety classification. The developed HS-SPME sampling method is fully automated and proved useful in obtaining the fingerprint of the volatile content of the fruit. The described analytical protocol can aid in further studies of the apple metabolome. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The LifeWatch approach to the exploration of distributed species information

    PubMed Central

    Fuentes, Daniel; Fiore, Nicola

    2014-01-01

    Abstract This paper introduces a new method of automatically extracting, integrating and presenting information regarding species from the most relevant online taxonomic resources. First, the information is extracted and joined using data wrappers and integration solutions. Then, an analytical tool is used to provide a visual representation of the data. The information is then integrated into a user friendly content management system. The proposal has been implemented using data from the Global Biodiversity Information Facility (GBIF), the Catalogue of Life (CoL), the World Register of Marine Species (WoRMS), the Integrated Taxonomic Information System (ITIS) and the Global Names Index (GNI). The approach improves data quality, avoiding taxonomic and nomenclature errors whilst increasing the availability and accessibility of the information. PMID:25589865

  19. Fine-grained information extraction from German transthoracic echocardiography reports.

    PubMed

    Toepfer, Martin; Corovic, Hamo; Fette, Georg; Klügl, Peter; Störk, Stefan; Puppe, Frank

    2015-11-12

    Information extraction techniques that get structured representations out of unstructured data make a large amount of clinically relevant information about patients accessible for semantic applications. These methods typically rely on standardized terminologies that guide this process. Many languages and clinical domains, however, lack appropriate resources and tools, as well as evaluations of their applications, especially if detailed conceptualizations of the domain are required. For instance, German transthoracic echocardiography reports have not been targeted sufficiently before, despite of their importance for clinical trials. This work therefore aimed at development and evaluation of an information extraction component with a fine-grained terminology that enables to recognize almost all relevant information stated in German transthoracic echocardiography reports at the University Hospital of Würzburg. A domain expert validated and iteratively refined an automatically inferred base terminology. The terminology was used by an ontology-driven information extraction system that outputs attribute value pairs. The final component has been mapped to the central elements of a standardized terminology, and it has been evaluated according to documents with different layouts. The final system achieved state-of-the-art precision (micro average.996) and recall (micro average.961) on 100 test documents that represent more than 90 % of all reports. In particular, principal aspects as defined in a standardized external terminology were recognized with f 1=.989 (micro average) and f 1=.963 (macro average). As a result of keyword matching and restraint concept extraction, the system obtained high precision also on unstructured or exceptionally short documents, and documents with uncommon layout. The developed terminology and the proposed information extraction system allow to extract fine-grained information from German semi-structured transthoracic echocardiography reports with very high precision and high recall on the majority of documents at the University Hospital of Würzburg. Extracted results populate a clinical data warehouse which supports clinical research.

  20. Mapping from Space - Ontology Based Map Production Using Satellite Imageries

    NASA Astrophysics Data System (ADS)

    Asefpour Vakilian, A.; Momeni, M.

    2013-09-01

    Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83%. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7%. Results showed that vegetation cover and water features have been extracted completely (100%) and about 71% of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.

  1. Mapping from Space - Ontology Based Map Production Using Satellite Imageries

    NASA Astrophysics Data System (ADS)

    Asefpour Vakilian, A.; Momeni, M.

    2013-09-01

    Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83 %. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7 %. Results showed that vegetation cover and water features have been extracted completely (100 %) and about 71 % of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.

  2. Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras

    PubMed Central

    Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-01-01

    The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body. PMID:28300783

  3. a Framework of Change Detection Based on Combined Morphologica Features and Multi-Index Classification

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, S.; Yang, D.

    2017-09-01

    Remote sensing images are particularly well suited for analysis of land cover change. In this paper, we present a new framework for detection of changing land cover using satellite imagery. Morphological features and a multi-index are used to extract typical objects from the imagery, including vegetation, water, bare land, buildings, and roads. Our method, based on connected domains, is different from traditional methods; it uses image segmentation to extract morphological features, while the enhanced vegetation index (EVI), the differential water index (NDWI) are used to extract vegetation and water, and a fragmentation index is used to the correct extraction results of water. HSV transformation and threshold segmentation extract and remove the effects of shadows on extraction results. Change detection is performed on these results. One of the advantages of the proposed framework is that semantic information is extracted automatically using low-level morphological features and indexes. Another advantage is that the proposed method detects specific types of change without any training samples. A test on ZY-3 images demonstrates that our framework has a promising capability to detect change.

  4. Feature reconstruction of LFP signals based on PLSR in the neural information decoding study.

    PubMed

    Yonghui Dong; Zhigang Shang; Mengmeng Li; Xinyu Liu; Hong Wan

    2017-07-01

    To solve the problems of Signal-to-Noise Ratio (SNR) and multicollinearity when the Local Field Potential (LFP) signals is used for the decoding of animal motion intention, a feature reconstruction of LFP signals based on partial least squares regression (PLSR) in the neural information decoding study is proposed in this paper. Firstly, the feature information of LFP coding band is extracted based on wavelet transform. Then the PLSR model is constructed by the extracted LFP coding features. According to the multicollinearity characteristics among the coding features, several latent variables which contribute greatly to the steering behavior are obtained, and the new LFP coding features are reconstructed. Finally, the K-Nearest Neighbor (KNN) method is used to classify the reconstructed coding features to verify the decoding performance. The results show that the proposed method can achieve the highest accuracy compared to the other three methods and the decoding effect of the proposed method is robust.

  5. Identification of research hypotheses and new knowledge from scientific literature.

    PubMed

    Shardlow, Matthew; Batista-Navarro, Riza; Thompson, Paul; Nawaz, Raheel; McNaught, John; Ananiadou, Sophia

    2018-06-25

    Text mining (TM) methods have been used extensively to extract relations and events from the literature. In addition, TM techniques have been used to extract various types or dimensions of interpretative information, known as Meta-Knowledge (MK), from the context of relations and events, e.g. negation, speculation, certainty and knowledge type. However, most existing methods have focussed on the extraction of individual dimensions of MK, without investigating how they can be combined to obtain even richer contextual information. In this paper, we describe a novel, supervised method to extract new MK dimensions that encode Research Hypotheses (an author's intended knowledge gain) and New Knowledge (an author's findings). The method incorporates various features, including a combination of simple MK dimensions. We identify previously explored dimensions and then use a random forest to combine these with linguistic features into a classification model. To facilitate evaluation of the model, we have enriched two existing corpora annotated with relations and events, i.e., a subset of the GENIA-MK corpus and the EU-ADR corpus, by adding attributes to encode whether each relation or event corresponds to Research Hypothesis or New Knowledge. In the GENIA-MK corpus, these new attributes complement simpler MK dimensions that had previously been annotated. We show that our approach is able to assign different types of MK dimensions to relations and events with a high degree of accuracy. Firstly, our method is able to improve upon the previously reported state of the art performance for an existing dimension, i.e., Knowledge Type. Secondly, we also demonstrate high F1-score in predicting the new dimensions of Research Hypothesis (GENIA: 0.914, EU-ADR 0.802) and New Knowledge (GENIA: 0.829, EU-ADR 0.836). We have presented a novel approach for predicting New Knowledge and Research Hypothesis, which combines simple MK dimensions to achieve high F1-scores. The extraction of such information is valuable for a number of practical TM applications.

  6. Airway extraction from 3D chest CT volumes based on iterative extension of VOI enhanced by cavity enhancement filter

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitasaka, Takayuki; Oda, Masahiro; Mori, Kensaku

    2017-03-01

    Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining an integrated 3-D airway tree structure from a CT volume is a quite challenging task. This paper presents a novel airway segmentation method based on intensity structure analysis and bronchi shape structure analysis in volume of interest (VOI). This method segments the bronchial regions by applying the cavity enhancement filter (CEF) to trace the bronchial tree structure from the trachea. It uses the CEF in each VOI to segment each branch and to predict the positions of VOIs which envelope the bronchial regions in next level. At the same time, a leakage detection is performed to avoid the leakage by analysing the pixel information and the shape information of airway candidate regions extracted in the VOI. Bronchial regions are finally obtained by unifying the extracted airway regions. The experiments results showed that the proposed method can extract most of the bronchial region in each VOI and led good results of the airway segmentation.

  7. Knowledge guided information fusion for segmentation of multiple sclerosis lesions in MRI images

    NASA Astrophysics Data System (ADS)

    Zhu, Chaozhe; Jiang, Tianzi

    2003-05-01

    In this work, T1-, T2- and PD-weighted MR images of multiple sclerosis (MS) patients, providing information on the properties of tissues from different aspects, are treated as three independent information sources for the detection and segmentation of MS lesions. Based on information fusion theory, a knowledge guided information fusion framework is proposed to accomplish 3-D segmentation of MS lesions. This framework consists of three parts: (1) information extraction, (2) information fusion, and (3) decision. Information provided by different spectral images is extracted and modeled separately in each spectrum using fuzzy sets, aiming at managing the uncertainty and ambiguity in the images due to noise and partial volume effect. In the second part, the possible fuzzy map of MS lesions in each spectral image is constructed from the extracted information under the guidance of experts' knowledge, and then the final fuzzy map of MS lesions is constructed through the fusion of the fuzzy maps obtained from different spectrum. Finally, 3-D segmentation of MS lesions is derived from the final fuzzy map. Experimental results show that this method is fast and accurate.

  8. Tags Extarction from Spatial Documents in Search Engines

    NASA Astrophysics Data System (ADS)

    Borhaninejad, S.; Hakimpour, F.; Hamzei, E.

    2015-12-01

    Nowadays the selective access to information on the Web is provided by search engines, but in the cases which the data includes spatial information the search task becomes more complex and search engines require special capabilities. The purpose of this study is to extract the information which lies in spatial documents. To that end, we implement and evaluate information extraction from GML documents and a retrieval method in an integrated approach. Our proposed system consists of three components: crawler, database and user interface. In crawler component, GML documents are discovered and their text is parsed for information extraction; storage. The database component is responsible for indexing of information which is collected by crawlers. Finally the user interface component provides the interaction between system and user. We have implemented this system as a pilot system on an Application Server as a simulation of Web. Our system as a spatial search engine provided searching capability throughout the GML documents and thus an important step to improve the efficiency of search engines has been taken.

  9. Multiple feature extraction by using simultaneous wavelet transforms

    NASA Astrophysics Data System (ADS)

    Mazzaferri, Javier; Ledesma, Silvia; Iemmi, Claudio

    2003-07-01

    We propose here a method to optically perform multiple feature extraction by using wavelet transforms. The method is based on obtaining the optical correlation by means of a Vander Lugt architecture, where the scene and the filter are displayed on spatial light modulators (SLMs). Multiple phase filters containing the information about the features that we are interested in extracting are designed and then displayed on an SLM working in phase mostly mode. We have designed filters to simultaneously detect edges and corners or different characteristic frequencies contained in the input scene. Simulated and experimental results are shown.

  10. Predicting protein complexes using a supervised learning method combined with local structural information.

    PubMed

    Dong, Yadong; Sun, Yongqi; Qin, Chao

    2018-01-01

    The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.

  11. Conventional and Accelerated-Solvent Extractions of Green Tea (Camellia sinensis) for Metabolomics-based Chemometrics

    PubMed Central

    Kellogg, Joshua J.; Wallace, Emily D.; Graf, Tyler N.; Oberlies, Nicholas H.; Cech, Nadja B.

    2018-01-01

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. PMID:28787673

  12. ALE: automated label extraction from GEO metadata.

    PubMed

    Giles, Cory B; Brown, Chase A; Ripperger, Michael; Dennis, Zane; Roopnarinesingh, Xiavan; Porter, Hunter; Perz, Aleksandra; Wren, Jonathan D

    2017-12-28

    NCBI's Gene Expression Omnibus (GEO) is a rich community resource containing millions of gene expression experiments from human, mouse, rat, and other model organisms. However, information about each experiment (metadata) is in the format of an open-ended, non-standardized textual description provided by the depositor. Thus, classification of experiments for meta-analysis by factors such as gender, age of the sample donor, and tissue of origin is not feasible without assigning labels to the experiments. Automated approaches are preferable for this, primarily because of the size and volume of the data to be processed, but also because it ensures standardization and consistency. While some of these labels can be extracted directly from the textual metadata, many of the data available do not contain explicit text informing the researcher about the age and gender of the subjects with the study. To bridge this gap, machine-learning methods can be trained to use the gene expression patterns associated with the text-derived labels to refine label-prediction confidence. Our analysis shows only 26% of metadata text contains information about gender and 21% about age. In order to ameliorate the lack of available labels for these data sets, we first extract labels from the textual metadata for each GEO RNA dataset and evaluate the performance against a gold standard of manually curated labels. We then use machine-learning methods to predict labels, based upon gene expression of the samples and compare this to the text-based method. Here we present an automated method to extract labels for age, gender, and tissue from textual metadata and GEO data using both a heuristic approach as well as machine learning. We show the two methods together improve accuracy of label assignment to GEO samples.

  13. Reprint of “Non-causal spike filtering improves decoding of movement intention for intracortical BCIs”☆

    PubMed Central

    Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.

    2015-01-01

    Background Multiple types of neural signals are available for controlling assistive devices through brain–computer interfaces (BCIs). Intracortically recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. PMID:25681017

  14. Knowledge representation and management: transforming textual information into useful knowledge.

    PubMed

    Rassinoux, A-M

    2010-01-01

    To summarize current outstanding research in the field of knowledge representation and management. Synopsis of the articles selected for the IMIA Yearbook 2010. Four interesting papers, dealing with structured knowledge, have been selected for the section knowledge representation and management. Combining the newest techniques in computational linguistics and natural language processing with the latest methods in statistical data analysis, machine learning and text mining has proved to be efficient for turning unstructured textual information into meaningful knowledge. Three of the four selected papers for the section knowledge representation and management corroborate this approach and depict various experiments conducted to .extract meaningful knowledge from unstructured free texts such as extracting cancer disease characteristics from pathology reports, or extracting protein-protein interactions from biomedical papers, as well as extracting knowledge for the support of hypothesis generation in molecular biology from the Medline literature. Finally, the last paper addresses the level of formally representing and structuring information within clinical terminologies in order to render such information easily available and shareable among the health informatics community. Delivering common powerful tools able to automatically extract meaningful information from the huge amount of electronically unstructured free texts is an essential step towards promoting sharing and reusability across applications, domains, and institutions thus contributing to building capacities worldwide.

  15. Rapid automatic keyword extraction for information retrieval and analysis

    DOEpatents

    Rose, Stuart J [Richland, WA; Cowley,; E, Wendy [Richland, WA; Crow, Vernon L [Richland, WA; Cramer, Nicholas O [Richland, WA

    2012-03-06

    Methods and systems for rapid automatic keyword extraction for information retrieval and analysis. Embodiments can include parsing words in an individual document by delimiters, stop words, or both in order to identify candidate keywords. Word scores for each word within the candidate keywords are then calculated based on a function of co-occurrence degree, co-occurrence frequency, or both. Based on a function of the word scores for words within the candidate keyword, a keyword score is calculated for each of the candidate keywords. A portion of the candidate keywords are then extracted as keywords based, at least in part, on the candidate keywords having the highest keyword scores.

  16. Evaluation of Three Protein-Extraction Methods for Proteome Analysis of Maize Leaf Midrib, a Compound Tissue Rich in Sclerenchyma Cells.

    PubMed

    Wang, Ning; Wu, Xiaolin; Ku, Lixia; Chen, Yanhui; Wang, Wei

    2016-01-01

    Leaf morphology is closely related to the growth and development of maize (Zea mays L.) plants and final kernel production. As an important part of the maize leaf, the midrib holds leaf blades in the aerial position for maximum sunlight capture. Leaf midribs of adult plants contain substantial sclerenchyma cells with heavily thickened and lignified secondary walls and have a high amount of phenolics, making protein extraction and proteome analysis difficult in leaf midrib tissue. In the present study, three protein-extraction methods that are commonly used in plant proteomics, i.e., phenol extraction, TCA/acetone extraction, and TCA/acetone/phenol extraction, were qualitatively and quantitatively evaluated based on 2DE maps and MS/MS analysis using the midribs of the 10th newly expanded leaves of maize plants. Microscopy revealed the existence of substantial amounts of sclerenchyma underneath maize midrib epidermises (particularly abaxial epidermises). The spot-number order obtained via 2DE mapping was as follows: phenol extraction (655) > TCA/acetone extraction (589) > TCA/acetone/phenol extraction (545). MS/MS analysis identified a total of 17 spots that exhibited 2-fold changes in abundance among the three methods (using phenol extraction as a control). Sixteen of the proteins identified were hydrophilic, with GRAVY values ranging from -0.026 to -0.487. For all three methods, we were able to obtain high-quality protein samples and good 2DE maps for the maize leaf midrib. However, phenol extraction produced a better 2DE map with greater resolution between spots, and TCA/acetone extraction produced higher protein yields. Thus, this paper includes a discussion regarding the possible reasons for differential protein extraction among the three methods. This study provides useful information that can be used to select suitable protein extraction methods for the proteome analysis of recalcitrant plant tissues that are rich in sclerenchyma cells.

  17. An efficient and scalable extraction and quantification method for algal derived biofuel.

    PubMed

    Lohman, Egan J; Gardner, Robert D; Halverson, Luke; Macur, Richard E; Peyton, Brent M; Gerlach, Robin

    2013-09-01

    Microalgae are capable of synthesizing a multitude of compounds including biofuel precursors and other high value products such as omega-3-fatty acids. However, accurate analysis of the specific compounds produced by microalgae is important since slight variations in saturation and carbon chain length can affect the quality, and thus the value, of the end product. We present a method that allows for fast and reliable extraction of lipids and similar compounds from a range of algae, followed by their characterization using gas chromatographic analysis with a focus on biodiesel-relevant compounds. This method determines which range of biologically synthesized compounds is likely responsible for each fatty acid methyl ester (FAME) produced; information that is fundamental for identifying preferred microalgae candidates as a biodiesel source. Traditional methods of analyzing these precursor molecules are time intensive and prone to high degrees of variation between species and experimental conditions. Here we detail a new method which uses microwave energy as a reliable, single-step cell disruption technique to extract lipids from live cultures of microalgae. After extractable lipid characterization (including lipid type (free fatty acids, mono-, di- or tri-acylglycerides) and carbon chain length determination) by GC-FID, the same lipid extracts are transesterified into FAMEs and directly compared to total biodiesel potential by GC-MS. This approach provides insight into the fraction of total FAMEs derived from extractable lipids compared to FAMEs derived from the residual fraction (i.e. membrane bound phospholipids, sterols, etc.). This approach can also indicate which extractable lipid compound, based on chain length and relative abundance, is responsible for each FAME. This method was tested on three species of microalgae; the marine diatom Phaeodactylum tricornutum, the model Chlorophyte Chlamydomonas reinhardtii, and the freshwater green alga Chlorella vulgaris. The method is shown to be robust, highly reproducible, and fast, allowing for multiple samples to be analyzed throughout the time course of culturing, thus providing time-resolved information regarding lipid quantity and quality. Total time from harvesting to obtaining analytical results is less than 2h. © 2013.

  18. Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.

    2018-04-01

    A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.

  19. Built-Up Area Feature Extraction: Second Year Technical Progress Report

    DTIC Science & Technology

    1990-02-01

    Contract DACA 72-87-C-001. During this year we have built on previous research, in road network extraction and in the detection and delineation of buildings...methods to perform stereo analysis using loosely coupled techniques where comparison is deferred until each method has performed a complete estimate...or missing information. A course of action may be suggested to the user depending on the error. Although the checks do not guarantee the correctness

  20. DARHT Multi-intelligence Seismic and Acoustic Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Garrison Nicole; Van Buren, Kendra Lu; Hemez, Francois M.

    The purpose of this report is to document the analysis of seismic and acoustic data collected at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory for robust, multi-intelligence decision making. The data utilized herein is obtained from two tri-axial seismic sensors and three acoustic sensors, resulting in a total of nine data channels. The goal of this analysis is to develop a generalized, automated framework to determine internal operations at DARHT using informative features extracted from measurements collected external of the facility. Our framework involves four components: (1) feature extraction, (2) data fusion, (3) classification, andmore » finally (4) robustness analysis. Two approaches are taken for extracting features from the data. The first of these, generic feature extraction, involves extraction of statistical features from the nine data channels. The second approach, event detection, identifies specific events relevant to traffic entering and leaving the facility as well as explosive activities at DARHT and nearby explosive testing sites. Event detection is completed using a two stage method, first utilizing signatures in the frequency domain to identify outliers and second extracting short duration events of interest among these outliers by evaluating residuals of an autoregressive exogenous time series model. Features extracted from each data set are then fused to perform analysis with a multi-intelligence paradigm, where information from multiple data sets are combined to generate more information than available through analysis of each independently. The fused feature set is used to train a statistical classifier and predict the state of operations to inform a decision maker. We demonstrate this classification using both generic statistical features and event detection and provide a comparison of the two methods. Finally, the concept of decision robustness is presented through a preliminary analysis where uncertainty is added to the system through noise in the measurements.« less

  1. Population Estimation in Singapore Based on Remote Sensing and Open Data

    NASA Astrophysics Data System (ADS)

    Guo, H.; Cao, K.; Wang, P.

    2017-09-01

    Population estimation statistics are widely used in government, commercial and educational sectors for a variety of purposes. With growing emphases on real-time and detailed population information, data users nowadays have switched from traditional census data to more technology-based data source such as LiDAR point cloud and High-Resolution Satellite Imagery. Nevertheless, such data are costly and periodically unavailable. In this paper, the authors use West Coast District, Singapore as a case study to investigate the applicability and effectiveness of using satellite image from Google Earth for extraction of building footprint and population estimation. At the same time, volunteered geographic information (VGI) is also utilized as ancillary data for building footprint extraction. Open data such as Open Street Map OSM could be employed to enhance the extraction process. In view of challenges in building shadow extraction, this paper discusses several methods including buffer, mask and shape index to improve accuracy. It also illustrates population estimation methods based on building height and number of floor estimates. The results show that the accuracy level of housing unit method on population estimation can reach 92.5 %, which is remarkably accurate. This paper thus provides insights into techniques for building extraction and fine-scale population estimation, which will benefit users such as urban planners in terms of policymaking and urban planning of Singapore.

  2. Relative extraction ratio (RER) for arsenic and heavy metals in soils and tailings from various metal mines, Korea.

    PubMed

    Son, Hye Ok; Jung, Myung Chae

    2011-01-01

    This study focused on the evaluation of leaching behaviours for arsenic and heavy metals (Cd, Cu, Ni, Pb and Zn) in soils and tailings contaminated by mining activities. Ten representative mine soils were taken at four representative metal mines in Korea. To evaluate the leaching characteristics of the samples, eight extraction methods were adapted namely 0.1 M HCl, 0.5 M HCl, 1.0 M HCl, 3.0 M HCl, Korean Standard Leaching Procedure for waste materials (KSLP), Synthetic Precipitation Leaching Procedure (SPLP), Toxicity Characteristic Leaching Procedure (TCLP) and aqua regia extraction (AR) methods. In order to compare element concentrations as extraction methods, relative extraction ratios (RERs, %), defined as element concentration extracted by the individual leaching method divided by that extracted by aqua regia based on USEPA method 3050B, were calculated. Although the RER values can vary upon sample types and elements, they increase with increasing ionic strength of each extracting solution. Thus, the RER for arsenic and heavy metals in the samples increased in the order of KSLP < SPLP < TCLP < 0.1 M HCl < 0.5 M HCl < 1.0 M HCl < 3.0 M HCl. In the same extraction method, the RER values for Cd and Zn were relatively higher than those for As, Cu, Ni and Pb. This may be due to differences in geochemical behaviour of each element, namely high solubility of Cd and Zn and low solubility of As, Cu, Ni and Pb in surface environment. Thus, the extraction results can give important information on the degree and extent of arsenic and heavy metal dispersion in the surface environment.

  3. Optical hiding with visual cryptography

    NASA Astrophysics Data System (ADS)

    Shi, Yishi; Yang, Xiubo

    2017-11-01

    We propose an optical hiding method based on visual cryptography. In the hiding process, we convert the secret information into a set of fabricated phase-keys, which are completely independent of each other, intensity-detected-proof and image-covered, leading to the high security. During the extraction process, the covered phase-keys are illuminated with laser beams and then incoherently superimposed to extract the hidden information directly by human vision, without complicated optical implementations and any additional computation, resulting in the convenience of extraction. Also, the phase-keys are manufactured as the diffractive optical elements that are robust to the attacks, such as the blocking and the phase-noise. Optical experiments verify that the high security, the easy extraction and the strong robustness are all obtainable in the visual-cryptography-based optical hiding.

  4. Distant supervision for neural relation extraction integrated with word attention and property features.

    PubMed

    Qu, Jianfeng; Ouyang, Dantong; Hua, Wen; Ye, Yuxin; Li, Ximing

    2018-04-01

    Distant supervision for neural relation extraction is an efficient approach to extracting massive relations with reference to plain texts. However, the existing neural methods fail to capture the critical words in sentence encoding and meanwhile lack useful sentence information for some positive training instances. To address the above issues, we propose a novel neural relation extraction model. First, we develop a word-level attention mechanism to distinguish the importance of each individual word in a sentence, increasing the attention weights for those critical words. Second, we investigate the semantic information from word embeddings of target entities, which can be developed as a supplementary feature for the extractor. Experimental results show that our model outperforms previous state-of-the-art baselines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. [Studies Using Text Mining on the Differences in Learning Effects between the KJ and World Café Method as Learning Strategies].

    PubMed

    Yasuhara, Tomohisa; Sone, Tomomichi; Konishi, Motomi; Kushihata, Taro; Nishikawa, Tomoe; Yamamoto, Yumi; Kurio, Wasako; Kohno, Takeyuki

    2015-01-01

    The KJ method (named for developer Jiro Kawakita; also known as affinity diagramming) is widely used in participatory learning as a means to collect and organize information. In addition, the World Café (WC) has recently become popular. However, differences in the information obtained using each method have not been studied comprehensively. To determine the appropriate information selection criteria, we analyzed differences in the information generated by the WC and KJ methods. Two groups engaged in sessions to collect and organize information using either the WC or KJ method and small group discussions were held to create "proposals to improve first-year education". Both groups answered two pre- and post- session questionnaires that asked for free descriptions. Key words were extracted from the results of the two questionnaires and categorized using text mining. In the responses to questionnaire 1, which was directly related to the session theme, a significant increase in the number of key words was observed in the WC group (p=0.0050, Fisher's exact test). However, there was no significant increase in the number of key words in the responses to questionnaire 2, which was not directly related to the session theme (p=0.8347, Fisher's exact test). In the KJ method, participants extracted the most notable issues and progressed to a detailed discussion, whereas in the WC method, various information and problems were spread among the participants. The choice between the WC and KJ method should be made to reflect the educational objective and desired direction of discussion.

  6. Proactive Response to Potential Material Shortages Arising from Environmental Restrictions Using Automatic Discovery and Extraction of Information from Technical Documents

    DTIC Science & Technology

    2012-12-21

    material data and other key information in a UIMA environment. In the course of this project, the tools and methods developed were used to extract and...Architecture ( UIMA ) library from the Apache Software Foundation. Using this architecture, a given document is run through several “annotators” to...material taxonomy developed for the XSB, Inc. Coherent View™ database. In order to integrate this technology into the Java-based UIMA annotation

  7. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Alshehhi, Rasha; Marpu, Prashanth Reddy

    2017-04-01

    Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.

  8. [HPLC-ESI-MS(n) analysis of the water soluble extracts of Fructus Choerospondiatis].

    PubMed

    Shi, Run-ju; Dai, Yun; Fang, Min-feng; Zhao, Xin; Zheng, Jian-bin; Zheng, Xiao-hui

    2007-03-01

    To establish an HPLC-ESI-MS(n) method for analyzing the chemical ingredients in the water soluble extracts of Fructus Choerospondiatis. Water-solvable extracts of Fructus Choerospondiatis are obtained by heating recirculation. Multi-stage reaction mode (MRM) of the HPLC-ESI-MS(n) was used to determine the content of Gallic acid, the MS(n) technology was used to obtain the information of characteristic multistage fragment ions so as to identify the chemical structure of peaks in the total current spectrum. Eleven compounds were identified, and one of them is a new unknown ingredient. The method, which has high recovery and specificity, can offer the experimental evidences for the further research of the chemical ingredients extracted from the Fructus Choerospondiatis.

  9. Extracting 5m Shorelines From Multi-Temporal Images

    NASA Astrophysics Data System (ADS)

    Kapadia, A.; Jordahl, K. A.; Kington, J. D., IV

    2016-12-01

    Planet operates the largest Earth observing constellation of satellites, collecting imagery at an unprecedented temporal resolution. While daily cadence is expected in early 2017, Planet has already imaged the majority of landmass several dozen times over the past year. The current dataset provides enough value to build and test algorithms to automatically extract information. Here we demonstrate the extraction of shorelines across California using image stacks. The method implemented uses as input an uncalibrated RGB data product and limited NIR combined with the National Land Cover Database 2011 (NLCD2011) and Shuttle Radar Topography Mission (SRTM) to extract shorelines at 5 meter resolution. In the near future these methods along with daily cadence of imagery will allow for temporal monitoring of shorelines on a global scale.

  10. Identification Method of Mud Shale Fractures Base on Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Xia, Weixu; Lai, Fuqiang; Luo, Han

    2018-01-01

    In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.

  11. Extracting the Information Backbone in Online System

    PubMed Central

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such “less can be more” feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  12. The Design of Case Products’ Shape Form Information Database Based on NURBS Surface

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Liu, Guo-zhong; Xu, Nuo-qi; Zhang, Wei-she

    2017-07-01

    In order to improve the computer design of product shape design,applying the Non-uniform Rational B-splines(NURBS) of curves and surfaces surface to the representation of the product shape helps designers to design the product effectively.On the basis of the typical product image contour extraction and using Pro/Engineer(Pro/E) to extract the geometric feature of scanning mold,in order to structure the information data base system of value point,control point and node vector parameter information,this paper put forward a unified expression method of using NURBS curves and surfaces to describe products’ geometric shape and using matrix laboratory(MATLAB) to simulate when products have the same or similar function.A case study of electric vehicle’s front cover illustrates the access process of geometric shape information of case product in this paper.This method can not only greatly reduce the capacity of information debate,but also improve the effectiveness of computer aided geometric innovation modeling.

  13. Semantic World Modelling and Data Management in a 4d Forest Simulation and Information System

    NASA Astrophysics Data System (ADS)

    Roßmann, J.; Hoppen, M.; Bücken, A.

    2013-08-01

    Various types of 3D simulation applications benefit from realistic forest models. They range from flight simulators for entertainment to harvester simulators for training and tree growth simulations for research and planning. Our 4D forest simulation and information system integrates the necessary methods for data extraction, modelling and management. Using modern methods of semantic world modelling, tree data can efficiently be extracted from remote sensing data. The derived forest models contain position, height, crown volume, type and diameter of each tree. This data is modelled using GML-based data models to assure compatibility and exchangeability. A flexible approach for database synchronization is used to manage the data and provide caching, persistence, a central communication hub for change distribution, and a versioning mechanism. Combining various simulation techniques and data versioning, the 4D forest simulation and information system can provide applications with "both directions" of the fourth dimension. Our paper outlines the current state, new developments, and integration of tree extraction, data modelling, and data management. It also shows several applications realized with the system.

  14. Extracting the Textual and Temporal Structure of Supercomputing Logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, S; Singh, I; Chandra, A

    2009-05-26

    Supercomputers are prone to frequent faults that adversely affect their performance, reliability and functionality. System logs collected on these systems are a valuable resource of information about their operational status and health. However, their massive size, complexity, and lack of standard format makes it difficult to automatically extract information that can be used to improve system management. In this work we propose a novel method to succinctly represent the contents of supercomputing logs, by using textual clustering to automatically find the syntactic structures of log messages. This information is used to automatically classify messages into semantic groups via an onlinemore » clustering algorithm. Further, we describe a methodology for using the temporal proximity between groups of log messages to identify correlated events in the system. We apply our proposed methods to two large, publicly available supercomputing logs and show that our technique features nearly perfect accuracy for online log-classification and extracts meaningful structural and temporal message patterns that can be used to improve the accuracy of other log analysis techniques.« less

  15. Study on the extraction method of tidal flat area in northern Jiangsu Province based on remote sensing waterlines

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanyuan; Gao, Zhiqiang; Liu, Xiangyang; Xu, Ning; Liu, Chaoshun; Gao, Wei

    2016-09-01

    Reclamation caused a significant dynamic change in the coastal zone, the tidal flat zone is an unstable reserve land resource, it has important significance for its research. In order to realize the efficient extraction of the tidal flat area information, this paper takes Rudong County in Jiangsu Province as the research area, using the HJ1A/1B images as the data source, on the basis of previous research experience and literature review, the paper chooses the method of object-oriented classification as a semi-automatic extraction method to generate waterlines. Then waterlines are analyzed by DSAS software to obtain tide points, automatic extraction of outer boundary points are followed under the use of Python to determine the extent of tidal flats in 2014 of Rudong County, the extraction area was 55182hm2, the confusion matrix is used to verify the accuracy and the result shows that the kappa coefficient is 0.945. The method could improve deficiencies of previous studies and its available free nature on the Internet makes a generalization.

  16. Single-trial event-related potential extraction through one-unit ICA-with-reference

    NASA Astrophysics Data System (ADS)

    Lih Lee, Wee; Tan, Tele; Falkmer, Torbjörn; Leung, Yee Hong

    2016-12-01

    Objective. In recent years, ICA has been one of the more popular methods for extracting event-related potential (ERP) at the single-trial level. It is a blind source separation technique that allows the extraction of an ERP without making strong assumptions on the temporal and spatial characteristics of an ERP. However, the problem with traditional ICA is that the extraction is not direct and is time-consuming due to the need for source selection processing. In this paper, the application of an one-unit ICA-with-Reference (ICA-R), a constrained ICA method, is proposed. Approach. In cases where the time-region of the desired ERP is known a priori, this time information is utilized to generate a reference signal, which is then used for guiding the one-unit ICA-R to extract the source signal of the desired ERP directly. Main results. Our results showed that, as compared to traditional ICA, ICA-R is a more effective method for analysing ERP because it avoids manual source selection and it requires less computation thus resulting in faster ERP extraction. Significance. In addition to that, since the method is automated, it reduces the risks of any subjective bias in the ERP analysis. It is also a potential tool for extracting the ERP in online application.

  17. Single-trial event-related potential extraction through one-unit ICA-with-reference.

    PubMed

    Lee, Wee Lih; Tan, Tele; Falkmer, Torbjörn; Leung, Yee Hong

    2016-12-01

    In recent years, ICA has been one of the more popular methods for extracting event-related potential (ERP) at the single-trial level. It is a blind source separation technique that allows the extraction of an ERP without making strong assumptions on the temporal and spatial characteristics of an ERP. However, the problem with traditional ICA is that the extraction is not direct and is time-consuming due to the need for source selection processing. In this paper, the application of an one-unit ICA-with-Reference (ICA-R), a constrained ICA method, is proposed. In cases where the time-region of the desired ERP is known a priori, this time information is utilized to generate a reference signal, which is then used for guiding the one-unit ICA-R to extract the source signal of the desired ERP directly. Our results showed that, as compared to traditional ICA, ICA-R is a more effective method for analysing ERP because it avoids manual source selection and it requires less computation thus resulting in faster ERP extraction. In addition to that, since the method is automated, it reduces the risks of any subjective bias in the ERP analysis. It is also a potential tool for extracting the ERP in online application.

  18. Modelling spatiotemporal change using multidimensional arrays Meng

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Appel, Marius; Pebesma, Edzer

    2017-04-01

    The large variety of remote sensors, model simulations, and in-situ records provide great opportunities to model environmental change. The massive amount of high-dimensional data calls for methods to integrate data from various sources and to analyse spatiotemporal and thematic information jointly. An array is a collection of elements ordered and indexed in arbitrary dimensions, which naturally represent spatiotemporal phenomena that are identified by their geographic locations and recording time. In addition, array regridding (e.g., resampling, down-/up-scaling), dimension reduction, and spatiotemporal statistical algorithms are readily applicable to arrays. However, the role of arrays in big geoscientific data analysis has not been systematically studied: How can arrays discretise continuous spatiotemporal phenomena? How can arrays facilitate the extraction of multidimensional information? How can arrays provide a clean, scalable and reproducible change modelling process that is communicable between mathematicians, computer scientist, Earth system scientist and stakeholders? This study emphasises on detecting spatiotemporal change using satellite image time series. Current change detection methods using satellite image time series commonly analyse data in separate steps: 1) forming a vegetation index, 2) conducting time series analysis on each pixel, and 3) post-processing and mapping time series analysis results, which does not consider spatiotemporal correlations and ignores much of the spectral information. Multidimensional information can be better extracted by jointly considering spatial, spectral, and temporal information. To approach this goal, we use principal component analysis to extract multispectral information and spatial autoregressive models to account for spatial correlation in residual based time series structural change modelling. We also discuss the potential of multivariate non-parametric time series structural change methods, hierarchical modelling, and extreme event detection methods to model spatiotemporal change. We show how array operations can facilitate expressing these methods, and how the open-source array data management and analytics software SciDB and R can be used to scale the process and make it easily reproducible.

