Sample records for information sensor web

  1. A Prototype Land Information Sensor Web: Design, Implementation and Implication for the SMAP Mission

    NASA Astrophysics Data System (ADS)

    Su, H.; Houser, P.; Tian, Y.; Geiger, J. K.; Kumar, S. V.; Gates, L.

    2009-12-01

    Land Surface Model (LSM) predictions are regular in time and space, but these predictions are influenced by errors in model structure, input variables, parameters and inadequate treatment of sub-grid scale spatial variability. Consequently, LSM predictions are significantly improved through observation constraints made in a data assimilation framework. Several multi-sensor satellites are currently operating which provide multiple global observations of the land surface, and its related near-atmospheric properties. However, these observations are not optimal for addressing current and future land surface environmental problems. To meet future earth system science challenges, NASA will develop constellations of smart satellites in sensor web configurations which provide timely on-demand data and analysis to users, and can be reconfigured based on the changing needs of science and available technology. A sensor web is more than a collection of satellite sensors. That means a sensor web is a system composed of multiple platforms interconnected by a communication network for the purpose of performing specific observations and processing data required to support specific science goals. Sensor webs can eclipse the value of disparate sensor components by reducing response time and increasing scientific value, especially when the two-way interaction between the model and the sensor web is enabled. The study of a prototype Land Information Sensor Web (LISW) is sponsored by NASA, trying to integrate the Land Information System (LIS) in a sensor web framework which allows for optimal 2-way information flow that enhances land surface modeling using sensor web observations, and in turn allows sensor web reconfiguration to minimize overall system uncertainty. This prototype is based on a simulated interactive sensor web, which is then used to exercise and optimize the sensor web modeling interfaces. The Land Information Sensor Web Service-Oriented Architecture (LISW-SOA) has been developed and it is the very first sensor web framework developed especially for the land surface studies. Synthetic experiments based on the LISW-SOA and the virtual sensor web provide a controlled environment in which to examine the end-to-end performance of the prototype, the impact of various sensor web design trade-offs and the eventual value of sensor webs for a particular prediction or decision support. In this paper, the design, implementation of the LISW-SOA and the implication for the Soil Moisture Active and Passive (SMAP) mission is presented. Particular attention is focused on examining the relationship between the economic investment on a sensor web (space and air borne, ground based) and the accuracy of the model predicted soil moisture, which can be achieved by using such sensor observations. The Study of Virtual Land Information Sensor Web (LISW) is expected to provide some necessary a priori knowledge for designing and deploying the next generation Global Earth Observing System of systems (GEOSS).

  2. Research of marine sensor web based on SOA and EDA

    NASA Astrophysics Data System (ADS)

    Jiang, Yongguo; Dou, Jinfeng; Guo, Zhongwen; Hu, Keyong

    2015-04-01

    A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean `instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.

  3. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    PubMed Central

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  4. A ubiquitous sensor network platform for integrating smart devices into the semantic sensor web.

    PubMed

    de Vera, David Díaz Pardo; Izquierdo, Alvaro Sigüenza; Vercher, Jesús Bernat; Hernández Gómez, Luis Alfonso

    2014-06-18

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.

  5. Smart Cities Intelligence System (SMACiSYS) Integrating Sensor Web with Spatial Data Infrastructures (sensdi)

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; Painho, M.

    2017-09-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  6. Sensor Webs with a Service-Oriented Architecture for On-demand Science Products

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Ungar, Stephen; Ames, Troy; Justice, Chris; Frye, Stuart; Chien, Steve; Tran, Daniel; Cappelaere, Patrice; Derezinsfi, Linda; Paules, Granville; hide

    2007-01-01

    This paper describes the work being managed by the NASA Goddard Space Flight Center (GSFC) Information System Division (ISD) under a NASA Earth Science Technology Ofice (ESTO) Advanced Information System Technology (AIST) grant to develop a modular sensor web architecture which enables discovery of sensors and workflows that can create customized science via a high-level service-oriented architecture based on Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) web service standards. These capabilities serve as a prototype to a user-centric architecture for Global Earth Observing System of Systems (GEOSS). This work builds and extends previous sensor web efforts conducted at NASA/GSFC using the Earth Observing 1 (EO-1) satellite and other low-earth orbiting satellites.

  7. Importance of the spatial data and the sensor web in the ubiquitous computing area

    NASA Astrophysics Data System (ADS)

    Akçit, Nuhcan; Tomur, Emrah; Karslıoǧlu, Mahmut O.

    2014-08-01

    Spatial data has become a critical issue in recent years. In the past years, nearly more than three quarters of databases, were related directly or indirectly to locations referring to physical features, which constitute the relevant aspects. Spatial data is necessary to identify or calculate the relationships between spatial objects when using spatial operators in programs or portals. Originally, calculations were conducted using Geographic Information System (GIS) programs on local computers. Subsequently, through the Internet, they formed a geospatial web, which is integrated into a discoverable collection of geographically related web standards and key features, and constitutes a global network of geospatial data that employs the World Wide Web to process textual data. In addition, the geospatial web is used to gather spatial data producers, resources, and users. Standards also constitute a critical dimension in further globalizing the idea of the geospatial web. The sensor web is an example of the real time service that the geospatial web can provide. Sensors around the world collect numerous types of data. The sensor web is a type of sensor network that is used for visualizing, calculating, and analyzing collected sensor data. Today, people use smart devices and systems more frequently because of the evolution of technology and have more than one mobile device. The considerable number of sensors and different types of data that are positioned around the world have driven the production of interoperable and platform-independent sensor web portals. The focus of such production has been on further developing the idea of an interoperable and interdependent sensor web of all devices that share and collect information. The other pivotal idea consists of encouraging people to use and send data voluntarily for numerous purposes with the some level of credibility. The principal goal is to connect mobile and non-mobile device in the sensor web platform together to operate for serving and collecting information from people.

  8. Sensor Web Interoperability Testbed Results Incorporating Earth Observation Satellites

    NASA Technical Reports Server (NTRS)

    Frye, Stuart; Mandl, Daniel J.; Alameh, Nadine; Bambacus, Myra; Cappelaere, Pat; Falke, Stefan; Derezinski, Linda; Zhao, Piesheng

    2007-01-01

    This paper describes an Earth Observation Sensor Web scenario based on the Open Geospatial Consortium s Sensor Web Enablement and Web Services interoperability standards. The scenario demonstrates the application of standards in describing, discovering, accessing and tasking satellites and groundbased sensor installations in a sequence of analysis activities that deliver information required by decision makers in response to national, regional or local emergencies.

  9. Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies

    NASA Technical Reports Server (NTRS)

    Talabac, Stephen J.

    2004-01-01

    Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.

  10. Sensor Web for Spatio-Temporal Monitoring of a Hydrological Environment

    NASA Technical Reports Server (NTRS)

    Delin, K. A.; Jackson, S. P.; Johnson, D. W.; Burleigh, S. C.; Woodrow, R. R.; McAuley, M.; Britton, J. T.; Dohm, J. M.; Ferre, T. P. A.; Ip, Felipe

    2004-01-01

    The Sensor Web is a macroinstrument concept that allows for the spatio-temporal understanding of an environment through coordinated efforts between multiple numbers and types of sensing platforms, including, in its most general form, both orbital and terrestrial and both fixed and mobile. Each of these platforms, or pods, communicates within its local neighborhood and thus distributes information to the instrument as a whole. The result of sharing and continual processing of this information among all the Sensor Web elements will result in an information flow and a global perception of and reactive capability to the environment. As illustrated, the Sensor Web concept also allows for the recursive notion of a web of webs with individual distributed instruments possibly playing the role of a single node point on a larger Sensor Web instrument. In particular, the fusion of inexpensive, yet sophisticated, commercial technology from both the computation and telecommunication revolutions has enabled the development of practical, fielded, and embedded in situ systems that have been the focus of the NASA/JPL Sensor Webs Project (http://sensorwebs.jpl.nasa.gov/). These Sensor Webs are complete systems consisting of not only the pod elements that wirelessly communicate among themselves, but also interfacing and archiving software that allows for easy use by the end-user. Previous successful deployments have included environments as diverse as coastal regions, Antarctica, and desert areas. The Sensor Web has broad implications for Earth and planetary science and will revolutionize the way experiments and missions are conceived and performed. As part of our current efforts to develop a macrointelligence within the system, we have deployed a Sensor Web at the Central Avra Valley Storage and Recovery Project (CAVSARP) facility located west of Tucson, AZ. This particular site was selected because it is ideal for studying spatio-temporal phenomena and for providing a test site for more sophisticated hydrological studies in the future.

  11. Cyber-physical geographical information service-enabled control of diverse in-situ sensors.

    PubMed

    Chen, Nengcheng; Xiao, Changjiang; Pu, Fangling; Wang, Xiaolei; Wang, Chao; Wang, Zhili; Gong, Jianya

    2015-01-23

    Realization of open online control of diverse in-situ sensors is a challenge. This paper proposes a Cyber-Physical Geographical Information Service-enabled method for control of diverse in-situ sensors, based on location-based instant sensing of sensors, which provides closed-loop feedbacks. The method adopts the concepts and technologies of newly developed cyber-physical systems (CPSs) to combine control with sensing, communication, and computation, takes advantage of geographical information service such as services provided by the Tianditu which is a basic geographic information service platform in China and Sensor Web services to establish geo-sensor applications, and builds well-designed human-machine interfaces (HMIs) to support online and open interactions between human beings and physical sensors through cyberspace. The method was tested with experiments carried out in two geographically distributed scientific experimental fields, Baoxie Sensor Web Experimental Field in Wuhan city and Yemaomian Landslide Monitoring Station in Three Gorges, with three typical sensors chosen as representatives using the prototype system Geospatial Sensor Web Common Service Platform. The results show that the proposed method is an open, online, closed-loop means of control.

  12. Cyber-Physical Geographical Information Service-Enabled Control of Diverse In-Situ Sensors

    PubMed Central

    Chen, Nengcheng; Xiao, Changjiang; Pu, Fangling; Wang, Xiaolei; Wang, Chao; Wang, Zhili; Gong, Jianya

    2015-01-01

    Realization of open online control of diverse in-situ sensors is a challenge. This paper proposes a Cyber-Physical Geographical Information Service-enabled method for control of diverse in-situ sensors, based on location-based instant sensing of sensors, which provides closed-loop feedbacks. The method adopts the concepts and technologies of newly developed cyber-physical systems (CPSs) to combine control with sensing, communication, and computation, takes advantage of geographical information service such as services provided by the Tianditu which is a basic geographic information service platform in China and Sensor Web services to establish geo-sensor applications, and builds well-designed human-machine interfaces (HMIs) to support online and open interactions between human beings and physical sensors through cyberspace. The method was tested with experiments carried out in two geographically distributed scientific experimental fields, Baoxie Sensor Web Experimental Field in Wuhan city and Yemaomian Landslide Monitoring Station in Three Gorges, with three typical sensors chosen as representatives using the prototype system Geospatial Sensor Web Common Service Platform. The results show that the proposed method is an open, online, closed-loop means of control. PMID:25625906

  13. Use of the Earth Observing One (EO-1) Satellite for the Namibia SensorWeb Flood Early Warning Pilot

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Frye, Stuart; Cappelaere, Pat; Handy, Matthew; Policelli, Fritz; Katjizeu, McCloud; Van Langenhove, Guido; Aube, Guy; Saulnier, Jean-Francois; Sohlberg, Rob; hide

    2012-01-01

    The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, it was used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with a messaging architecture and web services. Disasters are the perfect arena to use SensorWebs. One SensorWeb pilot project that has been active since 2009 is the Namibia Early Flood Warning SensorWeb pilot project. The Pilot Project was established under the auspices of the Namibian Ministry of Agriculture Water and Forestry (MAWF)/Department of Water Affairs, the Committee on Earth Observing Satellites (CEOS)/Working Group on Information Systems and Services (WGISS) and moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). The effort began by identifying and prototyping technologies which enabled the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management. This was followed by an international collaboration to build small portions of the identified system which was prototyped during that past few years during the flood seasons which occurred in the February through May timeframe of 2010 and 2011 with further prototyping to occur in 2012. The SensorWeb system features EO-1 data along with other data sets from such satellites as Radarsat, Terra and Aqua. Finally, the SensorWeb team also began to examine the socioeconomic component to determine the impact of the SensorWeb technology and how best to assist in the infusion of this technology in lesser affluent areas with low levels of basic infrastructure. This paper provides an overview of these efforts, highlighting the EO-1 usage in this SensorWeb.

  14. Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    PubMed Central

    Sigüenza, Álvaro; Díaz-Pardo, David; Bernat, Jesús; Vancea, Vasile; Blanco, José Luis; Conejero, David; Gómez, Luis Hernández

    2012-01-01

    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C's Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers' observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound. PMID:22778643

  15. Sharing human-generated observations by integrating HMI and the Semantic Sensor Web.

    PubMed

    Sigüenza, Alvaro; Díaz-Pardo, David; Bernat, Jesús; Vancea, Vasile; Blanco, José Luis; Conejero, David; Gómez, Luis Hernández

    2012-01-01

    Current "Internet of Things" concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C's Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers' observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound.

  16. Real-time GIS data model and sensor web service platform for environmental data management.

    PubMed

    Gong, Jianya; Geng, Jing; Chen, Zeqiang

    2015-01-09

    Effective environmental data management is meaningful for human health. In the past, environmental data management involved developing a specific environmental data management system, but this method often lacks real-time data retrieving and sharing/interoperating capability. With the development of information technology, a Geospatial Service Web method is proposed that can be employed for environmental data management. The purpose of this study is to determine a method to realize environmental data management under the Geospatial Service Web framework. A real-time GIS (Geographic Information System) data model and a Sensor Web service platform to realize environmental data management under the Geospatial Service Web framework are proposed in this study. The real-time GIS data model manages real-time data. The Sensor Web service platform is applied to support the realization of the real-time GIS data model based on the Sensor Web technologies. To support the realization of the proposed real-time GIS data model, a Sensor Web service platform is implemented. Real-time environmental data, such as meteorological data, air quality data, soil moisture data, soil temperature data, and landslide data, are managed in the Sensor Web service platform. In addition, two use cases of real-time air quality monitoring and real-time soil moisture monitoring based on the real-time GIS data model in the Sensor Web service platform are realized and demonstrated. The total time efficiency of the two experiments is 3.7 s and 9.2 s. The experimental results show that the method integrating real-time GIS data model and Sensor Web Service Platform is an effective way to manage environmental data under the Geospatial Service Web framework.

  17. Flow Webs: Mechanism and Architecture for the Implementation of Sensor Webs

    NASA Astrophysics Data System (ADS)

    Gorlick, M. M.; Peng, G. S.; Gasster, S. D.; McAtee, M. D.

    2006-12-01

    The sensor web is a distributed, federated infrastructure much like its predecessors, the internet and the world wide web. It will be a federation of many sensor webs, large and small, under many distinct spans of control, that loosely cooperates and share information for many purposes. Realistically, it will grow piecemeal as distinct, individual systems are developed and deployed, some expressly built for a sensor web while many others were created for other purposes. Therefore, the architecture of the sensor web is of fundamental import and architectural strictures that inhibit innovation, experimentation, sharing or scaling may prove fatal. Drawing upon the architectural lessons of the world wide web, we offer a novel system architecture, the flow web, that elevates flows, sequences of messages over a domain of interest and constrained in both time and space, to a position of primacy as a dynamic, real-time, medium of information exchange for computational services. The flow web captures; in a single, uniform architectural style; the conflicting demands of the sensor web including dynamic adaptations to changing conditions, ease of experimentation, rapid recovery from the failures of sensors and models, automated command and control, incremental development and deployment, and integration at multiple levels—in many cases, at different times. Our conception of sensor webs—dynamic amalgamations of sensor webs each constructed within a flow web infrastructure—holds substantial promise for earth science missions in general, and of weather, air quality, and disaster management in particular. Flow webs, are by philosophy, design and implementation a dynamic infrastructure that permits massive adaptation in real-time. Flows may be attached to and detached from services at will, even while information is in transit through the flow. This concept, flow mobility, permits dynamic integration of earth science products and modeling resources in response to real-time demands. Flows are the connective tissue of flow webs—massive computational engines organized as directed graphs whose nodes are semi-autonomous components and whose edges are flows. The individual components of a flow web may themselves be encapsulated flow webs. In other words, a flow web subgraph may be presented to a yet larger flow web as a single, seamless component. Flow webs, at all levels, may be edited and modified while still executing. Within a flow web individual components may be added, removed, started, paused, halted, reparameterized, or inspected. The topology of a flow web may be changed at will. Thus, flow webs exhibit an extraordinary degree of adaptivity and robustness as they are explicitly designed to be modified on the fly, an attribute well suited for dynamic model interactions in sensor webs. We describe our concept for a sensor web, implemented as a flow web, in the context of a wildfire disaster management system for the southern California region. Comprehensive wildfire management requires cooperation among multiple agencies. Flow webs allow agencies to share resources in exactly the manner they choose. We will explain how to employ flow webs and agents to integrate satellite remote sensing data, models, in-situ sensors, UAVs and other resources into a sensor web that interconnects organizations and their disaster management tools in a manner that simultaneously preserves their independence and builds upon the individual strengths of agency-specific models and data sources.

  18. Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation and in situ Sensors in a Sensor Web Based Approach

    PubMed Central

    Kooistra, Lammert; Bergsma, Aldo; Chuma, Beatus; de Bruin, Sytze

    2009-01-01

    This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources. PMID:22574019

  19. Sensor Webs as Virtual Data Systems for Earth Science

    NASA Astrophysics Data System (ADS)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing improved science predictions. Still other projects are maturing technology to support autonomous operations, communications and system interoperability. This paper will highlight lessons learned by various projects during the first half of the AIST program. Several sensor web demonstrations have been implemented and resulting experience with evolving standards, such as the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) among others, will be featured. The role of sensor webs in support of the intergovernmental Group on Earth Observations' Global Earth Observation System of Systems (GEOSS) will also be discussed. The GEOSS vision is a distributed system of systems that builds on international components to supply observing and processing systems that are, in the whole, comprehensive, coordinated and sustained. Sensor web prototypes are under development to demonstrate how remote sensing satellite data, in situ sensor networks and decision support systems collaborate in applications of interest to GEO, such as flood monitoring. Furthermore, the international Committee on Earth Observation Satellites (CEOS) has stepped up to the challenge to provide the space-based systems component for GEOSS. CEOS has proposed "virtual constellations" to address emerging data gaps in environmental monitoring, avoid overlap among observing systems, and make maximum use of existing space and ground assets. Exploratory applications that support the objectives of virtual constellations will also be discussed as a future role for sensor webs.

  20. Utilizing Novel Non-traditional Sensor Tasking Approaches to Enhance the Space Situational Awareness Picture Maintained by the Space Surveillance Network

    NASA Astrophysics Data System (ADS)

    Herz, A.; Herz, E.; Center, K.; George, P.; Axelrad, P.; Mutschler, S.; Jones, B.

    2016-09-01

    The Space Surveillance Network (SSN) is tasked with the increasingly difficult mission of detecting, tracking, cataloging and identifying artificial objects orbiting the Earth, including active and inactive satellites, spent rocket bodies, and fragmented debris. Much of the architecture and operations of the SSN are limited and outdated. Efforts are underway to modernize some elements of the systems. Even so, the ability to maintain the best current Space Situational Awareness (SSA) picture and identify emerging events in a timely fashion could be significantly improved by leveraging non-traditional sensor sites. Orbit Logic, the University of Colorado and the University of Texas at Austin are developing an innovative architecture and operations concept to coordinate the tasking and observation information processing of non - traditional assets based on information-theoretic approaches. These confirmed tasking schedules and the resulting data can then be used to "inform" the SSN tasking process. The 'Heimdall Web' system is comprised of core tasking optimization components and accompanying Web interfaces within a secure, split architecture that will for the first time allow non-traditional sensors to support SSA and improve SSN tasking. Heimdall Web application components appropriately score/prioritize space catalog objects based on covariance, priority, observability, expected information gain, and probability of detect - then coordinate an efficient sensor observation schedule for non-SSN sensors contributing to the overall SSA picture maintained by the Joint Space Operations Center (JSpOC). The Heimdall Web Ops concept supports sensor participation levels of "Scheduled", "Tasked" and "Contributing". Scheduled and Tasked sensors are provided optimized observation schedules or object tracking lists from central algorithms, while Contributing sensors review and select from a list of "desired track objects". All sensors are "Web Enabled" for tasking and feedback, supplying observation schedules, confirmed observations and related data back to Heimdall Web to complete the feedback loop for the next scheduling iteration.

  1. Adding Processing Functionality to the Sensor Web

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Pross, Benjamin; Jirka, Simon; Gräler, Benedikt

    2017-04-01

    The Sensor Web allows discovering, accessing and tasking different kinds of environmental sensors in the Web, ranging from simple in-situ sensors to remote sensing systems. However, (geo-)processing functionality needs to be applied to integrate data from different sensor sources and to generate higher level information products. Yet, a common standardized approach for processing sensor data in the Sensor Web is still missing and the integration differs from application to application. Standardizing not only the provision of sensor data, but also the processing facilitates sharing and re-use of processing modules, enables reproducibility of processing results, and provides a common way to integrate external scalable processing facilities or legacy software. In this presentation, we provide an overview on on-going research projects that develop concepts for coupling standardized geoprocessing technologies with Sensor Web technologies. At first, different architectures for coupling sensor data services with geoprocessing services are presented. Afterwards, profiles for linear regression and spatio-temporal interpolation of the OGC Web Processing Services that allow consuming sensor data coming from and uploading predictions to Sensor Observation Services are introduced. The profiles are implemented in processing services for the hydrological domain. Finally, we illustrate how the R software can be coupled with existing OGC Sensor Web and Geoprocessing Services and present an example, how a Web app can be built that allows exploring the results of environmental models in an interactive way using the R Shiny framework. All of the software presented is available as Open Source Software.

