Science.gov

Sample records for information science education

  1. Science Education through Informal Education

    ERIC Educational Resources Information Center

    Kim, Mijung; Dopico, Eduardo

    2016-01-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins (EJ1102247). In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal…

  2. Science Education through Informal Education

    ERIC Educational Resources Information Center

    Kim, Mijung; Dopico, Eduardo

    2016-01-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins (EJ1102247). In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal…

  3. Science education through informal education

    NASA Astrophysics Data System (ADS)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  4. Informal Mathematics and Science Education.

    ERIC Educational Resources Information Center

    Harris, Julia L., Ed.

    1998-01-01

    The Eisenhower National Clearinghouse for Mathematics and Science Education (ENC) helps teachers by offering a broad assortment of services to enable them to quickly locate educational resources. This document is one in a series of print catalogs designed to give educators information about curriculum resources available for teaching math and…

  5. Science Identity in Informal Education

    NASA Astrophysics Data System (ADS)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated

  6. Informal science education at Science City

    NASA Astrophysics Data System (ADS)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  7. Impact of Informal Science Education on Children's Attitudes About Science

    NASA Astrophysics Data System (ADS)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  8. Informal Science: Family Education, Experiences, and Initial Interest in Science

    ERIC Educational Resources Information Center

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  9. Informal Science: Family Education, Experiences, and Initial Interest in Science

    ERIC Educational Resources Information Center

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  10. An Evolutionarily Informed Education Science

    ERIC Educational Resources Information Center

    Geary, David C.

    2008-01-01

    Schools are a central interface between evolution and culture. They are the contexts in which children learn the evolutionarily novel abilities and knowledge needed to function as adults in modern societies. Evolutionary educational psychology is the study of how an evolved bias in children's learning and motivational systems influences their…

  11. A Resource Center for Informal Science Education

    NASA Astrophysics Data System (ADS)

    Dickow, B.

    2011-12-01

    Informal science education (ISE) is playing an increasingly important role in how and where the public engages with science. A growing body of research is showing that people learn the majority of their science knowledge outside of school (Falk & Dierking, 2010). The ISE field includes a wide variety of sources, including the internet, TV programs, magazines, hobby clubs and museums, all sectors of the informal science education field. These experiences touch large numbers of people throughout their lifetimes. If you would like to share your research with the public, ISE can be an effective conduit for meaningful science communication. However, because the ISE field is so diverse, it can be overwhelming with its multiple entry points. If you already are part of an ISE initiative, knowing how to access the most useful resources easily can also be daunting. CAISE, the Center for Advancement of Informal Science Education, is a resource center for the ISE field funded by the National Science Foundation (NSF). CAISE can help connect you to the knowledge and people of ISE, through its website, products and in-person convenings. The proposed CAISE presentation will outline the diversity of the field and concisely present data that will make the case for the impact of ISE. We will focus on examples of successful programs that connect science with the public and that bring together AGU's science research community with practitioners and researchers within ISE. Pathways to various ISE resources in the form of current CAISE initiatives will be described as well. The presentation will include an interview section in which a CAISE staff member will ask questions of a scientist involved in an ISE initiative in order to detail one example of how ISE can be a valuable tool for engaging the public in science. Time for audience Q&A also will be included in the session.

  12. An Informal Elementary Science Education Program's Response to the National Science Education Reform Movement.

    ERIC Educational Resources Information Center

    Katz, Phyllis; McGinnis, J. Randy

    1999-01-01

    Provides an overview of informal elementary science-education programs in the United States, and features a detailed description of the Hands on Science Outreach program. Presents insights for informal elementary science-education programs trying to maintain their unique niche while conforming to the new national standards in science education.…

  13. Informal science education: lifelong, life-wide, life-deep.

    PubMed

    Sacco, Kalie; Falk, John H; Bell, James

    2014-11-01

    Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.

  14. ALISE Library and Information Science Education Statistical Report, 1999.

    ERIC Educational Resources Information Center

    Daniel, Evelyn H., Ed.; Saye, Jerry D., Ed.

    This volume is the twentieth annual statistical report on library and information science (LIS) education published by the Association for Library and Information Science Education (ALISE). Its purpose is to compile, analyze, interpret, and report statistical (and other descriptive) information about library/information science programs offered by…

  15. Engaging Latino audiences in informal science education

    NASA Astrophysics Data System (ADS)

    Bonfield, Susan B.

    Environment for the Americas (EFTA), a non-profit organization, developed a four-year research project to establish a baseline for Latino participation and to identify practical tools that would enable educators to overcome barriers to Latino participation in informal science education (ISE). Its national scope and broad suite of governmental and non-governmental, Latino and non-Latino partners ensured that surveys and interviews conducted in Latino communities reflected the cosmopolitan nature of the factors that influence participation in ISE programs. Information about economic and education levels, country of origin, language, length of residence in the US, and perceptions of natural areas combined with existing demographic information at six study sites and one control site provided a broader understanding of Latino communities. The project team's ability to work effectively in these communities was strengthened by the involvement of native, Spanish-speaking Latino interns in the National Park Service's Park Flight Migratory Bird Program. The project also went beyond data gathering by identifying key measures to improve participation in ISE and implementing these measures at established informal science education programs, such as International Migratory Bird Day, to determine effectiveness. The goals of Engaging Latino Audiences in Informal Science Education (ISE) were to 1) identify and reduce the barriers to Latino participation in informal science education; 2) provide effective tools to assist educators in connecting Latino families with science education, and 3) broadly disseminate these tools to agencies and organizations challenged to engage this audience in informal science education (ISE). The results answer questions and provide solutions to a challenge experienced by parks, refuges, nature centers, and other informal science education sites across the US. Key findings from this research documented low participation rates in ISE by Latinos, and that

  16. On Information Science Education: A Rebellious View.

    ERIC Educational Resources Information Center

    Meadow, Charles T.

    The first of information science is in something of a jumble, because there is no universally accepted definition of the field, much less an agreement on what the core information is or what curriculum should be followed. Information science teachers must decide what kind of graduate they are trying to turn out in order to be competitive with…

  17. Information Technology Directions for NSF Science Education.

    ERIC Educational Resources Information Center

    Melmed, Arthur; Lesgold, Alan

    1987-01-01

    Reports on a meeting held at New York University to discuss ways of improving the productivity of mathematics and science education in the United States using educational technology. Addresses several of the views reached by the participants of the conference. (TW)

  18. Informal Science Education: A Practicum for Graduate Students

    ERIC Educational Resources Information Center

    Crone, Wendy C.; Dunwoody, Sharon L.; Rediske, Raelyn K.; Ackerman, Steven A.; Zenner Petersen, Greta M.; Yaros, Ronald A.

    2011-01-01

    We present results from a course, "Informal Science Education for Scientists: A Practicum," co-taught to graduate students in STEM-related fields by a scientist/engineer and a social scientist/humanist. This course provides a structured framework and experiential learning about informal science education during a semester-long experience. The data…

  19. Meeting Users' Needs - Where Adult Education and Information Science Interact.

    ERIC Educational Resources Information Center

    Shearman, John

    Adult education and information science can be viewed as aspects of the endeavor to communicate collective human knowledge and experience. Where self-learners "need to know" intersects with information and library science skills in meeting user needs, dynamic interaction may take place. Information systems research at Stanford University, Purdue,…

  20. Bridging the Gap Between Formal and Informal Science Education

    NASA Astrophysics Data System (ADS)

    Hamel, C.

    2001-12-01

    Formal learning skills are enhanced throughout our daily lives through the public media, (television, newspapers, radio); while hiking our favorite park; or by visiting a museum or science center. Over the past few years the informal science community has started to bridge the gap with the formal education community. Although few informal education organizations have established set curriculum guidelines, many have adapted the use of the National Science Standards. In so doing, these organizations have raised their level of professionalism. Many formal school programs are now actively seeking collaborative science education programs to enhance and expand their hands-on, inquiry based curriculia through informal science organizations. This paper/presentation will address my current research within this field. I will discuss selected federal science agencies education and outreach efforts. Key points will include media useage, age of target audiences, credentials of interpretation staff, and level(s) of collaboration with formal schools.

  1. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    ERIC Educational Resources Information Center

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  2. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    ERIC Educational Resources Information Center

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  3. Activity Sourcebook for Earth Science. Science Education Information Report.

    ERIC Educational Resources Information Center

    Mayer, Victor J., Ed.

    Designed to provide teachers of earth science with activities and information that will assist them in keeping their curricula up to date, this publication contains activities grouped into six chapters. Chapter titles are: (1) Weather and Climate, (2) Oceans, (3) The Earth and Its Surface, (4) Plate Tectonics, (5) Uses of Space Photography, and…

  4. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    NASA Astrophysics Data System (ADS)

    Riedinger, Kelly; Marbach-Ad, Gili; Randy McGinnis, J.; Hestness, Emily; Pease, Rebecca

    2011-02-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching methods and to encourage students to continue in teacher education. We redesigned the elementary science methods course to include aspects of informal science education. The informal science education course features included informal science educator guest speakers, a live animal demonstration and a virtual field trip. We compared data from a treatment course ( n = 72) and a comparison course ( n = 26). Data collection included: researchers' observations, instructors' reflections, and teacher candidates' feedback. Teacher candidate feedback involved interviews and results on a reliable and valid Attitudes and Beliefs about the Nature of and the Teaching of Science instrument. We used complementary methods to analyze the data collected. A key finding of the study was that while benefits were found in both types of courses, the difference in results underscores the need of identifying the primary purpose for innovation as a vital component of consideration.

  5. Review of the Contribution of the Scottish Science Centres Network to Formal and Informal Science Education

    ERIC Educational Resources Information Center

    Her Majesty's Inspectorate of Education, 2007

    2007-01-01

    In 2002, HM Inspectorate of Education (HMIE) carried out a review of the contribution of the Scottish science centres to formal and informal science education as part of a broader review of all science centres in the United Kingdom. This report identifies many strengths in individual centres and across the network. It is clear that the centres…

  6. Informal science educators network project Association of Science-Technology Centers Incorporated. Final report

    SciTech Connect

    1997-05-09

    Funding from the Department of Energy and the Annenberg/CPB Math and Science Project have helped the Association of Science-technology Centers Incorporated (ASTC) to establish and sustain an on-line community of informal science educators nationwide. The Project, called the Informal Science Educators Network Project (ISEN), is composed primarily of informal science educators and exhibit developers from science centers, museums, zoos, aquariums, botanical gardens, parks, and nature centers. Although museum-based professionals represent the majority of subscribers to ISEN, also involved are some classroom teachers and teacher educators from colleges and universities. Common to all ISEN participants is a commitment to school and science education reform. Specifically, funding from the Department of Energy helped to boot strap the effort, providing Barrier Reduction Vouchers to 123 educators that enabled them participate in ISEN. Among the major accomplishments of the Project are these: (1) assistance to 123 informal science educators to attend Internet training sessions held in connection with the Project and/or purchase hardware and software that linked them to the Internet; (2) Internet training for 153 informal science educators; (3) development of a listserv which currently has over 180 subscribers--an all-time high; (4) opportunity to participate in four web chats involving informal science educators with noted researchers; (5) development of two sites on the World Wide Web linking informal science educators to Internet resources; (6) creation of an on-line collection of over 40 articles related to inquiry-based teaching and science education reform. In order to continue the momentum of the Project, ASTC has requested from the Annenberg/CPB Math and Science project a no/cost extension through December 1997.

  7. Academic and Informal Science Education Practitioner Views about Professional Development in Science Education

    ERIC Educational Resources Information Center

    Astor-Jack, Tamsin; McCallie, Ellen; Balcerzak, Phyllis

    2007-01-01

    This study documents the views of effective professional development held by eight professional development (PD) providers, representing four informal science institutions (ISI) and four programs within two institutions of higher education (IHE) in a large midwestern metropolitan area in the United States. This study finds that, while the reported…

  8. Academic and Informal Science Education Practitioner Views about Professional Development in Science Education

    ERIC Educational Resources Information Center

    Astor-Jack, Tamsin; McCallie, Ellen; Balcerzak, Phyllis

    2007-01-01

    This study documents the views of effective professional development held by eight professional development (PD) providers, representing four informal science institutions (ISI) and four programs within two institutions of higher education (IHE) in a large midwestern metropolitan area in the United States. This study finds that, while the reported…

  9. Bridging the Gap Between Ocean Science and Education: Creating Effective Partnerships With Informal Science Education Centers

    NASA Astrophysics Data System (ADS)

    Peach, C.; Franks, S.; Helling, H.; Solomon, E.; Driscoll, N.; Babcock, J.

    2003-12-01

    Many scientists would describe an effective E&O partnership as one that did not take up too much of their time. The California Center for Ocean Sciences Education Excellence (CA COSEE), educators at the Ocean Institute (OI), Dana Point, and researchers at the Scripps Institution of Oceanography (SIO) have collaborated to develop a highly efficient, productive and rewarding approach to crafting scientist/educator partnerships. These efforts represent a new model for facilitated collaboration between informal science education and research partners. Each partner brings unique elements to this collaboration. The Ocean Institute's recently funded Sea Floor Science Exhibition represents an innovative approach to exhibits and programming for K-12 students and the public. The exhibits and programs are firmly grounded in the needs of the formal science education community (i.e. standards based), designed to be constructed/created on extremely short time frames (months), convertible for both public display and programming needs and easily updated. Scripps researchers, as well as those from other institutions, provide briefings on their ongoing research work, loan or donate equipment and instrumentation both for use and display, and in some cases provide research experiences for OI staff and students. CA-COSEE acts as the catalyst, identifying and engaging researchers from disciplines that are consistent with OI exhibit and program goals, serve as a liaison between newly introduced scientists and educators and facilitate the incorporation of E&O components in scientists research proposals, including funding for future exhibits. Using the example of the newest Sea Floor Science exhibit, "Slopes, Slides and Tsunamis!", we will describe the role each partner has played in creating this research based exhibit and program, the chronology of the process, and how this approach will provide the basis for a long-term, sustained partnership between the researchers and science

  10. Library and Information Science Education in Thai Public Universities

    ERIC Educational Resources Information Center

    Butdisuwan, Sujin; Gorman, G. E.

    2002-01-01

    Formal library and information science (LIS) education in Thailand was initiated in 1951 at Chulalongkorn University, when Fulbright Foundation scholars developed basic courses that evolved into a degree programme in 1959. Since then, a variety of LIS programmes, both undergraduate and postgraduate, has been developed by many institutions,…

  11. Evaluating a Graduate Professional Development Program for Informal Science Educators

    NASA Astrophysics Data System (ADS)

    Lake, Jeremy Paul

    This study is an examination and evaluation of the outcomes of a series of courses that I helped build to create a graduate certificate. Specifically, I wanted to evaluate whether or not the online iteration of the Informal Science Institutions Environmental Education Graduate Certificate Program truly provided the long term professional development needed to enhance the skills of the formal and informal educators participating so that they could contribute meaningfully to the improvement of science literacy in their respective communities. My role as an internal evaluator provided an extraordinary opportunity to know the intent of the learning opportunities and why they were constructed in a particular fashion. Through the combination of my skills, personal experiences both within the certificate's predecessor and as an educator, I was uniquely qualified to explore the outcomes of this program and evaluate its effectiveness in providing a long-term professional development for participants. After conducting a literature review that emphasized a need for greater scientific literacy in communities across America, it was evident that the formal education enterprise needs the support of informal educators working on the ground in myriad different settings in ways that provide science as both content and process, learning science facts and doing real science. Through a bridging of informal science educators with formal teachers, it was thought each could learn the culture of the other, making each more fluent in accessing community resources to help make these educators more collaborative and able to bridge the classroom with the outside world. This bridge promotes ongoing, lifelong learning, which in turn can help the national goal of greater scientific literacy. This study provided insight into the thinking involved in the learners' growth as they converted theory presented in course materials into practice. Through an iterative process of reviewing the course

  12. Learning To Communicate About Science In Everyday Language Through Informal Science Education

    NASA Astrophysics Data System (ADS)

    Mayhew, Laurel M.; Finkelstein, Noah D.

    2009-11-01

    The University of Colorado's Partnerships for Informal Science Education in the Community (PISEC) program, in which university students participate in classroom and after school science activities with local precollege children, seeks to develop children's interest, identity and abilities in science, while simultaneously developing university participant's interest and understanding in education and their abilities to communicate about science. The Communication in Everyday Language Assessment (CELA) component of our assessment suite has been used to evaluate university student teaching in these informal educational settings. We find significant positive gains a result of participating in the PISEC program.

  13. The Role of Informal Science Centers in Science Education: Attitudes, Skills, and Self-Efficacy

    ERIC Educational Resources Information Center

    Sasson, Irit

    2014-01-01

    Informal learning relates to activities that occur outside the school environment. These learning environments, such as visits to science centers provide valuable motivational opportunities for students to learn science. The purpose of this study was to investigate the role of the pre-academic center in science education and particularly to…

  14. Equity in Informal Science Education: Developing an Access and Equity Framework for Science Museums and Science Centres

    ERIC Educational Resources Information Center

    Dawson, Emily

    2014-01-01

    Informal science education (ISE) is a popular pursuit, with millions of people visiting science museums, science centres, zoos, botanic gardens, aquaria, science festivals and more around the world. Questions remain, however, about how accessible and inclusive ISE practices are. This article reviews research on participation in ISE through the…

  15. Equity in Informal Science Education: Developing an Access and Equity Framework for Science Museums and Science Centres

    ERIC Educational Resources Information Center

    Dawson, Emily

    2014-01-01

    Informal science education (ISE) is a popular pursuit, with millions of people visiting science museums, science centres, zoos, botanic gardens, aquaria, science festivals and more around the world. Questions remain, however, about how accessible and inclusive ISE practices are. This article reviews research on participation in ISE through the…

  16. CAISE: A NSF Resource Center for Informal Science Education

    NASA Astrophysics Data System (ADS)

    Dickow, Benjamin

    2012-01-01

    Informal science education (ISE) is playing an increasingly important role in how and where the public engages with science. A growing body of research is showing that people learn the majority of their science knowledge outside of school (Falk & Dierking, 2010). The ISE field includes a wide variety of sources, including the internet, TV programs, magazines, hobby clubs and museums. These experiences touch large numbers of people throughout their lifetimes. If you would like to share your research with the public, ISE can be an effective conduit for meaningful science communication. However, because the ISE field is so diverse, it can be overwhelming with its multiple entry points. If you already are part of an ISE initiative, knowing how to access the most useful resources easily can also be daunting. CAISE, the Center for Advancement of Informal Science Education, is a resource center for the ISE field funded by the National Science Foundation (NSF). CAISE can help connect you to the knowledge and people of ISE, through its website, products and in-person convenings. The proposed CAISE presentation will outline the diversity of the field and concisely present data that will make the case for the impact of ISE. We will focus on examples of successful programs that connect science with the public and that bring together AAS's science research community with practitioners and researchers within ISE. Pathways to various ISE resources in the form of current CAISE initiatives will be described as well. The presentation will include an interview section in which a CAISE staff member will ask questions of a scientist involved in an ISE initiative in order to detail one example of how ISE can be a valuable tool for engaging the public in science. Time for audience Q&A also will be included in the session.

  17. Informal Science Educators' Views about Nature of Scientific Knowledge

    ERIC Educational Resources Information Center

    Holliday, Gary M.; Lederman, Norman G.

    2014-01-01

    Publications such as "Surrounded by science: Learning science in informal environments" [Fenichel, M., & Schweingruber, H. A. (2010). Washington, DC: The National Academies Press] and "Learning science in informal environments: People, places, and pursuits" [National Research Council. (2009). Washington, DC: National…

  18. Constructing and Reading Visual Information: Visual Literacy for Library and Information Science Education

    ERIC Educational Resources Information Center

    Ma, Yan

    2015-01-01

    This article examines visual literacy education and research for library and information science profession to educate the information professionals who will be able to execute and implement the ACRL (Association of College and Research Libraries) Visual Literacy Competency Standards successfully. It is a continuing call for inclusion of visual…

  19. Teaching Graduate Students How To Do Informal Science Education

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Crone, W.; Dunwoody, S. L.; Zenner, G.

    2011-12-01

    One of the most important skills a student needs to develop during their graduate days is the skill of communicating their scientific work with a wide array of audiences. That facility will serve them across audiences, from scientific peers to students to neighbors and the general public. Increasingly, graduate students express a need for training in skills needed to manage diverse communicative environments. In response to that need we have created a course for graduate students in STEM-related fields which provides a structured framework and experiential learning about informal science education. This course seeks to familiarize students with concepts and processes important to communicating science successfully to a variety of audiences. A semester-long course, "Informal Science Education for Scientists: A Practicum," has been co-taught by a scientist/engineer and a social scientist/humanist over several years through the Delta Program in Research, Teaching, & Learning at the University of Wisconsin-Madison. The course is project based and understanding audience is stressed throughout the class. Through development and exhibition of the group project, students experience front end, formative and summative evaluation methods. The disciplines of the participating students is broad, but includes students in the geosciences each year. After a brief description of the course and its evolution, we will present assessment and evaluation results from seven different iterations of the course showing significant gains in how informed students felt about evaluation as a tool to determine the effectiveness of their science outreach activities. Significant gains were found in the graduate students' perceptions that they were better qualified to explain a research topic to a lay audience, and in the students' confidence in using and understanding evaluation techniques to determine the effectiveness of communication strategies. There were also increases in the students

  20. Informing the Development of Science Exhibitions through Educational Research

    ERIC Educational Resources Information Center

    Laherto, Antti

    2013-01-01

    This paper calls for greater use of educational research in the development of science exhibitions. During the past few decades, museums and science centres throughout the world have placed increasing emphasis on their educational function. Although exhibitions are the primary means of promoting visitors' learning, educational research is not…

  1. ADS Labs: Supporting Information Discovery in Science Education

    NASA Astrophysics Data System (ADS)

    Henneken, E. A.

    2013-04-01

    The SAO/NASA Astrophysics Data System (ADS) is an open access digital library portal for researchers in astronomy and physics, operated by the Smithsonian Astrophysical Observatory (SAO) under a NASA grant, successfully serving the professional science community for two decades. Currently there are about 55,000 frequent users (100+ queries per year), and up to 10 million infrequent users per year. Access by the general public now accounts for about half of all ADS use, demonstrating the vast reach of the content in our databases. The visibility and use of content in the ADS can be measured by the fact that there are over 17,000 links from Wikipedia pages to ADS content, a figure comparable to the number of links that Wikipedia has to OCLC's WorldCat catalog. The ADS, through its holdings and innovative techniques available in ADS Labs, offers an environment for information discovery that is unlike any other service currently available to the astrophysics community. Literature discovery and review are important components of science education, aiding the process of preparing for a class, project, or presentation. The ADS has been recognized as a rich source of information for the science education community in astronomy, thanks to its collaborations within the astronomy community, publishers and projects like ComPADRE. One element that makes the ADS uniquely relevant for the science education community is the availability of powerful tools to explore aspects of the astronomy literature as well as the relationship between topics, people, observations and scientific papers. The other element is the extensive repository of scanned literature, a significant fraction of which consists of historical literature.

  2. Analysis of Current Information Education in Mainland China for Science and Technology Specialists.

    ERIC Educational Resources Information Center

    Zhijian, Liang

    1990-01-01

    Discussion of the current state of affairs in the field of library and information science in China highlights the specialty of science and technology information science. The information education system and curriculum are described, illiteracy and attitudes toward information are discussed, and the need for continuing education is suggested.…

  3. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    ERIC Educational Resources Information Center

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  4. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    ERIC Educational Resources Information Center

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  5. Training Informal Educators Provides Leverage for Space Science Education and Public Outreach

    NASA Technical Reports Server (NTRS)

    Allen, J. S.; Tobola, K. W.; Betrue, R.

    2004-01-01

    How do we reach the public with the exciting story of Solar System Exploration? How do we encourage girls to think about careers in science, math, engineering and technology? Why should NASA scientists make an effort to reach the public and informal education settings to tell the Solar System Exploration story? These are questions that the Solar System Exploration Forum, a part of the NASA Office of Space Science Education (SSE) and Public Outreach network, has tackled over the past few years. The SSE Forum is a group of education teams and scientists who work to share the excitement of solar system exploration with colleagues, formal educators, and informal educators like museums and youth groups. One major area of the SSE Forum outreach supports the training of Girl Scouts of the USA (GS) leaders and trainers in a suite of activities that reflect NASA missions and science research. Youth groups like Girl Scouts structure their activities as informal education.

  6. Training Informal Educators Provides Leverage for Space Science Education and Public Outreach

    NASA Technical Reports Server (NTRS)

    Allen, J. S.; Tobola, K. W.; Betrue, R.

    2004-01-01

    How do we reach the public with the exciting story of Solar System Exploration? How do we encourage girls to think about careers in science, math, engineering and technology? Why should NASA scientists make an effort to reach the public and informal education settings to tell the Solar System Exploration story? These are questions that the Solar System Exploration Forum, a part of the NASA Office of Space Science Education (SSE) and Public Outreach network, has tackled over the past few years. The SSE Forum is a group of education teams and scientists who work to share the excitement of solar system exploration with colleagues, formal educators, and informal educators like museums and youth groups. One major area of the SSE Forum outreach supports the training of Girl Scouts of the USA (GS) leaders and trainers in a suite of activities that reflect NASA missions and science research. Youth groups like Girl Scouts structure their activities as informal education.

  7. Hands-on optics: an informal science education initiative

    NASA Astrophysics Data System (ADS)

    Johnson, Anthony M.; Pompea, Stephen M.; Arthurs, Eugene G.; Walker, Constance E.; Sparks, Robert T.

    2007-09-01

    The project is collaboration between two scientific societies, the Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering and the National Optical Astronomy Observatory (NOAO). The program is designed to bring science education enrichment to thousands of underrepresented middle school students in more than ten states, including female and minority students, who typically have not been the beneficiaries of science and engineering resources and investments. HOO provides each teacher with up to six activity modules, each containing enough materials for up to 30 students to participate in 6-8 hours of hands-on optics-related activities. Sample activities, developed by education specialists at NOAO, include building kaleidoscopes and telescopes, communicating with a beam of light, and a hit-the-target laser beam challenge. Teachers engage in two days of training and, where possible, are partnered with a local optics professional (drawn from the local rosters of SPIE and OSA members) who volunteers to spend time with the teacher and students as they explore the module activities. Through these activities, students gain experience and understanding of optics principles, as well as learning the basics of inquiry, critical thinking, and problem solving skills involving optics, and how optics interfaces with other disciplines. While the modules were designed for use in informal after- school or weekend sessions, the number of venues has expanded to large and small science centers, Boys and Girls Clubs, Girl Scouts, summer camps, family workshops, and use in the classroom.

  8. Promoting Children's Understanding And Interest In Science Through Informal Science Education

    NASA Astrophysics Data System (ADS)

    Bartley, Jessica E.; Mayhew, Laurel M.; Finkelstein, Noah D.

    2009-11-01

    We present results from the University of Colorado's Partnership for Informal Science Education in the Community (PISEC) in which university participants work in afterschool programs on inquiry-based activities with primary school children from populations typically under represented in science. This university-community partnership is designed to positively impact youth, university students, and the institutions that support them while improving children's attitudes towards and understanding of science. Children worked through circuit activities adapted from the Physics and Everyday Thinking (PET) curriculum and demonstrated increased understanding of content area as well as favorable beliefs about science.

  9. Reconceptualizing Elementary Teacher Preparation: A Case for Informal Science Education

    ERIC Educational Resources Information Center

    Avraamidou, Lucy

    2015-01-01

    The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of informal science environments to teaching and…

  10. Reconceptualizing Elementary Teacher Preparation: A Case for Informal Science Education

    ERIC Educational Resources Information Center

    Avraamidou, Lucy

    2015-01-01

    The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of informal science environments to teaching and…

  11. Using HIPPO Data for Formal and Informal Science Education

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Hatheway, B.; Zondlo, M. A.

    2012-12-01

    The HIAPER Pole-to-Pole Observations (HIPPO) field project recently concluded its mission to map greenhouse gases and black carbon from the Arctic to the Antarctic using the NSF/NCAR Gulfstream V. HIPPO resulted in visually-rich and easy-to-understand altitude/latitude curtain plots of several trace gases and black carbon, from five seasons during 2009-2011. The data and curtain plots are available for both formal and informal science education to support the instruction of atmospheric science and Earth systems. Middle and high school activities have been developed using these data and curtain plots, and an undergraduate course based on HIPPO data - Global Air Pollution - is offered at Princeton University. The visually stimulating curtain plots are unique in that a wide range of people can comprehend them because they provide an easy-to-understand picture of the global distribution of chemical species for non-scientists or beginning users, while also displaying valuable detailed information for the advanced viewer. The plots are a powerful graphical tool that can be used to communicate climate science because they illustrate the concepts of how trace gas distributions are linked to the large-scale dynamics of the Earth; show seasonal changes in distribution and concentrations; and use the same display format for each tracer. In order to connect people to the data, a multi-faceted and engaging public information program and supporting educational materials for HIPPO were developed. These provided a unique look into global field research and included social media platforms such as Facebook and Twitter; a range of videos from simple motion graphics to detailed narratives; both printed and online written materials; and mass-media publications.

  12. Information Technology and Science Education. 1988 AETS Yearbook.

    ERIC Educational Resources Information Center

    Ellis, James D., Ed.

    Designed to assist science educators in improving preservice/inservice teacher education, this yearbook contains resources and ideas addressing the integration of recent research into a format suitable for practitioners and students. Topics of the papers included in this volume are: (1) applications of microcomputers in science teaching; (2)…

  13. Information and Communication Technologies in Library and Information Science Education in Kenya

    ERIC Educational Resources Information Center

    Minishi-Majanja, Mabel K.; Ocholla, Dennis N.

    2003-01-01

    Information and Communication Technologies (ICTs) have become central to education and training in Library and Information Science/Service (LIS) because of the great influence of these technologies on the professional world. This study on Kenya is part of a larger doctoral research project that aims to map and audit the types, nature and diffusion…

  14. Information and Communication Technologies in Library and Information Science Education in Kenya

    ERIC Educational Resources Information Center

    Minishi-Majanja, Mabel K.; Ocholla, Dennis N.

    2003-01-01

    Information and Communication Technologies (ICTs) have become central to education and training in Library and Information Science/Service (LIS) because of the great influence of these technologies on the professional world. This study on Kenya is part of a larger doctoral research project that aims to map and audit the types, nature and diffusion…

  15. Library and Information Science Education for the New Medical Environment and the Age of Integrated Information.

    ERIC Educational Resources Information Center

    Detlefsen, Ellen Gay

    1993-01-01

    Reviews factors that are changing ways in which medical librarians and health information specialists are educated. Employment sites for medical librarians are listed; current faculty and coursework at library and information science programs in the United States and Canada are discussed; doctoral research is described; and medical informatics is…

  16. 75 FR 5771 - Institute of Education Sciences; Overview Information; Education Research and Special Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... Institute's research grant programs is to provide parents, educators, students, researchers, policymakers... learning and improve academic achievement and access to education opportunities for all students. In... and Writing. Mathematics and Science Education. Cognition and Student Learning. Teacher...

  17. Mapping the informal science education landscape: An exploratory study.

    PubMed

    Falk, John H; Randol, Scott; Dierking, Lynn D

    2012-10-01

    This study investigated the informal science education (ISE) field to determine whether it currently functions as an effective community of practice. Research questions included: How do professionals describe and self-identify their practice, including what missions, goals and motivating factors influence their professional work? What challenges do they face and how are these resolved? Is participation in ISE activities perceived as core or peripheral to their work? Open-ended interviews were conducted with high-level representatives of 17 different ISE sub-communities; results were analyzed qualitatively. Findings showed this broad assortment of ISE sub-communities as not currently functioning as a cohesive community of practice. Although examples of shared practice and ways of talking were found, evidence of widespread, active relationship-building over time and coalescence around issues of common concern were absent. A current "map" of the ISE community is proposed and thoughts about how this map could alter in the future are suggested.

  18. Effective Practices for Creating Transformative Informal Science Education Programs Grounded in Native Ways of Knowing

    ERIC Educational Resources Information Center

    Mack, Elizabeth; Augare, Helen; Cloud-Jones, Linda Different; David, Dominique; Gaddie, Helene Quiver; Honey, Rose E.; Kawagley, Angayuqaq O.; Plume-Weatherwax, Melissa Little; Fight, Lisa Lone; Meier, Gene; Pete, Tachini; Leaf, James Rattling; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; Shibata, Hi'ilani; Valdez, Shelly; Wippert, Rachel

    2012-01-01

    There are a growing number of informal science education (ISE) programs in Native communities that engage youth in science education and that are grounded in Native ways of knowing. There is also a growing body of research focusing on the relationship between culture, traditional knowledge, and science education. However, there is little research…

  19. Effective Practices for Creating Transformative Informal Science Education Programs Grounded in Native Ways of Knowing

    ERIC Educational Resources Information Center

    Mack, Elizabeth; Augare, Helen; Cloud-Jones, Linda Different; David, Dominique; Gaddie, Helene Quiver; Honey, Rose E.; Kawagley, Angayuqaq O.; Plume-Weatherwax, Melissa Little; Fight, Lisa Lone; Meier, Gene; Pete, Tachini; Leaf, James Rattling; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; Shibata, Hi'ilani; Valdez, Shelly; Wippert, Rachel

    2012-01-01

    There are a growing number of informal science education (ISE) programs in Native communities that engage youth in science education and that are grounded in Native ways of knowing. There is also a growing body of research focusing on the relationship between culture, traditional knowledge, and science education. However, there is little research…

  20. Identity and science learning in African American students in informal science education contexts

    NASA Astrophysics Data System (ADS)

    James, Sylvia M.

    2007-12-01

    Science education researchers are recognizing the need to consider identity and other sociocultural factors when examining causes of the science achievement gap for African American students. Non-school settings may hold greater promise than formal schooling to promote identities that are conductive to science learning in African Americans. This mixed-methods study explored the relationship between participation in out-of-school-time (OST) science enrichment programs and African American middle and high school students' racial and ethnic identity (RED, social identity as science learners, and achievement. Pre-post questionnaires used a previously validated model of REI combined with an original subscale that was developed to measure social identity as science learners. Case studies of two programs allowed for an analysis of the informal learning setting. The treatment group (N = 36) consisted of African American middle and high school students in five OST science programs, while the control group (N = 54) students were enrolled in science classes in public schools in the mid-Atlantic region. Results of a t-test of independent means indicated that there was no significant difference between the treatment and control group on measures of REI or science identity. However, the treatment group earned significantly higher science grades compared to the control group, and an ANOVA revealed a significant relationship between science identity and the intention to pursue post-secondary science studies. Although not significant, MANOVA results indicated that students who participated in OST programs exhibited gradual increases in RD and science identity over time according to grade level and gender. Follow-up analysis revealed significant relationships between awareness of racism, gender, and length of time in OST programs. The case studies illustrated that a unique community of practice exists within the OST programs. Access to authentic science learning experiences, youth

  1. Reconceptualizing Elementary Teacher Preparation: A case for informal science education

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    2015-01-01

    The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of informal science environments to teaching and learning. In order to address this question, data were collected in a period of an academic semester through the following sources: journal entries for each of the 3 experiences, a personal teaching philosophy statement and a 2-hour long semi-structured interview with each of the 12 participants. Open coding techniques were used to analyze the data in order to construct categories and subcategories and eventually to identify emerging themes. The outcomes of the analysis showed that the inclusion of informal science experiences in the context of teacher preparation has the potential to support beginning elementary teachers' development of contemporary ideas about science teaching and learning related to inquiry-based science, the nature of scientific work and the work of scientists, connecting science with everyday life, and making science fun and personally meaningful. These findings are discussed alongside implications for policy, teacher preparation, and research under these themes: (a) addressing reform recommendations; (b) developing positive orientations toward science and science teaching; and (c) constructing understandings about scientists' work.