  19. Automatic seizure detection based on the combination of newborn multi-channel EEG and HRV information

    NASA Astrophysics Data System (ADS)

    Mesbah, Mostefa; Balakrishnan, Malarvili; Colditz, Paul B.; Boashash, Boualem

    2012-12-01

    This article proposes a new method for newborn seizure detection that uses information extracted from both multi-channel electroencephalogram (EEG) and a single channel electrocardiogram (ECG). The aim of the study is to assess whether additional information extracted from ECG can improve the performance of seizure detectors based solely on EEG. Two different approaches were used to combine this extracted information. The first approach, known as feature fusion, involves combining features extracted from EEG and heart rate variability (HRV) into a single feature vector prior to feeding it to a classifier. The second approach, called classifier or decision fusion, is achieved by combining the independent decisions of the EEG and the HRV-based classifiers. Tested on recordings obtained from eight newborns with identified EEG seizures, the proposed neonatal seizure detection algorithms achieved 95.20% sensitivity and 88.60% specificity for the feature fusion case and 95.20% sensitivity and 94.30% specificity for the classifier fusion case. These results are considerably better than those involving classifiers using EEG only (80.90%, 86.50%) or HRV only (85.70%, 84.60%).

  20. Bone protein extraction without demineralization using principles from hydroxyapatite chromatography.

    PubMed

    Cleland, Timothy P; Vashishth, Deepak

    2015-03-01

    Historically, extraction of bone proteins has relied on the use of demineralization to better retrieve proteins from the extracellular matrix; however, demineralization can be a slow process that restricts subsequent analysis of the samples. Here, we developed a novel protein extraction method that does not use demineralization but instead uses a methodology from hydroxyapatite chromatography where high concentrations of ammonium phosphate and ammonium bicarbonate are used to extract bone proteins. We report that this method has a higher yield than those with previously published small-scale extant bone extractions, with and without demineralization. Furthermore, after digestion with trypsin and subsequent high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis, we were able to detect several extracellular matrix and vascular proteins in addition to collagen I and osteocalcin. Our new method has the potential to isolate proteins within a short period (4h) and provide information about bone proteins that may be lost during demineralization or with the use of denaturing agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. An Efficient Method for Automatic Road Extraction Based on Multiple Features from LiDAR Data

    NASA Astrophysics Data System (ADS)

    Li, Y.; Hu, X.; Guan, H.; Liu, P.

    2016-06-01

    The road extraction in urban areas is difficult task due to the complicated patterns and many contextual objects. LiDAR data directly provides three dimensional (3D) points with less occlusions and smaller shadows. The elevation information and surface roughness are distinguishing features to separate roads. However, LiDAR data has some disadvantages are not beneficial to object extraction, such as the irregular distribution of point clouds and lack of clear edges of roads. For these problems, this paper proposes an automatic road centerlines extraction method which has three major steps: (1) road center point detection based on multiple feature spatial clustering for separating road points from ground points, (2) local principal component analysis with least squares fitting for extracting the primitives of road centerlines, and (3) hierarchical grouping for connecting primitives into complete roads network. Compared with MTH (consist of Mean shift algorithm, Tensor voting, and Hough transform) proposed in our previous article, this method greatly reduced the computational cost. To evaluate the proposed method, the Vaihingen data set, a benchmark testing data provided by ISPRS for "Urban Classification and 3D Building Reconstruction" project, was selected. The experimental results show that our method achieve the same performance by less time in road extraction using LiDAR data.

  2. Extraction of urban vegetation with Pleiades multiangular images

    NASA Astrophysics Data System (ADS)

    Lefebvre, Antoine; Nabucet, Jean; Corpetti, Thomas; Courty, Nicolas; Hubert-Moy, Laurence

    2016-10-01

    Vegetation is essential in urban environments since it provides significant services in terms of health, heat, property value, ecology ... As part of the European Union Biodiversity Strategy Plan for 2020, the protection and development of green-infrastructures is strengthened in urban areas. In order to evaluate and monitor the quality of the green infra-structures, this article investigates contributions of Pléiades multi-angular images to extract and characterize low and high urban vegetation. From such images one can extract both spectral and elevation information from optical images. Our method is composed of 3 main steps : (1) the computation of a normalized Digital Surface Model from the multi-angular images ; (2) Extraction of spectral and contextual features ; (3) a classification of vegetation classes (tree and grass) performed with a random forest classifier. Results performed in the city of Rennes in France show the ability of multi-angular images to extract DEM in urban area despite building height. It also highlights its importance and its complementarity with contextual information to extract urban vegetation.

  3. MedXN: an open source medication extraction and normalization tool for clinical text

    PubMed Central

    Sohn, Sunghwan; Clark, Cheryl; Halgrim, Scott R; Murphy, Sean P; Chute, Christopher G; Liu, Hongfang

    2014-01-01

    Objective We developed the Medication Extraction and Normalization (MedXN) system to extract comprehensive medication information and normalize it to the most appropriate RxNorm concept unique identifier (RxCUI) as specifically as possible. Methods Medication descriptions in clinical notes were decomposed into medication name and attributes, which were separately extracted using RxNorm dictionary lookup and regular expression. Then, each medication name and its attributes were combined together according to RxNorm convention to find the most appropriate RxNorm representation. To do this, we employed serialized hierarchical steps implemented in Apache's Unstructured Information Management Architecture. We also performed synonym expansion, removed false medications, and employed inference rules to improve the medication extraction and normalization performance. Results An evaluation on test data of 397 medication mentions showed F-measures of 0.975 for medication name and over 0.90 for most attributes. The RxCUI assignment produced F-measures of 0.932 for medication name and 0.864 for full medication information. Most false negative RxCUI assignments in full medication information are due to human assumption of missing attributes and medication names in the gold standard. Conclusions The MedXN system (http://sourceforge.net/projects/ohnlp/files/MedXN/) was able to extract comprehensive medication information with high accuracy and demonstrated good normalization capability to RxCUI as long as explicit evidence existed. More sophisticated inference rules might result in further improvements to specific RxCUI assignments for incomplete medication descriptions. PMID:24637954

  4. Extraction of endoscopic images for biomedical figure classification

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; You, Daekeun; Chachra, Suchet; Antani, Sameer; Long, L. R.; Demner-Fushman, Dina; Thoma, George R.

    2015-03-01

    Modality filtering is an important feature in biomedical image searching systems and may significantly improve the retrieval performance of the system. This paper presents a new method for extracting endoscopic image figures from photograph images in biomedical literature, which are found to have highly diverse content and large variability in appearance. Our proposed method consists of three main stages: tissue image extraction, endoscopic image candidate extraction, and ophthalmic image filtering. For tissue image extraction we use image patch level clustering and MRF relabeling to detect images containing skin/tissue regions. Next, we find candidate endoscopic images by exploiting the round shape characteristics that commonly appear in these images. However, this step needs to compensate for images where endoscopic regions are not entirely round. In the third step we filter out the ophthalmic images which have shape characteristics very similar to the endoscopic images. We do this by using text information, specifically, anatomy terms, extracted from the figure caption. We tested and evaluated our method on a dataset of 115,370 photograph figures, and achieved promising precision and recall rates of 87% and 84%, respectively.

  5. The information extraction of Gannan citrus orchard based on the GF-1 remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, Y. L.

    2017-02-01

    The production of Gannan oranges is the largest in China, which occupied an important part in the world. The extraction of citrus orchard quickly and effectively has important significance for fruit pathogen defense, fruit production and industrial planning. The traditional spectra extraction method of citrus orchard based on pixel has a lower classification accuracy, difficult to avoid the “pepper phenomenon”. In the influence of noise, the phenomenon that different spectrums of objects have the same spectrum is graveness. Taking Xunwu County citrus fruit planting area of Ganzhou as the research object, aiming at the disadvantage of the lower accuracy of the traditional method based on image element classification method, a decision tree classification method based on object-oriented rule set is proposed. Firstly, multi-scale segmentation is performed on the GF-1 remote sensing image data of the study area. Subsequently the sample objects are selected for statistical analysis of spectral features and geometric features. Finally, combined with the concept of decision tree classification, a variety of empirical values of single band threshold, NDVI, band combination and object geometry characteristics are used hierarchically to execute the information extraction of the research area, and multi-scale segmentation and hierarchical decision tree classification is implemented. The classification results are verified with the confusion matrix, and the overall Kappa index is 87.91%.

  6. LIDAR Point Cloud Data Extraction and Establishment of 3D Modeling of Buildings

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    This paper takes the method of Shepard’s to deal with the original LIDAR point clouds data, and generate regular grid data DSM, filters the ground point cloud and non ground point cloud through double least square method, and obtains the rules of DSM. By using region growing method for the segmentation of DSM rules, the removal of non building point cloud, obtaining the building point cloud information. Uses the Canny operator to extract the image segmentation is needed after the edges of the building, uses Hough transform line detection to extract the edges of buildings rules of operation based on the smooth and uniform. At last, uses E3De3 software to establish the 3D model of buildings.

  7. Decoding 2D-PAGE complex maps: relevance to proteomics.

    PubMed

    Pietrogrande, Maria Chiara; Marchetti, Nicola; Dondi, Francesco; Righetti, Pier Giorgio

    2006-03-20

    This review describes two mathematical approaches useful for decoding the complex signal of 2D-PAGE maps of protein mixtures. These methods are helpful for interpreting the large amount of data of each 2D-PAGE map by extracting all the analytical information hidden therein by spot overlapping. Here the basic theory and application to 2D-PAGE maps are reviewed: the means for extracting information from the experimental data and their relevance to proteomics are discussed. One method is based on the quantitative theory of statistical model of peak overlapping (SMO) using the spot experimental data (intensity and spatial coordinates). The second method is based on the study of the 2D-autocovariance function (2D-ACVF) computed on the experimental digitised map. They are two independent methods that are able to extract equal and complementary information from the 2D-PAGE map. Both methods permit to obtain fundamental information on the sample complexity and the separation performance and to single out ordered patterns present in spot positions: the availability of two independent procedures to compute the same separation parameters is a powerful tool to estimate the reliability of the obtained results. The SMO procedure is an unique tool to quantitatively estimate the degree of spot overlapping present in the map, while the 2D-ACVF method is particularly powerful in simply singling out the presence of order in the spot position from the complexity of the whole 2D map, i.e., spot trains. The procedures were validated by extensive numerical computation on computer-generated maps describing experimental 2D-PAGE gels of protein mixtures. Their applicability to real samples was tested on reference maps obtained from literature sources. The review describes the most relevant information for proteomics: sample complexity, separation performance, overlapping extent, identification of spot trains related to post-translational modifications (PTMs).

  8. An Ontology-Based Approach to Incorporate User-Generated Geo-Content Into Sdi

    NASA Astrophysics Data System (ADS)

    Deng, D.-P.; Lemmens, R.

    2011-08-01

    The Web is changing the way people share and communicate information because of emergence of various Web technologies, which enable people to contribute information on the Web. User-Generated Geo-Content (UGGC) is a potential resource of geographic information. Due to the different production methods, UGGC often cannot fit in geographic information model. There is a semantic gap between UGGC and formal geographic information. To integrate UGGC into geographic information, this study conducts an ontology-based process to bridge this semantic gap. This ontology-based process includes five steps: Collection, Extraction, Formalization, Mapping, and Deployment. In addition, this study implements this process on Twitter messages, which is relevant to Japan Earthquake disaster. By using this process, we extract disaster relief information from Twitter messages, and develop a knowledge base for GeoSPARQL queries in disaster relief information.

  9. The data embedding method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandford, M.T. II; Bradley, J.N.; Handel, T.G.

    Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in Microsoft{reg_sign} bitmap (.BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits,more » is termed {open_quote}steganography.{close_quote} Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or {open_quote}lossy{close_quote} compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is in data an analysis algorithm.« less

  10. Data embedding method

    NASA Astrophysics Data System (ADS)

    Sandford, Maxwell T., II; Bradley, Jonathan N.; Handel, Theodore G.

    1996-01-01

    Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in MicrosoftTM bitmap (BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits, is termed `steganography.' Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or `lossy' compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is derived from the original host data by an analysis algorithm.

  11. Capturing patient information at nursing shift changes: methodological evaluation of speech recognition and information extraction

    PubMed Central

    Suominen, Hanna; Johnson, Maree; Zhou, Liyuan; Sanchez, Paula; Sirel, Raul; Basilakis, Jim; Hanlen, Leif; Estival, Dominique; Dawson, Linda; Kelly, Barbara

    2015-01-01

    Objective We study the use of speech recognition and information extraction to generate drafts of Australian nursing-handover documents. Methods Speech recognition correctness and clinicians’ preferences were evaluated using 15 recorder–microphone combinations, six documents, three speakers, Dragon Medical 11, and five survey/interview participants. Information extraction correctness evaluation used 260 documents, six-class classification for each word, two annotators, and the CRF++ conditional random field toolkit. Results A noise-cancelling lapel-microphone with a digital voice recorder gave the best correctness (79%). This microphone was also the most preferred option by all but one participant. Although the participants liked the small size of this recorder, their preference was for tablets that can also be used for document proofing and sign-off, among other tasks. Accented speech was harder to recognize than native language and a male speaker was detected better than a female speaker. Information extraction was excellent in filtering out irrelevant text (85% F1) and identifying text relevant to two classes (87% and 70% F1). Similarly to the annotators’ disagreements, there was confusion between the remaining three classes, which explains the modest 62% macro-averaged F1. Discussion We present evidence for the feasibility of speech recognition and information extraction to support clinicians’ in entering text and unlock its content for computerized decision-making and surveillance in healthcare. Conclusions The benefits of this automation include storing all information; making the drafts available and accessible almost instantly to everyone with authorized access; and avoiding information loss, delays, and misinterpretations inherent to using a ward clerk or transcription services. PMID:25336589

  12. Extraction of decision rules via imprecise probabilities

    NASA Astrophysics Data System (ADS)

    Abellán, Joaquín; López, Griselda; Garach, Laura; Castellano, Javier G.

    2017-05-01

    Data analysis techniques can be applied to discover important relations among features. This is the main objective of the Information Root Node Variation (IRNV) technique, a new method to extract knowledge from data via decision trees. The decision trees used by the original method were built using classic split criteria. The performance of new split criteria based on imprecise probabilities and uncertainty measures, called credal split criteria, differs significantly from the performance obtained using the classic criteria. This paper extends the IRNV method using two credal split criteria: one based on a mathematical parametric model, and other one based on a non-parametric model. The performance of the method is analyzed using a case study of traffic accident data to identify patterns related to the severity of an accident. We found that a larger number of rules is generated, significantly supplementing the information obtained using the classic split criteria.

  13. Extraction fatty acid as a source to produce biofuel in microalgae Chlorella sp. and Spirulina sp. using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Tai, Do Chiem; Hai, Dam Thi Thanh; Vinh, Nguyen Hanh; Phung, Le Thi Kim

    2016-06-01

    In this research, the fatty acids of isolated microalgae were extracted by some technologies such as maceration, Soxhlet, ultrasonic-assisted extraction and supercritical fluid extraction; and analyzed for biodiesel production using GC-MS. This work deals with the extraction of microalgae oil from dry biomass by using supercritical fluid extraction method. A complete study at laboratory of the influence of some parameters on the extraction kinetics and yields and on the composition of the oil in terms of lipid classes and profiles is proposed. Two types of microalgae were studied: Chlorella sp. and Spirulina sp. For the extraction of oil from microalgae, supercritical CO2 (SC-CO2) is regarded with interest, being safer than n-hexane and offering a negligible environmental impact, a short extraction time and a high-quality final product. Whilst some experimental papers are available on the supercritical fluid extraction (SFE) of oil from microalgae, only limited information exists on the kinetics of the process. These results demonstrate that supercritical CO2 extraction is an efficient method for the complete recovery of the neutral lipid phase.

  14. [Construction of large fragment metagenome library of natural mangrove soil].

    PubMed

    Jiang, Yun-Xia; Zheng, Tian-Ling

    2007-11-01

    Applying our optimized direct extraction method, the percentage of large fragment DNA in the total extracted mangrove soil DNA was significant increased. The large fragment metagenome library derived from natural mangrove soil over four seasons was successfully constructed by the optimized DNA extraction and electro elution purification method. All of the clones had recombinant Cosmids and each differed in their fragment profiles when Cosmid DNA was extracted from 12 randomly picked colonies and digested with BamHI. The average insert size for this library was larger than 35 kbp. This culturing-independent library at least encompassed 335 Mbp valuable genetic information of mangrove soil microbes. It allowed mining of valuable intertidal microbial resource to become a reality. It is a recommended method for those researchers who have still not circumvented the large insert environmental libraries or for those beginning research in this field, so as to avoid them attempting repetitive, fussy work.

  15. Fusion of monocular cues to detect man-made structures in aerial imagery

    NASA Technical Reports Server (NTRS)

    Shufelt, Jefferey; Mckeown, David M.

    1991-01-01

    The extraction of buildings from aerial imagery is a complex problem for automated computer vision. It requires locating regions in a scene that possess properties distinguishing them as man-made objects as opposed to naturally occurring terrain features. It is reasonable to assume that no single detection method can correctly delineate or verify buildings in every scene. A cooperative-methods paradigm is useful in approaching the building extraction problem. Using this paradigm, each extraction technique provides information which can be added or assimilated into an overall interpretation of the scene. Thus, the main objective is to explore the development of computer vision system that integrates the results of various scene analysis techniques into an accurate and robust interpretation of the underlying three dimensional scene. The problem of building hypothesis fusion in aerial imagery is discussed. Building extraction techniques are briefly surveyed, including four building extraction, verification, and clustering systems. A method for fusing the symbolic data generated by these systems is described, and applied to monocular image and stereo image data sets. Evaluation methods for the fusion results are described, and the fusion results are analyzed using these methods.

  16. Intermodulation Atomic Force Microscopy and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hutter, Carsten; Platz, Daniel; Tholen, Erik; Haviland, David; Hansson, Hans

    2009-03-01

    We present a powerful new method of dynamic AFM, which allows to gain far more information about the tip-surface interaction than standard amplitude or phase imaging, while scanning at comparable speed. Our method, called intermodulation atomic force microscopy (ImAFM), employs the manifestly nonlinear phenomenon of intermodulation to extract information about tip-surface forces. ImAFM uses one eigenmode of a mechanical resonator, the latter driven at two frequencies to produce many spectral peaks near its resonace, where sensitivity is highest [1]. We furthermore present a protocol for decoding the combined information encoded in the spectrum of intermodulation peaks. Our theoretical framework suggests methods to enhance the gained information by using a different parameter regime as compared to Ref. [1]. We also discuss strategies for solving the inverse problem, i.e., for extracting the nonlinear tip-surface interaction from the response, also naming limitations of our theoretical analysis. We will further report on latest progress to experimentally employ our new protocol.[3pt] [1] D. Platz, E. A. Tholen, D. Pesen, and D. B. Haviland, Appl. Phys. Lett. 92, 153106 (2008).

  17. Speech information retrieval: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafen, Ryan P.; Henry, Michael J.

    Audio is an information-rich component of multimedia. Information can be extracted from audio in a number of different ways, and thus there are several established audio signal analysis research fields. These fields include speech recognition, speaker recognition, audio segmentation and classification, and audio finger-printing. The information that can be extracted from tools and methods developed in these fields can greatly enhance multimedia systems. In this paper, we present the current state of research in each of the major audio analysis fields. The goal is to introduce enough back-ground for someone new in the field to quickly gain high-level understanding andmore » to provide direction for further study.« less

  18. Road and Roadside Feature Extraction Using Imagery and LIDAR Data for Transportation Operation

    NASA Astrophysics Data System (ADS)

    Ural, S.; Shan, J.; Romero, M. A.; Tarko, A.

    2015-03-01

    Transportation agencies require up-to-date, reliable, and feasibly acquired information on road geometry and features within proximity to the roads as input for evaluating and prioritizing new or improvement road projects. The information needed for a robust evaluation of road projects includes road centerline, width, and extent together with the average grade, cross-sections, and obstructions near the travelled way. Remote sensing is equipped with a large collection of data and well-established tools for acquiring the information and extracting aforementioned various road features at various levels and scopes. Even with many remote sensing data and methods available for road extraction, transportation operation requires more than the centerlines. Acquiring information that is spatially coherent at the operational level for the entire road system is challenging and needs multiple data sources to be integrated. In the presented study, we established a framework that used data from multiple sources, including one-foot resolution color infrared orthophotos, airborne LiDAR point clouds, and existing spatially non-accurate ancillary road networks. We were able to extract 90.25% of a total of 23.6 miles of road networks together with estimated road width, average grade along the road, and cross sections at specified intervals. Also, we have extracted buildings and vegetation within a predetermined proximity to the extracted road extent. 90.6% of 107 existing buildings were correctly identified with 31% false detection rate.

  19. Knowledge Acquisition of Generic Queries for Information Retrieval

    PubMed Central

    Seol, Yoon-Ho; Johnson, Stephen B.; Cimino, James J.

    2002-01-01

    Several studies have identified clinical questions posed by health care professionals to understand the nature of information needs during clinical practice. To support access to digital information sources, it is necessary to integrate the information needs with a computer system. We have developed a conceptual guidance approach in information retrieval, based on a knowledge base that contains the patterns of information needs. The knowledge base uses a formal representation of clinical questions based on the UMLS knowledge sources, called the Generic Query model. To improve the coverage of the knowledge base, we investigated a method for extracting plausible clinical questions from the medical literature. This poster presents the Generic Query model, shows how it is used to represent the patterns of clinical questions, and describes the framework used to extract knowledge from the medical literature.

  20. Numerical linear algebra in data mining

    NASA Astrophysics Data System (ADS)

    Eldén, Lars

    Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.

  1. Super-pixel extraction based on multi-channel pulse coupled neural network

    NASA Astrophysics Data System (ADS)

    Xu, GuangZhu; Hu, Song; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun

    2018-04-01

    Super-pixel extraction techniques group pixels to form over-segmented image blocks according to the similarity among pixels. Compared with the traditional pixel-based methods, the image descripting method based on super-pixel has advantages of less calculation, being easy to perceive, and has been widely used in image processing and computer vision applications. Pulse coupled neural network (PCNN) is a biologically inspired model, which stems from the phenomenon of synchronous pulse release in the visual cortex of cats. Each PCNN neuron can correspond to a pixel of an input image, and the dynamic firing pattern of each neuron contains both the pixel feature information and its context spatial structural information. In this paper, a new color super-pixel extraction algorithm based on multi-channel pulse coupled neural network (MPCNN) was proposed. The algorithm adopted the block dividing idea of SLIC algorithm, and the image was divided into blocks with same size first. Then, for each image block, the adjacent pixels of each seed with similar color were classified as a group, named a super-pixel. At last, post-processing was adopted for those pixels or pixel blocks which had not been grouped. Experiments show that the proposed method can adjust the number of superpixel and segmentation precision by setting parameters, and has good potential for super-pixel extraction.

  2. An ensemble method for extracting adverse drug events from social media.

    PubMed

    Liu, Jing; Zhao, Songzheng; Zhang, Xiaodi

    2016-06-01

    Because adverse drug events (ADEs) are a serious health problem and a leading cause of death, it is of vital importance to identify them correctly and in a timely manner. With the development of Web 2.0, social media has become a large data source for information on ADEs. The objective of this study is to develop a relation extraction system that uses natural language processing techniques to effectively distinguish between ADEs and non-ADEs in informal text on social media. We develop a feature-based approach that utilizes various lexical, syntactic, and semantic features. Information-gain-based feature selection is performed to address high-dimensional features. Then, we evaluate the effectiveness of four well-known kernel-based approaches (i.e., subset tree kernel, tree kernel, shortest dependency path kernel, and all-paths graph kernel) and several ensembles that are generated by adopting different combination methods (i.e., majority voting, weighted averaging, and stacked generalization). All of the approaches are tested using three data sets: two health-related discussion forums and one general social networking site (i.e., Twitter). When investigating the contribution of each feature subset, the feature-based approach attains the best area under the receiver operating characteristics curve (AUC) values, which are 78.6%, 72.2%, and 79.2% on the three data sets. When individual methods are used, we attain the best AUC values of 82.1%, 73.2%, and 77.0% using the subset tree kernel, shortest dependency path kernel, and feature-based approach on the three data sets, respectively. When using classifier ensembles, we achieve the best AUC values of 84.5%, 77.3%, and 84.5% on the three data sets, outperforming the baselines. Our experimental results indicate that ADE extraction from social media can benefit from feature selection. With respect to the effectiveness of different feature subsets, lexical features and semantic features can enhance the ADE extraction capability. Kernel-based approaches, which can stay away from the feature sparsity issue, are qualified to address the ADE extraction problem. Combining different individual classifiers using suitable combination methods can further enhance the ADE extraction effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. HEDEA: A Python Tool for Extracting and Analysing Semi-structured Information from Medical Records

    PubMed Central

    Aggarwal, Anshul; Garhwal, Sunita

    2018-01-01

    Objectives One of the most important functions for a medical practitioner while treating a patient is to study the patient's complete medical history by going through all records, from test results to doctor's notes. With the increasing use of technology in medicine, these records are mostly digital, alleviating the problem of looking through a stack of papers, which are easily misplaced, but some of these are in an unstructured form. Large parts of clinical reports are in written text form and are tedious to use directly without appropriate pre-processing. In medical research, such health records may be a good, convenient source of medical data; however, lack of structure means that the data is unfit for statistical evaluation. In this paper, we introduce a system to extract, store, retrieve, and analyse information from health records, with a focus on the Indian healthcare scene. Methods A Python-based tool, Healthcare Data Extraction and Analysis (HEDEA), has been designed to extract structured information from various medical records using a regular expression-based approach. Results The HEDEA system is working, covering a large set of formats, to extract and analyse health information. Conclusions This tool can be used to generate analysis report and charts using the central database. This information is only provided after prior approval has been received from the patient for medical research purposes. PMID:29770248

  4. Automatic lip reading by using multimodal visual features

    NASA Astrophysics Data System (ADS)

    Takahashi, Shohei; Ohya, Jun

    2013-12-01

    Since long time ago, speech recognition has been researched, though it does not work well in noisy places such as in the car or in the train. In addition, people with hearing-impaired or difficulties in hearing cannot receive benefits from speech recognition. To recognize the speech automatically, visual information is also important. People understand speeches from not only audio information, but also visual information such as temporal changes in the lip shape. A vision based speech recognition method could work well in noisy places, and could be useful also for people with hearing disabilities. In this paper, we propose an automatic lip-reading method for recognizing the speech by using multimodal visual information without using any audio information such as speech recognition. First, the ASM (Active Shape Model) is used to track and detect the face and lip in a video sequence. Second, the shape, optical flow and spatial frequencies of the lip features are extracted from the lip detected by ASM. Next, the extracted multimodal features are ordered chronologically so that Support Vector Machine is performed in order to learn and classify the spoken words. Experiments for classifying several words show promising results of this proposed method.

  5. Secure searching of biomarkers through hybrid homomorphic encryption scheme.

    PubMed

    Kim, Miran; Song, Yongsoo; Cheon, Jung Hee

    2017-07-26

    As genome sequencing technology develops rapidly, there has lately been an increasing need to keep genomic data secure even when stored in the cloud and still used for research. We are interested in designing a protocol for the secure outsourcing matching problem on encrypted data. We propose an efficient method to securely search a matching position with the query data and extract some information at the position. After decryption, only a small amount of comparisons with the query information should be performed in plaintext state. We apply this method to find a set of biomarkers in encrypted genomes. The important feature of our method is to encode a genomic database as a single element of polynomial ring. Since our method requires a single homomorphic multiplication of hybrid scheme for query computation, it has the advantage over the previous methods in parameter size, computation complexity, and communication cost. In particular, the extraction procedure not only prevents leakage of database information that has not been queried by user but also reduces the communication cost by half. We evaluate the performance of our method and verify that the computation on large-scale personal data can be securely and practically outsourced to a cloud environment during data analysis. It takes about 3.9 s to search-and-extract the reference and alternate sequences at the queried position in a database of size 4M. Our solution for finding a set of biomarkers in DNA sequences shows the progress of cryptographic techniques in terms of their capability can support real-world genome data analysis in a cloud environment.

  6. Strong Similarity Measures for Ordered Sets of Documents in Information Retrieval.

    ERIC Educational Resources Information Center

    Egghe, L.; Michel, Christine

    2002-01-01

    Presents a general method to construct ordered similarity measures in information retrieval based on classical similarity measures for ordinary sets. Describes a test of some of these measures in an information retrieval system that extracted ranked document sets and discuses the practical usability of the ordered similarity measures. (Author/LRW)

  7. Skill Development for Maneuvering on the Information Highway.

    ERIC Educational Resources Information Center

    Mosley, Barbra; Edwards, Gloria

    To help students learn to navigate the information superhighway, a 2-hour pilot program with 10 hours of guided access time was developed to test a method for teaching the basics of maneuvering the superhighway and extracting information once located. This pilot was designed as a two-part instructional session. The first instructional session…

  8. Effects of band selection on endmember extraction for forestry applications

    NASA Astrophysics Data System (ADS)

    Karathanassi, Vassilia; Andreou, Charoula; Andronis, Vassilis; Kolokoussis, Polychronis

    2014-10-01

    In spectral unmixing theory, data reduction techniques play an important role as hyperspectral imagery contains an immense amount of data, posing many challenging problems such as data storage, computational efficiency, and the so called "curse of dimensionality". Feature extraction and feature selection are the two main approaches for dimensionality reduction. Feature extraction techniques are used for reducing the dimensionality of the hyperspectral data by applying transforms on hyperspectral data. Feature selection techniques retain the physical meaning of the data by selecting a set of bands from the input hyperspectral dataset, which mainly contain the information needed for spectral unmixing. Although feature selection techniques are well-known for their dimensionality reduction potentials they are rarely used in the unmixing process. The majority of the existing state-of-the-art dimensionality reduction methods set criteria to the spectral information, which is derived by the whole wavelength, in order to define the optimum spectral subspace. These criteria are not associated with any particular application but with the data statistics, such as correlation and entropy values. However, each application is associated with specific land c over materials, whose spectral characteristics present variations in specific wavelengths. In forestry for example, many applications focus on tree leaves, in which specific pigments such as chlorophyll, xanthophyll, etc. determine the wavelengths where tree species, diseases, etc., can be detected. For such applications, when the unmixing process is applied, the tree species, diseases, etc., are considered as the endmembers of interest. This paper focuses on investigating the effects of band selection on the endmember extraction by exploiting the information of the vegetation absorbance spectral zones. More precisely, it is explored whether endmember extraction can be optimized when specific sets of initial bands related to leaf spectral characteristics are selected. Experiments comprise application of well-known signal subspace estimation and endmember extraction methods on a hyperspectral imagery that presents a forest area. Evaluation of the extracted endmembers showed that more forest species can be extracted as endmembers using selected bands.

  9. Development of the extraction method for the simultaneous determination of butyl-, phenyl- and octyltin compounds in sewage sludge.

    PubMed

    Zuliani, Tea; Lespes, Gaetane; Milacic, Radmila; Scancar, Janez

    2010-03-15

    The toxicity and bioaccumulation of organotin compounds (OTCs) led to the development of sensitive and selective analytical methods for their determination. In the past much attention was assigned to the study of OTCs in biological samples, water and sediments, coming mostly from marine environment. Little information about OTCs pollution of terrestrial ecosystems is available. In order to optimise the extraction method for simultaneous determination of butyl-, phenyl- and octyltin compounds in sewage sludge five different extractants (tetramethylammonium hydroxide, HCl in methanol, glacial acetic acid, mixture of acetic acid and methanol (3:1), and mixture of acetic acid, methanol and water (1:1:1)), the presence or not of a complexing agent (tropolone), and the use of different modes of extraction (mechanical stirring, microwave and ultrasonic assisted extraction) were tested. Extracted OTCs were derivatised with sodium tetraethylborate and determined by gas chromatography coupled with mass spectrometer. Quantitative extraction of butyl-, phenyl- and octyltin compounds was obtained by the use of glacial acetic acid as extractant and mechanical stirring for 16h or sonication for 30 min. The limits of detection and quantification for OTCs investigated in sewage sludge were in the ng S ng(-1) range. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  10. Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.

    PubMed

    Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B

    2017-10-25

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.

  11. An automatic method for retrieving and indexing catalogues of biomedical courses.

    PubMed

    Maojo, Victor; de la Calle, Guillermo; García-Remesal, Miguel; Bankauskaite, Vaida; Crespo, Jose

    2008-11-06

    Although there is wide information about Biomedical Informatics education and courses in different Websites, information is usually not exhaustive and difficult to update. We propose a new methodology based on information retrieval techniques for extracting, indexing and retrieving automatically information about educational offers. A web application has been developed to make available such information in an inventory of courses and educational offers.

  12. A knowledge engineering approach to recognizing and extracting sequences of nucleic acids from scientific literature.

    PubMed

    García-Remesal, Miguel; Maojo, Victor; Crespo, José

    2010-01-01

    In this paper we present a knowledge engineering approach to automatically recognize and extract genetic sequences from scientific articles. To carry out this task, we use a preliminary recognizer based on a finite state machine to extract all candidate DNA/RNA sequences. The latter are then fed into a knowledge-based system that automatically discards false positives and refines noisy and incorrectly merged sequences. We created the knowledge base by manually analyzing different manuscripts containing genetic sequences. Our approach was evaluated using a test set of 211 full-text articles in PDF format containing 3134 genetic sequences. For such set, we achieved 87.76% precision and 97.70% recall respectively. This method can facilitate different research tasks. These include text mining, information extraction, and information retrieval research dealing with large collections of documents containing genetic sequences.

  13. Tool Wear Feature Extraction Based on Hilbert Marginal Spectrum

    NASA Astrophysics Data System (ADS)

    Guan, Shan; Song, Weijie; Pang, Hongyang

    2017-09-01

    In the metal cutting process, the signal contains a wealth of tool wear state information. A tool wear signal’s analysis and feature extraction method based on Hilbert marginal spectrum is proposed. Firstly, the tool wear signal was decomposed by empirical mode decomposition algorithm and the intrinsic mode functions including the main information were screened out by the correlation coefficient and the variance contribution rate. Secondly, Hilbert transform was performed on the main intrinsic mode functions. Hilbert time-frequency spectrum and Hilbert marginal spectrum were obtained by Hilbert transform. Finally, Amplitude domain indexes were extracted on the basis of the Hilbert marginal spectrum and they structured recognition feature vector of tool wear state. The research results show that the extracted features can effectively characterize the different wear state of the tool, which provides a basis for monitoring tool wear condition.

  14. Novel face-detection method under various environments

    NASA Astrophysics Data System (ADS)

    Jing, Min-Quan; Chen, Ling-Hwei

    2009-06-01

    We propose a method to detect a face with different poses under various environments. On the basis of skin color information, skin regions are first extracted from an input image. Next, the shoulder part is cut out by using shape information and the head part is then identified as a face candidate. For a face candidate, a set of geometric features is applied to determine if it is a profile face. If not, then a set of eyelike rectangles extracted from the face candidate and the lighting distribution are used to determine if the face candidate is a nonprofile face. Experimental results show that the proposed method is robust under a wide range of lighting conditions, different poses, and races. The detection rate for the HHI face database is 93.68%. For the Champion face database, the detection rate is 95.15%.

  15. Opinion mining on book review using CNN-L2-SVM algorithm

    NASA Astrophysics Data System (ADS)

    Rozi, M. F.; Mukhlash, I.; Soetrisno; Kimura, M.

    2018-03-01

    Review of a product can represent quality of a product itself. An extraction to that review can be used to know sentiment of that opinion. Process to extract useful information of user review is called Opinion Mining. Review extraction model that is enhancing nowadays is Deep Learning model. This Model has been used by many researchers to obtain excellent performance on Natural Language Processing. In this research, one of deep learning model, Convolutional Neural Network (CNN) is used for feature extraction and L2 Support Vector Machine (SVM) as classifier. These methods are implemented to know the sentiment of book review data. The result of this method shows state-of-the art performance in 83.23% for training phase and 64.6% for testing phase.

  16. Information-Based Analysis of Data Assimilation (Invited)

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.; Gupta, H. V.; Crow, W. T.; Gong, W.

    2013-12-01

    Data assimilation is defined as the Bayesian conditioning of uncertain model simulations on observations for the purpose of reducing uncertainty about model states. Practical data assimilation methods make the application of Bayes' law tractable either by employing assumptions about the prior, posterior and likelihood distributions (e.g., the Kalman family of filters) or by using resampling methods (e.g., bootstrap filter). We propose to quantify the efficiency of these approximations in an OSSE setting using information theory and, in an OSSE or real-world validation setting, to measure the amount - and more importantly, the quality - of information extracted from observations during data assimilation. To analyze DA assumptions, uncertainty is quantified as the Shannon-type entropy of a discretized probability distribution. The maximum amount of information that can be extracted from observations about model states is the mutual information between states and observations, which is equal to the reduction in entropy in our estimate of the state due to Bayesian filtering. The difference between this potential and the actual reduction in entropy due to Kalman (or other type of) filtering measures the inefficiency of the filter assumptions. Residual uncertainty in DA posterior state estimates can be attributed to three sources: (i) non-injectivity of the observation operator, (ii) noise in the observations, and (iii) filter approximations. The contribution of each of these sources is measurable in an OSSE setting. The amount of information extracted from observations by data assimilation (or system identification, including parameter estimation) can also be measured by Shannon's theory. Since practical filters are approximations of Bayes' law, it is important to know whether the information that is extracted form observations by a filter is reliable. We define information as either good or bad, and propose to measure these two types of information using partial Kullback-Leibler divergences. Defined this way, good and bad information sum to total information. This segregation of information into good and bad components requires a validation target distribution; in a DA OSSE setting, this can be the true Bayesian posterior, but in a real-world setting the validation target might be determined by a set of in situ observations.