  2. An Optimized Autonomous Space In-situ Sensorweb (OASIS) for Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Song, W.; Shirazi, B.; Lahusen, R.; Chien, S.; Kedar, S.; Webb, F.

    2006-12-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, we are developing a prototype real-time Optimized Autonomous Space In-situ Sensorweb. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been in continuous eruption since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO- 1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real- time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of triggering the other. Sensor-web data acquisition and dissemination will be accomplished through the use of SensorML language standards for geospatial information. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform.

  3. WebTag: Web browsing into sensor tags over NFC.

    PubMed

    Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Alvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio

    2012-01-01

    Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm.

  4. WebTag: Web Browsing into Sensor Tags over NFC

    PubMed Central

    Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Álvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio

    2012-01-01

    Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm. PMID:23012511

  5. Knowledge Management in Sensor Enabled Online Services

    NASA Astrophysics Data System (ADS)

    Smyth, Dominick; Cappellari, Paolo; Roantree, Mark

    The Future Internet, has as its vision, the development of improved features and usability for services, applications and content. In many cases, services can be provided automatically through the use of monitors or sensors. This means web generated sensor data becoming available not only to the companies that own the sensors but also to the domain users who generate the data and to information and knowledge workers who harvest the output. The goal is improving the service through better usage of the information provided by the service. Applications and services vary from climate, traffic, health and sports event monitoring. In this paper, we present the WSW system that harvests web sensor data to provide additional and, in some cases, more accurate information using an analysis of both live and warehoused information.

  6. Use of ebRIM-based CSW with sensor observation services for registry and discovery of remote-sensing observations

    NASA Astrophysics Data System (ADS)

    Chen, Nengcheng; Di, Liping; Yu, Genong; Gong, Jianya; Wei, Yaxing

    2009-02-01

    Recent advances in Sensor Web geospatial data capture, such as high-resolution in satellite imagery and Web-ready data processing and modeling technologies, have led to the generation of large numbers of datasets from real-time or near real-time observations and measurements. Finding which sensor or data complies with criteria such as specific times, locations, and scales has become a bottleneck for Sensor Web-based applications, especially remote-sensing observations. In this paper, an architecture for use of the integration Sensor Observation Service (SOS) with the Open Geospatial Consortium (OGC) Catalogue Service-Web profile (CSW) is put forward. The architecture consists of a distributed geospatial sensor observation service, a geospatial catalogue service based on the ebXML Registry Information Model (ebRIM), SOS search and registry middleware, and a geospatial sensor portal. The SOS search and registry middleware finds the potential SOS, generating data granule information and inserting the records into CSW. The contents and sequence of the services, the available observations, and the metadata of the observations registry are described. A prototype system is designed and implemented using the service middleware technology and a standard interface and protocol. The feasibility and the response time of registry and retrieval of observations are evaluated using a realistic Earth Observing-1 (EO-1) SOS scenario. Extracting information from SOS requires the same execution time as record generation for CSW. The average data retrieval response time in SOS+CSW mode is 17.6% of that of the SOS-alone mode. The proposed architecture has the more advantages of SOS search and observation data retrieval than the existing sensor Web enabled systems.

  7. Matsu: An Elastic Cloud Connected to a SensorWeb for Disaster Response

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel

    2011-01-01

    This slide presentation reviews the use of cloud computing combined with the SensorWeb in aiding disaster response planning. Included is an overview of the architecture of the SensorWeb, and overviews of the phase 1 of the EO-1 system and the steps to improve it to transform it to an On-demand product cloud as part of the Open Cloud Consortium (OCC). The effectiveness of this system is demonstrated in the SensorWeb for the Namibia flood in 2010, using information blended from MODIS, TRMM, River Gauge data, and the Google Earth version of Namibia the system enabled river surge predictions and could enable planning for future disaster responses.

  8. Autonomous Mission Operations for Sensor Webs

    NASA Astrophysics Data System (ADS)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.

  9. Distributed data collection and supervision based on web sensor

    NASA Astrophysics Data System (ADS)

    He, Pengju; Dai, Guanzhong; Fu, Lei; Li, Xiangjun

    2006-11-01

    As a node in Internet/Intranet, web sensor has been promoted in recent years and wildly applied in remote manufactory, workshop measurement and control field. However, the conventional scheme can only support HTTP protocol, and the remote users supervise and control the collected data published by web in the standard browser because of the limited resource of the microprocessor in the sensor; moreover, only one node of data acquirement can be supervised and controlled in one instant therefore the requirement of centralized remote supervision, control and data process can not be satisfied in some fields. In this paper, the centralized remote supervision, control and data process by the web sensor are proposed and implemented by the principle of device driver program. The useless information of the every collected web page embedded in the sensor is filtered and the useful data is transmitted to the real-time database in the workstation, and different filter algorithms are designed for different sensors possessing independent web pages. Every sensor node has its own filter program of web, called "web data collection driver program", the collecting details are shielded, and the supervision, control and configuration software can be implemented by the call of web data collection driver program just like the use of the I/O driver program. The proposed technology can be applied in the data acquirement where relative low real-time is required.

  10. The Challenge of Handling Big Data Sets in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Autermann, Christian; Stasch, Christoph; Jirka, Simon

    2016-04-01

    More and more Sensor Web components are deployed in different domains such as hydrology, oceanography or air quality in order to make observation data accessible via the Web. However, besides variability of data formats and protocols in environmental applications, the fast growing volume of data with high temporal and spatial resolution is imposing new challenges for Sensor Web technologies when sharing observation data and metadata about sensors. Variability, volume and velocity are the core issues that are addressed by Big Data concepts and technologies. Most solutions in the geospatial sector focus on remote sensing and raster data, whereas big in-situ observation data sets relying on vector features require novel approaches. Hence, in order to deal with big data sets in infrastructures for observational data, the following questions need to be answered: 1. How can big heterogeneous spatio-temporal datasets be organized, managed, and provided to Sensor Web applications? 2. How can views on big data sets and derived information products be made accessible in the Sensor Web? 3. How can big observation data sets be processed efficiently? We illustrate these challenges with examples from the marine domain and outline how we address these challenges. We therefore show how big data approaches from mainstream IT can be re-used and applied to Sensor Web application scenarios.

  11. SWE-based Observation Data Delivery from the Instrument to the User - Sensor Web Technology in the NeXOS Project

    NASA Astrophysics Data System (ADS)

    Jirka, Simon; del Rio, Joaquin; Toma, Daniel; Martinez, Enoc; Delory, Eric; Pearlman, Jay; Rieke, Matthes; Stasch, Christoph

    2017-04-01

    The rapidly evolving technology for building Web-based (spatial) information infrastructures and Sensor Webs, there are new opportunities to improve the process how ocean data is collected and managed. A central element in this development is the suite of Sensor Web Enablement (SWE) standards specified by the Open Geospatial Consortium (OGC). This framework of standards comprises on the one hand data models as well as formats for measurement data (ISO/OGC Observations and Measurement, O&M) and metadata describing measurement processes and sensors (OGC Sensor Model Language, SensorML). On the other hand the SWE standards comprise (Web service) interface specifications for pull-based access to observation data (OGC Sensor Observation Service, SOS) and for controlling or configuring sensors (OGC Sensor Planning Service, SPS). Also within the European INSPIRE framework the SWE standards play an important role as the SOS is the recommended download service interface for O&M-encoded observation data sets. In the context of the EU-funded Oceans of Tomorrow initiative the NeXOS (Next generation, Cost-effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) project is developing a new generation of in-situ sensors that make use of the SWE standards to facilitate the data publication process and the integration into Web based information infrastructures. This includes the development of a dedicated firmware for instruments and sensor platforms (SEISI, Smart Electronic Interface for Sensors and Instruments) maintained by the Universitat Politècnica de Catalunya (UPC). Among other features, SEISI makes use of OGC SWE standards such OGC-PUCK, to enable a plug-and-play mechanism for sensors based on SensorML encoded metadata. Thus, if a new instrument is attached to a SEISI-based platform, it automatically configures the connection to these instruments, automatically generated data files compliant with the ISO/OGC Observations and Measurements standard and initiates the data transmission into the NeXOS Sensor Web infrastructure. Besides these platform-related developments, NeXOS has realised the full path of data transmission from the sensor to the end user application. The conceptual architecture design is implemented by a series of open source SWE software packages provided by 52°North. This comprises especially different SWE server components (i.e. OGC Sensor Observation Service), tools for data visualisation (e.g. the 52°North Helgoland SOS viewer), and an editor for providing SensorML-based metadata (52°North smle). As a result, NeXOS has demonstrated how the SWE standards help to improve marine observation data collection. Within this presentation, we will present the experiences and findings of the NeXOS project and will provide recommendation for future work directions.

  12. A Smart Sensor Web for Ocean Observation: Integrated Acoustics, Satellite Networking, and Predictive Modeling

    NASA Astrophysics Data System (ADS)

    Arabshahi, P.; Chao, Y.; Chien, S.; Gray, A.; Howe, B. M.; Roy, S.

    2008-12-01

    In many areas of Earth science, including climate change research, there is a need for near real-time integration of data from heterogeneous and spatially distributed sensors, in particular in-situ and space- based sensors. The data integration, as provided by a smart sensor web, enables numerous improvements, namely, 1) adaptive sampling for more efficient use of expensive space-based sensing assets, 2) higher fidelity information gathering from data sources through integration of complementary data sets, and 3) improved sensor calibration. The specific purpose of the smart sensor web development presented here is to provide for adaptive sampling and calibration of space-based data via in-situ data. Our ocean-observing smart sensor web presented herein is composed of both mobile and fixed underwater in-situ ocean sensing assets and Earth Observing System (EOS) satellite sensors providing larger-scale sensing. An acoustic communications network forms a critical link in the web between the in-situ and space-based sensors and facilitates adaptive sampling and calibration. After an overview of primary design challenges, we report on the development of various elements of the smart sensor web. These include (a) a cable-connected mooring system with a profiler under real-time control with inductive battery charging; (b) a glider with integrated acoustic communications and broadband receiving capability; (c) satellite sensor elements; (d) an integrated acoustic navigation and communication network; and (e) a predictive model via the Regional Ocean Modeling System (ROMS). Results from field experiments, including an upcoming one in Monterey Bay (October 2008) using live data from NASA's EO-1 mission in a semi closed-loop system, together with ocean models from ROMS, are described. Plans for future adaptive sampling demonstrations using the smart sensor web are also presented.

  13. A System to Provide Real-Time Collaborative Situational Awareness by Web Enabling a Distributed Sensor Network

    NASA Technical Reports Server (NTRS)

    Panangadan, Anand; Monacos, Steve; Burleigh, Scott; Joswig, Joseph; James, Mark; Chow, Edward

    2012-01-01

    In this paper, we describe the architecture of both the PATS and SAP systems and how these two systems interoperate with each other forming a unified capability for deploying intelligence in hostile environments with the objective of providing actionable situational awareness of individuals. The SAP system works in concert with the UICDS information sharing middleware to provide data fusion from multiple sources. UICDS can then publish the sensor data using the OGC's Web Mapping Service, Web Feature Service, and Sensor Observation Service standards. The system described in the paper is able to integrate a spatially distributed sensor system, operating without the benefit of the Web infrastructure, with a remote monitoring and control system that is equipped to take advantage of SWE.

  14. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    NASA Astrophysics Data System (ADS)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an architecture to represent how integrate air quality sensor data stream into geospatial data infrastructure to present an interoperable air quality monitoring system for supporting disaster management systems by real time information. Developed system tested on Tehran air pollution sensors for calculating Air Quality Index (AQI) for CO pollutant and subsequently notifying registered users in emergency cases by sending warning E-mails. Air quality monitoring portal used to retrieving and visualize sensor observation through interoperable framework. This system provides capabilities to retrieve SOS observation using WPS in a cascaded service chaining pattern for monitoring trend of timely sensor observation.

  15. Optimized Autonomous Space In-situ Sensor-Web for volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Shirazi, B.; Kedar, S.; Chien, S.; Webb, F.; Tran, D.; Davis, A.; Pieri, D.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.

    2008-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), is developing a prototype dynamic and scaleable hazard monitoring sensor-web and applying it to volcano monitoring. The combined Optimized Autonomous Space -In-situ Sensor-web (OASIS) will have two-way communication capability between ground and space assets, use both space and ground data for optimal allocation of limited power and bandwidth resources on the ground, and use smart management of competing demands for limited space assets. It will also enable scalability and seamless infusion of future space and in-situ assets into the sensor-web. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been active since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO-1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real-time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of autonomously tasking the other. Sensor-web data acquisition and dissemination will be accomplished through the use of the Open Geospatial Consortium Sensorweb Enablement protocols. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform. ??2008 IEEE.

  16. SensorWeb 3G: Extending On-Orbit Sensor Capabilities to Enable Near Realtime User Configurability

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Cappelaere, Pat; Frye, Stuart; Sohlberg, Rob; Ly, Vuong; Chien, Steve; Tran, Daniel; Davies, Ashley; Sullivan, Don; Ames, Troy; hide

    2010-01-01

    This research effort prototypes an implementation of a standard interface, Web Coverage Processing Service (WCPS), which is an Open Geospatial Consortium(OGC) standard, to enable users to define, test, upload and execute algorithms for on-orbit sensor systems. The user is able to customize on-orbit data products that result from raw data streaming from an instrument. This extends the SensorWeb 2.0 concept that was developed under a previous Advanced Information System Technology (AIST) effort in which web services wrap sensors and a standardized Extensible Markup Language (XML) based scripting workflow language orchestrates processing steps across multiple domains. SensorWeb 3G extends the concept by providing the user controls into the flight software modules associated with on-orbit sensor and thus provides a degree of flexibility which does not presently exist. The successful demonstrations to date will be presented, which includes a realistic HyspIRI decadal mission testbed. Furthermore, benchmarks that were run will also be presented along with future demonstration and benchmark tests planned. Finally, we conclude with implications for the future and how this concept dovetails into efforts to develop "cloud computing" methods and standards.

  17. A Forest Fire Sensor Web Concept with UAVSAR

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.

    2008-12-01

    We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.

  18. Ontology Alignment Architecture for Semantic Sensor Web Integration

    PubMed Central

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R.; Alarcos, Bernardo

    2013-01-01

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall. PMID:24051523

  19. Ontology alignment architecture for semantic sensor Web integration.

    PubMed

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo

    2013-09-18

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  20. Automatically augmenting lifelog events using pervasively generated content from millions of people.

    PubMed

    Doherty, Aiden R; Smeaton, Alan F

    2010-01-01

    In sensor research we take advantage of additional contextual sensor information to disambiguate potentially erroneous sensor readings or to make better informed decisions on a single sensor's output. This use of additional information reinforces, validates, semantically enriches, and augments sensed data. Lifelog data is challenging to augment, as it tracks one's life with many images including the places they go, making it non-trivial to find associated sources of information. We investigate realising the goal of pervasive user-generated content based on sensors, by augmenting passive visual lifelogs with "Web 2.0" content collected by millions of other individuals.

  1. Applying Sensor Web Technology to Marine Sensor Data

    NASA Astrophysics Data System (ADS)

    Jirka, Simon; del Rio, Joaquin; Mihai Toma, Daniel; Nüst, Daniel; Stasch, Christoph; Delory, Eric

    2015-04-01

    In this contribution we present two activities illustrating how Sensor Web technology helps to enable a flexible and interoperable sharing of marine observation data based on standards. An important foundation is the Sensor Web Architecture developed by the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management). This architecture relies on the Open Geospatial Consortium's (OGC) Sensor Web Enablement (SWE) framework. It is an exemplary solution for facilitating the interoperable exchange of marine observation data within and between (research) organisations. The architecture addresses a series of functional and non-functional requirements which are fulfilled through different types of OGC SWE components. The diverse functionalities offered by the NeXOS Sensor Web architecture are shown in the following overview: - Pull-based observation data download: This is achieved through the OGC Sensor Observation Service (SOS) 2.0 interface standard. - Push-based delivery of observation data to allow users the subscription to new measurements that are relevant for them: For this purpose there are currently several specification activities under evaluation (e.g. OGC Sensor Event Service, OGC Publish/Subscribe Standards Working Group). - (Web-based) visualisation of marine observation data: Implemented through SOS client applications. - Configuration and controlling of sensor devices: This is ensured through the OGC Sensor Planning Service 2.0 interface. - Bridging between sensors/data loggers and Sensor Web components: For this purpose several components such as the "Smart Electronic Interface for Sensor Interoperability" (SEISI) concept are developed; this is complemented by a more lightweight SOS extension (e.g. based on the W3C Efficient XML Interchange (EXI) format). To further advance this architecture, there is on-going work to develop dedicated profiles of selected OGC SWE specifications that provide stricter guidance how these standards shall be applied to marine data (e.g. SensorML 2.0 profiles stating which metadata elements are mandatory building upon the ESONET Sensor Registry developments, etc.). Within the NeXOS project the presented architecture is implemented as a set of open source components. These implementations can be re-used by all interested scientists and data providers needing tools for publishing or consuming oceanographic sensor data. In further projects such as the European project FixO3 (Fixed-point Open Ocean Observatories), these software development activities are complemented with additional efforts to provide guidance how Sensor Web technology can be applied in an efficient manner. This way, not only software components are made available but also documentation and information resources that help to understand which types of Sensor Web deployments are best suited to fulfil different types of user requirements.

  2. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  3. Results from the Autonomous Triggering of in situ Sensors on Kilauea Volcano, HI, from Eruption Detection by Spacecraft

    NASA Astrophysics Data System (ADS)

    Doubleday, J.; Behar, A.; Davies, A.; Mora-Vargas, A.; Tran, D.; Abtahi, A.; Pieri, D. C.; Boudreau, K.; Cecava, J.

    2008-12-01

    Response time in acquiring sensor data in volcanic emergencies can be greatly improved through use of autonomous systems. For instance, ground-based observations and data processing applications of the JPL Volcano Sensor Web have promptly triggered spacecraft observations [e.g., 1]. The reverse command and information flow path can also be useful, using autonomous analysis of spacecraft data to trigger in situ sensors. In this demonstration project, SO2 sensors were incorporated into expendable "Volcano Monitor" capsules and placed downwind of the Pu'u 'O'o vent of Kilauea volcano, Hawai'i. In nominal (low) power conservation mode, data from these sensors were collected and transmitted every hour to the Volcano Sensor Web through the Iridium Satellite Network. When SO2 readings exceeded a predetermined threshold, the modem within the Volcano Monitor sent an alert to the Sensor Web, and triggered a request for prompt Earth Observing-1 (EO-1) spacecraft data acquisition. The Volcano Monitors were also triggered by the Sensor Web in response to an eruption detection by the MODIS instrument on Terra. During these pre- defined "critical events" the Sensor Web ordered the SO2 sensors within the Volcano Monitor to increase their sampling frequency to every 5 minutes (high power "burst mode"). Autonomous control of the sensors' sampling frequency enabled the Sensor Web to monitor and respond to rapidly evolving conditions, and allowed rapid compilation and dissemination of these data to the scientific community. Reference: [1] Davies et al., (2006) Eos, 87, (1), 1 and 5. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. Support was provided by the NASA AIST program, the Idaho Space Grant Consortium, and the New Mexico Space Grant Program. We also especially thank the personnel of the USGS Hawaiian Volcano Observatory for their invaluable scientific guidance and logistical assistance.

  4. Design and implementation of PAVEMON: A GIS web-based pavement monitoring system based on large amounts of heterogeneous sensors data

    NASA Astrophysics Data System (ADS)

    Shahini Shamsabadi, Salar

    A web-based PAVEment MONitoring system, PAVEMON, is a GIS oriented platform for accommodating, representing, and leveraging data from a multi-modal mobile sensor system. Stated sensor system consists of acoustic, optical, electromagnetic, and GPS sensors and is capable of producing as much as 1 Terabyte of data per day. Multi-channel raw sensor data (microphone, accelerometer, tire pressure sensor, video) and processed results (road profile, crack density, international roughness index, micro texture depth, etc.) are outputs of this sensor system. By correlating the sensor measurements and positioning data collected in tight time synchronization, PAVEMON attaches a spatial component to all the datasets. These spatially indexed outputs are placed into an Oracle database which integrates seamlessly with PAVEMON's web-based system. The web-based system of PAVEMON consists of two major modules: 1) a GIS module for visualizing and spatial analysis of pavement condition information layers, and 2) a decision-support module for managing maintenance and repair (Mℝ) activities and predicting future budget needs. PAVEMON weaves together sensor data with third-party climate and traffic information from the National Oceanic and Atmospheric Administration (NOAA) and Long Term Pavement Performance (LTPP) databases for an organized data driven approach to conduct pavement management activities. PAVEMON deals with heterogeneous and redundant observations by fusing them for jointly-derived higher-confidence results. A prominent example of the fusion algorithms developed within PAVEMON is a data fusion algorithm used for estimating the overall pavement conditions in terms of ASTM's Pavement Condition Index (PCI). PAVEMON predicts PCI by undertaking a statistical fusion approach and selecting a subset of all the sensor measurements. Other fusion algorithms include noise-removal algorithms to remove false negatives in the sensor data in addition to fusion algorithms developed for identifying features on the road. PAVEMON offers an ideal research and monitoring platform for rapid, intelligent and comprehensive evaluation of tomorrow's transportation infrastructure based on up-to-date data from heterogeneous sensor systems.