  2. 77 FR 39688 - Notice of Proposed Information Collection Requests; Institute of Education Sciences; FAFSA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...] [FR Doc No: 2012-16424] DEPARTMENT OF EDUCATION Notice of Proposed Information Collection Requests; Institute of Education Sciences; FAFSA Completion Project Evaluation SUMMARY: The Institute of Education Sciences (IES) at the U.S. Department of Education (ED) is conducting a rigorous study of the Free...

  3. Many Experts, Many Audiences: Public Engagement with Science and Informal Science Education. A CAISE Inquiry Group Report

    ERIC Educational Resources Information Center

    McCallie, Ellen; Bell, Larry; Lohwater, Tiffany; Falk, John H.; Lehr, Jane L.; Lewenstein, Bruce V.; Needham, Cynthia; Wiehe, Ben

    2009-01-01

    Science and technology are embedded in every aspect of modern life. This report describes how Public Engagement with Science (PES), in the context of informal science education (ISE), can provide opportunities for public awareness of and participation in science and technology. PES refers to seeking public input into policy decisions about the…

  4. Many Experts, Many Audiences: Public Engagement with Science and Informal Science Education. A CAISE Inquiry Group Report. Executive Summary

    ERIC Educational Resources Information Center

    McCallie, Ellen; Bell, Larry; Lohwater, Tiffany; Falk, John H.; Lehr, Jane L.; Lewenstein, Bruce V.; Needham, Cynthia; Wiehe, Ben

    2009-01-01

    Science and technology are embedded in every aspect of modern life. This executive summary describes how Public Engagement with Science (PES), in the context of informal science education (ISE), can provide opportunities for public awareness of and participation in science and technology. PES is an approach that has developed in the last 10 years…

  5. Many Experts, Many Audiences: Public Engagement with Science and Informal Science Education. A CAISE Inquiry Group Report. Executive Summary

    ERIC Educational Resources Information Center

    McCallie, Ellen; Bell, Larry; Lohwater, Tiffany; Falk, John H.; Lehr, Jane L.; Lewenstein, Bruce V.; Needham, Cynthia; Wiehe, Ben

    2009-01-01

    Science and technology are embedded in every aspect of modern life. This executive summary describes how Public Engagement with Science (PES), in the context of informal science education (ISE), can provide opportunities for public awareness of and participation in science and technology. PES is an approach that has developed in the last 10 years…

  6. Many Experts, Many Audiences: Public Engagement with Science and Informal Science Education. A CAISE Inquiry Group Report

    ERIC Educational Resources Information Center

    McCallie, Ellen; Bell, Larry; Lohwater, Tiffany; Falk, John H.; Lehr, Jane L.; Lewenstein, Bruce V.; Needham, Cynthia; Wiehe, Ben

    2009-01-01

    Science and technology are embedded in every aspect of modern life. This report describes how Public Engagement with Science (PES), in the context of informal science education (ISE), can provide opportunities for public awareness of and participation in science and technology. PES refers to seeking public input into policy decisions about the…

  7. Geographic Information Systems: An Instructional Tool for Earth Science Educators.

    ERIC Educational Resources Information Center

    Walsh, Stephen J.

    1988-01-01

    Introduces the concept of Geographic Information Systems (GIS) as an approach for integrating and synthesizing disparate information for use in the secondary geography and earth science curriculum. Reviews basic concepts and instructional approaches to familiarize teachers with the relative simplicity of GIS implementation. (Author/GEA)

  8. The Association for Library and Information Science Education (ALISE): Past, Present, Future

    ERIC Educational Resources Information Center

    Julien, Heidi

    2007-01-01

    The Association for Library and Information Science Education (ALISE) is now over 90 years old. Recently recommitted to a focus on research in library and information science teaching and pedagogy, and support for educators in the field, ALISE serves its members with a range of publications, awards, and services. Membership is strong and…

  9. The Association for Library and Information Science Education (ALISE): Past, Present, Future

    ERIC Educational Resources Information Center

    Julien, Heidi

    2007-01-01

    The Association for Library and Information Science Education (ALISE) is now over 90 years old. Recently recommitted to a focus on research in library and information science teaching and pedagogy, and support for educators in the field, ALISE serves its members with a range of publications, awards, and services. Membership is strong and…

  10. Informal and Non-Formal Education: An Outline of History of Science in Museums

    ERIC Educational Resources Information Center

    Filippoupoliti, Anastasia; Koliopoulos, Dimitris

    2014-01-01

    Although a growing number of research articles in recent years have treated the role of informal settings in science learning, the subject of the history of science in museums and its relationship to informal and non-formal education remains less well explored. The aim of this review is to assemble the studies of history of science in science…

  11. Informal and Non-Formal Education: An Outline of History of Science in Museums

    ERIC Educational Resources Information Center

    Filippoupoliti, Anastasia; Koliopoulos, Dimitris

    2014-01-01

    Although a growing number of research articles in recent years have treated the role of informal settings in science learning, the subject of the history of science in museums and its relationship to informal and non-formal education remains less well explored. The aim of this review is to assemble the studies of history of science in science…

  12. Toward enhanced learning of science: An educational scheme for informal science institutions

    NASA Astrophysics Data System (ADS)

    Suzuki, Midori

    Current educational operation for informal science institutions tend to be based on the staff's experience and intuition rather than on educational theories or research findings. This status study sought research evidence for an educational scheme to give informal science institutions. Evidence for this scheme came from surveys to determine specific circumstances of educational operations and visitor behaviors. The Provus discrepancy model, seeking gaps between the actual and desired states, guided this investigation of how informal science education institution staff view the nature and status of educational operations. Another investigation sought visitors' views of the effectiveness of the main idea for exhibit understanding (n=68 for each group of with the main idea and without the main idea), effective labels (n=68), expectations toward on-site lessons(n=22 and 65 for student groups, and n=2 for teachers), and possibilities for assessments of museum operations. Institutional data were collected via a web portal, with a separate site created for administrators (n=41), exhibit developers (n=21), and program planners (n=35). The survey asked about actual and desired states in terms of goals and roles of staff, contents of exhibits and programs, assessment, and professional development. The four visitor surveys were administered individually at the North Carolina Museum of Natural Sciences. The institutional survey found that most institutions focus on attitudinal reinforcement rather than visitor learning, do not overtly value research or long-term assessment, and value partnerships with K-12 schools more than other groups. It is also clarified that the staff do not have a clear vision of the nature or function of an operations manuals. Large gaps were found between the actual and desired states in terms of assessment (administrators, exhibit developers, and program planners), professional development (exhibit developers and program planners), and partnerships

  13. Internships in Public Science Education program: a model for informal science education

    NASA Astrophysics Data System (ADS)

    Zenner, Greta

    2005-03-01

    The NSF-funded Internships in Public Science Education (IPSE) program provides a unique opportunity for undergraduate and graduate students with varied academic background to experience learning and teaching science--specifically nanotechnology--to the general public and middle-school students. The program is in collaboration with Discovery World Museum of Milwaukee, Wisconsin. IPSE interns have created a number of classroom activities ranging from understanding the scale of a nanometer to experimenting with liquid crystal sensors to critically examining the societal implications of nanotechnology. In a new phase of the program, the interns are developing a museum exhibit on nanotechnology to be housed at the Discovery World Museum. Through this experience, intern teams learn about nanotechnology, brainstorm ideas, present and receive feedback on their ideas, and create an exhibit prototype to explain nanotechnology and related science concepts. The program also focuses on professional development, during which interns learn techniques for presenting to non-technical audiences, strategies for assessing their materials, and work on their skills in teamwork, project design, leadership, and science communication.

  14. Arab Perspective about the Application of Information Technology in Science Education.

    ERIC Educational Resources Information Center

    Haidar, Abdullateef H.

    1998-01-01

    Argues that information technology can influence elements of the curriculum. Discusses several concerns related to the application of information technology in science education in the Arab world. Contains 27 references. (DDR)

  15. Perspectives on Information Science and Health Informatics Education.

    ERIC Educational Resources Information Center

    Lunin, Lois F., Ed.; Ball, Marion J., Ed.

    1989-01-01

    This theoretical discussion of what information science can contribute to the health professions addresses questions of definition and describes application and knowledge models for the emerging profession of informatics. A review of existing programs includes curriculum models and provides details on informatics programs emphasizing information…

  16. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    ERIC Educational Resources Information Center

    Katz, Phyllis; McGinnis, J. Randy; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-01-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews,…

  17. Using an Informal Cardiovascular System Activity to Study the Effectiveness of Science Education in Unexpected Places

    ERIC Educational Resources Information Center

    Monzack, Elyssa Lynne; Zenner Petersen, Greta M.

    2011-01-01

    Venues for informal science education are usually those sought out by people who are specifically looking for an educational experience. Whether planning a trip to a museum or choosing a television program, these individuals are actively seeking an informal educational experience; they are a self-selected group. This paper investigates whether…

  18. Using an Informal Cardiovascular System Activity to Study the Effectiveness of Science Education in Unexpected Places

    ERIC Educational Resources Information Center

    Monzack, Elyssa Lynne; Zenner Petersen, Greta M.

    2011-01-01

    Venues for informal science education are usually those sought out by people who are specifically looking for an educational experience. Whether planning a trip to a museum or choosing a television program, these individuals are actively seeking an informal educational experience; they are a self-selected group. This paper investigates whether…

  19. Challenges and Concerns for Library and Information Science (LIS) Education in India and South Asia

    ERIC Educational Resources Information Center

    Kaur, Trishanjit

    2015-01-01

    This paper presents some of the challenges and concerns for library and information science (LIS) education in India. In order to provide context for these challenges, the paper begins with a brief overview of higher education in India in general and then discusses the beginning of LIS education. It briefly summarizes LIS education in South Asia…

  20. Continuing Education for Library and Information Science in the Canadian Context.

    ERIC Educational Resources Information Center

    Horrocks, Norman

    1987-01-01

    Two classic papers on continuing education for professional groups are examined and related to the library/information science field in Canada: (1) "Role of Continuing Education in Current Professional Development" (Cyril Houle, Professor of Adult Education at the University of Chicago); and (2) "Continuing Education in the…

  1. Challenges and Concerns for Library and Information Science (LIS) Education in India and South Asia

    ERIC Educational Resources Information Center

    Kaur, Trishanjit

    2015-01-01

    This paper presents some of the challenges and concerns for library and information science (LIS) education in India. In order to provide context for these challenges, the paper begins with a brief overview of higher education in India in general and then discusses the beginning of LIS education. It briefly summarizes LIS education in South Asia…

  2. 77 FR 64330 - Notice of Proposed Information Collection Requests; Institute of Education Sciences; 2012/14...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Notice of Proposed Information Collection Requests; Institute of Education Sciences; 2012/14 Beginning.... Written requests for information or comments submitted by postal mail or delivery should be addressed to the Director of the Information Collection Clearance Division, U.S. Department of Education, 400...

  3. 77 FR 17462 - Notice of Submission for OMB Review; Institute of Education Sciences; Quick Response Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... Notice of Submission for OMB Review; Institute of Education Sciences; Quick Response Information System... Response Information System (QRIS) consists of the Fast Response Survey System (FRSS) and the Postsecondary Education Quick Information System (PEQIS). The QRIS currently conducts surveys under OMB generic clearance...

  4. Educing Information - Interrogation: Science and Art, Foundations for the Future

    DTIC Science & Technology

    2006-12-01

    science of intelligence gathering, careful study of the table of contents is perhaps the best way to decide which of the papers would provide the most...politically powerful to gain information from the weak, putting into greater eduction the value of principles and procedures that now guide U.S...insight into why people choose to watch the sufferings of others. 5 Purifi cation through self -fl agellation, fasting, and denial of bodily needs has

  5. The Roles of the Formal and Informal Sectors in the Provision of Effective Science Education

    ERIC Educational Resources Information Center

    Stocklmayer, Susan M.; Rennie, Leonie J.; Gilbert, John K.

    2010-01-01

    For many years, formal school science education has been criticised by students, teachers, parents and employers throughout the world. This article presents an argument that a greater collaboration between the formal and the informal sector could address some of these criticisms. The causes for concern about formal science education are summarised…

  6. Communicating Ocean Sciences to Informal Audiences: A Scientist-Educator Partnership to Prepare the Next Generation of Scientists

    ERIC Educational Resources Information Center

    Halversen, Catherine; Tran, Lynn Uyen

    2010-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a college course that creates and develops partnerships between science educators in informal science education institutions, such as museums, science centers and aquariums, and ocean scientists in colleges and universities. For the course, a scientist and educator team-teach…

  7. Information literacy needs in graduate-level health sciences education.

    PubMed

    Kleyman, Emily Z; Tabaei, Sara

    2012-01-01

    To determine whether incorporating information literacy education through workshops led by library faculty improves students' information literacy skills. A series of information literacy initiatives were incorporated into the curriculum of a physician assistant program. Initiatives included two library workshops, class instruction, and a research paper. Assessment included subjective and objective measures of students' information literacy skills and research competencies. Students' ratings of their skills were significantly higher on the postmeasure (t37 = 2.85, P = .007). The objective measures of these skills revealed an increase from 25% to 65% of the class scoring above 70% correct. Class assignments also revealed an improvement from 10% of the class citing and referencing material correctly at the beginning of the initiative to 80% at the end of the initiative. Engaging academic library faculty and providing students with guided instruction has a significant positive effect on objective as well as subjective measures of students' skills.

  8. An Examination of Farmworker Pesticide Educators in a Southeastern State: Informal Science Educators and Risk Communication

    NASA Astrophysics Data System (ADS)

    LePrevost, Catherine E.

    2011-12-01

    Because pesticide exposure is a significant hazard to farmworkers in their working and living environments, basic pesticide toxicology is a topic for farmworker science education that has implications beyond scientific literacy to encompass farmworkers' safety and health. Migrant and seasonal farmworkers have been identified as an at-risk population because of the cultural and linguistic barriers they face, their temporary employment and tenuous documentation status, and their low literacy levels and limited formal education. Despite the key role of pesticide educators in promoting farmworker scientific literacy, safety, and health, data regarding pesticide educators are absent in the literature. This dissertation investigated the nature of pesticide educators in a southeastern state. Drawing on quantitative and qualitative methods, the three studies contained within this body of work characterize the personal beliefs---including pesticide risk, self-efficacy, and teaching beliefs---of pesticide educators, as well as educators' personal goals and their beliefs about the environments in which they pursue those goals. The research allowed for the creation of a profile of the organizations that and individuals who provide pesticide education to farmworkers in a highly agricultural state. The first study details the development and field testing of the Pesticide Risk Beliefs Inventory, a quantitative inventory to gauge pesticide risk beliefs, with a sample of pesticide educators (n=43) in a southeastern state. The 19-item, Likert-type inventory was found to be psychometrically sound with a Cronbach's alpha of 0.780 and a valuable tool in capturing pesticide educators' beliefs about pesticide risk, assessing beliefs in four key categories. The Pesticide Risk Beliefs Inventory could be useful in exploring beliefs about pesticide risks and guiding efforts to address misconceptions held by a variety of formal and informal science learners, educators, practitioners, the

  9. Engaging underserved audiences in informal science education through community-based partnerships

    NASA Astrophysics Data System (ADS)

    Bouzo, Suzanne

    This thesis explores the impact of the Science Education and Engagement of Denver (SEED) Partnership on three of its participant families. The partnership, consisting of large informal science organizations, as well as small community-based organizations, created its programming based on prior research identifying barriers to minority participation in informal science education programs. SEED aims to engage youth and families of emerging populations in science and nature. Three families were examined as a case study to have an in depth investigation about their involvement in the programs sponsored by the partnership. Findings suggest a positive impact on participant feelings and engagement in science and nature. Future recommendations are made for furthering programming as well as conducting a larger scale, more comprehensive program evaluation. This research addresses prior studies that have identified several barriers toward participation of underserved audiences in informal science education programs and how the SEED partnership has addressed specific identified barriers.

  10. The Use of Information Technologies for Education in Science, Mathematics, and Computers. An Agenda for Research.

    ERIC Educational Resources Information Center

    Educational Technology Center, Cambridge, MA.

    Developed to guide the research of the Educational Technology Center, a consortium based at Harvard Graduate School of Education, this report addresses the use of new information technologies to enrich, extend, and transform current instructional practice in science, mathematics, and computer education. A discussion of the basic elements required…

  11. 77 FR 25994 - Notice of Proposed Information Collection Requests; Institute of Education Sciences; Pell Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Doc No: 2012-10621] DEPARTMENT OF EDUCATION Notice of Proposed Information Collection Requests; Institute of Education Sciences; Pell Grant Expansions Under the Pell Grant Expansions (PGE) Study 2012... by the U.S. Department of Education that focuses on the effects of expanded access to Pell grants...

  12. Library and Information Science Education in Greece: Institutional Changes and Current Issues

    ERIC Educational Resources Information Center

    Moniarou-Papaconstantinou, Valentini; Tsatsaroni, Anna

    2008-01-01

    This paper considers the historical development of Library and Information Science (LIS) Education in Greece, in order to understand its current position within the field of higher education, and to assess its future prospects. In particular, in tracing changes that LIS Education as an institution has undergone, it argues that institutional…

  13. NEW Planetarium Programs for Polar Informal Science Education

    NASA Astrophysics Data System (ADS)

    Sumners, C.; Schloss, A. L.; Reiff, P.

    2007-12-01

    The modern planetarium is an immersive full-dome theater that can take audiences to Polar Regions in the past, present, or future and can simulate dynamic polar events. With the goal of public engagement and education, we are producing two programs: Night of the Titanic and Ice Worlds. Night of the Titanic uses a famous tragedy to uncover the science that could have saved the ship and the changing conditions in the North Atlantic over the last century. This program also fosters discussion about how humans evaluate data and make critical decisions related to the changing condition of polar ice. Ice Worlds uses comparative planetology themes to present Earth in the context of all ice worlds in the solar system, thus providing a broader perspective for analysis of changes in Earth's Polar Regions. Both programs rely on themes of high public interest to drive attendance and engagement. Both programs are being developed for the large dome theater or planetarium market and for portable Discovery Domes, which can reach urban and rural audiences throughout the world. This paper focuses on techniques for presentation of rigorous science content in a context that will engage the general public as well as school groups over a wide age range.

  14. Science Education and the Acquisition of Information About Science and Technology: The Two Cultures Emergent.

    ERIC Educational Resources Information Center

    Handberg, Roger; McCrae, James L.

    1980-01-01

    Examined and confirmed are differences in science and nonscience majors in the ways in which they obtain information about science and technology. Importance of these information sources was determined for each group: radio, television, newspaper, news magazine, scientific journal, family, friends, and faculty. (CS)

  15. Informal Science Education for Girls: Careers in Science and Effective Program Elements

    ERIC Educational Resources Information Center

    Fadigan, Kathleen A.; Hammrich, Penny L.

    2005-01-01

    Addressing the need for continued support of after-school and summer science enrichment programs for urban girls and at-risk youth, this paper describes the educational and career paths of a sample of young women who participated in the Women in Natural Sciences (WINS) program during high school. This study also attempts to determine how the…

  16. Using the National Information Infrastructure for social science, education, and informed decision making

    SciTech Connect

    Tonn, B.E.

    1994-01-07

    The United States has aggressively embarked on the challenging task of building a National Information Infrastructure (NII). This infrastructure will have many levels, extending from the building block capital stock that composes the telecommunications system to the multitude of higher tier applications hardware and software tied to this system. This ``White Paper`` presents a vision for a second and third tier national information infrastructure that focuses exclusively on the needs of social science, education, and decision making (NII-SSEDM). NII-SSEDM will provide the necessary data, information, and automated decision support and educational tools needed to help this nation solve its most pressing social problems. The proposed system has five components: `data collection systems; databases; statistical analysis and modeling tools; policy analysis and decision support tools; and materials and software specially designed for education. This paper contains: a vision statement for each component; comments on progress made on each component as of the early 1990s; and specific recommendations on how to achieve the goals described in the vision statements. The white paper also discusses how the NII-SSEDM could be used to address four major social concerns: ensuring economic prosperity; health care; reducing crime and violence; and K-12 education. Examples of near-term and mid-term goals (e.g., pre-and post Year 2000) are presented for consideration. Although the development of NII-SSEDM will require a concerted effort by government, the private sector, schools, and numerous other organizations, the success of NH-SSEDM is predicated upon the identification of an institutional ``champion`` to acquire and husband key resources and provide strong leadership and guidance.

  17. 77 FR 46748 - Notice of Proposed Information Collection Requests; Institute of Education Sciences; Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Notice of Proposed Information Collection Requests; Institute of Education Sciences; Impact Evaluation of... information on the kinds of performance evaluation systems currently discussed in federal policy. DATES...-4537. Copies of the proposed information collection request may be accessed from http://edicsweb.ed.gov...

  18. Educating adult females for leadership roles in an informal science program for girls

    NASA Astrophysics Data System (ADS)

    McCreedy, Dale

    The purpose of this study is to gain an understanding of and an evidentiary warrant for, how a community of practice focused on informal science learning, can engage and promote active participation that offers adult female members and the community opportunities for legitimacy and transformation. This study is a qualitative, ethnographic research study that documents how adult female volunteers, historically inexperienced and/or excluded from traditional practices of science, come to engage in science activities through an informal, community-based context that helps them to appreciate science connections in their lives that are ultimately empowering and agentic. I begin to understand the ways in which such informal contexts, often thought to be marginal to dominant educational beliefs and practices, can offer adults outside of the field of science, education, or both, an entree into science learning and teaching that facilitate female's participation in legitimate and empowering ways. Using descriptive analyses, I first identify the characteristics of peripheral and active program participants. Through phenomenological analyses, I then develop an understanding of participation in an informal science program by focusing on three adult female members' unique trajectories of participation leading to core member status. Each draws on different aspects of the program that they find most salient, illustrating how different elements can serve as motivators for participation, and support continuation along the trajectory of participation reflecting personal and political agency. Through a purposeful ethnographic case-study analysis, I then explore one core member's transformation, evidenced by her developing identities as someone who enjoys science, engages in science activities, and, enacts a role as community old timer and door opener to science learning. This study: (1) contributes to the limited knowledge base in fields of informal learning, science education, and

  19. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    NASA Astrophysics Data System (ADS)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  20. Current Issues in Library and Information Science Profession and Its Education in Japan.

    ERIC Educational Resources Information Center

    Takeuchi, Hiroya; Kim, Yong Won

    The purpose of this paper is to analyze the elements affecting the weakness of the library and information science (LIS) profession in Japan in terms of quality of education, the employment system, and career development of Japanese librarians. It also provides an overview of the current status of LIS education in Japan and examines the…

  1. Discover our Earth: An Earth Science Information System for undergraduate education

    NASA Astrophysics Data System (ADS)

    Seber, Dogan; Moore, Alexandra; Brindisi, Carrie; Danowski, Daniel

    In many scientific disciplines, there are currently several large-scale efforts to build comprehensive information management systems. Cornell University's Geoscience Information Systems Project (http://atlas.geo.cornell.edu/) is one of the larger efforts designed to build such a system for geoscience research [Seber et al., 1997; Seber et al., 2000]. Utilizing this resource in education activities has great potential for improving the quality of Earth science education. This article summarizes our work on developing education applications, and discusses issues related to building interactive information systems for education purposes.

  2. The Center for Informal Learning and Schools' Informal Learning Certificate (ILC) Program: Professional Development and Community for Informal Science Educators Working with Schools. An Evaluation Report

    ERIC Educational Resources Information Center

    Smith, Anita; Helms, Jenifer V.; St. John, Mark

    2007-01-01

    Inverness Research Associates served as external evaluators for the Center for Informal Learning and Schools (CILS) from its inception in 2002 as a National Science Foundation (NSF)-funded Center for Learning and Teaching. One of the programs that CILS developed was the Informal Learning Certificate (ILC) for informal science educators (mostly…

  3. Games and Simulations in Informal Science Education. WCER Working Paper No. 2010-14

    ERIC Educational Resources Information Center

    Squire, Kurt; Patterson, Nathan

    2010-01-01

    This paper explores the possibilities and challenges games and simulations pose for informal science education. The authors begin with a brief overview of the recent history of games and games research. They then attempt to clarify the distinctions between games and simulations. Next, they examine types of informal learning…

  4. In-Forming Practice through Action Research. Family and Consumer Sciences Teacher Education. Yearbook.

    ERIC Educational Resources Information Center

    Peterat, Linda, Ed.; Smith, M. Gale

    This book contains 16 papers about informing family and consumer sciences educational practice through action research. The following papers are included: "Informing Practice through Classroom Inquiry" (Linda Peterat, M. Gale Smith); "Focusing Praxis Research on Sexism in a Primary Classroom" (Emily Sutherland);…

  5. In-Forming Practice through Action Research. Family and Consumer Sciences Teacher Education. Yearbook.

    ERIC Educational Resources Information Center

    Peterat, Linda, Ed.; Smith, M. Gale

    This book contains 16 papers about informing family and consumer sciences educational practice through action research. The following papers are included: "Informing Practice through Classroom Inquiry" (Linda Peterat, M. Gale Smith); "Focusing Praxis Research on Sexism in a Primary Classroom" (Emily Sutherland);…

  6. Effective practices for creating transformative informal science education programs grounded in Native ways of knowing

    NASA Astrophysics Data System (ADS)

    Mack, Elizabeth; Augare, Helen; Different Cloud-Jones, Linda; Davíd, Dominique; Quiver Gaddie, Helene; Honey, Rose E.; Kawagley, Angayuqaq O.; Little Plume-Weatherwax, Melissa; Lone Fight, Lisa; Meier, Gene; Pete, Tachini; Rattling Leaf, James; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; Shibata, Hi'ilani; Valdez, Shelly; Wippert, Rachel

    2012-03-01

    There are a growing number of informal science education (ISE) programs in Native communities that engage youth in science education and that are grounded in Native ways of knowing. There is also a growing body of research focusing on the relationship between culture, traditional knowledge, and science education. However, there is little research documenting how these programs are being developed and the ways in which culture and Western science are incorporated into the activities. This study outlines effective practices for using Native ways of knowing to strengthen ISE programs. These effective practices may also be used to promote change in formal education. The authors combine an overview of current research in informal science education with personal interviews with educators engaged in ISE programs offered to youth both on and off tribal reservations as well as experts in Indigenous education. Participating individuals and programs included Native communities across the United States, including Alaska and Hawai'i. Keeping in mind that each community is unique, ISE programs that are grounded in Native ways of knowing will benefit by utilizing the effective practices outlined here as a guide for starting or strengthening existing ISE programs relevant to the needs of their communities.

  7. Discoveries and Breakthroughs Inside Science:Informal Education for STEM and AGU Related Sciences

    NASA Astrophysics Data System (ADS)

    Lorditch, E.

    2007-12-01

    As a primary source of news, more people rely on local TV news than any other medium for their news and information. As a result, The American Geophysical Union has partnered with the American Institute of Physics in their production of Discoveries and Breakthroughs Inside Science (DBIS). DBIS is syndicated science news service that distributes 12, 90-second science news segments to over 90 local TV stations throughout the USA each month. While the segments cover a wide range of STEM (science, technology, engineering, and mathematics)topics, approximately 4 of these segments each month focus on research topics of interest to AGU members. Meet DBIS's senior science editor and learn about DBIS. Find out how you can participate in a DBIS segment, help with DBIS production, learn how DBIS segment topics are chosen, and hear why the AGU got involved with DBIS and how they work with the program.

  8. Theorizing Information for Information Science.

    ERIC Educational Resources Information Center

    Cornelius, Ian

    2002-01-01

    Considers whether information science has a theory of information. Highlights include guides to information and its theory; constructivism; information outside information science; process theories; cognitive views of information; measuring information; meaning; and misinformation. (Contains 89 references.) (LRW)

  9. Theorizing Information for Information Science.

    ERIC Educational Resources Information Center

    Cornelius, Ian

    2002-01-01

    Considers whether information science has a theory of information. Highlights include guides to information and its theory; constructivism; information outside information science; process theories; cognitive views of information; measuring information; meaning; and misinformation. (Contains 89 references.) (LRW)

  10. Parental and Peer Encouragement of Formal and Informal Science Education.

    ERIC Educational Resources Information Center

    Miller, Jon D.

    The context of socialization in the second half of the 20th century is far different than any previous socialization environment. Children in the United States and in other industrialized countries grow to adulthood in an age of science and technology. Despite these changes in the socialization environment, there has been little systematic study…

  11. A Place of Transformation: Lessons from the Cosmic Serpent Informal Science Education Professional Development Project

    NASA Astrophysics Data System (ADS)

    Peticolas, L.; Maryboy, N.; Begay, D.; Stein, J.; Valdez, S.; Paglierani, R.

    2012-08-01

    A cultural disconnect exists between Western scientists and educators and Native communities in terms of scientific worldviews and Indigenous ways of knowing. This cultural disconnect manifests itself in the lack of participation of Native Americans in Western science and a lack of appreciation by Western scientists of Native science. Our NSF-Funded project "Cosmic Serpent: Bridging Native and Western Learning in Museum Settings" set out to provide a way for informal science education practitioners and tribal museum practitioners to learn about these two worldviews in such a way as to inform their educational practice around these concepts. We began with a pilot workshop in year one of this four-year project. We then provided two week-long professional development workshops in three regions within the Western U.S., and culminated with a final conference for all participants. In total, the workshops served 162 participants, including 115 practitioners from 19 tribal museums and 41 science, natural history, and cultural museums; 23 tribal community members; and 24 "bridge people" with knowledge of both Indigenous and Western science. For this article, we focus on the professional and personal transformations around culture, knowledge, science, and worldviews that occurred as a part of this project. We evaluated the collaborative aspects of this grant between the Indigenous Education Institute; the Center for Science Education at the University of California, Berkeley; the Institute for Learning Innovation; Native Pathways; Association for Science and Technology Centers; and the National Museum of the American Indian. Using evaluation results, as well as our personal reflections, we share our learnings from a place of transformation. We provide lessons we learned with this project, which we hope others will find relevant to their own science education work.

  12. Science Education Notes.

    ERIC Educational Resources Information Center

    Hodson, Derek; And Others

    1988-01-01

    Presents information in brief on changing priorities in science education. Cites three categories of aims for science, traits of underachievers, and the processes of science. Includes reflections on the Salter's GCSE Scheme of Assessment, the integration of science and drama, and a historical perspective of practical work in school science. (RT)

  13. Science Education Notes.

    ERIC Educational Resources Information Center

    Hodson, Derek; And Others

    1988-01-01

    Presents information in brief on changing priorities in science education. Cites three categories of aims for science, traits of underachievers, and the processes of science. Includes reflections on the Salter's GCSE Scheme of Assessment, the integration of science and drama, and a historical perspective of practical work in school science. (RT)

  14. Effectiveness of Amateur Astronomers as Informal Science Educators

    ERIC Educational Resources Information Center

    Gibbs, Michael G.; Berendsen, Margaret

    2007-01-01

    The Astronomical Society of the Pacific (ASP) conducted a national survey of in-service teachers participating in Project ASTRO. The survey results document (1) the value that teachers place on supplemental astronomy education provided by professional and amateur astronomers, and (2) the difference that teachers perceive in the value provided by…

  15. Effectiveness of Amateur Astronomers as Informal Science Educators

    ERIC Educational Resources Information Center

    Gibbs, Michael G.; Berendsen, Margaret

    2007-01-01

    The Astronomical Society of the Pacific (ASP) conducted a national survey of in-service teachers participating in Project ASTRO. The survey results document (1) the value that teachers place on supplemental astronomy education provided by professional and amateur astronomers, and (2) the difference that teachers perceive in the value provided by…

  16. Apartheid; Its Effects on Education, Science, Culture and Information.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    Prepared in response to growing criticism of South Africa's policies of apartheid, this report was designed to assess the effects of such policies within South Africa. The results of the investigation are carefully laid out under four general areas. The first section deals with education, covering its aims, administration and finance, enrollment,…

  17. Thomism and science education: history informs a modern debate.

    PubMed

    Kondrick, Linda C

    2008-08-01

    There is no debate over the Theory of Evolution. Among biologists the Theory of Evolution is a settled principle. Yet, the issue is far from settled in the larger context of society; between sectors of lay society and biological scientists in the United States there is evidence of a deep divide. Faith and reason, religion, and science at odds-that is hardly a recent divide. It is the premise of the author that the origin of the current conflict over the teaching of evolution stems from a fundamental philosophical divide that began long before Darwin first proposed his Theory of Evolution. It predates the inclusion of physical and biological sciences in the curriculum of western universities. It is older than either Islam or Christianity. The conflict goes back to Plato's Academy in 385 BC where the schools of Idealism and Realism first emerged as two distinct philosophical systems. Idealism and Realism diverged over essential issues of philosophy: What are we, what is true, and how do we know? Answers to these questions about the natural order are framed within philosophical constructs, themselves based upon essential assumptions about the essence of being, the essence of truth, and the nature of learning. Idealism and Realism developed independently for over 1500 years into two competing schools: the Augustinians (fundamentally Idealists) and the Latin Averroists (fundamentally Realists). It was over the place of natural philosophy in the curriculum that these two competing schools collided violently at the University of Paris in 1252. It was Thomas Aquinas who brokered a ceasefire between two embattled schools. Aquinas forged a philosophical system, called Thomism, that allowed the two schools to agree to disagree to the extent that in the graduate curriculum of the University Natural Philosophy could be taught apart from theology. This separation of secular or natural philosophy from theology opened the way for the development of the empirical sciences, the

  18. Why Machine-Information Metaphors Are Bad for Science and Science Education

    ERIC Educational Resources Information Center

    Pigliucci, Massimo; Boudry, Maarten

    2011-01-01

    Genes are often described by biologists using metaphors derived from computational science: they are thought of as carriers of information, as being the equivalent of "blueprints" for the construction of organisms. Likewise, cells are often characterized as "factories" and organisms themselves become analogous to machines. Accordingly, when the…

  19. Turning Visitors into Citizens: Using Social Science for Civic Engagement in Informal Science Education Centers

    ERIC Educational Resources Information Center

    Bunten, Alexis; Arvizu, Shannon

    2013-01-01

    How can museums and other informal learning institutions cultivate greater civic engagement among the visiting public around important social issues? This case study of the National Network of Ocean and Climate Change Interpreters' (NNOCCI) professional learning community illustrates how insights from the social sciences can be productively…

  20. Turning Visitors into Citizens: Using Social Science for Civic Engagement in Informal Science Education Centers

    ERIC Educational Resources Information Center

    Bunten, Alexis; Arvizu, Shannon

    2013-01-01

    How can museums and other informal learning institutions cultivate greater civic engagement among the visiting public around important social issues? This case study of the National Network of Ocean and Climate Change Interpreters' (NNOCCI) professional learning community illustrates how insights from the social sciences can be productively…

  1. Why Machine-Information Metaphors Are Bad for Science and Science Education

    ERIC Educational Resources Information Center

    Pigliucci, Massimo; Boudry, Maarten

    2011-01-01

    Genes are often described by biologists using metaphors derived from computational science: they are thought of as carriers of information, as being the equivalent of "blueprints" for the construction of organisms. Likewise, cells are often characterized as "factories" and organisms themselves become analogous to machines. Accordingly, when the…

  2. Lessons Learned by Combining Formal and Informal Science Education at CMMAP

    NASA Astrophysics Data System (ADS)

    Denning, S.; Burt, M. A.; Jones, B.; Russell, R. M.