  17. Fast Reduction Method in Dominance-Based Information Systems

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhou, Qinghua; Wen, Yongchuan

    2018-01-01

    In real world applications, there are often some data with continuous values or preference-ordered values. Rough sets based on dominance relations can effectively deal with these kinds of data. Attribute reduction can be done in the framework of dominance-relation based approach to better extract decision rules. However, the computational cost of the dominance classes greatly affects the efficiency of attribute reduction and rule extraction. This paper presents an efficient method of computing dominance classes, and further compares it with traditional method with increasing attributes and samples. Experiments on UCI data sets show that the proposed algorithm obviously improves the efficiency of the traditional method, especially for large-scale data.

  18. Pavement crack detection combining non-negative feature with fast LoG in complex scene

    NASA Astrophysics Data System (ADS)

    Wang, Wanli; Zhang, Xiuhua; Hong, Hanyu

    2015-12-01

    Pavement crack detection is affected by much interference in the realistic situation, such as the shadow, road sign, oil stain, salt and pepper noise etc. Due to these unfavorable factors, the exist crack detection methods are difficult to distinguish the crack from background correctly. How to extract crack information effectively is the key problem to the road crack detection system. To solve this problem, a novel method for pavement crack detection based on combining non-negative feature with fast LoG is proposed. The two key novelties and benefits of this new approach are that 1) using image pixel gray value compensation to acquisit uniform image, and 2) combining non-negative feature with fast LoG to extract crack information. The image preprocessing results demonstrate that the method is indeed able to homogenize the crack image with more accurately compared to existing methods. A large number of experimental results demonstrate the proposed approach can detect the crack regions more correctly compared with traditional methods.

  19. Roads Data Conflation Using Update High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Abdollahi, A.; Riyahi Bakhtiari, H. R.

    2017-11-01

    Urbanization, industrialization and modernization are rapidly growing in developing countries. New industrial cities, with all the problems brought on by rapid population growth, need infrastructure to support the growth. This has led to the expansion and development of the road network. A great deal of road network data has made by using traditional methods in the past years. Over time, a large amount of descriptive information has assigned to these map data, but their geometric accuracy and precision is not appropriate to today's need. In this regard, the improvement of the geometric accuracy of road network data by preserving the descriptive data attributed to them and updating of the existing geo databases is necessary. Due to the size and extent of the country, updating the road network maps using traditional methods is time consuming and costly. Conversely, using remote sensing technology and geographic information systems can reduce costs, save time and increase accuracy and speed. With increasing the availability of high resolution satellite imagery and geospatial datasets there is an urgent need to combine geographic information from overlapping sources to retain accurate data, minimize redundancy, and reconcile data conflicts. In this research, an innovative method for a vector-to-imagery conflation by integrating several image-based and vector-based algorithms presented. The SVM method for image classification and Level Set method used to extract the road the different types of road intersections extracted from imagery using morphological operators. For matching the extracted points and to find the corresponding points, matching function which uses the nearest neighborhood method was applied. Finally, after identifying the matching points rubber-sheeting method used to align two datasets. Two residual and RMSE criteria used to evaluate accuracy. The results demonstrated excellent performance. The average root-mean-square error decreased from 11.8 to 4.1 m.

  20. Revealing the properties of oils from their dissolved hydrocarbon compounds in water with an integrated sensor array system.

    PubMed

    Qi, Xiubin; Crooke, Emma; Ross, Andrew; Bastow, Trevor P; Stalvies, Charlotte

    2011-09-21

    This paper presents a system and method developed to identify a source oil's characteristic properties by testing the oil's dissolved components in water. Through close examination of the oil dissolution process in water, we hypothesise that when oil is in contact with water, the resulting oil-water extract, a complex hydrocarbon mixture, carries the signature property information of the parent oil. If the dominating differences in compositions between such extracts of different oils can be identified, this information could guide the selection of various sensors, capable of capturing such chemical variations. When used as an array, such a sensor system can be used to determine parent oil information from the oil-water extract. To test this hypothesis, 22 oils' water extracts were prepared and selected dominant hydrocarbons analyzed with Gas Chromatography-Mass Spectrometry (GC-MS); the subsequent Principal Component Analysis (PCA) indicates that the major difference between the extract solutions is the relative concentration between the volatile mono-aromatics and fluorescent polyaromatics. An integrated sensor array system that is composed of 3 volatile hydrocarbon sensors and 2 polyaromatic hydrocarbon sensors was built accordingly to capture the major and subtle differences of these extracts. It was tested by exposure to a total of 110 water extract solutions diluted from the 22 extracts. The sensor response data collected from the testing were processed with two multivariate analysis tools to reveal information retained in the response patterns of the arrayed sensors: by conducting PCA, we were able to demonstrate the ability to qualitatively identify and distinguish different oil samples from their sensor array response patterns. When a supervised PCA, Linear Discriminate Analysis (LDA), was applied, even quantitative classification can be achieved: the multivariate model generated from the LDA achieved 89.7% of successful classification of the type of the oil samples. By grouping the samples based on the level of viscosity and density we were able to reveal the correlation between the oil extracts' sensor array responses and their original oils' feature properties. The equipment and method developed in this study have promising potential to be readily applied in field studies and marine surveys for oil exploration or oil spill monitoring.

  1. Evaluation of the application of ERTS-1 data to the regional land use planning process. [Northeast Wisconsin

    NASA Technical Reports Server (NTRS)

    Clapp, J. L. (Principal Investigator); Green, T., III; Hanson, G. F.; Kiefer, R. W.; Niemann, B. J., Jr.

    1974-01-01

    The author has identified the following significant results. Employing simple and economical extraction methods, ERTS can provide valuable data to the planners at the state or regional level with a frequency never before possible. Interactive computer methods of working directly with ERTS digital information show much promise for providing land use information at a more specific level, since the data format production rate of ERTS justifies improved methods of analysis.

  2. Survey of simulation methods for modeling pulsed sieve-plate extraction columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhart, L.

    1979-03-01

    The report first considers briefly the use of liquid-liquid extraction in nuclear fuel reprocessing and then describes the operation of the pulse column. Currently available simulation models of the column are reviewed, and followed by an analysis of the information presently available from which the necessary parameters can be obtained for use in a model of the column. Finally, overall conclusions are given regarding the information needed to develop an accurate model of the column for materials accountability in fuel reprocessing plants. 156 references.

  3. Multivariate analysis of the volatile components in tobacco based on infrared-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Pan, Yuanjiang; Zhou, Guojun; Chu, Guohai; Jiang, Jian; Yuan, Kailong; Xia, Qian; Cheng, Changhe

    2016-11-01

    A novel infrared-assisted extraction coupled to headspace solid-phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane-divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water-bath heating and nonheating extraction methods, the extraction efficiency of infrared-assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above-mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost-effective, and highly efficient method, the infrared-assisted extraction coupled to headspace solid-phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A new method for recognizing hand configurations of Brazilian gesture language.

    PubMed

    Costa Filho, C F F; Dos Santos, B L; de Souza, R S; Dos Santos, J R; Costa, M G F

    2016-08-01

    This paper describes a new method for recognizing hand configurations of the Brazilian Gesture Language - LIBRAS - using depth maps obtained with a Kinect® camera. The proposed method comprised three phases: hand segmentation, feature extraction, and classification. The segmentation phase is independent from the background and depends only on pixel depth information. Using geometric operations and numerical normalization, the feature extraction process was done independent from rotation and translation. The features are extracted employing two techniques: (2D)2LDA and (2D)2PCA. The classification is made with a novelty classifier. A robust database was constructed for classifier evaluation, with 12,200 images of LIBRAS and 200 gestures of each hand configuration. The best accuracy obtained was 95.41%, which was greater than previous values obtained in the literature.

  5. Detection of goal events in soccer videos

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas

    2005-01-01

    In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.

  6. Quality evaluation of Hypericum ascyron extract by two-dimensional high-performance liquid chromatography coupled with the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method.

    PubMed

    Li, Xiu-Mei; Luo, Xue-Gang; Zhang, Chao-Zheng; Wang, Nan; Zhang, Tong-Cun

    2015-02-01

    In this paper, a heart-cutting two-dimensional high-performance liquid chromatography coupled with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was established for controlling the quality of different batches of Hypericum ascyron extract for the first time. In comparison with the common one-dimensional fingerprint, the second-dimensional fingerprint compiled additional spectral data and was hence more informative. The quality of H. ascyron extract was further evaluated by similarity measures and the same results were achieved, the correlation coefficients of the similarity of ten batches of H. ascyron extract were >0.99. Furthermore, we also evaluated the quality of the ten batches of H. ascyron extract by antibacterial activity. The result demonstrated that the quality of the ten batches of H. ascyron extract was not significantly different by MTT. Finally, we demonstrated that the second-dimensional fingerprint coupled with the MTT method was a more powerful tool to characterize the quality of samples of batch to batch. Therefore the proposed method could be used to comprehensively conduct the quality control of traditional Chinese medicines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Extraction of liver volumetry based on blood vessel from the portal phase CT dataset

    NASA Astrophysics Data System (ADS)

    Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Utsunomiya, Tohru; Shimada, Mitsuo

    2012-02-01

    At liver surgery planning stage, the liver volumetry would be essential for surgeons. Main problem at liver extraction is the wide variability of livers in shapes and sizes. Since, hepatic blood vessels structure varies from a person to another and covers liver region, the present method uses that information for extraction of liver in two stages. The first stage is to extract abdominal blood vessels in the form of hepatic and nonhepatic blood vessels. At the second stage, extracted vessels are used to control extraction of liver region automatically. Contrast enhanced CT datasets at only the portal phase of 50 cases is used. Those data include 30 abnormal livers. A reference for all cases is done through a comparison of two experts labeling results and correction of their inter-reader variability. Results of the proposed method agree with the reference at an average rate of 97.8%. Through application of different metrics mentioned at MICCAI workshop for liver segmentation, it is found that: volume overlap error is 4.4%, volume difference is 0.3%, average symmetric distance is 0.7 mm, Root mean square symmetric distance is 0.8 mm, and maximum distance is 15.8 mm. These results represent the average of overall data and show an improved accuracy compared to current liver segmentation methods. It seems to be a promising method for extraction of liver volumetry of various shapes and sizes.

  8. Extended morphological processing: a practical method for automatic spot detection of biological markers from microscopic images.

    PubMed

    Kimori, Yoshitaka; Baba, Norio; Morone, Nobuhiro

    2010-07-08

    A reliable extraction technique for resolving multiple spots in light or electron microscopic images is essential in investigations of the spatial distribution and dynamics of specific proteins inside cells and tissues. Currently, automatic spot extraction and characterization in complex microscopic images poses many challenges to conventional image processing methods. A new method to extract closely located, small target spots from biological images is proposed. This method starts with a simple but practical operation based on the extended morphological top-hat transformation to subtract an uneven background. The core of our novel approach is the following: first, the original image is rotated in an arbitrary direction and each rotated image is opened with a single straight line-segment structuring element. Second, the opened images are unified and then subtracted from the original image. To evaluate these procedures, model images of simulated spots with closely located targets were created and the efficacy of our method was compared to that of conventional morphological filtering methods. The results showed the better performance of our method. The spots of real microscope images can be quantified to confirm that the method is applicable in a given practice. Our method achieved effective spot extraction under various image conditions, including aggregated target spots, poor signal-to-noise ratio, and large variations in the background intensity. Furthermore, it has no restrictions with respect to the shape of the extracted spots. The features of our method allow its broad application in biological and biomedical image information analysis.

  9. Wire bonding quality monitoring via refining process of electrical signal from ultrasonic generator

    NASA Astrophysics Data System (ADS)

    Feng, Wuwei; Meng, Qingfeng; Xie, Youbo; Fan, Hong

    2011-04-01

    In this paper, a technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis (PCA) method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network (ANN) is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.

  10. Improving the extraction of crisis information in the context of flood, fire, and landslide rapid mapping using SAR and optical remote sensing data

    NASA Astrophysics Data System (ADS)

    Martinis, Sandro; Clandillon, Stephen; Twele, André; Huber, Claire; Plank, Simon; Maxant, Jérôme; Cao, Wenxi; Caspard, Mathilde; May, Stéphane

    2016-04-01

    Optical and radar satellite remote sensing have proven to provide essential crisis information in case of natural disasters, humanitarian relief activities and civil security issues in a growing number of cases through mechanisms such as the Copernicus Emergency Management Service (EMS) of the European Commission or the International Charter 'Space and Major Disasters'. The aforementioned programs and initiatives make use of satellite-based rapid mapping services aimed at delivering reliable and accurate crisis information after natural hazards. Although these services are increasingly operational, they need to be continuously updated and improved through research and development (R&D) activities. The principal objective of ASAPTERRA (Advancing SAR and Optical Methods for Rapid Mapping), the ESA-funded R&D project being described here, is to improve, automate and, hence, speed-up geo-information extraction procedures in the context of natural hazards response. This is performed through the development, implementation, testing and validation of novel image processing methods using optical and Synthetic Aperture Radar (SAR) data. The methods are mainly developed based on data of the German radar satellites TerraSAR-X and TanDEM-X, the French satellite missions Pléiades-1A/1B as well as the ESA missions Sentinel-1/2 with the aim to better characterize the potential and limitations of these sensors and their synergy. The resulting algorithms and techniques are evaluated in real case applications during rapid mapping activities. The project is focussed on three types of natural hazards: floods, landslides and fires. Within this presentation an overview of the main methodological developments in each topic is given and demonstrated in selected test areas. The following developments are presented in the context of flood mapping: a fully automated Sentinel-1 based processing chain for detecting open flood surfaces, a method for the improved detection of flooded vegetation in Sentinel-1data using Entropy/Alpha decomposition, unsupervised Wishart Classification, and object-based post-classification as well as semi-automatic approaches for extracting inundated areas and flood traces in rural and urban areas from VHR and HR optical imagery using machine learning techniques. Methodological developments related to fires are the implementation of fast and robust methods for mapping burnt scars using change detection procedures using SAR (Sentinel-1, TerraSAR-X) and HR optical (e.g. SPOT, Sentinel-2) data as well as the extraction of 3D surface and volume change information from Pléiades stereo-pairs. In the context of landslides, fast and transferable change detection procedures based on SAR (TerraSAR-X) and optical (SPOT) data as well methods for extracting the extent of landslides only based on polarimetric VHR SAR (TerraSAR-X) data are presented.

  11. Pediatric Brain Extraction Using Learning-based Meta-algorithm

    PubMed Central

    Shi, Feng; Wang, Li; Dai, Yakang; Gilmore, John H.; Lin, Weili; Shen, Dinggang

    2012-01-01

    Magnetic resonance imaging of pediatric brain provides valuable information for early brain development studies. Automated brain extraction is challenging due to the small brain size and dynamic change of tissue contrast in the developing brains. In this paper, we propose a novel Learning Algorithm for Brain Extraction and Labeling (LABEL) specially for the pediatric MR brain images. The idea is to perform multiple complementary brain extractions on a given testing image by using a meta-algorithm, including BET and BSE, where the parameters of each run of the meta-algorithm are effectively learned from the training data. Also, the representative subjects are selected as exemplars and used to guide brain extraction of new subjects in different age groups. We further develop a level-set based fusion method to combine multiple brain extractions together with a closed smooth surface for obtaining the final extraction. The proposed method has been extensively evaluated in subjects of three representative age groups, such as neonate (less than 2 months), infant (1–2 years), and child (5–18 years). Experimental results show that, with 45 subjects for training (15 neonates, 15 infant, and 15 children), the proposed method can produce more accurate brain extraction results on 246 testing subjects (75 neonates, 126 infants, and 45 children), i.e., at average Jaccard Index of 0.953, compared to those by BET (0.918), BSE (0.902), ROBEX (0.901), GCUT (0.856), and other fusion methods such as Majority Voting (0.919) and STAPLE (0.941). Along with the largely-improved computational efficiency, the proposed method demonstrates its ability of automated brain extraction for pediatric MR images in a large age range. PMID:22634859

  12. Applying different independent component analysis algorithms and support vector regression for IT chain store sales forecasting.

    PubMed

    Dai, Wensheng; Wu, Jui-Yu; Lu, Chi-Jie

    2014-01-01

    Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting.

  13. Applying Different Independent Component Analysis Algorithms and Support Vector Regression for IT Chain Store Sales Forecasting

    PubMed Central

    Dai, Wensheng

    2014-01-01

    Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting. PMID:25165740

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Liping; Zhu, Fulong, E-mail: zhufulong@hust.edu.cn; Duan, Ke

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of opticalmore » devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.« less

  15. Ultrasonic power measurement system based on acousto-optic interaction.

    PubMed

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  16. Ultrasonic power measurement system based on acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  17. Automated Methods to Extract Patient New Information from Clinical Notes in Electronic Health Record Systems

    ERIC Educational Resources Information Center

    Zhang, Rui

    2013-01-01

    The widespread adoption of Electronic Health Record (EHR) has resulted in rapid text proliferation within clinical care. Clinicians' use of copying and pasting functions in EHR systems further compounds this by creating a large amount of redundant clinical information in clinical documents. A mixture of redundant information (especially outdated…

  18. Meta-Generalis: A Novel Method for Structuring Information from Radiology Reports

    PubMed Central

    Barbosa, Flavio; Traina, Agma Jucci

    2016-01-01

    Summary Background A structured report for imaging exams aims at increasing the precision in information retrieval and communication between physicians. However, it is more concise than free text and may limit specialists’ descriptions of important findings not covered by pre-defined structures. A computational ontological structure derived from free texts designed by specialists may be a solution for this problem. Therefore, the goal of our study was to develop a methodology for structuring information in radiology reports covering specifications required for the Brazilian Portuguese language, including the terminology to be used. Methods We gathered 1,701 radiological reports of magnetic resonance imaging (MRI) studies of the lumbosacral spine from three different institutions. Techniques of text mining and ontological conceptualization of lexical units extracted were used to structure information. Ten radiologists, specialists in lumbosacral MRI, evaluated the textual superstructure and terminology extracted using an electronic questionnaire. Results The established methodology consists of six steps: 1) collection of radiology reports of a specific MRI examination; 2) textual decomposition; 3) normalization of lexical units; 4) identification of textual superstructures; 5) conceptualization of candidate-terms; and 6) evaluation of superstructures and extracted terminology by experts using an electronic questionnaire. Three different textual superstructures were identified, with terminological variations in the names of their textual categories. The number of candidate-terms conceptualized was 4,183, yielding 727 concepts. There were a total of 13,963 relationships between candidate-terms and concepts and 789 relationships among concepts. Conclusions The proposed methodology allowed structuring information in a more intuitive and practical way. Indications of three textual superstructures, extraction of lexicon units and the normalization and ontologically conceptualization were achieved while maintaining references to their respective categories and free text radiology reports. PMID:27580980

  19. Extraction of multi-scale landslide morphological features based on local Gi* using airborne LiDAR-derived DEM

    NASA Astrophysics Data System (ADS)

    Shi, Wenzhong; Deng, Susu; Xu, Wenbing

    2018-02-01

    For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (< 5 years) landslides and approximately 35% of historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell clusters extracted from curvature images should be filtered using a filtering strategy based on supplementary information provided by expert knowledge or other data sources.

  20. Establishment of Application Guidance for OTC non-Kampo Crude Drug Extract Products in Japan

    PubMed Central

    Somekawa, Layla; Maegawa, Hikoichiro; Tsukada, Shinsuke; Nakamura, Takatoshi

    2017-01-01

    Currently, there are no standardized regulatory systems for herbal medicinal products worldwide. Communication and sharing of knowledge between different regulatory systems will lead to mutual understanding and might help identify topics which deserve further discussion in the establishment of common standards. Regulatory information on traditional herbal medicinal products in Japan is updated by the establishment of Application Guidance for over-the-counter non-Kampo Crude Drug Extract Products. We would like to report on updated regulatory information on the new Application Guidance. Methods for comparison of Crude Drug Extract formulation and standard decoction and criteria for application and the key points to consider for each criterion are indicated in the guidance. Establishment of the guidance contributes to improvements in public health. We hope that the regulatory information about traditional herbal medicinal products in Japan will be of contribution to tackling the challenging task of regulating traditional herbal products worldwide. PMID:28894633

  1. Extraction and fusion of spectral parameters for face recognition

    NASA Astrophysics Data System (ADS)

    Boisier, B.; Billiot, B.; Abdessalem, Z.; Gouton, P.; Hardeberg, J. Y.

    2011-03-01

    Many methods have been developed in image processing for face recognition, especially in recent years with the increase of biometric technologies. However, most of these techniques are used on grayscale images acquired in the visible range of the electromagnetic spectrum. The aims of our study are to improve existing tools and to develop new methods for face recognition. The techniques used take advantage of the different spectral ranges, the visible, optical infrared and thermal infrared, by either combining them or analyzing them separately in order to extract the most appropriate information for face recognition. We also verify the consistency of several keypoints extraction techniques in the Near Infrared (NIR) and in the Visible Spectrum.

  2. Extracting leaf area index using viewing geometry effects-A new perspective on high-resolution unmanned aerial system photography

    NASA Astrophysics Data System (ADS)

    Roth, Lukas; Aasen, Helge; Walter, Achim; Liebisch, Frank

    2018-07-01

    Extraction of leaf area index (LAI) is an important prerequisite in numerous studies related to plant ecology, physiology and breeding. LAI is indicative for the performance of a plant canopy and of its potential for growth and yield. In this study, a novel method to estimate LAI based on RGB images taken by an unmanned aerial system (UAS) is introduced. Soybean was taken as the model crop of investigation. The method integrates viewing geometry information in an approach related to gap fraction theory. A 3-D simulation of virtual canopies helped developing and verifying the underlying model. In addition, the method includes techniques to extract plot based data from individual oblique images using image projection, as well as image segmentation applying an active learning approach. Data from a soybean field experiment were used to validate the method. The thereby measured LAI prediction accuracy was comparable with the one of a gap fraction-based handheld device (R2 of 0.92 , RMSE of 0.42 m 2m-2) and correlated well with destructive LAI measurements (R2 of 0.89 , RMSE of 0.41 m2 m-2). These results indicate that, if respecting the range (LAI ≤ 3) the method was tested for, extracting LAI from UAS derived RGB images using viewing geometry information represents a valid alternative to destructive and optical handheld device LAI measurements in soybean. Thereby, we open the door for automated, high-throughput assessment of LAI in plant and crop science.

  3. A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets.

    PubMed

    Li, Der-Chiang; Liu, Chiao-Wen; Hu, Susan C

    2011-05-01

    Medical data sets are usually small and have very high dimensionality. Too many attributes will make the analysis less efficient and will not necessarily increase accuracy, while too few data will decrease the modeling stability. Consequently, the main objective of this study is to extract the optimal subset of features to increase analytical performance when the data set is small. This paper proposes a fuzzy-based non-linear transformation method to extend classification related information from the original data attribute values for a small data set. Based on the new transformed data set, this study applies principal component analysis (PCA) to extract the optimal subset of features. Finally, we use the transformed data with these optimal features as the input data for a learning tool, a support vector machine (SVM). Six medical data sets: Pima Indians' diabetes, Wisconsin diagnostic breast cancer, Parkinson disease, echocardiogram, BUPA liver disorders dataset, and bladder cancer cases in Taiwan, are employed to illustrate the approach presented in this paper. This research uses the t-test to evaluate the classification accuracy for a single data set; and uses the Friedman test to show the proposed method is better than other methods over the multiple data sets. The experiment results indicate that the proposed method has better classification performance than either PCA or kernel principal component analysis (KPCA) when the data set is small, and suggest creating new purpose-related information to improve the analysis performance. This paper has shown that feature extraction is important as a function of feature selection for efficient data analysis. When the data set is small, using the fuzzy-based transformation method presented in this work to increase the information available produces better results than the PCA and KPCA approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Lung lobe segmentation based on statistical atlas and graph cuts

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Kitasaka, Takayuki; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku

    2012-03-01

    This paper presents a novel method that can extract lung lobes by utilizing probability atlas and multilabel graph cuts. Information about pulmonary structures plays very important role for decision of the treatment strategy and surgical planning. The human lungs are divided into five anatomical regions, the lung lobes. Precise segmentation and recognition of lung lobes are indispensable tasks in computer aided diagnosis systems and computer aided surgery systems. A lot of methods for lung lobe segmentation are proposed. However, these methods only target the normal cases. Therefore, these methods cannot extract the lung lobes in abnormal cases, such as COPD cases. To extract lung lobes in abnormal cases, this paper propose a lung lobe segmentation method based on probability atlas of lobe location and multilabel graph cuts. The process consists of three components; normalization based on the patient's physique, probability atlas generation, and segmentation based on graph cuts. We apply this method to six cases of chest CT images including COPD cases. Jaccard index was 79.1%.

  5. Error-based Extraction of States and Energy Landscapes from Experimental Single-Molecule Time-Series

    NASA Astrophysics Data System (ADS)

    Taylor, J. Nicholas; Li, Chun-Biu; Cooper, David R.; Landes, Christy F.; Komatsuzaki, Tamiki

    2015-03-01

    Characterization of states, the essential components of the underlying energy landscapes, is one of the most intriguing subjects in single-molecule (SM) experiments due to the existence of noise inherent to the measurements. Here we present a method to extract the underlying state sequences from experimental SM time-series. Taking into account empirical error and the finite sampling of the time-series, the method extracts a steady-state network which provides an approximation of the underlying effective free energy landscape. The core of the method is the application of rate-distortion theory from information theory, allowing the individual data points to be assigned to multiple states simultaneously. We demonstrate the method's proficiency in its application to simulated trajectories as well as to experimental SM fluorescence resonance energy transfer (FRET) trajectories obtained from isolated agonist binding domains of the AMPA receptor, an ionotropic glutamate receptor that is prevalent in the central nervous system.

  6. A Semantic Graph Query Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, I L

    2006-10-16

    Semantic graphs can be used to organize large amounts of information from a number of sources into one unified structure. A semantic query language provides a foundation for extracting information from the semantic graph. The graph query language described here provides a simple, powerful method for querying semantic graphs.

  7. Pathology report data extraction from relational database using R, with extraction from reports on melanoma of skin as an example.

    PubMed

    Ye, Jay J

    2016-01-01

    Different methods have been described for data extraction from pathology reports with varying degrees of success. Here a technique for directly extracting data from relational database is described. Our department uses synoptic reports modified from College of American Pathologists (CAP) Cancer Protocol Templates to report most of our cancer diagnoses. Choosing the melanoma of skin synoptic report as an example, R scripting language extended with RODBC package was used to query the pathology information system database. Reports containing melanoma of skin synoptic report in the past 4 and a half years were retrieved and individual data elements were extracted. Using the retrieved list of the cases, the database was queried a second time to retrieve/extract the lymph node staging information in the subsequent reports from the same patients. 426 synoptic reports corresponding to unique lesions of melanoma of skin were retrieved, and data elements of interest were extracted into an R data frame. The distribution of Breslow depth of melanomas grouped by year is used as an example of intra-report data extraction and analysis. When the new pN staging information was present in the subsequent reports, 82% (77/94) was precisely retrieved (pN0, pN1, pN2 and pN3). Additional 15% (14/94) was retrieved with certain ambiguity (positive or knowing there was an update). The specificity was 100% for both. The relationship between Breslow depth and lymph node status was graphed as an example of lesion-specific multi-report data extraction and analysis. R extended with RODBC package is a simple and versatile approach well-suited for the above tasks. The success or failure of the retrieval and extraction depended largely on whether the reports were formatted and whether the contents of the elements were consistently phrased. This approach can be easily modified and adopted for other pathology information systems that use relational database for data management.

  8. Methodological considerations regarding the use of inorganic 197Hg(II) radiotracer to assess mercury methylation potential rates in lake sediment

    USGS Publications Warehouse

    Perez, Catan S.; Guevara, S.R.; Marvin-DiPasquale, M.; Magnavacca, C.; Cohen, I.M.; Arribere, M.

    2007-01-01

    Methodological considerations on the determination of benthic methyl-mercury (CH3Hg) production potentials were investigated on lake sediment, using 197Hg radiotracer. Three methods to arrest bacterial activity were compared: flash freezing, thermal sterilization, and ??-irradiation. Flash freezing showed similar CH3Hg recoveries as thermal sterilization, which was both 50% higher than the recoveries obtained with ??-ray irradiation. No additional radiolabel was recovered in kill-control samples after an additional 24 or 65 h of incubation, suggesting that all treatments were effective at arresting Hg(II)-methylating bacterial activity, and that the initial recoveries are likely due to non-methylated 197Hg(II) carry-over in the organic extraction and/or [197Hg]CH3Hg produced via abiotic reactions. Two CH3Hg extraction methods from sediment were compared: (a) direct extraction into toluene after sediment leaching with CuSO4 and HCl and (b) the same extraction with an additional back-extraction step to thiosulphate. Similar information was obtained with both methods, but the low efficiency observed and the extra work associated with the back-extraction procedure represent significant disadvantages, even tough the direct extraction involves higher Hg(II) carry over. ?? 2007 Elsevier Ltd. All rights reserved.

  9. Region of interest extraction based on multiscale visual saliency analysis for remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan

    2015-01-01

    Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.

  10. Evaluation of Keyphrase Extraction Algorithm and Tiling Process for a Document/Resource Recommender within E-Learning Environments

    ERIC Educational Resources Information Center

    Mangina, Eleni; Kilbride, John

    2008-01-01

    The research presented in this paper is an examination of the applicability of IUI techniques in an online e-learning environment. In particular we make use of user modeling techniques, information retrieval and extraction mechanisms and collaborative filtering methods. The domains of e-learning, web-based training and instruction and intelligent…

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Richen; Guo, Hanqi; Yuan, Xiaoru

    Most of the existing approaches to visualize vector field ensembles are to reveal the uncertainty of individual variables, for example, statistics, variability, etc. However, a user-defined derived feature like vortex or air mass is also quite significant, since they make more sense to domain scientists. In this paper, we present a new framework to extract user-defined derived features from different simulation runs. Specially, we use a detail-to-overview searching scheme to help extract vortex with a user-defined shape. We further compute the geometry information including the size, the geo-spatial location of the extracted vortexes. We also design some linked views tomore » compare them between different runs. At last, the temporal information such as the occurrence time of the feature is further estimated and compared. Results show that our method is capable of extracting the features across different runs and comparing them spatially and temporally.« less

  12. Generalized Feature Extraction for Wrist Pulse Analysis: From 1-D Time Series to 2-D Matrix.

    PubMed

    Dimin Wang; Zhang, David; Guangming Lu

    2017-07-01

    Traditional Chinese pulse diagnosis, known as an empirical science, depends on the subjective experience. Inconsistent diagnostic results may be obtained among different practitioners. A scientific way of studying the pulse should be to analyze the objectified wrist pulse waveforms. In recent years, many pulse acquisition platforms have been developed with the advances in sensor and computer technology. And the pulse diagnosis using pattern recognition theories is also increasingly attracting attentions. Though many literatures on pulse feature extraction have been published, they just handle the pulse signals as simple 1-D time series and ignore the information within the class. This paper presents a generalized method of pulse feature extraction, extending the feature dimension from 1-D time series to 2-D matrix. The conventional wrist pulse features correspond to a particular case of the generalized models. The proposed method is validated through pattern classification on actual pulse records. Both quantitative and qualitative results relative to the 1-D pulse features are given through diabetes diagnosis. The experimental results show that the generalized 2-D matrix feature is effective in extracting both the periodic and nonperiodic information. And it is practical for wrist pulse analysis.

  13. Ancient DNA in historical parchments - identifying a procedure for extraction and amplification of genetic material.

    PubMed

    Lech, T

    2016-05-06

    Historical parchments in the form of documents, manuscripts, books, or letters, make up a large portion of cultural heritage collections. Their priceless historical value is associated with not only their content, but also the information hidden in the DNA deposited on them. Analyses of ancient DNA (aDNA) retrieved from parchments can be used in various investigations, including, but not limited to, studying their authentication, tracing the development of the culture, diplomacy, and technology, as well as obtaining information on the usage and domestication of animals. This article proposes and verifies a procedure for aDNA recovery from historical parchments and its appropriate preparation for further analyses. This study involved experimental selection of an aDNA extraction method with the highest efficiency and quality of extracted genetic material, from among the multi-stage phenol-chloroform extraction methods, and the modern, column-based techniques that use selective DNA-binding membranes. Moreover, current techniques to amplify entire genetic material were questioned, and the possibility of using mitochondrial DNA for species identification was analyzed. The usefulness of the proposed procedure was successfully confirmed in identification tests of historical parchments dating back to the 13-16th century AD.

  14. Automatic segmentation of the liver using multi-planar anatomy and deformable surface model in abdominal contrast-enhanced CT images

    NASA Astrophysics Data System (ADS)

    Jang, Yujin; Hong, Helen; Chung, Jin Wook; Yoon, Young Ho

    2012-02-01

    We propose an effective technique for the extraction of liver boundary based on multi-planar anatomy and deformable surface model in abdominal contrast-enhanced CT images. Our method is composed of four main steps. First, for extracting an optimal volume circumscribing a liver, lower and side boundaries are defined by positional information of pelvis and rib. An upper boundary is defined by separating the lungs and heart from CT images. Second, for extracting an initial liver volume, optimal liver volume is smoothed by anisotropic diffusion filtering and is segmented using adaptively selected threshold value. Third, for removing neighbor organs from initial liver volume, morphological opening and connected component labeling are applied to multiple planes. Finally, for refining the liver boundaries, deformable surface model is applied to a posterior liver surface and missing left robe in previous step. Then, probability summation map is generated by calculating regional information of the segmented liver in coronal plane, which is used for restoring the inaccurate liver boundaries. Experimental results show that our segmentation method can accurately extract liver boundaries without leakage to neighbor organs in spite of various liver shape and ambiguous boundary.

  15. Mapping detailed 3D information onto high resolution SAR signatures

    NASA Astrophysics Data System (ADS)

    Anglberger, H.; Speck, R.

    2017-05-01

    Due to challenges in the visual interpretation of radar signatures or in the subsequent information extraction, a fusion with other data sources can be beneficial. The most accurate basis for a fusion of any kind of remote sensing data is the mapping of the acquired 2D image space onto the true 3D geometry of the scenery. In the case of radar images this is a challenging task because the coordinate system is based on the measured range which causes ambiguous regions due to layover effects. This paper describes a method that accurately maps the detailed 3D information of a scene to the slantrange-based coordinate system of imaging radars. Due to this mapping all the contributing geometrical parts of one resolution cell can be determined in 3D space. The proposed method is highly efficient, because computationally expensive operations can be directly performed on graphics card hardware. The described approach builds a perfect basis for sophisticated methods to extract data from multiple complimentary sensors like from radar and optical images, especially because true 3D information from whole cities will be available in the near future. The performance of the developed methods will be demonstrated with high resolution radar data acquired by the space-borne SAR-sensor TerraSAR-X.

  16. Investigating the feasibility of using partial least squares as a method of extracting salient information for the evaluation of digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Zhang, George Z.; Myers, Kyle J.; Park, Subok

    2013-03-01

    Digital breast tomosynthesis (DBT) has shown promise for improving the detection of breast cancer, but it has not yet been fully optimized due to a large space of system parameters to explore. A task-based statistical approach1 is a rigorous method for evaluating and optimizing this promising imaging technique with the use of optimal observers such as the Hotelling observer (HO). However, the high data dimensionality found in DBT has been the bottleneck for the use of a task-based approach in DBT evaluation. To reduce data dimensionality while extracting salient information for performing a given task, efficient channels have to be used for the HO. In the past few years, 2D Laguerre-Gauss (LG) channels, which are a complete basis for stationary backgrounds and rotationally symmetric signals, have been utilized for DBT evaluation2, 3 . But since background and signal statistics from DBT data are neither stationary nor rotationally symmetric, LG channels may not be efficient in providing reliable performance trends as a function of system parameters. Recently, partial least squares (PLS) has been shown to generate efficient channels for the Hotelling observer in detection tasks involving random backgrounds and signals.4 In this study, we investigate the use of PLS as a method for extracting salient information from DBT in order to better evaluate such systems.

  17. DNA extraction for streamlined metagenomics of diverse environmental samples.

    PubMed

    Marotz, Clarisse; Amir, Amnon; Humphrey, Greg; Gaffney, James; Gogul, Grant; Knight, Rob

    2017-06-01

    A major bottleneck for metagenomic sequencing is rapid and efficient DNA extraction. Here, we compare the extraction efficiencies of three magnetic bead-based platforms (KingFisher, epMotion, and Tecan) to a standardized column-based extraction platform across a variety of sample types, including feces, oral, skin, soil, and water. Replicate sample plates were extracted and prepared for 16S rRNA gene amplicon sequencing in parallel to assess extraction bias and DNA quality. The data demonstrate that any effect of extraction method on sequencing results was small compared with the variability across samples; however, the KingFisher platform produced the largest number of high-quality reads in the shortest amount of time. Based on these results, we have identified an extraction pipeline that dramatically reduces sample processing time without sacrificing bacterial taxonomic or abundance information.