  5. Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: trends, OGC standards and application examples

    PubMed Central

    2011-01-01

    'Wikification of GIS by the masses' is a phrase-term first coined by Kamel Boulos in 2005, two years earlier than Goodchild's term 'Volunteered Geographic Information'. Six years later (2005-2011), OpenStreetMap and Google Earth (GE) are now full-fledged, crowdsourced 'Wikipedias of the Earth' par excellence, with millions of users contributing their own layers to GE, attaching photos, videos, notes and even 3-D (three dimensional) models to locations in GE. From using Twitter in participatory sensing and bicycle-mounted sensors in pervasive environmental sensing, to creating a 100,000-sensor geo-mashup using Semantic Web technology, to the 3-D visualisation of indoor and outdoor surveillance data in real-time and the development of next-generation, collaborative natural user interfaces that will power the spatially-enabled public health and emergency situation rooms of the future, where sensor data and citizen reports can be triaged and acted upon in real-time by distributed teams of professionals, this paper offers a comprehensive state-of-the-art review of the overlapping domains of the Sensor Web, citizen sensing and 'human-in-the-loop sensing' in the era of the Mobile and Social Web, and the roles these domains can play in environmental and public health surveillance and crisis/disaster informatics. We provide an in-depth review of the key issues and trends in these areas, the challenges faced when reasoning and making decisions with real-time crowdsourced data (such as issues of information overload, "noise", misinformation, bias and trust), the core technologies and Open Geospatial Consortium (OGC) standards involved (Sensor Web Enablement and Open GeoSMS), as well as a few outstanding project implementation examples from around the world. PMID:22188675

  6. Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: trends, OGC standards and application examples.

    PubMed

    Kamel Boulos, Maged N; Resch, Bernd; Crowley, David N; Breslin, John G; Sohn, Gunho; Burtner, Russ; Pike, William A; Jezierski, Eduardo; Chuang, Kuo-Yu Slayer

    2011-12-21

    'Wikification of GIS by the masses' is a phrase-term first coined by Kamel Boulos in 2005, two years earlier than Goodchild's term 'Volunteered Geographic Information'. Six years later (2005-2011), OpenStreetMap and Google Earth (GE) are now full-fledged, crowdsourced 'Wikipedias of the Earth' par excellence, with millions of users contributing their own layers to GE, attaching photos, videos, notes and even 3-D (three dimensional) models to locations in GE. From using Twitter in participatory sensing and bicycle-mounted sensors in pervasive environmental sensing, to creating a 100,000-sensor geo-mashup using Semantic Web technology, to the 3-D visualisation of indoor and outdoor surveillance data in real-time and the development of next-generation, collaborative natural user interfaces that will power the spatially-enabled public health and emergency situation rooms of the future, where sensor data and citizen reports can be triaged and acted upon in real-time by distributed teams of professionals, this paper offers a comprehensive state-of-the-art review of the overlapping domains of the Sensor Web, citizen sensing and 'human-in-the-loop sensing' in the era of the Mobile and Social Web, and the roles these domains can play in environmental and public health surveillance and crisis/disaster informatics. We provide an in-depth review of the key issues and trends in these areas, the challenges faced when reasoning and making decisions with real-time crowdsourced data (such as issues of information overload, "noise", misinformation, bias and trust), the core technologies and Open Geospatial Consortium (OGC) standards involved (Sensor Web Enablement and Open GeoSMS), as well as a few outstanding project implementation examples from around the world.

  7. Real-time Data Access to First Responders: A VORB application

    NASA Astrophysics Data System (ADS)

    Lu, S.; Kim, J. B.; Bryant, P.; Foley, S.; Vernon, F.; Rajasekar, A.; Meier, S.

    2006-12-01

    Getting information to first responders is not an easy task. The sensors that provide the information are diverse in formats and come from many disciplines. They are also distributed by location, transmit data at different frequencies and are managed and owned by autonomous administrative entities. Pulling such types of data in real-time, needs a very robust sensor network with reliable data transport and buffering capabilities. Moreover, the system should be extensible and scalable in numbers and sensor types. ROADNet is a real- time sensor network project at UCSD gathering diverse environmental data in real-time or near-real-time. VORB (Virtual Object Ring Buffer) is the middleware used in ROADNet offering simple, uniform and scalable real-time data management for discovering (through metadata), accessing and archiving real-time data and data streams. Recent development in VORB, a web API, has offered quick and simple real-time data integration with web applications. In this poster, we discuss one application developed as part of ROADNet. SMER (Santa Margarita Ecological Reserve) is located in interior Southern California, a region prone to catastrophic wildfires each summer and fall. To provide data during emergencies, we have applied the VORB framework to develop a web-based application for providing access to diverse sensor data including weather data, heat sensor information, and images from cameras. Wildfire fighters have access to real-time data about weather and heat conditions in the area and view pictures taken from cameras at multiple points in the Reserve to pinpoint problem areas. Moreover, they can browse archived images and sensor data from earlier times to provide a comparison framework. To show scalability of the system, we have expanded the sensor network under consideration through other areas in Southern California including sensors accessible by Los Angeles County Fire Department (LACOFD) and those available through the High Performance Wireless Research and Education Network (HPWREN). The poster will discuss the system architecture and components, the types of sensor being used and usage scenarios. The system is currently operational through the SMER web-site.

  8. Realtime Data to Enable Earth-Observing Sensor Web Capabilities

    NASA Astrophysics Data System (ADS)

    Seablom, M. S.

    2015-12-01

    Over the past decade NASA's Earth Science Technology Office (ESTO) has invested in new technologies for information systems to enhance the Earth-observing capabilities of satellites, aircraft, and ground-based in situ observations. One focus area has been to create a common infrastructure for coordinated measurements from multiple vantage points which could be commanded either manually or through autonomous means, such as from a numerical model. This paradigm became known as the sensor web, formally defined to be "a coherent set of heterogeneous, loosely-coupled, distributed observing nodes interconnected by a communications fabric that can collectively behave as a single dynamically adaptive and reconfigurable observing system". This would allow for adaptive targeting of rapidly evolving, transient, or variable meteorological features to improve our ability to monitor, understand, and predict their evolution. It would also enable measurements earmarked at critical regions of the atmosphere that are highly sensitive to data analysis errors, thus offering the potential for significant improvements in the predictive skill of numerical weather forecasts. ESTO's investment strategy was twofold. Recognizing that implementation of an operational sensor web would not only involve technical cost and risk but also would require changes to the culture of how flight missions were designed and operated, ESTO funded the development of a mission-planning simulator that would quantitatively assess the added value of coordinated observations. The simulator was designed to provide the capability to perform low-cost engineering and design trade studies using synthetic data generated by observing system simulation experiments (OSSEs). The second part of the investment strategy was to invest in prototype applications that implemented key features of a sensor web, with the dual goals of developing a sensor web reference architecture as well as supporting useful science activities that would produce immediate benefit. We briefly discuss three of ESTO's sensor web projects that resulted from solicitations released in 2008 and 2011: the Earth System Sensor Web Simulator, the Earth Phenomena Observing System, and the Sensor Web 3G Namibia Flood Pilot.

  9. Providing a virtual tour of a glacial watershed

    NASA Astrophysics Data System (ADS)

    Berner, L.; Habermann, M.; Hood, E.; Fatland, R.; Heavner, M.; Knuth, E.

    2007-12-01

    SEAMONSTER, a NASA funded sensor web project, is the SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education, and Research. Seamonster is leveraging existing open-source software and is an implementation of existing sensor web technologies intended to act as a sensor web testbed, an educational tool, a scientific resource, and a public resource. The primary focus area of initial SEAMONSTER deployment is the Lemon Creek watershed, which includes the Lemon Creek Glacier studied as part of the 1957-58 IPY. This presentation describes our year one efforts to maximize education and public outreach activities of SEAMONSTER. During the first summer, 37 sensors were deployed throughout two partially glaciated watersheds and facilitated data acquisition in temperate rain forest, alpine, lacustrine, and glacial environments. Understanding these environments are important for public understanding of climate change. These environments are geographically isolated, limiting public access to, and understanding of, such locales. In an effort to inform the general public and primary educators about the basic processes occurring in these unique natural systems, we are developing an interactive website. This web portal will supplement and enhance environmental science primary education by providing educators and students with interactive access to basic information from the glaciological, hydrological, and meteorological systems we are studying. In addition, we are developing an interactive virtual tour of the Lemon Glacier and its watershed. This effort will include Google Earth as a means of real-time data visualization and will take advantage of time-lapse movies, photographs, maps, and satellite imagery to promote an understanding of these unique natural systems and the role of sensor webs in education.

  10. SCHeMA web-based observation data information system

    NASA Astrophysics Data System (ADS)

    Novellino, Antonio; Benedetti, Giacomo; D'Angelo, Paolo; Confalonieri, Fabio; Massa, Francesco; Povero, Paolo; Tercier-Waeber, Marie-Louise

    2016-04-01

    It is well recognized that the need of sharing ocean data among non-specialized users is constantly increasing. Initiatives that are built upon international standards will contribute to simplify data processing and dissemination, improve user-accessibility also through web browsers, facilitate the sharing of information across the integrated network of ocean observing systems; and ultimately provide a better understanding of the ocean functioning. The SCHeMA (Integrated in Situ Chemical MApping probe) Project is developing an open and modular sensing solution for autonomous in situ high resolution mapping of a wide range of anthropogenic and natural chemical compounds coupled to master bio-physicochemical parameters (www.schema-ocean.eu). The SCHeMA web system is designed to ensure user-friendly data discovery, access and download as well as interoperability with other projects through a dedicated interface that implements the Global Earth Observation System of Systems - Common Infrastructure (GCI) recommendations and the international Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE) standards. This approach will insure data accessibility in compliance with major European Directives and recommendations. Being modular, the system allows the plug-and-play of commercially available probes as well as new sensor probess under development within the project. The access to the network of monitoring probes is provided via a web-based system interface that, being implemented as a SOS (Sensor Observation Service), is providing standard interoperability and access tosensor observations systems through O&M standard - as well as sensor descriptions - encoded in Sensor Model Language (SensorML). The use of common vocabularies in all metadatabases and data formats, to describe data in an already harmonized and common standard is a prerequisite towards consistency and interoperability. Therefore, the SCHeMA SOS has adopted the SeaVox common vocabularies populated by SeaDataNet network of National Oceanographic Data Centres. The SCHeMA presentation layer, a fundamental part of the software architecture, offers to the user a bidirectional interaction with the integrated system allowing to manage and configure the sensor probes; view the stored observations and metadata, and handle alarms. The overall structure of the web portal developed within the SCHeMA initiative (Sensor Configuration, development of Core Profile interface for data access via OGC standard, external services such as web services, WMS, WFS; and Data download and query manager) will be presented and illustrated with examples of ongoing tests in costal and open sea.

  11. Integration of Grid and Sensor Web for Flood Monitoring and Risk Assessment from Heterogeneous Data

    NASA Astrophysics Data System (ADS)

    Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii

    2013-04-01

    Over last decades we have witnessed the upward global trend in natural disaster occurrence. Hydrological and meteorological disasters such as floods are the main contributors to this pattern. In recent years flood management has shifted from protection against floods to managing the risks of floods (the European Flood risk directive). In order to enable operational flood monitoring and assessment of flood risk, it is required to provide an infrastructure with standardized interfaces and services. Grid and Sensor Web can meet these requirements. In this paper we present a general approach to flood monitoring and risk assessment based on heterogeneous geospatial data acquired from multiple sources. To enable operational flood risk assessment integration of Grid and Sensor Web approaches is proposed [1]. Grid represents a distributed environment that integrates heterogeneous computing and storage resources administrated by multiple organizations. SensorWeb is an emerging paradigm for integrating heterogeneous satellite and in situ sensors and data systems into a common informational infrastructure that produces products on demand. The basic Sensor Web functionality includes sensor discovery, triggering events by observed or predicted conditions, remote data access and processing capabilities to generate and deliver data products. Sensor Web is governed by the set of standards, called Sensor Web Enablement (SWE), developed by the Open Geospatial Consortium (OGC). Different practical issues regarding integration of Sensor Web with Grids are discussed in the study. We show how the Sensor Web can benefit from using Grids and vice versa. For example, Sensor Web services such as SOS, SPS and SAS can benefit from the integration with the Grid platform like Globus Toolkit. The proposed approach is implemented within the Sensor Web framework for flood monitoring and risk assessment, and a case-study of exploiting this framework, namely the Namibia SensorWeb Pilot Project, is described. The project was created as a testbed for evaluating and prototyping key technologies for rapid acquisition and distribution of data products for decision support systems to monitor floods and enable flood risk assessment. The system provides access to real-time products on rainfall estimates and flood potential forecast derived from the Tropical Rainfall Measuring Mission (TRMM) mission with lag time of 6 h, alerts from the Global Disaster Alert and Coordination System (GDACS) with lag time of 4 h, and the Coupled Routing and Excess STorage (CREST) model to generate alerts. These are alerts are used to trigger satellite observations. With deployed SPS service for NASA's EO-1 satellite it is possible to automatically task sensor with re-image capability of less 8 h. Therefore, with enabled computational and storage services provided by Grid and cloud infrastructure it was possible to generate flood maps within 24-48 h after trigger was alerted. To enable interoperability between system components and services OGC-compliant standards are utilized. [1] Hluchy L., Kussul N., Shelestov A., Skakun S., Kravchenko O., Gripich Y., Kopp P., Lupian E., "The Data Fusion Grid Infrastructure: Project Objectives and Achievements," Computing and Informatics, 2010, vol. 29, no. 2, pp. 319-334.

  12. New Generation Sensor Web Enablement

    PubMed Central

    Bröring, Arne; Echterhoff, Johannes; Jirka, Simon; Simonis, Ingo; Everding, Thomas; Stasch, Christoph; Liang, Steve; Lemmens, Rob

    2011-01-01

    Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement. PMID:22163760

  13. GeoCENS: a geospatial cyberinfrastructure for the world-wide sensor web.

    PubMed

    Liang, Steve H L; Huang, Chih-Yuan

    2013-10-02

    The world-wide sensor web has become a very useful technique for monitoring the physical world at spatial and temporal scales that were previously impossible. Yet we believe that the full potential of sensor web has thus far not been revealed. In order to harvest the world-wide sensor web's full potential, a geospatial cyberinfrastructure is needed to store, process, and deliver large amount of sensor data collected worldwide. In this paper, we first define the issue of the sensor web long tail followed by our view of the world-wide sensor web architecture. Then, we introduce the Geospatial Cyberinfrastructure for Environmental Sensing (GeoCENS) architecture and explain each of its components. Finally, with demonstration of three real-world powered-by-GeoCENS sensor web applications, we believe that the GeoCENS architecture can successfully address the sensor web long tail issue and consequently realize the world-wide sensor web vision.

  14. GeoCENS: A Geospatial Cyberinfrastructure for the World-Wide Sensor Web

    PubMed Central

    Liang, Steve H.L.; Huang, Chih-Yuan

    2013-01-01

    The world-wide sensor web has become a very useful technique for monitoring the physical world at spatial and temporal scales that were previously impossible. Yet we believe that the full potential of sensor web has thus far not been revealed. In order to harvest the world-wide sensor web's full potential, a geospatial cyberinfrastructure is needed to store, process, and deliver large amount of sensor data collected worldwide. In this paper, we first define the issue of the sensor web long tail followed by our view of the world-wide sensor web architecture. Then, we introduce the Geospatial Cyberinfrastructure for Environmental Sensing (GeoCENS) architecture and explain each of its components. Finally, with demonstration of three real-world powered-by-GeoCENS sensor web applications, we believe that the GeoCENS architecture can successfully address the sensor web long tail issue and consequently realize the world-wide sensor web vision. PMID:24152921

  15. Autonomous Triggering of in situ Sensors on Kilauea Volcano, HI, from Eruption Detection by the EO-1 Spacecraft: Design and Operational Scenario.

    NASA Astrophysics Data System (ADS)

    Boudreau, K.; Cecava, J. R.; Behar, A.; Davies, A. G.; Tran, D. Q.; Abtahi, A. A.; Pieri, D. C.; Jpl Volcano Sensor Web Team, A

    2007-12-01

    Response time in acquiring sensor data in volcanic emergencies can be greatly improved through use of autonomous systems. For instance, ground-based observations and data processing applications of the JPL Volcano Sensor Web have promptly triggered spacecraft observations [e.g., 1]. The reverse command and information flow path can also be useful, using autonomous analysis of spacecraft data to trigger in situ sensors. In this demonstration project, SO2 sensors have been incorporated into expendable "Volcano Monitor" capsules to be placed downwind of the Pu'U 'O'o vent of Kilauea volcano, Hawai'i. In nominal (low) power conservation mode, data from these sensors are collected and transmitted every hour to the Volcano Sensor Web through the Iridium Satellite Network. If SO2 readings exceed a predetermined threshold, the modem within the Volcano Monitor sends an alert to the Sensor Web, triggering a request for prompt Earth Observing-1 ( EO-1) spacecraft data acquisition. During pre-defined "critical events" as perceived by multiple sensors (which could include both in situ and spaceborne devices), however, the Sensor Web can order the SO2 sensors within the Volcano Monitor to increase their sampling frequency to once per minute (high power "burst mode"). Autonomous control of the sensors' sampling frequency enables the Sensor Web to monitor and respond to rapidly evolving conditions before and during an eruption, and allows near real-time compilation and dissemination of these data to the scientific community. Reference: [1] Davies et al., (2006) Eos, 87, (1), 1&5. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. Support was provided by the NASA AIST program, the Idaho Space Grant Consortium, and the New Mexico Space Grant Program. We thank the personnel of the USGS Hawaiian Volcano Observatory for their invaluable assistance.

  16. Generic Sensor Data Fusion Services for Web-enabled Environmental Risk Management and Decision-Support Systems

    NASA Astrophysics Data System (ADS)

    Sabeur, Zoheir; Middleton, Stuart; Veres, Galina; Zlatev, Zlatko; Salvo, Nicola

    2010-05-01

    The advancement of smart sensor technology in the last few years has led to an increase in the deployment of affordable sensors for monitoring the environment around Europe. This is generating large amounts of sensor observation information and inevitably leading to problems about how to manage large volumes of data as well as making sense out the data for decision-making. In addition, the various European Directives (Water Framework Diectives, Bathing Water Directives, Habitat Directives, etc.. ) which regulate human activities in the environment and the INSPIRE Directive on spatial information management regulations have implicitely led the designated European Member States environment agencies and authorities to put in place new sensor monitoring infrastructure and share information about environmental regions under their statutory responsibilities. They will need to work cross border and collectively reach environmental quality standards. They will also need to regularly report to the EC on the quality of the environments of which they are responsible and make such information accessible to the members of the public. In recent years, early pioneering work on the design of service oriented architecture using sensor networks has been achieved. Information web-services infrastructure using existing data catalogues and web-GIS map services can now be enriched with the deployment of new sensor observation and data fusion and modelling services using OGC standards. The deployment of the new services which describe sensor observations and intelligent data-processing using data fusion techniques can now be implemented and provide added value information with spatial-temporal uncertainties to the next generation of decision support service systems. The new decision support service systems have become key to implement across Europe in order to comply with EU environmental regulations and INSPIRE. In this paper, data fusion services using OGC standards with sensor observation data streams are described in context of a geo-distributed service infrastructure specialising in multiple environmental risk management and decision-support. The sensor data fusion services are deployed and validated in two use cases. These are respectively concerned with: 1) Microbial risks forecast in bathing waters; and 2) Geohazards in urban zones during underground tunneling activities. This research was initiated in the SANY Integrated Project(www.sany-ip.org) and funded by the European Commission under the 6th Framework Programme.

  17. Namibian Flood Early Warning SensorWeb Pilot

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Policelli, Fritz; Frye, Stuart; Cappelare, Pat; Langenhove, Guido Van; Szarzynski, Joerg; Sohlberg, Rob

    2010-01-01

    The major goal of the Namibia SensorWeb Pilot Project is a scientifically sound, operational trans-boundary flood management decision support system for Southern African region to provide useful flood and waterborne disease forecasting tools for local decision makers. The Pilot Project established under the auspices of: Namibian Ministry of Agriculture Water and Forestry (MAWF), Department of Water Affairs; Committee on Earth Observing Satellites (CEOS), Working Group on Information Systems and Services (WGISS); and moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). The effort consists of identifying and prototyping technology which enables the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management.

  18. Design for Connecting Spatial Data Infrastructures with Sensor Web (sensdi)

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; M., M.

    2016-06-01

    Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. It is about research to harness the sensed environment by utilizing domain specific sensor data to create a generalized sensor webframework. The challenges being semantic enablement for Spatial Data Infrastructures, and connecting the interfaces of SDI with interfaces of Sensor Web. The proposed research plan is to Identify sensor data sources, Setup an open source SDI, Match the APIs and functions between Sensor Web and SDI, and Case studies like hazard applications, urban applications etc. We take up co-operative development of SDI best practices to enable a new realm of a location enabled and semantically enriched World Wide Web - the "Geospatial Web" or "Geosemantic Web" by setting up one to one correspondence between WMS, WFS, WCS, Metadata and 'Sensor Observation Service' (SOS); 'Sensor Planning Service' (SPS); 'Sensor Alert Service' (SAS); a service that facilitates asynchronous message interchange between users and services, and between two OGC-SWE services, called the 'Web Notification Service' (WNS). Hence in conclusion, it is of importance to geospatial studies to integrate SDI with Sensor Web. The integration can be done through merging the common OGC interfaces of SDI and Sensor Web. Multi-usability studies to validate integration has to be undertaken as future research.

  19. Pervasive sensing

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  20. Scientific Workflows and the Sensor Web for Virtual Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Simonis, I.; Vahed, A.