    2014-12-01

    Since 2006, the Center for Multiscale Modeling of Atmospheric Processes (CMMAP) has pursued a vertically-integrated strategy for education and diversity from "K to gray." We've brought a traveling museum-style "informal science education" program to over 200,000 K-12 students and shown that it has a counterintuitive and substantial impact on content knowledge. The tremendous volume of this outreach program has only been possible by including over 100 undergraduate interns, which adds a layer of professional development to their formal education. We've also leveraged the "hands-on" informal education program to develop both formal professional development workshops for teachers and new undergraduate courses. So we're now using hands-on science activities developed by undergraduates for use in grades 5-8 for teaching climate science to undergrads! It's remarkable how well this integration works. We've also extended the approach beyond "hands-on" to "minds-on" experiments based on interactive modules that run inside web browsers. Building on the framework we developed for extending informal science education into formal instruction, we also entrained dozens of students at the largest graduate Atmospheric Science program in the US to provide them with professional development experiences and tracked their matriculation into the professional research and academic workforce. Finally, we've extended the informal minds-on techniques to both in-person and online courses offered to retirees and to the public. Combining these forms of outreach leverage direct experience of the nature of science with authentic communication to reach diverse audiences with climate science content.

  3. Educating for Social Justice: Perspectives from Library and Information Science and Collaboration with K-12 Social Studies Educators

    ERIC Educational Resources Information Center

    Naidoo, Jamie Campbell; Sweeney, Miriam E.

    2015-01-01

    Library and Information Science (LIS) as a discipline is guided by core values that emphasize equal access to information, freedom of expression, democracy, and education. Importantly, diversity and social responsibility are specifically called out as foundations of the profession (American Library Association, 2004). Following from this, there…

  4. Science for the Physically Handicapped in Higher Education: A Guide to Sources of Information.

    ERIC Educational Resources Information Center

    Adams, Gary H., Comp.

    This guide is intended to be a reference for persons needing to know where to find information about science education, career opportunities, and other programs for physically handicapped individuals. Sources listed in the guide include: (1) Federal agencies that run assistance programs for the handicapped; (2) Professional societies specifically…

  5. Applying Catastrophe Theory to an Information-Processing Model of Problem Solving in Science Education

    ERIC Educational Resources Information Center

    Stamovlasis, Dimitrios; Tsaparlis, Georgios

    2012-01-01

    In this study, we test an information-processing model (IPM) of problem solving in science education, namely the working memory overload model, by applying catastrophe theory. Changes in students' achievement were modeled as discontinuities within a cusp catastrophe model, where working memory capacity was implemented as asymmetry and the degree…

  6. John Falk and Lynn Dierking: Building the Field of Informal/Free-Choice Science Education

    ERIC Educational Resources Information Center

    Rennie, Léonie J.

    2016-01-01

    This article establishes the importance of "context", a concept that underpins the academic contributions that John Falk and Lynn Dierking have made in building the field of informal/free-choice learning in science education. I consider, in turn, the individual contributions made by each of them prior to their seminal co-authored work,…

  7. Learning, Unlearning and Relearning--Knowledge Life Cycles in Library and Information Science Education

    ERIC Educational Resources Information Center

    Bedford, Denise A. D.

    2015-01-01

    The knowledge life cycle is applied to two core capabilities of library and information science (LIS) education--teaching, and research and development. The knowledge claim validation, invalidation and integration steps of the knowledge life cycle are translated to learning, unlearning and relearning processes. Mixed methods are used to determine…

  8. Exploring the Effects of Communication Framed by Environmental Concern in Informal Science Education Contexts

    ERIC Educational Resources Information Center

    Yocco, Victor S.

    2010-01-01

    Informal science education (ISE) venues such as zoos, nature centers, parks, and natural history museums play a critical role in allowing the general public to learn scientific concepts (National Research Council, 2009; 2010). Most adult learning of scientific concepts takes place outside of classrooms and away from work (Rennie and Williams,…

  9. Information Processing: A Review of Implications of Johnstone's Model for Science Education

    ERIC Educational Resources Information Center

    St Clair-Thompson, Helen; Overton, Tina; Botton, Chris

    2010-01-01

    The current review is concerned with an information processing model used in science education. The purpose is to summarise the current theoretical understanding, in published research, of a number of factors that are known to influence learning and achievement. These include field independence, working memory, long-term memory, and the use of…

  10. ERIC Clearinghouse for Science, Mathematics and Environmental Education, Information Bulletins, Nos. 1, 2, 3, 4, 1980.

    ERIC Educational Resources Information Center

    Blosser, Patricia E., Ed.

    Included are the four information bulletins produced by the ERIC Clearinghouse for Science, Mathematics and Environmental Education for the calendar year 1980. The first issue contains an interpretative summary from the National Council of Teachers of Mathematics project "Priorities in School Mathematics" as well as announcements of…

  11. Identity Development of Youth during Participation at an Informal Science Education Camp

    ERIC Educational Resources Information Center

    Riedinger, Kelly

    2015-01-01

    In this exploratory case study, I investigated the ways that youth engaged in negotiating their identity during learning conversations at an informal science education camp. In particular, I was interested in exploring the ways that youth positioned themselves within their learning group and how this influenced their identities as learners of…

  12. Information Processing: A Review of Implications of Johnstone's Model for Science Education

    ERIC Educational Resources Information Center

    St Clair-Thompson, Helen; Overton, Tina; Botton, Chris

    2010-01-01

    The current review is concerned with an information processing model used in science education. The purpose is to summarise the current theoretical understanding, in published research, of a number of factors that are known to influence learning and achievement. These include field independence, working memory, long-term memory, and the use of…

  13. Directory of Educational Programs in Information Science. Supplement, 1972-1973.

    ERIC Educational Resources Information Center

    Burgard, Andrea, Ed.

    This Supplement lists 97 graduate programs in the U.S. and Canada that include education in information science for the academic year 1972-1973. It contains entries for programs in the first edition of the Directory, covering the 1971-72 academic year (ED 056 728), plus six new entries. The full name, address, and telephone number are given for…

  14. Learning, Unlearning and Relearning--Knowledge Life Cycles in Library and Information Science Education

    ERIC Educational Resources Information Center

    Bedford, Denise A. D.

    2015-01-01

    The knowledge life cycle is applied to two core capabilities of library and information science (LIS) education--teaching, and research and development. The knowledge claim validation, invalidation and integration steps of the knowledge life cycle are translated to learning, unlearning and relearning processes. Mixed methods are used to determine…

  15. Exploring the Effects of Communication Framed by Environmental Concern in Informal Science Education Contexts

    ERIC Educational Resources Information Center

    Yocco, Victor S.

    2010-01-01

    Informal science education (ISE) venues such as zoos, nature centers, parks, and natural history museums play a critical role in allowing the general public to learn scientific concepts (National Research Council, 2009; 2010). Most adult learning of scientific concepts takes place outside of classrooms and away from work (Rennie and Williams,…

  16. Evaluating ATM Technology for Distance Education in Library and Information Science.

    ERIC Educational Resources Information Center

    Stanford, Serena W.

    1997-01-01

    Investigates the impact of asynchronous transfer mode (ATM) technology in an interactive environment providing distance education in library and information science at two San Jose State University (California) sites. The main purpose of the study was to develop a reliable and valid evaluation instrument. Contains 6 tables. (Author/AEF)

  17. John Falk and Lynn Dierking: Building the Field of Informal/Free-Choice Science Education

    ERIC Educational Resources Information Center

    Rennie, Léonie J.

    2016-01-01

    This article establishes the importance of "context", a concept that underpins the academic contributions that John Falk and Lynn Dierking have made in building the field of informal/free-choice learning in science education. I consider, in turn, the individual contributions made by each of them prior to their seminal co-authored work,…

  18. Informal Science Education Policy: Issues and Opportunities. A CAISE Inquiry Group Report

    ERIC Educational Resources Information Center

    Eisenkraft, Arthur; Flatow, Ira; Friedman, Alan J.; Kirsch, Jeffrey W.; Macdonald, Maritza; Marshall, Eric; McCallie, Ellen; Nesbit, Trevor; Prosino, Rebecca Nesbitt; Petit, Charles; Schubel, Jerry R.; Traill, Saskia; Wharton, Dan; Williams, Steven H.; Witte, Joe

    2010-01-01

    The goal of the CAISE "Policy Study Inquiry Group" (PSIG) was to inventory and comment on policies (current or potential, organizational or governmental, explicit or implicit) which affect the capacity of informal science education to have an impact. This group represented a cross-section of organizations and entities that touch upon or play a…

  19. Informal Science Education Policy: Issues and Opportunities. A CAISE Inquiry Group Report

    ERIC Educational Resources Information Center

    Eisenkraft, Arthur; Flatow, Ira; Friedman, Alan J.; Kirsch, Jeffrey W.; Macdonald, Maritza; Marshall, Eric; McCallie, Ellen; Nesbit, Trevor; Prosino, Rebecca Nesbitt; Petit, Charles; Schubel, Jerry R.; Traill, Saskia; Wharton, Dan; Williams, Steven H.; Witte, Joe

    2010-01-01

    The goal of the CAISE "Policy Study Inquiry Group" (PSIG) was to inventory and comment on policies (current or potential, organizational or governmental, explicit or implicit) which affect the capacity of informal science education to have an impact. This group represented a cross-section of organizations and entities that touch upon or play a…

  20. Applying Catastrophe Theory to an Information-Processing Model of Problem Solving in Science Education

    ERIC Educational Resources Information Center

    Stamovlasis, Dimitrios; Tsaparlis, Georgios

    2012-01-01

    In this study, we test an information-processing model (IPM) of problem solving in science education, namely the working memory overload model, by applying catastrophe theory. Changes in students' achievement were modeled as discontinuities within a cusp catastrophe model, where working memory capacity was implemented as asymmetry and the degree…

  1. 77 FR 31592 - Notice of Proposed Information Collection Requests; Institute of Education Sciences; What Works...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... the work of the WWC in reviewing studies and interventions, developing topic areas and practice guides... Notice of Proposed Information Collection Requests; Institute of Education Sciences; What Works Clearinghouse SUMMARY: The What Works Clearinghouse (WWC) was established to develop, maintain, and...

  2. Development of a flexible higher education curriculum framework for geographic information science

    NASA Astrophysics Data System (ADS)

    Veenendaal, B.

    2014-04-01

    A wide range of geographic information science (GIScience) educational programs currently exist, the oldest now over 25 years. Offerings vary from those specifically focussed on geographic information science, to those that utilise geographic information systems in various applications and disciplines. Over the past two decades, there have been a number of initiatives to design curricula for GIScience, including the NCGIA Core Curriculum, GIS&T Body of Knowledge and the Geospatial Technology Competency Model developments. The rapid developments in geospatial technology, applications and organisations means that curricula need to constantly be updated and developed to maintain currency and relevance. This paper reviews the curriculum initiatives and outlines a new and flexible GIScience higher education curriculum framework which complements and utilises existing curricula. This new framework was applied to the GIScience programs at Curtin University in Perth, Australia which has surpassed 25 years of GIScience education. Some of the results of applying this framework are outlined and discussed.

  3. A Science Information Infrastructure

    NASA Astrophysics Data System (ADS)

    Christian, C. A.; Hawkins, I.; Malina, R. F.; Dow, K.; Murray, S.

    1994-12-01

    We have created a partnership of science museums, research institutions, teachers, and other centers of informal science education to enable access to the rich resources of remote sensing data available from NASA and other sources and to deliver this information to the general community. We are creating science resource centers in the nation's science museums and planetarium facilities, linking them together through a national Science Information Infrastructure (SII). The SII framework is being founded on Internet connections between the resource centers, which are in turn linked to research institutions. The most up-to-date and exciting science data, related information, and interpretive material will be available from the research institutions. The science museums will present this information in appropriate ways that respond to the needs and interest of the general public and K--12 communities. The science information will be available through the World Wide Web using a Mosaic interface that individuals will use to explore the on-line materials through self-guided learning modules. K--12 teachers will have access to the materials and, in a workshop forum, learn to find and use the information to create lesson plans and curricula for their classrooms. Eventually, as the connectivity of schools and libraries improves, students and teachers will have access to the resource centers from their own locations. The core partnership of the SII includes the Center for EUV Astrophysics (CEA), and Smithsonian Astrophysical Observatory, Exploratorium, Lawrence Hall of Science, Smithsonian National Air and Space Museum, Science Museum of Virginia, New York Hall of Science, Adler Museum of Chicago, University of California Museum of Paleontology, Boston Museum of Science, and the Earth Observing Satellite Company (EOSAT). A demonstration of the application of resource center materials in the K--12 community is being conducted through the Science On-Line project at the Center

  4. ERESE Professional Development in Science Education: A collaboration of scientists, teachers, and information technologists

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Helly, M.; Massel Symons, C.; Koppers, A.; Helly, J.; Miller, S.

    2005-12-01

    The Enduring Resources in Earth Science Education (ERESE) project promotes inquiry based teaching of plate tectonics through professional development and distribution of digital library objects in the National Science Digital Library network. The overall ERESE goal is to bridge the gap between the scientists and educators, and our experience has shown that much can be gained by establishing a close collaboration between all parties involved in earth science education, from high school student to teacher -educator, and scientist. These collaborations yield substantial gains in terms of effective educational approaches, contents selection, and to produce an authentic class room research experience. ERESE professional development workshops promote a model of inquiry-based teaching that keeps the educator as far in the background as possible, while empowering the student to carry out a maximally independent inquiry. Key components in this process are: (1) use of a well selected provocative phenomenon to promote student's curiosity and to start the inquiry process, (2) care in the student guidance towards selection and formulation of a researchable question, (3) the involvement of teachers and scientists, in a close collaboration (4) teaching resource development with a strong feed-back from professional development workshops and classroom practice, (5) integration of science inquiry resources on all expert levels providing an environment that allows continuous access to science information from the most basic to the full scale science level. We expanded ERESE resource development into a volcanology field class on Hawaii to produce a website and digital library contents including field reports, exercises and images and field data. We further expanded our resource development through the participation of three high school students in a three-week seagoing expedition to the Samoan Archipelago. The high school seniors maintained a live expedition website and they

  5. Why Machine-Information Metaphors are Bad for Science and Science Education

    NASA Astrophysics Data System (ADS)

    Pigliucci, Massimo; Boudry, Maarten

    2011-05-01

    Genes are often described by biologists using metaphors derived from computational science: they are thought of as carriers of information, as being the equivalent of "blueprints" for the construction of organisms. Likewise, cells are often characterized as "factories" and organisms themselves become analogous to machines. Accordingly, when the human genome project was initially announced, the promise was that we would soon know how a human being is made, just as we know how to make airplanes and buildings. Importantly, modern proponents of Intelligent Design, the latest version of creationism, have exploited biologists' use of the language of information and blueprints to make their spurious case, based on pseudoscientific concepts such as "irreducible complexity" and on flawed analogies between living cells and mechanical factories. However, the living organism = machine analogy was criticized already by David Hume in his Dialogues Concerning Natural Religion. In line with Hume's criticism, over the past several years a more nuanced and accurate understanding of what genes are and how they operate has emerged, ironically in part from the work of computational scientists who take biology, and in particular developmental biology, more seriously than some biologists seem to do. In this article we connect Hume's original criticism of the living organism = machine analogy with the modern ID movement, and illustrate how the use of misleading and outdated metaphors in science can play into the hands of pseudoscientists. Thus, we argue that dropping the blueprint and similar metaphors will improve both the science of biology and its understanding by the general public.

  6. A case study of collaboration in science education: Integrating informal learning experiences into the school curriculum

    NASA Astrophysics Data System (ADS)

    Robertson, Amy Michelle

    This is a study of a collaboration between multiple stakeholders in science education for the purpose of creating educational field trip experiences. The collaboration involves four major facets of science education: formal education at the elementary and university levels, informal education, and educational research. The primary participants in the collaboration include two elementary school teachers, a scientist from a local university, an informal educator from an environmental education site, and the researcher acting as a participant observer. The coming together of these different sides of science education provided a unique opportunity to explore the issues and experiences that emerged as such a partnership was formed and developed. Strongly influenced by action research, this study is a qualitative case study. The data was collected by means of observation, semi-structured interviews, and written document review, in order to provide both a descriptive and an interpretive account of this collaboration. The final analysis integrates a description of the participants' experiences as evidenced in the data with the issues that arose from these experiences. The evolution of the collaborators' roles was examined, as was the development of shared vision. In this study, there were several factors that significantly affected the progress towards a shared vision and a successful collaboration. These factors include time, communication, understanding others' perspectives, dedication and ownership, as well as the collaborative environment. Each collaborator benefited both professionally and personally from their participation in the collaboration. In addition, the students gained cognitively, affectively, and socially from the educational experiences created through the collaboration. Steps, such as working towards communication and understanding others' perspectives, should continue to be taken to ensure the collaboration continues beyond the term of the current key

  7. An Examination of Farmworker Pesticide Educators in a Southeastern State: Informal Science Educators and Risk Communication

    ERIC Educational Resources Information Center

    LePrevost, Catherine E.

    2011-01-01

    Because pesticide exposure is a significant hazard to farmworkers in their working and living environments, basic pesticide toxicology is a topic for farmworker science education that has implications beyond scientific literacy to encompass farmworkers' safety and health. Migrant and seasonal farmworkers have been identified as an at-risk…

  8. An Examination of Farmworker Pesticide Educators in a Southeastern State: Informal Science Educators and Risk Communication

    ERIC Educational Resources Information Center

    LePrevost, Catherine E.

    2011-01-01

    Because pesticide exposure is a significant hazard to farmworkers in their working and living environments, basic pesticide toxicology is a topic for farmworker science education that has implications beyond scientific literacy to encompass farmworkers' safety and health. Migrant and seasonal farmworkers have been identified as an at-risk…

  9. Increasing Geoscience Literacy and Public Support for the Earthscope National Science Initiative Through Informal Education

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.

    2005-12-01

    Geology and geophysics are frequently perceived by the student, teacher, or adult non-geologist as "difficult to understand"; however, most non-geologists of all ages appreciate geological landforms such as mountains, volcanoes and canyons, and are interested in phenomena such as earthquakes and natural resources. Most people are also interested in local connections and newsworthy programs and projects. Therefore, the EarthScope Project is a perfect opportunity to excite and educate the public about solid-Earth geoscience research and to increase the non-geologist's understanding of Earth's dynamic processes. As the EarthScope Project sweeps across the country, the general public must be made aware of the magnitude, scope, excitement, and achievements of this national initiative. However, EarthScope science is difficult for the non-scientist to understand. The project is large-scale and long-term, and its data sets consist of maps, structural graphics, 3D and 4D visualizations, and the integration of many different geophysical instruments, all elements that are difficult for the non-scientist to understand. Targeted programs for students, teachers, and visitors to the National Parks will disseminate EarthScope information; in addition, museums and other informal science education centers can also play an important role in translating scientific research for the general public. Research on learning in museums has shown that museums educate an audience that is self-selected and self-directed (non-captive), includes family/groups, multigenerational, and repeat visitors, and requires presentation of information for a variety of learning styles. Informal science centers have the following advantages in geoscience-related education: (1) graphics/display expertise; (2) flexibility in approach and programming; (3) ability to quickly produce exhibits, educational programming, and curricula themed to specific topics of interest; (4) inclusion of K-12 teachers in the

  10. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  11. My NASA DATA: Earth System Science Data for Formal and Informal Education

    NASA Astrophysics Data System (ADS)

    Lewis, P. M., Jr.; Oostra, D.; Harte, T.; Crecelius, S.; Chambers, L. H.

    2014-12-01

    The Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA or MND) project was launched in 2004 to bring authentic science data to the K-12 classroom and informal education communities. One of the main features is its Live Access Server (LAS). The LAS is an open source tool that allows users to customize data sets to suit their individual needs, choosing from among 250 global Level III data sets. The MY NASA DATA project hosts over 120 lesson plans and activities that utilize this library of Earth system science data as collected by NASA satellites. This collection of data parameters are offered to help teachers easily add data exploration to their current curriculum, and give them an easy to use tool to keep coming back for all of their data needs. Through the built in inquiry of the lesson plans and the easy to navigate layout of the LAS, educators have numerous ways connect their students to the data, giving their students a unique hands on experience with authentic NASA data. With a shift in many states science standards, classroom teachers are rethinking how science can be taught in the classroom. Through the use of data exercises in the classroom, teachers now have the ability to introduce their students to the many possibilities of data. By using authentic data, students can immerse themselves in place based learning exercises and be driven by inquiry to answer all of their questions through immersion in the data. The MY NASA DATA lesson plans, activities, and the data itself, give formal and informal audiences a place to go for science understanding and the answers to many questions in the science classroom. By utilizing authentic data sets and materials on MY NASA DATA that are prepared specificaly for all areas of education, users will be more readily prepared to answer their own questions about the world around them meet the needs of classroom assessment.

  12. If We Teach Them, They Can Learn: Young Students Views of Nature of Science During an Informal Science Education Program

    NASA Astrophysics Data System (ADS)

    Quigley, Cassie; Pongsanon, Khemmawadee; Akerson, Valarie L.

    2011-03-01

    There have been substantial reform efforts in science education to improve students' understandings of science and its processes and provide continual support for students becoming scientifically literate (AAAS, Benchmarks for science literacy, Oxford University Press, New York, 1993; NRC, National Academy Press, Washington, DC, 1996; NSTA, NSTA position statement: The nature of science, http://www.nsta.org/159&psid=22). Despite previous research, it is still unclear whether young children are actually developmentally ready to conceptualize the ideas that are recommended in the reforms (Akerson and Volrich, J Res Sci Teach 43:377-394, 2006). The purpose of this study was to explore how explicit-reflective instruction could improve young students' understanding of NOS. During an informal education setting, the authors taught NOS aspects using explicit-reflective instruction. Overall the students participating in the program improved their understanding of the target aspects of NOS through use of explicit reflective instruction. However, the levels of improvement varied across different aspects. Students improved the most in their understanding of the tentative nature of science and the roles of observation in scientific work, although there was still some confusion regarding the distinction between observation and inference. More work needs to be done exploring these specific topics and the role explicit reflective practice can play in identifying the particular problems students have in distinguishing these constructs.

  13. The influence of professional development on informal science educators' engagement of preschool-age audiences in science practices

    NASA Astrophysics Data System (ADS)

    Crowl, Michele

    There is little research on professional development for informal science educators (ISEs). One particular area that ISEs need support in is how to engage preschool-age audiences in science practices. This study is part of a NSF-funded project, My Sky Tonight (MST), which looked at how to support ISEs in facilitating astronomy-themed activities with preschool-age audiences. This dissertation focuses on the influence of a six-week, online professional development workshop designed for ISEs working with preschool-age audiences. I used three primary sources of data: pre/post interviews and a video analysis task from data of 16 participants, as well as observations of implementation from a subset of seven participants who agreed to participate further. I developed and used the Phenomena-driven Practices of Science (PEPS) Framework as an analysis tool for identifying engagement in science practices. Findings from this study show that ISEs identified affective goals and rarely goals that reflect science practice engagement for their preschool-age audiences. They maintained these initial goals after the professional development workshop. ISEs describe the ways in which they engage children in science using primarily science practice-related words, but these descriptions did not show full use of science practices according to the PEPS framework. When observed implementing science activities with their preschool audiences, the ISEs demonstrated a variety of forms of science engagement, but only a few used science practices in ways consistent with the PEPS framework. Engagement in the professional development workshop did not result in a transition in the ways ISEs talk about and implement science with young children. While the write-ups for MST activities were not written in a way that supported engagement in science practices, a subset of MST activities were designed with it in mind. The professional development workshop included little time focusing on how ISEs could

  14. A longitudinal study of the educational and career trajectories of female participants of an urban informal science education program

    NASA Astrophysics Data System (ADS)

    Fadigan, Kathleen A.; Hammrich, Penny L.

    2004-10-01

    The purpose of this longitudinal case study is to describe the educational trajectories of a sample of 152 young women from urban, low-income, single-parent families who participated in the Women in Natural Sciences (WINS) program during high school. Utilizing data drawn from program records, surveys, and interviews, this study also attempts to determine how the program affected the participants' educational and career choices to provide insight into the role informal science education programs play in increasing the participation of women and minorities in science, math, engineering, and technology (SMET)-related fields. Findings revealed 109 participants (93.16%) enrolled in a college program following high school completion. Careers in medical or health-related fields followed by careers in SMET emerged as the highest ranking career paths with 24 students (23.76%) and 21 students (20.79%), respectively, employed in or pursuing careers in these areas. The majority of participants perceived having staff to talk to, the job skills learned, and having the museum as a safe place to go as having influenced their educational and career decisions. These findings reflect the need for continued support of informal science education programs for urban girls and at-risk youth.

  15. Toward Understanding the Nature of a Partnership between an Elementary Classroom Teacher and an Informal Science Educator

    ERIC Educational Resources Information Center

    Weiland, Ingrid S.; Akerson, Valarie L.

    2013-01-01

    This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was…

  16. Utilization of Electronic Information Resources by Undergraduate Students of University of Ibadan: A Case Study of Social Sciences and Education

    ERIC Educational Resources Information Center

    Owolabi, Sola; Idowu, Oluwafemi A.; Okocha, Foluke; Ogundare, Atinuke Omotayo

    2016-01-01

    The study evaluated utilization of electronic information resources by undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan. The study adopted a descriptive survey design with a study population of 1872 undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan, from which a…

  17. The Views of Science Pre-Service Teachers about the Usage of Basic Information Technologies (BIT) in Education and Instruction

    ERIC Educational Resources Information Center

    Çetin, Oguz

    2016-01-01

    In this study aiming to present a description based on science pre-service teachers' views related to use of Basic Information Technologies (BIT) in education and training, an interview is carried out with 21 pre-service science teachers who study in different classes in Faculty of Education, Nigde University. For this aim, improved interview form…

  18. Toward Understanding the Nature of a Partnership between an Elementary Classroom Teacher and an Informal Science Educator

    ERIC Educational Resources Information Center

    Weiland, Ingrid S.; Akerson, Valarie L.

    2013-01-01

    This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was…

  19. The ACRL framework for information literacy in higher education: implications for health sciences librarianship.

    PubMed

    Knapp, Maureen; Brower, Stewart

    2014-01-01

    The Association of College and Research Libraries is developing a new framework of information literacy concepts that will revise and replace the previously adopted standards. This framework consists of six threshold concepts that are more flexible than the original standards, and that work to identify both the function and the feelings behind information literacy education practices. This column outlines the new tentative framework with an eye toward its implications for health sciences libraries, and suggests ways the medical library community might work with this new document.

  20. The Little Shop of Physics: Lessons from Informal Science Education for the College Classroom

    NASA Astrophysics Data System (ADS)

    Jones, Brian

    2013-04-01

    The Little Shop of Physics is a hands-on science outreach program of the Physics Department at Colorado State University. We have been presenting programs at schools and workshops for teachers for over 20 years. All of our projects are developed by undergraduate students at Colorado State University, who also present our school programs. Our interns and volunteers receive very valuable experience in science and communication; the Little Shop experience is an important component of the college experience for these students. Over the past several years we have begun a thorough assessment of all aspects of the work we do that has given us valuable insight into what works and what doesn't in our interactive, informal physics education programs. These lessons can be easily adapted to the college classroom. In this session, I will begin with an overview of the Little Shop of Physics program, including how we involve undergraduate students in all aspects of our work. Along the way, I will share some easy-to-reproduce demonstrations that came out of the Little Shop that I have found to be very effective. I will then discuss our assessment efforts and the lessons we've learned about presenting science concepts to students that have informed and improved my college teaching. At the end of this formal presentation, we will give participants a chance to explore our hands-on science projects, and to ask questions of the Little Shop of Physics team members in a more informal setting.

  1. Scientific support, soil information and education provided by the Austrian Soil Science Society

    NASA Astrophysics Data System (ADS)

    Huber, Sigbert; Baumgarten, Andreas; Birli, Barbara; Englisch, Michael; Tulipan, Monika; Zechmeister-Boltenstern, Sophie

    2015-04-01

    The Austrian Soil Science Society (ASSS), founded in 1954, is a non-profit organisation aiming at furthering all branches of soil science in Austria. The ASSS provides information on the current state of soil research in Austria and abroad. It organizes annual conferences for scientists from soil and related sciences to exchange their recent studies and offers a journal for scientific publications. Annually, ASSS awards the Kubiena Research Prize for excellent scientific studies provided by young scientists. In order to conserve and improve soil science in the field, excursions are organized, also in cooperation with other scientific organisations. Due to well-established contacts with soil scientists and soil science societies in many countries, the ASSS is able to provide its members with information about the most recent developments in the field of soil science. This contributes to a broadening of the current scientific knowledge on soils. The ASSS also co-operates in the organisation of excursions and meetings with neighbouring countries. Several members of the ASSS teach soil science at various Austrian universities. More detail on said conferences, excursions, publications and awards will be given in the presentation. Beside its own scientific journal, published once or twice a year, and special editions such as guidebooks for soil classification, the ASSS runs a website providing information on the Society, its activities, meetings, publications, awards and projects. Together with the Environment Agency Austria the ASSS runs a soil platform on the internet. It is accessible for the public and thus informs society about soil issues. This platform offers a calendar with national and international soil events, contacts of soil related organisations and networks, information on national projects and publications. The society has access to products, information material and information on educational courses. Last but not least information on specific soil

  2. Advancing Integration Through Evidence Informed Practice: Northwestern Health Sciences University’s Integrated Educational Model

    PubMed Central

    Taylor, Barry; Delagran, Louise; Baldwin, Lori; Hanson, Linda; Leininger, Brent; Vihstadt, Corrie; Evans, Roni; Jo Kreitzer, Mary; Sierpina, Victor

    2012-01-01

    A consistent theme running through the healthcare debate is the need for new care models that include collaborative, team-based care. There is also growing recognition that interprofessional education is critical to achieving collaborative, patient-centered care. Not unlike conventional, biomedical professions, CAM (complementary and alternative medicine) professions have also educated students in silos with little interaction between various disciplines. Northwestern Health Sciences University, under their NIH NCCAM-funded R-25 grant, is breaking new ground in requiring that their students in chiropractic, massage, and OAM complete a common course in evidence informed practice. A previous Explore column described the core competencies that the students are required to achieve. This column focuses on the practicalities and challenges of offering a course to students enrolled in three different degree programs. Perhaps it will stimulate readers to consider how we might achieve interprofessional education that brings together all health professional students, biomedical and CAM. PMID:22051565

  3. If We Teach Them, They Can Learn: Young Students Views of Nature of Science during an Informal Science Education Program

    ERIC Educational Resources Information Center

    Quigley, Cassie; Pongsanon, Khemmawadee; Akerson, Valarie L.

    2011-01-01

    There have been substantial reform efforts in science education to improve students' understandings of science and its processes and provide continual support for students becoming scientifically literate (AAAS, "Benchmarks for science literacy," Oxford University Press, New York, 1993; NRC, National Academy Press, Washington, DC, 1996; NSTA,…

  4. If We Teach Them, They Can Learn: Young Students Views of Nature of Science during an Informal Science Education Program

    ERIC Educational Resources Information Center

    Quigley, Cassie; Pongsanon, Khemmawadee; Akerson, Valarie L.

    2011-01-01

    There have been substantial reform efforts in science education to improve students' understandings of science and its processes and provide continual support for students becoming scientifically literate (AAAS, "Benchmarks for science literacy," Oxford University Press, New York, 1993; NRC, National Academy Press, Washington, DC, 1996; NSTA,…

  5. Seeking science information online: Data mining Google to better understand the roles of the media and the education system.

    PubMed

    Segev, Elad; Baram-Tsabari, Ayelet

    2012-10-01

    Which extrinsic cues motivate people to search for science-related information? For many science-related search queries, media attention and time during the academic year are highly correlated with changes in information seeking behavior (expressed by changes in the proportion of Google science-related searches). The data mining analysis presented here shows that changes in the volume of searches for general and well-established science terms are strongly linked to the education system. By contrast, ad-hoc events and current concerns were better aligned with media coverage. The interest and ability to independently seek science knowledge in response to current events or concerns is one of the fundamental goals of the science literacy movement. This method provides a mirror of extrapolated behavior and as such can assist researchers in assessing the role of the media in shaping science interests, and inform the ways in which lifelong interests in science are manifested in real world situations.

  6. A longitudinal study of the educational and career trajectories of female participants of an urban informal science education program

    NASA Astrophysics Data System (ADS)

    Fadigan, Kathleen Ann

    The purpose of this study is to describe the educational trajectories of a sample of young women from urban, low-income, single-parent families who participated in the Women in Natural Sciences (WINS) program during their ninth and/or tenth grade years of high school. This study also attempts to determine how the WINS program affected the participants' educational and career choices in order to provide insight into the role informal science education programs play in increasing the participation of women and minorities in science, math, engineering, and technology (SMET)-related fields. The research takes the form of a longitudinal, descriptive case study. The case is composed of 152 WINS participants who applied for, were accepted into, and completed at least one year of the program between 1992 and 1997. Data were drawn from program records, surveys, and interviews. Pre-WINS desired educational and career trajectory data were available for 152 participants. Post-WINS actual educational and career trajectory data were available for 101 of the young women in the sample. Seventy-eight women completed a WINS survey. The researcher conducted semi-structured interviews with 12 former participants. Findings revealed a 100 percent high school completion rate. A total of 109 participants (93.16%) enrolled in a college program following high school completion. Careers in medical or health-related fields followed by careers in SMET emerged as the highest ranking career paths with 24 students (23.76%) and 21 students (20.79%), respectively, employed in or pursuing careers in these areas. Taking a greater number of advanced or honors level SMET high school courses was the only contextual variable showing a significant relationship to pursuing a career in SMET. The majority of participants perceived having the WINS staff as people you could talk to, the job skills learned in WINS, and having the museum as a safe place to go as having influenced their educational and career

  7. GLOBE: Science and Education.

    ERIC Educational Resources Information Center

    Butler, Dixon M.; MacGregor, Ian D.

    2003-01-01

    Introduces GLOBE, a science and education program designed to use environmental research as a means to improve student achievement in basic science, mathematics, geography, and the use of technology. Indicates positive impact of GLOBE on students' ability to use scientific data in decision-making and their scientifically informed awareness of the…

  8. A SELECTED BIBLIOGRAPHY OF DOCUMENTATION AND INFORMATION SCIENCE, AUTUMN 1967

    DTIC Science & Technology

    Contents: General; Basic research in information science ; Experimentation (testing and evaluation, relevance); Professional applications (medicine, education); Interdisciplinary aspects in information science (linguistics, engineering, social and behavioral sciences); Education in librarianship and information science .

  9. CAREERS IN INFORMATION SCIENCE,

    DTIC Science & Technology

    Information Science . Sets forth that Information Science is concerned with the properties, behavior, and flow of information...Describes how it is used, both by individuals and in large systems. Discusses the opportunities in Information Science and outlines three relatively...6or participation in these career areas. Concludes that Information Science is a new but rapidly growing field pushing the frontiers of human knowledge and, thus, 3ontributing to human wellbeing and progress.

  10. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    NASA Technical Reports Server (NTRS)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  11. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    NASA Technical Reports Server (NTRS)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  12. Modern Functions of a Textbook on Social Sciences and Humanities as an Informational Management Tool of University Education

    ERIC Educational Resources Information Center

    Nikonova, Elina I.; Sharonov, Ivan A.; Sorokoumova, Svetlana N.; Suvorova, Olga V.; Sorokoumova, Elena A.

    2016-01-01

    The relevance of the study is conditioned by the changes in the content of socio-humanitarian education, aimed at the acquisition of knowledge, the development of tolerance, civic and moral education. The purpose of the paper is to identify the modern functions of a textbook on social sciences and humanities as an informational management tool of…

  13. Selective Bibliography about Education and Training in Library and Information Science in PR China, Taiwan, Hong Kong, Singapore.