  18. Evaluation of Antioxidant Properties, Phenolic Compounds, Anthelmintic, and Cytotoxic Activities of Various Extracts Isolated from Nepeta cadmea: An Endemic Plant for Turkey.

    PubMed

    Kaska, Arzu; Deniz, Nahide; Çiçek, Mehmet; Mammadov, Ramazan

    2018-05-10

    Nepeta cadmea Boiss. is a species endemic to Turkey that belongs to the Nepeta genus. Several species of this genus are used in folk medicine. This study was designed to investigate the phenolic compounds, antioxidant, anthelmintic, and cytotoxic activities of various extracts (ethanol, methanol, acetone, and water) of N. cadmea. The antioxidant activities of these extracts were analyzed using scavenging methods (DPPH, ABTS, and H 2 O 2 scavenging activity), the β-carotene/linoleic acid test system, the phosphomolybdenum method, and metal chelating activity. Among the 4 different extracts of N. cadmea that were evaluated, the water extract showed the highest amount of radical scavenging (DPPH, 25.54 μg/mL and ABTS, 14.51 μg/mL) and antioxidant activities (β-carotene, 86.91%). In the metal chelating and H 2 O 2 scavenging activities, the acetone extract was statistically different from the other extracts. For the phosphomolybdenum method, the antioxidant capacity of the extracts was in the range of 8.15 to 80.40 μg/mg. The phenolic content of the ethanol extract was examined using HPLC and determined some phenolics: epicatechin, chlorogenic, and caffeic acids. With regard to the anthelmintic properties, dose-dependent activity was observed in each of the extracts of N. cadmea. All the extracts exhibited high cytotoxic activities. The results will provide additional information for further studies on the biological activities of N. cadmea, while also helping us to understand the importance of this species. Furthermore, based on the results obtained, N. cadmea may be considered as a potentially useful supplement for the human diet, as well as a natural antioxidant for medicinal applications. The plants of the Nepeta genus have been extensively used as traditional herbal medicines. Nepeta cadmea Boiss., one of the species belonging to the Nepeta genus, is a species endemic to Turkey. In our study, we demonstrated the antioxidant capacities, total phenolic, flavonoid, tannin content, anthelmintic, and cytotoxic activities of various extracts of Nepeta cadmea. The present study could well supply valuable data for future investigations and further information on the potential use of this endemic plant for humans, in both dietary and pharmacological applications. © 2018 Institute of Food Technologists®.

  19. A pilot study of a heuristic algorithm for novel template identification from VA electronic medical record text.

    PubMed

    Redd, Andrew M; Gundlapalli, Adi V; Divita, Guy; Carter, Marjorie E; Tran, Le-Thuy; Samore, Matthew H

    2017-07-01

    Templates in text notes pose challenges for automated information extraction algorithms. We propose a method that identifies novel templates in plain text medical notes. The identification can then be used to either include or exclude templates when processing notes for information extraction. The two-module method is based on the framework of information foraging and addresses the hypothesis that documents containing templates and the templates within those documents can be identified by common features. The first module takes documents from the corpus and groups those with common templates. This is accomplished through a binned word count hierarchical clustering algorithm. The second module extracts the templates. It uses the groupings and performs a longest common subsequence (LCS) algorithm to obtain the constituent parts of the templates. The method was developed and tested on a random document corpus of 750 notes derived from a large database of US Department of Veterans Affairs (VA) electronic medical notes. The grouping module, using hierarchical clustering, identified 23 groups with 3 documents or more, consisting of 120 documents from the 750 documents in our test corpus. Of these, 18 groups had at least one common template that was present in all documents in the group for a positive predictive value of 78%. The LCS extraction module performed with 100% positive predictive value, 94% sensitivity, and 83% negative predictive value. The human review determined that in 4 groups the template covered the entire document, with the remaining 14 groups containing a common section template. Among documents with templates, the number of templates per document ranged from 1 to 14. The mean and median number of templates per group was 5.9 and 5, respectively. The grouping method was successful in finding like documents containing templates. Of the groups of documents containing templates, the LCS module was successful in deciphering text belonging to the template and text that was extraneous. Major obstacles to improved performance included documents composed of multiple templates, templates that included other templates embedded within them, and variants of templates. We demonstrate proof of concept of the grouping and extraction method of identifying templates in electronic medical records in this pilot study and propose methods to improve performance and scaling up. Published by Elsevier Inc.

  20. Machine Learning Methods for Articulatory Data

    ERIC Educational Resources Information Center

    Berry, Jeffrey James

    2012-01-01

    Humans make use of more than just the audio signal to perceive speech. Behavioral and neurological research has shown that a person's knowledge of how speech is produced influences what is perceived. With methods for collecting articulatory data becoming more ubiquitous, methods for extracting useful information are needed to make this data…

  1. An active role for machine learning in drug development

    PubMed Central

    Murphy, Robert F.

    2014-01-01

    Due to the complexity of biological systems, cutting-edge machine-learning methods will be critical for future drug development. In particular, machine-vision methods to extract detailed information from imaging assays and active-learning methods to guide experimentation will be required to overcome the dimensionality problem in drug development. PMID:21587249

  2. [Lithology feature extraction of CASI hyperspectral data based on fractal signal algorithm].

    PubMed

    Tang, Chao; Chen, Jian-Ping; Cui, Jing; Wen, Bo-Tao

    2014-05-01

    Hyperspectral data is characterized by combination of image and spectrum and large data volume dimension reduction is the main research direction. Band selection and feature extraction is the primary method used for this objective. In the present article, the authors tested methods applied for the lithology feature extraction from hyperspectral data. Based on the self-similarity of hyperspectral data, the authors explored the application of fractal algorithm to lithology feature extraction from CASI hyperspectral data. The "carpet method" was corrected and then applied to calculate the fractal value of every pixel in the hyperspectral data. The results show that fractal information highlights the exposed bedrock lithology better than the original hyperspectral data The fractal signal and characterized scale are influenced by the spectral curve shape, the initial scale selection and iteration step. At present, research on the fractal signal of spectral curve is rare, implying the necessity of further quantitative analysis and investigation of its physical implications.

  3. ccML, a new mark-up language to improve ISO/EN 13606-based electronic health record extracts practical edition

    PubMed Central

    Sánchez-de-Madariaga, Ricardo; Muñoz, Adolfo; Cáceres, Jesús; Somolinos, Roberto; Pascual, Mario; Martínez, Ignacio; Salvador, Carlos H; Monteagudo, José Luis

    2013-01-01

    Objective The objective of this paper is to introduce a new language called ccML, designed to provide convenient pragmatic information to applications using the ISO/EN13606 reference model (RM), such as electronic health record (EHR) extracts editors. EHR extracts are presently built using the syntactic and semantic information provided in the RM and constrained by archetypes. The ccML extra information enables the automation of the medico-legal context information edition, which is over 70% of the total in an extract, without modifying the RM information. Materials and Methods ccML is defined using a W3C XML schema file. Valid ccML files complement the RM with additional pragmatics information. The ccML language grammar is defined using formal language theory as a single-type tree grammar. The new language is tested using an EHR extracts editor application as proof-of-concept system. Results Seven ccML PVCodes (predefined value codes) are introduced in this grammar to cope with different realistic EHR edition situations. These seven PVCodes have different interpretation strategies, from direct look up in the ccML file itself, to more complex searches in archetypes or system precomputation. Discussion The possibility to declare generic types in ccML gives rise to ambiguity during interpretation. The criterion used to overcome ambiguity is that specificity should prevail over generality. The opposite would make the individual specific element declarations useless. Conclusion A new mark-up language ccML is introduced that opens up the possibility of providing applications using the ISO/EN13606 RM with the necessary pragmatics information to be practical and realistic. PMID:23019241

  4. PCA Tomography: how to extract information from data cubes

    NASA Astrophysics Data System (ADS)

    Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S.

    2009-05-01

    Astronomy has evolved almost exclusively by the use of spectroscopic and imaging techniques, operated separately. With the development of modern technologies, it is possible to obtain data cubes in which one combines both techniques simultaneously, producing images with spectral resolution. To extract information from them can be quite complex, and hence the development of new methods of data analysis is desirable. We present a method of analysis of data cube (data from single field observations, containing two spatial and one spectral dimension) that uses Principal Component Analysis (PCA) to express the data in the form of reduced dimensionality, facilitating efficient information extraction from very large data sets. PCA transforms the system of correlated coordinates into a system of uncorrelated coordinates ordered by principal components of decreasing variance. The new coordinates are referred to as eigenvectors, and the projections of the data on to these coordinates produce images we will call tomograms. The association of the tomograms (images) to eigenvectors (spectra) is important for the interpretation of both. The eigenvectors are mutually orthogonal, and this information is fundamental for their handling and interpretation. When the data cube shows objects that present uncorrelated physical phenomena, the eigenvector's orthogonality may be instrumental in separating and identifying them. By handling eigenvectors and tomograms, one can enhance features, extract noise, compress data, extract spectra, etc. We applied the method, for illustration purpose only, to the central region of the low ionization nuclear emission region (LINER) galaxy NGC 4736, and demonstrate that it has a type 1 active nucleus, not known before. Furthermore, we show that it is displaced from the centre of its stellar bulge. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and SECYT (Argentina). E-mail: steiner@astro.iag.usp.br

  5. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts.

    PubMed

    Machado, S; Pacheco, J G; Nouws, H P A; Albergaria, J T; Delerue-Matos, C

    2015-11-15

    In the last decades nanotechnology has become increasingly important because it offers indisputable advantages to almost every area of expertise, including environmental remediation. In this area the synthesis of highly reactive nanomaterials (e.g. zero-valent iron nanoparticles, nZVI) is gaining the attention of the scientific community, service providers and other stakeholders. The synthesis of nZVI by the recently developed green bottom-up method is extremely promising. However, the lack of information about the characteristics of the synthetized particles hinders a wider and more extensive application. This work aims to evaluate the characteristics of nZVI synthesized through the green method using leaves from different trees. Considering the requirements of a product for environmental remediation the following characteristics were studied: size, shape, reactivity and agglomeration tendency. The mulberry and pomegranate leaf extracts produced the smallest nZVIs (5-10 nm), the peach, pear and vine leaf extracts produced the most reactive nZVIs while the ones produced with passion fruit, medlar and cherry extracts did not settle at high nZVI concentrations (931 and 266 ppm). Considering all tests, the nZVIs obtained from medlar and vine leaf extracts are the ones that could present better performances in the environmental remediation. The information gathered in this paper will be useful to choose the most appropriate leaf extracts and operational conditions for the application of the green nZVIs in environmental remediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Graph-Based Weakly-Supervised Methods for Information Extraction & Integration

    ERIC Educational Resources Information Center

    Talukdar, Partha Pratim

    2010-01-01

    The variety and complexity of potentially-related data resources available for querying--webpages, databases, data warehouses--has been growing ever more rapidly. There is a growing need to pose integrative queries "across" multiple such sources, exploiting foreign keys and other means of interlinking data to merge information from diverse…

  7. Datum Feature Extraction and Deformation Analysis Method Based on Normal Vector of Point Cloud

    NASA Astrophysics Data System (ADS)

    Sun, W.; Wang, J.; Jin, F.; Liang, Z.; Yang, Y.

    2018-04-01

    In order to solve the problem lacking applicable analysis method in the application of three-dimensional laser scanning technology to the field of deformation monitoring, an efficient method extracting datum feature and analysing deformation based on normal vector of point cloud was proposed. Firstly, the kd-tree is used to establish the topological relation. Datum points are detected by tracking the normal vector of point cloud determined by the normal vector of local planar. Then, the cubic B-spline curve fitting is performed on the datum points. Finally, datum elevation and the inclination angle of the radial point are calculated according to the fitted curve and then the deformation information was analyzed. The proposed approach was verified on real large-scale tank data set captured with terrestrial laser scanner in a chemical plant. The results show that the method could obtain the entire information of the monitor object quickly and comprehensively, and reflect accurately the datum feature deformation.

  8. Refraction-based X-ray Computed Tomography for Biomedical Purpose Using Dark Field Imaging Method

    NASA Astrophysics Data System (ADS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Huo, Qingkai; Ichihara, Shu; Ando, Masami

    We have proposed a tomographic x-ray imaging system using DFI (dark field imaging) optics along with a data-processing method to extract information on refraction from the measured intensities, and a reconstruction algorithm to reconstruct a refractive-index field from the projections generated from the extracted refraction information. The DFI imaging system consists of a tandem optical system of Bragg- and Laue-case crystals, a positioning device system for a sample, and two CCD (charge coupled device) cameras. Then, we developed a software code to simulate the data-acquisition, data-processing, and reconstruction methods to investigate the feasibility of the proposed methods. Finally, in order to demonstrate its efficacy, we imaged a sample with DCIS (ductal carcinoma in situ) excised from a breast cancer patient using a system constructed at the vertical wiggler beamline BL-14C in KEK-PF. Its CT images depicted a variety of fine histological structures, such as milk ducts, duct walls, secretions, adipose and fibrous tissue. They correlate well with histological sections.

  9. A sensitive continuum analysis method for gamma ray spectra

    NASA Technical Reports Server (NTRS)

    Thakur, Alakh N.; Arnold, James R.

    1993-01-01

    In this work we examine ways to improve the sensitivity of the analysis procedure for gamma ray spectra with respect to small differences in the continuum (Compton) spectra. The method developed is applied to analyze gamma ray spectra obtained from planetary mapping by the Mars Observer spacecraft launched in September 1992. Calculated Mars simulation spectra and actual thick target bombardment spectra have been taken as test cases. The principle of the method rests on the extraction of continuum information from Fourier transforms of the spectra. We study how a better estimate of the spectrum from larger regions of the Mars surface will improve the analysis for smaller regions with poorer statistics. Estimation of signal within the continuum is done in the frequency domain which enables efficient and sensitive discrimination of subtle differences between two spectra. The process is compared to other methods for the extraction of information from the continuum. Finally we explore briefly the possible uses of this technique in other applications of continuum spectra.

  10. Fusion method of SAR and optical images for urban object extraction

    NASA Astrophysics Data System (ADS)

    Jia, Yonghong; Blum, Rick S.; Li, Fangfang

    2007-11-01

    A new image fusion method of SAR, Panchromatic (Pan) and multispectral (MS) data is proposed. First of all, SAR texture is extracted by ratioing the despeckled SAR image to its low pass approximation, and is used to modulate high pass details extracted from the available Pan image by means of the á trous wavelet decomposition. Then, high pass details modulated with the texture is applied to obtain the fusion product by HPFM (High pass Filter-based Modulation) fusion method. A set of image data including co-registered Landsat TM, ENVISAT SAR and SPOT Pan is used for the experiment. The results demonstrate accurate spectral preservation on vegetated regions, bare soil, and also on textured areas (buildings and road network) where SAR texture information enhances the fusion product, and the proposed approach is effective for image interpret and classification.

  11. A new license plate extraction framework based on fast mean shift

    NASA Astrophysics Data System (ADS)

    Pan, Luning; Li, Shuguang

    2010-08-01

    License plate extraction is considered to be the most crucial step of Automatic license plate recognition (ALPR) system. In this paper, a region-based license plate hybrid detection method is proposed to solve practical problems under complex background in which existing large quantity of disturbing information. In this method, coarse license plate location is carried out firstly to get the head part of a vehicle. Then a new Fast Mean Shift method based on random sampling of Kernel Density Estimate (KDE) is adopted to segment the color vehicle images, in order to get candidate license plate regions. The remarkable speed-up it brings makes Mean Shift segmentation more suitable for this application. Feature extraction and classification is used to accurately separate license plate from other candidate regions. At last, tilted license plate regulation is used for future recognition steps.

  12. Analogy between gambling and measurement-based work extraction

    NASA Astrophysics Data System (ADS)

    Vinkler, Dror A.; Permuter, Haim H.; Merhav, Neri

    2016-04-01

    In information theory, one area of interest is gambling, where mutual information characterizes the maximal gain in wealth growth rate due to knowledge of side information; the betting strategy that achieves this maximum is named the Kelly strategy. In the field of physics, it was recently shown that mutual information can characterize the maximal amount of work that can be extracted from a single heat bath using measurement-based control protocols, i.e. using ‘information engines’. However, to the best of our knowledge, no relation between gambling and information engines has been presented before. In this paper, we briefly review the two concepts and then demonstrate an analogy between gambling, where bits are converted into wealth, and information engines, where bits representing measurements are converted into energy. From this analogy follows an extension of gambling to the continuous-valued case, which is shown to be useful for investments in currency exchange rates or in the stock market using options. Moreover, the analogy enables us to use well-known methods and results from one field to solve problems in the other. We present three such cases: maximum work extraction when the probability distributions governing the system and measurements are unknown, work extraction when some energy is lost in each cycle, e.g. due to friction, and an analysis of systems with memory. In all three cases, the analogy enables us to use known results in order to obtain new ones.

  13. Information extraction with object based support vector machines and vegetation indices

    NASA Astrophysics Data System (ADS)

    Ustuner, Mustafa; Abdikan, Saygin; Balik Sanli, Fusun

    2016-07-01

    Information extraction through remote sensing data is important for policy and decision makers as extracted information provide base layers for many application of real world. Classification of remotely sensed data is the one of the most common methods of extracting information however it is still a challenging issue because several factors are affecting the accuracy of the classification. Resolution of the imagery, number and homogeneity of land cover classes, purity of training data and characteristic of adopted classifiers are just some of these challenging factors. Object based image classification has some superiority than pixel based classification for high resolution images since it uses geometry and structure information besides spectral information. Vegetation indices are also commonly used for the classification process since it provides additional spectral information for vegetation, forestry and agricultural areas. In this study, the impacts of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) on the classification accuracy of RapidEye imagery were investigated. Object based Support Vector Machines were implemented for the classification of crop types for the study area located in Aegean region of Turkey. Results demonstrated that the incorporation of NDRE increase the classification accuracy from 79,96% to 86,80% as overall accuracy, however NDVI decrease the classification accuracy from 79,96% to 78,90%. Moreover it is proven than object based classification with RapidEye data give promising results for crop type mapping and analysis.

  14. Soil and Litter Animals.

    ERIC Educational Resources Information Center

    Lippert, George

    1991-01-01

    A lesson plan for soil study utilizes the Tullgren extraction method to illustrate biological concepts. It includes background information, equipment, collection techniques, activities, and references for identification guides about soil fauna. (MCO)

  15. Multi-sensor image registration based on algebraic projective invariants.

    PubMed

    Li, Bin; Wang, Wei; Ye, Hao

    2013-04-22

    A new automatic feature-based registration algorithm is presented for multi-sensor images with projective deformation. Contours are firstly extracted from both reference and sensed images as basic features in the proposed method. Since it is difficult to design a projective-invariant descriptor from the contour information directly, a new feature named Five Sequential Corners (FSC) is constructed based on the corners detected from the extracted contours. By introducing algebraic projective invariants, we design a descriptor for each FSC that is ensured to be robust against projective deformation. Further, no gray scale related information is required in calculating the descriptor, thus it is also robust against the gray scale discrepancy between the multi-sensor image pairs. Experimental results utilizing real image pairs are presented to show the merits of the proposed registration method.

  16. A Quasi-Experimental Study of Trauma-Informed Psychiatric Residential Treatment for Children and Adolescents

    ERIC Educational Resources Information Center

    Boel-Studt, Shamra Marie

    2017-01-01

    Purpose: The purpose of this study was to examine the effectiveness of a trauma-informed approach that was adapted for psychiatric residential treatment (PRT) for children aged 5-17. Methods: Data were extracted from case files of 100 youths who received traditional PRT and 105 youths who received trauma-informed PRT (TI-PRT). Outcome measures…

  17. Two-dimensional correlation infrared spectroscopy applied to analyzing and identifying the extracts of Baeckea frutescens medicinal materials.

    PubMed

    Adib, Adiana Mohamed; Jamaludin, Fadzureena; Kiong, Ling Sui; Hashim, Nuziah; Abdullah, Zunoliza

    2014-08-05

    Baeckea frutescens or locally known as Cucur atap is used as antibacterial, antidysentery, antipyretic and diuretic agent. In Malaysia and Indonesia, they are used as an ingredient of the traditional medicine given to mothers during confinement. A three-steps infra-red (IR) macro-fingerprinting method combining conventional IR spectra, and the secondary derivative spectra with two dimensional infrared correlation spectroscopy (2D-IR) have been proved to be effective methods to examine a complicated mixture such as herbal medicines. This study investigated the feasibility of employing multi-steps IR spectroscopy in order to study the main constituents of B. frutescens and its different extracts (extracted by chloroform, ethyl acetate, methanol and aqueous in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. The structural information of the samples indicated that B. frutescens and its extracts contain a large amount of flavonoids, since some characteristic absorption peaks of flavonoids, such as ∼1600cm(-1), ∼1500cm(-1), ∼1450cm(-1), and ∼1270cm(-1) can be observed. The macroscopical fingerprint characters of FT-IR and 2D-IR spectra can not only provide the information of main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Automatic Extraction of Road Markings from Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Ma, H.; Pei, Z.; Wei, Z.; Zhong, R.

    2017-09-01

    Road markings as critical feature in high-defination maps, which are Advanced Driver Assistance System (ADAS) and self-driving technology required, have important functions in providing guidance and information to moving cars. Mobile laser scanning (MLS) system is an effective way to obtain the 3D information of the road surface, including road markings, at highway speeds and at less than traditional survey costs. This paper presents a novel method to automatically extract road markings from MLS point clouds. Ground points are first filtered from raw input point clouds using neighborhood elevation consistency method. The basic assumption of the method is that the road surface is smooth. Points with small elevation-difference between neighborhood are considered to be ground points. Then ground points are partitioned into a set of profiles according to trajectory data. The intensity histogram of points in each profile is generated to find intensity jumps in certain threshold which inversely to laser distance. The separated points are used as seed points to region grow based on intensity so as to obtain road mark of integrity. We use the point cloud template-matching method to refine the road marking candidates via removing the noise clusters with low correlation coefficient. During experiment with a MLS point set of about 2 kilometres in a city center, our method provides a promising solution to the road markings extraction from MLS data.

  19. Adventitious sounds identification and extraction using temporal-spectral dominance-based features.

    PubMed

    Jin, Feng; Krishnan, Sridhar Sri; Sattar, Farook

    2011-11-01

    Respiratory sound (RS) signals carry significant information about the underlying functioning of the pulmonary system by the presence of adventitious sounds (ASs). Although many studies have addressed the problem of pathological RS classification, only a limited number of scientific works have focused on the analysis of the evolution of symptom-related signal components in joint time-frequency (TF) plane. This paper proposes a new signal identification and extraction method for various ASs based on instantaneous frequency (IF) analysis. The presented TF decomposition method produces a noise-resistant high definition TF representation of RS signals as compared to the conventional linear TF analysis methods, yet preserving the low computational complexity as compared to those quadratic TF analysis methods. The discarded phase information in conventional spectrogram has been adopted for the estimation of IF and group delay, and a temporal-spectral dominance spectrogram has subsequently been constructed by investigating the TF spreads of the computed time-corrected IF components. The proposed dominance measure enables the extraction of signal components correspond to ASs from noisy RS signal at high noise level. A new set of TF features has also been proposed to quantify the shapes of the obtained TF contours, and therefore strongly, enhances the identification of multicomponents signals such as polyphonic wheezes. An overall accuracy of 92.4±2.9% for the classification of real RS recordings shows the promising performance of the presented method.

  20. Information Extraction of Tourist Geological Resources Based on 3d Visualization Remote Sensing Image

    NASA Astrophysics Data System (ADS)

    Wang, X.

    2018-04-01

    Tourism geological resources are of high value in admiration, scientific research and universal education, which need to be protected and rationally utilized. In the past, most of the remote sensing investigations of tourism geological resources used two-dimensional remote sensing interpretation method, which made it difficult for some geological heritages to be interpreted and led to the omission of some information. This aim of this paper is to assess the value of a method using the three-dimensional visual remote sensing image to extract information of geological heritages. skyline software system is applied to fuse the 0.36 m aerial images and 5m interval DEM to establish the digital earth model. Based on the three-dimensional shape, color tone, shadow, texture and other image features, the distribution of tourism geological resources in Shandong Province and the location of geological heritage sites were obtained, such as geological structure, DaiGu landform, granite landform, Volcanic landform, sandy landform, Waterscapes, etc. The results show that using this method for remote sensing interpretation is highly recognizable, making the interpretation more accurate and comprehensive.

  1. Depth extraction method with high accuracy in integral imaging based on moving array lenslet technique

    NASA Astrophysics Data System (ADS)

    Wang, Yao-yao; Zhang, Juan; Zhao, Xue-wei; Song, Li-pei; Zhang, Bo; Zhao, Xing

    2018-03-01

    In order to improve depth extraction accuracy, a method using moving array lenslet technique (MALT) in pickup stage is proposed, which can decrease the depth interval caused by pixelation. In this method, the lenslet array is moved along the horizontal and vertical directions simultaneously for N times in a pitch to get N sets of elemental images. Computational integral imaging reconstruction method for MALT is taken to obtain the slice images of the 3D scene, and the sum modulus (SMD) blur metric is taken on these slice images to achieve the depth information of the 3D scene. Simulation and optical experiments are carried out to verify the feasibility of this method.

  2. A contour-based shape descriptor for biomedical image classification and retrieval

    NASA Astrophysics Data System (ADS)

    You, Daekeun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-12-01

    Contours, object blobs, and specific feature points are utilized to represent object shapes and extract shape descriptors that can then be used for object detection or image classification. In this research we develop a shape descriptor for biomedical image type (or, modality) classification. We adapt a feature extraction method used in optical character recognition (OCR) for character shape representation, and apply various image preprocessing methods to successfully adapt the method to our application. The proposed shape descriptor is applied to radiology images (e.g., MRI, CT, ultrasound, X-ray, etc.) to assess its usefulness for modality classification. In our experiment we compare our method with other visual descriptors such as CEDD, CLD, Tamura, and PHOG that extract color, texture, or shape information from images. The proposed method achieved the highest classification accuracy of 74.1% among all other individual descriptors in the test, and when combined with CSD (color structure descriptor) showed better performance (78.9%) than using the shape descriptor alone.

  3. Space Subdivision in Indoor Mobile Laser Scanning Point Clouds Based on Scanline Analysis.

    PubMed

    Zheng, Yi; Peter, Michael; Zhong, Ruofei; Oude Elberink, Sander; Zhou, Quan

    2018-06-05

    Indoor space subdivision is an important aspect of scene analysis that provides essential information for many applications, such as indoor navigation and evacuation route planning. Until now, most proposed scene understanding algorithms have been based on whole point clouds, which has led to complicated operations, high computational loads and low processing speed. This paper presents novel methods to efficiently extract the location of openings (e.g., doors and windows) and to subdivide space by analyzing scanlines. An opening detection method is demonstrated that analyses the local geometric regularity in scanlines to refine the extracted opening. Moreover, a space subdivision method based on the extracted openings and the scanning system trajectory is described. Finally, the opening detection and space subdivision results are saved as point cloud labels which will be used for further investigations. The method has been tested on a real dataset collected by ZEB-REVO. The experimental results validate the completeness and correctness of the proposed method for different indoor environment and scanning paths.

  4. Multi-layer cube sampling for liver boundary detection in PET-CT images.

    PubMed

    Liu, Xinxin; Yang, Jian; Song, Shuang; Song, Hong; Ai, Danni; Zhu, Jianjun; Jiang, Yurong; Wang, Yongtian

    2018-06-01

    Liver metabolic information is considered as a crucial diagnostic marker for the diagnosis of fever of unknown origin, and liver recognition is the basis of automatic diagnosis of metabolic information extraction. However, the poor quality of PET and CT images is a challenge for information extraction and target recognition in PET-CT images. The existing detection method cannot meet the requirement of liver recognition in PET-CT images, which is the key problem in the big data analysis of PET-CT images. A novel texture feature descriptor called multi-layer cube sampling (MLCS) is developed for liver boundary detection in low-dose CT and PET images. The cube sampling feature is proposed for extracting more texture information, which uses a bi-centric voxel strategy. Neighbour voxels are divided into three regions by the centre voxel and the reference voxel in the histogram, and the voxel distribution information is statistically classified as texture feature. Multi-layer texture features are also used to improve the ability and adaptability of target recognition in volume data. The proposed feature is tested on the PET and CT images for liver boundary detection. For the liver in the volume data, mean detection rate (DR) and mean error rate (ER) reached 95.15 and 7.81% in low-quality PET images, and 83.10 and 21.08% in low-contrast CT images. The experimental results demonstrated that the proposed method is effective and robust for liver boundary detection.

  5. Net analyte signal standard addition method for simultaneous determination of sulphadiazine and trimethoprim in bovine milk and veterinary medicines.

    PubMed

    Hajian, Reza; Mousavi, Esmat; Shams, Nafiseh

    2013-06-01

    Net analyte signal standard addition method has been used for the simultaneous determination of sulphadiazine and trimethoprim by spectrophotometry in some bovine milk and veterinary medicines. The method combines the advantages of standard addition method with the net analyte signal concept which enables the extraction of information concerning a certain analyte from spectra of multi-component mixtures. This method has some advantages such as the use of a full spectrum realisation, therefore it does not require calibration and prediction step and only a few measurements require for the determination. Cloud point extraction based on the phenomenon of solubilisation used for extraction of sulphadiazine and trimethoprim in bovine milk. It is based on the induction of micellar organised media by using Triton X-100 as an extraction solvent. At the optimum conditions, the norm of NAS vectors increased linearly with concentrations in the range of 1.0-150.0 μmolL(-1) for both sulphadiazine and trimethoprim. The limits of detection (LOD) for sulphadiazine and trimethoprim were 0.86 and 0.92 μmolL(-1), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Comparison of STR profiling from low template DNA extracts with and without the consensus profiling method

    PubMed Central

    2012-01-01

    Background The consensus profiling method was introduced to overcome the exaggerated stochastic effects associated with low copy number DNA typing. However, little empirical evidence has been provided which shows that a consensus profile, derived from dividing a sample into separate aliquots and including only alleles seen at least twice, gives the most informative profile, compared to a profile obtained by amplifying the entire low template DNA extract in one reaction. Therefore, this study aimed to investigate the quality of consensus profiles compared to profiles obtained using the whole low template extract for amplification. Methods A total of 100 pg and 25 pg DNA samples were amplified with the PowerPlex® ESI 16 Kits using 30 or 34 PCR cycles. A total of 100 pg and 25 pg DNA samples were then divided into three aliquots for a 34-cycle PCR and a consensus profile derived that included alleles that appeared in at least two of the replicates. Profiles from the non-split samples were compared to the consensus profiles focusing on peak heights, allele drop out, locus drop out and allele drop in. Results Performing DNA profiling on non-split extracts produced profiles with a higher percentage of correct loci compared to the consensus profiling technique. Consensus profiling did eliminate any spurious alleles from the final profile. However, there was a notable increase in allele and locus drop out when a LTDNA sample was divided prior to amplification. Conclusions The loss of information that occurs when a sample is split for amplification indicates that consensus profiling may not be producing the most informative DNA profile for samples where the template amount is limited. PMID:22748106

  7. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition.

    PubMed

    Zhang, Yifan; Gao, Xunzhang; Peng, Xuan; Ye, Jiaqi; Li, Xiang

    2018-05-16

    The High Resolution Range Profile (HRRP) recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR). However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM) is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  8. A study on building data warehouse of hospital information system.

    PubMed

    Li, Ping; Wu, Tao; Chen, Mu; Zhou, Bin; Xu, Wei-guo

    2011-08-01

    Existing hospital information systems with simple statistical functions cannot meet current management needs. It is well known that hospital resources are distributed with private property rights among hospitals, such as in the case of the regional coordination of medical services. In this study, to integrate and make full use of medical data effectively, we propose a data warehouse modeling method for the hospital information system. The method can also be employed for a distributed-hospital medical service system. To ensure that hospital information supports the diverse needs of health care, the framework of the hospital information system has three layers: datacenter layer, system-function layer, and user-interface layer. This paper discusses the role of a data warehouse management system in handling hospital information from the establishment of the data theme to the design of a data model to the establishment of a data warehouse. Online analytical processing tools assist user-friendly multidimensional analysis from a number of different angles to extract the required data and information. Use of the data warehouse improves online analytical processing and mitigates deficiencies in the decision support system. The hospital information system based on a data warehouse effectively employs statistical analysis and data mining technology to handle massive quantities of historical data, and summarizes from clinical and hospital information for decision making. This paper proposes the use of a data warehouse for a hospital information system, specifically a data warehouse for the theme of hospital information to determine latitude, modeling and so on. The processing of patient information is given as an example that demonstrates the usefulness of this method in the case of hospital information management. Data warehouse technology is an evolving technology, and more and more decision support information extracted by data mining and with decision-making technology is required for further research.

  9. Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swafford, A.M.; Keller, J.M.

    1993-03-17

    Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences ismore » necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU[center dot]Spec[trademark] column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable.« less

  10. Design and Development of the Terrain Information Extraction System

    DTIC Science & Technology

    1990-09-04

    system successfully demonstrated relief measurement and orthophoto production, automated feature extraction has remained "the major problem of today’s...the hierarchical relaxation correlation method developed by Helava Associates, Inc. and digital orthophoto production. To achieve this high accuracy...image memory transfer rates will be achieved by using data blocks or "image tiles ." Further, an image fringe loading module will be implemented which

  11. Supporting Better Treatments for Meeting Health Consumers' Needs: Extracting Semantics in Social Data for Representing a Consumer Health Ontology

    ERIC Educational Resources Information Center

    Choi, Yunseon

    2016-01-01

    Introduction: The purpose of this paper is to provide a framework for building a consumer health ontology using social tags. This would assist health users when they are accessing health information and increase the number of documents relevant to their needs. Methods: In order to extract concepts from social tags, this study conducted an…

  12. Overview of machine vision methods in x-ray imaging and microtomography

    NASA Astrophysics Data System (ADS)

    Buzmakov, Alexey; Zolotov, Denis; Chukalina, Marina; Nikolaev, Dmitry; Gladkov, Andrey; Ingacheva, Anastasia; Yakimchuk, Ivan; Asadchikov, Victor

    2018-04-01

    Digital X-ray imaging became widely used in science, medicine, non-destructive testing. This allows using modern digital images analysis for automatic information extraction and interpretation. We give short review of scientific applications of machine vision in scientific X-ray imaging and microtomography, including image processing, feature detection and extraction, images compression to increase camera throughput, microtomography reconstruction, visualization and setup adjustment.

  13. Efficient isolation method for high-quality genomic DNA from cicada exuviae.

    PubMed

    Nguyen, Hoa Quynh; Kim, Ye Inn; Borzée, Amaël; Jang, Yikweon

    2017-10-01

    In recent years, animal ethics issues have led researchers to explore nondestructive methods to access materials for genetic studies. Cicada exuviae are among those materials because they are cast skins that individuals left after molt and are easily collected. In this study, we aim to identify the most efficient extraction method to obtain high quantity and quality of DNA from cicada exuviae. We compared relative DNA yield and purity of six extraction protocols, including both manual protocols and available commercial kits, extracting from four different exoskeleton parts. Furthermore, amplification and sequencing of genomic DNA were evaluated in terms of availability of sequencing sequence at the expected genomic size. Both the choice of protocol and exuvia part significantly affected DNA yield and purity. Only samples that were extracted using the PowerSoil DNA Isolation kit generated gel bands of expected size as well as successful sequencing results. The failed attempts to extract DNA using other protocols could be partially explained by a low DNA yield from cicada exuviae and partly by contamination with humic acids that exist in the soil where cicada nymphs reside before emergence, as shown by spectroscopic measurements. Genomic DNA extracted from cicada exuviae could provide valuable information for species identification, allowing the investigation of genetic diversity across consecutive broods, or spatiotemporal variation among various populations. Consequently, we hope to provide a simple method to acquire pure genomic DNA applicable for multiple research purposes.

  14. Photovoltaic panel extraction from very high-resolution aerial imagery using region-line primitive association analysis and template matching

    NASA Astrophysics Data System (ADS)

    Wang, Min; Cui, Qi; Sun, Yujie; Wang, Qiao

    2018-07-01

    In object-based image analysis (OBIA), object classification performance is jointly determined by image segmentation, sample or rule setting, and classifiers. Typically, as a crucial step to obtain object primitives, image segmentation quality significantly influences subsequent feature extraction and analyses. By contrast, template matching extracts specific objects from images and prevents shape defects caused by image segmentation. However, creating or editing templates is tedious and sometimes results in incomplete or inaccurate templates. In this study, we combine OBIA and template matching techniques to address these problems and aim for accurate photovoltaic panel (PVP) extraction from very high-resolution (VHR) aerial imagery. The proposed method is based on the previously proposed region-line primitive association framework, in which complementary information between region (segment) and line (straight line) primitives is utilized to achieve a more powerful performance than routine OBIA. Several novel concepts, including the mutual fitting ratio and best-fitting template based on region-line primitive association analyses, are proposed. Automatic template generation and matching method for PVP extraction from VHR imagery are designed for concept and model validation. Results show that the proposed method can successfully extract PVPs without any user-specified matching template or training sample. High user independency and accuracy are the main characteristics of the proposed method in comparison with routine OBIA and template matching techniques.