    2008-12-01

    Virtual observatories mature from their original domain and become common practice for earth observation research and policy building. The term Virtual Observatory originally came from the astronomical research community. Here, virtual observatories provide universal access to the available astronomical data archives of space and ground-based observatories. Further on, as those virtual observatories aim at integrating heterogeneous ressources provided by a number of participating organizations, the virtual observatory acts as a coordinating entity that strives for common data analysis techniques and tools based on common standards. The Sensor Web is on its way to become one of the major virtual observatories outside of the astronomical research community. Like the original observatory that consists of a number of telescopes, each observing a specific part of the wave spectrum and with a collection of astronomical instruments, the Sensor Web provides a multi-eyes perspective on the current, past, as well as future situation of our planet and its surrounding spheres. The current view of the Sensor Web is that of a single worldwide collaborative, coherent, consistent and consolidated sensor data collection, fusion and distribution system. The Sensor Web can perform as an extensive monitoring and sensing system that provides timely, comprehensive, continuous and multi-mode observations. This technology is key to monitoring and understanding our natural environment, including key areas such as climate change, biodiversity, or natural disasters on local, regional, and global scales. The Sensor Web concept has been well established with ongoing global research and deployment of Sensor Web middleware and standards and represents the foundation layer of systems like the Global Earth Observation System of Systems (GEOSS). The Sensor Web consists of a huge variety of physical and virtual sensors as well as observational data, made available on the Internet at standardized interfaces. All data sets and sensor communication follow well-defined abstract models and corresponding encodings, mostly developed by the OGC Sensor Web Enablement initiative. Scientific progress is currently accelerated by an emerging new concept called scientific workflows, which organize and manage complex distributed computations. A scientific workflow represents and records the highly complex processes that a domain scientist typically would follow in exploration, discovery and ultimately, transformation of raw data to publishable results. The challenge is now to integrate the benefits of scientific workflows with those provided by the Sensor Web in order to leverage all resources for scientific exploration, problem solving, and knowledge generation. Scientific workflows for the Sensor Web represent the next evolutionary step towards efficient, powerful, and flexible earth observation frameworks and platforms. Those platforms support the entire process from capturing data, sharing and integrating, to requesting additional observations. Multiple sites and organizations will participate on single platforms and scientists from different countries and organizations interact and contribute to large-scale research projects. Simultaneously, the data- and information overload becomes manageable, as multiple layers of abstraction will free scientists to deal with underlying data-, processing or storage peculiarities. The vision are automated investigation and discovery mechanisms that allow scientists to pose queries to the system, which in turn would identify potentially related resources, schedules processing tasks and assembles all parts in workflows that may satisfy the query.

  1. Secure Sensor Semantic Web and Information Fusion

    DTIC Science & Technology

    2014-06-25

    data acquired and transmitted by wireless sensor networks (WSNs). In a WSN, due to a need for robustness of monitoring and low cost of the nodes...3 S. Ozdemir and Y. Xiao, “Secure data aggregation in wireless sensor networks : A comprehensive overview...Elisa Bertino, and Somesh Jha: Secure data aggregation technique for wireless sensor networks in the presence of collusion attacks. To appear in

  2. Autonomy and Sensor Webs: The Evolution of Mission Operations

    NASA Technical Reports Server (NTRS)

    Sherwood, Rob

    2008-01-01

    Demonstration of these sensor web capabilities will enable fast responding science campaigns that combine spaceborne, airborne, and ground assets. Sensor webs will also require new operations paradigms. These sensor webs will be operated directly by scientists using science goals to control their instruments. We will explore these new operations architectures through a study of existing sensor web prototypes.

  3. Discovery Mechanisms for the Sensor Web

    PubMed Central

    Jirka, Simon; Bröring, Arne; Stasch, Christoph

    2009-01-01

    This paper addresses the discovery of sensors within the OGC Sensor Web Enablement framework. Whereas services like the OGC Web Map Service or Web Coverage Service are already well supported through catalogue services, the field of sensor networks and the according discovery mechanisms is still a challenge. The focus within this article will be on the use of existing OGC Sensor Web components for realizing a discovery solution. After discussing the requirements for a Sensor Web discovery mechanism, an approach will be presented that was developed within the EU funded project “OSIRIS”. This solution offers mechanisms to search for sensors, exploit basic semantic relationships, harvest sensor metadata and integrate sensor discovery into already existing catalogues. PMID:22574038

  4. Home monitoring of patients with Parkinson's disease via wearable technology and a web-based application.

    PubMed

    Patel, Shyamal; Chen, Bor-Rong; Buckley, Thomas; Rednic, Ramona; McClure, Doug; Tarsy, Daniel; Shih, Ludy; Dy, Jennifer; Welsh, Matt; Bonato, Paolo

    2010-01-01

    Objective long-term health monitoring can improve the clinical management of several medical conditions ranging from cardiopulmonary diseases to motor disorders. In this paper, we present our work toward the development of a home-monitoring system. The system is currently used to monitor patients with Parkinson's disease who experience severe motor fluctuations. Monitoring is achieved using wireless wearable sensors whose data are relayed to a remote clinical site via a web-based application. The work herein presented shows that wearable sensors combined with a web-based application provide reliable quantitative information that can be used for clinical decision making.

  5. From Sensor to Observation Web with environmental enablers in the Future Internet.

    PubMed

    Havlik, Denis; Schade, Sven; Sabeur, Zoheir A; Mazzetti, Paolo; Watson, Kym; Berre, Arne J; Mon, Jose Lorenzo

    2011-01-01

    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities' environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term "envirofied" Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management).

  6. From Sensor to Observation Web with Environmental Enablers in the Future Internet

    PubMed Central

    Havlik, Denis; Schade, Sven; Sabeur, Zoheir A.; Mazzetti, Paolo; Watson, Kym; Berre, Arne J.; Mon, Jose Lorenzo

    2011-01-01

    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term “envirofied” Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management). PMID:22163827

  7. Incorporating Quality Control Information in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Devaraju, Anusuriya; Kunkel, Ralf; Bogena, Heye

    2013-04-01

    The rapid development of sensing technologies had led to the creation of large amounts of heterogeneous environmental observations. The Sensor Web provides a wider access to sensors and observations via common protocols and specifications. Observations typically go through several levels of quality control, and aggregation before they are made available to end-users. Raw data are usually inspected, and related quality flags are assigned. Data are gap-filled, and errors are removed. New data series may also be derived from one or more corrected data sets. Until now, it is unclear how these kinds of information can be captured in the Sensor Web Enablement (SWE) framework. Apart from the quality measures (e.g., accuracy, precision, tolerance, or confidence), the levels of observational series, the changes applied, and the methods involved must be specified. It is important that this kind of quality control information is well described and communicated to end-users to allow for a better usage and interpretation of data products. In this paper, we describe how quality control information can be incorporated into the SWE framework. Concerning this, first, we introduce the TERENO (TERrestrial ENvironmental Observatories), an initiative funded by the large research infrastructure program of the Helmholtz Association in Germany. The main goal of the initiative is to facilitate the study of long-term effects of climate and land use changes. The TERENO Online Data RepOsitORry (TEODOOR) is a software infrastructure that supports acquisition, provision, and management of observations within TERENO via SWE specifications and several other OGC web services. Next, we specify changes made to the existing observational data model to incorporate quality control information. Here, we describe the underlying TERENO data policy in terms of provision and maintenance issues. We present data levels, and their implementation within TEODOOR. The data levels are adapted from those used by other similar systems such as CUAHSI, EarthScope and WMO. Finally, we outline recommendations for future work.

  8. Real-time Geographic Information System (GIS) for Monitoring the Area of Potential Water Level Using Rule Based System

    NASA Astrophysics Data System (ADS)

    Anugrah, Wirdah; Suryono; Suseno, Jatmiko Endro

    2018-02-01

    Management of water resources based on Geographic Information System can provide substantial benefits to water availability settings. Monitoring the potential water level is needed in the development sector, agriculture, energy and others. In this research is developed water resource information system using real-time Geographic Information System concept for monitoring the potential water level of web based area by applying rule based system method. GIS consists of hardware, software, and database. Based on the web-based GIS architecture, this study uses a set of computer that are connected to the network, run on the Apache web server and PHP programming language using MySQL database. The Ultrasound Wireless Sensor System is used as a water level data input. It also includes time and geographic location information. This GIS maps the five sensor locations. GIS is processed through a rule based system to determine the level of potential water level of the area. Water level monitoring information result can be displayed on thematic maps by overlaying more than one layer, and also generating information in the form of tables from the database, as well as graphs are based on the timing of events and the water level values.

  9. A Web Service-Based Framework Model for People-Centric Sensing Applications Applied to Social Networking

    PubMed Central

    Nunes, David; Tran, Thanh-Dien; Raposo, Duarte; Pinto, André; Gomes, André; Silva, Jorge Sá

    2012-01-01

    As the Internet evolved, social networks (such as Facebook) have bloomed and brought together an astonishing number of users. Mashing up mobile phones and sensors with these social environments enables the creation of people-centric sensing systems which have great potential for expanding our current social networking usage. However, such systems also have many associated technical challenges, such as privacy concerns, activity detection mechanisms or intermittent connectivity, as well as limitations due to the heterogeneity of sensor nodes and networks. Considering the openness of the Web 2.0, good technical solutions for these cases consist of frameworks that expose sensing data and functionalities as common Web-Services. This paper presents our RESTful Web Service-based model for people-centric sensing frameworks, which uses sensors and mobile phones to detect users’ activities and locations, sharing this information amongst the user’s friends within a social networking site. We also present some screenshot results of our experimental prototype. PMID:22438732

  10. A Web Service-based framework model for people-centric sensing applications applied to social networking.

    PubMed

    Nunes, David; Tran, Thanh-Dien; Raposo, Duarte; Pinto, André; Gomes, André; Silva, Jorge Sá

    2012-01-01

    As the Internet evolved, social networks (such as Facebook) have bloomed and brought together an astonishing number of users. Mashing up mobile phones and sensors with these social environments enables the creation of people-centric sensing systems which have great potential for expanding our current social networking usage. However, such systems also have many associated technical challenges, such as privacy concerns, activity detection mechanisms or intermittent connectivity, as well as limitations due to the heterogeneity of sensor nodes and networks. Considering the openness of the Web 2.0, good technical solutions for these cases consist of frameworks that expose sensing data and functionalities as common Web-Services. This paper presents our RESTful Web Service-based model for people-centric sensing frameworks, which uses sensors and mobile phones to detect users' activities and locations, sharing this information amongst the user's friends within a social networking site. We also present some screenshot results of our experimental prototype.

  11. Demonstrating the use of web analytics and an online survey to understand user groups of a national network of river level data

    NASA Astrophysics Data System (ADS)

    Macleod, Christopher Kit; Braga, Joao; Arts, Koen; Ioris, Antonio; Han, Xiwu; Sripada, Yaji; van der Wal, Rene

    2016-04-01

    The number of local, national and international networks of online environmental sensors are rapidly increasing. Where environmental data are made available online for public consumption, there is a need to advance our understanding of the relationships between the supply of and the different demands for such information. Understanding how individuals and groups of users are using online information resources may provide valuable insights into their activities and decision making. As part of the 'dot.rural wikiRivers' project we investigated the potential of web analytics and an online survey to generate insights into the use of a national network of river level data from across Scotland. These sources of online information were collected alongside phone interviews with volunteers sampled from the online survey, and interviews with providers of online river level data; as part of a larger project that set out to help improve the communication of Scotland's online river data. Our web analytics analysis was based on over 100 online sensors which are maintained by the Scottish Environmental Protection Agency (SEPA). Through use of Google Analytics data accessed via the R Ganalytics package we assessed: if the quality of data provided by Google Analytics free service is good enough for research purposes; if we could demonstrate what sensors were being used, when and where; how the nature and pattern of sensor data may affect web traffic; and whether we can identify and profile these users based on information from traffic sources. Web analytics data consists of a series of quantitative metrics which capture and summarize various dimensions of the traffic to a certain web page or set of pages. Examples of commonly used metrics include the number of total visits to a site and the number of total page views. Our analyses of the traffic sources from 2009 to 2011 identified several different major user groups. To improve our understanding of how the use of this national network of river level data may provide insights into the interactions between individuals and their usage of hydrological information, we ran an online survey linked to the SEPA river level pages for one year. We collected over 2000 complete responses to the survey. The survey included questions on user activities and the importance of river level information for their activities; alongside questions on what additional information they used in their decision making e.g. precipitation, and when and what river pages they visited. In this presentation we will present results from our analysis of the web analytics and online survey, and the insights they provide to understanding user groups of this national network of river level data.

  12. Twitter web-service for soft agent reporting in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2010-04-01

    Persistent surveillance is an intricate process requiring monitoring, gathering, processing, tracking, and characterization of many spatiotemporal events occurring concurrently. Data associated with events can be readily attained by networking of hard (physical) sensors. Sensors may have homogeneous or heterogeneous (hybrid) sensing modalities with different communication bandwidth requirements. Complimentary to hard sensors are human observers or "soft sensors" that can report occurrences of evolving events via different communication devices (e.g., texting, cell phones, emails, instant messaging, etc.) to the command control center. However, networking of human observers in ad-hoc way is rather a difficult task. In this paper, we present a Twitter web-service for soft agent reporting in persistent surveillance systems (called Web-STARS). The objective of this web-service is to aggregate multi-source human observations in hybrid sensor networks rapidly. With availability of Twitter social network, such a human networking concept can not only be realized for large scale persistent surveillance systems (PSS), but also, it can be employed with proper interfaces to expedite rapid events reporting by human observers. The proposed technique is particularly suitable for large-scale persistent surveillance systems with distributed soft and hard sensor networks. The efficiency and effectiveness of the proposed technique is measured experimentally by conducting several simulated persistent surveillance scenarios. It is demonstrated that by fusion of information from hard and soft agents improves understanding of common operating picture and enhances situational awareness.

  13. Interleaving Semantic Web Reasoning and Service Discovery to Enforce Context-Sensitive Security and Privacy Policies

    DTIC Science & Technology

    2005-07-01

    policies in pervasive computing environments. In this context, the owner of information sources (e.g. user, sensor, application, or organization...work in decentralized trust management and semantic web technologies . Section 3 introduces an Information Disclosure Agent architecture for...Norman Sadeh July 2005 CMU-ISRI-05-113 School of Computer Science, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA, 15213

  14. A Prototype Flood Early Warning SensorWeb System for Namibia

    NASA Astrophysics Data System (ADS)

    Sohlberg, R. A.; Mandl, D.; Frye, S. W.; Cappelaere, P. G.; Szarzynski, J.; Policelli, F.; van Langenhove, G.

    2010-12-01

    During the past two years, there have been extensive floods in the country of Namibia, Africa which have affected up to a quarter of the population. Via a collaboration between a group funded by the Earth Science Technology Office (ESTO) at NASA that has been performing various SensorWeb prototyping activities for disasters, the Department of Hydrology in Namibia and the United Nations Space-based Information for Disaster and Emergency Response (UN-SPIDER) , experiments were conducted on how to apply various satellite resources integrated into a SensorWeb architecture along with in-situ sensors such as river gauges and rain gauges into a flood early warning system. The SensorWeb includes a global flood model and a higher resolution basin specific flood model. Furthermore, flood extent and status is monitored by optical and radar types of satellites and integrated via some automation. We have taken a practical approach to find out how to create a working system by selectively using the components that provide good results. The vision for the future is to combine this with the country side dwelling unit data base to create risk maps that provide specific warnings to houses within high risk areas based on near term predictions. This presentation will show some of the highlights of the effort thus far plus our future plans.

  15. Sensor metadata blueprints and computer-aided editing for disciplined SensorML

    NASA Astrophysics Data System (ADS)

    Tagliolato, Paolo; Oggioni, Alessandro; Fugazza, Cristiano; Pepe, Monica; Carrara, Paola

    2016-04-01

    The need for continuous, accurate, and comprehensive environmental knowledge has led to an increase in sensor observation systems and networks. The Sensor Web Enablement (SWE) initiative has been promoted by the Open Geospatial Consortium (OGC) to foster interoperability among sensor systems. The provision of metadata according to the prescribed SensorML schema is a key component for achieving this and nevertheless availability of correct and exhaustive metadata cannot be taken for granted. On the one hand, it is awkward for users to provide sensor metadata because of the lack in user-oriented, dedicated tools. On the other, the specification of invariant information for a given sensor category or model (e.g., observed properties and units of measurement, manufacturer information, etc.), can be labor- and timeconsuming. Moreover, the provision of these details is error prone and subjective, i.e., may differ greatly across distinct descriptions for the same system. We provide a user-friendly, template-driven metadata authoring tool composed of a backend web service and an HTML5/javascript client. This results in a form-based user interface that conceals the high complexity of the underlying format. This tool also allows for plugging in external data sources providing authoritative definitions for the aforementioned invariant information. Leveraging these functionalities, we compiled a set of SensorML profiles, that is, sensor metadata blueprints allowing end users to focus only on the metadata items that are related to their specific deployment. The natural extension of this scenario is the involvement of end users and sensor manufacturers in the crowd-sourced evolution of this collection of prototypes. We describe the components and workflow of our framework for computer-aided management of sensor metadata.

  16. Managing and Integrating Open Environmental Data - Technological Requirements and Challenges

    NASA Astrophysics Data System (ADS)

    Devaraju, Anusuriya; Kunkel, Ralf; Jirka, Simon

    2014-05-01

    Understanding environment conditions and trends requires information. This information is usually generated from sensor observations. Today, several infrastructures (e.g., GEOSS, EarthScope, NEON, NETLAKE, OOI, TERENO, WASCAL, and PEER-EurAqua) have been deployed to promote full and open exchange of environmental data. Standards for interfaces as well as data models/formats (OGC, CUAHSI, INSPIRE, SEE Grid, ISO) and open source tools have been developed to support seamless data exchange between various domains and organizations. In spite of this growing interest, it remains a challenge to manage and integrate open environmental data on the fly due to the distributed and heterogeneous nature of the data. Intuitive tools and standardized interfaces are vital to hide the technical complexity of underlying data management infrastructures. Meaningful descriptions of raw sensor data are necessary to achieve interoperability among different sources. As raw sensor data sets usually goes through several layers of summarization and aggregation, metadata and quality measures associated with these should be captured. Further processing of sensor data sets requires that they should be made compatible with existing environmental models. We need data policies and management plans on how to handle and publish open sensor data coming from different institutions. Clearly, a better management and usability of open environmental data is crucial, not only to gather large amounts of data, but also to cater various aspects such as data integration, privacy and trust, uncertainty, quality control, visualization, and data management policies. The proposed talk presents several key findings in terms of requirements, ongoing developments and technical challenges concerning these aspects from our recent work. This includes two workshops on open observation data and supporting tools, as well as the long-term environmental monitoring initiatives such as TERENO and TERENO-MED. Workshops Details: Spin the Sensor Web: Sensor Web Workshop 2013, Muenster, 21st-22nd November 2013 (http://52north.org/news/spin-the-sensor-web-sensor-web-workshop-2013) Special Session on Management of Open Environmental Observation Data - MOEOD 2014, Lisbon, 8th January 2014 (http://www.sensornets.org/MOEOD.aspx?y=2014) Monitoring Networks: TERENO : http://teodoor.icg.kfa-juelich.de/ TERENO-MED : http://www.tereno-med.net/

  17. Semantically-enabled sensor plug & play for the sensor web.

    PubMed

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC's Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research.

  18. Semantically-Enabled Sensor Plug & Play for the Sensor Web

    PubMed Central

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research. PMID:22164033

  19. Sensing Models and Sensor Network Architectures for Transport Infrastructure Monitoring in Smart Cities

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo

    2015-04-01

    Transport infrastructure monitoring and analysis is one of the focus areas in the context of smart cities. With the growing number of people moving into densely populated urban metro areas, precise tracking of moving people and goods is the basis for profound decision-making and future planning. With the goal of defining optimal extensions and modifications to existing transport infrastructures, multi-modal transport has to be monitored and analysed. This process is performed on the basis of sensor networks that combine a variety of sensor models, types, and deployments within the area of interest. Multi-generation networks, consisting of a number of sensor types and versions, are causing further challenges for the integration and processing of sensor observations. These challenges are not getting any smaller with the development of the Internet of Things, which brings promising opportunities, but is currently stuck in a type of protocol war between big industry players from both the hardware and network infrastructure domain. In this paper, we will highlight how the OGC suite of standards, with the Sensor Web standards developed by the Sensor Web Enablement Initiative together with the latest developments by the Sensor Web for Internet of Things community can be applied to the monitoring and improvement of transport infrastructures. Sensor Web standards have been applied in the past to pure technical domains, but need to be broadened now in order to meet new challenges. Only cross domain approaches will allow to develop satisfying transport infrastructure approaches that take into account requirements coming form a variety of sectors such as tourism, administration, transport industry, emergency services, or private people. The goal is the development of interoperable components that can be easily integrated within data infrastructures and follow well defined information models to allow robust processing.

  20. Sensor system for web inspection

    DOEpatents

    Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.

    2002-01-01

    A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.

  1. RESTFul based heterogeneous Geoprocessing workflow interoperation for Sensor Web Service

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Chen, Nengcheng; Di, Liping

    2012-10-01

    Advanced sensors on board satellites offer detailed Earth observations. A workflow is one approach for designing, implementing and constructing a flexible and live link between these sensors' resources and users. It can coordinate, organize and aggregate the distributed sensor Web services to meet the requirement of a complex Earth observation scenario. A RESTFul based workflow interoperation method is proposed to integrate heterogeneous workflows into an interoperable unit. The Atom protocols are applied to describe and manage workflow resources. The XML Process Definition Language (XPDL) and Business Process Execution Language (BPEL) workflow standards are applied to structure a workflow that accesses sensor information and one that processes it separately. Then, a scenario for nitrogen dioxide (NO2) from a volcanic eruption is used to investigate the feasibility of the proposed method. The RESTFul based workflows interoperation system can describe, publish, discover, access and coordinate heterogeneous Geoprocessing workflows.

  2. Crowdsourcing, citizen sensing and Sensor Web technologies for public and environmental health surveillance and crisis management: trends, OGC standards and application examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamel Boulos, Maged; Resch, Bernd; Crowley, David N.