    ERIC Educational Resources Information Center

    Simon, H.-R.; Meis, Nicola

    This selective bibliography lists 66 items published from 1980 until 1989 on education, training, and continuing education in library and information science and documentation in the Chinese-speaking countries, i.e., the People's Republic of China, Taiwan, Hong Kong, and Singapore. The document is divided into 10 sections: (1) a preface (in…

  14. Science: Promising and Exemplary Programs and Materials in Elementary and Secondary Schools. [Science Education Information Report.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.; And Others

    This document contains 36 programs and/or material listings that were nominated by at least three persons and for which there was evidence of the quality of the program or materials. Reviewers looked for positive evaluation data on the impact of the materials on students, or other information that assessed the quality of the program or materials,…

  15. Acting in Our Own Self-Interests: Blending University and Community in Informal Science Education

    NASA Astrophysics Data System (ADS)

    Finkelstein, Noah D.; Mayhew, Laurel

    2008-10-01

    Research in physics education has demonstrated new tools and models for improving the understanding and engagement of traditional college students [1]. Building on this base, the research community has bridged the gap from college to pre-college education, even elementary school [2]. However, little work has been done to engage students in out-of-school settings, particularly for those students from populations under-represented in the sciences. We present a theoretically-grounded model of university-community partnership [3] that engages university students and children in a collective enterprise that has the potential to improve the participation and education of all. We document the impact of these programs on: university participants who learn about education, the community and even some science; children in the community who learn about science, the nature of science and develop their identities and attitudes towards science; and, shifts in institutional practice which may allow these programs to be sustained, or not.

  16. Small Stories for Learning: A Sociocultural Analysis of Children's Participation in Informal Science Education

    NASA Astrophysics Data System (ADS)

    Desjardins, Elia Nelson

    2011-12-01

    This dissertation examines the ways children use language to construct scientific knowledge in designed informal learning environments such as museums, aquariums, and zoos, with particular attention to autobiographical storytelling. This study takes as its foundation cultural-historical activity theory, defining learning as increased participation in meaningful, knowledge-based activity. It aims to improve experience design in informal learning environments by facilitating and building upon language interactions that are already in use by learners in these contexts. Fieldwork consists of audio recordings of individual children aged 4--12 as they explored a museum of science and technology with their families. Recordings were transcribed and coded according to the activity (task) and context (artifact/exhibit) in which the child was participating during each sequence of utterances. Additional evidence is provided by supplemental interviews with museum educators. Analysis suggests that short autobiographical stories can provide opportunities for learners to access metacognitive knowledge, for educators to assess learners' prior experience and knowledge, and for designers to engage affective pathways in order to increase participation that is both active and contemplative. Design implications are discussed and a design proposal for a distributed informal learning environment is presented.

  17. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    NASA Astrophysics Data System (ADS)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  18. Educational science meets simulation.

    PubMed

    Pasquale, Susan J

    2015-03-01

    With the increased use of simulation to teach the knowledge and skills demanded of clinical practice, toward the achievement of optimal patient care outcomes, it becomes increasingly important that clinician educators have fundamental knowledge about educational science and its applications to teaching and learning. As the foremost goal of teaching is to facilitate learning, it is essential that the simulation experience be oriented to the learning process. In order for this to occur, is it necessary for the clinician educator to understand the fundamentals of educational science and theories of education such that they can apply them to teaching and learning in an environment focused on medical simulation. Underscoring the rationale for the fundamentals of educational science to be applied to the simulation environment, and to work in tandem with simulation, is the importance that accurate and appropriate information is retained and applied toward establishing competence in essential practice-based skills and procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The use of Second Life as an effective means of providing informal science education to secondary school students

    NASA Astrophysics Data System (ADS)

    Amous, Haytham

    This research study evaluated the use of Second Life and its virtual museums as a means of providing effective informal science education for both junior high and high school students. This study investigated whether the attitudes of students toward science change as a result of scholastic exposure to the science museums in Second Life. The dependence between attitudes and learning styles was also investigated. The data gathered from the experiences and the perceptions of students using Second Life in informal science education were analyzed to address the questions of the study. The researcher used qualitative and quantitative research methodologies to investigate the research questions. The first and second research questions were quantitative and used TOSRA2 research instrument to assess attitude and perceptions and learning style questionnaire scores. The attitudes toward science before and after visiting the Second Life museums showed no significant change. A weak relationship between the attitudes toward science and the participants learning styles was found. The researcher therefore concluded that no relationship existed between the average of the TOSRA scores and the learning styles questionnaire scores. To address questions research three and four, a collective qualitative case study approach (Creswell, 2007), as well as a structured interviews focusing on the students' perspectives about using Second Life for informal science education was used. The students did not prefer informal science education using second life over formal education. This was in part attributed to the poor usability and/or familiarity with the program. Despite the students' technical difficulties confronted in visiting Second Life the perception of student about their learning experiences and the use of Second Life on informal science environment were positive.

  20. Auditing of Information and Communication Technologies in Library and Information Science Education in Africa

    ERIC Educational Resources Information Center

    Minishi-Majanja, Mabel K.; Ocholla, Dennis N.

    2004-01-01

    This study mapped and audited the types, nature and diffusion of ICTs in LIS education in sub-Saharan Africa. Questionnaires were sent to 51 LIS schools in 19 countries of sub-Saharan Africa, of which 29 (57%) were returned. Most LIS schools have a significant ICT content in their programs, and most ICT modules are highly rated as core/required…

  1. Auditing of Information and Communication Technologies in Library and Information Science Education in Africa

    ERIC Educational Resources Information Center

    Minishi-Majanja, Mabel K.; Ocholla, Dennis N.

    2004-01-01

    This study mapped and audited the types, nature and diffusion of ICTs in LIS education in sub-Saharan Africa. Questionnaires were sent to 51 LIS schools in 19 countries of sub-Saharan Africa, of which 29 (57%) were returned. Most LIS schools have a significant ICT content in their programs, and most ICT modules are highly rated as core/required…

  2. Lights, Camera: Learning! Findings from studies of video in formal and informal science education

    NASA Astrophysics Data System (ADS)

    Borland, J.

    2013-12-01

    As part of the panel, media researcher, Jennifer Borland, will highlight findings from a variety of studies of videos across the spectrum of formal to informal learning, including schools, museums, and in viewers homes. In her presentation, Borland will assert that the viewing context matters a great deal, but there are some general take-aways that can be extrapolated to the use of educational video in a variety of settings. Borland has served as an evaluator on several video-related projects funded by NASA and the the National Science Foundation including: Data Visualization videos and Space Shows developed by the American Museum of Natural History, DragonflyTV, Earth the Operators Manual, The Music Instinct and Time Team America.

  3. John Falk and Lynn Dierking: building the field of informal/free-choice science education

    NASA Astrophysics Data System (ADS)

    Rennie, Léonie J.

    2016-03-01

    This article establishes the importance of "context", a concept that underpins the academic contributions that John Falk and Lynn Dierking have made in building the field of informal/free-choice learning in science education. I consider, in turn, the individual contributions made by each of them prior to their seminal co-authored work, entitled The Museum Experience. I then document their joint contributions to the field, pointing out that although their interests and skills overlap in complementary ways to produce their jointly authored works, both have continued to make their individual contributions; Falk in his work on identity and impact, and Dierking in her work on community, youth, family and equity. Finally I come to the present, describing how they each continue their research and publication in lifelong, life-wide, and life-deep learning, with a particular focus on free-choice learning and the role it can play in addressing critical issues in the world.

  4. Science Education and Educational Policies

    ERIC Educational Resources Information Center

    Livermore, Arthur

    1976-01-01

    Discusses several conferences held by the American Association for the Advancement of Science (AAAS) Office of Science Education to address the question of the future of science education, particularly at the pre-college level. (MLH)

  5. The Media as an Invaluable Tool for Informal Earth System Science Education

    NASA Astrophysics Data System (ADS)

    James, E.; Gautier, C.

    2001-12-01

    One of the most widely utilized avenues for educating the general public about the Earth's environment is the media, be it print, radio or broadcast. Accurate and effective communication of issues in Earth System Science (ESS), however, is significantly hindered by the public's relative scientific illiteracy. Discussion of ESS concepts requires the laying down of a foundation of complex scientific information, which must first be conveyed to an incognizant audience before any strata of sophisticated social context can be appropriately considered. Despite such a substantial obstacle to be negotiated, the environmental journalist is afforded the unique opportunity of providing a broad-reaching informal scientific education to a largely scientifically uninformed population base. This paper will review the tools used by various environmental journalists to address ESS issues and consider how successful each of these approaches has been at conveying complex scientific messages to a general audience lacking sufficient scientific sophistication. Different kinds of media materials used to this effect will be analyzed for their ideas and concepts conveyed, as well as their effectiveness in reaching the public at large.

  6. GeoPad: Innovative Applications of Information Technology in Field Science Education

    NASA Astrophysics Data System (ADS)

    Knoop, P. A.; van der Pluijm, B.

    2003-12-01

    A core requirement for most undergraduate degrees in the Earth sciences is a course in field geology, which provides students with training in field science methodologies, including geologic mapping. The University of Michigan Geological Sciences' curriculum includes a seven-week, summer field course, GS-440, based out of the university's Camp Davis Geologic Field Station, near Jackson, WY. Such field-based courses stand to benefit tremendously from recent innovations in Information Technology \\(IT\\), especially in the form of increasing portability, new haptic interfaces for personal computers, and advancements in Geographic Information System \\(GIS\\) software. Such innovations are enabling in-the-field, real-time access to powerful data collection, analysis, visualization, and interpretation tools. The benefits of these innovations, however, can only be realized on a broad basis when the IT reaches a level of maturity at which users can easily employ it to enhance their learning experience and scientific activities, rather than the IT itself being a primary focus of the curriculum or a constraint on field activities. The GeoPad represents a combination of these novel technologies that achieves that goal. The GeoPad concept integrates a ruggedized Windows XP TabletPC equipped with wireless networking, a portable GPS receiver, digital camera, microphone-headset, voice-recognition software, GIS, and supporting, digital, geo-referenced data-sets. A key advantage of the GeoPad is enabling field-based usage of visualization software and data focusing on \\(3D\\) geospatial relationships \\(developed as part of the complementary GeoWall initiative\\), which provides a powerful new tool for enhancing and facilitating undergraduate field geology education, as demonstrated during the summer 2003 session of GS-440. In addition to an education in field methodologies, students also gain practical experience using IT that they will encounter during their continued

  7. Technology Engineering Science Instruction in the Information Age: Integrating Instructional Technology in K12 Education

    ERIC Educational Resources Information Center

    Osler, James E., III; Hollowell, Gail; Palmer, Cassandra

    2008-01-01

    This paper is a summary of the use of the Technology Engineering in K-12 education that integrates science and technology to positively impact students and teachers. The Technology Enhanced Learning in Science Center (or "TELS") is a research consortium that uses dynamic and innovative technology-based solutions combined with science…

  8. Informing Future Learning Designs in Preservice Teacher Education through Quantitative Research: A Primary Science Example

    ERIC Educational Resources Information Center

    Hudson, Peter

    2005-01-01

    Reform documents have provided a framework for advancing science education (e.g., The Australian National Science Standard Committee, 2002), but omit the need to assess preservice teachers prior knowledge for designing effective learning programs. A pretest-posttest 34-item survey linked to the course outcomes (associated with four constructs)…

  9. Regional Centres for Space Science and Technology Education and ICG Information Centres affiliated to the United Nations

    NASA Astrophysics Data System (ADS)

    Gadimova, S.; Haubold, H. J.

    2009-06-01

    Based on resolutions of the United Nations General Assembly, Regional Centres for Space Science and Technology Education were established in India, Morocco, Nigeria, Brazil and Mexico. Simultaneously, education curricula were developed for the core disciplines of remote sensing, satellite communications, satellite meteorology, and space and atmospheric science. This paper provides a brief summary on the status of the operation of the regional centres with a view to use them as information centres of the International Committee on Global Navigation Satellite Systems (ICG), and draws attention to their educational activities.

  10. Information Science. Historical Paper 2

    ERIC Educational Resources Information Center

    Kent, Allen

    2015-01-01

    The author was assigned the task to comment on the broad topic: "New sciences, technologies, and media--impact on education for librarianship (or libraries)." The author choose to emphasize "information science." Narrowing the subject down even further, in this article the author emphasizes some of the aspects of the…

  11. Information Science. Historical Paper 2

    ERIC Educational Resources Information Center

    Kent, Allen

    2015-01-01

    The author was assigned the task to comment on the broad topic: "New sciences, technologies, and media--impact on education for librarianship (or libraries)." The author choose to emphasize "information science." Narrowing the subject down even further, in this article the author emphasizes some of the aspects of the…

  12. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.

    2007-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models

  13. Toward Understanding the Nature of a Partnership Between an Elementary Classroom Teacher and an Informal Science Educator

    NASA Astrophysics Data System (ADS)

    Weiland, Ingrid S.; Akerson, Valarie L.

    2013-12-01

    This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was assessed. Prior research has predominately examined relationships and roles of groups of teachers and informal educators in the museum setting (Tal et al. in Sci Educ 89:920-935, 2005; Tal and Steiner in Can J Sci Math Technol Educ 6:25-46, 2006; Tran 2007). The current study utilized case study methodology to examine one relationship (between two educators) in more depth and in a different setting—an elementary classroom. The relationship was defined through a framework of cooperation, coordination, and collaboration (Buck 1998; Intriligator 1986, 1992) containing eight dimensions. Findings suggest a relationship of coordination, which requires moderate commitment, risk, negotiation, and involvement, and examined the roles that each educator played and how they negotiated these roles. Consistent with previous examinations in science education of educator roles, the informal educator's role was to provide the students with expertise and resources not readily available to them. The roles played by the classroom teacher included classroom management, making connections to classroom activities and curricula, and clarifying concepts. Both educators' perceptions suggested they were at ease with their roles and that they felt these roles were critical to the optimization of the short time frames (1 h) the informal educator was in the classroom. Pre and posttest tests demonstrated students learned as a result of the programs.

  14. Europe and Information Science.

    ERIC Educational Resources Information Center

    Ingwersen, Peter

    1997-01-01

    Discusses recent European library and information science (LIS) events. Describes the development and use of regional and intra-European Union networks for science. Highlights three European conferences held in 1996: ACM-SIGIR on information retrieval held in Switzerland, Information Seeking in Context (ISIC) held in Finland, and Conceptions of…

  15. Europe and Information Science.

    ERIC Educational Resources Information Center

    Ingwersen, Peter

    1997-01-01

    Discusses recent European library and information science (LIS) events. Describes the development and use of regional and intra-European Union networks for science. Highlights three European conferences held in 1996: ACM-SIGIR on information retrieval held in Switzerland, Information Seeking in Context (ISIC) held in Finland, and Conceptions of…

  16. National Information Infrastructure of a Science, Culture and Education: Representation of Resources of Electronic Libraries

    NASA Astrophysics Data System (ADS)

    Filinov, E.; Boychenko, A.

    In the report are given questions concerned the choice of international standards for electronic libraries construction: - The alternative variants of choice standards on electronic catalogs and metacatalogs formats; - The alternative variants of choice standards for interlibrary loan; - The variants of choice standards for information search in online public catalogs (OPAC) and bibliographic databases; - The variants of choice standards for file representation of full text documents, vector and raster images, audio- and video-materials, text of public distributed programs. The questions for public discussion by interested organizations are intended to represent on special web site. The profile of electronic library as a total combination of standards on program interfaces and protocols may be constructed with the conceptual model of EL. This model is offered as a expansion of basic open systems environment / reference model (OSE/RM) for the area of applications to describe the Application Program Interface (APIs). Opinions of the interested organizations, which will be collected on a site by way of discussion of the questions put above, it is supposed to base on formation of a national information infrastructure of Russia for science, culture and education.

  17. Religious Education and the Brain: On Letting Cognitive Science Inform Religious Education.

    ERIC Educational Resources Information Center

    Larsen, Jerry

    1993-01-01

    Reviews recent research on brain development from the time of birth through the development of complex intellectual functioning. Contends that brain hemisphere functions have a significant impact on learning and behavior. Recommends that religious educators should learn how to use knowledge about cognitive development to encourage religious…

  18. Education in Library and Information Science. Proceedings of the International Conference (Dubrovnik, Yugoslavia, May 21-26, 1984).

    ERIC Educational Resources Information Center

    Mihel, Ivan, Ed.; Tudor-Silovic, Neva, Ed.

    1984-01-01

    An international conference attended by 59 participants from 12 countries was organized to present Yugoslavia as a case study to the international audience, to bring to the Yugoslav audience a variety of international experiences in library and information science education and training, and to acquaint participants with some of the new…

  19. Emerging Trends on the Topic of Information Technology in the Field of Educational Sciences: A Bibliometric Exploration

    ERIC Educational Resources Information Center

    González-Valiente, Carlos Luis

    2015-01-01

    The paper presents a bibliometric analysis on the topic of Information Technology (IT) in the field of Educational Sciences, aimed at envisioning the research emerging trends. The ERIC database is used as a consultation source; the results were subjected to productivity by authors, journals, and term co-occurrence analysis indicators for the…

  20. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    NASA Technical Reports Server (NTRS)

    Adams, M.; Gallagher, D. L.; Whitt, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    For the past four years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of science communication through the web resources on the Internet. The program includes extended stories about NAS.4 science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. We give here, examples of events, problems, and lessons learned from these activities.

  1. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    NASA Technical Reports Server (NTRS)

    Adams, M.; Gallagher, D. L.; Whitt, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    For the past four years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of science communication through the web resources on the Internet. The program includes extended stories about NAS.4 science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. We give here, examples of events, problems, and lessons learned from these activities.

  2. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Whitt, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Panel participation will be used to communicate the problems and lessons learned from these activities over the last three years.

  3. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Whitt, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Panel participation will be used to communicate the problems and lessons learned from these activities over the last three years.

  4. Science teaching in science education

    NASA Astrophysics Data System (ADS)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  5. Science Teaching in Science Education

    ERIC Educational Resources Information Center

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  6. Science Teaching in Science Education

    ERIC Educational Resources Information Center

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  7. If We Teach Them, They Can Learn: Young Students Views of Nature of Science Aspects to Early Elementary Students During an Informal Science Education Program

    NASA Astrophysics Data System (ADS)

    Quigley, Cassie; Pongsanon, Khemmawadee; Akerson, Valarie L.

    2010-11-01

    There have been substantial reform efforts in science education to improve students’ understandings of science and its processes and provide continual support for students becoming scientifically literate (American Association for the Advancement of Science in Benchmarks for science literacy, Oxford University Press, New York, 1993; National Research Council in Mathematics and science education around the world, National Academy Press, Washington DC, 1996; National Science Teachers Association in NSTA position statement 2000). Despite previous research, it is still unclear whether young children are actually developmentally ready to conceptualize the ideas that are recommended in the reforms (Akerson V, Volrich M (2006) Journal of Research and Science Teaching, 43, 377-394). The purpose of this study was to explore how explicit-reflective instruction could improve young students’ understanding of NOS. During an informal education setting, the authors taught NOS aspects using explicit-reflective instruction. Overall the students participating in the program improved their understanding of the target aspects of NOS through use of explicit reflective instruction. However, the levels of improvement varied across different aspects. Students improved the most in their understanding of the tentative nature of science and the roles of observation in scientific work, although there was still some confusion regarding the distinction between observation and inference. More work needs to be done exploring these specific topics and the role explicit reflective practice can play in identifying the particular problems students have in distinguishing these constructs.

  8. Information Literacy for Science Education: Evaluating Web-Based Materials for Socioscientific Issues

    ERIC Educational Resources Information Center

    Klosterman, Michelle L.; Sadler, Troy D.

    2008-01-01

    Students who engage in scientific inquiry must be able to evaluate the processes and evidence used to reach conclusions about scientific issues, regardless of whether the process is conducted in the classroom or through an information search on the internet. To explore strategies for integrating information literacy and science, the authors…

  9. Mapping and Auditing Information and Communication Technologies in Library and Information Science Education in Africa: A Review of the Literature

    ERIC Educational Resources Information Center

    Minishi-Majanja, Mabel K.

    2003-01-01

    Information and communication technologies (ICTs) have become basic ingredients of, and competitive tools in, the information-intensive tertiary/higher education sector. Their increased and specialised use in teaching and learning, research, academic administration, institutional management and information provision translates into greater access…

  10. GeoPad and GeoPocket: Information Technology for Field Science Education

    NASA Astrophysics Data System (ADS)

    Knoop, P. A.; van der Pluijm, B.

    2006-12-01

    Over the past four years we have successfully incorporated and evaluated the use of field-based Information Technology (IT) in introductory through senior-level field courses offered at the University of Michigan's Camp Davis Geology Field Station, near Jackson, WY. The use of GeoPads (field-durable Tablet PCs) and GeoPockets (field-durable Pocket PCs) -- both equipped with GIS, GPS, wireless networking, electronic notebook and other pertinent software -- have significantly enhanced our field exercises and excursions, for both students and instructors. We have focused on three main applications: (1) Mapping facilitating the development of spatial reasoning skills via powerful, intuitive capabilities for in-the-field data entry, visualization, analysis, and interpretation in both 2-D and 3-D representations; (2) Field-Trips enriching the overall experience by providing in-the-field access to a broad, relevant collection of supplemental materials, such as papers, figures, maps, photos, thin section images, etc.; and, (3) Field-Based Exercises enhancing the learning opportunities afforded by field-based exercises by supporting data analysis and interpretation, while still in the context in which the data was gathered. This IT-based approach to field education utilizes standard, off-the-shelf hardware and software, and provides students with experience using tools that are increasingly relevant to their future academic or professional careers. Furthermore, this approach is generally applicable to education and research in many traditionally non-IT-savvy science domains, in addition to geology, such as archeology, biology, sociology, and natural resources.

  11. Earth Science Information Center

    USGS Publications Warehouse

    ,

    1991-01-01

    An ESIC? An Earth Science Information Center. Don't spell it. Say it. ESIC. It rhymes with seasick. You can find information in an information center, of course, and you'll find earth science information in an ESIC. That means information about the land that is the Earth, the land that is below the Earth, and in some instances, the space surrounding the Earth. The U.S. Geological Survey (USGS) operates a network of Earth Science Information Centers that sell earth science products and data. There are more than 75 ESIC's. Some are operated by the USGS, but most are in other State or Federal agencies. Each ESIC responds to requests for information received by telephone, letter, or personal visit. Your personal visit.

  12. Exploring the Effects of Communication Framed by Environmental Concern in Informal Science Education Contexts

    NASA Astrophysics Data System (ADS)

    Yocco, Victor S.

    Informal science education (ISE) venues such as zoos, nature centers, parks, and natural history museums play a critical role in allowing the general public to learn scientific concepts (National Research Council, 2009; 2010). Most adult learning of scientific concepts takes place outside of classrooms and away from work (Rennie and Williams, 2006). It is also true that zoos and natural history museums have stated missions regarding conveying concepts related to the conservation of our natural resources (Krishtalka and Humphrey, 2000; Patrick, Mathews, Ayers, and Tunicliffe, 2007). Theoretically, the successful communication of the desired message of these ISE institutions would inspire a more informed citizenry on the use and conservation of our natural resources. Framing communication is to present a topic in a manner that promote a specific view of the information. Effectively framing information can be an avenue to achieving the goal of ISE institutions (Chong & Druckman, 2007; Nisbet, 2009). Shultz and Zelezny (2003) posit that messages framed by egoistic concerns, concerns which focus on the individual, will be better received by the general public, leading to a greater likelihood for them to become engaged. This dissertation reports on a series of descriptive mixed methods studies conducted at a zoo, a natural history museum, and a science center, exploring the framing effects of communications framed by environmental concern (Schultz, 2001). In two of the studies the researcher examined the relationship between individuals' perceptions of the overlap between their lives and nature, their levels of environmental concern, and their preferences for statements designed to align with the types of environmental concern (i.e. egoistic, social-altruistic, and biospheric). Two studies were conducted using a quasi-experimental design in which the researcher randomly assigned messages framed by environmental concern while also taking measurements of prior involvement

  13. Critical Information Literacy as Core Skill for Lifelong STEM Learning in the 21st Century: Reflections on the Desirability and Feasibility for Widespread Science Media Education

    ERIC Educational Resources Information Center

    Storksdieck, Martin

    2016-01-01

    Grace Reid and the late Stephen Norris argue in this issue the urgent need for widespread Science Media Education (SME) as an integral part of formal and informal science education. SME is to achieve two goals: First, allow learners to critically evaluate any media as a source for scientific information by understanding the socio-economic and…

  14. Critical Information Literacy as Core Skill for Lifelong STEM Learning in the 21st Century: Reflections on the Desirability and Feasibility for Widespread Science Media Education

    ERIC Educational Resources Information Center

    Storksdieck, Martin

    2016-01-01

    Grace Reid and the late Stephen Norris argue in this issue the urgent need for widespread Science Media Education (SME) as an integral part of formal and informal science education. SME is to achieve two goals: First, allow learners to critically evaluate any media as a source for scientific information by understanding the socio-economic and…

  15. INISTE. Directory of the International Network for Information in Science and Technology Education = Repertoire du reseau international d'information concernant l'enseignement des sciences et de la technologie.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Science, Technical and Environmental Education.

    The objectives of this directory are to provide information which will strengthen regional and international cooperation and research in the field of science and technology education, and to promote greater exchange of ideas and information using new information technologies between institutions. This directory is the first issue of the…

  16. Library and Information Science Education in Morocco: Observations on a Recent Visit to the "Ecole des Sciences de l'Information" and the "Centre National de Documentation" in Rabat.

    ERIC Educational Resources Information Center

    Loughridge, B.

    1987-01-01

    Reviews the contributions of the Centre National de Documentation and the Ecole des Sciences de l'Information to the development of library and information services and the education of a professional workforce in Morocco. Their role in the design and implementation of a national information policy is stressed. (Author/LRW)

  17. INISTE. Directory of the International Network for Information in Science and Technology Education = Repertoire du reseau international d'information concernant l'enseignement des sciences et de la technologie.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Science, Technical and Environmental Education.

    The objectives of this directory are to provide information which will strengthen regional and international cooperation and research in the field of science and technology education, and to promote greater exchange of ideas and information using new information technologies between institutions. This directory is the first issue of the…

  18. Epistemology and Information Science.

    ERIC Educational Resources Information Center

    Capurro, Rafael

    These lectures consider the information concept as well as the epistemological foundations of information science. The first lecture discusses the epistemological roots of the information concept and the hermeneutical paradigm within modern epistemology. Particular attention is given to the roots of the information concept in everyday English. An…

  19. A Study on Science Teachers' Attitudes Toward Information and Communications Technologies in Education

    ERIC Educational Resources Information Center

    Cavas, Bulent; Cavas, Pinar; Karaoglan, Bahar; Kisla, Tarik

    2009-01-01

    Integration of Information and Communication Technologies (ICT) into education has been an important concern in many countries. Recently, Turkish Ministry of Education has also done great efforts and major financial investments to implement ICT into teaching and learning environments. However, as in many developing countries, ICT tools are…

  20. Evaluation in Science Education.

    ERIC Educational Resources Information Center

    Scriven, Michael

    This report discusses the importance of five types of evaluation in science and science education. First, evaluation must be recognized as a key process within science, both pure and applied, and must be taught as an integral part of science education. Second, the applications of science must be evaluated not only as a social responsibility and a…

  1. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    NASA Astrophysics Data System (ADS)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  2. The TRUST Project: A Formal-Informal Teacher Education Partnership for the Promotion of Earth Science Teacher Certification

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Miele, E.; Powell, W.; MacDonald, M.

    2004-12-01

    The American Museum of Natural History (AMNH) in partnership with Lehman and Brooklyn Colleges of the City University of New York (CUNY) has initiated The Teacher Renewal for Urban Science Teaching (TRUST) project. TRUST combines informal and formal teacher education in a four-year initiative to enhance professional development and masters of science education programs, grades K-8 at Brooklyn College and 7-12 at Lehman College. This NSF-funded partnership brings together the resources of AMNH, CUNY, New York City school districts, New York City Department of Education-Museum Partnerships, and the expertise of scientists and teachers with research experiences. Following an initial planning year, TRUST will recruit and sustain 90 teachers over a period of 3 years as well as engage 30 school administrators in support of Earth science instruction. Program components include two new formal Earth systems science courses, intensive informal summer institutes, and a lecture and workshop series during which participants gain new Earth science content knowledge, develop action plans, and present their work on the local and national level. In addition, participants have access to ongoing resource and material support to enhance their learning and instruction. Continuous documentation and data collection by project investigators are being used to address questions regarding the impact various aspects of the TRUST participant experience on classroom instruction and learning, the acquisition of scientific knowledge in the new courses and institutes, and to examine the nature of the Museum experience in meeting certification goals. External formative and summative evaluation of the project is addressing issues surrounding the value of the program as a model for formal-informal partnership in urban Earth science teacher education and certification, analysis of policies that facilitate partnership arrangements, and how socialization of novices with experts affects retention and

  3. The Application of Multiobjective Evolutionary Algorithms to an Educational Computational Model of Science Information Processing: A Computational Experiment in Science Education

    ERIC Educational Resources Information Center

    Lamb, Richard L.; Firestone, Jonah B.

    2017-01-01

    Conflicting explanations and unrelated information in science classrooms increase cognitive load and decrease efficiency in learning. This reduced efficiency ultimately limits one's ability to solve reasoning problems in the science. In reasoning, it is the ability of students to sift through and identify critical pieces of information that is of…

  4. The Application of Multiobjective Evolutionary Algorithms to an Educational Computational Model of Science Information Processing: A Computational Experiment in Science Education

    ERIC Educational Resources Information Center

    Lamb, Richard L.; Firestone, Jonah B.

    2017-01-01

    Conflicting explanations and unrelated information in science classrooms increase cognitive load and decrease efficiency in learning. This reduced efficiency ultimately limits one's ability to solve reasoning problems in the science. In reasoning, it is the ability of students to sift through and identify critical pieces of information that is of…

  5. Science enrichment through informal science. Final report

    SciTech Connect

    Katz, P.

    1996-07-01

    Hands On Science Outreach (HOSO) is a program of informal science education. Its mission is to bring to communities the option of out-of-school science explorations to small groups of children from the ages of 4-12. Such experiences encourage children to enjoy science without the fear of the consequences of failure that can occur in a formal school setting. It can start them on a life long pattern of participation, awareness and perhaps career interest, motivated by this kind of pleasurable learning. Since HOSO binds together adult training, materials and written guides, many of those not professionally employed in education, including parents, can and do become involved in {open_quotes}science for the fun of it.{close_quotes} The DOE grant to the HOSO program has funded the delivery of HOSO programming to five selected sites over the 1992-96 school years. It is the intention of both the DOE and HOSO to reach children who might otherwise not be able to afford the programming, with emphasis on underrepresented minorities. HOSO has developed fall, winter and spring theme-oriented informal science sessions on four age/grade levels. One hour classes take place once a week for eight weeks per session. At the original Washington, D.C. site, the program uses a mentoring model named STEPS (Successful Teaming for Educational Partnerships in Science) in partnership with the District of Columbia Schools, as well as HOSO and the DOE. That model continues to work in Washington, D.C. and has been replicated in parts of the Sacramento and Denver sites.

  6. Hydrologic Information Science (Invited)

    NASA Astrophysics Data System (ADS)

    Maidment, D. R.

    2009-12-01

    The CUAHSI Hydrologic Information System is intended to advance hydrologic science through better capacity to access and organize hydrologic information, as described by Tarboton et al. (2009), in this session. This development may help to create a new branch of hydrologic science, namely hydrologic information science, which is that branch of hydrologic science which deals with the organization, analysis and synthesis of hydrologic information. There are several parts of this body of information: time series data on water observations at point locations that describe the flow, level, and quality of water; GIS data that describe the watersheds, aquifers, streams, waterbodies, wells and other water features of the landscape; remote sensing data that measure distributed properties such as rainfall intensity and land surface temperature; climate grids that describe current and predict climate conditions, and information from hydrologic simulation models. Taken together, these various forms of information can be considered as a description of a set of hydrologic fields that are groups of variables distributed over a domain of time and space. The fundamental principles of hydrologic information science need to be formulated around the representation of hydrologic fields, and the interaction of one form of field with another. In particular, what is needed are insights as to how to define transformations of hydrologic fields which link information at different spatial scales, and which support interpolation of information simultaneously in space and time.

  7. AI in Informal Science Education: Bringing Turing Back to Life to Perform the Turing Test

    ERIC Educational Resources Information Center

    Gonzalez, Avelino J.; Hollister, James R.; DeMara, Ronald F.; Leigh, Jason; Lanman, Brandan; Lee, Sang-Yoon; Parker, Shane; Walls, Christopher; Parker, Jeanne; Wong, Josiah; Barham, Clayton; Wilder, Bryan

    2017-01-01

    This paper describes an interactive museum exhibit featuring an avatar of Alan Turing that informs museum visitors about artificial intelligence and Turing's seminal Turing Test for machine intelligence. The objective of the exhibit is to engage and motivate visiting children in the hope of sparking an interest in them about computer science and…

  8. Disturbingly Weak: The Current State of Financial Management Education in Library and Information Science Curricula

    ERIC Educational Resources Information Center

    Burger, Robert H.; Kaufman, Paula T.; Atkinson, Amy L.

    2015-01-01

    Financial management skills are necessary for responsible library management. In light of the profession's current emphasis on financial literacy, the authors posed four questions: (1) to what extent are library and information science schools providing courses in financial management for their graduates; (2) what is the quality and quantity of…

  9. Science Learning with Information Technologies as a Tool for "Scientific Thinking" in Engineering Education

    ERIC Educational Resources Information Center

    Smirnov, Eugeny; Bogun, Vitali

    2011-01-01

    New methodologies in science (or mathematics) learning process and scientific thinking in the classroom activity of engineer students with ICT (information and communication technology), including graphic calculator are presented: visual modelling with ICT, action research with graphic calculator, insight in classroom and communications and…

  10. Disturbingly Weak: The Current State of Financial Management Education in Library and Information Science Curricula

    ERIC Educational Resources Information Center

    Burger, Robert H.; Kaufman, Paula T.; Atkinson, Amy L.

    2015-01-01

    Financial management skills are necessary for responsible library management. In light of the profession's current emphasis on financial literacy, the authors posed four questions: (1) to what extent are library and information science schools providing courses in financial management for their graduates; (2) what is the quality and quantity of…

  11. Science, education and industry information resources complementarity as a basis for design of knowledge management systems

    NASA Astrophysics Data System (ADS)

    Maksimov, N. V.; Tikhomirov, G. V.; Golitsyna, O. L.

    2017-01-01

    The main problems and circumstances that influence the processes of creating effective knowledge management systems were described. These problems particularly include high species diversity of instruments for knowledge representation, lack of adequate lingware, including formal representation of semantic relationships. For semantic data descriptions development a conceptual model of the subject area and a conceptual-lexical system should be designed on proposals of ISO-15926 standard. It is proposed to conduct an information integration of educational and production processes on the basis of information systems technologies. Integrated knowledge management system information environment combines both traditional information resources and specific information resources of subject domain including task context and implicit/tacit knowledge.

  12. Science Education. Oryx Science Bibliographies, Volume 6.

    ERIC Educational Resources Information Center

    Schroeder, Eileen E., Comp.; Tyckoson, David A., Ed.

    This bibliography provides 337 annotated references covering: science teaching at the preschool, kindergarten, elementary, and high school levels; science education as it relates to various science disciplines; science education for special populations; sexual stereotyping in science education; teacher education for science teachers; and how…

  13. Information Technology in Science (ITS) Center for Teaching and Learning Environment Design Experiment Study for the Development of New Generation Leaders in Science Education

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; Schroeder, C.; Brody, S.; Cahill, T.; Kenimer, A.; Loving, C.; Schielack, J.