  15. A high-precision rule-based extraction system for expanding geospatial metadata in GenBank records

    PubMed Central

    Weissenbacher, Davy; Rivera, Robert; Beard, Rachel; Firago, Mari; Wallstrom, Garrick; Scotch, Matthew; Gonzalez, Graciela

    2016-01-01

    Objective The metadata reflecting the location of the infected host (LOIH) of virus sequences in GenBank often lacks specificity. This work seeks to enhance this metadata by extracting more specific geographic information from related full-text articles and mapping them to their latitude/longitudes using knowledge derived from external geographical databases. Materials and Methods We developed a rule-based information extraction framework for linking GenBank records to the latitude/longitudes of the LOIH. Our system first extracts existing geospatial metadata from GenBank records and attempts to improve it by seeking additional, relevant geographic information from text and tables in related full-text PubMed Central articles. The final extracted locations of the records, based on data assimilated from these sources, are then disambiguated and mapped to their respective geo-coordinates. We evaluated our approach on a manually annotated dataset comprising of 5728 GenBank records for the influenza A virus. Results We found the precision, recall, and f-measure of our system for linking GenBank records to the latitude/longitudes of their LOIH to be 0.832, 0.967, and 0.894, respectively. Discussion Our system had a high level of accuracy for linking GenBank records to the geo-coordinates of the LOIH. However, it can be further improved by expanding our database of geospatial data, incorporating spell correction, and enhancing the rules used for extraction. Conclusion Our system performs reasonably well for linking GenBank records for the influenza A virus to the geo-coordinates of their LOIH based on record metadata and information extracted from related full-text articles. PMID:26911818

  16. A method of depth image based human action recognition

    NASA Astrophysics Data System (ADS)

    Li, Pei; Cheng, Wanli

    2017-05-01

    In this paper, we propose an action recognition algorithm framework based on human skeleton joint information. In order to extract the feature of human motion, we use the information of body posture, speed and acceleration of movement to construct spatial motion feature that can describe and reflect the joint. On the other hand, we use the classical temporal pyramid matching algorithm to construct temporal feature and describe the motion sequence variation from different time scales. Then, we use bag of words to represent these actions, which is to present every action in the histogram by clustering these extracted feature. Finally, we employ Hidden Markov Model to train and test the extracted motion features. In the experimental part, the correctness and effectiveness of the proposed model are comprehensively verified on two well-known datasets.

  17. Background information for the Leaching environmental Assessment Framework (LEAF) test methods

    EPA Science Inventory

    The U.S. Environmental Protection Agency Office of Resource Conservation and Recovery has initiated the review and validation process for four leaching tests under consideration for inclusion into SW-846: Method 1313 "Liquid-Solid Partitioning as a Function of Extract pH for Co...

  18. Knowledge Discovery from Databases: An Introductory Review.

    ERIC Educational Resources Information Center

    Vickery, Brian

    1997-01-01

    Introduces new procedures being used to extract knowledge from databases and discusses rationales for developing knowledge discovery methods. Methods are described for such techniques as classification, clustering, and the detection of deviations from pre-established norms. Examines potential uses of knowledge discovery in the information field.…

  19. Extraction of linear features on SAR imagery

    NASA Astrophysics Data System (ADS)

    Liu, Junyi; Li, Deren; Mei, Xin

    2006-10-01

    Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.

  20. 2D/3D facial feature extraction

    NASA Astrophysics Data System (ADS)

    Çinar Akakin, Hatice; Ali Salah, Albert; Akarun, Lale; Sankur, Bülent

    2006-02-01

    We propose and compare three different automatic landmarking methods for near-frontal faces. The face information is provided as 480x640 gray-level images in addition to the corresponding 3D scene depth information. All three methods follow a coarse-to-fine suite and use the 3D information in an assist role. The first method employs a combination of principal component analysis (PCA) and independent component analysis (ICA) features to analyze the Gabor feature set. The second method uses a subset of DCT coefficients for template-based matching. These two methods employ SVM classifiers with polynomial kernel functions. The third method uses a mixture of factor analyzers to learn Gabor filter outputs. We contrast the localization performance separately with 2D texture and 3D depth information. Although the 3D depth information per se does not perform as well as texture images in landmark localization, the 3D information has still a beneficial role in eliminating the background and the false alarms.

  1. Exploratory factor analysis in Rehabilitation Psychology: a content analysis.

    PubMed

    Roberson, Richard B; Elliott, Timothy R; Chang, Jessica E; Hill, Jessica N

    2014-11-01

    Our objective was to examine the use and quality of exploratory factor analysis (EFA) in articles published in Rehabilitation Psychology. Trained raters examined 66 separate exploratory factor analyses in 47 articles published between 1999 and April 2014. The raters recorded the aim of the EFAs, the distributional statistics, sample size, factor retention method(s), extraction and rotation method(s), and whether the pattern coefficients, structure coefficients, and the matrix of association were reported. The primary use of the EFAs was scale development, but the most widely used extraction and rotation method was principle component analysis, with varimax rotation. When determining how many factors to retain, multiple methods (e.g., scree plot, parallel analysis) were used most often. Many articles did not report enough information to allow for the duplication of their results. EFA relies on authors' choices (e.g., factor retention rules extraction, rotation methods), and few articles adhered to all of the best practices. The current findings are compared to other empirical investigations into the use of EFA in published research. Recommendations for improving EFA reporting practices in rehabilitation psychology research are provided.

  2. Data on DNA gel sample load, gel electrophoresis, PCR and cost analysis.

    PubMed

    Kuhn, Ramona; Böllmann, Jörg; Krahl, Kathrin; Bryant, Isaac Mbir; Martienssen, Marion

    2018-02-01

    The data presented in this article provide supporting information to the related research article "Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples" (Kuhn et al., 2017) [1]. In that article, we compared the suitability of ten selected DNA extraction methods based on DNA quality, purity, quantity and applicability to universal PCR. Here we provide the data on the specific DNA gel sample load, all unreported gel images of crude DNA and PCR results, and the complete cost analysis for all tested extraction procedures and in addition two commercial DNA extraction kits for soil and water.

  3. PREDOSE: A Semantic Web Platform for Drug Abuse Epidemiology using Social Media

    PubMed Central

    Cameron, Delroy; Smith, Gary A.; Daniulaityte, Raminta; Sheth, Amit P.; Dave, Drashti; Chen, Lu; Anand, Gaurish; Carlson, Robert; Watkins, Kera Z.; Falck, Russel

    2013-01-01

    Objectives The role of social media in biomedical knowledge mining, including clinical, medical and healthcare informatics, prescription drug abuse epidemiology and drug pharmacology, has become increasingly significant in recent years. Social media offers opportunities for people to share opinions and experiences freely in online communities, which may contribute information beyond the knowledge of domain professionals. This paper describes the development of a novel Semantic Web platform called PREDOSE (PREscription Drug abuse Online Surveillance and Epidemiology), which is designed to facilitate the epidemiologic study of prescription (and related) drug abuse practices using social media. PREDOSE uses web forum posts and domain knowledge, modeled in a manually created Drug Abuse Ontology (DAO) (pronounced dow), to facilitate the extraction of semantic information from User Generated Content (UGC). A combination of lexical, pattern-based and semantics-based techniques is used together with the domain knowledge to extract fine-grained semantic information from UGC. In a previous study, PREDOSE was used to obtain the datasets from which new knowledge in drug abuse research was derived. Here, we report on various platform enhancements, including an updated DAO, new components for relationship and triple extraction, and tools for content analysis, trend detection and emerging patterns exploration, which enhance the capabilities of the PREDOSE platform. Given these enhancements, PREDOSE is now more equipped to impact drug abuse research by alleviating traditional labor-intensive content analysis tasks. Methods Using custom web crawlers that scrape UGC from publicly available web forums, PREDOSE first automates the collection of web-based social media content for subsequent semantic annotation. The annotation scheme is modeled in the DAO, and includes domain specific knowledge such as prescription (and related) drugs, methods of preparation, side effects, routes of administration, etc. The DAO is also used to help recognize three types of data, namely: 1) entities, 2) relationships and 3) triples. PREDOSE then uses a combination of lexical and semantic-based techniques to extract entities and relationships from the scraped content, and a top-down approach for triple extraction that uses patterns expressed in the DAO. In addition, PREDOSE uses publicly available lexicons to identify initial sentiment expressions in text, and then a probabilistic optimization algorithm (from related research) to extract the final sentiment expressions. Together, these techniques enable the capture of fine-grained semantic information from UGC, and querying, search, trend analysis and overall content analysis of social media related to prescription drug abuse. Moreover, extracted data are also made available to domain experts for the creation of training and test sets for use in evaluation and refinements in information extraction techniques. Results A recent evaluation of the information extraction techniques applied in the PREDOSE platform indicates 85% precision and 72% recall in entity identification, on a manually created gold standard dataset. In another study, PREDOSE achieved 36% precision in relationship identification and 33% precision in triple extraction, through manual evaluation by domain experts. Given the complexity of the relationship and triple extraction tasks and the abstruse nature of social media texts, we interpret these as favorable initial results. Extracted semantic information is currently in use in an online discovery support system, by prescription drug abuse researchers at the Center for Interventions, Treatment and Addictions Research (CITAR) at Wright State University. Conclusion A comprehensive platform for entity, relationship, triple and sentiment extraction from such abstruse texts has never been developed for drug abuse research. PREDOSE has already demonstrated the importance of mining social media by providing data from which new findings in drug abuse research were uncovered. Given the recent platform enhancements, including the refined DAO, components for relationship and triple extraction, and tools for content, trend and emerging pattern analysis, it is expected that PREDOSE will play a significant role in advancing drug abuse epidemiology in future. PMID:23892295

  4. ExaCT: automatic extraction of clinical trial characteristics from journal publications

    PubMed Central

    2010-01-01

    Background Clinical trials are one of the most important sources of evidence for guiding evidence-based practice and the design of new trials. However, most of this information is available only in free text - e.g., in journal publications - which is labour intensive to process for systematic reviews, meta-analyses, and other evidence synthesis studies. This paper presents an automatic information extraction system, called ExaCT, that assists users with locating and extracting key trial characteristics (e.g., eligibility criteria, sample size, drug dosage, primary outcomes) from full-text journal articles reporting on randomized controlled trials (RCTs). Methods ExaCT consists of two parts: an information extraction (IE) engine that searches the article for text fragments that best describe the trial characteristics, and a web browser-based user interface that allows human reviewers to assess and modify the suggested selections. The IE engine uses a statistical text classifier to locate those sentences that have the highest probability of describing a trial characteristic. Then, the IE engine's second stage applies simple rules to these sentences to extract text fragments containing the target answer. The same approach is used for all 21 trial characteristics selected for this study. Results We evaluated ExaCT using 50 previously unseen articles describing RCTs. The text classifier (first stage) was able to recover 88% of relevant sentences among its top five candidates (top5 recall) with the topmost candidate being relevant in 80% of cases (top1 precision). Precision and recall of the extraction rules (second stage) were 93% and 91%, respectively. Together, the two stages of the extraction engine were able to provide (partially) correct solutions in 992 out of 1050 test tasks (94%), with a majority of these (696) representing fully correct and complete answers. Conclusions Our experiments confirmed the applicability and efficacy of ExaCT. Furthermore, they demonstrated that combining a statistical method with 'weak' extraction rules can identify a variety of study characteristics. The system is flexible and can be extended to handle other characteristics and document types (e.g., study protocols). PMID:20920176

  5. Analysis of soil moisture extraction algorithm using data from aircraft experiments

    NASA Technical Reports Server (NTRS)

    Burke, H. H. K.; Ho, J. H.

    1981-01-01

    A soil moisture extraction algorithm is developed using a statistical parameter inversion method. Data sets from two aircraft experiments are utilized for the test. Multifrequency microwave radiometric data surface temperature, and soil moisture information are contained in the data sets. The surface and near surface ( or = 5 cm) soil moisture content can be extracted with accuracy of approximately 5% to 6% for bare fields and fields with grass cover by using L, C, and X band radiometer data. This technique is used for handling large amounts of remote sensing data from space.

  6. A Review of Feature Extraction Software for Microarray Gene Expression Data

    PubMed Central

    Tan, Ching Siang; Ting, Wai Soon; Mohamad, Mohd Saberi; Chan, Weng Howe; Deris, Safaai; Ali Shah, Zuraini

    2014-01-01

    When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method. PMID:25250315

  7. Effective Information Extraction Framework for Heterogeneous Clinical Reports Using Online Machine Learning and Controlled Vocabularies.

    PubMed

    Zheng, Shuai; Lu, James J; Ghasemzadeh, Nima; Hayek, Salim S; Quyyumi, Arshed A; Wang, Fusheng

    2017-05-09

    Extracting structured data from narrated medical reports is challenged by the complexity of heterogeneous structures and vocabularies and often requires significant manual effort. Traditional machine-based approaches lack the capability to take user feedbacks for improving the extraction algorithm in real time. Our goal was to provide a generic information extraction framework that can support diverse clinical reports and enables a dynamic interaction between a human and a machine that produces highly accurate results. A clinical information extraction system IDEAL-X has been built on top of online machine learning. It processes one document at a time, and user interactions are recorded as feedbacks to update the learning model in real time. The updated model is used to predict values for extraction in subsequent documents. Once prediction accuracy reaches a user-acceptable threshold, the remaining documents may be batch processed. A customizable controlled vocabulary may be used to support extraction. Three datasets were used for experiments based on report styles: 100 cardiac catheterization procedure reports, 100 coronary angiographic reports, and 100 integrated reports-each combines history and physical report, discharge summary, outpatient clinic notes, outpatient clinic letter, and inpatient discharge medication report. Data extraction was performed by 3 methods: online machine learning, controlled vocabularies, and a combination of these. The system delivers results with F1 scores greater than 95%. IDEAL-X adopts a unique online machine learning-based approach combined with controlled vocabularies to support data extraction for clinical reports. The system can quickly learn and improve, thus it is highly adaptable. ©Shuai Zheng, James J Lu, Nima Ghasemzadeh, Salim S Hayek, Arshed A Quyyumi, Fusheng Wang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 09.05.2017.

  8. Extraction and analysis of carotenoids from the New Zealand sea urchin Evechinus chloroticus gonads.

    PubMed

    Garama, Daniel; Bremer, Phil; Carne, Alan

    2012-01-01

    Sea urchin gonad (roe) is a highly valued food in Japan and North America. Gonad price is strongly influenced by quality, with appearance, especially colour being a major determinant. Previous attempts to extract a carotenoid profile from the New Zealand sea urchin species Evechinus chloroticus have been challenging due to the large amount of lipid present in the gonad. A carotenoid extraction and high performance liquid chromatography (HPLC) analysis method was developed to reduce lipid contamination by incorporating a saponification and lipid cold precipitation in the extraction procedure. This method enabled greater carotenoid purity and enhanced analysis by HPLC. Echinenone was found to be the main carotenoid present in all E. chloroticus gonads. Dark coloured gonads contained higher levels of fucoxanthin/fucoxanthinol, β-carotene and xanthophylls such as astaxanthin and canthaxanthin. This information on the modification and deposition of carotenoids will help in the development of diets to enhance gonad colour.

  9. Generalized Likelihood Uncertainty Estimation (GLUE) methodology for optimization of extraction in natural products.

    PubMed

    Maulidiani; Rudiyanto; Abas, Faridah; Ismail, Intan Safinar; Lajis, Nordin H

    2018-06-01

    Optimization process is an important aspect in the natural product extractions. Herein, an alternative approach is proposed for the optimization in extraction, namely, the Generalized Likelihood Uncertainty Estimation (GLUE). The approach combines the Latin hypercube sampling, the feasible range of independent variables, the Monte Carlo simulation, and the threshold criteria of response variables. The GLUE method is tested in three different techniques including the ultrasound, the microwave, and the supercritical CO 2 assisted extractions utilizing the data from previously published reports. The study found that this method can: provide more information on the combined effects of the independent variables on the response variables in the dotty plots; deal with unlimited number of independent and response variables; consider combined multiple threshold criteria, which is subjective depending on the target of the investigation for response variables; and provide a range of values with their distribution for the optimization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. ID card number detection algorithm based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Ma, Hanjie; Feng, Jie; Dai, Leiyan

    2018-04-01

    In this paper, a new detection algorithm based on Convolutional Neural Network is presented in order to realize the fast and convenient ID information extraction in multiple scenarios. The algorithm uses the mobile device equipped with Android operating system to locate and extract the ID number; Use the special color distribution of the ID card, select the appropriate channel component; Use the image threshold segmentation, noise processing and morphological processing to take the binary processing for image; At the same time, the image rotation and projection method are used for horizontal correction when image was tilting; Finally, the single character is extracted by the projection method, and recognized by using Convolutional Neural Network. Through test shows that, A single ID number image from the extraction to the identification time is about 80ms, the accuracy rate is about 99%, It can be applied to the actual production and living environment.

  11. [Bioremediation of oil-polluted soils: using the [13C]/[12C] ratio to characterize microbial products of oil hydrocarbon biodegradation].

    PubMed

    Ziakun, A M; Brodskiĭ, E S; Baskunov, B P; Zakharchenko, V N; Peshenko, V P; Filonov, A E; Vetrova, A A; Ivanova, A A; Boronin, A M

    2014-01-01

    We compared data on the extent of bioremediation in soils polluted with oil. The data were obtained using conventional methods of hydrocarbon determination: extraction gas chromatography-mass spectrometry, extraction IR spectroscopy, and extraction gravimetry. Due to differences in the relative abundances of the stable carbon isotopes (13C/12C) in oil and in soil organic matter, these ratios could be used as natural isotopic labels of either substance. Extraction gravimetry in combination with characteristics of the carbon isotope composition of organic products in the soil before and after bioremediation was shown to be the most informative approach to an evaluation of soil bioremediation. At present, it is the only method enabling quantification of the total petroleum hydrocarbons in oil-polluted soil, as well as of the amounts of hydrocarbons remaining after bioremediation and those microbially transformed into organic products and biomass.

  12. Temporal data representation, normalization, extraction, and reasoning: A review from clinical domain

    PubMed Central

    Madkour, Mohcine; Benhaddou, Driss; Tao, Cui

    2016-01-01

    Background and Objective We live our lives by the calendar and the clock, but time is also an abstraction, even an illusion. The sense of time can be both domain-specific and complex, and is often left implicit, requiring significant domain knowledge to accurately recognize and harness. In the clinical domain, the momentum gained from recent advances in infrastructure and governance practices has enabled the collection of tremendous amount of data at each moment in time. Electronic Health Records (EHRs) have paved the way to making these data available for practitioners and researchers. However, temporal data representation, normalization, extraction and reasoning are very important in order to mine such massive data and therefore for constructing the clinical timeline. The objective of this work is to provide an overview of the problem of constructing a timeline at the clinical point of care and to summarize the state-of-the-art in processing temporal information of clinical narratives. Methods This review surveys the methods used in three important area: modeling and representing of time, Medical NLP methods for extracting time, and methods of time reasoning and processing. The review emphasis on the current existing gap between present methods and the semantic web technologies and catch up with the possible combinations. Results the main findings of this review is revealing the importance of time processing not only in constructing timelines and clinical decision support systems but also as a vital component of EHR data models and operations. Conclusions Extracting temporal information in clinical narratives is a challenging task. The inclusion of ontologies and semantic web will lead to better assessment of the annotation task and, together with medical NLP techniques, will help resolving granularity and co-reference resolution problems. PMID:27040831

  13. First Steps to Automated Interior Reconstruction from Semantically Enriched Point Clouds and Imagery

    NASA Astrophysics Data System (ADS)

    Obrock, L. S.; Gülch, E.

    2018-05-01

    The automated generation of a BIM-Model from sensor data is a huge challenge for the modeling of existing buildings. Currently the measurements and analyses are time consuming, allow little automation and require expensive equipment. We do lack an automated acquisition of semantical information of objects in a building. We are presenting first results of our approach based on imagery and derived products aiming at a more automated modeling of interior for a BIM building model. We examine the building parts and objects visible in the collected images using Deep Learning Methods based on Convolutional Neural Networks. For localization and classification of building parts we apply the FCN8s-Model for pixel-wise Semantic Segmentation. We, so far, reach a Pixel Accuracy of 77.2 % and a mean Intersection over Union of 44.2 %. We finally use the network for further reasoning on the images of the interior room. We combine the segmented images with the original images and use photogrammetric methods to produce a three-dimensional point cloud. We code the extracted object types as colours of the 3D-points. We thus are able to uniquely classify the points in three-dimensional space. We preliminary investigate a simple extraction method for colour and material of building parts. It is shown, that the combined images are very well suited to further extract more semantic information for the BIM-Model. With the presented methods we see a sound basis for further automation of acquisition and modeling of semantic and geometric information of interior rooms for a BIM-Model.

  14. Impact of JPEG2000 compression on endmember extraction and unmixing of remotely sensed hyperspectral data

    NASA Astrophysics Data System (ADS)

    Martin, Gabriel; Gonzalez-Ruiz, Vicente; Plaza, Antonio; Ortiz, Juan P.; Garcia, Inmaculada

    2010-07-01

    Lossy hyperspectral image compression has received considerable interest in recent years due to the extremely high dimensionality of the data. However, the impact of lossy compression on spectral unmixing techniques has not been widely studied. These techniques characterize mixed pixels (resulting from insufficient spatial resolution) in terms of a suitable combination of spectrally pure substances (called endmembers) weighted by their estimated fractional abundances. This paper focuses on the impact of JPEG2000-based lossy compression of hyperspectral images on the quality of the endmembers extracted by different algorithms. The three considered algorithms are the orthogonal subspace projection (OSP), which uses only spatial information, and the automatic morphological endmember extraction (AMEE) and spatial spectral endmember extraction (SSEE), which integrate both spatial and spectral information in the search for endmembers. The impact of compression on the resulting abundance estimation based on the endmembers derived by different methods is also substantiated. Experimental results are conducted using a hyperspectral data set collected by NASA Jet Propulsion Laboratory over the Cuprite mining district in Nevada. The experimental results are quantitatively analyzed using reference information available from U.S. Geological Survey, resulting in recommendations to specialists interested in applying endmember extraction and unmixing algorithms to compressed hyperspectral data.

  15. Detecting the red tide based on remote sensing data in optically complex East China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Pan, Delu; Mao, Zhihua; Tao, Bangyi; Liu, Qiong

    2012-09-01

    Red tide not only destroys marine fishery production, deteriorates the marine environment, affects coastal tourist industry, but also causes human poison, even death by eating toxic seafood contaminated by red tide organisms. Remote sensing technology has the characteristics of large-scale, synchronized, rapid monitoring, so it is one of the most important and most effective means of red tide monitoring. This paper selects the high frequency red tides areas of the East China Sea as study area, MODIS/Aqua L2 data as the data source, analysis and compares the spectral differences in the red tide water bodies and non-red tide water bodies of many historical events. Based on the spectral differences, this paper develops the algorithm of Rrs555/Rrs488> 1.5 to extract the red tide information. Apply the algorithm on red tide event happened in the East China Sea on May 28, 2009 to extract the information of red tide, and found that the method can determine effectively the location of the occurrence of red tide; there is a good corresponding relationship between red tide extraction result and chlorophyll a concentration extracted by remote sensing, shows that these algorithm can determine effectively the location and extract the red tide information.

  16. Object-oriented feature extraction approach for mapping supraglacial debris in Schirmacher Oasis using very high-resolution satellite data

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Jadhav, Ajay; Luis, Alvarinho J.

    2016-05-01

    Supraglacial debris was mapped in the Schirmacher Oasis, east Antarctica, by using WorldView-2 (WV-2) high resolution optical remote sensing data consisting of 8-band calibrated Gram Schmidt (GS)-sharpened and atmospherically corrected WV-2 imagery. This study is a preliminary attempt to develop an object-oriented rule set to extract supraglacial debris for Antarctic region using 8-spectral band imagery. Supraglacial debris was manually digitized from the satellite imagery to generate the ground reference data. Several trials were performed using few existing traditional pixel-based classification techniques and color-texture based object-oriented classification methods to extract supraglacial debris over a small domain of the study area. Multi-level segmentation and attributes such as scale, shape, size, compactness along with spectral information from the data were used for developing the rule set. The quantitative analysis of error was carried out against the manually digitized reference data to test the practicability of our approach over the traditional pixel-based methods. Our results indicate that OBIA-based approach (overall accuracy: 93%) for extracting supraglacial debris performed better than all the traditional pixel-based methods (overall accuracy: 80-85%). The present attempt provides a comprehensive improved method for semiautomatic feature extraction in supraglacial environment and a new direction in the cryospheric research.

  17. Survey of the Methods and Reporting Practices in Published Meta-analyses of Test Performance: 1987 to 2009

    ERIC Educational Resources Information Center

    Dahabreh, Issa J.; Chung, Mei; Kitsios, Georgios D.; Terasawa, Teruhiko; Raman, Gowri; Tatsioni, Athina; Tobar, Annette; Lau, Joseph; Trikalinos, Thomas A.; Schmid, Christopher H.

    2013-01-01

    We performed a survey of meta-analyses of test performance to describe the evolution in their methods and reporting. Studies were identified through MEDLINE (1966-2009), reference lists, and relevant reviews. We extracted information on clinical topics, literature review methods, quality assessment, and statistical analyses. We reviewed 760…

  18. Automated data mining: an innovative and efficient web-based approach to maintaining resident case logs.

    PubMed

    Bhattacharya, Pratik; Van Stavern, Renee; Madhavan, Ramesh

    2010-12-01

    Use of resident case logs has been considered by the Residency Review Committee for Neurology of the Accreditation Council for Graduate Medical Education (ACGME). This study explores the effectiveness of a data-mining program for creating resident logs and compares the results to a manual data-entry system. Other potential applications of data mining to enhancing resident education are also explored. Patient notes dictated by residents were extracted from the Hospital Information System and analyzed using an unstructured mining program. History, examination and ICD codes were obtained and compared to the existing manual log. The automated data History, examination, and ICD codes were gathered for a 30-day period and compared to manual case logs. The automated method extracted all resident dictations with the dates of encounter and transcription. The automated data-miner processed information from all 19 residents, while only 4 residents logged manually. The manual method identified only broad categories of diseases; the major categories were stroke or vascular disorder 53 (27.6%), epilepsy 28 (14.7%), and pain syndromes 26 (13.5%). In the automated method, epilepsy 114 (21.1%), cerebral atherosclerosis 114 (21.1%), and headache 105 (19.4%) were the most frequent primary diagnoses, and headache 89 (16.5%), seizures 94 (17.4%), and low back pain 47 (9%) were the most common chief complaints. More detailed patient information such as tobacco use 227 (42%), alcohol use 205 (38%), and drug use 38 (7%) were extracted by the data-mining method. Manual case logs are time-consuming, provide limited information, and may be unpopular with residents. Data mining is a time-effective tool that may aid in the assessment of resident experience or the ACGME core competencies or in resident clinical research. More study of this method in larger numbers of residency programs is needed.

  19. Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds.

    PubMed

    Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun

    2016-06-17

    Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average completeness, correctness, and F-measure of 0.96, 0.93, and 0.94, respectively. The time complexity analysis shows that the scan line based road markings extraction method proposed in this paper provides a promising alternative for offline road markings extraction from MLS data.

  20. Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds†

    PubMed Central

    Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun

    2016-01-01

    Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average completeness, correctness, and F-measure of 0.96, 0.93, and 0.94, respectively. The time complexity analysis shows that the scan line based road markings extraction method proposed in this paper provides a promising alternative for offline road markings extraction from MLS data. PMID:27322279

  1. a R-Shiny Based Phenology Analysis System and Case Study Using Digital Camera Dataset

    NASA Astrophysics Data System (ADS)

    Zhou, Y. K.

    2018-05-01

    Accurate extracting of the vegetation phenology information play an important role in exploring the effects of climate changes on vegetation. Repeated photos from digital camera is a useful and huge data source in phonological analysis. Data processing and mining on phenological data is still a big challenge. There is no single tool or a universal solution for big data processing and visualization in the field of phenology extraction. In this paper, we proposed a R-shiny based web application for vegetation phenological parameters extraction and analysis. Its main functions include phenological site distribution visualization, ROI (Region of Interest) selection, vegetation index calculation and visualization, data filtering, growth trajectory fitting, phenology parameters extraction, etc. the long-term observation photography data from Freemanwood site in 2013 is processed by this system as an example. The results show that: (1) this system is capable of analyzing large data using a distributed framework; (2) The combination of multiple parameter extraction and growth curve fitting methods could effectively extract the key phenology parameters. Moreover, there are discrepancies between different combination methods in unique study areas. Vegetation with single-growth peak is suitable for using the double logistic module to fit the growth trajectory, while vegetation with multi-growth peaks should better use spline method.

  2. Hybrid method for building extraction in vegetation-rich urban areas from very high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Jayasekare, Ajith S.; Wickramasuriya, Rohan; Namazi-Rad, Mohammad-Reza; Perez, Pascal; Singh, Gaurav

    2017-07-01

    A continuous update of building information is necessary in today's urban planning. Digital images acquired by remote sensing platforms at appropriate spatial and temporal resolutions provide an excellent data source to achieve this. In particular, high-resolution satellite images are often used to retrieve objects such as rooftops using feature extraction. However, high-resolution images acquired over built-up areas are associated with noises such as shadows that reduce the accuracy of feature extraction. Feature extraction heavily relies on the reflectance purity of objects, which is difficult to perfect in complex urban landscapes. An attempt was made to increase the reflectance purity of building rooftops affected by shadows. In addition to the multispectral (MS) image, derivatives thereof namely, normalized difference vegetation index and principle component (PC) images were incorporated in generating the probability image. This hybrid probability image generation ensured that the effect of shadows on rooftop extraction, particularly on light-colored roofs, is largely eliminated. The PC image was also used for image segmentation, which further increased the accuracy compared to segmentation performed on an MS image. Results show that the presented method can achieve higher rooftop extraction accuracy (70.4%) in vegetation-rich urban areas compared to traditional methods.

  3. Extracting foreground ensemble features to detect abnormal crowd behavior in intelligent video-surveillance systems

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien

    2017-09-01

    Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.

  4. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extractionmore » improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.« less

  5. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    PubMed

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko

    2016-04-01

    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  6. Automatic identification of comparative effectiveness research from Medline citations to support clinicians’ treatment information needs

    PubMed Central

    Zhang, Mingyuan; Fiol, Guilherme Del; Grout, Randall W.; Jonnalagadda, Siddhartha; Medlin, Richard; Mishra, Rashmi; Weir, Charlene; Liu, Hongfang; Mostafa, Javed; Fiszman, Marcelo

    2014-01-01

    Online knowledge resources such as Medline can address most clinicians’ patient care information needs. Yet, significant barriers, notably lack of time, limit the use of these sources at the point of care. The most common information needs raised by clinicians are treatment-related. Comparative effectiveness studies allow clinicians to consider multiple treatment alternatives for a particular problem. Still, solutions are needed to enable efficient and effective consumption of comparative effectiveness research at the point of care. Objective Design and assess an algorithm for automatically identifying comparative effectiveness studies and extracting the interventions investigated in these studies. Methods The algorithm combines semantic natural language processing, Medline citation metadata, and machine learning techniques. We assessed the algorithm in a case study of treatment alternatives for depression. Results Both precision and recall for identifying comparative studies was 0.83. A total of 86% of the interventions extracted perfectly or partially matched the gold standard. Conclusion Overall, the algorithm achieved reasonable performance. The method provides building blocks for the automatic summarization of comparative effectiveness research to inform point of care decision-making. PMID:23920677

  7. Evaluation of δ2H and δ18O of water in pores extracted by compression method-effects of closed pores and comparison to direct vapor equilibration and laser spectrometry method

    NASA Astrophysics Data System (ADS)

    Nakata, Kotaro; Hasegawa, Takuma; Oyama, Takahiro; Miyakawa, Kazuya

    2018-06-01

    Stable isotopes (δ2H and δ18O) of water can help our understanding of origin, mixing and migration of groundwater. In the formation with low permeability, it provides information about migration mechanism of ion such as diffusion and/or advection. Thus it has been realized as very important information to understand the migration of water and ions in it. However, in formation with low permeability it is difficult to obtain the ground water sample as liquid and water in pores needs to be extracted to estimate it. Compressing rock is the most common and widely used method of extracting water in pores. However, changes in δ2H and δ18O may take place during compression because changes in ion concentration have been reported in previous studies. In this study, two natural rocks were compressed, and the changes in the δ2H and δ18O with compression pressure were investigated. Mechanisms for the changes in water isotopes observed during the compression were then discussed. In addition, δ2H and δ18O of water in pores were also evaluated by direct vapor equilibration and laser spectrometry (DVE-LS) and δ2H and δ18O were compared with those obtained by compression. δ2H was found to change during the compression and a part of this change was found to be explained by the effect of water from closed pores extracted by compression. In addition, water isotopes in both open and closed pores were estimated by combining the results of 2 kinds of compression experiments. Water isotopes evaluated by compression that not be affected by water from closed pores showed good agreements with those obtained by DVE-LS indicating compression could show the mixed information of water from open and closed pores, while DVE-LS could show the information only for open pores. Thus, the comparison of water isotopes obtained by compression and DVE-LS could provide the information about water isotopes in closed and open pores.

  8. How to Assess Your Training Needs.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    In discussing a method for assessing training needs, this paper deals with various phases of training and points out the importance of outside specialists, the recording of information, and the use of alternative methods. Then five case studies are presented, illustrating each of the industrial groups within the Board's scope: extractives, cement…

  9. Using time-frequency analysis to determine time-resolved detonation velocity with microwave interferometry.

    PubMed

    Kittell, David E; Mares, Jesus O; Son, Steven F

    2015-04-01

    Two time-frequency analysis methods based on the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used to determine time-resolved detonation velocities with microwave interferometry (MI). The results were directly compared to well-established analysis techniques consisting of a peak-picking routine as well as a phase unwrapping method (i.e., quadrature analysis). The comparison is conducted on experimental data consisting of transient detonation phenomena observed in triaminotrinitrobenzene and ammonium nitrate-urea explosives, representing high and low quality MI signals, respectively. Time-frequency analysis proved much more capable of extracting useful and highly resolved velocity information from low quality signals than the phase unwrapping and peak-picking methods. Additionally, control of the time-frequency methods is mainly constrained to a single parameter which allows for a highly unbiased analysis method to extract velocity information. In contrast, the phase unwrapping technique introduces user based variability while the peak-picking technique does not achieve a highly resolved velocity result. Both STFT and CWT methods are proposed as improved additions to the analysis methods applied to MI detonation experiments, and may be useful in similar applications.

  10. Structured methodology review identified seven (RETREAT) criteria for selecting qualitative evidence synthesis approaches.

    PubMed

    Booth, Andrew; Noyes, Jane; Flemming, Kate; Gerhardus, Ansgar; Wahlster, Philip; van der Wilt, Gert Jan; Mozygemba, Kati; Refolo, Pietro; Sacchini, Dario; Tummers, Marcia; Rehfuess, Eva

    2018-07-01

    To compare and contrast different methods of qualitative evidence synthesis (QES) against criteria identified from the literature and to map their attributes to inform selection of the most appropriate QES method to answer research questions addressed by qualitative research. Electronic databases, citation searching, and a study register were used to identify studies reporting QES methods. Attributes compiled from 26 methodological papers (2001-2014) were used as a framework for data extraction. Data were extracted into summary tables by one reviewer and then considered within the author team. We identified seven considerations determining choice of methods from the methodological literature, encapsulated within the mnemonic Review question-Epistemology-Time/Timescale-Resources-Expertise-Audience and purpose-Type of data. We mapped 15 different published QES methods against these seven criteria. The final framework focuses on stand-alone QES methods but may also hold potential when integrating quantitative and qualitative data. These findings offer a contemporary perspective as a conceptual basis for future empirical investigation of the advantages and disadvantages of different methods of QES. It is hoped that this will inform appropriate selection of QES approaches. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Video indexing based on image and sound

    NASA Astrophysics Data System (ADS)

    Faudemay, Pascal; Montacie, Claude; Caraty, Marie-Jose

    1997-10-01

    Video indexing is a major challenge for both scientific and economic reasons. Information extraction can sometimes be easier from sound channel than from image channel. We first present a multi-channel and multi-modal query interface, to query sound, image and script through 'pull' and 'push' queries. We then summarize the segmentation phase, which needs information from the image channel. Detection of critical segments is proposed. It should speed-up both automatic and manual indexing. We then present an overview of the information extraction phase. Information can be extracted from the sound channel, through speaker recognition, vocal dictation with unconstrained vocabularies, and script alignment with speech. We present experiment results for these various techniques. Speaker recognition methods were tested on the TIMIT and NTIMIT database. Vocal dictation as experimented on newspaper sentences spoken by several speakers. Script alignment was tested on part of a carton movie, 'Ivanhoe'. For good quality sound segments, error rates are low enough for use in indexing applications. Major issues are the processing of sound segments with noise or music, and performance improvement through the use of appropriate, low-cost architectures or networks of workstations.