    The PIE Activity Awareness Environment is designed to be an adaptive data triage and decision support tool that allows role and activity based situation awareness through a dynamic, trainable filtering system. This paper discusses the process and methodology involved in the application as well as some of its capabilities. 'Wikification of GIS by the masses' is a phrase-term first coined by Kamel Boulos in 2005, two years earlier than Goodchild's term 'Volunteered Geographic Information'. Six years later (2005-2011), OpenStreetMap and Google Earth (GE) are now full-fledged, crowdsourced 'Wikipedias of the Earth' par excellence, with millions of users contributing their ownmore » layers to GE, attaching photos, videos, notes and even 3-D (three dimensional) models to locations in GE. From using Twitter in participatory sensing and bicycle-mounted sensors in pervasive environmental sensing, to creating a 100,000-sensor geo-mashup using Semantic Web technology, to the 3-D visualisation of indoor and outdoor surveillance data in real-time and the development of next-generation, collaborative natural user interfaces that will power the spatially-enabled public health and emergency situation rooms of the future, where sensor data and citizen reports can be triaged and acted upon in real-time by distributed teams of professionals, this paper offers a comprehensive state-of-the-art review of the overlapping domains of the Sensor Web, citizen sensing and 'human-in-the-loop sensing' in the era of the Mobile and Social Web, and the roles these domains can play in environmental and public health surveillance and crisis/disaster informatics. We provide an in-depth review of the key issues and trends in these areas, the challenges faced when reasoning and making decisions with real-time crowdsourced data (such as issues of information overload, 'noise', misinformation, bias and trust), the core technologies and Open Geospatial Consortium (OGC) standards involved (Sensor Web Enablement and Open GeoSMS), as well as a few outstanding project implementation examples from around the world.« less

  3. Multifunctional Web Enabled Ocean Sensor Systems for the Monitoring of a Changing Ocean

    NASA Astrophysics Data System (ADS)

    Pearlman, Jay; Castro, Ayoze; Corrandino, Luigi; del Rio, Joaquin; Delory, Eric; Garello, Rene; Heuermann, Rudinger; Martinez, Enoc; Pearlman, Francoise; Rolin, Jean-Francois; Toma, Daniel; Waldmann, Christoph; Zielinski, Oliver

    2016-04-01

    As stated in the 2010 "Ostend Declaration", a major challenge in the coming years is the development of a truly integrated and sustainably funded European Ocean Observing System for supporting major policy initiatives such as the Integrated Maritime Policy and the Marine Strategy Framework Directive. This will be achieved with more long-term measurements of key parameters supported by a new generation of sensors whose costs and reliability will enable broad and consistent observations. Within the NeXOS project, a framework including new sensors capabilities and interface software has been put together that embraces the key technical aspects needed to improve the temporal and spatial coverage, resolution and quality of marine observations. The developments include new, low-cost, compact and integrated sensors with multiple functionalities that will allow for the measurements useful for a number of objectives, ranging from more precise monitoring and modeling of the marine environment to an improved assessment of fisheries. The project is entering its third year and will be demonstrating initial capabilities of optical and acoustic sensor prototypes that will become available for a number of platforms. For fisheries management, there is also a series of sensors that support an Ecosystem Approach to Fisheries (EAF). The greatest capabilities for comprehensive operations will occur when these sensors can be integrated into a multisensory capability on a single platform or multiply interconnected and coordinated platforms. Within NeXOS the full processing steps starting from the sensor signal all the way up to distributing collected environmental information will be encapsulated into standardized new state of the art Smart Sensor Interface and Web components to provide both improved integration and a flexible interface for scientists to control sensor operation. The use of the OGC SWE (Sensor Web Enablement) set of standards like OGC PUCK and SensorML at the instrument to platform integration phase will provide standard mechanisms for a truly plug'n'work connection. Through this, NeXOS Instruments will maintain within themselves specific information about how a platform (buoy controller, AUV controller, Observatory controller) has to configure and communicate with the instrument without the platform needing previous knowledge about the instrument. This mechanism is now being evaluated in real platforms like a Slocum Glider from Teledyne Web research, SeaExplorer Glider from Alseamar, Provor Float from NKE, and others including non commercial platforms like Obsea seafloor cabled observatory. The latest developments in the NeXOS sensors and the integration into an observation system will be discussed, addressing demonstration plans both for a variety of platforms and scientific objectives supporting marine management.

  4. SensorDB: a virtual laboratory for the integration, visualization and analysis of varied biological sensor data.

    PubMed

    Salehi, Ali; Jimenez-Berni, Jose; Deery, David M; Palmer, Doug; Holland, Edward; Rozas-Larraondo, Pablo; Chapman, Scott C; Georgakopoulos, Dimitrios; Furbank, Robert T

    2015-01-01

    To our knowledge, there is no software or database solution that supports large volumes of biological time series sensor data efficiently and enables data visualization and analysis in real time. Existing solutions for managing data typically use unstructured file systems or relational databases. These systems are not designed to provide instantaneous response to user queries. Furthermore, they do not support rapid data analysis and visualization to enable interactive experiments. In large scale experiments, this behaviour slows research discovery, discourages the widespread sharing and reuse of data that could otherwise inform critical decisions in a timely manner and encourage effective collaboration between groups. In this paper we present SensorDB, a web based virtual laboratory that can manage large volumes of biological time series sensor data while supporting rapid data queries and real-time user interaction. SensorDB is sensor agnostic and uses web-based, state-of-the-art cloud and storage technologies to efficiently gather, analyse and visualize data. Collaboration and data sharing between different agencies and groups is thereby facilitated. SensorDB is available online at http://sensordb.csiro.au.

  5. Lessons Learned from a Collaborative Sensor Web Prototype

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Case, Lynne; Krahe, Chris; Hess, Melissa; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    This paper describes the Sensor Web Application Prototype (SWAP) system that was developed for the Earth Science Technology Office (ESTO). The SWAP is aimed at providing an initial engineering proof-of-concept prototype highlighting sensor collaboration, dynamic cause-effect relationship between sensors, dynamic reconfiguration, and remote monitoring of sensor webs.

  6. Equipment Management for Sensor Networks: Linking Physical Infrastructure and Actions to Observational Data

    NASA Astrophysics Data System (ADS)

    Jones, A. S.; Horsburgh, J. S.; Matos, M.; Caraballo, J.

    2015-12-01

    Networks conducting long term monitoring using in situ sensors need the functionality to track physical equipment as well as deployments, calibrations, and other actions related to site and equipment maintenance. The observational data being generated by sensors are enhanced if direct linkages to equipment details and actions can be made. This type of information is typically recorded in field notebooks or in static files, which are rarely linked to observations in a way that could be used to interpret results. However, the record of field activities is often relevant to analysis or post-processing of the observational data. We have developed an underlying database schema and deployed a web interface for recording and retrieving information on physical infrastructure and related actions for observational networks. The database schema for equipment was designed as an extension to the Observations Data Model 2 (ODM2), a community-developed information model for spatially discrete, feature based earth observations. The core entities of ODM2 describe location, observed variable, and timing of observations, and the equipment extension contains entities to provide additional metadata specific to the inventory of physical infrastructure and associated actions. The schema is implemented in a relational database system for storage and management with an associated web interface. We designed the web-based tools for technicians to enter and query information on the physical equipment and actions such as site visits, equipment deployments, maintenance, and calibrations. These tools were implemented for the iUTAH (innovative Urban Transitions and Aridregion Hydrosustainability) ecohydrologic observatory, and we anticipate that they will be useful for similar large-scale monitoring networks desiring to link observing infrastructure to observational data to increase the quality of sensor-based data products.

  7. Design and Implementation of an Architectural Framework for Web Portals in a Ubiquitous Pervasive Environment

    PubMed Central

    Raza, Muhammad Taqi; Yoo, Seung-Wha; Kim, Ki-Hyung; Joo, Seong-Soon; Jeong, Wun-Cheol

    2009-01-01

    Web Portals function as a single point of access to information on the World Wide Web (WWW). The web portal always contacts the portal’s gateway for the information flow that causes network traffic over the Internet. Moreover, it provides real time/dynamic access to the stored information, but not access to the real time information. This inherent functionality of web portals limits their role for resource constrained digital devices in the Ubiquitous era (U-era). This paper presents a framework for the web portal in the U-era. We have introduced the concept of Local Regions in the proposed framework, so that the local queries could be solved locally rather than having to route them over the Internet. Moreover, our framework enables one-to-one device communication for real time information flow. To provide an in-depth analysis, firstly, we provide an analytical model for query processing at the servers for our framework-oriented web portal. At the end, we have deployed a testbed, as one of the world’s largest IP based wireless sensor networks testbed, and real time measurements are observed that prove the efficacy and workability of the proposed framework. PMID:22346693

  8. Design and implementation of an architectural framework for web portals in a ubiquitous pervasive environment.

    PubMed

    Raza, Muhammad Taqi; Yoo, Seung-Wha; Kim, Ki-Hyung; Joo, Seong-Soon; Jeong, Wun-Cheol

    2009-01-01

    Web Portals function as a single point of access to information on the World Wide Web (WWW). The web portal always contacts the portal's gateway for the information flow that causes network traffic over the Internet. Moreover, it provides real time/dynamic access to the stored information, but not access to the real time information. This inherent functionality of web portals limits their role for resource constrained digital devices in the Ubiquitous era (U-era). This paper presents a framework for the web portal in the U-era. We have introduced the concept of Local Regions in the proposed framework, so that the local queries could be solved locally rather than having to route them over the Internet. Moreover, our framework enables one-to-one device communication for real time information flow. To provide an in-depth analysis, firstly, we provide an analytical model for query processing at the servers for our framework-oriented web portal. At the end, we have deployed a testbed, as one of the world's largest IP based wireless sensor networks testbed, and real time measurements are observed that prove the efficacy and workability of the proposed framework.

  9. Web-Based Interface for Command and Control of Network Sensors

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Doubleday, Joshua R.; Shams, Khawaja S.

    2010-01-01

    This software allows for the visualization and control of a network of sensors through a Web browser interface. It is currently being deployed for a network of sensors monitoring Mt. Saint Helen s volcano; however, this innovation is generic enough that it can be deployed for any type of sensor Web. From this interface, the user is able to fully control and monitor the sensor Web. This includes, but is not limited to, sending "test" commands to individual sensors in the network, monitoring for real-world events, and reacting to those events

  10. A New User Interface for On-Demand Customizable Data Products for Sensors in a SensorWeb

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Cappelaere, Pat; Frye, Stuart; Sohlberg, Rob; Ly, Vuong; Chien, Steve; Sullivan, Don

    2011-01-01

    A SensorWeb is a set of sensors, which can consist of ground, airborne and space-based sensors interoperating in an automated or autonomous collaborative manner. The NASA SensorWeb toolbox, developed at NASA/GSFC in collaboration with NASA/JPL, NASA/Ames and other partners, is a set of software and standards that (1) enables users to create virtual private networks of sensors over open networks; (2) provides the capability to orchestrate their actions; (3) provides the capability to customize the output data products and (4) enables automated delivery of the data products to the users desktop. A recent addition to the SensorWeb Toolbox is a new user interface, together with web services co-resident with the sensors, to enable rapid creation, loading and execution of new algorithms for processing sensor data. The web service along with the user interface follows the Open Geospatial Consortium (OGC) standard called Web Coverage Processing Service (WCPS). This presentation will detail the prototype that was built and how the WCPS was tested against a HyspIRI flight testbed and an elastic computation cloud on the ground with EO-1 data. HyspIRI is a future NASA decadal mission. The elastic computation cloud stores EO-1 data and runs software similar to Amazon online shopping.

  11. Implementing CUAHSI and SWE observation data models in the long-term monitoring infrastructure TERENO

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Stender, V.; Schroeder, M.

    2013-12-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. The contribution by the participating research centers is organized as regional observatories. The challenge for TERENO and its observatories is to integrate all aspects of data management, data workflows, data modeling and visualizations into the design of a monitoring infrastructure. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR. TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes the data available through standard web services. Data are stored following the CUAHSI observation data model in combination with the 52° North Sensor Observation Service data model. The data model was implemented using the PostgreSQL/PostGIS DBMS. Especially in a long-term project, such as TERENO, care has to be taken in the data model. We chose to adopt the CUAHSI observational data model because it is designed to store observations and descriptive information (metadata) about the data values in combination with information about the sensor systems. Also the CUAHSI model is supported by a large and active international user community. The 52° North SOS data model can be modeled as a sub-set of the CUHASI data model. In our implementation the 52° North SWE data model is implemented as database views of the CUHASI model to avoid redundant data storage. An essential aspect in TERENO Northeast is the use of standard OGS web services to facilitate data exchange and interoperability. A uniform treatment of sensor data can be realized through OGC Sensor Web Enablement (SWE) which makes a number of standards and interface definitions available: Observation & Measurement (O&M) model for the description of observations and measurements, Sensor Model Language (SensorML) for the description of sensor systems, Sensor Observation Service (SOS) for obtaining sensor observations, Sensor Planning Service (SPS) for tasking sensors, Web Notification Service (WNS) for asynchronous dialogues and Sensor Alert Service (SAS) for sending alerts.

  12. Fieldservers and Sensor Service Grid as Real-time Monitoring Infrastructure for Ubiquitous Sensor Networks

    PubMed Central

    Honda, Kiyoshi; Shrestha, Aadit; Witayangkurn, Apichon; Chinnachodteeranun, Rassarin; Shimamura, Hiroshi

    2009-01-01

    The fieldserver is an Internet based observation robot that can provide an outdoor solution for monitoring environmental parameters in real-time. The data from its sensors can be collected to a central server infrastructure and published on the Internet. The information from the sensor network will contribute to monitoring and modeling on various environmental issues in Asia, including agriculture, food, pollution, disaster, climate change etc. An initiative called Sensor Asia is developing an infrastructure called Sensor Service Grid (SSG), which integrates fieldservers and Web GIS to realize easy and low cost installation and operation of ubiquitous field sensor networks. PMID:22574018

  13. Development of Integration Framework for Sensor Network and Satellite Image based on OGC Web Services

    NASA Astrophysics Data System (ADS)

    Ninsawat, Sarawut; Yamamoto, Hirokazu; Kamei, Akihide; Nakamura, Ryosuke; Tsuchida, Satoshi; Maeda, Takahisa

    2010-05-01

    With the availability of network enabled sensing devices, the volume of information being collected by networked sensors has increased dramatically in recent years. Over 100 physical, chemical and biological properties can be sensed using in-situ or remote sensing technology. A collection of these sensor nodes forms a sensor network, which is easily deployable to provide a high degree of visibility into real-world physical processes as events unfold. The sensor observation network could allow gathering of diverse types of data at greater spatial and temporal resolution, through the use of wired or wireless network infrastructure, thus real-time or near-real time data from sensor observation network allow researchers and decision-makers to respond speedily to events. However, in the case of environmental monitoring, only a capability to acquire in-situ data periodically is not sufficient but also the management and proper utilization of data also need to be careful consideration. It requires the implementation of database and IT solutions that are robust, scalable and able to interoperate between difference and distributed stakeholders to provide lucid, timely and accurate update to researchers, planners and citizens. The GEO (Global Earth Observation) Grid is primarily aiming at providing an e-Science infrastructure for the earth science community. The GEO Grid is designed to integrate various kinds of data related to the earth observation using the grid technology, which is developed for sharing data, storage, and computational powers of high performance computing, and is accessible as a set of services. A comprehensive web-based system for integrating field sensor and data satellite image based on various open standards of OGC (Open Geospatial Consortium) specifications has been developed. Web Processing Service (WPS), which is most likely the future direction of Web-GIS, performs the computation of spatial data from distributed data sources and returns the outcome in a standard format. The interoperability capabilities and Service Oriented Architecture (SOA) of web services allow incorporating between sensor network measurement available from Sensor Observation Service (SOS) and satellite remote sensing data from Web Mapping Service (WMS) as distributed data sources for WPS. Various applications have been developed to demonstrate the efficacy of integrating heterogeneous data source. For example, the validation of the MODIS aerosol products (MOD08_D3, the Level-3 MODIS Atmosphere Daily Global Product) by ground-based measurements using the sunphotometer (skyradiometer, Prede POM-02) installed at Phenological Eyes Network (PEN) sites in Japan. Furthermore, the web-based framework system for studying a relationship between calculated Vegetation Index from MODIS satellite image surface reflectance (MOD09GA, the Surface Reflectance Daily L2G Global 1km and 500m Product) and Gross Primary Production (GPP) field measurement at flux tower site in Thailand and Japan has been also developed. The success of both applications will contribute to maximize data utilization and improve accuracy of information by validate MODIS satellite products using high degree of accuracy and temporal measurement of field measurement data.

  14. A Wireless Sensor Network for Growth Environment Measurement and Multi-Band Optical Sensing to Diagnose Tree Vigor

    PubMed Central

    Kameoka, Shinichi; Isoda, Shuhei; Hashimoto, Atsushi; Ito, Ryoei; Miyamoto, Satoru; Wada, Genki; Watanabe, Naoki; Yamakami, Takashi; Suzuki, Ken; Kameoka, Takaharu

    2017-01-01

    We have tried to develop the guidance system for farmers to cultivate using various phenological indices. As the sensing part of this system, we deployed a new Wireless Sensor Network (WSN). This system uses the 920 MHz radio wave based on the Wireless Smart Utility Network that enables long-range wireless communication. In addition, the data acquired by the WSN were standardized for the advanced web service interoperability. By using these standardized data, we can create a web service that offers various kinds of phenological indices as secondary information to the farmers in the field. We have also established the field management system using thermal image, fluorescent and X-ray fluorescent methods, which enable the nondestructive, chemical-free, simple, and rapid measurement of fruits or trees. We can get the information about the transpiration of plants through a thermal image. The fluorescence sensor gives us information, such as nitrate balance index (NBI), that shows the nitrate balance inside the leaf, chlorophyll content, flavonol content and anthocyanin content. These methods allow one to quickly check the health of trees and find ways to improve the tree vigor of weak ones. Furthermore, the fluorescent x-ray sensor has the possibility to quantify the loss of minerals necessary for fruit growth. PMID:28448452

  15. A Wireless Sensor Network for Growth Environment Measurement and Multi-Band Optical Sensing to Diagnose Tree Vigor.

    PubMed

    Kameoka, Shinichi; Isoda, Shuhei; Hashimoto, Atsushi; Ito, Ryoei; Miyamoto, Satoru; Wada, Genki; Watanabe, Naoki; Yamakami, Takashi; Suzuki, Ken; Kameoka, Takaharu

    2017-04-27

    We have tried to develop the guidance system for farmers to cultivate using various phenological indices. As the sensing part of this system, we deployed a new Wireless Sensor Network (WSN). This system uses the 920 MHz radio wave based on the Wireless Smart Utility Network that enables long-range wireless communication. In addition, the data acquired by the WSN were standardized for the advanced web service interoperability. By using these standardized data, we can create a web service that offers various kinds of phenological indices as secondary information to the farmers in the field. We have also established the field management system using thermal image, fluorescent and X-ray fluorescent methods, which enable the nondestructive, chemical-free, simple, and rapid measurement of fruits or trees. We can get the information about the transpiration of plants through a thermal image. The fluorescence sensor gives us information, such as nitrate balance index (NBI), that shows the nitrate balance inside the leaf, chlorophyll content, flavonol content and anthocyanin content. These methods allow one to quickly check the health of trees and find ways to improve the tree vigor of weak ones. Furthermore, the fluorescent x-ray sensor has the possibility to quantify the loss of minerals necessary for fruit growth.

  16. A semantically rich and standardised approach enhancing discovery of sensor data and metadata

    NASA Astrophysics Data System (ADS)

    Kokkinaki, Alexandra; Buck, Justin; Darroch, Louise

    2016-04-01

    The marine environment plays an essential role in the earth's climate. To enhance the ability to monitor the health of this important system, innovative sensors are being produced and combined with state of the art sensor technology. As the number of sensors deployed is continually increasing,, it is a challenge for data users to find the data that meet their specific needs. Furthermore, users need to integrate diverse ocean datasets originating from the same or even different systems. Standards provide a solution to the above mentioned challenges. The Open Geospatial Consortium (OGC) has created Sensor Web Enablement (SWE) standards that enable different sensor networks to establish syntactic interoperability. When combined with widely accepted controlled vocabularies, they become semantically rich and semantic interoperability is achievable. In addition, Linked Data is the recommended best practice for exposing, sharing and connecting information on the Semantic Web using Uniform Resource Identifiers (URIs), Resource Description Framework (RDF) and RDF Query Language (SPARQL). As part of the EU-funded SenseOCEAN project, the British Oceanographic Data Centre (BODC) is working on the standardisation of sensor metadata enabling 'plug and play' sensor integration. Our approach combines standards, controlled vocabularies and persistent URIs to publish sensor descriptions, their data and associated metadata as 5 star Linked Data and OGC SWE (SensorML, Observations & Measurements) standard. Thus sensors become readily discoverable, accessible and useable via the web. Content and context based searching is also enabled since sensors descriptions are understood by machines. Additionally, sensor data can be combined with other sensor or Linked Data datasets to form knowledge. This presentation will describe the work done in BODC to achieve syntactic and semantic interoperability in the sensor domain. It will illustrate the reuse and extension of the Semantic Sensor Network (SSN) ontology to Linked Sensor Ontology (LSO) and the steps taken to combine OGC SWE with the Linked Data approach through alignment and embodiment of other ontologies. It will then explain how data and models were annotated with controlled vocabularies to establish unambiguous semantics and interconnect them with data from different sources. Finally, it will introduce the RDF triple store where the sensor descriptions and metadata are stored and can be queried through the standard query language SPARQL. Providing different flavours of machine readable interpretations of sensors, sensor data and metadata enhances discoverability but most importantly allows seamless aggregation of information from different networks that will finally produce knowledge.

  17. A Walk through TRIDEC's intermediate Tsunami Early Warning System

    NASA Astrophysics Data System (ADS)

    Hammitzsch, M.; Reißland, S.; Lendholt, M.