    2003-12-01

    The ITS Center for Teaching and Learning is a five-year NSF-funded collaborative effort to engage scientists and university and school or district-based science educators in the use of information technology to improve science teaching and learning at all levels. One assumption is that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology in science classrooms has been shown to help achieve this objective. As a design study that is -working toward a greater understanding of a -learning ecology", the research related to the creation and refinement of the ITS Centeres collaborative environment for professional development is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. This presentation will discuss the results of the formative evaluation process that has moved the ITS Centeres collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). In particular, we will focus on the development of the ITS Centeres Project Teams, which create learning experiences over two summers focused on the exploration of science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the K-16

  14. Cognitive Science and Science Education.

    ERIC Educational Resources Information Center

    Carey, Susan

    1986-01-01

    The premise behind the cognitive approach to teaching is that understanding results when new learning is integrated with existing knowledge. But the goal of science instruction is to replace existing ideas with new theories. Current research in science education seeks to resolve these conflicting instructional approaches. (Author/VM)

  15. Lessons Learned from Cosmic Serpent: A Professional Development Project for Informal Educators on Science and Native Ways of Knowing

    NASA Astrophysics Data System (ADS)

    Peticolas, L. M.; Maryboy, N.; Begay, D.; Paglierani, R.; Frappier, R.; Teren, A.

    2011-09-01

    How can one engage native communities and the public alike in understanding nature and our universe? Our approach has been to bring together practitioners at informal science centers, cultural museums, and tribal museums to develop relationships cross-culturally, to learn about different ways of studying and learning about nature and our universe, and to start to develop informal education programs or exhibits at their institution through their new understandings and peer networks. The design of this National Science Foundation (NSF) grant has been to provide an initial week-long professional development workshop in a region in the Western U.S. with a follow-up workshop in that region the following year, culminating in a final conference for all participants. We focus on three regions: the southwest (Utah, Arizona, New Mexico, and Colorado), the northwest (Alaska, Washington, and Oregon); and California. We are in our third year of our four-year grant and have in this time organized and run three regional week-long workshops and a follow-up workshop in the southwest. We have learned many lessons through this work, including: the importance of incorporating workshop participants as presenters in the workshop agenda; how the content of astronomy, ecology, and health resonates with these museum professionals and can easily be discussed with different world views in this type of cross-cultural science education; and how to best present different ways of knowing how nature and our universe work (science) in a manner that provides a context for science educators and museum professionals. In this article, we share these and other lessons we have learned from the leadership perspective of bringing together such a diverse and under-represented-in-science group of educators.

  16. Lessons Learned from Cosmic Serpent, a professional development project for informal educators on science and native ways of knowing

    NASA Astrophysics Data System (ADS)

    Peticolas, L. M.; Maryboy, N.; Begay, D.; Paglierani, R.

    2010-12-01

    How can one engage native communities and the public alike in understanding nature and our universe? Our approach has been to bring together practitioners at informal science centers, cultural museums, and tribal museums to develop relationships cross culturally, learn about different ways of studying and learning about nature and our universe, and start to develop informal education programs or exhibits at their institution through their new understandings and peer networks. The design of the grant has been to provide an initial week-long professional development workshop in a region in the Western U.S. with a follow-up workshop in that region the following year, culminating in a final conference for all participants. We focus on three regions: the southwest (SW - Utah, Arizona, New Mexico and Colorado); the northwest (Alaska, Washington, and Oregon); and California. We are in our fourth year of our four year grant and have in this time organized and run three regional week-long workshops and two follow-up workshops (in the SW and NW). We have learned many lessons through this work, including: the importance of incorporating workshop participants as presenters in the workshop agenda; how the content of astronomy, earth science, ecology, and health resonates with these museum professionals and can easily be discussed with different world views in this type of cross cultural science education; and how to best present different ways of knowing how nature and our universe work (science) in a manner that provides a context for science educators and museum professionals. In our poster presentation, we will share these and other lessons we have learned from the leadership perspective of bringing together such a diverse and under-represented-in-science group of educators.

  17. Science Education at AAAS

    ERIC Educational Resources Information Center

    Livermore, Arthur H.

    1975-01-01

    Describes several programs of the American Association for the Advancement of Science (AAAS) Office of Science Education (OSE), including short courses offered in the natural and social sciences, mathematics, and engineering to college teachers. Discusses several OSE publications. (MLH)

  18. A Longitudinal Study of the Educational and Career Trajectories of Female Participants of an Urban Informal Science Education Program

    ERIC Educational Resources Information Center

    Fadigan, Kathleen A.; Hammrich, Penny L.

    2004-01-01

    The purpose of this longitudinal case study is to describe the educational trajectories of a sample of 152 young women from urban, low-income, single-parent families who participated in the Women in Natural Sciences (WINS) program during high school. Utilizing data drawn from program records, surveys, and interviews, this study also attempts to…

  19. Critical information literacy as core skill for lifelong STEM learning in the 21st century: reflections on the desirability and feasibility for widespread science media education

    NASA Astrophysics Data System (ADS)

    Storksdieck, Martin

    2016-03-01

    Grace Reid and the late Stephen Norris argue in this issue the urgent need for widespread Science Media Education (SME) as an integral part of formal and informal science education. SME is to achieve two goals: First, allow learners to critically evaluate any media as a source for scientific information by understanding the socio-economic and socio-cultural context of how and why news and entertainment media are created, and secondly, utilize media as a legitimate and productive source for science education and science learning. While laudable, I will argue that SME as an integral part of STEM education is unrealistic, and offer instead that the broader concept of Information Literacy might be more easily achieved within the current strong movement to conceptualize STEM education via science and engineering practices and within the broad goals of strengthening learners' 21st century skills.

  20. The New Information Technology: Critical Questions for Social Science Educators. Revised.

    ERIC Educational Resources Information Center

    Hepburn, Mary

    The role of social scientists and educators in the information revolution is to monitor the social, political, and economic consequences of increased use of technology and to research affective, cognitive, and social outcomes. Six issues provide a focus for addressing the impact of these changes. (1) An assessment of how the technological…

  1. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.

    2006-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course (http://www.cacosee.net/collegecourse) from COSEE California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project will leverage these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort will be one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course derived from COS that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach to informal

  2. Narratives of silenced critiques and how they inform pedagogy and policy: Conversations with low-income urban parents about education, science, and science education

    NASA Astrophysics Data System (ADS)

    St. Prix, Courtney Desmond

    This dissertation examines the concerns of fourteen, low-income, urban parents for their children's needs in education in general and science education in particular. A motivation behind this investigation is to resist the top-down dissemination of educational policy and value the perspectives of so-called "culturally deprived" parents. I contrast the parents' vision for science education with those expressed by AAAS and NRC. I collected data through interviews, conversation groups, and participant observation conducted at a homeless shelter in a major American city. Initially, I conducted individual interviews that were coded, and themes of social mobility and issues of pedagogy surfaced as major areas of concern for parents. I developed questions under each theme for discussion with parents in conversation groups comprised of five parents. Additional conversation groups were developed later under emergent themes of parent-school relations and science education reform. As an assistant in both the after-school program and the parent-teachers association, I obtained additional data through field-notes. I analyzed the data using critical theory as my lens. However, it was a critical theory that had been repositioned from a eurocentric viewpoint to encompass the critical elements that emerge through the struggles of people of color and women. The parents considered the educational system to be uncaring and inflexible. They expressed that science is not taught in an engaging manner that is relevant to the lives of poor students. There was a great deal of overlap between the parents' vision and that of the science education reform initiatives. However, while the reform initiatives focused on "what" and "how" science was being taught, the parents' recommendations focused on "who" was being taught. They called for a more flexible, caring educational system that pays attention to the needs of the whole child. Finally, I analyzed the parents' perspectives as reflecting

  3. Linking Formal and Informal Science Education: A Successful Model using Libraries, Volunteers and NASA Resources

    NASA Astrophysics Data System (ADS)

    Race, M. S.; Lafayette Library; Learning Center Foundation (Lllcf)

    2011-12-01

    In these times of budget cuts, tight school schedules, and limited opportunities for student field trips and teacher professional development, it is especially difficult to expose elementary and middle school students to the latest STEM information-particularly in the space sciences. Using our library as a facilitator and catalyst, we built a volunteer-based, multi-faceted, curriculum-linked program for students and teachers in local middle schools (Grade 8) and showcased new astronomical and planetary science information using mainly NASA resources and volunteer effort. The project began with the idea of bringing free NASA photo exhibits (FETTU) to the Lafayette and Antioch Libraries for public display. Subsequently, the effort expanded by adding layers of activities that brought space and science information to teachers, students and the pubic at 5 libraries and schools in the 2 cities, one of which serves a diverse, underserved community. Overall, the effort (supported by a pilot grant from the Bechtel Foundation) included school and library based teacher workshops with resource materials; travelling space museum visits with hands-on activities (Chabot-to-Go); separate powerpoint presentations for students and adults at the library; and concurrent ancillary space-related themes for young children's programs at the library. This pilot project, based largely on the use of free government resources and online materials, demonstrated that volunteer-based, standards-linked STEM efforts can enhance curriculum at the middle school, with libraries serving a special role. Using this model, we subsequently also obtained a small NASA-Space Grant award to bring star parties and hand-on science activities to three libraries this Fall, linking with numerous Grade 5 teachers and students in two additional underserved areas of our county. It's not necessary to reinvent the wheel, you just collect the pieces and build on what you already have.

  4. Science information systems: Visualization

    NASA Technical Reports Server (NTRS)

    Wall, Ray J.

    1991-01-01

    Future programs in earth science, planetary science, and astrophysics will involve complex instruments that produce data at unprecedented rates and volumes. Current methods for data display, exploration, and discovery are inadequate. Visualization technology offers a means for the user to comprehend, explore, and examine complex data sets. The goal of this program is to increase the effectiveness and efficiency of scientists in extracting scientific information from large volumes of instrument data.

  5. Strategies Which Foster Broad Use and Deployment of Earth and Space Science Informal and Formal Education Resources

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.; Gabrys, Robert; Ireton, M. Frank; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Education projects supported by federal agencies and carried out by a wide range of organizations foster learning about Earth and Space systems science in a wide array of venues. Across these agencies a range of strategies are employed to ensure that effective materials are created for these diverse venues. And that these materials are deployed broadly so that a large spectrum of the American Public, both adults and children alike, can learn and become excited by the Earth and space system science. This session will highlight some of those strategies and will cover representative examples to illustrate the effectiveness of the strategies. Invited speakers from selected formal and informal educational efforts will anchor this session. Speakers with representative examples are encouraged to submit abstracts for the session to showcase the strategies which they use.

  6. Strategies Which Foster Broad Use and Deployment of Earth and Space Science Informal and Formal Education Resources

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.; Gabrys, Robert; Ireton, M. Frank; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Education projects supported by federal agencies and carried out by a wide range of organizations foster learning about Earth and Space systems science in a wide array of venues. Across these agencies a range of strategies are employed to ensure that effective materials are created for these diverse venues. And that these materials are deployed broadly so that a large spectrum of the American Public, both adults and children alike, can learn and become excited by the Earth and space system science. This session will highlight some of those strategies and will cover representative examples to illustrate the effectiveness of the strategies. Invited speakers from selected formal and informal educational efforts will anchor this session. Speakers with representative examples are encouraged to submit abstracts for the session to showcase the strategies which they use.

  7. The CERES S'COOL Project: Dynamic NASA Earth Science Education and Public Outreach for Formal and Informal Audiences.

    NASA Astrophysics Data System (ADS)

    Crecelius, S.; Chambers, L. H.; Lewis, P. M., Jr.; Harte, T.

    2014-12-01

    The Clouds and the Earth's Radiant Energy System (CERES) Students' Cloud Observations On-Line (S'COOL) Project began in 1997 as a collaboration between a Virginia Middle School teacher, and several NASA Langley Research Center scientists. The project's aim is to involve classroom students in observing and reporting cloud parameters to assist in the validation of NASA's CERES satellite instruments, thus connecting classroom science work to the outside world. In 2007, S'COOL added a Citizen Science component called ROVER. ROVER is geared toward informal observers not tied to one observation location. The S'COOL Project has been successful due to a combination of its flexibility of implementation, training and involvement opportunities, intuitive and free resources, and this authentic connection to an ongoing scientific activity. Through S'COOL's multiple participation avenues, all participants are invited to collect cloud data following S'COOL guidelines. Their cloud data is later matched with corresponding satellite data. Within a week of submitting their report, a participant will be sent a "match" email, if their observation aligns to a satellite overpass. This "match" shows their ground report next to the satellite data for comparison and analysis. All ground observations and satellite matches are archived in a S'COOL database, accessible to the public. This multi-step process enables an on-going, two-way interaction between students and NASA, which is much more engaging than more typical one-way outreach experiences. To complement and enable the cloud observation component, the S'COOL website offers formal and informal education communities a wide variety of atmospheric science related learning resources. These educator created resources are supplemented with carefully crafted background information from the science team. Alignment of the project to the Next Generation Science Standards is underway now, and will highlight the many science process skills involved

  8. Science Education News, Unified Science Education.

    ERIC Educational Resources Information Center

    McCarley, Orin

    Contained are a statement of the promise of unified science education and descriptions of five unique unified science programs. Within each program the course content and rationale was stated. The five programs chosen were (1) Millburn Senior High School, (2) Saint Louis Country Day School, (3) Monona Grove High School, (4) The Portland Project,…

  9. Proceedings of the 2000 Sino-United States Symposium and Workshop on Library and Information Science Education in the Digital Age (Wuhan, China, November 5-10, 2000).

    ERIC Educational Resources Information Center

    Perushek, D. E., Ed.

    The first International Symposium on Library and Information Science Education in the Digital Age, held in November 2000 at Wuhan University (Wuhan, China), drew more than 90 library and information science professionals from China, Macao, and the United States. Participants gathered to discuss a question of common concern: How are our respective…

  10. Science Education Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Presents eight separate articles on science education. Topic areas addressed include: an inservice course in primary science; improving physics teaching; reducing chemistry curriculum; textbook readability measures; school-industry link for introductory engineering; local education authority initiatives in primary school science; and "Winnie…

  11. Lunar and Planetary Science XXXV: Undergraduate Education and Research Programs, Facilities, and Information Access

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) GRIDVIEW: Recent Improvements in Research and Education Software for Exploring Mars Topography; 2) Software and Hardware Upgrades for the University of North Dakota Asteroid and Comet Internet Telescope (ACIT); 3) Web-based Program for Calculating Effects of an Earth Impact; 4) On-Line Education, Web- and Virtual-Classes in an Urban University: A Preliminary Overview; 5) Modelling Planetary Material's Structures: From Quasicrystalline Microstructure to Crystallographic Materials by Use of Mathematica; 6) How We Used NASA Lunar Set in Planetary and Material Science Studies: Textural and Cooling Sequences in Sections of Lava Column from a Thin and a Thick Lava-Flow, from the Moon and Mars with Terrestrial Analogue and Chondrule Textural Comparisons; 7) Classroom Teaching of Space Technology and Simulations by the Husar Rover Model; 8) New Experiments (In Meteorology, Aerosols, Soil Moisture and Ice) on the New Hunveyor Educational Planetary Landers of Universities and Colleges in Hungary; 9) Teaching Planetary GIS by Constructing Its Model for the Test Terrain of the Hunveyor and Husar; 10) Undergraduate Students: An Untapped Resource for Planetary Researchers; 11) Analog Sites in Field Work of Petrology: Rock Assembly Delivered to a Plain by Floods on Earth and Mars; 12) RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility; 13) Full Text Searching and Customization in the NASA ADS Abstract Service.

  12. Lunar and Planetary Science XXXV: Undergraduate Education and Research Programs, Facilities, and Information Access

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) GRIDVIEW: Recent Improvements in Research and Education Software for Exploring Mars Topography; 2) Software and Hardware Upgrades for the University of North Dakota Asteroid and Comet Internet Telescope (ACIT); 3) Web-based Program for Calculating Effects of an Earth Impact; 4) On-Line Education, Web- and Virtual-Classes in an Urban University: A Preliminary Overview; 5) Modelling Planetary Material's Structures: From Quasicrystalline Microstructure to Crystallographic Materials by Use of Mathematica; 6) How We Used NASA Lunar Set in Planetary and Material Science Studies: Textural and Cooling Sequences in Sections of Lava Column from a Thin and a Thick Lava-Flow, from the Moon and Mars with Terrestrial Analogue and Chondrule Textural Comparisons; 7) Classroom Teaching of Space Technology and Simulations by the Husar Rover Model; 8) New Experiments (In Meteorology, Aerosols, Soil Moisture and Ice) on the New Hunveyor Educational Planetary Landers of Universities and Colleges in Hungary; 9) Teaching Planetary GIS by Constructing Its Model for the Test Terrain of the Hunveyor and Husar; 10) Undergraduate Students: An Untapped Resource for Planetary Researchers; 11) Analog Sites in Field Work of Petrology: Rock Assembly Delivered to a Plain by Floods on Earth and Mars; 12) RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility; 13) Full Text Searching and Customization in the NASA ADS Abstract Service.

  13. Computer/Information Science

    ERIC Educational Resources Information Center

    Birman, Ken; Roughgarden, Tim; Seltzer, Margo; Spohrer, Jim; Stolterman, Erik; Kearsley, Greg; Koszalka, Tiffany; de Jong, Ton

    2013-01-01

    Scholars representing the field of computer/information science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Ken Birman, Jennifer Rexford, Tim Roughgarden, Margo Seltzer, Jim Spohrer, and…

  14. Computer/Information Science

    ERIC Educational Resources Information Center

    Birman, Ken; Roughgarden, Tim; Seltzer, Margo; Spohrer, Jim; Stolterman, Erik; Kearsley, Greg; Koszalka, Tiffany; de Jong, Ton

    2013-01-01

    Scholars representing the field of computer/information science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Ken Birman, Jennifer Rexford, Tim Roughgarden, Margo Seltzer, Jim Spohrer, and…

  15. Science Education Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Discusses current topics in science education including increasing adult education through innovation in course planning/recruitment methods, a course in microelectronics/digital control, and need for increased human genetics topics in biology/health education. Also discusses changing role of biology teachers, preschool science, and teaching a…

  16. Science Education: Cassandra's Prophecy

    ERIC Educational Resources Information Center

    Brady, Thomas E.

    2008-01-01

    After "A Nation at Risk" was released, the state of American education was widely discussed, and not just by educators. The 1980s produced a number of reports on the status of science education that complained of declining science and mathematics achievement, falling enrollment in the subjects, and a shortage of qualified teachers. All the…

  17. Science Education Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  18. Science in General Education

    ERIC Educational Resources Information Center

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  19. Science Education Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  20. Pilot Assessment of the National Science Foundation's Investments in Informal Science Education. An Approach to Assessing Initiatives in Science Education: Volume 2.

    ERIC Educational Resources Information Center

    Knapp, Michael S.; And Others

    This project is concerned with the development of procedures and plans for the National Science Foundation (NSF) to use in assessing its initiatives on an ongoing basis. This work is meant to complement another review of NSF's investment opportunities by estabishing a sound basis for designing and carrying out assessments aimed at any of the…

  1. Opening Pandora's Box: Texas Elementary Campus Administrators use of Educational Policy And Highly Qualified Classroom Teachers Professional Development through Data-informed Decisions for Science Education

    NASA Astrophysics Data System (ADS)

    Brown, Linda Lou

    Federal educational policy, No Child Left Behind Act of 2001, focused attention on America's education with conspicuous results. One aspect, highly qualified classroom teacher and principal (HQ), was taxing since states established individual accountability structures. The HQ impact and use of data-informed decision-making (DIDM) for Texas elementary science education monitoring by campus administrators, Campus Instruction Leader (CILs), provides crucial relationships to 5th grade students' learning and achievement. Forty years research determined improved student results when sustained, supported, and focused professional development (PD) for teachers is available. Using mixed methods research, this study applied quantitative and qualitative analysis from two, electronic, on-line surveys: Texas Elementary, Intermediate or Middle School Teacher Survey(c) and the Texas Elementary Campus Administrator Survey(c) with results from 22.3% Texas school districts representing 487 elementary campuses surveyed. Participants selected in random, stratified sampling of 5th grade teachers who attended local Texas Regional Collaboratives science professional development (PD) programs between 2003-2008. Survey information compared statistically to campus-level average passing rate scores on the 5th grade science TAKS using Statistical Process Software (SPSS). Written comments from both surveys analyzed with Qualitative Survey Research (NVivo) software. Due to the level of uncertainty of variables within a large statewide study, Mauchly's Test of Sphericity statistical test used to validate repeated measures factor ANOVAs. Although few individual results were statistically significant, when jointly analyzed, striking constructs were revealed regarding the impact of HQ policy applications and elementary CILs use of data-informed decisions on improving 5th grade students' achievement and teachers' PD learning science content. Some constructs included the use of data

  2. Information sciences experiment system

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Murray, Nicholas D.; Benz, Harry F.; Bowker, David E.; Hendricks, Herbert D.

    1990-01-01

    The rapid expansion of remote sensing capability over the last two decades will take another major leap forward with the advent of the Earth Observing System (Eos). An approach is presented that will permit experiments and demonstrations in onboard information extraction. The approach is a non-intrusive, eavesdropping mode in which a small amount of spacecraft real estate is allocated to an onboard computation resource. How such an approach allows the evaluation of advanced technology in the space environment, advanced techniques in information extraction for both Earth science and information science studies, direct to user data products, and real-time response to events, all without affecting other on-board instrumentation is discussed.

  3. Informal Science Learning in the Formal Classroom

    ERIC Educational Resources Information Center

    Walsh, Lori; Straits, William

    2014-01-01

    In this article the authors share advice from the viewpoints of both a formal and informal educator that will help teachers identify the right Informal Science Institutions (ISIs)--institutions that specialize in learning that occurs outside of the school setting--to maximize their students' learning and use informal education to their…

  4. Informal Science Learning in the Formal Classroom

    ERIC Educational Resources Information Center

    Walsh, Lori; Straits, William

    2014-01-01

    In this article the authors share advice from the viewpoints of both a formal and informal educator that will help teachers identify the right Informal Science Institutions (ISIs)--institutions that specialize in learning that occurs outside of the school setting--to maximize their students' learning and use informal education to their…

  5. If We Teach Them, They Can Learn: Young Students Views of Nature of Science Aspects to Early Elementary Students during an Informal Science Education Program

    ERIC Educational Resources Information Center

    Quigley, Cassie; Pongsanon, Khemmawadee; Akerson, Valarie L.

    2010-01-01

    There have been substantial reform efforts in science education to improve students' understandings of science and its processes and provide continual support for students becoming scientifically literate (American Association for the Advancement of Science in Benchmarks for science literacy, Oxford University Press, New York, 1993; "National…

  6. Communicating Ocean Sciences to Informal Audiences (COSIA): Interim Evaluation Report

    ERIC Educational Resources Information Center

    St. John, Mark; Phillips, Michelle; Smith, Anita; Castori, Pam

    2009-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of seven long-term three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the…

  7. Communicating Ocean Sciences to Informal Audiences (COSIA): Final Evaluation Report

    ERIC Educational Resources Information Center

    Phillips, Michelle; St. John, Mark

    2010-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of six three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the ISEI (often…

  8. Communicating Ocean Sciences to Informal Audiences (COSIA): Final Evaluation Report

    ERIC Educational Resources Information Center

    Phillips, Michelle; St. John, Mark

    2010-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of six three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the ISEI (often…

  9. Communicating Ocean Sciences to Informal Audiences (COSIA): Interim Evaluation Report

    ERIC Educational Resources Information Center

    St. John, Mark; Phillips, Michelle; Smith, Anita; Castori, Pam

    2009-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of seven long-term three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the…

  10. In Brief: Improving science education

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-09-01

    Over the course of the next decade, 100,000 science, technology, engineering, and math (STEM) teachers should be recruited in the United States, and 1000 new STEM-focused schools should be created, according to a 16 September report, “Prepare and inspire: K-12 education in science, technology, engineering, and math (STEM) for America's future.” Noting that the United States lags behind other nations in STEM education at the elementary and secondary levels, the report, prepared by the President's Council of Advisors on Science and Technology, also recommends improving federal coordination and leadership on STEM education and supporting a state-led movement for shared standards in math and science. The release of the report coincides with President Barack Obama's announcement of the launch of Change the Equation, an organization that aims to help with math and science education. More information is available at http://www.whitehouse.gov/administration/eop/ostp and http://www.changetheequation.org/.

  11. Joint Interdisciplinary Earth Science Information Center

    NASA Technical Reports Server (NTRS)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  12. A study of the impact of an informal science education program on middle school students' science knowledge, science attitude, STEM high school and college course selections, and career decisions

    NASA Astrophysics Data System (ADS)

    Ricks, Marsha Muckelroy

    The Summer Science Camp (SSC) 1 is an informal summer science education program for 7th and 8th grade students residing in Galveston County, Texas. The SSC I program curriculum is designed to: enrich students' science knowledge by engaging them to hands-on science laboratory-based problem-solving instruction, scientific experiments, field-trips and other STEM (science, technology, engineering and mathematics) related experiences. The participants were exposed to and utilized current science research technology and equipment. The SSC I program expected to increase participants' science knowledge, and affect a positive influence on science their attitudes and outlook related to science careers and issues. This study has a twofold purpose represented by two perspectives. Study perspective one intended to assess improvements and changes in program participants' science knowledge and science attitudes based on their SSC I experiences. Data from participants in the 2005 UTMB 7 th and 8th grade Summer Science Camp I were used to address this perspective and assess the program's impact on students' changes in science knowledge and science attitudes through pretests and posttests. Study perspective two assessed information about decisions previous 1993-1999 participants' may have made in selecting advanced STEM courses, and career decisions as a result of participation in the SSC. This second study perspective used data from questionnaires, interviews, and program evaluation forms collected from participants following program completion during the 1993-1999 Summer Science Camp I program years. The findings were statistically significant for Study perspective one, showing an increase in participants' science knowledge and science attitude. Study perspective two also determined statistical significance through contextual descriptions about the STEM selections of former SSC I participants from a retrospective point of view. The outcomes of this study suggests that the

  13. Making Science Matter: Collaborations between Informal Science Education Organizations and Schools. A CAISE Inquiry Group Report. Executive Summary

    ERIC Educational Resources Information Center

    Center for Advancement of Informal Science Education, 2010

    2010-01-01

    Throughout the world, and for many decades, science-rich cultural institutions, such as zoos, aquaria, museums, and others, have collaborated with schools to provide students, teachers and families with opportunities to expand their experiences and understanding of science. However, these collaborations have generally failed to institutionalize:…

  14. Making Science Matter: Collaborations between Informal Science Education Organizations and Schools. A CAISE Inquiry Group Report. Executive Summary

    ERIC Educational Resources Information Center

    Center for Advancement of Informal Science Education, 2010

    2010-01-01

    Throughout the world, and for many decades, science-rich cultural institutions, such as zoos, aquaria, museums, and others, have collaborated with schools to provide students, teachers and families with opportunities to expand their experiences and understanding of science. However, these collaborations have generally failed to institutionalize:…

  15. Meaningful, Authentic and Place-Based Informal Science Education for 6-12 Students

    NASA Astrophysics Data System (ADS)

    Ito, E.; Dalbotten, D. M.

    2014-12-01

    American Indians are underrepresented in STEM and especially in Earth sciences. They have the lowest high school graduation rate and highest unemployment. On the other hand, tribes are in search of qualified young people to work in geo- and hydro-technical fields to manage reservations' natural resources. Dalbotten and her collaborators at the Fond du Lac Band of Lake Superior Chippewa and local 6-12 teachers ran a place-based but non-themed informal monthly science camps (gidakiimanaaniwigamig) for 7 years starting 2003. Camps were held on reservation and some activities focused on observing seasonal changes. The students enjoyed coming to the camps but the camp activities went largely unnoticed by the reservation itself. For the last 5 years, we and the same cast of characters from the gidakiimanaaniwigamig camps ran a very place-based, research-based camp program, manoomin. The research was focused on manoomin (wild rice) which is a culturally important plant and food that grows in local lakes and wetlands. Manmade changes in hydrology, toxic metals from mining, and changing weather patterns due to climate change threaten this precious resource. Our plan was for 6-12 students to investigate the past, the present and the future conditions of manoomin on and around the reservation. It became clear by 3rd year that the research project, as conceived, was overly ambitious and could not be completed at the level we hoped in a camp setting (6 weekend camps = 6 full days per year). However, students felt that they were involved in research that was beneficial to their reservation, reported gaining self-confidence to pursue a career in science, and stated a desired to obtain a college degree. They also became aware of STEM employment opportunities on reservation that they could aim for. The camps also fostered a trusting relationship between researchers at Fond du Lac resource managers and the U. of MN. Based on these experiences, we proposed a new format for these

  16. Remodeling Science Education

    ERIC Educational Resources Information Center

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  17. Science, Worldviews, and Education

    ERIC Educational Resources Information Center

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  18. Argumentation in Science Education

    ERIC Educational Resources Information Center

    Sampson, Victor; Enderle, Patrick; Grooms, Jonathon

    2013-01-01

    A "Framework for K-12 Science Education" (NRC 2012) and subsequent "Next Generation Science Standards" (Achieve Inc. 2013) will substantially influence the teaching and learning of science in the United States. The "Framework," for example, calls for students to learn about several practices related to scientific…

  19. Science, Worldviews, and Education

    ERIC Educational Resources Information Center

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  20. Science education and worldview

    NASA Astrophysics Data System (ADS)

    Keane, Moyra

    2008-09-01

    Is there a place for Indigenous Knowledge in the science curriculum for a Zulu community in rural Kwa-Zulu Natal, South Africa? This article argues "yes," based on a participative research and development project that discovered relevant science learning in a Zulu community. Among community concerns for relevant factual and performative knowledge, we found that culture and worldview are critical to community identity, to visioning educational outcomes, and to learning in school science. Cultural practices may contribute to pedagogy and curriculum; curriculum, in turn, may affirm cultural practices. Further, worldview needs to be understood as an aspect of knowledge creation. By understanding key aspects of an African worldview, science educators can contribute to both meaningful science education and community well-being. By fostering culture and worldview, a rural community can make a unique contribution to science education.

  1. Literacy, science, and science education

    NASA Astrophysics Data System (ADS)

    McVittie, Janet Elizabeth

    In examining the connections between literacy, science and science education, I laid out a number of questions. For example, what sorts of literate tools might facilitate writing to learn, and do children who are just becoming literate use these tools? I then examined the writing of children in science class in an attempt to determine if their writing can indeed facilitate their learning. The results of this research could help teachers make decisions about the use of writing in the learning of science. The kinds of literate tools I identified as being potentially helpful were transitionals---those words or grammatical devices which demonstrate how ideas are connected. Also, I suggested that data tables, sentences and paragraphs were also useful for students to learn. I found that grade 5/6 students used a wide range of literate tools, but that they were much more competent with those tools which were both oral and literate than those which could only be used for writing (punctuation, sentences, paragraphs, and data tables). When I attempted to determine if the children used their writing to learn, I found very little evidence that this was certainly so. However, there was some evidence that paragraphs had the potential to create a "dialogue" between student writing and thinking, so the students could make more explicit connections between science ideas. Lastly, I noticed certain gender difference in the classroom. Because of this, I contrasted the writing of the girls with the writing of the boys. I learned the girls were generally much more capable writers than the boys. More interesting, however, was that the girls generally attempted to explain their science concepts in different ways than did the boys. The girls were more likely to rely on their own reasoning, whereas the boys were more likely to persist in using culturally created science explanations. The research findings have important implications for analyzing students' learning and for finding ways to

  2. Measuring the impact of informal science education in zoos on environmental knowledge, attitudes and behaviors

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher David

    Despite the emphasis in modern zoos and aquaria on conservation and environmental education, we know very little about what people learn in these settings, and even less about how they learn it. Research on informal learning in settings such as zoos has suffered from a lack of theory, with few connections being made to theories of learning in formal settings, or to theories regarding the nature of the educational goals. This dissertation consists of three parts: the development and analysis of a test instrument designed to measure constructs of environmental learning in zoos; the application of the test instrument along with qualitative data collection in an evaluation designed to measure the effectiveness of a zoo's education programs; and the analysis of individually matched pre- and post-test data to examine how environmental learning takes place, with respect to the constructivist view of learning, as well as theories of environmental learning and the barriers to pro-environmental behavior. The test instrument consisted of 40 items split into four scales: environmental knowledge, attitudes toward the environment, support for conservation, and environmentally responsible behavior. A model-driven approach was used to develop the instrument, which was analyzed using Item Response Theory and the Rasch dichotomous measurement model. After removal of two items with extremely high difficulty, the instrument was found to be unidimensional and sufficiently reliable. The results of the IRT analyses are interpreted with respect to a modern validity framework. The evaluation portion of this study applied this test instrument to measuring the impact of zoo education programs on 750 fourth through seventh grade students. Qualitative data was collected from program observations and teacher surveys, and a comparison was also made between programs that took place at the zoo, and those that took place in the school classroom, thereby asking questions regarding the role of

  3. Accreditation: A Way Ahead. "To Explore Procedures and Guidelines for Participation of a Variety of Associations in the Accreditation of Programs of Library and Information Science Education."

    ERIC Educational Resources Information Center

    American Library Association, Chicago, IL. Committee on Accreditation.

    To involve other professional and educational groups in the accreditation process of educational programs in the field of library and information science, for which the American Library Association (ALA) has current responsibility, this project developed specific recommendations with respect to the following needs: (1) to effect procedures and…

  4. New Directions in Library and Information Science Education. Final Report. Volume 2.8: Records and Information Manager Competencies.

    ERIC Educational Resources Information Center

    Griffiths, Jose-Marie; And Others

    This document contains validated activities and competencies needed by information professionals working as records and information managers. The activities of information professionals are listed by function: records and information program management; systems analysis; records center administration; general administration; planning; financial…

  5. Science education problems summarized

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Chief among the concerns over the declining quality of science, mathematics, and technology education is declining achievement and participation at a time of increasing national needs, according to the first formal report of the National Science Board Commission on Precollege Education in Mathematics, Science, and Technology. The report defines the problems and sets the stage for the next year's work. The commission, formed earlier this year (Eos, June 15, p. 538), will conclude its 18—month effort next October.Exacerbating the education problems, the report says, are a growing shortage of qualified secondary school mathematics and physical science teachers; inadequate classroom facilities and instructional time; and curricula sorely in need of revision. The report also concludes that ’in general, precollege mathematics, science, and technology instruction has yet to take advantage of the advances in technology and behavioral sciences of the past 20 years.’

  6. Tanzanian Teachers' Understanding of the Science Embedded in Traditional Technologies: A Study to Inform Teacher Education.

    ERIC Educational Resources Information Center

    Knamiller, G. W.; And Others

    1995-01-01

    Explored the degree to which a sample of Tanzania science teachers were able to interpret the local production of alcohol in light of their conceptual knowledge of the science involved, designed experiments for investigating factors relating to the processes of fermentation and distillation, and considered alternatives for improving this…

  7. The Role of Informal Science in the State Education Agenda. Issue Brief

    ERIC Educational Resources Information Center

    Thomasian, John

    2012-01-01

    Many governors have launched initiatives to raise student proficiency in math and science and encourage youth to pursue careers in STEM fields (i.e., science, technology, engineering, and math). Individuals with strong STEM skills play vital roles in technological innovation and economic growth and are rewarded with more secure jobs and higher…

  8. Tanzanian Teachers' Understanding of the Science Embedded in Traditional Technologies: A Study to Inform Teacher Education.

    ERIC Educational Resources Information Center

    Knamiller, G. W.; And Others

    1995-01-01

    Explored the degree to which a sample of Tanzania science teachers were able to interpret the local production of alcohol in light of their conceptual knowledge of the science involved, designed experiments for investigating factors relating to the processes of fermentation and distillation, and considered alternatives for improving this…

  9. The Potential of Semiotics to Inform Understanding of Events in Science Education.

    ERIC Educational Resources Information Center

    Groisman, A.; And Others

    1991-01-01

    An exploration of the interpretive potential semiotics offers for study and understanding of meaning production in science classrooms is presented. Some very basic concepts of the theory are introduced, followed by analysis of a single science lesson. The organization of the room, the structure of the lesson, and the behavior and interaction of…

  10. Informal Learning of Science. Monograph in the Faculty of Education Research Seminar and Workshop Series.

    ERIC Educational Resources Information Center

    Dynan, Muredach B., Ed.; Fraser, Barry J., Ed.