  12. An introduction to the Marshall information retrieval and display system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An on-line terminal oriented data storage and retrieval system is presented which allows a user to extract and process information from stored data bases. The use of on-line terminals for extracting and displaying data from the data bases provides a fast and responsive method for obtaining needed information. The system consists of general purpose computer programs that provide the overall capabilities of the total system. The system can process any number of data files via a Dictionary (one for each file) which describes the data format to the system. New files may be added to the system at any time, and reprogramming is not required. Illustrations of the system are shown, and sample inquiries and responses are given.

  13. Extracting fields snow coverage information with HJ-1A/B satellites data

    NASA Astrophysics Data System (ADS)

    Dong, Wenquan; Meng, Jihua

    2015-10-01

    The distribution and change of snow coverage are sensitive factors of climate change. In northeast part of China, farmlands are still covered with snow in spring. Since sowing activity can only be done when the snow melted, fields snow coverage monitoring provides reference for the determination of sowing date. Because of the restriction of the sensors and application requirements, current researches on remote sensing of snow focus more on the study of musicale and large scale, rather than the study of small scale, and especially research on snow melting period is rarely reported.HJ-1A/B satellites are parts of little satellite constellation, focusing on environment and disaster monitoring and meteorological forecast. Compared to other data sources, HJ-1A/B satellites both have comparatively higher temporal and spatial resolution and are more conducive to monitor the variations of melting snow coverage at small watershed. This paper was based on HJ-1A/1B data, taking Hongxing farm of Bei'an, Heilongjiang Province, China as the study area. In this paper, we exploited the methods for extraction of snow cover information on farmland in two cases, both HJ-1A/1B CCD with HJ-1B IRS data and just HJ-1A/1B CCD data. The reason we chose the two cases is that, the two optical satellites HJ-1A/B are capable of providing a whole territory coverage period in visible light spectrum in two days, infrared spectrum in four days. So sometimes we can only obtain CCD image. In this case, the method of normalized snow index cannot be used to extract snow coverage information. Using HJ-1A/1B CCD with HJ-1B IRS data, combined with the theory of snow remote sensing monitoring, this paper analyzed spectral response characteristics of HJ-1A/1B satellites data, then the widely used Normalized Difference Snow Index(NDSI) and S3 Index were quoted to the HJ-1A/1B satellites data. The NDSI uses reflectance values of Red and SWIR spectral bands of HJ-1B, and S3 index uses reflectance values of NIR, Red and SWIR spectral bands. With multi-temporal HJ satellite data, the optimal threshold of normalized snow index was determined to divide the farmland into snow covering area, melting snow area and non-snow area. The results are quite similar to each other and of high accuracy, and the melting snow coverage can be well extracted by two types of normalized snow index. When we can only obtain CCD image, we use supervised classification method to extract melting snow coverage. With this method, the accuracy of fields snow coverage extraction is slightly lower than that using normalized snow index methods mentioned above. And in mountain area, the snow coverage area is slightly larger than that is extracted by normalized snow index methods, because the shadows make the color of snow in the valley darker, the supervised classification method divides it into non-snow coverage area, while the normalized snow index method well weakened the effect of shadow. This study shows that extraction accuracy in both cases is assessed, and both of them can meet the needs of practical applications. HJ-1A/1B satellites are conducive to monitor the variations of melting snow coverage over farmland, and they can provide reference for the determination of sowing date.

  14. Extraction and Analysis of Major Autumn Crops in Jingxian County Based on Multi - Temporal gf - 1 Remote Sensing Image and Object-Oriented

    NASA Astrophysics Data System (ADS)

    Ren, B.; Wen, Q.; Zhou, H.; Guan, F.; Li, L.; Yu, H.; Wang, Z.

    2018-04-01

    The purpose of this paper is to provide decision support for the adjustment and optimization of crop planting structure in Jingxian County. The object-oriented information extraction method is used to extract corn and cotton from Jingxian County of Hengshui City in Hebei Province, based on multi-period GF-1 16-meter images. The best time of data extraction was screened by analyzing the spectral characteristics of corn and cotton at different growth stages based on multi-period GF-116-meter images, phenological data, and field survey data. The results showed that the total classification accuracy of corn and cotton was up to 95.7 %, the producer accuracy was 96 % and 94 % respectively, and the user precision was 95.05 % and 95.9 % respectively, which satisfied the demand of crop monitoring application. Therefore, combined with multi-period high-resolution images and object-oriented classification can be a good extraction of large-scale distribution of crop information for crop monitoring to provide convenient and effective technical means.

  15. Developing a hybrid dictionary-based bio-entity recognition technique

    PubMed Central

    2015-01-01

    Background Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. Methods This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. Results The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. Conclusions The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall. PMID:26043907

  16. Sieve-based relation extraction of gene regulatory networks from biological literature

    PubMed Central

    2015-01-01

    Background Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. Results We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice of transforming data into skip-mention sequences is appropriate for detecting relations between distant mentions. Conclusions Linear-chain conditional random fields, along with appropriate data transformations, can be efficiently used to extract relations. The sieve-based architecture simplifies the system as new sieves can be easily added or removed and each sieve can utilize the results of previous ones. Furthermore, sieves with conditional random fields can be trained on arbitrary text data and hence are applicable to broad range of relation extraction tasks and data domains. PMID:26551454

  17. Sieve-based relation extraction of gene regulatory networks from biological literature.

    PubMed

    Žitnik, Slavko; Žitnik, Marinka; Zupan, Blaž; Bajec, Marko

    2015-01-01

    Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice of transforming data into skip-mention sequences is appropriate for detecting relations between distant mentions. Linear-chain conditional random fields, along with appropriate data transformations, can be efficiently used to extract relations. The sieve-based architecture simplifies the system as new sieves can be easily added or removed and each sieve can utilize the results of previous ones. Furthermore, sieves with conditional random fields can be trained on arbitrary text data and hence are applicable to broad range of relation extraction tasks and data domains.

  18. Uncovering the spatial structure of mobility networks

    NASA Astrophysics Data System (ADS)

    Louail, Thomas; Lenormand, Maxime; Picornell, Miguel; García Cantú, Oliva; Herranz, Ricardo; Frias-Martinez, Enrique; Ramasco, José J.; Barthelemy, Marc

    2015-01-01

    The extraction of a clear and simple footprint of the structure of large, weighted and directed networks is a general problem that has relevance for many applications. An important example is seen in origin-destination matrices, which contain the complete information on commuting flows, but are difficult to analyze and compare. We propose here a versatile method, which extracts a coarse-grained signature of mobility networks, under the form of a 2 × 2 matrix that separates the flows into four categories. We apply this method to origin-destination matrices extracted from mobile phone data recorded in 31 Spanish cities. We show that these cities essentially differ by their proportion of two types of flows: integrated (between residential and employment hotspots) and random flows, whose importance increases with city size. Finally, the method allows the determination of categories of networks, and in the mobility case, the classification of cities according to their commuting structure.

  19. Apparatus And Method For Osl-Based, Remote Radiation Monitoring And Spectrometry

    DOEpatents

    Miller, Steven D.; Smith, Leon Eric; Skorpik, James R.

    2006-03-07

    Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

  20. Apparatus and method for OSL-based, remote radiation monitoring and spectrometry

    DOEpatents

    Smith, Leon Eric [Richland, WA; Miller, Steven D [Richland, WA; Bowyer, Theodore W [Oakton, VA

    2008-05-20

    Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

  1. A Model for Indexing Medical Documents Combining Statistical and Symbolic Knowledge.

    PubMed Central

    Avillach, Paul; Joubert, Michel; Fieschi, Marius

    2007-01-01

    OBJECTIVES: To develop and evaluate an information processing method based on terminologies, in order to index medical documents in any given documentary context. METHODS: We designed a model using both symbolic general knowledge extracted from the Unified Medical Language System (UMLS) and statistical knowledge extracted from a domain of application. Using statistical knowledge allowed us to contextualize the general knowledge for every particular situation. For each document studied, the extracted terms are ranked to highlight the most significant ones. The model was tested on a set of 17,079 French standardized discharge summaries (SDSs). RESULTS: The most important ICD-10 term of each SDS was ranked 1st or 2nd by the method in nearly 90% of the cases. CONCLUSIONS: The use of several terminologies leads to more precise indexing. The improvement achieved in the model’s implementation performances as a result of using semantic relationships is encouraging. PMID:18693792

  2. A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses

    NASA Astrophysics Data System (ADS)

    Chalmin, E.; Farges, F.; Brown, G. E.

    2009-01-01

    High-resolution manganese K-edge X-ray absorption near edge structure spectra were collected on a set of 40 Mn-bearing minerals. The pre-edge feature information (position, area) was investigated to extract as much as possible quantitative valence and symmetry information for manganese in various “test” and “unknown” minerals and glasses. The samples present a range of manganese symmetry environments (tetrahedral, square planar, octahedral, and cubic) and valences (II to VII). The extraction of the pre-edge information is based on a previous multiple scattering and multiplet calculations for model compounds. Using the method described in this study, a robust estimation of the manganese valence could be obtained from the pre-edge region at 5% accuracy level. This method applied to 20 “test” compounds (such as hausmannite and rancieite) and to 15 “unknown” compounds (such as axinite and birnessite) provides a quantitative estimate of the average valence of manganese in complex minerals and silicate glasses.

  3. A novel method for extraction of neural response from single channel cochlear implant auditory evoked potentials.

    PubMed

    Sinkiewicz, Daniel; Friesen, Lendra; Ghoraani, Behnaz

    2017-02-01

    Cortical auditory evoked potentials (CAEP) are used to evaluate cochlear implant (CI) patient auditory pathways, but the CI device produces an electrical artifact, which obscures the relevant information in the neural response. Currently there are multiple methods, which attempt to recover the neural response from the contaminated CAEP, but there is no gold standard, which can quantitatively confirm the effectiveness of these methods. To address this crucial shortcoming, we develop a wavelet-based method to quantify the amount of artifact energy in the neural response. In addition, a novel technique for extracting the neural response from single channel CAEPs is proposed. The new method uses matching pursuit (MP) based feature extraction to represent the contaminated CAEP in a feature space, and support vector machines (SVM) to classify the components as normal hearing (NH) or artifact. The NH components are combined to recover the neural response without artifact energy, as verified using the evaluation tool. Although it needs some further evaluation, this approach is a promising method of electrical artifact removal from CAEPs. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Running wavelet archetype aids the determination of heart rate from the video photoplethysmogram during motion.

    PubMed

    Addison, Paul S; Foo, David M H; Jacquel, Dominique

    2017-07-01

    The extraction of heart rate from a video-based biosignal during motion using a novel wavelet-based ensemble averaging method is described. Running Wavelet Archetyping (RWA) allows for the enhanced extraction of pulse information from the time-frequency representation, from which a video-based heart rate (HRvid) can be derived. This compares favorably to a reference heart rate derived from a pulse oximeter.

  5. A new fast and fully automated software based algorithm for extracting respiratory signal from raw PET data and its comparison to other methods.

    PubMed

    Kesner, Adam Leon; Kuntner, Claudia

    2010-10-01

    Respiratory gating in PET is an approach used to minimize the negative effects of respiratory motion on spatial resolution. It is based on an initial determination of a patient's respiratory movements during a scan, typically using hardware based systems. In recent years, several fully automated databased algorithms have been presented for extracting a respiratory signal directly from PET data, providing a very practical strategy for implementing gating in the clinic. In this work, a new method is presented for extracting a respiratory signal from raw PET sinogram data and compared to previously presented automated techniques. The acquisition of respiratory signal from PET data in the newly proposed method is based on rebinning the sinogram data into smaller data structures and then analyzing the time activity behavior in the elements of these structures. From this analysis, a 1D respiratory trace is produced, analogous to a hardware derived respiratory trace. To assess the accuracy of this fully automated method, respiratory signal was extracted from a collection of 22 clinical FDG-PET scans using this method, and compared to signal derived from several other software based methods as well as a signal derived from a hardware system. The method presented required approximately 9 min of processing time for each 10 min scan (using a single 2.67 GHz processor), which in theory can be accomplished while the scan is being acquired and therefore allowing a real-time respiratory signal acquisition. Using the mean correlation between the software based and hardware based respiratory traces, the optimal parameters were determined for the presented algorithm. The mean/median/range of correlations for the set of scans when using the optimal parameters was found to be 0.58/0.68/0.07-0.86. The speed of this method was within the range of real-time while the accuracy surpassed the most accurate of the previously presented algorithms. PET data inherently contains information about patient motion; information that is not currently being utilized. We have shown that a respiratory signal can be extracted from raw PET data in potentially real-time and in a fully automated manner. This signal correlates well with hardware based signal for a large percentage of scans, and avoids the efforts and complications associated with hardware. The proposed method to extract a respiratory signal can be implemented on existing scanners and, if properly integrated, can be applied without changes to routine clinical procedures.

  6. Context-Aware Local Binary Feature Learning for Face Recognition.

    PubMed

    Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie

    2018-05-01

    In this paper, we propose a context-aware local binary feature learning (CA-LBFL) method for face recognition. Unlike existing learning-based local face descriptors such as discriminant face descriptor (DFD) and compact binary face descriptor (CBFD) which learn each feature code individually, our CA-LBFL exploits the contextual information of adjacent bits by constraining the number of shifts from different binary bits, so that more robust information can be exploited for face representation. Given a face image, we first extract pixel difference vectors (PDV) in local patches, and learn a discriminative mapping in an unsupervised manner to project each pixel difference vector into a context-aware binary vector. Then, we perform clustering on the learned binary codes to construct a codebook, and extract a histogram feature for each face image with the learned codebook as the final representation. In order to exploit local information from different scales, we propose a context-aware local binary multi-scale feature learning (CA-LBMFL) method to jointly learn multiple projection matrices for face representation. To make the proposed methods applicable for heterogeneous face recognition, we present a coupled CA-LBFL (C-CA-LBFL) method and a coupled CA-LBMFL (C-CA-LBMFL) method to reduce the modality gap of corresponding heterogeneous faces in the feature level, respectively. Extensive experimental results on four widely used face datasets clearly show that our methods outperform most state-of-the-art face descriptors.

  7. A Registration Method Based on Contour Point Cloud for 3D Whole-Body PET and CT Images

    PubMed Central

    Yang, Qiyao; Wang, Zhiguo; Zhang, Guoxu

    2017-01-01

    The PET and CT fusion image, combining the anatomical and functional information, has important clinical meaning. An effective registration of PET and CT images is the basis of image fusion. This paper presents a multithread registration method based on contour point cloud for 3D whole-body PET and CT images. Firstly, a geometric feature-based segmentation (GFS) method and a dynamic threshold denoising (DTD) method are creatively proposed to preprocess CT and PET images, respectively. Next, a new automated trunk slices extraction method is presented for extracting feature point clouds. Finally, the multithread Iterative Closet Point is adopted to drive an affine transform. We compare our method with a multiresolution registration method based on Mattes Mutual Information on 13 pairs (246~286 slices per pair) of 3D whole-body PET and CT data. Experimental results demonstrate the registration effectiveness of our method with lower negative normalization correlation (NC = −0.933) on feature images and less Euclidean distance error (ED = 2.826) on landmark points, outperforming the source data (NC = −0.496, ED = 25.847) and the compared method (NC = −0.614, ED = 16.085). Moreover, our method is about ten times faster than the compared one. PMID:28316979

  8. Chemical named entities recognition: a review on approaches and applications

    PubMed Central

    2014-01-01

    The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to “text mine” these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted. PMID:24834132

  9. Automatic updating and 3D modeling of airport information from high resolution images using GIS and LIDAR data

    NASA Astrophysics Data System (ADS)

    Lv, Zheng; Sui, Haigang; Zhang, Xilin; Huang, Xianfeng

    2007-11-01

    As one of the most important geo-spatial objects and military establishment, airport is always a key target in fields of transportation and military affairs. Therefore, automatic recognition and extraction of airport from remote sensing images is very important and urgent for updating of civil aviation and military application. In this paper, a new multi-source data fusion approach on automatic airport information extraction, updating and 3D modeling is addressed. Corresponding key technologies including feature extraction of airport information based on a modified Ostu algorithm, automatic change detection based on new parallel lines-based buffer detection algorithm, 3D modeling based on gradual elimination of non-building points algorithm, 3D change detecting between old airport model and LIDAR data, typical CAD models imported and so on are discussed in detail. At last, based on these technologies, we develop a prototype system and the results show our method can achieve good effects.

  10. Chemical named entities recognition: a review on approaches and applications.

    PubMed

    Eltyeb, Safaa; Salim, Naomie

    2014-01-01

    The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to "text mine" these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted.

  11. The utility of an automated electronic system to monitor and audit transfusion practice.

    PubMed

    Grey, D E; Smith, V; Villanueva, G; Richards, B; Augustson, B; Erber, W N

    2006-05-01

    Transfusion laboratories with transfusion committees have a responsibility to monitor transfusion practice and generate improvements in clinical decision-making and red cell usage. However, this can be problematic and expensive because data cannot be readily extracted from most laboratory information systems. To overcome this problem, we developed and introduced a system to electronically extract and collate extensive amounts of data from two laboratory information systems and to link it with ICD10 clinical codes in a new database using standard information technology. Three data files were generated from two laboratory information systems, ULTRA (version 3.2) and TM, using standard information technology scripts. These were patient pre- and post-transfusion haemoglobin, blood group and antibody screen, and cross match and transfusion data. These data together with ICD10 codes for surgical cases were imported into an MS ACCESS database and linked by means of a unique laboratory number. Queries were then run to extract the relevant information and processed in Microsoft Excel for graphical presentation. We assessed the utility of this data extraction system to audit transfusion practice in a 600-bed adult tertiary hospital over an 18-month period. A total of 52 MB of data were extracted from the two laboratory information systems for the 18-month period and together with 2.0 MB theatre ICD10 data enabled case-specific transfusion information to be generated. The audit evaluated 15,992 blood group and antibody screens, 25,344 cross-matched red cell units and 15,455 transfused red cell units. Data evaluated included cross-matched to transfusion ratios and pre- and post-transfusion haemoglobin levels for a range of clinical diagnoses. Data showed significant differences between clinical units and by ICD10 code. This method to electronically extract large amounts of data and linkage with clinical databases has provided a powerful and sustainable tool for monitoring transfusion practice. It has been successfully used to identify areas requiring education, training and clinical guidance and allows for comparison with national haemoglobin-based transfusion guidelines.

  12. Standing intraoral extractions of cheek teeth aided by partial crown removal in 165 horses (2010-2016).

    PubMed

    Rice, M K; Henry, T J

    2018-01-01

    Diseased cheek teeth in horses often require invasive extraction techniques that carry a high rate of complications. Techniques and instrumentation were developed to perform partial crown removal to aid standing intraoral extraction of diseased cheek teeth in horses. To analyse success rates and post-surgical complications in horses undergoing cheek teeth extraction assisted by partial crown removal. Retrospective cohort study. This study included 165 horses with 194 diseased cheek teeth that were extracted orally assisted by partial crown removal between 2010 and 2016. Medical records were analysed, including case details, obtained radiographs, surgical reports and follow-up information. Follow-up information (≥2 months) was obtained for 151 horses (91.5%). There were 95 horses examined post-operatively by the authors and, 16 horses by the referring veterinarian; in 40 horses, post-operative follow up was obtained by informal telephone interviews with the owner. Successful standing intraoral extraction of cheek teeth was obtained in 164/165 horses (99.4%). Twenty-five of these horses (15.2%) required additional intraoral extraction methods to complete the extraction, including minimally invasive transbuccal approach (n = 21) and tooth sectioning (n = 4). There was one (0.6%) horse with intraoral extraction failure that required standing repulsion to complete the extraction. The intraoperative complication of fractured root tips occurred in 11/165 horses (6.7%). Post-operative complications occurred in 6/165 horses (3.6%), including alveolar sequestra (n = 4), mild delay of alveolar healing at 2 months (n = 1), and development of a persistent draining tract secondary to a retained root tip (n = 1). Specialised instrumentation and additional training in the technique are recommended to perform partial crown removal in horses. Horses with cheek teeth extraction by partial crown removal have an excellent prognosis for a positive outcome. The term partial coronectomy is proposed for this technique. © 2017 EVJ Ltd.

  13. Extracting biomedical events from pairs of text entities

    PubMed Central

    2015-01-01

    Background Huge amounts of electronic biomedical documents, such as molecular biology reports or genomic papers are generated daily. Nowadays, these documents are mainly available in the form of unstructured free texts, which require heavy processing for their registration into organized databases. This organization is instrumental for information retrieval, enabling to answer the advanced queries of researchers and practitioners in biology, medicine, and related fields. Hence, the massive data flow calls for efficient automatic methods of text-mining that extract high-level information, such as biomedical events, from biomedical text. The usual computational tools of Natural Language Processing cannot be readily applied to extract these biomedical events, due to the peculiarities of the domain. Indeed, biomedical documents contain highly domain-specific jargon and syntax. These documents also describe distinctive dependencies, making text-mining in molecular biology a specific discipline. Results We address biomedical event extraction as the classification of pairs of text entities into the classes corresponding to event types. The candidate pairs of text entities are recursively provided to a multiclass classifier relying on Support Vector Machines. This recursive process extracts events involving other events as arguments. Compared to joint models based on Markov Random Fields, our model simplifies inference and hence requires shorter training and prediction times along with lower memory capacity. Compared to usual pipeline approaches, our model passes over a complex intermediate problem, while making a more extensive usage of sophisticated joint features between text entities. Our method focuses on the core event extraction of the Genia task of BioNLP challenges yielding the best result reported so far on the 2013 edition. PMID:26201478

  14. Automated encoding of clinical documents based on natural language processing.

    PubMed

    Friedman, Carol; Shagina, Lyudmila; Lussier, Yves; Hripcsak, George

    2004-01-01

    The aim of this study was to develop a method based on natural language processing (NLP) that automatically maps an entire clinical document to codes with modifiers and to quantitatively evaluate the method. An existing NLP system, MedLEE, was adapted to automatically generate codes. The method involves matching of structured output generated by MedLEE consisting of findings and modifiers to obtain the most specific code. Recall and precision applied to Unified Medical Language System (UMLS) coding were evaluated in two separate studies. Recall was measured using a test set of 150 randomly selected sentences, which were processed using MedLEE. Results were compared with a reference standard determined manually by seven experts. Precision was measured using a second test set of 150 randomly selected sentences from which UMLS codes were automatically generated by the method and then validated by experts. Recall of the system for UMLS coding of all terms was .77 (95% CI.72-.81), and for coding terms that had corresponding UMLS codes recall was .83 (.79-.87). Recall of the system for extracting all terms was .84 (.81-.88). Recall of the experts ranged from .69 to .91 for extracting terms. The precision of the system was .89 (.87-.91), and precision of the experts ranged from .61 to .91. Extraction of relevant clinical information and UMLS coding were accomplished using a method based on NLP. The method appeared to be comparable to or better than six experts. The advantage of the method is that it maps text to codes along with other related information, rendering the coded output suitable for effective retrieval.

  15. Mapping surface disturbance of energy-related infrastructure in southwest Wyoming--An assessment of methods

    USGS Publications Warehouse

    Germaine, Stephen S.; O'Donnell, Michael S.; Aldridge, Cameron L.; Baer, Lori; Fancher, Tammy; McBeth, Jamie; McDougal, Robert R.; Waltermire, Robert; Bowen, Zachary H.; Diffendorfer, James; Garman, Steven; Hanson, Leanne

    2012-01-01

    We evaluated how well three leading information-extraction software programs (eCognition, Feature Analyst, Feature Extraction) and manual hand digitization interpreted information from remotely sensed imagery of a visually complex gas field in Wyoming. Specifically, we compared how each mapped the area of and classified the disturbance features present on each of three remotely sensed images, including 30-meter-resolution Landsat, 10-meter-resolution SPOT (Satellite Pour l'Observation de la Terre), and 0.6-meter resolution pan-sharpened QuickBird scenes. Feature Extraction mapped the spatial area of disturbance features most accurately on the Landsat and QuickBird imagery, while hand digitization was most accurate on the SPOT imagery. Footprint non-overlap error was smallest on the Feature Analyst map of the Landsat imagery, the hand digitization map of the SPOT imagery, and the Feature Extraction map of the QuickBird imagery. When evaluating feature classification success against a set of ground-truthed control points, Feature Analyst, Feature Extraction, and hand digitization classified features with similar success on the QuickBird and SPOT imagery, while eCognition classified features poorly relative to the other methods. All maps derived from Landsat imagery classified disturbance features poorly. Using the hand digitized QuickBird data as a reference and making pixel-by-pixel comparisons, Feature Extraction classified features best overall on the QuickBird imagery, and Feature Analyst classified features best overall on the SPOT and Landsat imagery. Based on the entire suite of tasks we evaluated, Feature Extraction performed best overall on the Landsat and QuickBird imagery, while hand digitization performed best overall on the SPOT imagery, and eCognition performed worst overall on all three images. Error rates for both area measurements and feature classification were prohibitively high on Landsat imagery, while QuickBird was time and cost prohibitive for mapping large spatial extents. The SPOT imagery produced map products that were far more accurate than Landsat and did so at a far lower cost than QuickBird imagery. Consideration of degree of map accuracy required, costs associated with image acquisition, software, operator and computation time, and tradeoffs in the form of spatial extent versus resolution should all be considered when evaluating which combination of imagery and information-extraction method might best serve any given land use mapping project. When resources permit, attaining imagery that supports the highest classification and measurement accuracy possible is recommended.

  16. Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis.

    PubMed

    Bian, Zijian; Tan, Wenjun; Yang, Jinzhu; Liu, Jiren; Zhao, Dazhe

    2014-01-01

    The quantitative analysis of the airway tree is of critical importance in the CT-based diagnosis and treatment of popular pulmonary diseases. The extraction of airway centerline is a precursor to identify airway hierarchical structure, measure geometrical parameters, and guide visualized detection. Traditional methods suffer from extra branches and circles due to incomplete segmentation results, which induce false analysis in applications. This paper proposed an automatic and robust centerline extraction method for airway tree. First, the centerline is located based on the topological thinning method; border voxels are deleted symmetrically to preserve topological and geometrical properties iteratively. Second, the structural information is generated using graph-theoretic analysis. Then inaccurate circles are removed with a distance weighting strategy, and extra branches are pruned according to clinical anatomic knowledge. The centerline region without false appendices is eventually determined after the described phases. Experimental results show that the proposed method identifies more than 96% branches and keep consistency across different cases and achieves superior circle-free structure and centrality.

  17. Multi-Target State Extraction for the SMC-PHD Filter

    PubMed Central

    Si, Weijian; Wang, Liwei; Qu, Zhiyu

    2016-01-01

    The sequential Monte Carlo probability hypothesis density (SMC-PHD) filter has been demonstrated to be a favorable method for multi-target tracking. However, the time-varying target states need to be extracted from the particle approximation of the posterior PHD, which is difficult to implement due to the unknown relations between the large amount of particles and the PHD peaks representing potential target locations. To address this problem, a novel multi-target state extraction algorithm is proposed in this paper. By exploiting the information of measurements and particle likelihoods in the filtering stage, we propose a validation mechanism which aims at selecting effective measurements and particles corresponding to detected targets. Subsequently, the state estimates of the detected and undetected targets are performed separately: the former are obtained from the particle clusters directed by effective measurements, while the latter are obtained from the particles corresponding to undetected targets via clustering method. Simulation results demonstrate that the proposed method yields better estimation accuracy and reliability compared to existing methods. PMID:27322274

  18. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  19. Direct Extraction of Tumor Response Based on Ensemble Empirical Mode Decomposition for Image Reconstruction of Early Breast Cancer Detection by UWB.

    PubMed

    Li, Qinwei; Xiao, Xia; Wang, Liang; Song, Hang; Kono, Hayato; Liu, Peifang; Lu, Hong; Kikkawa, Takamaro

    2015-10-01

    A direct extraction method of tumor response based on ensemble empirical mode decomposition (EEMD) is proposed for early breast cancer detection by ultra-wide band (UWB) microwave imaging. With this approach, the image reconstruction for the tumor detection can be realized with only extracted signals from as-detected waveforms. The calibration process executed in the previous research for obtaining reference waveforms which stand for signals detected from the tumor-free model is not required. The correctness of the method is testified by successfully detecting a 4 mm tumor located inside the glandular region in one breast model and by the model located at the interface between the gland and the fat, respectively. The reliability of the method is checked by distinguishing a tumor buried in the glandular tissue whose dielectric constant is 35. The feasibility of the method is confirmed by showing the correct tumor information in both simulation results and experimental results for the realistic 3-D printed breast phantom.

  20. An effective hand vein feature extraction method.

    PubMed

    Li, Haigang; Zhang, Qian; Li, Chengdong

    2015-01-01

    As a new authentication method developed years ago, vein recognition technology features the unique advantage of bioassay. This paper studies the specific procedure for the extraction of hand back vein characteristics. There are different positions used in the collecting process, so that a suitable intravenous regional orientation method is put forward, allowing the positioning area to be the same for all hand positions. In addition, to eliminate the pseudo vein area, the valley regional shape extraction operator can be improved and combined with multiple segmentation algorithms. The images should be segmented step by step, making the vein texture to appear clear and accurate. Lastly, the segmented images should be filtered, eroded, and refined. This process helps to filter the most of the pseudo vein information. Finally, a clear vein skeleton diagram is obtained, demonstrating the effectiveness of the algorithm. This paper presents a hand back vein region location method. This makes it possible to rotate and correct the image by working out the inclination degree of contour at the side of hand back.

  1. Artificial retina model for the retinally blind based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Zeng, Yan-an; Song, Xin-qiang; Jiang, Fa-gang; Chang, Da-ding

    2007-01-01

    Artificial retina is aimed for the stimulation of remained retinal neurons in the patients with degenerated photoreceptors. Microelectrode arrays have been developed for this as a part of stimulator. Design such microelectrode arrays first requires a suitable mathematical method for human retinal information processing. In this paper, a flexible and adjustable human visual information extracting model is presented, which is based on the wavelet transform. With the flexible of wavelet transform to image information processing and the consistent to human visual information extracting, wavelet transform theory is applied to the artificial retina model for the retinally blind. The response of the model to synthetic image is shown. The simulated experiment demonstrates that the model behaves in a manner qualitatively similar to biological retinas and thus may serve as a basis for the development of an artificial retina.

  2. Integrated feature extraction and selection for neuroimage classification

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shen, Dinggang

    2009-02-01

    Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.

  3. Browsing Through Closed Books: Evaluation of Preprocessing Methods for Page Extraction of a 3-D CT Book Volume

    NASA Astrophysics Data System (ADS)

    Stromer, D.; Christlein, V.; Schön, T.; Holub, W.; Maier, A.

    2017-09-01

    It is often the case that a document can not be opened, page-turned or touched anymore due to damages caused by aging processes, moisture or fire. To counter this, special imaging systems can be used. One of our earlier work revealed that a common 3-D X-ray micro-CT scanner is well suited for imaging and reconstructing historical documents written with iron gall ink - an ink consisting of metallic particles. We acquired a volume of a self-made book without opening or page-turning with a single 3-D scan. However, when investigating the reconstructed volume, we faced the problem of a proper automatic extraction of single pages within the volume in an acceptable time without losing information of the writings. Within this work, we evaluate different appropriate pre-processing methods with respect to computation time and accuracy which are decisive for a proper extraction of book pages from the reconstructed X-ray volume and the subsequent ink identification. The different methods were tested for an extreme case with low resolution, noisy input data and wavy pages. Finally, we present results of the page extraction after applying the evaluated methods.

  4. Fluorescence Intrinsic Characterization of Excitation-Emission Matrix Using Multi-Dimensional Ensemble Empirical Mode Decomposition

    PubMed Central

    Chang, Chi-Ying; Chang, Chia-Chi; Hsiao, Tzu-Chien

    2013-01-01

    Excitation-emission matrix (EEM) fluorescence spectroscopy is a noninvasive method for tissue diagnosis and has become important in clinical use. However, the intrinsic characterization of EEM fluorescence remains unclear. Photobleaching and the complexity of the chemical compounds make it difficult to distinguish individual compounds due to overlapping features. Conventional studies use principal component analysis (PCA) for EEM fluorescence analysis, and the relationship between the EEM features extracted by PCA and diseases has been examined. The spectral features of different tissue constituents are not fully separable or clearly defined. Recently, a non-stationary method called multi-dimensional ensemble empirical mode decomposition (MEEMD) was introduced; this method can extract the intrinsic oscillations on multiple spatial scales without loss of information. The aim of this study was to propose a fluorescence spectroscopy system for EEM measurements and to describe a method for extracting the intrinsic characteristics of EEM by MEEMD. The results indicate that, although PCA provides the principal factor for the spectral features associated with chemical compounds, MEEMD can provide additional intrinsic features with more reliable mapping of the chemical compounds. MEEMD has the potential to extract intrinsic fluorescence features and improve the detection of biochemical changes. PMID:24240806

  5. Quantum algorithms for topological and geometric analysis of data

    PubMed Central

    Lloyd, Seth; Garnerone, Silvano; Zanardi, Paolo

    2016-01-01

    Extracting useful information from large data sets can be a daunting task. Topological methods for analysing data sets provide a powerful technique for extracting such information. Persistent homology is a sophisticated tool for identifying topological features and for determining how such features persist as the data is viewed at different scales. Here we present quantum machine learning algorithms for calculating Betti numbers—the numbers of connected components, holes and voids—in persistent homology, and for finding eigenvectors and eigenvalues of the combinatorial Laplacian. The algorithms provide an exponential speed-up over the best currently known classical algorithms for topological data analysis. PMID:26806491

  6. 5W1H Information Extraction with CNN-Bidirectional LSTM

    NASA Astrophysics Data System (ADS)

    Nurdin, A.; Maulidevi, N. U.

    2018-03-01

    In this work, information about who, did what, when, where, why, and how on Indonesian news articles were extracted by combining Convolutional Neural Network and Bidirectional Long Short-Term Memory. Convolutional Neural Network can learn semantically meaningful representations of sentences. Bidirectional LSTM can analyze the relations among words in the sequence. We also use word embedding word2vec for word representation. By combining these algorithms, we obtained F-measure 0.808. Our experiments show that CNN-BLSTM outperforms other shallow methods, namely IBk, C4.5, and Naïve Bayes with the F-measure 0.655, 0.645, and 0.595, respectively.

  7. Validated UPLC-MS/MS method for quantification of seven compounds in rat plasma and tissues: Application to pharmacokinetic and tissue distribution studies in rats after oral administration of extract of Eclipta prostrata L.

    PubMed

    Du, Guangyan; Fu, Lingling; Jia, Jun; Pang, Xu; Yu, Haiyang; Zhang, Youcai; Fan, Guanwei; Gao, Xiumei; Han, Lifeng

    2018-06-01

    A rapid, sensitive and specific ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method was developed to investigate the pharmacokinetics and tissue distribution of Eclipta prostrata extract. Rats were orally administrated the 70% ethanol extract of E. prostrata, and their plasma as well as various organs were collected. The concentrations of seven main compounds, ecliptasaponin IV, ecliptasaponin A, apigenin, 3'-hydroxybiochanin A, luteolin, luteolin-7-O-glucoside and wedelolactone, were quantified by UPLC-MS/MS through multiple reactions monitoring method. The precisions (RSD) of the analytes were all <15.00%. The extraction recoveries ranged from 74.65 to 107.45% with RSD ≤ 15.36%. The matrix effects ranged from 78.00 to 118.06% with RSD ≤ 15.04%. To conclude, the present pharmacokinetic and tissue distribution studies provided useful information for the clinical usage of Eclipta prostrata L. Copyright © 2018 John Wiley & Sons, Ltd.

  8. A method for automatic feature points extraction of human vertebrae three-dimensional model

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Wu, Junsheng

    2017-05-01

    A method for automatic extraction of the feature points of the human vertebrae three-dimensional model is presented. Firstly, the statistical model of vertebrae feature points is established based on the results of manual vertebrae feature points extraction. Then anatomical axial analysis of the vertebrae model is performed according to the physiological and morphological characteristics of the vertebrae. Using the axial information obtained from the analysis, a projection relationship between the statistical model and the vertebrae model to be extracted is established. According to the projection relationship, the statistical model is matched with the vertebrae model to get the estimated position of the feature point. Finally, by analyzing the curvature in the spherical neighborhood with the estimated position of feature points, the final position of the feature points is obtained. According to the benchmark result on multiple test models, the mean relative errors of feature point positions are less than 5.98%. At more than half of the positions, the error rate is less than 3% and the minimum mean relative error is 0.19%, which verifies the effectiveness of the method.

  9. Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing

    PubMed Central

    Wen, Tailai; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi

    2018-01-01

    The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors’ responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose’s classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods. PMID:29382146

  10. Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.

    PubMed

    Wen, Tailai; Yan, Jia; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi

    2018-01-29

    The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors' responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose's classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods.