    2012-04-01

    The management of natural crises is an important application field of the technology developed in the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC), co-funded by the European Commission in its Seventh Framework Programme. TRIDEC is based on the development of the German Indonesian Tsunami Early Warning System (GITEWS) and the Distant Early Warning System (DEWS) providing a service platform for both sensor integration and warning dissemination. In TRIDEC new developments in Information and Communication Technology (ICT) are used to extend the existing platform realising a component-based technology framework for building distributed tsunami warning systems for deployment, e.g. in the North-eastern Atlantic, the Mediterranean and Connected Seas (NEAM) region. The TRIDEC system will be implemented in three phases, each with a demonstrator. Successively, the demonstrators are addressing challenges, such as the design and implementation of a robust and scalable service infrastructure supporting the integration and utilisation of existing resources with accelerated generation of large volumes of data. These include sensor systems, geo-information repositories, simulation tools and data fusion tools. In addition to conventional sensors also unconventional sensors and sensor networks play an important role in TRIDEC. The system version presented is based on service-oriented architecture (SOA) concepts and on relevant standards of the Open Geospatial Consortium (OGC), the World Wide Web Consortium (W3C) and the Organization for the Advancement of Structured Information Standards (OASIS). In this way the system continuously gathers, processes and displays events and data coming from open sensor platforms to enable operators to quickly decide whether an early warning is necessary and to send personalized warning messages to the authorities and the population at large through a wide range of communication channels. The system integrates OGC Sensor Web Enablement (SWE) compliant sensor systems for the rapid detection of hazardous events, like earthquakes, sea level anomalies, ocean floor occurrences, and ground displacements. Using OGC Web Map Service (WMS) and Web Feature Service (WFS) spatial data are utilized to depict the situation picture. The integration of a simulation system to identify affected areas is considered using the OGC Web Processing Service (WPS). Warning messages are compiled and transmitted in the OASIS Common Alerting Protocol (CAP) together with addressing information defined via the OASIS Emergency Data Exchange Language - Distribution Element (EDXL-DE). The first system demonstrator has been designed and implemented to support plausible scenarios demonstrating the treatment of simulated tsunami threats with an essential subset of a National Tsunami Warning Centre (NTWC). The feasibility and the potentials of the implemented approach are demonstrated covering standard operations as well as tsunami detection and alerting functions. The demonstrator presented addresses information management and decision-support processes in a hypothetical natural crisis situation caused by a tsunami in the Eastern Mediterranean. Developments of the system are based to the largest extent on free and open source software (FOSS) components and industry standards. Emphasis has been and will be made on leveraging open source technologies that support mature system architecture models wherever appropriate. All open source software produced is foreseen to be published on a publicly available software repository thus allowing others to reuse results achieved and enabling further development and collaboration with a wide community including scientists, developers, users and stakeholders. This live demonstration is linked with the talk "TRIDEC Natural Crisis Management Demonstrator for Tsunamis" (EGU2012-7275) given in the session "Architecture of Future Tsunami Warning Systems" (NH5.7/ESSI1.7).

  18. On-Board Mining in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Tanner, S.; Conover, H.; Graves, S.; Ramachandran, R.; Rushing, J.

    2004-12-01

    On-board data mining can contribute to many research and engineering applications, including natural hazard detection and prediction, intelligent sensor control, and the generation of customized data products for direct distribution to users. The ability to mine sensor data in real time can also be a critical component of autonomous operations, supporting deep space missions, unmanned aerial and ground-based vehicles (UAVs, UGVs), and a wide range of sensor meshes, webs and grids. On-board processing is expected to play a significant role in the next generation of NASA, Homeland Security, Department of Defense and civilian programs, providing for greater flexibility and versatility in measurements of physical systems. In addition, the use of UAV and UGV systems is increasing in military, emergency response and industrial applications. As research into the autonomy of these vehicles progresses, especially in fleet or web configurations, the applicability of on-board data mining is expected to increase significantly. Data mining in real time on board sensor platforms presents unique challenges. Most notably, the data to be mined is a continuous stream, rather than a fixed store such as a database. This means that the data mining algorithms must be modified to make only a single pass through the data. In addition, the on-board environment requires real time processing with limited computing resources, thus the algorithms must use fixed and relatively small amounts of processing time and memory. The University of Alabama in Huntsville is developing an innovative processing framework for the on-board data and information environment. The Environment for On-Board Processing (EVE) and the Adaptive On-board Data Processing (AODP) projects serve as proofs-of-concept of advanced information systems for remote sensing platforms. The EVE real-time processing infrastructure will upload, schedule and control the execution of processing plans on board remote sensors. These plans provide capabilities for autonomous data mining, classification and feature extraction using both streaming and buffered data sources. A ground-based testbed provides a heterogeneous, embedded hardware and software environment representing both space-based and ground-based sensor platforms, including wireless sensor mesh architectures. The AODP project explores the EVE concepts in the world of sensor-networks, including ad-hoc networks of small sensor platforms.

  19. Web Information Systems for Monitoring and Control of Indoor Air Quality at Subway Stations

    NASA Astrophysics Data System (ADS)

    Choi, Gi Heung; Choi, Gi Sang; Jang, Joo Hyoung

    In crowded subway stations indoor air quality (IAQ) is a key factor for ensuring the safety, health and comfort of passengers. In this study, a framework for web-based information system in VDN environment for monitoring and control of IAQ in subway stations is suggested. Since physical variables that describing IAQ need to be closely monitored and controlled in multiple locations in subway stations, concept of distributed monitoring and control network using wireless media needs to be implemented. Connecting remote wireless sensor network and device (LonWorks) networks to the IP network based on the concept of VDN can provide a powerful, integrated, distributed monitoring and control performance, making a web-based information system possible.

  20. SensorWeb Evolution Using the Earth Observing One (EO-1) Satellite as a Test Platform

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Frye, Stuart; Cappelaere, Pat; Ly, Vuong; Handy, Matthew; Chien, Steve; Grossman, Robert; Tran, Daniel

    2012-01-01

    The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, in addition to collecting science data from its instruments, the EO-1 mission has been used as a testbed for a variety of technologies which provide various automation capabilities and which have been used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with a messaging architecture and web services. This paper provides an overview of the various technologies that were tested and eventually folded into normal operations. As these technologies were folded in, the nature of operations transformed. The SensorWeb software enables easy connectivity for collaboration with sensors, but the side benefit is that it improved the EO-1 operational efficiency. This paper presents the various phases of EO-1 operation over the past 12 years and also presents operational efficiency gains demonstrated by some metrics.

  1. A flexible geospatial sensor observation service for diverse sensor data based on Web service

    NASA Astrophysics Data System (ADS)

    Chen, Nengcheng; Di, Liping; Yu, Genong; Min, Min

    Achieving a flexible and efficient geospatial Sensor Observation Service (SOS) is difficult, given the diversity of sensor networks, the heterogeneity of sensor data storage, and the differing requirements of users. This paper describes development of a service-oriented multi-purpose SOS framework. The goal is to create a single method of access to the data by integrating the sensor observation service with other Open Geospatial Consortium (OGC) services — Catalogue Service for the Web (CSW), Transactional Web Feature Service (WFS-T) and Transactional Web Coverage Service (WCS-T). The framework includes an extensible sensor data adapter, an OGC-compliant geospatial SOS, a geospatial catalogue service, a WFS-T, and a WCS-T for the SOS, and a geospatial sensor client. The extensible sensor data adapter finds, stores, and manages sensor data from live sensors, sensor models, and simulation systems. Abstract factory design patterns are used during design and implementation. A sensor observation service compatible with the SWE is designed, following the OGC "core" and "transaction" specifications. It is implemented using Java servlet technology. It can be easily deployed in any Java servlet container and automatically exposed for discovery using Web Service Description Language (WSDL). Interaction sequences between a Sensor Web data consumer and an SOS, between a producer and an SOS, and between an SOS and a CSW are described in detail. The framework has been successfully demonstrated in application scenarios for EO-1 observations, weather observations, and water height gauge observations.

  2. Interacting With A Near Real-Time Urban Digital Watershed Using Emerging Geospatial Web Technologies

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Fazio, D. J.; Abdelzaher, T.; Minsker, B.

    2007-12-01

    The value of real-time hydrologic data dissemination including river stage, streamflow, and precipitation for operational stormwater management efforts is particularly high for communities where flash flooding is common and costly. Ideally, such data would be presented within a watershed-scale geospatial context to portray a holistic view of the watershed. Local hydrologic sensor networks usually lack comprehensive integration with sensor networks managed by other agencies sharing the same watershed due to administrative, political, but mostly technical barriers. Recent efforts on providing unified access to hydrological data have concentrated on creating new SOAP-based web services and common data format (e.g. WaterML and Observation Data Model) for users to access the data (e.g. HIS and HydroSeek). Geospatial Web technology including OGC sensor web enablement (SWE), GeoRSS, Geo tags, Geospatial browsers such as Google Earth and Microsoft Virtual Earth and other location-based service tools provides possibilities for us to interact with a digital watershed in near-real-time. OGC SWE proposes a revolutionary concept towards a web-connected/controllable sensor networks. However, these efforts have not provided the capability to allow dynamic data integration/fusion among heterogeneous sources, data filtering and support for workflows or domain specific applications where both push and pull mode of retrieving data may be needed. We propose a light weight integration framework by extending SWE with open source Enterprise Service Bus (e.g., mule) as a backbone component to dynamically transform, transport, and integrate both heterogeneous sensor data sources and simulation model outputs. We will report our progress on building such framework where multi-agencies" sensor data and hydro-model outputs (with map layers) will be integrated and disseminated in a geospatial browser (e.g. Microsoft Virtual Earth). This is a collaborative project among NCSA, USGS Illinois Water Science Center, Computer Science Department at UIUC funded by the Adaptive Environmental Infrastructure Sensing and Information Systems initiative at UIUC.

  3. Sensor Webs in Digital Earth

    NASA Astrophysics Data System (ADS)

    Heavner, M. J.; Fatland, D. R.; Moeller, H.; Hood, E.; Schultz, M.

    2007-12-01

    The University of Alaska Southeast is currently implementing a sensor web identified as the SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education, and Research (SEAMONSTER). From power systems and instrumentation through data management, visualization, education, and public outreach, SEAMONSTER is designed with modularity in mind. We are utilizing virtual earth infrastructures to enhance both sensor web management and data access. We will describe how the design philosophy of using open, modular components contributes to the exploration of different virtual earth environments. We will also describe the sensor web physical implementation and how the many components have corresponding virtual earth representations. This presentation will provide an example of the integration of sensor webs into a virtual earth. We suggest that IPY sensor networks and sensor webs may integrate into virtual earth systems and provide an IPY legacy easily accessible to both scientists and the public. SEAMONSTER utilizes geobrowsers for education and public outreach, sensor web management, data dissemination, and enabling collaboration. We generate near-real-time auto-updating geobrowser files of the data. In this presentation we will describe how we have implemented these technologies to date, the lessons learned, and our efforts towards greater OGC standard implementation. A major focus will be on demonstrating how geobrowsers have made this project possible.

  4. Experimenting with an Evolving Ground/Space-based Software Architecture to Enable Sensor Webs

    NASA Technical Reports Server (NTRS)

    mandl, Daniel; Frye, Stuart

    2005-01-01

    A series of ongoing experiments are being conducted at the NASA Goddard Space Flight Center to explore integrated ground and space-based software architectures enabling sensor webs. A sensor web, as defined by Steve Talabac at NASA Goddard Space Flight Center(GSFC), is a coherent set of distributed nodes interconnected by a communications fabric, that collectively behave as a single, dynamically adaptive, observing system. The nodes can be comprised of satellites, ground instruments, computing nodes etc. Sensor web capability requires autonomous management of constellation resources. This becomes progressively more important as more and more satellites share resource, such as communication channels and ground station,s while automatically coordinating their activities. There have been five ongoing activities which include an effort to standardize a set of middleware. This paper will describe one set of activities using the Earth Observing 1 satellite, which used a variety of ground and flight software along with other satellites and ground sensors to prototype a sensor web. This activity allowed us to explore where the difficulties that occur in the assembly of sensor webs given today s technology. We will present an overview of the software system architecture, some key experiments and lessons learned to facilitate better sensor webs in the future.

  5. Sensor web

    NASA Technical Reports Server (NTRS)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  6. Secure, Autonomous, Intelligent Controller for Integrating Distributed Sensor Webs

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2007-01-01

    This paper describes the infrastructure and protocols necessary to enable near-real-time commanding, access to space-based assets, and the secure interoperation between sensor webs owned and controlled by various entities. Select terrestrial and aeronautics-base sensor webs will be used to demonstrate time-critical interoperability between integrated, intelligent sensor webs both terrestrial and between terrestrial and space-based assets. For this work, a Secure, Autonomous, Intelligent Controller and knowledge generation unit is implemented using Virtual Mission Operation Center technology.

  7. SAMuS: Service-Oriented Architecture for Multisensor Surveillance in Smart Homes

    PubMed Central

    Van de Walle, Rik

    2014-01-01

    The design of a service-oriented architecture for multisensor surveillance in smart homes is presented as an integrated solution enabling automatic deployment, dynamic selection, and composition of sensors. Sensors are implemented as Web-connected devices, with a uniform Web API. RESTdesc is used to describe the sensors and a novel solution is presented to automatically compose Web APIs that can be applied with existing Semantic Web reasoners. We evaluated the solution by building a smart Kinect sensor that is able to dynamically switch between IR and RGB and optimizing person detection by incorporating feedback from pressure sensors, as such demonstrating the collaboration among sensors to enhance detection of complex events. The performance results show that the platform scales for many Web APIs as composition time remains limited to a few hundred milliseconds in almost all cases. PMID:24778579

  8. Objectively Optimized Observation Direction System Providing Situational Awareness for a Sensor Web

    NASA Astrophysics Data System (ADS)

    Aulov, O.; Lary, D. J.

    2010-12-01

    There is great utility in having a flexible and automated objective observation direction system for the decadal survey missions and beyond. Such a system allows us to optimize the observations made by suite of sensors to address specific goals from long term monitoring to rapid response. We have developed such a prototype using a network of communicating software elements to control a heterogeneous network of sensor systems, which can have multiple modes and flexible viewing geometries. Our system makes sensor systems intelligent and situationally aware. Together they form a sensor web of multiple sensors working together and capable of automated target selection, i.e. the sensors “know” where they are, what they are able to observe, what targets and with what priorities they should observe. This system is implemented in three components. The first component is a Sensor Web simulator. The Sensor Web simulator describes the capabilities and locations of each sensor as a function of time, whether they are orbital, sub-orbital, or ground based. The simulator has been implemented using AGIs Satellite Tool Kit (STK). STK makes it easy to analyze and visualize optimal solutions for complex space scenarios, and perform complex analysis of land, sea, air, space assets, and shares results in one integrated solution. The second component is target scheduler that was implemented with STK Scheduler. STK Scheduler is powered by a scheduling engine that finds better solutions in a shorter amount of time than traditional heuristic algorithms. The global search algorithm within this engine is based on neural network technology that is capable of finding solutions to larger and more complex problems and maximizing the value of limited resources. The third component is a modeling and data assimilation system. It provides situational awareness by supplying the time evolution of uncertainty and information content metrics that are used to tell us what we need to observe and the priority we should give to the observations. A prototype of this component was implemented with AutoChem. AutoChem is NASA release software constituting an automatic code generation, symbolic differentiator, analysis, documentation, and web site creation tool for atmospheric chemical modeling and data assimilation. Its model is explicit and uses an adaptive time-step, error monitoring time integration scheme for stiff systems of equations. AutoChem was the first model to ever have the facility to perform 4D-Var data assimilation and Kalman filter. The project developed a control system with three main accomplishments. First, fully multivariate observational and theoretical information with associated uncertainties was combined using a full Kalman filter data assimilation system. Second, an optimal distribution of the computations and of data queries was achieved by utilizing high performance computers/load balancing and a set of automatically mirrored databases. Third, inter-instrument bias correction was performed using machine learning. The PI for this project was Dr. David Lary of the UMBC Joint Center for Earth Systems Technology at NASA/Goddard Space Flight Center.

  9. Implementation of Sensor Twitter Feed Web Service Server and Client

    DTIC Science & Technology

    2016-12-01

    ARL-TN-0807 ● DEC 2016 US Army Research Laboratory Implementation of Sensor Twitter Feed Web Service Server and Client by...Implementation of Sensor Twitter Feed Web Service Server and Client by Bhagyashree V Kulkarni University of Maryland Michael H Lee Computational...

  10. Method for simultaneously making a plurality of acoustic signal sensor elements

    NASA Technical Reports Server (NTRS)

    Bryant, Timothy D. (Inventor); Wynkoop, Mark W. (Inventor); Holloway, Nancy M. H. (Inventor); Zuckerwar, Allan J. (Inventor)

    2005-01-01

    A fetal heart monitoring system preferably comprising a backing plate having a generally concave front surface and a generally convex back surface, and at least one sensor element attached to the concave front surface for acquiring acoustic fetal heart signals produced by a fetus within a body. The sensor element has a shape that conforms to the generally concave back surface of the backing plate. In one embodiment, the at least one sensor element comprises an inner sensor, and a plurality of outer sensors surrounding the inner sensor. The fetal heart monitoring system can further comprise a web belt, and a web belt guide movably attached to the web belt. The web belt guide being is to the convex back surface of the backing plate.

  11. Method for Simultaneously Making a Plurality of Acoustic Signal Sensor Elements

    NASA Technical Reports Server (NTRS)

    Bryant, Timothy D.; Wynkoop, Mark W.; Holloway, Nancy M. H.; Zuckerwar, Allan J.

    2005-01-01

    A fetal heart monitoring system preferably comprising a backing plate having a generally concave front surface and a generally convex back surface, and at least one sensor element attached to the concave front surface for acquiring acoustic fetal heart signals produced by a fetus within a body. The sensor element has a shape that conforms to the generally concave back surface of the backing plate. In one embodiment, the at least one sensor element comprises an inner sensor, and a plurality of outer sensors surrounding the inner sensor. The fetal heart monitoring system can further comprise a web belt, and a web belt guide movably attached to the web belt. The web belt guide being is to the convex back surface of the backing plate.

  12. Evolving EO-1 Sensor Web Testbed Capabilities in Pursuit of GEOSS

    NASA Technical Reports Server (NTRS)

    Mandi, Dan; Ly, Vuong; Frye, Stuart; Younis, Mohamed

    2006-01-01

    A viewgraph presentation to evolve sensor web capabilities in pursuit of capabilities to support Global Earth Observing System of Systems (GEOSS) is shown. The topics include: 1) Vision to Enable Sensor Webs with "Hot Spots"; 2) Vision Extended for Communication/Control Architecture for Missions to Mars; 3) Key Capabilities Implemented to Enable EO-1 Sensor Webs; 4) One of Three Experiments Conducted by UMBC Undergraduate Class 12-14-05 (1 - 3); 5) Closer Look at our Mini-Rovers and Simulated Mars Landscae at GSFC; 6) Beginning to Implement Experiments with Standards-Vision for Integrated Sensor Web Environment; 7) Goddard Mission Services Evolution Center (GMSEC); 8) GMSEC Component Catalog; 9) Core Flight System (CFS) and Extension for GMSEC for Flight SW; 10) Sensor Modeling Language; 11) Seamless Ground to Space Integrated Message Bus Demonstration (completed December 2005); 12) Other Experiments in Queue; 13) Acknowledgements; and 14) References.

  13. Lightweight monitoring and control system for coal mine safety using REST style.

    PubMed

    Cheng, Bo; Cheng, Xin; Chen, Junliang

    2015-01-01

    The complex environment of a coal mine requires the underground environment, devices and miners to be constantly monitored to ensure safe coal production. However, existing coal mines do not meet these coverage requirements because blind spots occur when using a wired network. In this paper, we develop a Web-based, lightweight remote monitoring and control platform using a wireless sensor network (WSN) with the REST style to collect temperature, humidity and methane concentration data in a coal mine using sensor nodes. This platform also collects information on personnel positions inside the mine. We implement a RESTful application programming interface (API) that provides access to underground sensors and instruments through the Web such that underground coal mine physical devices can be easily interfaced to remote monitoring and control applications. We also implement three different scenarios for Web-based, lightweight remote monitoring and control of coal mine safety and measure and analyze the system performance. Finally, we present the conclusions from this study and discuss future work. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Passive Fetal Heart Monitoring System

    NASA Technical Reports Server (NTRS)

    Bryant, Timothy D. (Inventor); Wynkoop, Mark W. (Inventor); Holloway, Nancy M. H. (Inventor); Zuckerwar, Allan J. (Inventor)

    2004-01-01

    A fetal heart monitoring system preferably comprising a backing plate having a generally concave front surface and a generally convex back surface, and at least one sensor element attached to the concave front surface for acquiring acoustic fetal heart signals produced by a fetus within a body. The sensor element has a shape that conforms to the generally concave back surface of the backing plate. In one embodiment, the at least one sensor element comprises an inner sensor, and a plurality of outer sensors surrounding the inner sensor. The fetal heart monitoring system can further comprise a web belt, and a web belt guide movably attached to the web belt. The web belt guide being is to the convex back surface of the backing plate.

  15. Improving data management and dissemination in web based information systems by semantic enrichment of descriptive data aspects

    NASA Astrophysics Data System (ADS)

    Gebhardt, Steffen; Wehrmann, Thilo; Klinger, Verena; Schettler, Ingo; Huth, Juliane; Künzer, Claudia; Dech, Stefan

    2010-10-01

    The German-Vietnamese water-related information system for the Mekong Delta (WISDOM) project supports business processes in Integrated Water Resources Management in Vietnam. Multiple disciplines bring together earth and ground based observation themes, such as environmental monitoring, water management, demographics, economy, information technology, and infrastructural systems. This paper introduces the components of the web-based WISDOM system including data, logic and presentation tier. It focuses on the data models upon which the database management system is built, including techniques for tagging or linking metadata with the stored information. The model also uses ordered groupings of spatial, thematic and temporal reference objects to semantically tag datasets to enable fast data retrieval, such as finding all data in a specific administrative unit belonging to a specific theme. A spatial database extension is employed by the PostgreSQL database. This object-oriented database was chosen over a relational database to tag spatial objects to tabular data, improving the retrieval of census and observational data at regional, provincial, and local areas. While the spatial database hinders processing raster data, a "work-around" was built into WISDOM to permit efficient management of both raster and vector data. The data model also incorporates styling aspects of the spatial datasets through styled layer descriptions (SLD) and web mapping service (WMS) layer specifications, allowing retrieval of rendered maps. Metadata elements of the spatial data are based on the ISO19115 standard. XML structured information of the SLD and metadata are stored in an XML database. The data models and the data management system are robust for managing the large quantity of spatial objects, sensor observations, census and document data. The operational WISDOM information system prototype contains modules for data management, automatic data integration, and web services for data retrieval, analysis, and distribution. The graphical user interfaces facilitate metadata cataloguing, data warehousing, web sensor data analysis and thematic mapping.