    Some researchers have argued that students often learn to operate in two domains, the domain of the science context in school, and the domain of everyday life outside of school. Outside of school, students are exposed to many media from which to learn science concepts. This document is one of a series on research seminars at the Western Australian…

  11. 77 FR 52319 - Notice of Proposed Information Collection Requests; Institute of Education Sciences; Needs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... evaluation; learning about the best education research; and incorporating data into policy and practice... longitudinal data systems, conducting high quality research and evaluation; learning about the best education... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION...

  12. 77 FR 52706 - Notice of Proposed Information Collection Requests; Institute of Education Sciences; Needs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... evaluation; learning about the best education research; and incorporating data into policy and practice... longitudinal ] data systems, conducting high quality research and evaluation; learning about the best education... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION...

  13. The Science(s) of Adult Education.

    ERIC Educational Resources Information Center

    Pastuovic, Nikola

    1995-01-01

    Using criteria to determine whether a discipline is a science, the author defines andragogy as a technological discipline that applies principles discovered by the sciences of adult education--educational psychology, sociology, economics, and anthropology. He suggests that andragogy could become the general science of adult education by studying…

  14. How do we support informal educators teaching for climate literacy? Lessons from design-based research to improve climate science field trips through educator experience

    NASA Astrophysics Data System (ADS)

    Allen, L. B.; Steiner, M.; Crowley, K. J.

    2012-12-01

    Climate literacy is an important and timely aspect of students' and educators' scientific understanding. Climate science is a challenging topic to understand and communicate, given that factors affecting change in climate are spatially and temporally distant from one another, and include layers of understanding biotic, abiotic, and anthropogenic factors. Some learning scientists describe complex processes such as these "constraint-based interactions" and consider them to be among the more difficult for learners to grasp. An additional challenge for climate education is the politicized nature of the issue of climate change among U.S. adults. Our goal is to create a climate literacy program that bridges informal and formal learning for middle school students by integrating tools and ideas from pre-field trip classroom activities into deep investigations on the floor of the natural history museum. In this presentation, we address the challenges and successes of an in-progress climate literacy project sponsored by NASA from the perspective of educator learning. A group of experienced natural history docents were asked to participate in an iteratively designed field trip program for climate education. The project challenged educators with both new content and a new pedagogical structure: using real NASA satellite data to visualize and explore earth's climate, while implementing student-centered, participatory learning on the floor of the museum. By engaging in an iterative, design-based research process of prototyping field trips at the Carnegie Museum of Natural History, we collected observational and interview data from seven dedicated informal educators who were asked to change both the content and the format of their interactions with middle school field trip students. These docents have a wide variety of experiences and opinions around climate science, data, and student-centered teaching and learning pedagogies. Over the course of one semester of iteratively

  15. Informal Education and Climate Change: An Example From The Miami Science Museum

    NASA Astrophysics Data System (ADS)

    Delaughter, J.

    2007-12-01

    The Miami Science Museum recently took part in the National Conversation on Climate Action, held on October 4, 2007. This nationwide event encouraged members of the general public to explore local climate policy options. It provided an opportunity for citizens to discuss the issues and science of climate change with experts and policy makers, as well as neighbors and friends. During the day, the Miami Science Museum hosted a variety of events with something for everyone. Local school groups played DECIDE games and competed to find the most "treasure" in trash. Members and visitors were encouraged to leave their mark by posting comments and ideas about climate change. A "Gates of Change" exhibit provided dramatic visual indication of the effects of climate change and sea level rise. And a special "Meet the scientists" forum allowed the general public to discuss the facts and fictions of climate change with experts from Miami University's Rosenstiel School of Marine and Atmospheric Science. This activity was part of the Association of Science and Technology Centers' (ASTC) International action on Global Warming (IGLO) program. ASTC is the largest association of public science venues, and has 540 member institutions in 40 countries.

  16. New Directions in Library and Information Science Education. Final Report. Volume 2.10: Information Analysis Center Professional Competencies.

    ERIC Educational Resources Information Center

    Griffiths, Jose-Marie; And Others

    This document contains validated activities and competencies needed by information professionals working in an information analysis center. The activities and competencies are organized according to the functions which information professionals in such centers perform: acquisitions; indexing/abstracting; reference; information analysis research;…

  17. Professional Identity Development of Teacher Candidates Participating in an Informal Science Education Internship: A Focus on Drawings as Evidence

    ERIC Educational Resources Information Center

    Katz, Phyllis; McGinnis, J. Randy; Hestness, Emily; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy; Pease, Rebecca

    2011-01-01

    This study investigated the professional identity development of teacher candidates participating in an informal afterschool science internship in a formal science teacher preparation programme. We used a qualitative research methodology. Data were collected from the teacher candidates, their informal internship mentors, and the researchers. The…

  18. Professional Identity Development of Teacher Candidates Participating in an Informal Science Education Internship: A Focus on Drawings as Evidence

    ERIC Educational Resources Information Center

    Katz, Phyllis; McGinnis, J. Randy; Hestness, Emily; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy; Pease, Rebecca

    2011-01-01

    This study investigated the professional identity development of teacher candidates participating in an informal afterschool science internship in a formal science teacher preparation programme. We used a qualitative research methodology. Data were collected from the teacher candidates, their informal internship mentors, and the researchers. The…

  19. Reaching the Unreached for Library and Information Science Education: A Perspective for Developing Countries.

    ERIC Educational Resources Information Center

    Ghosh, S. B.

    Open and distance learning is seen as a viable alternative to provide education for all, particularly in the context of developing countries. Open learning is basically a philosophy, while distance learning is a method of flexible education for the unreached, i.e., socially, economically, physically, and geographically disadvantaged groups of the…

  20. Globalization and Science Education

    NASA Astrophysics Data System (ADS)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  1. Globalization and Science Education

    NASA Astrophysics Data System (ADS)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2012-12-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  2. Groundwater in Science Education

    ERIC Educational Resources Information Center

    Dickerson, Daniel L.; Penick, John E.; Dawkins, Karen R.; Van Sickle, Meta

    2007-01-01

    Although clean, potable groundwater constitutes one of our most valuable resources, few students or science educators hold complete and appropriate understandings regarding the concept. Recent studies that focus on secondary students' and preservice science teachers' understandings of groundwater found little difference between the groups'…

  3. Science and Education

    ERIC Educational Resources Information Center

    Buravikhin, V. A.

    1977-01-01

    As society develops, schools must operate at the level of modern science and must incorporate the results of research. Important considerations for science and teaching include pedagogical vocational guidance, inservice teacher training, modern teaching and social education methods, school building plans, and technical teaching devices. (Author/AV)

  4. Cognitive Science and Education.

    ERIC Educational Resources Information Center

    Glaser, Robert

    1988-01-01

    States that renewed research on the processes of learning and teaching is necessary if all children are expected to meet high standards of educational performance. Discusses cognitive science, a federation of psychology, linguistics, and computer science which offers a reconceptualization of the nature of the learning process and new approaches to…

  5. Groundwater in Science Education

    ERIC Educational Resources Information Center

    Dickerson, Daniel L.; Penick, John E.; Dawkins, Karen R.; Van Sickle, Meta

    2007-01-01

    Although clean, potable groundwater constitutes one of our most valuable resources, few students or science educators hold complete and appropriate understandings regarding the concept. Recent studies that focus on secondary students' and preservice science teachers' understandings of groundwater found little difference between the groups'…

  6. Individualized Adult Science Education.

    ERIC Educational Resources Information Center

    Lawrence, C. G.

    As the proceedings of a national seminar on individualized adult science education, a total of 13 articles is compiled in this volume concerning the theory and techniques of curriculum development and the individualization process in upgrading Canadian science courses. The topics include: The Characteristics and Formulation of Behavioral…

  7. Mothers as informal science class teachers

    NASA Astrophysics Data System (ADS)

    Katz, Phyllis

    This study explores the participation of mothers as teachers (termed "Adult Leaders") in the Hands On Science Outreach (HOSO) informal science program for pre-kindergarten through sixth grade children. Since women continue to be underrepresented in the sciences (AAUW, 1992; AAUW 1998), there is a need to probe the nature of mothers' choices in science experiences, in the family context, and as role models. Mothers of school age children who choose to lead informal science activities are in a position to teach and learn not only within this alternative setting, but within their homes where values, attitudes, beliefs and motivations are continually cultivated by daily choices (Gordon, 1972; Tamir, 1990; Gerber, 1997). Policy makers recognize that schools are only one environment from many for learning science (National Science Board, 1983; National Research Council, 1996). Using complementary methodology, this study was conducted in two HOSO sessions that extended over six months. Twelve mothers who were HOSO teachers were case study participants. Primary data collection strategies were interviews, journals, and "draw-a-scientist." A larger sample of HOSO mother-teachers (N = 112) also contributed to a surrey, developed from an analysis of the case studies. Informal learning settings must, by their non-compulsory nature, focus on the affective component of learning as a necessity of participation. The framework for the qualitative analysis was from the affective characteristics described by Simpson et al. (1994). The interpretation is informed by sociobiology, science education and adult education theories. The study finds that the twelve mothers began their HOSO teaching believing in science as a way of knowing and valuing the processes and information from its practice. These women perceive their participation as a likely means to increase the success of their child(ren)'s education and are interested in the potential personal gains of leading an informal science

  8. Research Needs in Information Science.

    ERIC Educational Resources Information Center

    Shaw, Debora; Fouchereaux, Karen

    1993-01-01

    Identifies areas of research needs in information science that were compiled from a review of the "Annual Review of Information Science and Technology." Areas highlighted include automated systems, including criteria, standards, evaluation, and legal issues; economics; indexing; information retrieval; and information seeking, including…

  9. New Directions in Library and Information Science Education. Final Report. Volume 2.11: Information Service Company Professional Competencies.

    ERIC Educational Resources Information Center

    Griffiths, Jose-Marie; And Others

    This document contains validated activities and competencies needed by information professionals working in an information service company. The activities and competencies are organized according to the functions which information professionals in such companies perform: project management; reference/analysis of secondary data; research, analysis,…

  10. New Directions in Library and Information Science Education. Final Report. Volume 2.7: Information Center/Clearinghouse Professional Competencies.

    ERIC Educational Resources Information Center

    Griffiths, Jose-Marie; And Others

    This document contains validated activities and competencies needed by information professionals working in an information center/clearinghouse. The activities and competencies are organized according to the functions which information center professionals perform: acquisitions; thesaurus development and control; indexing/abstracting;…

  11. Curriculum Reform in Library and Information Science Education by Evidence-Based Decision Making

    ERIC Educational Resources Information Center

    Toshimori, Atsushi; Mizoue, Chieko; Matsumoto, Makoto

    2011-01-01

    The student surveys are conducted to better understand the student's views and help restructure curriculum. This article explored characteristics of students of the College of Knowledge and Library Sciences (KLIS) at the University of Tsukuba in Japan. The KLIS conducted two kinds of student surveys in 2009 and 2010: a) a standardized survey and…

  12. Curriculum Reform in Library and Information Science Education by Evidence-Based Decision Making

    ERIC Educational Resources Information Center

    Toshimori, Atsushi; Mizoue, Chieko; Matsumoto, Makoto

    2011-01-01

    The student surveys are conducted to better understand the student's views and help restructure curriculum. This article explored characteristics of students of the College of Knowledge and Library Sciences (KLIS) at the University of Tsukuba in Japan. The KLIS conducted two kinds of student surveys in 2009 and 2010: a) a standardized survey and…

  13. Language of Information Science: Convertibility in Information Science

    DTIC Science & Technology

    The report is the result of a study of the language of information science based on the terminology contained in a collected set of lexical resources...Groupe d’Etude sur l’Information Scientifique’, selected because it represents an international concensus of the domain of information science . A

  14. Science, Worldviews, and Education

    NASA Astrophysics Data System (ADS)

    Gauch, Hugh G.

    2009-06-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning the spectrum from positive to neutral to negative. To delineate a mainstream perspective on science, seven key characterizations or “pillars” of science are adopted from position papers from the world’s largest scientific organization, the American Association for the Advancement of Science. Based on those pillars and an examination of scientific method, I argue that the presuppositions and reasoning of science can and should be worldview independent, but empirical and public evidence from the sciences and humanities can support conclusions that are worldview distinctive. I also critique several problematic perspectives: asserting that science can say nothing about worldviews and the opposite extreme of insisting that science decisively supports one particular worldview; weakening science so severely that it lacks truth claims; and burdening science with unnecessary presuppositions. Worldview-distinctive conclusions based on empirical evidence are suitable for individual convictions and public discussions, but not for institutional endorsements and scientific literacy requirements.

  15. Reforming Science Education.

    ERIC Educational Resources Information Center

    Donmoyer, Robert, Ed.; Merryfield, Merry M., Ed.

    1995-01-01

    This theme issue highlights the diversity of reform initiatives in order to provide a deep understanding of the complexities associated with educational reform in general and the reform of science education in particular. Systemic reform initiatives at the national and state levels along with locally-inspired efforts at reform are outlined.…

  16. National Science Education Standards.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    The National Science Education Standards present a vision of a scientifically literate populace. The standards outline what students need to know, understand, and be able to do to be scientifically literate at different grade levels. They describe an educational system in which all students demonstrate high levels of performance, teachers are…

  17. The Mathematical Sciences: Undergraduate Education.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    The text contains a collection of essays to provide a background of factual information concerning the mathematical sciences in undergraduate education. It is intended for the nonmathematical scientist and the scientifically oriented layman. Contents include: (1) recommendations with regard to increasing the available faculty, strengthening the…

  18. Vertical Integration of Geographic Information Sciences: A Recruitment Model for GIS Education

    ERIC Educational Resources Information Center

    Yu, Jaehyung; Huynh, Niem Tu; McGehee, Thomas Lee

    2011-01-01

    An innovative vertical integration model for recruiting to GIS education was introduced and tested following four driving forces: curriculum development, GIS presentations, institutional collaboration, and faculty training. Curriculum development was a useful approach to recruitment, student credit hour generation, and retention-rate improvement.…

  19. Vertical Integration of Geographic Information Sciences: A Recruitment Model for GIS Education

    ERIC Educational Resources Information Center

    Yu, Jaehyung; Huynh, Niem Tu; McGehee, Thomas Lee

    2011-01-01

    An innovative vertical integration model for recruiting to GIS education was introduced and tested following four driving forces: curriculum development, GIS presentations, institutional collaboration, and faculty training. Curriculum development was a useful approach to recruitment, student credit hour generation, and retention-rate improvement.…

  20. 77 FR 40589 - Notice of Proposed Information Collection Requests; Institute of Education Sciences...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ..., assessments, accountability, and effective teachers and leaders. DATES: Interested persons are invited to... teacher and principal quality including educator preparation and professional development, as well as... grade teachers in spring 2013. The second package will request approval for the spring 2015...

  1. How Might Native Science Inform "Informal Science Learning"?

    ERIC Educational Resources Information Center

    Brayboy, Bryan McKinley Jones; Castagno, Angelina E.

    2008-01-01

    This article examines the literature on Native science in order to address the presumed binaries between formal and informal science learning and between Western and Native science. We situate this discussion within a larger discussion of culturally responsive schooling for Indigenous youth and the importance of Indigenous epistemologies and…

  2. Humanizing science education

    NASA Astrophysics Data System (ADS)

    Donnelly, James F.

    2004-09-01

    This paper argues that the diverse curriculum reform agendas associated with science education are strongly and critically associated with the educational characteristics of the humanities. The article begins with a survey of interpretations of the distinctive contribution which the humanities make to educational purposes. From this survey four general characteristics of the humanities are identified: an appeal to an autonomous self with the right and capacity to make independent judgements and interpretations; indeterminacy in the subject matter of these judgements and interpretations; a focus on meaning, in the context of human responses, actions, and relationships, and especially on the ethical, aesthetic, and purposive; and finally, the possibility of commonality in standards of judgement and interpretation, under conditions of indeterminacy. Inquiry and science technology and society (STS) orientated curriculum development agendas within science education are explored in the light of this analysis. It is argued that the four characteristics identified are central to the educational purposes of these and other less prominent modes of curriculum development in science, though not unproblematically so. In the light of this discussion the prognosis and challenges for science curriculum development are explored.

  3. Science and Engineering Education

    SciTech Connect

    Not Available

    1988-07-01

    The report is a result of the request by the Secretary of Energy, in February, 1987, for the Energy Research Advisory Board to review the activities of the Department of Energy in science and engineering education to ensure that DOE is playing its proper role to meet both its own project manpower needs as well as to work closely with the other federal agencies and the private sector in the support of scientific and technical education and training. The report concludes that without intervention now to ensure an adequate future manpower supply, the Department is unlikely to achieve its missions in energy and defense RandD. The efforts that DOE has made over the past few years to strengthen its science education programs, especially in the undergraduate and precollege areas, are discussed and opportunities for further strengthening these programs are identified. The report recommends that DOE continue to emphasize its educational mission primarily through support of graduate students and postdoctoral fellows through university grants and contracts which simultaneously serve the research mission of the Department. At the precollege level, the report recommends that DOE target its efforts where it can realize the greatest impact, namely by providing teachers with opportunities for research participation to enhance their science backgrounds and their instructional strategies. The report notes that minorities and women are underrepresented in science and engineering and recommends that DOE support increased participation in science education programs at all levels, precollege through postdoctoral. The report also recommends that DOE maintain a strong continuing education programs at its national laboratories, permit participation by local industries, and encourage private companies involved in energy-related businesses to do more to support science and engineering education.

  4. Science Fiction and Science Education.

    ERIC Educational Resources Information Center

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  5. Science Fiction and Science Education.

    ERIC Educational Resources Information Center

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  6. Creating Learning Experiences that Promote Informal Science Education: Designing Conservation-Focused Interactive Zoo Exhibits through Action Research

    NASA Astrophysics Data System (ADS)

    Kalenda, Peter

    Research on exhibit design over the past twenty years has started to identify many different methods to increase the learning that occurs in informal education environments. This study utilized relevant research on exhibit design to create and study the effectiveness of a mobile interactive exhibit at the Seneca Park Zoo that promotes socialization, engagement in science, and conservation-related practices among guests. This study will serve as one component of a major redesign project at the Seneca Park Zoo for their Rocky Coasts exhibit. This action research study targeted the following question, "How can interactive exhibits be designed to promote socialization, engagement in science, and real-world conservation-related practices (RCPs) among zoo guests?" Specific research questions included: 1. In what ways did guests engage with the exhibit? 2. In what ways were guests impacted by the exhibit? a) What evidence exists, if any, of guests learning science content from the exhibit? b) What evidence exists, if any, of guests being emotionally affected by the exhibit? c) What evidence exists, if any, of guests changing their RCPs after visiting the exhibit? Data were collected through zoo guest surveys completed by zoo guests comparing multiple exhibits, interviews with guests before and after they used the prototype exhibit, observations and audio recordings of guests using the prototype exhibit, and follow-up phone interviews with guests who volunteered to participate. Data were analyzed collaboratively with members of the zoo's exhibit Redesign Team using grounded theory qualitative data analysis techniques to find patterns and trends among data. Initial findings from data analysis were used to develop shifts in the exhibit in order to increase visitor engagement and learning. This process continued for two full action research spirals, which resulted in three iterations of the prototype exhibit. The overall findings of this study highlight the ways in which

  7. Microcomputers in Science Education.

    ERIC Educational Resources Information Center

    Spraggs, Laurence D.

    1984-01-01

    Encourages the use of microcomputers in the science classroom, providing information on uses (e.g., simulation and modeling, drill and practice programs, interface with lab equipment, conceptual data analysis, database management, and word processing), logistics, equipment, and software. (DMM)

  8. Microcomputers in Science Education.

    ERIC Educational Resources Information Center

    Spraggs, Laurence D.

    1984-01-01

    Encourages the use of microcomputers in the science classroom, providing information on uses (e.g., simulation and modeling, drill and practice programs, interface with lab equipment, conceptual data analysis, database management, and word processing), logistics, equipment, and software. (DMM)

  9. Vision to Purpose to Power: A Quest for Excellence in the Education of Library and Information Science Professionals.

    ERIC Educational Resources Information Center

    Hannigan, Jane Anne

    Perhaps librarianship is faced with problems even greater than those of education. In fact, its very existence is being challenged. Library schools have consistently tried to educate almost all librarians and information scientists in one mold. This simply cannot be done--it never could. Library educators must give up their rather immature notion…

  10. What Do Informal Educators Need To Be Successful In Teaching Planetary Science And Engineering?: Results From The PLANETS Out-Of-School Time Educator Needs Assessment (NASA NNX16AC53A)

    NASA Astrophysics Data System (ADS)

    Clark, J.; Bloom, N.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is five-year interdisciplinary and cross-institutional partnership to develop and disseminate out-of-school time curricular and professional development modules that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU), the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Museum of Science (MOS) Boston are partners in developing, piloting, and researching the impact of three out of school time planetary science and engineering curriculum and related professional development units over the life of the project. Critical to the success of out-of-school time curriculum implementation is to consider the needs of the informal education leaders. The CSTL at NAU is conducting a needs-assessment of OST educators nationwide to identify the gaps between current knowledge and abilities of OST educators and the knowledge and abilities necessary in order to facilitate effective STEM educational experiences for youth. The research questions are: a. What are current conditions of OST programs and professional development for OST educators? b. What do OST educators and program coordinators already know and think about facilitating meaningful and high quality STEM instruction? c. What are perceived needs of OST educators and program coordinators in order to implement meaningful and high quality STEM instruction? d. What design decisions will make professional development experiences more accessible, acceptable and useful to OST educators and program coordinators? In this presentation we will share the preliminary results of the national survey. The information about the needs of informal STEM educators can inform other NASA Science Mission Directorate educational partners in their program development in addition to AGU members designing informal education outreach.

  11. The Right to Communicate: At What Price? Economic Constraints to the Effective Use of Telecommunications in Education, Science, Culture and in the Circulation of Information.

    ERIC Educational Resources Information Center

    International Telecommunication Union, Geneva (Switzerland).

    This document presents the findings of a joint study on telecommunications in support of the education, science, culture, communication, and information sectors, particularly from the point of view of developing countries. The topics include: (1) an overview of the present situation from the user's perspective, with a focus on present practices…

  12. Enhancing Physical Education and Sport Science Students' Self-Efficacy and Attitudes regarding Information and Communication Technologies through a Computer Literacy Course

    ERIC Educational Resources Information Center

    Papastergiou, Marina

    2010-01-01

    Information and Communication Technologies (ICT) have become an integral component of Physical Education (PE) and Sport Science (SS) curricula and professions. It is thus imperative that PE and SS students develop ICT skills, self-efficacy in ICT and positive attitudes towards ICT. This study was aimed at designing a computer literacy course…

  13. Enhancing Physical Education and Sport Science Students' Self-Efficacy and Attitudes regarding Information and Communication Technologies through a Computer Literacy Course

    ERIC Educational Resources Information Center

    Papastergiou, Marina

    2010-01-01

    Information and Communication Technologies (ICT) have become an integral component of Physical Education (PE) and Sport Science (SS) curricula and professions. It is thus imperative that PE and SS students develop ICT skills, self-efficacy in ICT and positive attitudes towards ICT. This study was aimed at designing a computer literacy course…

  14. Information Communication Technology (ICT) Integration in a Science Education Unit for Preservice Science Teachers; Students' Perceptions of Their ICT Skills, Knowledge and Pedagogy

    ERIC Educational Resources Information Center

    Dawson, Vaille; Forster, Patricia; Reid, Doug

    2006-01-01

    There is an expectation that new science teachers will be able to effectively use a range of information communication technology (ICT) related resources in the science classroom in order to enhance student learning. All school systems in Australia are in the process of providing teachers with ICT professional development and infrastructure. This…

  15. Use of information and communication technologies (ICT) in science education: The views and experiences of three high school teachers

    NASA Astrophysics Data System (ADS)

    Barreto-Marrero, Luz N.

    This case study presents the experiences of three public school chemistry teachers in the transformation of their teaching processes with the use of ICT. The processes' characteristics are documented, what knowledge and skills were learned, and how it changed their organization, planning and teaching. D. H. Jonassen's (1999) ideas on learning strategies for the integration of ICT, from a constructivism and critical thinking perspective guide this study. MacFarlane and Sakellariou's (2002) ideas on the use of ICT in science teaching are also considered. The relationship between ICT, mind tools, learning strategies and teaching methods is studied. The information was collected by semi-structured interviews, classroom observations and document analysis. The results were analyzed according to Wolcott's qualitative analysis model (1994), along with the QRS NVivo (2002) computer program. The teachers learned to use several new ICT equipment and materials that facilitated their teaching and evaluation processes. Among these are the use of lab simulators, various software, CBL sensors, graphic calculators, electronic blackboards, and the Internet. They used teaching strategies for active, authentic, collaborative, constructive and reflective learning according to Jonassen. Their science teaching methods corresponds to the three types, according to MacFarlane and Sakellariou, which fosters scientific method skills and scientific reasoning for science literacy. The teachers, as facilitators and mediators, were inquirers of their students needs; investigators of their curricula, strategists as they organize their teaching skills and methods; experimenters with what they had learned; and collaborators as they fostered cooperative learning. Teachers' developed better lessons, lab exercises and assessment tools, such as rubrics, concept maps, comic strips, and others. They also affirmed that their students demonstrated more motivation, participation, collaboration and learning

  16. A Conceptual Analysis of Information Science.

    ERIC Educational Resources Information Center

    Houser, Lloyd

    1988-01-01

    An analysis of the Journal of the American Society for Information Science (1970-84) examined (1) the nature of information science; (2) the relationship between information and library science; (3) whether information science is a new branch of science; (4) the relationship between information science and scientific information; and (5) whether a…

  17. Science Toys for Science Education.

    ERIC Educational Resources Information Center

    Raw, Isaias

    1982-01-01

    The absence of "hands-on" experiences with science equipment in schools stimulated the production of science kits for children. Thirty years later this enterprise has become a national institution in Brazil with a proud history of effecting change in the teaching of science throughout this country. (Author/JN)

  18. Monitoring Progress: How the 2012 National Survey of Science and Mathematics Education Can Inform a National K-12 STEM Education Indicator System

    ERIC Educational Resources Information Center

    Fulkerson, William O.; Banilower, Eric R.

    2014-01-01

    "Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing?" (National Research Council, 2013) describes a set of 14 indicators for assessing and tracking the health of pre-college STEM education in the United States. This 2012 National Survey of Science and Mathematics Education (NSSME), is the fifth in a series of…

  19. Knowledge, beliefs and pedagogy: how the nature of science should inform the aims of science education (and not just when teaching evolution)

    NASA Astrophysics Data System (ADS)

    Taber, Keith S.

    2016-12-01

    Lisa Borgerding's work highlights how students can understand evolution without necessarily committing to it, and how learners may come to see it as one available way of thinking amongst others. This is presented as something that should be considered a successful outcome when teaching about material that many students may find incompatible with their personal worldviews. These findings derive from work exploring a cause célèbre of the science education community—the teaching of natural selection in cultural contexts where learners feel they have strong reasons for rejecting evolutionary ideas. Accepting that students may understand but not commit to scientific ideas that are (from some cultural perspectives) controversial may easily be considered as a form of compromise position when teaching canonical science prescribed in curriculum but resisted by learners. Yet if we take scholarship on the nature of science seriously, and wish to reflect the nature of scientific knowledge in science teaching, then the aim of science education should always be to facilitate understanding of, yet to avoid belief in, the ideas taught in science lessons. The philosophy of science suggests that scientific knowledge needs to be understood as theoretical in nature, as conjectural and provisional; and the history of science warns of the risks of strongly committing to any particular conceptualisation as a final account of some feature of nature. Research into student thinking and learning in science suggests that learning science is often a matter of coming to understand a new viable way of thinking about a topic to complement established ways of thinking. Science teaching should then seek to have students appreciate scientific ideas as viable ways of making sense of the currently available empirical evidence, but should not be about persuading students of the truth of any particular scientific account.

  20. Knowledge, beliefs and pedagogy: how the nature of science should inform the aims of science education (and not just when teaching evolution)

    NASA Astrophysics Data System (ADS)

    Taber, Keith S.

    2017-03-01

    Lisa Borgerding's work highlights how students can understand evolution without necessarily committing to it, and how learners may come to see it as one available way of thinking amongst others. This is presented as something that should be considered a successful outcome when teaching about material that many students may find incompatible with their personal worldviews. These findings derive from work exploring a cause célèbre of the science education community—the teaching of natural selection in cultural contexts where learners feel they have strong reasons for rejecting evolutionary ideas. Accepting that students may understand but not commit to scientific ideas that are (from some cultural perspectives) controversial may easily be considered as a form of compromise position when teaching canonical science prescribed in curriculum but resisted by learners. Yet if we take scholarship on the nature of science seriously, and wish to reflect the nature of scientific knowledge in science teaching, then the aim of science education should always be to facilitate understanding of, yet to avoid belief in, the ideas taught in science lessons. The philosophy of science suggests that scientific knowledge needs to be understood as theoretical in nature, as conjectural and provisional; and the history of science warns of the risks of strongly committing to any particular conceptualisation as a final account of some feature of nature. Research into student thinking and learning in science suggests that learning science is often a matter of coming to understand a new viable way of thinking about a topic to complement established ways of thinking. Science teaching should then seek to have students appreciate scientific ideas as viable ways of making sense of the currently available empirical evidence, but should not be about persuading students of the truth of any particular scientific account.

  1. Key Papers in Information Science.

    ERIC Educational Resources Information Center

    Elias, Arthur W., Ed.

    Nineteen documents on various aspects of information science are included in this introductory book of readings. The documents were selected because they are relatively easy to read for beginning students and are likely to be useful for a number of years. The documents cover the literature from 1958 to 1970. They are: (1) Information Science: What…

  2. Industrial Roots of Information Science.

    ERIC Educational Resources Information Center

    Windsor, Donald A.

    1999-01-01

    A reflection of what was happening in the field of information science, writing in the Journal of the American Society for Information Science (JASIS) has become specialized to the point of excluding readers outside a narrow circle. A plea is made for JASIS to address a wider audience, because other subject disciplines, as well as industry, could…

  3. Science Education Resource Assistant for Science Teachers. [CD- ROM].

    ERIC Educational Resources Information Center

    ERIC Clearinghouse for Science, Mathematics, and Environmental Education, Columbus, OH.

    This CD-ROM provides a collection of Internet resources as well as K-16 related science materials and is divided into two sections. "Online Resources" includes information on the Educational Resources Information Center (ERIC), National Standards, AAAS Project 2061 Resources, U.S. Department of Education, Third International Mathematics…

  4. Science Education Resource Assistant for Science Teachers. [CD- ROM].

    ERIC Educational Resources Information Center

    ERIC Clearinghouse for Science, Mathematics, and Environmental Education, Columbus, OH.

    This CD-ROM provides a collection of Internet resources as well as K-16 related science materials and is divided into two sections. "Online Resources" includes information on the Educational Resources Information Center (ERIC), National Standards, AAAS Project 2061 Resources, U.S. Department of Education, Third International Mathematics…

  5. Rural Science Education Program

    SciTech Connect

    Intress, C.

    1994-12-31

    The Rural Science Education Project is an outreach program of the New Mexico Museum of Natural History and Science with the goal of helping rural elementary schools improve science teaching and learning by using local natural environmental resources. This program is based on the assumption that rural schools, so often described as disadvantaged in terms of curricular resources, actually provide a science teaching advantage because of their locale. The natural environment of mountains, forests, ponds, desert, or fields offers a context for the study of scientific concepts and skills that appeals to many youngsters. To tap these resources, teachers need access to knowledge about the rural school locality`s natural history. Through a process of active participation in school-based workshops and field site studies, teachers observe and learn about the native flora, fauna, geology, and paleontology of their community. In addition, they are exposed to instructional strategies, activities, and provided with materials which foster experimential learning. This school-museum partnership, now in its fifth year, has aided more than 800 rural teachers` on-going professional development. These educators have, in turn, enhanced science education throughout New Mexico for more than 25,000 students.

  6. IPY: Engaging Antarctica: Bringing Antarctic Geoscience to the Public Through a NOVA Documentary and an Innovative Flexible Exhibit for Informal Science Education Venues

    NASA Astrophysics Data System (ADS)

    Rack, F.; Diamond, J.; Levy, R.; Berg, M.; Dahlman, L.; Jackson, J.

    2006-12-01

    IPY: Engaging Antarctica is an informal science education project designed to increase the general public's understanding of scientific research conducted in Antarctica. The project focuses specifically on the multi- national, NSF-funded Antarctic Drilling Project (ANDRILL). The ANDRILL project is the newest geological drilling program in an ongoing effort to recover stratigraphic records from Antarctica. ANDRILL's primary objectives are to investigate Antarctica's role in global environmental change over the past 65 million years and to better understand its future response to global changes. Additionally, through ANDRILL's Research Immersion for Science Educators program (ARISE), 12 science educators from four countries will work on science research teams in Antarctica and produce educational materials that feature Antarctic geoscience. The Engaging Antarctica project will produce both a NOVA television documentary and an innovative informal learning exhibit. The documentary, Antarctica's Icy Secrets, will provide a geological perspective on how Antarctica continues to play a major role in affecting global climate by altering ocean currents and sea levels. The learning exhibit, one that blends standards- and inquiry-based learning with the latest information technologies, is coined the Flexhibit. The Engaging Antarctica Flexhibit will provide a digital package of high resolution images for banners as well as learning activities and ideas for exhibit stations that can be implemented by youth groups. Flexhibit images will feature ANDRILL scientists at work, and audio files, available as podcasts, will tell scientists' stories in their own words, speaking directly to the public about the joys and challenges of Antarctic geological research.

  7. Issues in Science Education: Changing Purposes of Science Education.

    ERIC Educational Resources Information Center

    Williamson, Stan

    This paper addresses the role of science education in today's society and the objectives of instruction in science. Observing that science cannot solve all of the problems of the world, and that science education has had little effect on the willingness of the general public to accept superstitions, the author argues that instructional approaches…

  8. Curriculum Process in Science Education

    NASA Astrophysics Data System (ADS)

    Adamčíková, Veronika; Tarábek, Paul

    2010-07-01

    Physics/science education in the communicative conception is defined as the continuous transfer of the knowledge and methods of physics into the minds of individuals who have not participated in creating them. This process, called the educational communication of physics/science, is performed by various educational agents—teachers, curriculum makers, textbook designers, university teachers and does not mean only a simple transfer of information, but it also involves teaching and instruction at all levels of the school system, the study, learning, and cognition of pupils, students and all other learners, the assessment and evaluation of learning outcomes, curriculum composition and design, the production of textbooks and other means of educational communication and, in addition, university education and the further training of teachers. The educational communication is carried out by the curriculum process of physics/science, which is a sequence of variant forms of curriculum mutually interconnected by curriculum transformations. The variant forms of curriculum are as follows: conceptual curriculum, intended curriculum, project (written) curriculum, operational curriculum, implemented curriculum, and attained curriculum.

  9. Uses of Cognitive Science to Science Education.

    ERIC Educational Resources Information Center

    Jung, W.