  11. Brain vascular image segmentation based on fuzzy local information C-means clustering

    NASA Astrophysics Data System (ADS)

    Hu, Chaoen; Liu, Xia; Liang, Xiao; Hui, Hui; Yang, Xin; Tian, Jie

    2017-02-01

    Light sheet fluorescence microscopy (LSFM) is a powerful optical resolution fluorescence microscopy technique which enables to observe the mouse brain vascular network in cellular resolution. However, micro-vessel structures are intensity inhomogeneity in LSFM images, which make an inconvenience for extracting line structures. In this work, we developed a vascular image segmentation method by enhancing vessel details which should be useful for estimating statistics like micro-vessel density. Since the eigenvalues of hessian matrix and its sign describes different geometric structure in images, which enable to construct vascular similarity function and enhance line signals, the main idea of our method is to cluster the pixel values of the enhanced image. Our method contained three steps: 1) calculate the multiscale gradients and the differences between eigenvalues of Hessian matrix. 2) In order to generate the enhanced microvessels structures, a feed forward neural network was trained by 2.26 million pixels for dealing with the correlations between multi-scale gradients and the differences between eigenvalues. 3) The fuzzy local information c-means clustering (FLICM) was used to cluster the pixel values in enhance line signals. To verify the feasibility and effectiveness of this method, mouse brain vascular images have been acquired by a commercial light-sheet microscope in our lab. The experiment of the segmentation method showed that dice similarity coefficient can reach up to 85%. The results illustrated that our approach extracting line structures of blood vessels dramatically improves the vascular image and enable to accurately extract blood vessels in LSFM images.

  12. Pattern recognition of satellite cloud imagery for improved weather prediction

    NASA Technical Reports Server (NTRS)

    Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.

    1986-01-01

    The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.

  13. Sample Preparation and Extraction in Small Sample Volumes Suitable for Pediatric Clinical Studies: Challenges, Advances, and Experiences of a Bioanalytical HPLC-MS/MS Method Validation Using Enalapril and Enalaprilat

    PubMed Central

    Burckhardt, Bjoern B.; Laeer, Stephanie

    2015-01-01

    In USA and Europe, medicines agencies force the development of child-appropriate medications and intend to increase the availability of information on the pediatric use. This asks for bioanalytical methods which are able to deal with small sample volumes as the trial-related blood lost is very restricted in children. Broadly used HPLC-MS/MS, being able to cope with small volumes, is susceptible to matrix effects. The latter restrains the precise drug quantification through, for example, causing signal suppression. Sophisticated sample preparation and purification utilizing solid-phase extraction was applied to reduce and control matrix effects. A scale-up from vacuum manifold to positive pressure manifold was conducted to meet the demands of high-throughput within a clinical setting. Faced challenges, advances, and experiences in solid-phase extraction are exemplarily presented on the basis of the bioanalytical method development and validation of low-volume samples (50 μL serum). Enalapril, enalaprilat, and benazepril served as sample drugs. The applied sample preparation and extraction successfully reduced the absolute and relative matrix effect to comply with international guidelines. Recoveries ranged from 77 to 104% for enalapril and from 93 to 118% for enalaprilat. The bioanalytical method comprising sample extraction by solid-phase extraction was fully validated according to FDA and EMA bioanalytical guidelines and was used in a Phase I study in 24 volunteers. PMID:25873972

  14. Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Xie, Fang; Xiao, Chengwen; Liu, Ruilin; Zhang, Lili

    2017-08-01

    A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations in electrical imaging logging data. The occurrence of the conductivity fluctuations (formation background noise) directly affects the fracture/vug information extraction and reservoir effectiveness evaluation. We present a multi-threshold de-noising method based on wavelet packet transform to eliminate the influence of rugged borehole walls. The noise is present as fluctuations in button-electrode conductivity curves and as pockmarked responses in electrical imaging logging static images. The noise has responses in various scales and frequency ranges and has low conductivity compared with fractures or vugs. Our de-noising method is to decompose the data into coefficients with wavelet packet transform on a quadratic spline basis, then shrink high-frequency wavelet packet coefficients in different resolutions with minimax threshold and hard-threshold function, and finally reconstruct the thresholded coefficients. We use electrical imaging logging data collected from fractured-vuggy Ordovician carbonatite reservoir in Tarim Basin to verify the validity of the multi-threshold de-noising method. Segmentation results and extracted parameters are shown as well to prove the effectiveness of the de-noising procedure.

  15. Extracting Low-Frequency Information from Time Attenuation in Elastic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong

    2017-03-01

    Low-frequency information is crucial for recovering background velocity, but the lack of low-frequency information in field data makes inversion impractical without accurate initial models. Laplace-Fourier domain waveform inversion can recover a smooth model from real data without low-frequency information, which can be used for subsequent inversion as an ideal starting model. In general, it also starts with low frequencies and includes higher frequencies at later inversion stages, while the difference is that its ultralow frequency information comes from the Laplace-Fourier domain. Meanwhile, a direct implementation of the Laplace-transformed wavefield using frequency domain inversion is also very convenient. However, because broad frequency bands are often used in the pure time domain waveform inversion, it is difficult to extract the wavefields dominated by low frequencies in this case. In this paper, low-frequency components are constructed by introducing time attenuation into the recorded residuals, and the rest of the method is identical to the traditional time domain inversion. Time windowing and frequency filtering are also applied to mitigate the ambiguity of the inverse problem. Therefore, we can start at low frequencies and to move to higher frequencies. The experiment shows that the proposed method can achieve a good inversion result in the presence of a linear initial model and records without low-frequency information.

  16. Deep Learning from EEG Reports for Inferring Underspecified Information

    PubMed Central

    Goodwin, Travis R.; Harabagiu, Sanda M.

    2017-01-01

    Secondary use1of electronic health records (EHRs) often relies on the ability to automatically identify and extract information from EHRs. Unfortunately, EHRs are known to suffer from a variety of idiosyncrasies – most prevalently, they have been shown to often omit or underspecify information. Adapting traditional machine learning methods for inferring underspecified information relies on manually specifying features characterizing the specific information to recover (e.g. particular findings, test results, or physician’s impressions). By contrast, in this paper, we present a method for jointly (1) automatically extracting word- and report-level features and (2) inferring underspecified information from EHRs. Our approach accomplishes these two tasks jointly by combining recent advances in deep neural learning with access to textual data in electroencephalogram (EEG) reports. We evaluate the performance of our model on the problem of inferring the neurologist’s over-all impression (normal or abnormal) from electroencephalogram (EEG) reports and report an accuracy of 91.4% precision of 94.4% recall of 91.2% and F1 measure of 92.8% (a 40% improvement over the performance obtained using Doc2Vec). These promising results demonstrate the power of our approach, while error analysis reveals remaining obstacles as well as areas for future improvement. PMID:28815118

  17. Methods of analysis by the U.S. Geological Survey Organic Geochemistry Research Group : determination of selected herbicides and their degradation products in water using solid-phase extraction and gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Kish, J.L.; Thurman, E.M.; Scribner, E.A.; Zimmerman, L.R.

    2000-01-01

    A method for the extraction and analysis of eight herbicides and five degradation products using solid-phase extraction from natural water samples followed by gas chromatography/mass spectrometry is presented in this report. This method was developed for dimethenamid; flufenacet; fluometuron and its degradation products, demethylfluometuron (DMFM), 3-(trifluromethyl)phenylurea (TFMPU), 3-(trifluromethyl)-aniline (TFMA); molinate; norflurazon and its degradation product, demethylnorflurazon; pendamethalin; the degradation product of prometryn, deisopropylprometryn; propanil; and trifluralin. The eight herbicides are used primarily in the southern United States where cotton, rice, and soybeans are produced. The exceptions are dimethenamid and flufenacet, which are used on corn in the Midwest. Water samples received by the U.S. Geological Survey's Organic Geochemistry Research Group in Lawrence, Kansas, are filtered to remove suspended particulate matter and then passed through disposable solid-phase extraction columns containing octadecyl-bonded porous silica (C-18) to extract the compounds. The herbicides and their degradation products are removed from the column by ethyl acetate elution. The eluate is evaporated under nitrogen, and components then are separated, identified, and quantified by injecting an aliquot of the concentrated extract into a high-resolution, fused-silica capillary column of a gas chromatograph/mass spectrometer under selected-ion mode. Method detection limits ranged from 0.02 to 0.05 ?g/L for all compounds with the exception of TFMPU, which has a method detection limit of 0.32 ?g/L. The mean absolute recovery is 107 percent. This method for the determination of herbicides and their degradation products is valuable for acquiring information about water quality and compound fate and transport in water.

  18. Brain extraction in partial volumes T2*@7T by using a quasi-anatomic segmentation with bias field correction.

    PubMed

    Valente, João; Vieira, Pedro M; Couto, Carlos; Lima, Carlos S

    2018-02-01

    Poor brain extraction in Magnetic Resonance Imaging (MRI) has negative consequences in several types of brain post-extraction such as tissue segmentation and related statistical measures or pattern recognition algorithms. Current state of the art algorithms for brain extraction work on weighted T1 and T2, being not adequate for non-whole brain images such as the case of T2*FLASH@7T partial volumes. This paper proposes two new methods that work directly in T2*FLASH@7T partial volumes. The first is an improvement of the semi-automatic threshold-with-morphology approach adapted to incomplete volumes. The second method uses an improved version of a current implementation of the fuzzy c-means algorithm with bias correction for brain segmentation. Under high inhomogeneity conditions the performance of the first method degrades, requiring user intervention which is unacceptable. The second method performed well for all volumes, being entirely automatic. State of the art algorithms for brain extraction are mainly semi-automatic, requiring a correct initialization by the user and knowledge of the software. These methods can't deal with partial volumes and/or need information from atlas which is not available in T2*FLASH@7T. Also, combined volumes suffer from manipulations such as re-sampling which deteriorates significantly voxel intensity structures making segmentation tasks difficult. The proposed method can overcome all these difficulties, reaching good results for brain extraction using only T2*FLASH@7T volumes. The development of this work will lead to an improvement of automatic brain lesions segmentation in T2*FLASH@7T volumes, becoming more important when lesions such as cortical Multiple-Sclerosis need to be detected. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mapping Miles and Huberman's Within-Case and Cross-Case Analysis Methods onto the Literature Review Process

    ERIC Educational Resources Information Center

    Onwuegbuzie, Anthony J.; Weinbaum, Rebecca K.

    2016-01-01

    Recently, several authors have attempted to make the literature review process more transparent by providing a step-by-step guide to conducting literature reviews. However, although these works are very informative, none of them delineate how to display information extracted from literature reviews in a reader-friendly and visually appealing…

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, S; Jeraj, R; Galavis, P

    Purpose: Sensitivity of PET-derived texture features to reconstruction methods has been reported for features extracted from axial planes; however, studies often utilize three dimensional techniques. This work aims to quantify the impact of multi-plane (3D) vs. single-plane (2D) feature extraction on radiomics-based analysis, including sensitivity to reconstruction parameters and potential loss of spatial information. Methods: Twenty-three patients with solid tumors underwent [{sup 18}F]FDG PET/CT scans under identical protocols. PET data were reconstructed using five sets of reconstruction parameters. Tumors were segmented using an automatic, in-house algorithm robust to reconstruction variations. 50 texture features were extracted using two Methods: 2D patchesmore » along axial planes and 3D patches. For each method, sensitivity of features to reconstruction parameters was calculated as percent difference relative to the average value across reconstructions. Correlations between feature values were compared when using 2D and 3D extraction. Results: 21/50 features showed significantly different sensitivity to reconstruction parameters when extracted in 2D vs 3D (wilcoxon α<0.05), assessed by overall range of variation, Rangevar(%). Eleven showed greater sensitivity to reconstruction in 2D extraction, primarily first-order and co-occurrence features (average Rangevar increase 83%). The remaining ten showed higher variation in 3D extraction (average Range{sub var}increase 27%), mainly co-occurence and greylevel run-length features. Correlation of feature value extracted in 2D and feature value extracted in 3D was poor (R<0.5) in 12/50 features, including eight co-occurrence features. Feature-to-feature correlations in 2D were marginally higher than 3D, ∣R∣>0.8 in 16% and 13% of all feature combinations, respectively. Larger sensitivity to reconstruction parameters were seen for inter-feature correlation in 2D(σ=6%) than 3D (σ<1%) extraction. Conclusion: Sensitivity and correlation of various texture features were shown to significantly differ between 2D and 3D extraction. Additionally, inter-feature correlations were more sensitive to reconstruction variation using single-plane extraction. This work highlights a need for standardized feature extraction/selection techniques in radiomics.« less

  1. High-efficient Extraction of Drainage Networks from Digital Elevation Model Data Constrained by Enhanced Flow Enforcement from Known River Map

    NASA Astrophysics Data System (ADS)

    Wu, T.; Li, T.; Li, J.; Wang, G.

    2017-12-01

    Improved drainage network extraction can be achieved by flow enforcement whereby information of known river maps is imposed to the flow-path modeling process. However, the common elevation-based stream burning method can sometimes cause unintended topological errors and misinterpret the overall drainage pattern. We presented an enhanced flow enforcement method to facilitate accurate and efficient process of drainage network extraction. Both the topology of the mapped hydrography and the initial landscape of the DEM are well preserved and fully utilized in the proposed method. An improved stream rasterization is achieved here, yielding continuous, unambiguous and stream-collision-free raster equivalent of stream vectors for flow enforcement. By imposing priority-based enforcement with a complementary flow direction enhancement procedure, the drainage patterns of the mapped hydrography are fully represented in the derived results. The proposed method was tested over the Rogue River Basin, using DEMs with various resolutions. As indicated by the visual and statistical analyses, the proposed method has three major advantages: (1) it significantly reduces the occurrences of topological errors, yielding very accurate watershed partition and channel delineation, (2) it ensures scale-consistent performance at DEMs of various resolutions, and (3) the entire extraction process is well-designed to achieve great computational efficiency.

  2. Automatic detection of Martian dark slope streaks by machine learning using HiRISE images

    NASA Astrophysics Data System (ADS)

    Wang, Yexin; Di, Kaichang; Xin, Xin; Wan, Wenhui

    2017-07-01

    Dark slope streaks (DSSs) on the Martian surface are one of the active geologic features that can be observed on Mars nowadays. The detection of DSS is a prerequisite for studying its appearance, morphology, and distribution to reveal its underlying geological mechanisms. In addition, increasingly massive amounts of Mars high resolution data are now available. Hence, an automatic detection method for locating DSSs is highly desirable. In this research, we present an automatic DSS detection method by combining interest region extraction and machine learning techniques. The interest region extraction combines gradient and regional grayscale information. Moreover, a novel recognition strategy is proposed that takes the normalized minimum bounding rectangles (MBRs) of the extracted regions to calculate the Local Binary Pattern (LBP) feature and train a DSS classifier using the Adaboost machine learning algorithm. Comparative experiments using five different feature descriptors and three different machine learning algorithms show the superiority of the proposed method. Experimental results utilizing 888 extracted region samples from 28 HiRISE images show that the overall detection accuracy of our proposed method is 92.4%, with a true positive rate of 79.1% and false positive rate of 3.7%, which in particular indicates great performance of the method at eliminating non-DSS regions.

  3. Target 3-D reconstruction of streak tube imaging lidar based on Gaussian fitting

    NASA Astrophysics Data System (ADS)

    Yuan, Qingyu; Niu, Lihong; Hu, Cuichun; Wu, Lei; Yang, Hongru; Yu, Bing

    2018-02-01

    Streak images obtained by the streak tube imaging lidar (STIL) contain the distance-azimuth-intensity information of a scanned target, and a 3-D reconstruction of the target can be carried out through extracting the characteristic data of multiple streak images. Significant errors will be caused in the reconstruction result by the peak detection method due to noise and other factors. So as to get a more precise 3-D reconstruction, a peak detection method based on Gaussian fitting of trust region is proposed in this work. Gaussian modeling is performed on the returned wave of single time channel of each frame, then the modeling result which can effectively reduce the noise interference and possesses a unique peak could be taken as the new returned waveform, lastly extracting its feature data through peak detection. The experimental data of aerial target is for verifying this method. This work shows that the peak detection method based on Gaussian fitting reduces the extraction error of the feature data to less than 10%; utilizing this method to extract the feature data and reconstruct the target make it possible to realize the spatial resolution with a minimum 30 cm in the depth direction, and improve the 3-D imaging accuracy of the STIL concurrently.

  4. NMR Confirmation and HPLC Quantification of Javamide-I and Javamide-II in Green Coffee Extract Products Available in the Market.

    PubMed

    Park, Jae B

    2017-01-01

    Javamide-I/javamide-II are phenolic amides found in coffee. Recent reports suggested that they may contain several biological activities related to human health. Therefore, there is emergent interest about their quantities in coffee-related products. Green coffee extract is a powder extract made of unroasted green coffee beans, available as a dietary supplement. However, there is little information about the amounts of javamide-I/javamide-II in green coffee extract products in the market. Therefore, in this paper, javamide-I/javamide-II were extracted from green coffee extract products and their identifications were confirmed by NMR. After that, the amounts of javamide-I/javamide-II were individually quantified from seven different green coffee extract samples using the HPLC method coupled to an electrochemical detector. The HPLC method provided accurate and reliable measurement of javamide-I/javamide-II with excellent peak resolution and low detection limit. In all seven green coffee extract samples, javamide-II was found to be between 0.28 and 2.96 mg/g, but javamide-I was detected in only five samples in the concentration levels of 0.15-0.52 mg/g, suggesting that green coffee extract products contain different amounts of javamide-I/javamide-II. In summary, javamide-I/javamide-II can be found in green coffee extract products sold in the market, but their amounts are likely to be comparatively different in between green coffee extract brands.

  5. Adaptive fault feature extraction from wayside acoustic signals from train bearings

    NASA Astrophysics Data System (ADS)

    Zhang, Dingcheng; Entezami, Mani; Stewart, Edward; Roberts, Clive; Yu, Dejie

    2018-07-01

    Wayside acoustic detection of train bearing faults plays a significant role in maintaining safety in the railway transport system. However, the bearing fault information is normally masked by strong background noises and harmonic interferences generated by other components (e.g. axles and gears). In order to extract the bearing fault feature information effectively, a novel method called improved singular value decomposition (ISVD) with resonance-based signal sparse decomposition (RSSD), namely the ISVD-RSSD method, is proposed in this paper. A Savitzky-Golay (S-G) smoothing filter is used to filter singular vectors (SVs) in the ISVD method as an extension of the singular value decomposition (SVD) theorem. Hilbert spectrum entropy and a stepwise optimisation strategy are used to optimize the S-G filter's parameters. The RSSD method is able to nonlinearly decompose the wayside acoustic signal of a faulty train bearing into high and low resonance components, the latter of which contains bearing fault information. However, the high level of noise usually results in poor decomposition results from the RSSD method. Hence, the collected wayside acoustic signal must first be de-noised using the ISVD component of the ISVD-RSSD method. Next, the de-noised signal is decomposed by using the RSSD method. The obtained low resonance component is then demodulated with a Hilbert transform such that the bearing fault can be detected by observing Hilbert envelope spectra. The effectiveness of the ISVD-RSSD method is verified through both laboratory field-based experiments as described in the paper. The results indicate that the proposed method is superior to conventional spectrum analysis and ensemble empirical mode decomposition methods.

  6. Photometry unlocks 3D information from 2D localization microscopy data.

    PubMed

    Franke, Christian; Sauer, Markus; van de Linde, Sebastian

    2017-01-01

    We developed a straightforward photometric method, temporal, radial-aperture-based intensity estimation (TRABI), that allows users to extract 3D information from existing 2D localization microscopy data. TRABI uses the accurate determination of photon numbers in different regions of the emission pattern of single emitters to generate a z-dependent photometric parameter. This method can determine fluorophore positions up to 600 nm from the focal plane and can be combined with biplane detection to further improve axial localization.

  7. Robust real-time extraction of respiratory signals from PET list-mode data.

    PubMed

    Salomon, Andre; Zhang, Bin; Olivier, Patrick; Goedicke, Andreas

    2018-05-01

    Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions' detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting ("binning") of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signalsdirectly from the acquired PET data simplifies the clinical workflow as it avoids to handle additional signal measurement equipment. We introduce a new data-driven method "Combined Local Motion Detection" (CLMD). It uses the Time-of-Flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using 7 measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4s in total on a standard multi-core CPU and thus provides a robust and accurate approach enabling real-time processing capabilities using standard PC hardware. © 2018 Institute of Physics and Engineering in Medicine.

  8. Robust real-time extraction of respiratory signals from PET list-mode data

    NASA Astrophysics Data System (ADS)

    Salomon, André; Zhang, Bin; Olivier, Patrick; Goedicke, Andreas

    2018-06-01

    Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions’ detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting (‘binning’) of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signals directly from the acquired PET data simplifies the clinical workflow as it avoids handling additional signal measurement equipment. We introduce a new data-driven method ‘combined local motion detection’ (CLMD). It uses the time-of-flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using seven measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4 s in total on a standard multi-core CPU and thus provides a robust and accurate approach enabling real-time processing capabilities using standard PC hardware.

  9. A pratical deconvolution algorithm in multi-fiber spectra extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Haotong; Li, Guangwei; Bai, Zhongrui

    2015-08-01

    Deconvolution algorithm is a very promising method in multi-fiber spectroscopy data reduction, the method can extract spectra to the photo noise level as well as improve the spectral resolution, but as mentioned in Bolton & Schlegel (2010), it is limited by its huge computation requirement and thus can not be implemented directly in actual data reduction. We develop a practical algorithm to solve the computation problem. The new algorithm can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. We further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. A series of simulations based on LAMOST data are carried out to test our method under more real situations with poisson noise and extreme cross talk, i.e., the fiber-to-fiber distance is comparable to the FWHM of the fiber profile. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method shows both higher S/N and spectral resolution. The computaion time for a noise added image with 250 fibers and 4k pixels in wavelength direction, is about 2 hours when the fiber cross talk is not in the extreme case and 3.5 hours for the extreme fiber cross talk. We finally apply our method to real LAMOST data. We find that the 1D spectrum extracted by our method has both higher SNR and resolution than the traditional methods, but there are still some suspicious weak features possibly caused by the noise sensitivity of the method around the strong emission lines. How to further attenuate the noise influence will be the topic of our future work. As we have demonstrated, multi-fiber spectra extracted by our method will have higher resolution and signal to noise ratio thus will provide more accurate information (such as higher radial velocity and metallicity measurement accuracy in stellar physics) to astronomers than traditional methods.

  10. Challenges in Managing Information Extraction

    ERIC Educational Resources Information Center

    Shen, Warren H.

    2009-01-01

    This dissertation studies information extraction (IE), the problem of extracting structured information from unstructured data. Example IE tasks include extracting person names from news articles, product information from e-commerce Web pages, street addresses from emails, and names of emerging music bands from blogs. IE is all increasingly…

  11. Malware analysis using visualized image matrices.

    PubMed

    Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  12. Feature Vector Construction Method for IRIS Recognition

    NASA Astrophysics Data System (ADS)

    Odinokikh, G.; Fartukov, A.; Korobkin, M.; Yoo, J.

    2017-05-01

    One of the basic stages of iris recognition pipeline is iris feature vector construction procedure. The procedure represents the extraction of iris texture information relevant to its subsequent comparison. Thorough investigation of feature vectors obtained from iris showed that not all the vector elements are equally relevant. There are two characteristics which determine the vector element utility: fragility and discriminability. Conventional iris feature extraction methods consider the concept of fragility as the feature vector instability without respect to the nature of such instability appearance. This work separates sources of the instability into natural and encodinginduced which helps deeply investigate each source of instability independently. According to the separation concept, a novel approach of iris feature vector construction is proposed. The approach consists of two steps: iris feature extraction using Gabor filtering with optimal parameters and quantization with separated preliminary optimized fragility thresholds. The proposed method has been tested on two different datasets of iris images captured under changing environmental conditions. The testing results show that the proposed method surpasses all the methods considered as a prior art by recognition accuracy on both datasets.

  13. Study on Karst Information Identification of Qiandongnan Prefecture Based on RS and GIS Technology

    NASA Astrophysics Data System (ADS)

    Yao, M.; Zhou, G.; Wang, W.; Wu, Z.; Huang, Y.; Huang, X.

    2018-04-01

    Karst area is a pure natural resource base, at the same time, due to the special geological environment; there are droughts and floods alternating with frequent karst collapse, rocky desertification and other resource and environment problems, which seriously restrict the sustainable economic and social development in karst areas. Therefore, this paper identifies and studies the karst, and clarifies the distribution of karst. Provide basic data for the rational development of resources in the karst region and the governance of desertification. Due to the uniqueness of the karst landscape, it can't be directly recognized and extracted by computer in remote sensing images. Therefore, this paper uses the idea of "RS + DEM" to solve the above problems. this article is based on Landsat-5 TM imagery in 2010 and DEM data, proposes the methods to identify karst information research what is use of slope vector diagram, vegetation distribution map, distribution map of karst rocky desertification and other auxiliary data in combination with the signs for human-computer interaction interpretation, identification and extraction of peak forest, peaks cluster and isolated peaks, and further extraction of karst depression. Experiments show that this method achieves the "RS + DEM" mode through the reasonable combination of remote sensing images and DEM data. It not only effectively extracts karst areas covered with vegetation, but also quickly and accurately locks down the karst area and greatly improves the efficiency and precision of visual interpretation. The accurate interpretation rate of karst information in study area in this paper is 86.73 %.

  14. Time dependent calibration of a sediment extraction scheme.

    PubMed

    Roychoudhury, Alakendra N

    2006-04-01

    Sediment extraction methods to quantify metal concentration in aquatic sediments usually present limitations in accuracy and reproducibility because metal concentration in the supernatant is controlled to a large extent by the physico-chemical properties of the sediment that result in a complex interplay between the solid and the solution phase. It is suggested here that standardization of sediment extraction methods using pure mineral phases or reference material is futile and instead the extraction processes should be calibrated using site-specific sediments before their application. For calibration, time dependent release of metals should be observed for each leachate to ascertain the appropriate time for a given extraction step. Although such an approach is tedious and time consuming, using iron extraction as an example, it is shown here that apart from quantitative data such an approach provides additional information on factors that play an intricate role in metal dynamics in the environment. Single step ascorbate, HCl, oxalate and dithionite extractions were used for targeting specific iron phases from saltmarsh sediments and their response was observed over time in order to calibrate the extraction times for each extractant later to be used in a sequential extraction. For surficial sediments, an extraction time of 24 h, 1 h, 2 h and 3 h was ascertained for ascorbate, HCl, oxalate and dithionite extractions, respectively. Fluctuations in iron concentration in the supernatant over time were ubiquitous. The adsorption-desorption behavior is possibly controlled by the sediment organic matter, formation or consumption of active exchange sites during extraction and the crystallinity of iron mineral phase present in the sediments.

  15. Improving the performance of lesion-based computer-aided detection schemes of breast masses using a case-based adaptive cueing method

    NASA Astrophysics Data System (ADS)

    Tan, Maxine; Aghaei, Faranak; Wang, Yunzhi; Qian, Wei; Zheng, Bin

    2016-03-01

    Current commercialized CAD schemes have high false-positive (FP) detection rates and also have high correlations in positive lesion detection with radiologists. Thus, we recently investigated a new approach to improve the efficacy of applying CAD to assist radiologists in reading and interpreting screening mammograms. Namely, we developed a new global feature based CAD approach/scheme that can cue the warning sign on the cases with high risk of being positive. In this study, we investigate the possibility of fusing global feature or case-based scores with the local or lesion-based CAD scores using an adaptive cueing method. We hypothesize that the information from the global feature extraction (features extracted from the whole breast regions) are different from and can provide supplementary information to the locally-extracted features (computed from the segmented lesion regions only). On a large and diverse full-field digital mammography (FFDM) testing dataset with 785 cases (347 negative and 438 cancer cases with masses only), we ran our lesion-based and case-based CAD schemes "as is" on the whole dataset. To assess the supplementary information provided by the global features, we used an adaptive cueing method to adaptively adjust the original CAD-generated detection scores (Sorg) of a detected suspicious mass region based on the computed case-based score (Scase) of the case associated with this detected region. Using the adaptive cueing method, better sensitivity results were obtained at lower FP rates (<= 1 FP per image). Namely, increases of sensitivities (in the FROC curves) of up to 6.7% and 8.2% were obtained for the ROI and Case-based results, respectively.

  16. Discrimination of gender using facial image with expression change

    NASA Astrophysics Data System (ADS)

    Kuniyada, Jun; Fukuda, Takahiro; Terada, Kenji

    2005-12-01

    By carrying out marketing research, the managers of large-sized department stores or small convenience stores obtain the information such as ratio of men and women of visitors and an age group, and improve their management plan. However, these works are carried out in the manual operations, and it becomes a big burden to small stores. In this paper, the authors propose a method of men and women discrimination by extracting difference of the facial expression change from color facial images. Now, there are a lot of methods of the automatic recognition of the individual using a motion facial image or a still facial image in the field of image processing. However, it is very difficult to discriminate gender under the influence of the hairstyle and clothes, etc. Therefore, we propose the method which is not affected by personality such as size and position of facial parts by paying attention to a change of an expression. In this method, it is necessary to obtain two facial images with an expression and an expressionless. First, a region of facial surface and the regions of facial parts such as eyes, nose, and mouth are extracted in the facial image with color information of hue and saturation in HSV color system and emphasized edge information. Next, the features are extracted by calculating the rate of the change of each facial part generated by an expression change. In the last step, the values of those features are compared between the input data and the database, and the gender is discriminated. In this paper, it experimented for the laughing expression and smile expression, and good results were provided for discriminating gender.

  17. Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations.

    PubMed

    Ziatdinov, Maxim; Dyck, Ondrej; Maksov, Artem; Li, Xufan; Sang, Xiahan; Xiao, Kai; Unocic, Raymond R; Vasudevan, Rama; Jesse, Stephen; Kalinin, Sergei V

    2017-12-26

    Recent advances in scanning transmission electron and scanning probe microscopies have opened exciting opportunities in probing the materials structural parameters and various functional properties in real space with angstrom-level precision. This progress has been accompanied by an exponential increase in the size and quality of data sets produced by microscopic and spectroscopic experimental techniques. These developments necessitate adequate methods for extracting relevant physical and chemical information from the large data sets, for which a priori information on the structures of various atomic configurations and lattice defects is limited or absent. Here we demonstrate an application of deep neural networks to extract information from atomically resolved images including location of the atomic species and type of defects. We develop a "weakly supervised" approach that uses information on the coordinates of all atomic species in the image, extracted via a deep neural network, to identify a rich variety of defects that are not part of an initial training set. We further apply our approach to interpret complex atomic and defect transformation, including switching between different coordination of silicon dopants in graphene as a function of time, formation of peculiar silicon dimer with mixed 3-fold and 4-fold coordination, and the motion of molecular "rotor". This deep learning-based approach resembles logic of a human operator, but can be scaled leading to significant shift in the way of extracting and analyzing information from raw experimental data.

  18. Extraction of drainage networks from large terrain datasets using high throughput computing

    NASA Astrophysics Data System (ADS)

    Gong, Jianya; Xie, Jibo

    2009-02-01

    Advanced digital photogrammetry and remote sensing technology produces large terrain datasets (LTD). How to process and use these LTD has become a big challenge for GIS users. Extracting drainage networks, which are basic for hydrological applications, from LTD is one of the typical applications of digital terrain analysis (DTA) in geographical information applications. Existing serial drainage algorithms cannot deal with large data volumes in a timely fashion, and few GIS platforms can process LTD beyond the GB size. High throughput computing (HTC), a distributed parallel computing mode, is proposed to improve the efficiency of drainage networks extraction from LTD. Drainage network extraction using HTC involves two key issues: (1) how to decompose the large DEM datasets into independent computing units and (2) how to merge the separate outputs into a final result. A new decomposition method is presented in which the large datasets are partitioned into independent computing units using natural watershed boundaries instead of using regular 1-dimensional (strip-wise) and 2-dimensional (block-wise) decomposition. Because the distribution of drainage networks is strongly related to watershed boundaries, the new decomposition method is more effective and natural. The method to extract natural watershed boundaries was improved by using multi-scale DEMs instead of single-scale DEMs. A HTC environment is employed to test the proposed methods with real datasets.

  19. Application research on land use remote sensing dynamic monitoring: A case study of Anning district, Lanzhou

    NASA Astrophysics Data System (ADS)

    Zhu, Yunqiang; Zhu, Huazhong; Lu, Heli; Ni, Jianguang; Zhu, Shaoxia

    2005-10-01

    Remote sensing dynamic monitoring of land use can detect the change information of land use and update the current land use map, which is important for rational utilization and scientific management of land resources. This paper discusses the technological procedure of remote sensing dynamic monitoring of land use including the process of remote sensing images, the extraction of annual change information of land use, field survey, indoor post processing and accuracy assessment. Especially, we emphasize on comparative research on the choice of remote sensing rectifying models, image fusion algorithms and accuracy assessment methods. Taking Anning district in Lanzhou as an example, we extract the land use change information of the district during 2002-2003, access monitoring accuracy and analyze the reason of land use change.

  20. Evaluation of the effect of extraction solvent and organ selection on the chemical profile of Astragalus spinosus using HPTLC- multivariate image analysis.

    PubMed

    Shawky, Eman; Selim, Dina A

    2017-09-01

    The evaluation of extraction protocols for untargeted and targeted metabolomics was implemented for root and aerial organs of Astragalus spinosus in this work. The efficiency and complementarity of commonly used extraction solvents, namely petroleum ether, methylene chloride, ethyl acetate and n-butanol were considered for method evaluation using chemometric techniques in conjunction with new, simple, and fast high performance thin layer chromatography (HPTLC) method for fingerprint analysis by extracting information from a digitalized HPTLC plate using ImageJ software. A targeted approach was furtherly implemented by developing and validating an HPTLC method allowing the quantification of three saponin glycosides. The results of untargeted and targeted principle component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that the apparent saponins profile seems to depend on a combined effect of matrix composition and the properties of the selected solvent for extraction, where both the biological matrix of the investigated plant organs, as well as the extraction solvent can influence the precision of metabolite abundances. Although, the aerial part is frequently discarded as waste, it is shown hereby that it has similar chemical profile compared to the medicinal part, roots, yet a different extraction solvents pattern is recognized between the two organs which can be attributed to the differences in the composition, permeability or accessibility of the sample matrix/organ tissues, rather than the chemical structures of the detected metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.

    PubMed

    Mohseni Salehi, Seyed Sadegh; Erdogmus, Deniz; Gholipour, Ali

    2017-11-01

    Brain extraction or whole brain segmentation is an important first step in many of the neuroimage analysis pipelines. The accuracy and the robustness of brain extraction, therefore, are crucial for the accuracy of the entire brain analysis process. The state-of-the-art brain extraction techniques rely heavily on the accuracy of alignment or registration between brain atlases and query brain anatomy, and/or make assumptions about the image geometry, and therefore have limited success when these assumptions do not hold or image registration fails. With the aim of designing an accurate, learning-based, geometry-independent, and registration-free brain extraction tool, in this paper, we present a technique based on an auto-context convolutional neural network (CNN), in which intrinsic local and global image features are learned through 2-D patches of different window sizes. We consider two different architectures: 1) a voxelwise approach based on three parallel 2-D convolutional pathways for three different directions (axial, coronal, and sagittal) that implicitly learn 3-D image information without the need for computationally expensive 3-D convolutions and 2) a fully convolutional network based on the U-net architecture. Posterior probability maps generated by the networks are used iteratively as context information along with the original image patches to learn the local shape and connectedness of the brain to extract it from non-brain tissue. The brain extraction results we have obtained from our CNNs are superior to the recently reported results in the literature on two publicly available benchmark data sets, namely, LPBA40 and OASIS, in which we obtained the Dice overlap coefficients of 97.73% and 97.62%, respectively. Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated the performance of our algorithm in the challenging problem of extracting arbitrarily oriented fetal brains in reconstructed fetal brain magnetic resonance imaging (MRI) data sets. In this application, our voxelwise auto-context CNN performed much better than the other methods (Dice coefficient: 95.97%), where the other methods performed poorly due to the non-standard orientation and geometry of the fetal brain in MRI. Through training, our method can provide accurate brain extraction in challenging applications. This, in turn, may reduce the problems associated with image registration in segmentation tasks.

  2. The Extraction of One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, Robert A.; Gaffney, Richard L., Jr.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e.g. thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  3. The Art of Extracting One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.; Gaffney, R. L.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e:g: thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  4. Pipette tip solid-phase extraction and high-performance liquid chromatography for the determination of flavonoids from Epimedii herba in rat serum and application of the technique to pharmacokinetic studies.

    PubMed

    Wang, Nani; Huang, Xiaowen; Wang, Xuping; Zhang, Yang; Wu, Renjie; Shou, Dan

    2015-05-15

    Epimedii herba is a traditional Chinese medicine for the treatment of osteoporosis. Epimedin A, B and C and icariin are the primary effective ingredients of this medicine. In this study, a simple and low-cost method based on pipette tip solid-phase extraction, high-performance liquid chromatography separation, and diode array detection has been developed for the simultaneous analysis of four flavonoids (epimedin A, B and C and icariin) from Epimedii herba in rat serum samples. In this novel extraction configuration, the sorbents were placed between a filter (hollow fiber) and the pipette tip. Pipette tip solid-phase extraction has several advantages compared to conventional extraction methods: faster extraction time (6.0min); lower sample volume (100μL); lower solvent volume (100μL); and less solvent waste. Under the optimum extraction conditions, the method showed good linearity (0.05-10.0μgmL(-1)), acceptable intra- and inter precision (RSD<6%), low limits of quantification (0.027-0.045μgmL(-1)) and satisfactory relative recoveries (98.63-103.18%). This method was successfully applied to investigate the pharmacokinetics of the major flavonoids in Epimedii herba extract after oral administration to rats (10gkg(-1) body weight). The primary pharmacokinetic parameters for rats were determined as follows: Cmax, 0.45-4.11μgmL(-1); Tmax, 0.21-0.26h; t1/2α, 0.06-0.12h; t1/2β, 2.02-3.48h; AUC0-∞: 0.50-2.58μghmL(-1); CL, 19.53-44.72Lkg(-1)h(-1); and MRT0-∞, 2.25-3.77h. The developed method has the potential to promulgate the pharmacokinetics and provide more information for clinical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Relation extraction for biological pathway construction using node2vec.