  16. Advances on Sensor Web for Internet of Things

    NASA Astrophysics Data System (ADS)

    Liang, S.; Bermudez, L. E.; Huang, C.; Jazayeri, M.; Khalafbeigi, T.

    2013-12-01

    'In much the same way that HTML and HTTP enabled WWW, the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE), envisioned in 2001 [1] will allow sensor webs to become a reality.'. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not a simple task. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. SWE standardizes web service interfaces, sensor descriptions and data encodings as building blocks for a Sensor Web. SWE standards are now mature specifications (version 2.0) with approved OGC compliance test suites and tens of independent implementations. Many earth and space science organizations and government agencies are using the SWE standards to publish and share their sensors and observations. While SWE has been demonstrated very effective for scientific sensors, its complexity and the computational overhead may not be suitable for resource-constrained tiny sensors. In June 2012, a new OGC Standards Working Group (SWG) was formed called the Sensor Web Interface for Internet of Things (SWE-IoT) SWG. This SWG focuses on developing one or more OGC standards for resource-constrained sensors and actuators (e.g., Internet of Things devices) while leveraging the existing OGC SWE standards. In the near future, billions to trillions of small sensors and actuators will be embedded in real- world objects and connected to the Internet facilitating a concept called the Internet of Things (IoT). By populating our environment with real-world sensor-based devices, the IoT is opening the door to exciting possibilities for a variety of application domains, such as environmental monitoring, transportation and logistics, urban informatics, smart cities, as well as personal and social applications. The current SWE-IoT development aims on modeling the IoT components and defining a standard web service that makes the observations captured by IoT devices easily accessible and allows users to task the actuators on the IoT devices. The SWE IoT model links things with sensors and reuses the OGC Observation and Model (O&M) to link sensors with features of interest and observed properties Unlike most SWE standards, the SWE-IoT defines a RESTful web interface for users to perform CRUD (i.e., create, read, update, and delete) functions on resources, including Things, Sensors, Actuators, Observations, Tasks, etc. Inspired by the OASIS Open Data Protocol (OData), the SWE-IoT web service provides the multi-faceted query, which means that users can query from different entity collections and link from one entity to other related entities. This presentation will introduce the latest development of the OGC SWE-IoT standards. Potential applications and implications in Earth and Space science will also be discussed. [1] Mike Botts, Sensor Web Enablement White Paper, Open GIS Consortium, Inc. 2002

  17. A highly scalable information system as extendable framework solution for medical R&D projects.

    PubMed

    Holzmüller-Laue, Silke; Göde, Bernd; Stoll, Regina; Thurow, Kerstin

    2009-01-01

    For research projects in preventive medicine a flexible information management is needed that offers a free planning and documentation of project specific examinations. The system should allow a simple, preferably automated data acquisition from several distributed sources (e.g., mobile sensors, stationary diagnostic systems, questionnaires, manual inputs) as well as an effective data management, data use and analysis. An information system fulfilling these requirements has been developed at the Center for Life Science Automation (celisca). This system combines data of multiple investigations and multiple devices and displays them on a single screen. The integration of mobile sensor systems for comfortable, location-independent capture of time-based physiological parameter and the possibility of observation of these measurements directly by this system allow new scenarios. The web-based information system presented in this paper is configurable by user interfaces. It covers medical process descriptions, operative process data visualizations, a user-friendly process data processing, modern online interfaces (data bases, web services, XML) as well as a comfortable support of extended data analysis with third-party applications.

  18. Web-based Data Exploration, Exploitation and Visualization Tools for Satellite Sensor VIS/IR Calibration Applications

    NASA Astrophysics Data System (ADS)

    Gopalan, A.; Doelling, D. R.; Scarino, B. R.; Chee, T.; Haney, C.; Bhatt, R.

    2016-12-01

    The CERES calibration group at NASA/LaRC has developed and deployed a suite of online data exploration and visualization tools targeted towards a range of spaceborne VIS/IR imager calibration applications for the Earth Science community. These web-based tools are driven by the open-source R (Language for Statistical Computing and Visualization) with a web interface for the user to customize the results according to their application. The tool contains a library of geostationary and sun-synchronous imager spectral response functions (SRF), incoming solar spectra, SCIAMACHY and Hyperion Earth reflected visible hyper-spectral data, and IASI IR hyper-spectral data. The suite of six specific web-based tools was designed to provide critical information necessary for sensor cross-calibration. One of the challenges of sensor cross-calibration is accounting for spectral band differences and may introduce biases if not handled properly. The spectral band adjustment factors (SBAF) are a function of the earth target, atmospheric and cloud conditions or scene type and angular conditions, when obtaining sensor radiance pairs. The SBAF will need to be customized for each inter-calibration target and sensor pair. The advantages of having a community open source tool are: 1) only one archive of SCIAMACHY, Hyperion, and IASI datasets needs to be maintained, which is on the order of 50TB. 2) the framework will allow easy incorporation of new satellite SRFs and hyper-spectral datasets and associated coincident atmospheric and cloud properties, such as PW. 3) web tool or SBAF algorithm improvements or suggestions when incorporated can benefit the community at large. 4) The customization effort is on the user rather than on the host. In this paper we discuss each of these tools in detail and explore the variety of advanced options that can be used to constrain the results along with specific use cases to highlight the value-added by these datasets.

  19. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain.

    PubMed

    Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar

    2018-01-30

    Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.

  20. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain

    PubMed Central

    Vernet, David; Corral, Guiomar

    2018-01-01

    Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748

  1. A Semantic Sensor Web for Environmental Decision Support Applications

    PubMed Central

    Gray, Alasdair J. G.; Sadler, Jason; Kit, Oles; Kyzirakos, Kostis; Karpathiotakis, Manos; Calbimonte, Jean-Paul; Page, Kevin; García-Castro, Raúl; Frazer, Alex; Galpin, Ixent; Fernandes, Alvaro A. A.; Paton, Norman W.; Corcho, Oscar; Koubarakis, Manolis; De Roure, David; Martinez, Kirk; Gómez-Pérez, Asunción

    2011-01-01

    Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England. PMID:22164110

  2. The OGC Sensor Web Enablement framework

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Botts, M.

    2006-12-01

    Sensor observations are at the core of natural sciences. Improvements in data-sharing technologies offer the promise of much greater utilisation of observational data. A key to this is interoperable data standards. The Open Geospatial Consortium's (OGC) Sensor Web Enablement initiative (SWE) is developing open standards for web interfaces for the discovery, exchange and processing of sensor observations, and tasking of sensor systems. The goal is to support the construction of complex sensor applications through real-time composition of service chains from standard components. The framework is based around a suite of standard interfaces, and standard encodings for the message transferred between services. The SWE interfaces include: Sensor Observation Service (SOS)-parameterized observation requests (by observation time, feature of interest, property, sensor); Sensor Planning Service (SPS)-tasking a sensor- system to undertake future observations; Sensor Alert Service (SAS)-subscription to an alert, usually triggered by a sensor result exceeding some value. The interface design generally follows the pattern established in the OGC Web Map Service (WMS) and Web Feature Service (WFS) interfaces, where the interaction between a client and service follows a standard sequence of requests and responses. The first obtains a general description of the service capabilities, followed by obtaining detail required to formulate a data request, and finally a request for a data instance or stream. These may be implemented in a stateless "REST" idiom, or using conventional "web-services" (SOAP) messaging. In a deployed system, the SWE interfaces are supplemented by Catalogue, data (WFS) and portrayal (WMS) services, as well as authentication and rights management. The standard SWE data formats are Observations and Measurements (O&M) which encodes observation metadata and results, Sensor Model Language (SensorML) which describes sensor-systems, Transducer Model Language (TML) which covers low-level data streams, and domain-specific GML Application Schemas for definitions of the target feature types. The SWE framework has been demonstrated in several interoperability testbeds. These were based around emergency management, security, contamination and environmental monitoring scenarios.

  3. Design and performance of an integrated ground and space sensor web for monitoring active volcanoes.

    NASA Astrophysics Data System (ADS)

    Lahusen, Richard; Song, Wenzhan; Kedar, Sharon; Shirazi, Behrooz; Chien, Steve; Doubleday, Joshua; Davies, Ashley; Webb, Frank; Dzurisin, Dan; Pallister, John

    2010-05-01

    An interdisciplinary team of computer, earth and space scientists collaborated to develop a sensor web system for rapid deployment at active volcanoes. The primary goals of this Optimized Autonomous Space In situ Sensorweb (OASIS) are to: 1) integrate complementary space and in situ (ground-based) elements into an interactive, autonomous sensor web; 2) advance sensor web power and communication resource management technology; and 3) enable scalability for seamless addition sensors and other satellites into the sensor web. This three-year project began with a rigorous multidisciplinary interchange that resulted in definition of system requirements to guide the design of the OASIS network and to achieve the stated project goals. Based on those guidelines, we have developed fully self-contained in situ nodes that integrate GPS, seismic, infrasonic and lightning (ash) detection sensors. The nodes in the wireless sensor network are linked to the ground control center through a mesh network that is highly optimized for remote geophysical monitoring. OASIS also features an autonomous bidirectional interaction between ground nodes and instruments on the EO-1 space platform through continuous analysis and messaging capabilities at the command and control center. Data from both the in situ sensors and satellite-borne hyperspectral imaging sensors stream into a common database for real-time visualization and analysis by earth scientists. We have successfully completed a field deployment of 15 nodes within the crater and on the flanks of Mount St. Helens, Washington. The demonstration that sensor web technology facilitates rapid network deployments and that we can achieve real-time continuous data acquisition. We are now optimizing component performance and improving user interaction for additional deployments at erupting volcanoes in 2010.

  4. SensorWeb Hub infrastructure for open access to scientific research data

    NASA Astrophysics Data System (ADS)

    de Filippis, Tiziana; Rocchi, Leandro; Rapisardi, Elena

    2015-04-01

    The sharing of research data is a new challenge for the scientific community that may benefit from a large amount of information to solve environmental issues and sustainability in agriculture and urban contexts. Prerequisites for this challenge is the development of an infrastructure that ensure access, management and preservation of data, technical support for a coordinated and harmonious management of data that, in the framework of Open Data Policies, should encourages the reuse and the collaboration. The neogeography and the citizen as sensors approach, highlight that new data sources need a new set of tools and practices so to collect, validate, categorize, and use / access these "crowdsourced" data, that integrate the data sets produced in the scientific field, thus "feeding" the overall available data for analysis and research. When the scientific community embraces the dimension of collaboration and sharing, access and re-use, in order to accept the open innovation approach, it should redesign and reshape the processes of data management: the challenges of technological and cultural innovation, enabled by web 2.0 technologies, bring to the scenario where the sharing of structured and interoperable data will constitute the unavoidable building block to set up a new paradigm of scientific research. In this perspective the Institute of Biometeorology, CNR, whose aim is contributing to sharing and development of research data, has developed the "SensorWebHub" (SWH) infrastructure to support the scientific activities carried out in several research projects at national and international level. It is designed to manage both mobile and fixed open source meteorological and environmental sensors, in order to integrate the existing agro-meteorological and urban monitoring networks. The proposed architecture uses open source tools to ensure sustainability in the development and deployment of web applications with geographic features and custom analysis, as requested by the different research projects. The SWH components are organized in typical client-server architecture and interact from the sensing process to the representation of the results to the end-users. The Web Application enables to view and analyse the data stored in the GeoDB. The interface is designed following Internet browsers specifications allowing the visualization of collected data in different formats (tabular, chart and geographic map). The services for the dissemination of geo-referenced information, adopt the OGC specifications. SWH is a bottom-up collaborative initiative to share real time research data and pave the way for a open innovation approach in the scientific research. Until now this framework has been used for several WebGIS applications and WebApp for environmental monitoring at different temporal and spatial scales.

  5. A Grid job monitoring system

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Catalin; Nowack, Andreas; Padhi, Sanjay; Sarkar, Subir

    2010-04-01

    This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components : (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.

  6. Using URIs to effectively transmit sensor data and metadata

    NASA Astrophysics Data System (ADS)

    Kokkinaki, Alexandra; Buck, Justin; Darroch, Louise; Gardner, Thomas

    2017-04-01

    Autonomous ocean observation is massively increasing the number of sensors in the ocean. Accordingly, the continuing increase in datasets produced, makes selecting sensors that are fit for purpose a growing challenge. Decision making on selecting quality sensor data, is based on the sensor's metadata, i.e. manufacturer specifications, history of calibrations etc. The Open Geospatial Consortium (OGC) has developed the Sensor Web Enablement (SWE) standards to facilitate integration and interoperability of sensor data and metadata. The World Wide Web Consortium (W3C) Semantic Web technologies enable machine comprehensibility promoting sophisticated linking and processing of data published on the web. Linking the sensor's data and metadata according to the above-mentioned standards can yield practical difficulties, because of internal hardware bandwidth restrictions and a requirement to constrain data transmission costs. Our approach addresses these practical difficulties by uniquely identifying sensor and platform models and instances through URIs, which resolve via content negotiation to either OGC's sensor meta language, sensorML or W3C's Linked Data. Data transmitted by a sensor incorporate the sensor's unique URI to refer to its metadata. Sensor and platform model URIs and descriptions are created and hosted by the British Oceanographic Data Centre (BODC) linked systems service. The sensor owner creates the sensor and platform instance URIs prior and during sensor deployment, through an updatable web form, the Sensor Instance Form (SIF). SIF enables model and instance URI association but also platform and sensor linking. The use of URIs, which are dynamically generated through the SIF, offers both practical and economical benefits to the implementation of SWE and Linked Data standards in near real time systems. Data can be linked to metadata dynamically in-situ while saving on the costs associated to the transmission of long metadata descriptions. The transmission of short URIs also enables the implementation of standards on systems where it is impractical, such as legacy hardware.

  7. Integration of Bim, Web Maps and Iot for Supporting Comfort Analysis

    NASA Astrophysics Data System (ADS)

    Gunduz, M.; Isikdag, U.; Basaraner, M.

    2017-11-01

    The use of the Internet is expanding and the technological capabilities of electronic devices are evolving. Today, Internet of Things (IoT) solutions can be developed that were never even imaginable before. In this paper, a case study is presented on the joint use of Building Information Model (BIM), Geographical Information Systems (GIS) and Internet of Things (IoT) technologies. It is a part of an ongoing study that intends to overcome some problems about the management of complex facilities. In the study, a BIM has been converted and displayed in 2D on Google Maps, and information on various sensors have been represented on the web with geographic coordinates in real-time.

  8. Cryosphere Sensor Webs With The Autonomous Sciencecraft Experiment

    NASA Astrophysics Data System (ADS)

    Scharenbroich, L.; Doggett, T.; Kratz, T.; Castano, R.; Chien, S.; Davies, A. G.; Tran, D.; Mazzoni, D.

    2006-12-01

    Autonomous sensor-webs are being deployed as part of the Autonomous Sciencecraft Experiment [1], whereby observations using the Hyperion instrument [2] on-board Earth Observing-1 (EO-1 are triggered by either ground sensors or by near-real-time analysis of data from other space-based sensors. In the realm of cryosphere monitoring, one sensor-web has been set up pairing EO-1 with a sensor buoy [3] deployed in Sparkling Lake, one of several lakes in northern Wisconsin monitored by University of Wisconsin's Trout Lake Station. A Support Vector Machine (SVM) classifier was trained on historical thermistor chain data with manually recorded ice-in and ice-out times and used to trigger Hyperion observations of the Trout Lake area during spring thaw and winter freeze in 2005. A second sensor-web is being developed using near-real time sea ice data products, based on Department of Defense meteorological satellites, available from the National Snow and Ice Data Center (NSIDC) [4]. Once operational, this sensor web will trigger Hyperion observations of pre-defined targets in the Arctic and Antarctic where regional resolution data shows sea ice formation or break up. [1] Chien et al. (2005), An autonomous earth-observing sensor-web, IEEE Intelligent Systems, [2] Pearlman et al. (2003), Hyperion, a space-based imaging spectrometer, IEEE Trans. Geosci. Rem. Sens., 41(6), [3] Kratz, T. et al. (in press) Toward a Global Lake Ecological Observatory Network, Proceedings of the Karelian Institute, [4] Cavalieri et al. (1999) Near real-time DMSP SSM/I daily polar gridded sea ice concentrations, National Snow and Ice Data Center. Digital Media.

  9. Optimized autonomous space in-situ sensor web for volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Shirazi, B.; Huang, R.; Xu, M.; Peterson, N.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.; Kedar, S.; Chien, S.; Webb, F.; Kiely, A.; Doubleday, J.; Davies, A.; Pieri, D.

    2010-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), have developed a prototype of dynamic and scalable hazard monitoring sensor-web and applied it to volcano monitoring. The combined Optimized Autonomous Space In-situ Sensor-web (OASIS) has two-way communication capability between ground and space assets, uses both space and ground data for optimal allocation of limited bandwidth resources on the ground, and uses smart management of competing demands for limited space assets. It also enables scalability and seamless infusion of future space and in-situ assets into the sensor-web. The space and in-situ control components of the system are integrated such that each element is capable of autonomously tasking the other. The ground in-situ was deployed into the craters and around the flanks of Mount St. Helens in July 2009, and linked to the command and control of the Earth Observing One (EO-1) satellite. ?? 2010 IEEE.

  10. Development of a spatial decision support system for flood risk management in Brazil that combines volunteered geographic information with wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Horita, Flávio E. A.; Albuquerque, João Porto de; Degrossi, Lívia C.; Mendiondo, Eduardo M.; Ueyama, Jó

    2015-07-01

    Effective flood risk management requires updated information to ensure that the correct decisions can be made. This can be provided by Wireless Sensor Networks (WSN) which are a low-cost means of collecting updated information about rivers. Another valuable resource is Volunteered Geographic Information (VGI) which is a comparatively new means of improving the coverage of monitored areas because it is able to supply supplementary information to the WSN and thus support decision-making in flood risk management. However, there still remains the problem of how to combine WSN data with VGI. In this paper, an attempt is made to investigate AGORA-DS, which is a Spatial Decision Support System (SDSS) that is able to make flood risk management more effective by combining these data sources, i.e. WSN with VGI. This approach is built over a conceptual model that complies with the interoperable standards laid down by the Open Geospatial Consortium (OGC) - e.g. Sensor Observation Service (SOS) and Web Feature Service (WFS) - and seeks to combine and present unified information in a web-based decision support tool. This work was deployed in a real scenario of flood risk management in the town of São Carlos in Brazil. The evidence obtained from this deployment confirmed that interoperable standards can support the integration of data from distinct data sources. In addition, they also show that VGI is able to provide information about areas of the river basin which lack data since there is no appropriate station in the area. Hence it provides a valuable support for the WSN data. It can thus be concluded that AGORA-DS is able to combine information provided by WSN and VGI, and provide useful information for supporting flood risk management.

  11. Using Open Geographic Data to Generate Natural Language Descriptions for Hydrological Sensor Networks.

    PubMed

    Molina, Martin; Sanchez-Soriano, Javier; Corcho, Oscar

    2015-07-03

    Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions.