    1993-01-01

    Discusses common ground between cognitive science and science education starting from historical roots. Topics scrutinized are representation of knowledge with applications of schema and frame concept to physics education centering around the hierarchical structure of knowledge, the qualitative-quantitative distinction, the declarative-procedural…

  10. Review of the Contribution of the Scottish Science Centres Network to Formal and Informal Science Education: Report of Follow-Through Visits by HM Inspectorate of Education--June 2009

    ERIC Educational Resources Information Center

    Her Majesty's Inspectorate of Education, 2009

    2009-01-01

    In 2006, the Scottish Executive's Enterprise, Transport and Lifelong Learning Department (SEETLLD) asked HM Inspectorate of Education (HMIE) to carry out a review of the four Scottish science centres--Glasgow Science Centre (GSC), Our Dynamic Earth (ODE) in Edinburgh, Satrosphere Science Centre in Aberdeen, and Sensation Science Centre in Dundee.…

  11. Beyond Nature of Science: The Case for Reconceptualising "Science" for Science Education

    ERIC Educational Resources Information Center

    Erduran, Sibel

    2014-01-01

    In this paper, I argue that contemporary accounts of nature of science (NoS) are limited in their depiction of "science" and that new perspectives are needed to broaden their characterisation and appeal for science education. In particular, I refer to the role of interdisciplinary characterisations of science in informing the theory and…

  12. Science Education - Deja Vu Revised.

    ERIC Educational Resources Information Center

    Walsh, John

    1982-01-01

    Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)

  13. Science informs stewardship: Committing to a national wilderness science agenda

    Treesearch

    Susan A. Fox; Beth A. Hahn

    2016-01-01

    The National Wilderness Preservation System (NWPS) is a vital component of the national and international infrastructure for science, education, and information. The NWPS serves as an important resource for advancing research, from discovering new dinosaurs (Arbour et al. 2014, Landon 2016) to understanding human history on the American landscape (Rasic 2003). The NWPS...

  14. Space Weather Outreach: An Informal Education Perspective

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.

    2008-12-01

    Informal science education institutions, such as science centers, play an important role in science education. They serve millions of people, including students and teachers. Within the last decade, many have tried to improve the public's understanding of science and scientific research through informal education projects. The recent success of several space weather-related missions and research programs and the launch of the International Heliophysical Year (IHY) research and education programs make this an ideal time to inform the public about the importance and relevance of space weather to our understanding of heliophysical science. Communication efforts associated with space weather both benefit and are compromised by analogies to terrestrial weather. This paper summarizes the benefits and challenges of the terrestrial weather analogy using two exhibit evaluation studies. The paper also describes three components of the Space Science Institute's Space Weather Outreach Program: Space Weather Center Website, Educator Workshops, and Small Exhibits for Libraries and Science Centers.

  15. How can international studies such as the international mathematics and science study and the programme for international student assessment be used to inform practice, policy and future research in science education in New Zealand?

    NASA Astrophysics Data System (ADS)

    Baker, Robyn; Jones, Alister

    2005-02-01

    New Zealand is investing in two international studies that assess the achievement of students in science--the International Mathematics and Science Study and the Programme for International Student Assessment. While the studies have very different purposes, they both provide extensive data on student achievement in science and about factors that impact on this achievement. Currently the international and national study reports describe general findings but there has been no systematic secondary analysis or commentary by the New Zealand science education community. The purpose of this paper is to give an overview of these international studies including some of the major findings so as to highlight their potential for further interrogation by science educators both nationally and internationally to inform policy, practice and further research.

  16. Discovering indigenous science: Implications for science education

    NASA Astrophysics Data System (ADS)

    Snively, Gloria; Corsiglia, John

    2001-01-01

    Indigenous science relates to both the science knowledge of long-resident, usually oral culture peoples, as well as the science knowledge of all peoples who as participants in culture are affected by the worldview and relativist interests of their home communities. This article explores aspects of multicultural science and pedagogy and describes a rich and well-documented branch of indigenous science known to biologists and ecologists as traditional ecological knowledge (TEK). Although TEK has been generally inaccessible, educators can now use a burgeoning science-based TEK literature that documents numerous examples of time-proven, ecologically relevant, and cost effective indigenous science. Disputes regarding the universality of the standard scientific account are of critical importance for science educators because the definition of science is a de facto gatekeeping device for determining what can be included in a school science curriculum and what cannot. When Western modern science (WMS) is defined as universal it does displace revelation-based knowledge (i.e., creation science); however, it also displaces pragmatic local indigenous knowledge that does not conform with formal aspects of the standard account. Thus, in most science classrooms around the globe, Western modern science has been taught at the expense of indigenous knowledge. However, because WMS has been implicated in many of the world's ecological disasters, and because the traditional wisdom component of TEK is particularly rich in time-tested approaches that foster sustainability and environmental integrity, it is possible that the universalist gatekeeper can be seen as increasingly problematic and even counter productive. This paper describes many examples from Canada and around the world of indigenous people's contributions to science, environmental understanding, and sustainability. The authors argue the view that Western or modern science is just one of many sciences that need to be

  17. Informal STEM Education in Antarctica

    NASA Astrophysics Data System (ADS)

    Chell, K.

    2010-12-01

    Tourism in Antarctica has increased dramatically with tens of thousands of tourists visiting the White Continent each year. Tourism cruises to Antarctica offer a unique educational experience for lay people through informal science-technology-engineering-mathematics (STEM) education. Passengers attend numerous scientific lectures that cover topics such as the geology of Antarctica, plate tectonics, glaciology, and climate change. Furthermore, tourists experience the geology and glaciology first hand during shore excursions. Currently, the grand challenges facing our global society are closely connected to the Earth sciences. Issues such as energy, climate change, water security, and natural hazards, are consistently on the legislative docket of policymakers around the world. However, the majority of the world’s population is uninformed about the role Earth sciences play in their everyday lives. Tourism in Antarctica provides opportunities for informal STEM learning and, as a result, tourists leave with a better understanding and greater appreciation for both Antarctica and Earth sciences.

  18. Invest in Today's Science Educators: Ensure Tomorrow's Science Workforce

    NASA Astrophysics Data System (ADS)

    MacLeish, Marlene Y.; Thomson, William A.

    2008-06-01

    The National Space Biomedical Research Institute (NSBRI) is contributing to United States of America's (US) efforts to educate a science workforce capable of competing in a knowledge-based 21st century global society by employing space exploration science to educate and encourage students to pursue careers in science, technology, engineering, and mathematics (STEM). This approach supports the National Aeronautics and Space Administration's (NASA) education mission to provide educational opportunities for scientists, students and teachers, and to inform the public about the benefits that space exploration hold for life on Earth [1] [2]. During the past decade, the NSBRI-Education Outreach Program (EOP) has evolved from a predominantly Kindergarten through undergraduate college (K-16) educational program to include graduate and post-doctoral components and a senior education fellow position. This position aims to foster STEM educational research and global conversations on a shared vision for space exploration.

  19. Crowdfunding for Elementary Science Educators

    ERIC Educational Resources Information Center

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  20. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  1. Rocket Science: An Exploration of What Information Is of Meaning to Educational Psychologists when Evaluating Their Work

    ERIC Educational Resources Information Center

    Lowther, Cath

    2013-01-01

    Evaluation is a central feature of educational psychologists' (EPs) work. Different evaluation tools have been used in the published literature but a consistent approach is yet to emerge. Informed by Interpretative Phenomenological Analysis, this research asks what information EPs find meaningful when they evaluate their work. Six EPs working in a…

  2. Rocket Science: An Exploration of What Information Is of Meaning to Educational Psychologists when Evaluating Their Work

    ERIC Educational Resources Information Center

    Lowther, Cath

    2013-01-01

    Evaluation is a central feature of educational psychologists' (EPs) work. Different evaluation tools have been used in the published literature but a consistent approach is yet to emerge. Informed by Interpretative Phenomenological Analysis, this research asks what information EPs find meaningful when they evaluate their work. Six EPs working in a…

  3. Education: A Guide to Reference and Information Sources. Second Edition. Reference Sources in the Social Sciences Series.

    ERIC Educational Resources Information Center

    O'Brien, Nancy Patricia

    The purpose of this guide is to provide information about the key reference and information resources in the field of education. Sources include items published from 1990 through 1998, with selective inclusion of significant or unique works published prior to 1990. The guide is divided into 14 categories that reflect different aspects of…

  4. Teachers' Perceptions of Learning with Information Technology in Mathematics and Science Education: A Report on Project Prometheus.

    ERIC Educational Resources Information Center

    Selby, Linda; And Others

    1994-01-01

    Project Prometheus involves IBM Canada, college faculty, and classroom teachers in Manitoba who cooperate to discover the most effective ways to use information technology to promote mathematics and science literacy. The article analyzes teachers' very positive perceptions of how technology affected their classroom teaching styles and learning…

  5. Teachers' Perceptions of Learning with Information Technology in Mathematics and Science Education: A Report on Project Prometheus.

    ERIC Educational Resources Information Center

    Selby, Linda; And Others

    1994-01-01

    Project Prometheus involves IBM Canada, college faculty, and classroom teachers in Manitoba who cooperate to discover the most effective ways to use information technology to promote mathematics and science literacy. The article analyzes teachers' very positive perceptions of how technology affected their classroom teaching styles and learning…

  6. Doing Science: Images of Science in Science Education.

    ERIC Educational Resources Information Center

    Millar, Robin, Ed.

    The fields of science education and science studies and their respective academic communities, while appearing to have many potential points of contact, remain surprisingly separate, with little apparent recognition of the relevance to the interests of each to work done within the other traditions. As a field of study science education deals with…

  7. Curriculum Theory and Library and Information Science.

    ERIC Educational Resources Information Center

    McGarry, Kevin J.

    1987-01-01

    Discusses curriculum theory in the context of professional education for library and information science, and outlines steps necessary for curriculum planning: (1) diagnosis of needs; (2) formulation of objectives; (3) selection of content from the universe of knowledge; (4) selection of learning experience; (5) organization of learning materials;…

  8. Register of Education and Training Activities in Librarianship, Information Science and Archives = Inventaire des activites de formation dans le domaine de la bibliotheconomie, des sciences de l'information et de l'archivistique = Inventario de las actividades de formacion en la esfera de la bibliotecologia, las ciencias de la informacion y la archivologia.

    ERIC Educational Resources Information Center

    de Grolier, Eric, Comp.

    This register provides information on information science, librarianship, documentation, and archival science training activities conducted outside regular university courses organized by specialized schools. Based on a December 1980 UNESCO questionnaire survey, the register includes seminars, refresher courses, continuing education courses, and…

  9. Register of Education and Training Activities in Librarianship, Information Science and Archives = Inventaire des activites de formation dans le domaine de la bibliotheconomie, des sciences de l'information et de l'archivistique = Inventario de las actividades de formacion en la esfera de la bibliotecologia, las ciencias de la informacion y la archivologia.

    ERIC Educational Resources Information Center

    de Grolier, Eric, Comp.

    This register provides information on information science, librarianship, documentation, and archival science training activities conducted outside regular university courses organized by specialized schools. Based on a December 1980 UNESCO questionnaire survey, the register includes seminars, refresher courses, continuing education courses, and…

  10. Comfort and Content: Considerations for Informal Science Professional Development

    ERIC Educational Resources Information Center

    Holliday, Gary M.; Lederman, Norman G.; Lederman, Judith S.

    2014-01-01

    This study looked at a life science course that was offered at and taught by education staff of a large informal science institution (ISI) located in the Midwest. The curriculum, materials, and agendas for the course were developed by education staff and complemented a permanent life science exhibition. The researcher developed a content test…

  11. Beliefs of Science Educators Who Teach Pesticide Risk to Farmworkers

    ERIC Educational Resources Information Center

    LePrevost, Catherine E.; Blanchard, Margaret R.; Cope, W. Gregory

    2013-01-01

    Informal science educators play a key role in promoting science literacy, safety, and health by teaching pesticide toxicology to the large, at-risk Latino farmworker population in the United States (US). To understand the experiences of informal science educators and the nature of farmworker education, we must have knowledge of farmworker…

  12. Science Education in the Nation. State of the Scene.

    ERIC Educational Resources Information Center

    Agency for Health Care Policy and Research (DHHS/PHS), Rockville, MD.

    This general overview of science education in the nation is intended to provide some basic information to those who are new to science education reform. It should also give those who have been active in science education additional information and perspective on the problems faced, prospects for involvement, and an indication of some of the…

  13. Science Teacher Candidates' Attitudes towards Distance Education

    ERIC Educational Resources Information Center

    Kisla, T.

    2015-01-01

    The popularity and importance of distance education (DE) have increased along with advances in information and communication technologies. Many educational institutions now use DE applications. Today, as the importance of scientific literacy rises, the integration of DE into science education has become obligatory. At this point, this study seeks…

  14. Information science team

    NASA Technical Reports Server (NTRS)

    Billingsley, F.

    1982-01-01

    Concerns are expressed about the data handling aspects of system design and about enabling technology for data handling and data analysis. The status, contributing factors, critical issues, and recommendations for investigations are listed for data handling, rectification and registration, and information extraction. Potential supports to individual P.I., research tasks, systematic data system design, and to system operation. The need for an airborne spectrometer class instrument for fundamental research in high spectral and spatial resolution is indicated. Geographic information system formatting and labelling techniques, very large scale integration, and methods for providing multitype data sets must also be developed.

  15. The Importance of Place in Indigenous Science Education

    ERIC Educational Resources Information Center

    Sutherland, Dawn; Swayze, Natalie

    2012-01-01

    In this issue of Cultural Studies of Science Education, Mack and colleagues (Mack et al. "2011") seek to identify the necessary components of science education in Indigenous settings. Using a review of current research in informal science education in Indigenous settings, along with personal interviews with American educators engaged in…

  16. The Importance of Place in Indigenous Science Education

    ERIC Educational Resources Information Center

    Sutherland, Dawn; Swayze, Natalie

    2012-01-01

    In this issue of Cultural Studies of Science Education, Mack and colleagues (Mack et al. "2011") seek to identify the necessary components of science education in Indigenous settings. Using a review of current research in informal science education in Indigenous settings, along with personal interviews with American educators engaged in…

  17. The Bridge, An Ocean Science Education Teacher Resource Center

    DTIC Science & Technology

    1998-09-30

    communities to discuss questions, issues and ideas. The Bridge online marine science education clearinghouse provides teachers with a readily accessible source for current and accurate marine science education information.

  18. [Information technology in medical education].

    PubMed

    Ramić, A

    1999-01-01

    The role of information technology in educational models of under-graduate and post-graduate medical education is growing in 1980's influenced by PC's break-in in medical practice and creating relevant data basis, and, particularly, in 1990's by integration of information technology on international level, development of international network, Internet, Telemedicin, etc. The development of new educational information technology is evident, proving that information in transfer of medical knowledge, medical informatics and communication systems represent the base of medical practice, medical education and research in medical sciences. In relation to the traditional approaches in concept, contents and techniques of medical education, new models of education in training of health professionals, using new information technology, offer a number of benefits, such as: decentralization and access to relevant data sources, collecting and updating of data, multidisciplinary approach in solving problems and effective decision-making, and affirmation of team work within medical and non-medical disciplines. Without regard to the dynamics of change and progressive reform orientation within health sector, the development of modern medical education is inevitable for all systems a in which information technology and available data basis, as a base of effective and scientifically based medical education of health care providers, give guarantees for efficient health care and improvement of health of population.

  19. Is Religious Education Compatible with Science Education?

    ERIC Educational Resources Information Center

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  20. Is Religious Education Compatible with Science Education?

    ERIC Educational Resources Information Center

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  1. Computer Science Education in China.

    ERIC Educational Resources Information Center

    Yun-Lin, Su

    1988-01-01

    Describes the history of computer science departments at universities in China. Educational principles that characterize Chinese computer science education are discussed, selection of students for universities is described, and curricula for both undergraduate and graduate computer science studies are outlined. (LRW)

  2. Romantic Understanding and Science Education

    ERIC Educational Resources Information Center

    Hadzigeorgiou, Yannis

    2004-01-01

    This essay outlines the potential role for Kieran Egan's (1990) notion of "romantic understanding" in science education. A summary of conventional approaches to science education is followed by a detailed analysis of the implications that romantic understanding may have for the science curriculum, teaching and student learning. In particular the…

  3. Science Education Newsletter, No. 42.

    ERIC Educational Resources Information Center

    British Council, London (England). Science Dept.

    This issue, number 42 in the series, is divided into the sections of: (1) British science activities, and (2) overseas and international science activities. Presented in a newsletter format, numerous topics of interest to secondary school science and mathematics educators pertaining to British education are presented. Reports on the engineering…

  4. Science Education News, June 1976.

    ERIC Educational Resources Information Center

    McCarley, Orin, Ed.

    This issue of the newsletter of the American Association for the Advancement of Science (AAAS) presents articles relating to interdisciplinary science instruction, declines in science skills, instructional television, college entrance examinations, career education, minorities in engineering, lab safety, inservice teacher education, and the use of…

  5. Computer Science Education in China.

    ERIC Educational Resources Information Center

    Yun-Lin, Su

    1988-01-01

    Describes the history of computer science departments at universities in China. Educational principles that characterize Chinese computer science education are discussed, selection of students for universities is described, and curricula for both undergraduate and graduate computer science studies are outlined. (LRW)

  6. Environmental Education: New Era for Science Education.

    ERIC Educational Resources Information Center

    Taskin, Ozgur

    This paper presents the history of environmental education with regard to major issues, theories, and goals; environmental education in science education curriculum; and inquiry-based approaches. An example for environmental education curriculum content and an example inquiry laboratory for environmental education are included. (KHR)

  7. PoliNet and Information Utilities: Using Telecommunications in Political Science and Public Administration Education and Research.

    ERIC Educational Resources Information Center

    Vasu, Michael L.; Garson, G. David

    General information utilities and specialized networks, such as PoliNet, provide educators and researchers in public administration and allied fields with a diversity of new tools which include: (1) bibliographic searching; (2) international teleconferencing; (3) electronic news clipping services; (4) electronic mail; and (5) free public domain…

  8. Education in space science

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  9. Scientists Interacting With University Science Educators

    NASA Astrophysics Data System (ADS)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  10. Undergraduate science education probed

    NASA Astrophysics Data System (ADS)

    Leath, Audrey T.

    Do today's colleges and universities place too much emphasis on research performed by their faculty and not enough on the quality of undergraduate teaching? That was the question addressed at a March 31 hearing of the House Subcommittee on Science. Former University of Arkansas president Rep. Ray Thornton (D-Ark.), who chaired the hearing, remarked that “there is a nationwide perception that the balance is skewed toward research.” Many students and their parents, he said, have voiced dissatisfaction over undergraduate education.

  11. The Nature of Science and Science Education: A Bibliography

    NASA Astrophysics Data System (ADS)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  12. Antonio Gramsci, Education and Science

    ERIC Educational Resources Information Center

    Balampekou, Matina; Floriotis, Georgis

    2012-01-01

    This paper explores how the ideas of a great political thinker and philosopher Antonio Gramsci, are relevant to education and science and to critical science education. One of the main points in Gramsci's analysis is the social value and impact of certain aspects of the superstructure. He understands that education is a means which can be used for…

  13. Nevada Underserved Science Education Program

    SciTech Connect

    Nicole Rourke; Jason Marcks

    2004-07-06

    Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.

  14. Feyerabend on Science and Education

    ERIC Educational Resources Information Center

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  15. Feyerabend on Science and Education

    ERIC Educational Resources Information Center

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  16. The Globalization of Science Education

    ERIC Educational Resources Information Center

    DeBoer, George E.

    2011-01-01

    Standards-based science education, with its emphasis on monitoring and accountability, is rapidly becoming a key part of the globalization of science education. Standards-based testing within countries is increasingly being used to determine the effectiveness of a country's educational system, and international testing programs such as Programme…

  17. Antonio Gramsci, Education and Science

    ERIC Educational Resources Information Center

    Balampekou, Matina; Floriotis, Georgis

    2012-01-01

    This paper explores how the ideas of a great political thinker and philosopher Antonio Gramsci, are relevant to education and science and to critical science education. One of the main points in Gramsci's analysis is the social value and impact of certain aspects of the superstructure. He understands that education is a means which can be used for…

  18. Perceived barriers to online education by radiologic science educators.

    PubMed

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  19. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    NASA Astrophysics Data System (ADS)

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-02-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching as a career. Analysis of interns' subsequent career plans revealed the internships were not effective in recruiting the interns into the secondary science teacher education program, although many interns thought they might consider becoming teachers later in their lives. Reasons for not pursuing teaching included continued indecisiveness, inflexibility of required plans of study, and concerns about teachers' pay and classroom management.

  20. Catalyzing Effective Science Education: Contributions from the NASA Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Bartolone, L.; Eisenhamer, B.; Lawton, B. L.; Schultz, G. R.; Peticolas, L.; Schwerin, T.; Shipp, S.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team

    2013-06-01

    Advancing scientific literacy and strengthening the Nation’s future workforce through stimulating, informative, and effective learning experiences are core principles of the NASA Science Mission Directorate (SMD) education and public outreach (E/PO) program. To support and coordinate its E/PO community in offering a coherent suite of activities and experiences that effectively meet the needs of the education community, NASA SMD has created four Science Education and Public Outreach Forums (Astrophysics, Planetary Science, Heliophysics, Earth Science). Forum activities include: professional development to raise awareness of the existing body of best practices and educational research; analysis and cataloging of SMD-funded education materials with respect to AAAS Benchmarks for Science Literacy; Working Groups that assemble needs assessment and best practices data relevant to Higher Education, K-12 Formal Education, and Informal Science Education audiences; and community collaborations that enable SMD E/PO community members to develop new partnerships and to learn and share successful strategies and techniques. This presentation will highlight examples of Forum and community-based activities related to astronomy education and teacher professional development, within the context of the principles articulated within the NRC Framework for K-12 Science Education and the Next Generation Science Standards. Among these are an emerging community of practice for K-12 educators and online teacher professional development and resources that incorporate misconception research and authentic experiences with NASA Astrophysics data.

  1. Assessing the Educational Needs of Health Information Management Staff of the Mashhad University of Medical Sciences, Iran.

    PubMed

    Kimiafar, Khalil; Sheikhtaheri, Abbas; Sarbaz, Masoumeh; Hoseini, Masoumeh

    2017-01-01

    Health information management (HIM) professionals have a combination of skills and, at the same time, the demand for their skills in the health system is increasing rapidly. This study aimed to assess the educational needs of the HIM staff in Iran. This descriptive analytical study was conducted in eight teaching hospitals. It was found that the maximum educational needs concerned the knowledge of medical terminology, occupational safety, legal aspects, the newest rules and regulations, and ministry guidelines, while the least of the felt needs related to insurance and other aspects of registry, data ownership, and data quality. The need to learn about coding and classifications had a significant relationship with work experience (P = 0.045) and those with a work experience of 6 to 10 years had fewer needs. Educational needs were also significantly associated with the number of years since graduation (P = 0.005), as those with 5-10 years' experience after post-graduation had lesser needs than others. Those who plan educational programs for health information professionals must have a comprehensive view of the needs of the health system. Participation of specialists of different fields must be considered in educational planning of such interdisciplinary fields.

  2. Teaching Science through Physical Education.

    ERIC Educational Resources Information Center

    Kumar, David; Whitehurst, Michael

    1997-01-01

    Physical education can serve as a vehicle for teaching science and make student understanding of certain personal health-related science concepts meaningful. Describes activities involving the musculoskeletal system, the nervous system, and the cardiovascular system. (DKM)

  3. Quality tools in science education

    NASA Astrophysics Data System (ADS)

    Blanton, Patricia

    2002-03-01

    At a recent Science Teachers' State Convention, I attended a session called "Quality Tools in Science Education" and was introduced to an approach to classroom management and student involvement modeled after an industry practice called TQM (total quality management).

  4. NASA's Earth Science Enterprise: 1998 Education Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The goals of the Earth Science Enterprise (ESE) are to expand the scientific knowledge of the Earth system; to widely disseminate the results of the expanded knowledge; and to enable the productive use of this knowledge. This catalog provides information about the Earth Science education programs and the resources available for elementary through university levels.

  5. Education: Firms Offer Academics Polymer Science Training.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1983

    1983-01-01

    Provides information on industry-sponsored programs for college faculty and advanced undergraduate students designed to improve polymer science training: these include residency programs for professors available at industrial laboratories, establishment of a Polymer Education Award, newsletter on course materials/sources in polymer science,…

  6. Globalisation and science education: Rethinking science education reforms

    NASA Astrophysics Data System (ADS)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  7. Does Science Education Research Count?

    ERIC Educational Resources Information Center

    Lock, Roger

    2002-01-01

    Speculates on the value of science education research and outlines various factors underlying the dissemination of research. Makes some suggestions for better implementation of research results. (DDR)

  8. Linking Science Education to the Workplace

    NASA Astrophysics Data System (ADS)

    Hurd, Paul Dehart

    1998-12-01

    This article examines the issue of linking education in the sciences with the world of work for all students. Traditionally, science teaching has been limited to preparing student for research career in science at the university level. The reform movement in science education is focused on intellectual skills that serve to fortify the human capital of all students and the economic productivity of the nation. The educational issue arises from evolutionary changes that are taking place in the practice of science, the development of a global economy, the nation's entrance into an Information Age, and the changing nature of the workplace. To identify and integrate these factors in the practice of science teaching is the goal of this article.

  9. Brief History of Information Science.

    ERIC Educational Resources Information Center

    Herner, Saul

    1984-01-01

    This bibliographic essay reviews and analyzes 11 contributions to the field of information science as a means of tracing the history of the field, from its pre- and post-World War II beginnings to the early 1980s. Primary contributors to the field are highlighted. Eighteen references are listed. (EJS)

  10. [Educational science, 'the hardest science of all'].

    PubMed

    van Tartwijk, J; Driessen, E W; van der Vleuten, C P M; Wubbels, T

    2012-06-01

    Educational research not only showed that student characteristics are of major importance for study success, but also that education does make a difference. Essentially, teaching is about stimulating students to invest time in learning and to use that time as effectively as possible. Assessment, goal-orientated work, and feedback have a major effect. The teacher is the key figure. With the aim to better understand teaching and learning, educational researchers usefindingsfrom other disciplines more and more often. A pitfall is to apply the findings of educational research without taking into consideration the context and the specific characteristics of students and teachers. Because of the large number offactors that influence the results ofeducation, educational science is referred as 'the hardest science of all'.

  11. The Interstate 99 (I-99) project and geological information exchanges: A study of the interplay among selected variables from science education, geology/earth science, and environmental policy

    NASA Astrophysics Data System (ADS)

    Snowden, Daniel Eugene

    The Interstate 99 (I-99) highway project has been the source of extensive attention over the past few years. Its most infamous aspect is the excavation of a geological formation---the Bald Eagle Sandstone---that was found to contain acidic rock material, which, upon exposure to water, leached sulfuric acid to several surface water bodies and private groundwater wells. This matter managed to suspend construction of the project for several years. Numerous parties, representing academia, government (particularly the Pennsylvania Department of Environmental Protection (PA DEP) and the Pennsylvania Department of Transportation (PennDOT)), private industry (consultants), environmental organizations and advocacy groups, and the citizenry, have been involved in the development of a resolution to the I-99 acidic rock problem. The interactions among these parties are interdisciplinary by nature, given the sectors of society that they represent. Consideration of how these parties interacted with each other while evaluating the options for addressing the environmental dilemma posed by the I-99 project provides opportunities for academic research. The discipline of Science Education is viable for studying the I-99 case, with accompaniment by 2 other disciplines, which have direct relevance to this case: Geology/Earth Science (per the underlying cause of the I-99 acidic rock problem) and Environmental Policy (per the regulations and policies that had to be followed while developing a solution to the environmental dilemma). Pairing Science Education with the other two aforementioned disciplines can create additional niches for the former discipline, and enhance academic research both within itself, and, across other disciplines, as relevant.

  12. Science Education Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Papers presented include: (1) discussion in science lessons; (2) research on science interests of South Australian 12-year-olds (N=753); (3) chemistry and science philosophy; (4) methods/goals of teaching science to slow learners; (5) uses of industrial applications in science lessons; (6) nature of scientific observations; and (7) pros/cons of…

  13. Science Education Notes.

    ERIC Educational Resources Information Center

    Antonouris, George; And Others

    1989-01-01

    Eight articles are included in this collection. Topics include: multicultural science, teaching science with metaphors, development of a graded assessment scheme in science, relative performance of boys and girls in chemistry, promoting science understanding, formative evaluations, science background of primary teachers, and promoting creativity…

  14. Bridging the digital divide through the integration of computer and information technology in science education: An action research study

    NASA Astrophysics Data System (ADS)

    Brown, Gail Laverne

    The presence of a digital divide, computer and information technology integration effectiveness, and barriers to continued usage of computer and information technology were investigated. Thirty-four African American and Caucasian American students (17 males and 17 females) in grades 9--11 from 2 Georgia high school science classes were exposed to 30 hours of hands-on computer and information technology skills. The purpose of the exposure was to improve students' computer and information technology skills. Pre-study and post-study skills surveys, and structured interviews were used to compare race, gender, income, grade-level, and age differences with respect to computer usage. A paired t-test and McNemar test determined mean differences between student pre-study and post-study perceived skills levels. The results were consistent with findings of the National Telecommunications and Information Administration (2000) that indicated the presence of a digital divide and digital inclusion. Caucasian American participants were found to have more at-home computer and Internet access than African American participants, indicating that there is a digital divide by ethnicity. Caucasian American females were found to have more computer and Internet access which was an indication of digital inclusion. Sophomores had more at-home computer access and Internet access than other levels indicating digital inclusion. Students receiving regular meals had more computer and Internet access than students receiving free/reduced meals. Older students had more computer and Internet access than younger students. African American males had been using computer and information technology the longest which is an indication of inclusion. The paired t-test and McNemar test revealed significant perceived student increases in all skills levels. Interviews did not reveal any barriers to continued usage of the computer and information technology skills.

  15. Earth Science Information System (ESIS)

    USGS Publications Warehouse

    ,

    1982-01-01

    The Earth Science Information System (ESIS) was developed in 1981 by the U.S. Geological Survey's Office of the Data Administrator. ESIS serves as a comprehensive data management facility designed to support the coordination, integration, and standardization of scientific, technical, and bibliographic data of the U.S. Geological Survey (USGS). ESIS provides, through an online interactive computer system, referral to information about USGS data bases, data elements which are fields in the records of data bases, and systems. The data bases contain information about many subjects from several scientific disciplines such as: geology, geophysics, geochemistry, hydrology, cartography, oceanography, geography, minerals exploration and conservation, and satellite data sensing.

  16. Science education and everyday action

    NASA Astrophysics Data System (ADS)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  17. Science, Worldviews and Education: An Introduction

    NASA Astrophysics Data System (ADS)

    Matthews, Michael R.

    2009-06-01

    This special issue of Science & Education deals with the theme of ‘Science, Worldviews and Education’. The theme is of particular importance at the present time as many national and provincial education authorities are requiring that students learn about the Nature of Science (NOS) as well as learning science content knowledge and process skills. NOS topics are being written into national and provincial curricula. Such NOS matters give rise to questions about science and worldviews: What is a worldview? Does science have a worldview? Are there specific ontological, epistemological and ethical prerequisites for the conduct of science? Does science lack a worldview but nevertheless have implications for worldviews? How can scientific worldviews be reconciled with seemingly discordant religious and cultural worldviews? In addition to this major curricular impetus for refining understanding of science and worldviews, there are also pressing cultural and social forces that give prominence to questions about science, worldviews and education. There is something of an avalanche of popular literature on the subject that teachers and students are variously engaged by. Additionally the modernisation and science-based industrialisation of huge non-Western populations whose traditional religions and beliefs are different from those that have been associated with orthodox science, make very pressing the questions of whether, and how, science is committed to particular worldviews. Hugh Gauch Jr. provides a long and extensive lead essay in the volume, and 12 philosophers, educators, scientists and theologians having read his paper, then engage with the theme. Hopefully the special issue will contribute to a more informed understanding of the relationship between science, worldviews and education, and provide assistance to teachers who are routinely engaged with the subject.

  18. Information and communication technology and community-based health sciences training in Uganda: perceptions and experiences of educators and students.

    PubMed

    Chang, Larry W; Mwanika, Andrew; Kaye, Dan; Muhwezi, Wilson W; Nabirye, Rose C; Mbalinda, Scovia; Okullo, Isaac; Kennedy, Caitlin E; Groves, Sara; Sisson, Stephen D; Burnham, Gilbert; Bollinger, Robert C

    2012-01-01

    Information and communication technology (ICT) has been advocated as a powerful tool for improving health education in low-resource settings. However, few evaluations have been performed of ICT perceptions and user experiences in low-resource settings. During late 2009, an internet-based survey on ICT was administered to students, tutors, and faculty members associated with a Community-Based Education and Service (COBES) program in Uganda. 255 surveys were completed. Response rates varied (students, 188/684, 27.5%; tutors, 14/27, 51.9%; faculty, 53/335, 15.8%). Most respondents owned mobile phones (98%). Students were less likely (p < 0.001) to own laptops (25%) compared to tutors (71%) and faculty (85%). Internet access at rural sites was uncommon; mobile phone coverage was almost universally present. Laptop ownership and internet and mobile phone access was not associated with high valuation of students' COBES experiences. Free text responses found that respondents valued ICT access for research, learning, and communication purposes. In summary, ICT penetration in this population is primarily manifest by extensive mobile phone ownership. Internet access in rural educational sites is still lacking, but students and educators appear eager to utilize this resource if availability improves. ICT may offer a unique opportunity to improve the quality of teaching and learning for COBES participants.

  19. Desettling Expectations in Science Education

    ERIC Educational Resources Information Center

    Bang, M.; Warren, B.; Rosebery, A. S.; Medin, D.

    2012-01-01

    Calls for the improvement of science education in the USA continue unabated, with particular concern for the quality of learning opportunities for students from historically nondominant communities. Despite many and varied efforts, the field continues to struggle to create robust, meaningful forms of science education. We argue that "settled…

  20. Blended Learning Improves Science Education.

    PubMed

    Stockwell, Brent R; Stockwell, Melissa S; Cennamo, Michael; Jiang, Elise

    2015-08-27

    Blended learning is an emerging paradigm for science education but has not been rigorously assessed. We performed a randomized controlled trial of blended learning. We found that in-class problem solving improved exam performance, and video assignments increased attendance and satisfaction. This validates a new model for science communication and education.

  1. Defending Constructivism in Science Education.

    ERIC Educational Resources Information Center

    Gil-Perez, Daniel; Guisasola, Jenaro; Moreno, Antonio; Cachapuz, Antonio; Pessoa de Carvalho, Anna M.; Torregrosa, Joaquin Martinez; Salinas, Julia; Valdes, Pablo; Gonzalez, Eduardo; Duch, Anna Gene; Dumas-Carre, Andree; Tricarico, Hugo; Gallego, Romulo

    2002-01-01

    Desribes the transformation of science education throughout the last two decades into a specific field of research and knowledge associated with the establishment of the constructivist position. Analyzes some of the current criticisms of the constructivist orientation and studies their implications for the development of science education as a…

  2. Defending Constructivism in Science Education.

    ERIC Educational Resources Information Center

    Gil-Perez, Daniel; Guisasola, Jenaro; Moreno, Antonio; Cachapuz, Antonio; Pessoa de Carvalho, Anna M.; Torregrosa, Joaquin Martinez; Salinas, Julia; Valdes, Pablo; Gonzalez, Eduardo; Duch, Anna Gene; Dumas-Carre, Andree; Tricarico, Hugo; Gallego, Romulo

    2002-01-01

    Desribes the transformation of science education throughout the last two decades into a specific field of research and knowledge associated with the establishment of the constructivist position. Analyzes some of the current criticisms of the constructivist orientation and studies their implications for the development of science education as a…

  3. Science Education After Dainton

    ERIC Educational Resources Information Center

    Keohane, Kevin

    1969-01-01

    The Dainton committee indicated that science must not be directed simply at the committed students. Curriculum changes, including those related to teaching science as a unity, could have a profound effect in making science more attractive and relevant. (JK)

  4. Risk and School Science Education

    ERIC Educational Resources Information Center

    Christensen, Clare

    2009-01-01

    In this paper I consider a role for risk understanding in school science education. Grounds for this role are described in terms of current sociological analyses of the contemporary world as a "risk society" and recent public understanding of science studies where science and risk are concerns commonly linked within the wider community. These…

  5. Science Education and Meaningful Learning.

    ERIC Educational Resources Information Center

    Summers, M. K.