    PubMed

    Kim, Munui; Baek, Seung Han; Song, Min

    2018-06-13

    Systems biology is an important field for understanding whole biological mechanisms composed of interactions between biological components. One approach for understanding complex and diverse mechanisms is to analyze biological pathways. However, because these pathways consist of important interactions and information on these interactions is disseminated in a large number of biomedical reports, text-mining techniques are essential for extracting these relationships automatically. In this study, we applied node2vec, an algorithmic framework for feature learning in networks, for relationship extraction. To this end, we extracted genes from paper abstracts using pkde4j, a text-mining tool for detecting entities and relationships. Using the extracted genes, a co-occurrence network was constructed and node2vec was used with the network to generate a latent representation. To demonstrate the efficacy of node2vec in extracting relationships between genes, performance was evaluated for gene-gene interactions involved in a type 2 diabetes pathway. Moreover, we compared the results of node2vec to those of baseline methods such as co-occurrence and DeepWalk. Node2vec outperformed existing methods in detecting relationships in the type 2 diabetes pathway, demonstrating that this method is appropriate for capturing the relatedness between pairs of biological entities involved in biological pathways. The results demonstrated that node2vec is useful for automatic pathway construction.

  6. Predicting nucleic acid binding interfaces from structural models of proteins

    PubMed Central

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2011-01-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared to patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. PMID:22086767

  7. Energy Survey of Machine Tools: Separating Power Information of the Main Transmission System During Machining Process

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Liu, Fei; Hu, Shaohua; Yin, Zhenbiao

    The major power information of the main transmission system in machine tools (MTSMT) during machining process includes effective output power (i.e. cutting power), input power and power loss from the mechanical transmission system, and the main motor power loss. These information are easy to obtain in the lab but difficult to evaluate in a manufacturing process. To solve this problem, a separation method is proposed here to extract the MTSMT power information during machining process. In this method, the energy flow and the mathematical models of major power information of MTSMT during the machining process are set up first. Based on the mathematical models and the basic data tables obtained from experiments, the above mentioned power information during machining process can be separated just by measuring the real time total input power of the spindle motor. The operation program of this method is also given.

  8. Hyperspectral image processing methods

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  9. Method and apparatus for autonomous, in-receiver prediction of GNSS ephemerides

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz E. (Inventor); Bertiger, William I. (Inventor)

    2012-01-01

    Methods and apparatus for autonomous in-receiver prediction of orbit and clock states of Global Navigation Satellite Systems (GNSS) are described. Only the GNSS broadcast message is used, without need for periodic externally-communicated information. Earth orientation information is extracted from the GNSS broadcast ephemeris. With the accurate estimation of the Earth orientation parameters it is possible to propagate the best-fit GNSS orbits forward in time in an inertial reference frame. Using the estimated Earth orientation parameters, the predicted orbits are then transformed into Earth-Centered-Earth-Fixed (ECEF) coordinates to be used to assist the GNSS receiver in the acquisition of the signals. GNSS satellite clock states are also extracted from the broadcast ephemeris and a parameterized model of clock behavior is fit to that data. The estimated modeled clocks are then propagated forward in time to enable, together with the predicted orbits, quicker GNSS signal acquisition.

  10. A Rolling Element Bearing Fault Diagnosis Approach Based on Multifractal Theory and Gray Relation Theory

    PubMed Central

    Li, Jingchao; Cao, Yunpeng; Ying, Yulong; Li, Shuying

    2016-01-01

    Bearing failure is one of the dominant causes of failure and breakdowns in rotating machinery, leading to huge economic loss. Aiming at the nonstationary and nonlinear characteristics of bearing vibration signals as well as the complexity of condition-indicating information distribution in the signals, a novel rolling element bearing fault diagnosis method based on multifractal theory and gray relation theory was proposed in the paper. Firstly, a generalized multifractal dimension algorithm was developed to extract the characteristic vectors of fault features from the bearing vibration signals, which can offer more meaningful and distinguishing information reflecting different bearing health status in comparison with conventional single fractal dimension. After feature extraction by multifractal dimensions, an adaptive gray relation algorithm was applied to implement an automated bearing fault pattern recognition. The experimental results show that the proposed method can identify various bearing fault types as well as severities effectively and accurately. PMID:28036329

  11. A novel method to extract dark matter parameters from neutrino telescope data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmaili, Arman; Farzan, Yasaman, E-mail: arman@ipm.ir, E-mail: yasaman@theory.ipm.ac.ir

    2011-04-01

    Recently it has been shown that when the Dark Matter (DM) particles captured in the Sun directly annihilate into neutrino pairs, the oscillatory terms in the oscillation probability do not average to zero and can lead to a seasonal variation as the distance between the Sun and Earth changes in time. In this paper, we explore this feature as a novel method to extract information on the properties of dark matter. We show that by studying the variation of the flux over a few months, it would in principle be possible to derive the DM mass as well as newmore » information on the flavor structure of the DM annihilation modes. In addition to analytic analysis, we present the results of our numerical calculations that take into account scattering and regeneration of neutrinos traversing the Sun.« less

  12. A Rolling Element Bearing Fault Diagnosis Approach Based on Multifractal Theory and Gray Relation Theory.

    PubMed

    Li, Jingchao; Cao, Yunpeng; Ying, Yulong; Li, Shuying

    2016-01-01

    Bearing failure is one of the dominant causes of failure and breakdowns in rotating machinery, leading to huge economic loss. Aiming at the nonstationary and nonlinear characteristics of bearing vibration signals as well as the complexity of condition-indicating information distribution in the signals, a novel rolling element bearing fault diagnosis method based on multifractal theory and gray relation theory was proposed in the paper. Firstly, a generalized multifractal dimension algorithm was developed to extract the characteristic vectors of fault features from the bearing vibration signals, which can offer more meaningful and distinguishing information reflecting different bearing health status in comparison with conventional single fractal dimension. After feature extraction by multifractal dimensions, an adaptive gray relation algorithm was applied to implement an automated bearing fault pattern recognition. The experimental results show that the proposed method can identify various bearing fault types as well as severities effectively and accurately.

  13. Spatial Uncertainty Modeling of Fuzzy Information in Images for Pattern Classification

    PubMed Central

    Pham, Tuan D.

    2014-01-01

    The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction. PMID:25157744

  14. Visual perception system and method for a humanoid robot

    NASA Technical Reports Server (NTRS)

    Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor); Wells, James W. (Inventor); Mc Kay, Neil David (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  15. Querying and Extracting Timeline Information from Road Traffic Sensor Data

    PubMed Central

    Imawan, Ardi; Indikawati, Fitri Indra; Kwon, Joonho; Rao, Praveen

    2016-01-01

    The escalation of traffic congestion in urban cities has urged many countries to use intelligent transportation system (ITS) centers to collect historical traffic sensor data from multiple heterogeneous sources. By analyzing historical traffic data, we can obtain valuable insights into traffic behavior. Many existing applications have been proposed with limited analysis results because of the inability to cope with several types of analytical queries. In this paper, we propose the QET (querying and extracting timeline information) system—a novel analytical query processing method based on a timeline model for road traffic sensor data. To address query performance, we build a TQ-index (timeline query-index) that exploits spatio-temporal features of timeline modeling. We also propose an intuitive timeline visualization method to display congestion events obtained from specified query parameters. In addition, we demonstrate the benefit of our system through a performance evaluation using a Busan ITS dataset and a Seattle freeway dataset. PMID:27563900

  16. Biometrics encryption combining palmprint with two-layer error correction codes

    NASA Astrophysics Data System (ADS)

    Li, Hengjian; Qiu, Jian; Dong, Jiwen; Feng, Guang

    2017-07-01

    To bridge the gap between the fuzziness of biometrics and the exactitude of cryptography, based on combining palmprint with two-layer error correction codes, a novel biometrics encryption method is proposed. Firstly, the randomly generated original keys are encoded by convolutional and cyclic two-layer coding. The first layer uses a convolution code to correct burst errors. The second layer uses cyclic code to correct random errors. Then, the palmprint features are extracted from the palmprint images. Next, they are fused together by XORing operation. The information is stored in a smart card. Finally, the original keys extraction process is the information in the smart card XOR the user's palmprint features and then decoded with convolutional and cyclic two-layer code. The experimental results and security analysis show that it can recover the original keys completely. The proposed method is more secure than a single password factor, and has higher accuracy than a single biometric factor.

  17. Comparison and evaluation of fusion methods used for GF-2 satellite image in coastal mangrove area

    NASA Astrophysics Data System (ADS)

    Ling, Chengxing; Ju, Hongbo; Liu, Hua; Zhang, Huaiqing; Sun, Hua

    2018-04-01

    GF-2 satellite is the highest spatial resolution Remote Sensing Satellite of the development history of China's satellite. In this study, three traditional fusion methods including Brovey, Gram-Schmidt and Color Normalized (CN were used to compare with the other new fusion method NNDiffuse, which used the qualitative assessment and quantitative fusion quality index, including information entropy, variance, mean gradient, deviation index, spectral correlation coefficient. Analysis results show that NNDiffuse method presented the optimum in qualitative and quantitative analysis. It had more effective for the follow up of remote sensing information extraction and forest, wetland resources monitoring applications.

  18. Comparison between 2 methods of solid-liquid extraction for the production of Cinchona calisaya elixir: an experimental kinetics and numerical modeling approach.

    PubMed

    Naviglio, Daniele; Formato, Andrea; Gallo, Monica

    2014-09-01

    The purpose of this study is to compare the extraction process for the production of China elixir starting from the same vegetable mixture, as performed by conventional maceration or a cyclically pressurized extraction process (rapid solid-liquid dynamic extraction) using the Naviglio Extractor. Dry residue was used as a marker for the kinetics of the extraction process because it was proportional to the amount of active principles extracted and, therefore, to their total concentration in the solution. UV spectra of the hydroalcoholic extracts allowed for the identification of the predominant chemical species in the extracts, while the organoleptic tests carried out on the final product provided an indication of the acceptance of the beverage and highlighted features that were not detectable by instrumental analytical techniques. In addition, a numerical simulation of the process has been performed, obtaining useful information about the timing of the process (time history) as well as its mathematical description. © 2014 Institute of Food Technologists®

  19. Overview of the Cancer Genetics and Pathway Curation tasks of BioNLP Shared Task 2013

    PubMed Central

    2015-01-01

    Background Since their introduction in 2009, the BioNLP Shared Task events have been instrumental in advancing the development of methods and resources for the automatic extraction of information from the biomedical literature. In this paper, we present the Cancer Genetics (CG) and Pathway Curation (PC) tasks, two event extraction tasks introduced in the BioNLP Shared Task 2013. The CG task focuses on cancer, emphasizing the extraction of physiological and pathological processes at various levels of biological organization, and the PC task targets reactions relevant to the development of biomolecular pathway models, defining its extraction targets on the basis of established pathway representations and ontologies. Results Six groups participated in the CG task and two groups in the PC task, together applying a wide range of extraction approaches including both established state-of-the-art systems and newly introduced extraction methods. The best-performing systems achieved F-scores of 55% on the CG task and 53% on the PC task, demonstrating a level of performance comparable to the best results achieved in similar previously proposed tasks. Conclusions The results indicate that existing event extraction technology can generalize to meet the novel challenges represented by the CG and PC task settings, suggesting that extraction methods are capable of supporting the construction of knowledge bases on the molecular mechanisms of cancer and the curation of biomolecular pathway models. The CG and PC tasks continue as open challenges for all interested parties, with data, tools and resources available from the shared task homepage. PMID:26202570

  20. Antibacterial activities of the methanol extracts of ten Cameroonian vegetables against Gram-negative multidrug-resistant bacteria

    PubMed Central

    2013-01-01

    Background Many edible plants are used in Cameroon since ancient time to control microbial infections. This study was designed at evaluating the antibacterial activities of the methanol extracts of ten Cameroonian vegetables against a panel of twenty nine Gram negative bacteria including multi-drug resistant (MDR) strains. Methods The broth microdilution method was used to determine the Minimal Inhibitory Concentrations (MIC) and the Minimal Bactericidal Concentrations (MBC) of the studied extracts. When chloramphenicol was used as a reference antibiotic, the MICs were also determined in the presence of Phenylalanine-Arginine β-Naphtylamide (PAβN), an efflux pumps inhibitor (EPI). The phytochemical screening of the extracts was performed using standard methods. Results All tested extracts exhibited antibacterial activities, with the MIC values varying from 128 to 1024 mg/L. The studied extracts showed large spectra of action, those from L. sativa, S. edule, C. pepo and S. nigrum being active on all the 29 bacterial strains tested meanwhile those from Amaranthus hybridus, Vernonia hymenolepsis, Lactuca.carpensis and Manihot esculenta were active on 96.55% of the strains used. The plant extracts were assessed for the presence of large classes of secondary metabolites: alkaloids, anthocyanins, anthraquinones, flavonoids, phenols, saponins, steroids, tannins and triterpenes. Each studied plant extract was found to contain compounds belonging to at least two of the above mentioned classes. Conclusion These results confirm the traditional claims and provide promising baseline information for the potential use of the tested vegetables in the fight against bacterial infections involving MDR phenotypes. PMID:23368430

  1. Fast fringe pattern phase demodulation using FIR Hilbert transformers

    NASA Astrophysics Data System (ADS)

    Gdeisat, Munther; Burton, David; Lilley, Francis; Arevalillo-Herráez, Miguel

    2016-01-01

    This paper suggests the use of FIR Hilbert transformers to extract the phase of fringe patterns. This method is computationally faster than any known spatial method that produces wrapped phase maps. Also, the algorithm does not require any parameters to be adjusted which are dependent upon the specific fringe pattern that is being processed, or upon the particular setup of the optical fringe projection system that is being used. It is therefore particularly suitable for full algorithmic automation. The accuracy and validity of the suggested method has been tested using both computer-generated and real fringe patterns. This novel algorithm has been proposed for its advantages in terms of computational processing speed as it is the fastest available method to extract the wrapped phase information from a fringe pattern.

  2. Determination of skeleton and sign map for phase obtaining from a single ESPI image

    NASA Astrophysics Data System (ADS)

    Yang, Xia; Yu, Qifeng; Fu, Sihua

    2009-06-01

    A robust method of determining the sign map and skeletons for ESPI images is introduced in this paper. ESPI images have high speckle noise which makes it difficult to obtain the fringe information, especially from a single image. To overcome the effects of high speckle noise, local directional computing windows are designed according to the fringe directions. Then by calculating the gradients from the filtered image in directional windows, sign map and good skeletons can be determined robustly. Based on the sign map, single image phase-extracting methods such as quadrature transform can be improved. And based on skeletons, fringe phases can be obtained directly by normalization methods. Experiments show that this new method is robust and effective for extracting phase from a single ESPI fringe image.

  3. Some new classification methods for hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Du, Pei-jun; Chen, Yun-hao; Jones, Simon; Ferwerda, Jelle G.; Chen, Zhi-jun; Zhang, Hua-peng; Tan, Kun; Yin, Zuo-xia

    2006-10-01

    Hyperspectral Remote Sensing (HRS) is one of the most significant recent achievements of Earth Observation Technology. Classification is the most commonly employed processing methodology. In this paper three new hyperspectral RS image classification methods are analyzed. These methods are: Object-oriented FIRS image classification, HRS image classification based on information fusion and HSRS image classification by Back Propagation Neural Network (BPNN). OMIS FIRS image is used as the example data. Object-oriented techniques have gained popularity for RS image classification in recent years. In such method, image segmentation is used to extract the regions from the pixel information based on homogeneity criteria at first, and spectral parameters like mean vector, texture, NDVI and spatial/shape parameters like aspect ratio, convexity, solidity, roundness and orientation for each region are calculated, finally classification of the image using the region feature vectors and also using suitable classifiers such as artificial neural network (ANN). It proves that object-oriented methods can improve classification accuracy since they utilize information and features both from the point and the neighborhood, and the processing unit is a polygon (in which all pixels are homogeneous and belong to the class). HRS image classification based on information fusion, divides all bands of the image into different groups initially, and extracts features from every group according to the properties of each group. Three levels of information fusion: data level fusion, feature level fusion and decision level fusion are used to HRS image classification. Artificial Neural Network (ANN) can perform well in RS image classification. In order to promote the advances of ANN used for HIRS image classification, Back Propagation Neural Network (BPNN), the most commonly used neural network, is used to HRS image classification.

  4. Automatic definition of the oncologic EHR data elements from NCIT in OWL.

    PubMed

    Cuggia, Marc; Bourdé, Annabel; Turlin, Bruno; Vincendeau, Sebastien; Bertaud, Valerie; Bohec, Catherine; Duvauferrier, Régis

    2011-01-01

    Semantic interoperability based on ontologies allows systems to combine their information and process them automatically. The ability to extract meaningful fragments from ontology is a key for the ontology re-use and the construction of a subset will help to structure clinical data entries. The aim of this work is to provide a method for extracting a set of concepts for a specific domain, in order to help to define data elements of an oncologic EHR. a generic extraction algorithm was developed to extract, from the NCIT and for a specific disease (i.e. prostate neoplasm), all the concepts of interest into a sub-ontology. We compared all the concepts extracted to the concepts encoded manually contained into the multi-disciplinary meeting report form (MDMRF). We extracted two sub-ontologies: sub-ontology 1 by using a single key concept and sub-ontology 2 by using 5 additional keywords. The coverage of sub-ontology 2 to the MDMRF concepts was 51%. The low rate of coverage is due to the lack of definition or mis-classification of the NCIT concepts. By providing a subset of concepts focused on a particular domain, this extraction method helps at optimizing the binding process of data elements and at maintaining and enriching a domain ontology.

  5. Noncontact methods for measuring water-surface elevations and velocities in rivers: Implications for depth and discharge extraction

    USGS Publications Warehouse

    Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark

    2016-01-01

    Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.

  6. Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM

    NASA Astrophysics Data System (ADS)

    Chou, Tien-Yin; Lin, Wen-Tzu; Lin, Chao-Yuan; Chou, Wen-Chieh; Huang, Pi-Hui

    2004-02-01

    With the fast growing progress of computer technologies, spatial information on watersheds such as flow direction, watershed boundaries and the drainage network can be automatically calculated or extracted from a digital elevation model (DEM). The stubborn problem that depressions exist in DEMs has been frequently encountered while extracting the spatial information of terrain. Several filling-up methods have been proposed for solving depressions. However, their suitability for large-scale flat areas is inadequate. This study proposes a depression watershed method coupled with the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEEs) theory to determine the optimal outlet and calculate the flow direction in depressions. Three processing procedures are used to derive the depressionless flow direction: (1) calculating the incipient flow direction; (2) establishing the depression watershed by tracing the upstream drainage area and determining the depression outlet using PROMETHEE theory; (3) calculating the depressionless flow direction. The developed method was used to delineate the Shihmen Reservoir watershed located in Northern Taiwan. The results show that the depression watershed method can effectively solve the shortcomings such as depression outlet differentiating and looped flow direction between depressions. The suitability of the proposed approach was verified.

  7. Extensive screening for herbal extracts with potent antioxidant properties

    PubMed Central

    Niwano, Yoshimi; Saito, Keita; Yoshizaki, Fumihiko; Kohno, Masahiro; Ozawa, Toshihiko

    2011-01-01

    This paper summarizes our research for herbal extracts with potent antioxidant activity obtained from a large scale screening based on superoxide radical (O2•−) scavenging activity followed by characterization of antioxidant properties. Firstly, scavenging activity against O2•− was extensively screened from ethanol extracts of approximately 1000 kinds of herbs by applying an electron spin resonance (ESR)-spin trapping method, and we chose four edible herbal extracts with prominently potent ability to scavenge O2•−. They are the extracts from Punica granatum (Peel), Syzygium aromaticum (Bud), Mangifera indica (Kernel), and Phyllanthus emblica (Fruit). These extracts were further examined to determine if they also scavenge hydroxyl radical (•OH), by applying the ESR spin-trapping method, and if they have heat resistance as a desirable characteristic feature. Experiments with the Fenton reaction and photolysis of H2O2 induced by UV irradiation demonstrated that all four extracts have potent ability to directly scavenge •OH. Furthermore, the scavenging activities against O2•− and •OH of the extracts of P. granatum (peel), M. indica (kernel) and P. emblica (fruit) proved to be heat-resistant. The results of the review might give useful information when choosing a potent antioxidant as a foodstuff. For instance, the four herbal extracts chosen from extensive screening possess desirable antioxidant properties. In particular, the extracts of the aforementioned three herbs are expected to be suitable for food processing in which thermal devices are used, because of their heat resistance. PMID:21297917

  8. In Vitro antibacterial and antibiotic-potentiation activities of four edible plants against multidrug-resistant gram-negative species

    PubMed Central

    2013-01-01

    Background The present study was designed to investigate the antibacterial activities of the methanol extracts of four Cameroonian edible plants, locally used to treat microbial infections, and their synergistic effects with antibiotics against a panel of twenty nine Gram-negative bacteria including Multi-drug resistant (MDR) phenotypes expressing active efflux pumps. Methods The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of the extracts [alone and in the presence of the efflux pumps inhibitor (EPI) Phenylalanine-Arginine β-Naphtylamide (PAβN)], and those of antibiotics in association with the two of the most active ones, Piper nigrum and Telfairia occidentalis. The preliminary phytochemical screening of the extracts was conducted according to the standard phytochemical methods. Results Phytochemical analysis showed the presence of alkaloids and flavonoids in all studied extracts. Other chemical classes of secondary metabolites were selectively present in the extracts. The results of the MIC determination indicated that the crude extracts from P. nigrum and V. amygdalina were able to inhibit the growth of all the twenty nine studied bacteria within a concentration range of 32 to 1024 μg/mL. At a similar concentration range (32 to 1024 μg/mL) the extract from T. occidentalis inhibited the growth of 93.1% of the tested microorganisms. At MIC/2 and MIC/5, synergistic effects were noted between the extracts from P. nigrum and T. occidentalis and seven of the tested antibiotics on more than 70% of the tested bacteria. Conclusion The overall results of the present study provide information for the possible use of the studied edible plants extracts in the control of bacterial infections including MDR phenotypes. PMID:23885762

  9. Continuous section extraction and over-underbreak detection of tunnel based on 3D laser technology and image analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Wang, Zhiwei; Han, Ya; Li, Shuang; Zhang, Xin

    2015-03-01

    In order to ensure safety, long term stability and quality control in modern tunneling operations, the acquisition of geotechnical information about encountered rock conditions and detailed installed support information is required. The limited space and time in an operational tunnel environment make the acquiring data challenging. The laser scanning in a tunneling environment, however, shows a great potential. The surveying and mapping of tunnels are crucial for the optimal use after construction and in routine inspections. Most of these applications focus on the geometric information of the tunnels extracted from the laser scanning data. There are two kinds of applications widely discussed: deformation measurement and feature extraction. The traditional deformation measurement in an underground environment is performed with a series of permanent control points installed around the profile of an excavation, which is unsuitable for a global consideration of the investigated area. Using laser scanning for deformation analysis provides many benefits as compared to traditional monitoring techniques. The change in profile is able to be fully characterized and the areas of the anomalous movement can easily be separated from overall trends due to the high density of the point cloud data. Furthermore, monitoring with a laser scanner does not require the permanent installation of control points, therefore the monitoring can be completed more quickly after excavation, and the scanning is non-contact, hence, no damage is done during the installation of temporary control points. The main drawback of using the laser scanning for deformation monitoring is that the point accuracy of the original data is generally the same magnitude as the smallest level of deformations that are to be measured. To overcome this, statistical techniques and three dimensional image processing techniques for the point clouds must be developed. For safely, effectively and easily control the problem of Over Underbreak detection of road and solve the problemof the roadway data collection difficulties, this paper presents a new method of continuous section extraction and Over Underbreak detection of road based on 3D laser scanning technology and image processing, the method is divided into the following three steps: based on Canny edge detection, local axis fitting, continuous extraction section and Over Underbreak detection of section. First, after Canny edge detection, take the least-squares curve fitting method to achieve partial fitting in axis. Then adjust the attitude of local roadway that makes the axis of the roadway be consistent with the direction of the extraction reference, and extract section along the reference direction. Finally, we compare the actual cross-sectional view and the cross-sectional design to complete Overbreak detected. Experimental results show that the proposed method have a great advantage in computing costs and ensure cross-section orthogonal intercept terms compared with traditional detection methods.

  10. On-line object feature extraction for multispectral scene representation

    NASA Technical Reports Server (NTRS)

    Ghassemian, Hassan; Landgrebe, David

    1988-01-01

    A new on-line unsupervised object-feature extraction method is presented that reduces the complexity and costs associated with the analysis of the multispectral image data and data transmission, storage, archival and distribution. The ambiguity in the object detection process can be reduced if the spatial dependencies, which exist among the adjacent pixels, are intelligently incorporated into the decision making process. The unity relation was defined that must exist among the pixels of an object. Automatic Multispectral Image Compaction Algorithm (AMICA) uses the within object pixel-feature gradient vector as a valuable contextual information to construct the object's features, which preserve the class separability information within the data. For on-line object extraction the path-hypothesis and the basic mathematical tools for its realization are introduced in terms of a specific similarity measure and adjacency relation. AMICA is applied to several sets of real image data, and the performance and reliability of features is evaluated.

  11. Extraction of microseismic waveforms characteristics prior to rock burst using Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Li, Xuelong; Li, Zhonghui; Wang, Enyuan; Feng, Junjun; Chen, Liang; Li, Nan; Kong, Xiangguo

    2016-09-01

    This study provides a new research idea concerning rock burst prediction. The characteristics of microseismic (MS) waveforms prior to and during the rock burst were studied through the Hilbert-Huang transform (HHT). In order to demonstrate the advantage of the MS features extraction based on HHT, the conventional analysis method (Fourier transform) was also used to make a comparison. The results show that HHT is simple and reliable, and could extract in-depth information about the characteristics of MS waveforms. About 10 days prior to the rock burst, the main frequency of MS waveforms transforms from the high-frequency to low-frequency. What's more, the waveforms energy also presents accumulation characteristic. Based on our study results, it can be concluded that the MS signals analysis through HHT could provide valuable information about the coal or rock deformation and fracture.

  12. Kinetics from Replica Exchange Molecular Dynamics Simulations.

    PubMed

    Stelzl, Lukas S; Hummer, Gerhard

    2017-08-08

    Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.

  13. Assessment of Pansharpening Methods Applied to WorldView-2 Imagery Fusion.

    PubMed

    Li, Hui; Jing, Linhai; Tang, Yunwei

    2017-01-05

    Since WorldView-2 (WV-2) images are widely used in various fields, there is a high demand for the use of high-quality pansharpened WV-2 images for different application purposes. With respect to the novelty of the WV-2 multispectral (MS) and panchromatic (PAN) bands, the performances of eight state-of-art pan-sharpening methods for WV-2 imagery including six datasets from three WV-2 scenes were assessed in this study using both quality indices and information indices, along with visual inspection. The normalized difference vegetation index, normalized difference water index, and morphological building index, which are widely used in applications related to land cover classification, the extraction of vegetation areas, buildings, and water bodies, were employed in this work to evaluate the performance of different pansharpening methods in terms of information presentation ability. The experimental results show that the Haze- and Ratio-based, adaptive Gram-Schmidt, Generalized Laplacian pyramids (GLP) methods using enhanced spectral distortion minimal model and enhanced context-based decision model methods are good choices for producing fused WV-2 images used for image interpretation and the extraction of urban buildings. The two GLP-based methods are better choices than the other methods, if the fused images will be used for applications related to vegetation and water-bodies.

  14. Assessment of Pansharpening Methods Applied to WorldView-2 Imagery Fusion

    PubMed Central

    Li, Hui; Jing, Linhai; Tang, Yunwei

    2017-01-01

    Since WorldView-2 (WV-2) images are widely used in various fields, there is a high demand for the use of high-quality pansharpened WV-2 images for different application purposes. With respect to the novelty of the WV-2 multispectral (MS) and panchromatic (PAN) bands, the performances of eight state-of-art pan-sharpening methods for WV-2 imagery including six datasets from three WV-2 scenes were assessed in this study using both quality indices and information indices, along with visual inspection. The normalized difference vegetation index, normalized difference water index, and morphological building index, which are widely used in applications related to land cover classification, the extraction of vegetation areas, buildings, and water bodies, were employed in this work to evaluate the performance of different pansharpening methods in terms of information presentation ability. The experimental results show that the Haze- and Ratio-based, adaptive Gram-Schmidt, Generalized Laplacian pyramids (GLP) methods using enhanced spectral distortion minimal model and enhanced context-based decision model methods are good choices for producing fused WV-2 images used for image interpretation and the extraction of urban buildings. The two GLP-based methods are better choices than the other methods, if the fused images will be used for applications related to vegetation and water-bodies. PMID:28067770

  15. A semi-automatic method for extracting thin line structures in images as rooted tree network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brazzini, Jacopo; Dillard, Scott; Soille, Pierre

    2010-01-01

    This paper addresses the problem of semi-automatic extraction of line networks in digital images - e.g., road or hydrographic networks in satellite images, blood vessels in medical images, robust. For that purpose, we improve a generic method derived from morphological and hydrological concepts and consisting in minimum cost path estimation and flow simulation. While this approach fully exploits the local contrast and shape of the network, as well as its arborescent nature, we further incorporate local directional information about the structures in the image. Namely, an appropriate anisotropic metric is designed by using both the characteristic features of the targetmore » network and the eigen-decomposition of the gradient structure tensor of the image. Following, the geodesic propagation from a given seed with this metric is combined with hydrological operators for overland flow simulation to extract the line network. The algorithm is demonstrated for the extraction of blood vessels in a retina image and of a river network in a satellite image.« less

  16. Highway extraction from high resolution aerial photography using a geometric active contour model

    NASA Astrophysics Data System (ADS)

    Niu, Xutong

    Highway extraction and vehicle detection are two of the most important steps in traffic-flow analysis from multi-frame aerial photographs. The traditional method of deriving traffic flow trajectories relies on manual vehicle counting from a sequence of aerial photographs, which is tedious and time-consuming. This research presents a new framework for semi-automatic highway extraction. The basis of the new framework is an improved geometric active contour (GAC) model. This novel model seeks to minimize an objective function that transforms a problem of propagation of regular curves into an optimization problem. The implementation of curve propagation is based on level set theory. By using an implicit representation of a two-dimensional curve, a level set approach can be used to deal with topological changes naturally, and the output is unaffected by different initial positions of the curve. However, the original GAC model, on which the new model is based, only incorporates boundary information into the curve propagation process. An error-producing phenomenon called leakage is inevitable wherever there is an uncertain weak edge. In this research, region-based information is added as a constraint into the original GAC model, thereby, giving this proposed method the ability of integrating both boundary and region-based information during the curve propagation. Adding the region-based constraint eliminates the leakage problem. This dissertation applies the proposed augmented GAC model to the problem of highway extraction from high-resolution aerial photography. First, an optimized stopping criterion is designed and used in the implementation of the GAC model. It effectively saves processing time and computations. Second, a seed point propagation framework is designed and implemented. This framework incorporates highway extraction, tracking, and linking into one procedure. A seed point is usually placed at an end node of highway segments close to the boundary of the image or at a position where possible blocking may occur, such as at an overpass bridge or near vehicle crowds. These seed points can be automatically propagated throughout the entire highway network. During the process, road center points are also extracted, which introduces a search direction for solving possible blocking problems. This new framework has been successfully applied to highway network extraction from a large orthophoto mosaic. In the process, vehicles on the highway extracted from mosaic were detected with an 83% success rate.

  17. The Past, Present and Future of the Meteorological Phenomena Identification Near the Ground (mPING) Project

    NASA Astrophysics Data System (ADS)

    Elmore, K. L.

    2016-12-01

    The Metorological Phenomemna Identification NeartheGround (mPING) project is an example of a crowd-sourced, citizen science effort to gather data of sufficeint quality and quantity needed by new post processing methods that use machine learning. Transportation and infrastructure are particularly sensitive to precipitation type in winter weather. We extract attributes from operational numerical forecast models and use them in a random forest to generate forecast winter precipitation types. We find that random forests applied to forecast soundings are effective at generating skillful forecasts of surface ptype with consideralbly more skill than the current algorithms, especuially for ice pellets and freezing rain. We also find that three very different forecast models yuield similar overall results, showing that random forests are able to extract essentially equivalent information from different forecast models. We also show that the random forest for each model, and each profile type is unique to the particular forecast model and that the random forests developed using a particular model suffer significant degradation when given attributes derived from a different model. This implies that no single algorithm can perform well across all forecast models. Clearly, random forests extract information unavailable to "physically based" methods because the physical information in the models does not appear as we expect. One intersting result is that results from the classic "warm nose" sounding profile are, by far, the most sensitive to the particular forecast model, but this profile is also the one for which random forests are most skillful. Finally, a method for calibrarting probabilties for each different ptype using multinomial logistic regression is shown.

  18. Global 21 cm Signal Extraction from Foreground and Instrumental Effects. I. Pattern Recognition Framework for Separation Using Training Sets

    NASA Astrophysics Data System (ADS)

    Tauscher, Keith; Rapetti, David; Burns, Jack O.; Switzer, Eric

    2018-02-01

    The sky-averaged (global) highly redshifted 21 cm spectrum from neutral hydrogen is expected to appear in the VHF range of ∼20–200 MHz and its spectral shape and strength are determined by the heating properties of the first stars and black holes, by the nature and duration of reionization, and by the presence or absence of exotic physics. Measurements of the global signal would therefore provide us with a wealth of astrophysical and cosmological knowledge. However, the signal has not yet been detected because it must be seen through strong foregrounds weighted by a large beam, instrumental calibration errors, and ionospheric, ground, and radio-frequency-interference effects, which we collectively refer to as “systematics.” Here, we present a signal extraction method for global signal experiments which uses Singular Value Decomposition of “training sets” to produce systematics basis functions specifically suited to each observation. Instead of requiring precise absolute knowledge of the systematics, our method effectively requires precise knowledge of how the systematics can vary. After calculating eigenmodes for the signal and systematics, we perform a weighted least square fit of the corresponding coefficients and select the number of modes to include by minimizing an information criterion. We compare the performance of the signal extraction when minimizing various information criteria and find that minimizing the Deviance Information Criterion most consistently yields unbiased fits. The methods used here are built into our widely applicable, publicly available Python package, pylinex, which analytically calculates constraints on signals and systematics from given data, errors, and training sets.

  19. Informative frame detection from wireless capsule video endoscopic images

    NASA Astrophysics Data System (ADS)

    Bashar, Md. Khayrul; Mori, Kensaku; Suenaga, Yasuhito; Kitasaka, Takayuki; Mekada, Yoshito

    2008-03-01

    Wireless capsule endoscopy (WCE) is a new clinical technology permitting the visualization of the small bowel, the most difficult segment of the digestive tract. The major drawback of this technology is the high amount of time for video diagnosis. In this study, we propose a method for informative frame detection by isolating useless frames that are substantially covered by turbid fluids or their contamination with other materials, e.g., faecal, semi-processed or unabsorbed foods etc. Such materials and fluids present a wide range of colors, from brown to yellow, and/or bubble-like texture patterns. The detection scheme, therefore, consists of two stages: highly contaminated non-bubbled (HCN) frame detection and significantly bubbled (SB) frame detection. Local color moments in the Ohta color space are used to characterize HCN frames, which are isolated by the Support Vector Machine (SVM) classifier in Stage-1. The rest of the frames go to the Stage-2, where Laguerre gauss Circular Harmonic Functions (LG-CHFs) extract the characteristics of the bubble-structures in a multi-resolution framework. An automatic segmentation method is designed to extract the bubbled regions based on local absolute energies of the CHF responses, derived from the grayscale version of the original color image. Final detection of the informative frames is obtained by using threshold operation on the extracted regions. An experiment with 20,558 frames from the three videos shows the excellent average detection accuracy (96.75%) by the proposed method, when compared with the Gabor based- (74.29%) and discrete wavelet based features (62.21%).

  20. Investigating the Capability to Extract Impulse Response Functions From Ambient Seismic Noise Using a Mine Collapse Event

    NASA Astrophysics Data System (ADS)

    Kwak, Sangmin; Song, Seok Goo; Kim, Geunyoung; Cho, Chang Soo; Shin, Jin Soo

    2017-10-01

    Using recordings of a mine collapse event (Mw 4.2) in South Korea in January 2015, we demonstrated that the phase and amplitude information of impulse response functions (IRFs) can be effectively retrieved using seismic interferometry. This event is equivalent to a single downward force at shallow depth. Using quantitative metrics, we compared three different seismic interferometry techniques—deconvolution, coherency, and cross correlation—to extract the IRFs between two distant stations with ambient seismic noise data. The azimuthal dependency of the source distribution of the ambient noise was also evaluated. We found that deconvolution is the best method for extracting IRFs from ambient seismic noise within the period band of 2-10 s. The coherency method is also effective if appropriate spectral normalization or whitening schemes are applied during the data processing.

Top