    1982-01-01

    Argues that there should be no equation between modern methods of teaching science and discovery methods, suggesting that the emphasis on discovery has resulted from confused thinking among science educators. Also, describes research-based developments promising better theoretical/practical perspectives for improved science teaching, focusing on…

  6. Interdisciplinary Approaches to Science Education.

    ERIC Educational Resources Information Center

    McGinnis, Jane

    This paper addresses the problem of an inadequate science teaching approach at a time when students need to be familiar with, and be able to understand, global problems and personal problems delving into complex, interrelated issues based on the science of a living universe. This report focuses on research about the problems in science education,…

  7. Science Education and Meaningful Learning.

    ERIC Educational Resources Information Center

    Summers, M. K.

    1982-01-01

    Argues that there should be no equation between modern methods of teaching science and discovery methods, suggesting that the emphasis on discovery has resulted from confused thinking among science educators. Also, describes research-based developments promising better theoretical/practical perspectives for improved science teaching, focusing on…

  8. Risk and School Science Education

    ERIC Educational Resources Information Center

    Christensen, Clare

    2009-01-01

    In this paper I consider a role for risk understanding in school science education. Grounds for this role are described in terms of current sociological analyses of the contemporary world as a "risk society" and recent public understanding of science studies where science and risk are concerns commonly linked within the wider community. These…

  9. Science Education That Makes Sense

    ERIC Educational Resources Information Center

    Resnick, Lauren B., Ed.; Zurawsky, Chris, Ed.

    2007-01-01

    Demand for students with a solid foundation in science continues to grow. Also important, science education needs to ready citizens who do not pursue careers in science to handle dilemmas they will face in their lives, such as selecting treatments for diseases, evaluating messages about climate change, or using new technologies. Instruction that…

  10. Ethics, Issues and Science Education

    ERIC Educational Resources Information Center

    Palmer, W. P.

    1992-01-01

    For the past two years at NTU, I have been running a fourth year Bachelor of Education course on science issues. The majority of those doing the course are working primary teachers from a variety of backgrounds. The first part of the course consists of the history and philosophy of science, whilst the second part concerns science issues. The…

  11. Informal Science Institutions and Learning to Teach: An Examination of Identity, Agency, and Affordances

    ERIC Educational Resources Information Center

    Adams, Jennifer D.; Gupta, Preeti

    2017-01-01

    Informal science education institutions play an important in the public understanding of science and, because of this are well-positioned to positively impact science teacher education. Informal science institutions (ISIs) have a range of affordances that could contribute to learner-centered science teacher identity development. This article…

  12. Informal Science Institutions and Learning to Teach: An Examination of Identity, Agency, and Affordances

    ERIC Educational Resources Information Center

    Adams, Jennifer D.; Gupta, Preeti

    2017-01-01

    Informal science education institutions play an important in the public understanding of science and, because of this are well-positioned to positively impact science teacher education. Informal science institutions (ISIs) have a range of affordances that could contribute to learner-centered science teacher identity development. This article…

  13. Interactive 3D Visualization of the Great Lakes of the World (GLOW) as a Tool to Facilitate Informal Science Education

    NASA Astrophysics Data System (ADS)

    Yikilmaz, M.; Harwood, C. L.; Hsi, S.; Kellogg, L. H.; Kreylos, O.; McDermott, J.; Pellett, B.; Schladow, G.; Segale, H. M.; Yalowitz, S.

    2013-12-01

    Three-dimensional (3D) visualization is a powerful research tool that has been used to investigate complex scientific problems in various fields. It allows researchers to explore and understand processes and features that are not directly observable and help with building of new models. It has been shown that 3D visualization creates a more engaging environment for public audiences. Interactive 3D visualization can allow individuals to explore scientific concepts on their own. We present an NSF funded project developed in collaboration with UC Davis KeckCAVES, UC Davis Tahoe Environmental Research Center, ECHO Lake Aquarium & Science Center, and Lawrence Hall of Science. The Great Lakes of the World (GLOW) project aims to build interactive 3D visualization of some of the major lakes and reservoirs of the world to enhance public awareness and increase understanding and stewardship of freshwater lake ecosystems, habitats, and earth science processes. The project includes a collection of publicly available satellite imagery and digital elevation models at various resolutions for the 20 major lakes of the world as well as the bathymetry data for the 12 lakes. It also includes the vector based 'Global Lakes and Wetlands Database (GLWD)' by the World Wildlife Foundation (WWF) and the Center for Environmental System Research University of Kassel, Germany and the CIA World DataBank II data sets to show wetlands and water reservoirs at global scale. We use a custom virtual globe (Crusta) developed at the UC Davis KeckCAVES. Crusta is designed to specifically allow for visualization and mapping of features in very high spatial resolution (< 1m) and large extent (1000's of km2) raster imagery and topographic data. In addition to imagery, a set of pins, labels and billboards are used to provide textual information about these lakes. Users can interactively learn about the lake and watershed processes as well as geologic processes (e.g. faulting, landslide, glacial, volcanic

  14. Engaging students in STEM outside the classroom walls: preliminary evaluation of two informal science education programs at NASA Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    Robbins, G.; Delaney, M. P.; Conaty, C.

    2011-12-01

    "School is not where most Americans learn most of their science" (Falk, Dierking). With a recent focus on summer learning and the understanding that much of the achievement gap may be directly related to "unequal access to summer learning opportunities" (Russo), educators are targeting after-school and summer times to fill the gap. For those students who "don't get it" during the day, a longer school day may not be the solution. More of the same is not always better. Different, on the other hand, may well be the key to improved learning. The nature of this investigation was to identify those informal science education programs at NASA Goddard Space Flight Center that instilled STEM inspiration and engagement in participants. During 2011, NASA Goddard Space Flight Center hosted two such programs: an open house event for the general public and a museum educators' workshop. The open house drew approximately 15,000 people and the workshop supported 30 participants from museums across the United States. Each was a very unique experience. Formative evaluation of these programs was implemented and preliminary results indicated high level of engagement, desire for follow-on learning, and interest in additional hands-on, internship or partnership opportunities. These results confirmed the design of the museum workshop and lead to the development of a new student summer experience and educator professional development, planned for 2012.

  15. The Invisible Substrate of Information Science.

    ERIC Educational Resources Information Center

    Bates, Marcia J.

    1999-01-01

    Articulates key elements in the "invisible substrate" of information science. Emphasizes information science's role as a meta-science--conducting research and developing theory around documentary products of other disciplines and activities. Suggests that mental activities of information science center around "representation" and "organization" of…

  16. Quantum Information Science: An Update

    NASA Astrophysics Data System (ADS)

    Kwek, L. C.; Zen, Freddy P.

    2016-08-01

    It is now roughly thirty years since the incipient ideas on quantum information science was concretely formalized. Over the last three decades, there has been much development in this field, and at least one technology, namely devices for quantum cryptography, is now commercialized. Yet, the holy grail of a workable quantum computing machine still lies faraway at the horizon. In any case, it took nearly several centuries before the vacuum tubes were invented after the first mechanical calculating were constructed, and several decades later, for the transistor to bring the current computer technology to fruition. In this review, we provide a short survey of the current development and progress in quantum information science. It clearly does not do justice to the amount of work in the past thirty years. Nevertheless, despite the modest attempt, this review hopes to induce younger researchers into this exciting field.

  17. Science Education and Equity.

    ERIC Educational Resources Information Center

    Bates, Percy; And Others

    1994-01-01

    This double issue of "Equity Coalition" deals with issues related to the need for inclusive science training and encouraging the interest of women and minorities groups in science. The following articles are included: (1) "Say Yes to Science" (Percy Bates); (2) "Science and Equity: Why This Issue Is Important"…

  18. Science Education Improvement Project.

    ERIC Educational Resources Information Center

    National Science Foundation, New Delhi (India).

    The report covers the activities of the Indian Science Improvement Project during the calendar year 1970. The major emphasis is on curriculum development activities. Topics covered include elementary and secondary school science programs, traveling science workshop, college science improvement program, special college/university program, technical…

  19. Science Education Improvement Project.

    ERIC Educational Resources Information Center

    National Science Foundation, New Delhi (India).

    The report covers the activities of the Indian Science Improvement Project during the calendar year 1970. The major emphasis is on curriculum development activities. Topics covered include elementary and secondary school science programs, traveling science workshop, college science improvement program, special college/university program, technical…

  20. Science and religion: implications for science educators

    NASA Astrophysics Data System (ADS)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  1. Multicultural Science Education and Curriculum Materials

    ERIC Educational Resources Information Center

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  2. Multicultural Science Education and Curriculum Materials

    ERIC Educational Resources Information Center

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  3. Science Education in Bhutan: Issues and challenges

    NASA Astrophysics Data System (ADS)

    Childs, Ann; Tenzin, Wangpo; Johnson, David; Ramachandran, Kiran

    2012-02-01

    Science education in a developing country is pivotal in the developmental process. Bhutan, like other developing countries, places great importance in institutionalising a relevant and challenging science curriculum for all of its school-aged children. A number of factors have made the review of the science curriculum in Bhutan a priority including international debates about scientific literacy and the changing time and needs of Bhutanese society and its students. This article reports on the findings of a study to investigate the present status and challenges of the current science curriculum from interviews with teachers, students, and other key stakeholders such as higher education lecturers and employers. The study also draws on observations of science classes and key curriculum documents. This study was conducted as a prelude to the major science curriculum reform prioritised in the government's 10th Five Year Plan (2008-2012) in order to provide a research informed perspective for science curriculum development. The findings from the research are reported here and show a number of positive issues in science education including good student motivation in lower classes. Challenges are identified including issues of teacher development, resourcing, and fragmentation and discontinuity in the current curriculum. These issues and challenges are discussed in the light of literature on science education in developing countries.

  4. EDUCATIONAL INFORMATION PROJECT.

    ERIC Educational Resources Information Center

    LINDQUIST, E.F.; AND OTHERS

    TO AID DATA COLLECTION ANALYSIS, STORAGE, AND DISSEMINATION, INSTRUMENTS AND PROCEDURES WERE DEVELOPED FOR COLLECTING INFORMATION ON ALL ASPECTS OF THE EDUCATIONAL PROGRAM FOR A LARGE POPULATION OF SCHOOLS, INCLUDING INFORMATION ON INDIVIDUAL PUPILS, SCHOOL PERSONNEL, SCHOOLS, AND SCHOOL DISTRICTS. COMPUTER PROGRAMS AND DATA-PROCESSING TECHNIQUES…

  5. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  6. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  7. Science Education Newsletter No. 38.

    ERIC Educational Resources Information Center

    British Council, London (England). Science Dept.

    This issue is divided into three sections: (1) Activities in Britain; (2) Overseas and International Activities; and (3) News. Numerous topics of interest to secondary school science and mathematics education pertaining to British education are presented. Included are reports on meetings, college programs, educational research, and educational…

  8. Is Christian Education Compatible With Science Education?

    NASA Astrophysics Data System (ADS)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  9. POLAR-PALOOZA Polar Researchers and Arctic Residents Engage, Inform and Inspire Diverse Public Audiences by sharing Polar Science and Global Connections during the International Polar Year, using a New Model of Informal Science Education

    NASA Astrophysics Data System (ADS)

    Haines-Stiles, G.; Akuginow, E.

    2006-12-01

    (Please note that the POLAR-PALOOZA initiative described in this Abstract is-as of 9/7/2006-"pending" for possible support from NSF and NASA as part of this year's IPY solicitation. Subject to decisions expected by 9/30, this presentation would either be withdrawn, or amplified with specific participants, locations and dates.) Despite the success of well-regarded movies like "March of the Penguins", the polar regions remain a great unknown for most people. Public knowledge about the Arctic and Antarctic, and the critical role of the Poles in the entire Earth system, is nonexistent, incomplete or burdened with misperceptions. The International Polar Years of 2007-2009-and associated "I*Y" science years such as IHY, IYPE and eGY-present a unique opportunity to change this. The people who can best effect this change are those who know the Poles best, through living or working there. Based on innovative but proven models, POLAR-PALOOZA will use three complementary strategies to engage, inform and inspire large public audiences. (1) A national tour, under the working title "Stories from a Changing Planet", will include in-person presentations at science centers, museums, libraries and schools across North America, including Canada and Mexico. The presentations will be augmented by High Definition Video taped on location at the Poles, audio and video podcasts, and special education and outreach activities for targeted audiences. "Stories from a Changing Planet" will provide diverse audiences with an exciting opportunity to meet and interact directly with polar experts, and to appreciate why the Poles and the research done there are directly relevant to their lives. (2) The "HiDef Video Science Story Capture Corps" is a team of professional videographers, using the latest generation of low-cost, high-quality cameras, deployed to both Poles. They will document the work of multiple researchers and projects, rather than focusing on one topic for a single broadcast program

  10. An ecology of science education

    NASA Astrophysics Data System (ADS)

    Aubusson, Peter

    2002-01-01

    This article reports on a 15 month study of attempted innovation in school science. The teachers in an Australian secondary school were attempting to introduce a constructivist approach to their teaching of science. The change attempt is interpreted through analogical transfer. In this method of analysis, the school science system is mapped against an ecosystem. That is, the science education system is conceptualized as an ecosystem; a self-sustaining, homeostatic, yet evolving, system of interacting influences. This ecological view of science education provides a way of interpreting the findings of this case study by using biological features of ecosystems, such as succession, evolution, selection and adaptation, to explain stagnation, degradation and change in school science. Implications of this interpretation of school science are considered including a proposed mechanism to promote innovation, such as a constructivist approach, through successive stages and the production and communication of knowledge.

  11. Business involvement in science education

    SciTech Connect

    Winter, P.

    1995-12-31

    Science and math education in grades K through 12 directly affects America`s ability to meet tomorrow`s challenges. If America is to stay competitive in the world, we will need highly qualified scientists and engineers in industry and government and at universities. Jobs of the future will require greater technical and mathematical literacy than jobs of the past. Our goal is both to improve the quality of science education and to encourage more students to pursue science careers. General Atomics, a privately held research and development company, has joined the growing list of businesses that are committed to helping educators prepare students to meet these challenges.

  12. Case for Building Informal Ontology of a Subject Matter at School Level Science Education with Community Collaboration

    ERIC Educational Resources Information Center

    Datt, Sachin

    2015-01-01

    School science textbooks are an amalgamation of concepts collected from different fields of Science like Physics, Chemistry and Biology. The actual number of concepts in the different domains of science are enormous. Educationists have to make a decision of choosing some concept that they think are necessary for students to know at a certain age.…

  13. Case for Building Informal Ontology of a Subject Matter at School Level Science Education with Community Collaboration

    ERIC Educational Resources Information Center

    Datt, Sachin

    2015-01-01

    School science textbooks are an amalgamation of concepts collected from different fields of Science like Physics, Chemistry and Biology. The actual number of concepts in the different domains of science are enormous. Educationists have to make a decision of choosing some concept that they think are necessary for students to know at a certain age.…

  14. Exploiting Untapped Information Resources in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  15. Earth System Science Education Modules

    NASA Astrophysics Data System (ADS)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  16. Is religious education compatible with science education?

    NASA Astrophysics Data System (ADS)

    Mahner, Martin; Bunge, Mario

    1996-04-01

    This paper tackles a highly controversial issue: the problem of the compatibility of science and religion, and its bearing on science and religious education respectively. We challenge the popular view that science and religion are compatible or even complementary. In order to do so, we give a brief characterization of our conceptions of science and religion. Conspicuous differences at the doctrinal, metaphysical, methodological and attitudinal level are noted. Regarding these aspects, closer examination reveals that science and religion are not only different but in fact incompatible. Some consequences of our analysis for education as well as for education policy are explored. We submit that a religious education, particularly at an early age, is an obstacle to the development of a scientific mentality. For this and other reasons, religious education should be kept away from public schools and universities. Instead of promoting a religious world view, we should teach our children what science knows about religion, i.e., how science explains the existence of religion in historical, biological, psychological and sociological terms.

  17. Core Competencies in Information Management Education.

    ERIC Educational Resources Information Center

    Gorman, G. E.; Corbitt, B. J.

    2002-01-01

    Discusses core competencies in library and information science and in information systems to use as a background for an examination of core competencies in information management. Suggests a set of core competencies and educational outcomes that might be applied to curricula in both developed and developing countries. (Author/LRW)

  18. Problems with German Science Education

    NASA Astrophysics Data System (ADS)

    Riess, Falk

    The main problems of science (especially physics) teaching in Germany are students'' lack of interest and motivation in the subject, their poor understanding of scientific concepts, ideas, methods,and results, and their lack of comprehension of the social, political, and epistemological role of science. These circumstances result in a growing `scientific illiteracy'' of the population and adecline in democratic quality concerning decision making processes about scientific and technological projects. One means of improving this situation lies in the use of history and philosophy of science in science teaching. School science curricula and textbooks neglect almost completely the importance of history and philosophy of science. In this paper, the main empirical results concerning motivation and knowledge are given. Some examples from science curricula and textbooks are presented, and some of the few reform projects in Germany are listed. As a consequence a compensatory program is proposed in order to create the prerequisites for raising science education in Germany to an international standard.

  19. Simulation in Health Sciences Education.

    ERIC Educational Resources Information Center

    Norman, Geoffrey R.; And Others

    1985-01-01

    Reviews five simulation methods used in medical and health science education: oral examinations, live simulated patients, mannequins, and written and computer-based simulations. Each type of simulation is discussed relative to its fidelity, reliability, validity, learning, and feasibility. (MBR)

  20. The Impact of a Professional Development Program Integrating Informal Science Education on Early Childhood Teachers' Self-Efficacy and Beliefs about Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Duran, Emilio; Ballone-Duran, Lena; Haney, Jodi; Beltyukova, Svetlana

    2009-01-01

    This report aimed to measure the impact of a unique professional development program entitled Project ASTER III (Active Science Teaching Encourages Reform) on teachers' self-efficacy and perceptions about inquiry-based science teaching. Project ASTER III enabled teachers to explore inquiry-based science teaching through exhibit-based…

  1. National Commission on Libraries and Information Science; Hearing before the Subcommittee on Education...on S.1519 to Establish a National Commission on Libraries and Information Science, and for Other Purposes.

    ERIC Educational Resources Information Center

    1969

    Testimony relative to the establishment of a National Commission on Library and Information Science as a continuing Federal planning agency is presented in the form of verbatim oral question and answers, prepared statements, letters and supplemental materials. List of witnesses include: (1) Grant Venn, (2) L. Quincy Mumford, (3) William S. Dix,…

  2. The Nature of Science Education

    ERIC Educational Resources Information Center

    Connors, Margaret M.; Perkins, Bill

    2009-01-01

    A number of studies have shown that spending time in nature produces cognitive benefits. What if a child's exposure to the out-of-doors is considered not just a beneficial extracurricular activity, but a fundamental building block to an elementary education in math and science? The Young Achievers Science and Math Pilot School operates a 9:30 a.m.…

  3. Life Science, Environmental Education Guide.

    ERIC Educational Resources Information Center

    Project I-C-E, Green Bay, WI.

    This life science guide is one of a series of guides, K-12, that were developed by teachers to help introduce environmental education into the total curriculum. The materials contained in the guide are supplementary, and designed to aid the science teacher in providing the kinds of experiences needed by students to gain an understanding of the…

  4. Constructivism, Education, Science, and Technology

    ERIC Educational Resources Information Center

    Boudourides, Moses A.

    2003-01-01

    The purpose of this paper is to present a brief review of the various streams of constructivism in studies of education, society, science and technology. It is intended to present a number of answers to the question (what really is constructivism?) in the context of various disciplines from the humanities and the sciences (both natural and…

  5. Research on Early Science Education.

    ERIC Educational Resources Information Center

    Landry, Christopher E.; Forman, George E.

    The implementation of basic research on children's scientific thinking into science curricula continues to be a slow process. This chapter summarizes research on cognitive development that has helped to establish the goals for much of early science education and examines its implications. The chapter begins by describing scientific thinking and…

  6. The Nature of Science Education

    ERIC Educational Resources Information Center

    Connors, Margaret M.; Perkins, Bill

    2009-01-01

    A number of studies have shown that spending time in nature produces cognitive benefits. What if a child's exposure to the out-of-doors is considered not just a beneficial extracurricular activity, but a fundamental building block to an elementary education in math and science? The Young Achievers Science and Math Pilot School operates a 9:30 a.m.…

  7. The Laboratory for Information and Computer Science.

    ERIC Educational Resources Information Center

    Jensen, Alton P.; Slamecka, Vladimir

    This document briefly explains the relationship between the School of Information Science and the Laboratory for Information and Computer Science at the Georgia Institute of Technology. The explicit purposes of the information science laboratory are spelled out as well as the specific objectives for the 1969/70, 1970/71, and 1971/72 school years.…

  8. The Nature of Information Science: Changing Models

    ERIC Educational Resources Information Center

    Robinson, Lyn; Karamuftuoglu, Murat

    2010-01-01

    Introduction: This paper considers the nature of information science as a discipline and profession. Method: It is based on conceptual analysis of the information science literature, and consideration of philosophical perspectives, particularly those of Kuhn and Peirce. Results: It is argued that information science may be understood as a field of…

  9. Protecting Information: The Role of Community Colleges in Cybersecurity Education. A Report from a Workshop Sponsored by the National Science Foundation and the American Association of Community Colleges (Washington, DC, June 26-28, 2002).

    ERIC Educational Resources Information Center

    American Association of Community Colleges, Washington, DC.

    The education and training of the cybersecurity workforce is an essential element in protecting the nation's computer and information systems. On June 26-28, 2002, the National Science Foundation supported a cybersecurity education workshop hosted by the American Association of Community Colleges. The goals of the workshop were to map out the role…

  10. Romanticism and Romantic Science: Their Contribution to Science Education

    ERIC Educational Resources Information Center

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  11. Romanticism and Romantic Science: Their Contribution to Science Education

    ERIC Educational Resources Information Center

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  12. Themes. Informal Education Series.

    ERIC Educational Resources Information Center

    Kessens, Rosanne

    Part of the larger Informal Education Series, this publication brings together many of the materials prepared by Rosanne Kessens for teachers and parents involved in Follow Through settings. Contents first explore theme development as an integrated approach to learning and then describe strategies for planning themes. Subsequent materials offer…

  13. Science, Religion, and Education.

    ERIC Educational Resources Information Center

    Nord, Warren A.

    1999-01-01

    Liberal theologians and some scientists subscribe to integrationist theories of science and religion. Late 20th-century developments in quantum mechanics, cosmology, chaos theory, and ecology have rendered nature more mysterious and open to religious interpretation than to deterministic approaches. Students should learn how science connects to…

  14. Science, Religion, and Education.

    ERIC Educational Resources Information Center

    Nord, Warren A.

    1999-01-01

    Liberal theologians and some scientists subscribe to integrationist theories of science and religion. Late 20th-century developments in quantum mechanics, cosmology, chaos theory, and ecology have rendered nature more mysterious and open to religious interpretation than to deterministic approaches. Students should learn how science connects to…

  15. Science Education and Worldview

    ERIC Educational Resources Information Center

    Keane, Moyra

    2008-01-01

    Is there a place for Indigenous Knowledge in the science curriculum for a Zulu community in rural Kwa-Zulu Natal, South Africa? This article argues "yes," based on a participative research and development project that discovered relevant science learning in a Zulu community. Among community concerns for relevant factual and performative…

  16. Science Education in Arab States: Bright Future or Status Quo?

    ERIC Educational Resources Information Center

    Dagher, Zoubeida R.; BouJaoude, Saouma

    2011-01-01

    This paper describes the current state of science education in Arab states and anticipates some of the challenges faced by those states as they reform their science education. After discussing problems of illiteracy, access and quality we provide contextual information about the structure of the educational systems and describe recent efforts to…

  17. D. Carlos de Braganca, a Pioneer of Experimental Marine Oceanography: Filling the Gap between Formal and Informal Science Education

    ERIC Educational Resources Information Center

    Faria, Claudia; Pereira, Goncalo; Chagas, Isabel

    2012-01-01

    The activities presented in this paper are part of a wider project that investigates the effects of infusing the history of science in science teaching, toward students' learning and attitude. Focused on the work of D. Carlos de Braganca, King of Portugal from 1889 to 1908, and a pioneer oceanographer, the activities are addressed at the secondary…

  18. D. Carlos de Braganca, a Pioneer of Experimental Marine Oceanography: Filling the Gap between Formal and Informal Science Education

    ERIC Educational Resources Information Center

    Faria, Claudia; Pereira, Goncalo; Chagas, Isabel

    2012-01-01

    The activities presented in this paper are part of a wider project that investigates the effects of infusing the history of science in science teaching, toward students' learning and attitude. Focused on the work of D. Carlos de Braganca, King of Portugal from 1889 to 1908, and a pioneer oceanographer, the activities are addressed at the secondary…

  19. Science.gov: gateway to government science information.

    PubMed

    Fitzpatrick, Roberta Bronson

    2010-01-01

    Science.gov is a portal to more than 40 scientific databases and 200 million pages of science information via a single query. It connects users to science information and research results from the U.S. government. This column will provide readers with an overview of the resource, as well as basic search hints.

  20. Space science education in the african continent

    NASA Astrophysics Data System (ADS)

    Aseno, J. O.

    Through measurement and interpretation of the spectral, spatial and temporal variations in electromagnetic emissions and reflections from the Earth's surface, important information related to natural resources can be acquired. Furthermore, satellite technology has greatly improved the communication and positioning techniques world-wide. Consequently, space science now provides valuable and timely information about natural resources, which has become a major factor in sustainable development. The realization of the full potential of space science in the context of development in Africa requires adequate education and training in order to facilitate project formulation, planning, management and implementation. This, in turn, would lead to the formulation and adoption of national space science policies based on user needs and addressing both the short and long-term needs of a particular country. Space science education in Africa needs to address issues like (i) provision of programme, (ii) integration of the proposed techniques within the existing infrastructure, and (iii) training in Remote Sensing, Global Positioning System, Geographic Information System and other space science techniques, in order to ensure the successful implementation of space science projects within the continent. In this context, African universities ought to play a major role in space science training, research, consultancy and publication. Through international co-operation, it is possible to develop and support national, regional and international training programmes and international scientific exchange in Africa.

  1. [Secondary Career Education Activities: Science.

    ERIC Educational Resources Information Center

    Radford City Schools, VA.

    The guide is one of a series developed in a pilot project to integrate career education concepts with subject matter in secondary grades. The units are designed to reveal career orientation aspects of traditional topics within five major subject areas: English, social studies, mathematics, science, and health and physical education. The lesson…

  2. Adult Education, Science and Technology.

    ERIC Educational Resources Information Center

    Miller, Paul A.

    1980-01-01

    As ethical and humanistic concerns are balanced with the effects of science and technology, technological literacy appears to be a primary goal of education. The special role of adult education is to bridge the gap between scientific change and human adaptation. (SK)

  3. Science Education Newsletter No. 18.

    ERIC Educational Resources Information Center

    British Council, London (England).

    British developments in science and mathematics education at all levels from elementary to university, including teacher training, are announced in this newsletter. Notes on professional appointments, instructional systems, curriculum developments, and activities of professional societies are included. Additional general educational activities in…

  4. Situated Learning in Computer Science Education

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Mordechai

    2004-06-01

    Sociocultural theories of learning such as Wenger and Lave's situated learning have been suggested as alternatives to cognitive theories of learning like constructivism. This article examines situated learning within the context of computer science (CS) education. Situated learning accurately describes some CS communities like open-source software development, but it is not directly applicable to other CS communities, especially those that deal with non-CS application areas. Nevertheless, situated learning can inform CS education by analyzing debates on curriculum and pedagogy within this framework. CS educators should closely examine professional CS communities of practice and design educational activities to model the actual activities of those communities.

  5. An Ethically Ambitious Higher Education Data Science

    ERIC Educational Resources Information Center

    Stevens, Mitchell L.

    2014-01-01

    The new data sciences of education bring substantial legal, political, and ethical questions about the management of information about learners. This piece provides a synoptic view of recent scholarly discussion in this domain and calls for a proactive approach to the ethics of learning research.

  6. Earth Science Enterprise: 2002 Education Catalog.

    ERIC Educational Resources Information Center

    Schwerin, Theresa, Ed.

    The National Aeronautics and Space Administration's (NASA) Earth Science Enterprise (ESE) aims to understand Earth systems from every component including land surface, oceans, atmosphere, ice sheets, and biota from an interdisciplinary approach. This catalog provides information on ESE programs and resources for all educational audiences including…

  7. How Good Is Your Child's Science Education?

    ERIC Educational Resources Information Center

    Lacob, Miriam; Stix, Gary

    1998-01-01

    Presents advice for parents to ensure their child's natural interest in science is nurtured and developed during crucial early years. Recommends that parents: (1) observe and volunteer in the classroom; (2) compare their child's education to published guidelines; (3) network for their child's school; (4) tap into opportunities for informal science…

  8. Federal Agency and Federal Library Reports. Library of Congress; Center for the Book; Federal Library and Information Center Committee; National Commission on Libraries and Information Science; National Agricultural Library; National Library of Medicine;United States Government Printing Office; National Technical Information Service; National Archives and Records Administration; National Center for Education Statistics Library Statistics Program; National Library of Education; Educational Resources Information Center.

    ERIC Educational Resources Information Center

    Fischer, Audrey; Cole, John Y.; Tarr, Susan M.; Vlach, Rosalie B.; Carey, Len; Mehnert, Robert; Sherman, Andrew M.; Davis, Linda; Vecchiarelli, Marion H.; Chute, Adrienne; Dunn, Christina

    2002-01-01

    Includes reports from Library of Congress, Center for the Book, Federal Library and Information Center Committee, National Commission on Libraries and Information Science, National Agricultural Library, National Library of Medicine, Government Printing Office, National Technical Information Service, National Archives and Records Administration,…

  9. Federal Agency and Federal Library Reports. Library of Congress; Center for the Book; Federal Library and Information Center Committee; National Commission on Libraries and Information Science; National Agricultural Library; National Library of Medicine;United States Government Printing Office; National Technical Information Service; National Archives and Records Administration; National Center for Education Statistics Library Statistics Program; National Library of Education; Educational Resources Information Center.

    ERIC Educational Resources Information Center

    Fischer, Audrey; Cole, John Y.; Tarr, Susan M.; Vlach, Rosalie B.; Carey, Len; Mehnert, Robert; Sherman, Andrew M.; Davis, Linda; Vecchiarelli, Marion H.; Chute, Adrienne; Dunn, Christina

    2002-01-01

    Includes reports from Library of Congress, Center for the Book, Federal Library and Information Center Committee, National Commission on Libraries and Information Science, National Agricultural Library, National Library of Medicine, Government Printing Office, National Technical Information Service, National Archives and Records Administration,…

  10. Knowledge, Belief, and Science Education

    NASA Astrophysics Data System (ADS)

    Ferreira, Tiago Alfredo S.; El-Hani, Charbel N.; da Silva-Filho, Waldomiro José

    2016-10-01

    This article intends to show that the defense of "understanding" as one of the major goals of science education can be grounded on an anti-reductionist perspective on testimony as a source of knowledge. To do so, we critically revisit the discussion between Harvey Siegel and Alvin Goldman about the goals of science education, especially where it involves arguments based on the epistemology of testimony. Subsequently, we come back to a discussion between Charbel N. El-Hani and Eduardo Mortimer, on the one hand, and Michael Hoffmann, on the other, striving to strengthen the claim that rather than students' belief change, understanding should have epistemic priority as a goal of science education. Based on these two lines of discussion, we conclude that the reliance on testimony as a source of knowledge is necessary to the development of a more large and comprehensive scientific understanding by science students.

  11. Guidelines for Building Science Education

    SciTech Connect

    Metzger, Cheryn E.; Rashkin, Samuel; Huelman, Pat

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  12. Science Education Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1990

    1990-01-01

    Three reports are presented including "Do Practical Subjects Encourage Understanding of Science?"; "What Is an Anti-Racist Atom?"; and "Taking the Plunge with Role Play. Departmental In-Service Using SATIS Materials." (CW)

  13. Trends in Computational Science Education

    NASA Astrophysics Data System (ADS)

    Landau, Rubin

    2002-08-01

    Education in computational science and engineering (CSE) has evolved through a number of stages, from recognition in the 1980s to its present early growth. Now a number of courses and degree programs are being designed and implemented at both the graduate and undergraduate levels, and students are beginning to receive degrees. This talk will discuss various aspects of this development, including the impact on faculty and students, the nature of the job market, the intellectual content of CSE education, and the types of programs and degrees now being offered. Analytic comparisons will be made between the content of Physics degrees versus those of other disciplines, and reasons for changes should be apparent. This talk is based on the papers "Elements of Computational Science Education" by Osman Yasar and Rubin Landau, and "Computational Science Education" by Charles Swanson.

  14. Energy, information science, and systems science

    SciTech Connect

    Wallace, Terry C; Mercer - Smith, Janet A

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  15. Sources of Information about Promising and Exemplary Programs and Materials for Elementary School Science. ERIC/SMEAC Science Education Digest No. 1, 1989.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.; Howe, Robert W.

    Many school staff and their client communities are concerned about pupil achievement, skills, and attitudes related to science. To respond to these concerns, staff need to determine how they can improve their science programs by modifying the content and skills emphasized in the curriculum, changing and supplementing instructional materials,…

  16. Sources of Information about Promising and Exemplary Programs and Materials for Secondary School Science. ERIC/SMEAC Science Education Digest No. 2, 1989.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.; Howe, Robert W.

    Many school staff and their client communities are concerned about student achievement, skills, and attitudes related to science. To respond to these concerns, staff need to determine how they can improve their science programs by modifying the content and skills emphasized in the curriculum, changing and supplementing instructional materials,…

  17. Earth Science Education in Eritrea

    NASA Astrophysics Data System (ADS)

    Teklay, Mengist

    1999-05-01

    In Eritrea, Earth Science Education is taught only by the Earth Sciences Department based at the College of Science, University of Asmara. Currently, the University of Asmara has eight teaching Colleges: Agriculture & Aquatic Sciences, Arts and Social Sciences, Business and Economics, Education, Engineering, Health Sciences, Law, and Science offering Bachelor degrees, Diplomas and Certificates in various fields. The Earth Sciences Department was established as a Geology Unit in 1983 and until 1996 offered minor and service geology courses for students of Science and Agriculture. The Department started a four-year degree programme in Geology (B.Sc. in Geology) at the beginning of the 1996/97 academic year. The B.Sc. programme in Geology provides students with a Geology major and a minor in Physics or Chemistry. Potential major organisations which employ the geology graduates include the Ministry of Mines and Energy, and the Ministry of Land, Water and Environment, as well as mining and petroleum companies which are currently active in mineral resources exploration in the country.

  18. Scientific Literacy and Thailand Science Education

    ERIC Educational Resources Information Center

    Yuenyong, Chokchai; Narjaikaew, Pattawan

    2009-01-01

    Education and political leaders worldwide are increasingly placing emphasis on developing scientific literacy. This also is the case in Thailand with science education influenced by educational reform in 1999, in which the goals of science education are shaped by the notion of scientific literacy. Thai science education emphasizes the scientific…

  19. Member Perceptions of Informal Science Institution Graduate Certificate Program: Case Study of a Community of Practice

    ERIC Educational Resources Information Center

    Ball, Lois A.

    2012-01-01

    This research attempted to understand the experiences of a cohort of informal and formal science educators and informal science institution (ISI) community representatives during and after completion of a pilot graduate certificate program. Informal science educators (ISEs) find limited opportunities for professional development and support which…

  20. Member Perceptions of Informal Science Institution Graduate Certificate Program: Case Study of a Community of Practice

    ERIC Educational Resources Information Center

    Ball, Lois A.

    2012-01-01

    This research attempted to understand the experiences of a cohort of informal and formal science educators and informal science institution (ISI) community representatives during and after completion of a pilot graduate certificate program. Informal science educators (ISEs) find limited opportunities for professional development and support which…