  12. Using Open Geographic Data to Generate Natural Language Descriptions for Hydrological Sensor Networks

    PubMed Central

    Molina, Martin; Sanchez-Soriano, Javier; Corcho, Oscar

    2015-01-01

    Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions. PMID:26151211

  13. Publishing high-quality climate data on the semantic web

    NASA Astrophysics Data System (ADS)

    Woolf, Andrew; Haller, Armin; Lefort, Laurent; Taylor, Kerry

    2013-04-01

    The effort over more than a decade to establish the semantic web [Berners-Lee et. al., 2001] has received a major boost in recent years through the Open Government movement. Governments around the world are seeking technical solutions to enable more open and transparent access to Public Sector Information (PSI) they hold. Existing technical protocols and data standards tend to be domain specific, and so limit the ability to publish and integrate data across domains (health, environment, statistics, education, etc.). The web provides a domain-neutral platform for information publishing, and has proven itself beyond expectations for publishing and linking human-readable electronic documents. Extending the web pattern to data (often called Web 3.0) offers enormous potential. The semantic web applies the basic web principles to data [Berners-Lee, 2006]: using URIs as identifiers (for data objects and real-world 'things', instead of documents) making the URIs actionable by providing useful information via HTTP using a common exchange standard (serialised RDF for data instead of HTML for documents) establishing typed links between information objects to enable linking and integration Leading examples of 'linked data' for publishing PSI may be found in both the UK (http://data.gov.uk/linked-data) and US (http://www.data.gov/page/semantic-web). The Bureau of Meteorology (BoM) is Australia's national meteorological agency, and has a new mandate to establish a national environmental information infrastructure (under the National Plan for Environmental Information, NPEI [BoM, 2012a]). While the initial approach is based on the existing best practice Spatial Data Infrastructure (SDI) architecture, linked-data is being explored as a technological alternative that shows great promise for the future. We report here the first trial of government linked-data in Australia under data.gov.au. In this initial pilot study, we have taken BoM's new high-quality reference surface temperature dataset, Australian Climate Observations Reference Network - Surface Air Temperature (ACORN-SAT) [BoM, 2012b]. This dataset contains daily homogenised surface temperature observations for 112 locations around Australia, dating back to 1910. An ontology for the dataset was developed [Lefort et. al., 2012], based on the existing Semantic Sensor Network ontology [Compton et. al., 2012] and the W3C RDF Data Cube vocabulary [W3C, 2012]. Additional vocabularies were developed, e.g. for BoM weather stations and rainfall districts. The dataset was converted to RDF and loaded into an RDF triplestore. The Linked-Data API (http://code.google.com/p/linked-data-api) was used to configure specific URI query patterns (e.g. for observation timeseries slices by station), and a SPARQL endpoint was provided for direct querying. In addition, some demonstration 'mash-ups' were developed, providing an interactive browser-based interface to the temperature timeseries. References [Berners-Lee et. al., 2001] Tim Berners-Lee, James Hendler and Ora Lassila (2001), "The Semantic Web", Scientific American, May 2001. [Berners-Lee, 2006] Tim Berners-Lee (2006), "Linked Data - Design Issues", W3C [http://www.w3.org/DesignIssues/LinkedData.html] [BoM, 2012a] Bureau of Meteorology (2012), "Environmental information" [http://www.bom.gov.au/environment/] [BoM, 2012b] Bureau of Meteorology (2012), "Australian Climate Observations Reference Network - Surface Air Temperature" [http://www.bom.gov.au/climate/change/acorn-sat/] [Compton et. al., 2012] Michael Compton, Payam Barnaghi, Luis Bermudez, Raul Garcia-Castro, Oscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog, Vincent Huang, Krzysztof Janowicz, W. David Kelsey, Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus, Andriy Nikolov, Kevin Page, Alexandre Passant, Amit Sheth, Kerry Taylor (2012), "The SSN Ontology of the W3C Semantic Sensor Network Incubator Group", J. Web Semantics, 17 (2012) [http://dx.doi.org/10.1016/j.websem.2012.05.003] [Lefort et. al., 2012] Laurent Lefort, Josh Bobruk, Armin Haller, Kerry Taylor and Andrew Woolf (2012), "A Linked Sensor Data Cube for a 100 Year Homogenised daily temperature dataset", Proc. Semantic Sensor Networks 2012 [http://ceur-ws.org/Vol-904/paper10.pdf] [W3C, 2012] W3C (2012), "The RDF Data Cube Vocabulary", [http://www.w3.org/TR/vocab-data-cube/

  14. Sensor Webs and Virtual Globes: Enabling Understanding of Changes in a partially Glaciated Watershed

    NASA Astrophysics Data System (ADS)

    Heavner, M.; Fatland, D. R.; Habermann, M.; Berner, L.; Hood, E.; Connor, C.; Galbraith, J.; Knuth, E.; O'Brien, W.

    2008-12-01

    The University of Alaska Southeast is currently implementing a sensor web identified as the SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education, and Research (SEAMONSTER). SEAMONSTER is operating in the partially glaciated Mendenhall and Lemon Creek Watersheds, in the Juneau area, on the margins of the Juneau Icefield. These watersheds are studied for both 1. long term monitoring of changes, and 2. detection and analysis of transient events (such as glacier lake outburst floods). The heterogeneous sensors (meteorologic, dual frequency GPS, water quality, lake level, etc), power and bandwidth constraints, and competing time scales of interest require autonomous reactivity of the sensor web. They also present challenges for operational management of the sensor web. The harsh conditions on the glaciers provide additional operating constraints. The tight integration of the sensor web and virtual global enabling technology enhance the project in multiple ways. We are utilizing virtual globe infrastructures to enhance both sensor web management and data access. SEAMONSTER utilizes virtual globes for education and public outreach, sensor web management, data dissemination, and enabling collaboration. Using a PosgreSQL with GIS extensions database coupled to the Open Geospatial Consortium (OGC) Geoserver, we generate near-real-time auto-updating geobrowser files of the data in multiple OGC standard formats (e.g KML, WCS). Additionally, embedding wiki pages in this database allows the development of a geospatially aware wiki describing the projects for better public outreach and education. In this presentation we will describe how we have implemented these technologies to date, the lessons learned, and our efforts towards greater OGC standard implementation. A major focus will be on demonstrating how geobrowsers and virtual globes have made this project possible.

  15. Automatic publishing ISO 19115 metadata with PanMetaDocs using SensorML information

    NASA Astrophysics Data System (ADS)

    Stender, Vivien; Ulbricht, Damian; Schroeder, Matthias; Klump, Jens

    2014-05-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. The contribution by the participating research centers is organized as regional observatories. A challenge for TERENO and its observatories is to integrate all aspects of data management, data workflows, data modeling and visualizations into the design of a monitoring infrastructure. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences (GFZ) in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR (TEreno Online Data repOsitORry). TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes data available through standard web services. Geographic sensor information and services are described using the ISO 19115 metadata schema. TEODOOR accesses the OGC Sensor Web Enablement (SWE) interfaces offered by the regional observatories. In addition to the SWE interface, TERENO Northeast also published data through DataCite. The necessary metadata are created in an automated process by extracting information from the SWE SensorML to create ISO 19115 compliant metadata. The resulting metadata file is stored in the GFZ Potsdam data infrastructure. The publishing workflow for file based research datasets at GFZ Potsdam is based on the eSciDoc infrastructure, using PanMetaDocs (PMD) as the graphical user interface. PMD is a collaborative, metadata based data and information exchange platform [1]. Besides SWE, metadata are also syndicated by PMD through an OAI-PMH interface. In addition, metadata from other observatories, projects or sensors in TERENO can be accessed through the TERENO Northeast data portal. [1] http://meetingorganizer.copernicus.org/EGU2012/EGU2012-7058-2.pdf

  16. Enhancing the Value of Sensor-based Observations by Capturing the Knowledge of How An Observation Came to Be

    NASA Astrophysics Data System (ADS)

    Fredericks, J.; Rueda-Velasquez, C. A.

    2016-12-01

    As we move from keeping data on our disks to sharing it with the world, often in real-time, we are obligated to also tell an unknown user about how our observations were made. Data that are shared must not only have ownership metadata, unit descriptions and content formatting information. The provider must also share information that is needed to assess the data as it relates to potential re-use. A user must be able to assess the limitations and capabilities of the sensor, as it is configured, to understand its value. For example, when an instrument is configured, it typically affects the data accuracy and operational limits of the sensor. An operator may sacrifice data accuracy to achieve a broader operational range and visa versa. If you are looking at newly discovered data, it is important to be able to find all of the information that relates to assessing the data quality for your particular application. Traditionally, metadata are captured by data managers who usually do not know how the data are collected. By the time data are distributed, this knowledge is often gone, buried within notebooks or hidden in documents that are not machine-harvestable and often not human-readable. In a recently funded NSF EarthCube Integrative Activity called X-DOMES (Cross-Domain Observational Metadata in EnviroSensing), mechanisms are underway to enable the capture of sensor and deployment metadata by sensor manufacturers and field operators. The support has enabled the development of a community ontology repository (COR) within the Earth Science Information Partnership (ESIP) community, fostering easy creation of resolvable terms for the broader community. This tool enables non-experts to easily develop W3C standards-based content, promoting the implementation of Semantic Web technologies for enhanced discovery of content and interoperability in workflows. The X-DOMES project is also developing a SensorML Viewer/Editor to provide an easy interface for sensor manufacturers and field operators to fully-describe sensor capabilities and configuration/deployment content - automatically generating it in machine-harvestable encodings that can be referenced by data managers and/or associated with the data through web-services, such as the OGC SWE Sensor Observation Service.

  17. Experimenting with Sensor Webs Using Earth Observing 1

    NASA Technical Reports Server (NTRS)

    Mandl, Dan

    2004-01-01

    The New Millennium Program (NMP) Earth Observing 1 ( EO-1) satellite was launched November 21, 2000 as a one year technology validation mission. After an almost flawless first year of operations, EO-1 continued to operate in a test bed d e to validate additional technologies and concepts that will be applicable to future sensor webs. A sensor web is a group of sensors, whether space-based, ground-based or air plane-based which act in a collaborative autonomous manner to produce more value than would otherwise result from the individual observations.

  18. Using Sensor Web Processes and Protocols to Assimilate Satellite Data into a Forecast Model

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Conover, Helen; Zavodsky, Bradley; Maskey, Manil; Jedlovec, Gary; Regner, Kathryn; Li, Xiang; Lu, Jessica; Botts, Mike; Berthiau, Gregoire

    2008-01-01

    The goal of the Sensor Management Applied Research Technologies (SMART) On-Demand Modeling project is to develop and demonstrate the readiness of the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities to integrate both space-based Earth observations and forecast model output into new data acquisition and assimilation strategies. The project is developing sensor web-enabled processing plans to assimilate Atmospheric Infrared Sounding (AIRS) satellite temperature and moisture retrievals into a regional Weather Research and Forecast (WRF) model over the southeastern United States.

  19. The Purpose of the Sensor Web

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2004-01-01

    The Sensor Web concept emerged as the number of Earth Science Satellites began to increase in the recent years. The idea, part of a vision for the future of earth science, was that the sensor systems would be linked in an active way to provide improved forecast capability. This means that a system that is nearly autonomous would need to be developed to allow the satellites to re-target and deploy assets for particular phenomena or provide on board processing for real time data. This talk will describe several elements of the sensor web.

  20. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.

    PubMed

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-11-24

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  1. Usage of Wireless Sensor Networks in a service based spatial data infrastructure for Landslide Monitoring and Early Warning

    NASA Astrophysics Data System (ADS)

    Arnhardt, C.; Fernandez-Steeger, T. M.; Walter, K.; Kallash, A.; Niemeyer, F.; Azzam, R.; Bill, R.

    2007-12-01

    The joint project Sensor based Landslide Early Warning System (SLEWS) aims at a systematic development of a prototyping alarm- and early warning system for the detection of mass movements by application of an ad hoc wireless sensor network (WSN). Next to the development of suitable sensor setups, sensor fusion and network fusion are applied to enhance data quality and reduce false alarm rates. Of special interest is the data retrieval, processing and visualization in GI-Systems. Therefore a suitable serviced based Spatial Data Infrastructure (SDI) will be developed with respect to existing and upcoming Open Geospatial Consortium (OGC) standards.The application of WSN provides a cheap and easy to set up solution for special monitoring and data gathering in large areas. Measurement data from different low-cost transducers for deformation observation (acceleration, displacement, tilting) is collected by distributed sensor nodes (motes), which interact separately and connect each other in a self-organizing manner. Data are collected and aggregated at the beacon (transmission station) and further operations like data pre-processing and compression can be performed. The WSN concept provides next to energy efficiency, miniaturization, real-time monitoring and remote operation, but also new monitoring strategies like sensor and network fusion. Since not only single sensors can be integrated at single motes either cross-validation or redundant sensor setups are possible to enhance data quality. The planned monitoring and information system will include a mobile infrastructure (information technologies and communication components) as well as methods and models to estimate surface deformation parameters (positioning systems). The measurements result in heterogeneous observation sets that have to be integrated in a common adjustment and filtering approach. Reliable real-time information will be obtained using a range of sensor input and algorithms, from which early warnings and prognosis may be derived. Implementation of sensor algorithms is an important task to form the business logic. This will be represented in self-contained web-based processing services (WPS). In the future different types of sensor networks can communicate via an infrastructure of OGC services using an interoperable way by standardized protocols as the Sensor Markup Language (SensorML) and Observations & Measurements Schema (O&M). Synchronous and asynchronous information services as the Sensor Alert Service (SAS) and the Web Notification Services (WNS) will provide defined users and user groups with time-critical readings from the observation site. Techniques using services for visualizing mapping data (WMS), meta data (CSW), vector (WFS) and raster data (WCS) will range from high detailed expert based output to fuzzy graphical warning elements.The expected results will be an advancement regarding classical alarm and early warning systems as the WSN are free scalable, extensible and easy to install.

  2. Technology Trends and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The science and application of remote sensing is flourishing in the digital age. Geographical information systems can provide a broad range of information tailored to the specific needs of disaster managers. Recent advances in airborne platforms, sensors and information technologies have come together provide the ability to put geo-registered, multispectral imagery on the web in near real-time. Highlights of a demonstration of NASA's First Response Experiment (FiRE) will be presented.

  3. a Web Service Approach for Linking Sensors and Cellular Spaces

    NASA Astrophysics Data System (ADS)

    Isikdag, U.

    2013-09-01

    More and more devices are starting to be connected to the Internet. In the future the Internet will not only be a communication medium for people, it will in fact be a communication environment for devices. The connected devices which are also referred as Things will have an ability to interact with other devices over the Internet, i.) provide information in interoperable form and ii.) consume /utilize such information with the help of sensors embedded in them. This overall concept is known as Internet-of- Things (IoT). This requires new approaches to be investigated for system architectures to establish relations between spaces and sensors. The research presented in this paper elaborates on an architecture developed with this aim, i.e. linking spaces and sensors using a RESTful approach. The objective is making spaces aware of (sensor-embedded) devices, and making devices aware of spaces in a loosely coupled way (i.e. a state/usage/function change in the spaces would not have effect on sensors, similarly a location/state/usage/function change in sensors would not have any effect on spaces). The proposed architecture also enables the automatic assignment of sensors to spaces depending on space geometry and sensor location.

  4. A Proxy Design to Leverage the Interconnection of CoAP Wireless Sensor Networks with Web Applications

    PubMed Central

    Ludovici, Alessandro; Calveras, Anna

    2015-01-01

    In this paper, we present the design of a Constrained Application Protocol (CoAP) proxy able to interconnect Web applications based on Hypertext Transfer Protocol (HTTP) and WebSocket with CoAP based Wireless Sensor Networks. Sensor networks are commonly used to monitor and control physical objects or environments. Smart Cities represent applications of such a nature. Wireless Sensor Networks gather data from their surroundings and send them to a remote application. This data flow may be short or long lived. The traditional HTTP long-polling used by Web applications may not be adequate in long-term communications. To overcome this problem, we include the WebSocket protocol in the design of the CoAP proxy. We evaluate the performance of the CoAP proxy in terms of latency and memory consumption. The tests consider long and short-lived communications. In both cases, we evaluate the performance obtained by the CoAP proxy according to the use of WebSocket and HTTP long-polling. PMID:25585107

  5. A Web 2.0 and OGC Standards Enabled Sensor Web Architecture for Global Earth Observing System of Systems

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Unger, Stephen; Ames, Troy; Frye, Stuart; Chien, Steve; Cappelaere, Pat; Tran, Danny; Derezinski, Linda; Paules, Granville

    2007-01-01

    This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005.

  6. Sensor Web in Antarctica: Developing an Intelligent, Autonomous Platform for Locating Biological Flourishes in Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Delin, K. A.; Harvey, R. P.; Chabot, N. A.; Jackson, S. P.; Adams, Mike; Johnson, D. W.; Britton, J. T.

    2003-01-01

    The most rigorous tests of the ability to detect extant life will occur where biotic activity is limited by severe environmental conditions. Cryogenic environments are among the most severe-the energy and nutrients needed for biological activity are in short supply while the climate itself is actively destructive to biological mechanisms. In such settings biological activity is often limited to brief flourishes, occurring only when and where conditions are at their most favorable. The closer that typical regional conditions approach conditions that are actively hostile , the more widely distributed biological blooms will be in both time and space. On a spatial dimension of a few meters or a time dimension of a few days, biological activity becomes much more difficult to detect. One way to overcome this difficulty is to establish a Sensor Web that can monitor microclimates over appropriate scales of time and distance, allowing a continuous virtual presence for instant recognition of favorable conditions. A more sophisticated Sensor Web, incorporating metabolic sensors, can effectively meet the challenge to be in "the right place in the right time". This is particularly of value in planetary surface missions, where limited mobility and mission timelines require extremely efficient sample and data acquisition. Sensor Webs can be an effective way to fill the gap between broad scale orbital data collection and fine-scale surface lander science. We are in the process of developing an intelligent, distributed and autonomous Sensor Web that will allow us to monitor microclimate under severe cryogenic conditions, approaching those extant on the surface of Mars. Ultimately this Sensor Web will include the ability to detect and/or establish limits on extant microbiological activity through incorporation of novel metabolic gas sensors. Here we report the results of our first deployment of a Sensor Web prototype in a previously unexplored high altitude East Antarctic Plateau "micro-oasis" at the MacAlpine Hills, Law Glacier, Antarctica.

  7. Test-bed for the remote health monitoring system for bridge structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog

    2009-05-01

    This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.

  8. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.

    PubMed

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-02-09

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  9. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems

    PubMed Central

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-01-01

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.  PMID:28208787

  10. An International Disaster Management SensorWeb Consisting of Space-based and Insitu Sensors

    NASA Astrophysics Data System (ADS)

    Mandl, D.; Frye, S. W.; Policelli, F. S.; Cappelaere, P. G.

    2009-12-01

    For the past year, NASA along with partners consisting of the United Nations Space-based Information for Disaster and Emergency Response (UN-SPIDER) office, the Canadian Space Agency, the Ukraine Space Research Institute (SRI), Taiwan National Space Program Office (NSPO) and in conjunction with the Committee on Earth Observing Satellite (CEOS) Working Group on Information Systems and Services (WGISS) have been conducting a pilot project to automate the process of obtaining sensor data for the purpose of flood management and emergency response. This includes experimenting with flood prediction models based on numerous meteorological satellites and a global hydrological model and then automatically triggering follow up high resolution satellite imagery with rapid delivery of data products. This presentation will provide a overview of the effort, recent accomplishments and future plans.

  11. Welcome to health information science and systems.

    PubMed

    Zhang, Yanchun

    2013-01-01

    Health Information Science and Systems is an exciting, new, multidisciplinary journal that aims to use technologies in computer science to assist in disease diagnoses, treatment, prediction and monitoring through the modeling, design, development, visualization, integration and management of health related information. These computer-science technologies include such as information systems, web technologies, data mining, image processing, user interaction and interface, sensors and wireless networking and are applicable to a wide range of health related information including medical data, biomedical data, bioinformatics data, public health data.

  12. Web-Based Mapping Puts the World at Your Fingertips

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's award-winning Earth Resources Laboratory Applications Software (ELAS) package was developed at Stennis Space Center. Since 1978, ELAS has been used worldwide for processing satellite and airborne sensor imagery data of the Earth's surface into readable and usable information. DATASTAR Inc., of Picayune, Mississippi, has used ELAS software in the DATASTAR Image Processing Exploitation (DIPEx) desktop and Internet image processing, analysis, and manipulation software. The new DIPEx Version III includes significant upgrades and improvements compared to its esteemed predecessor. A true World Wide Web application, this product evolved with worldwide geospatial dimensionality and numerous other improvements that seamlessly support the World Wide Web version.

  13. Current Status and Future Plan of Arctic Sea Ice monitoring in South Korea

    NASA Astrophysics Data System (ADS)

    Shin, J.; Park, J.

    2016-12-01

    Arctic sea ice is one of the most important parameters in climate. For monitoring of sea ice changes, the National Meteorological Satellite Center (NMSC) of Korea Metrological Administration has developed the "Arctic sea ice monitoring system" to retrieve the sea ice extent and surface roughness using microwave sensor data, and statistical prediction model for Arctic sea ice extent. This system has been implemented to the web site for real-time public service. The sea ice information can be retrieved using the spaceborne microwave sensor-Special Sensor Microwave Imager/Sounder (SSMI/S). The sea ice information like sea ice extent, sea ice surface roughness, and predictive sea ice extent are produced weekly base since 2007. We also publish the "Analysis report of the Arctic sea ice" twice a year. We are trying to add more sea ice information into this system. Details of current status and future plan of Arctic sea ice monitoring and the methodology of the sea ice information retrievals will be presented in the meeting.

  14. An Integrated GIS-Expert System Framework for Live Hazard Monitoring and Detection.

    PubMed

    McCarthy, James D; Graniero, Phil A; Rozic, Steven M

    2008-02-08

    In the context of hazard monitoring, using sensor web technology to monitor anddetect hazardous conditions in near-real-time can result in large amounts of spatial data thatcan be used to drive analysis at an instrumented site. These data can be used for decisionmaking and problem solving, however as with any analysis problem the success ofanalyzing hazard potential is governed by many factors such as: the quality of the sensordata used as input; the meaning that can be derived from those data; the reliability of themodel used to describe the problem; the strength of the analysis methods; and the ability toeffectively communicate the end results of the analysis. For decision makers to make use ofsensor web data these issues must be dealt with to some degree. The work described in thispaper addresses all of these areas by showing how raw sensor data can be automaticallytransformed into a representation which matches a predefined model of the problem context.This model can be understood by analysis software that leverages rule-based logic andinference techniques to reason with, and draw conclusions about, spatial data. These toolsare integrated with a well known Geographic Information System (GIS) and existinggeospatial and sensor web infrastructure standards, providing expert users with the toolsneeded to thoroughly explore a problem site and investigate hazards in any domain.

  15. SCIMITAR: Scalable Stream-Processing for Sensor Information Brokering

    DTIC Science & Technology

    2013-11-01

    IaaS) cloud frameworks including Amazon Web Services and Eucalyptus . For load testing, we used The Grinder [9], a Java load testing framework that...internal Eucalyptus cluster which we could not scale as large as the Amazon environment due to a lack of computation resources. We recreated our

  16. Sensor Webs to Constellations

    NASA Astrophysics Data System (ADS)

    Cole, M.

    2017-12-01

    Advanced technology plays a key role in enabling future Earth-observing missions needed for global monitoring and climate research. Rapid progress over the past decade and anticipated for the coming decades have diminished the size of some satellites while increasing the amount of data and required pace of integration and analysis. Sensor web developments provide correlations to constellations of smallsats. Reviewing current advances in sensor webs and requirements for constellations will improve planning, operations, and data management for future architectures of multiple satellites with a common mission goal.

  17. Sensor Web Technology Challenges and Advancements for the Earth Science Decadal Survey Era

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Moe, Karen

    2011-01-01

    This paper examines the Earth science decadal survey era and the role ESTO developed sensor web technologies can contribute to the scientific observations. This includes hardware and software technology advances for in-situ and in-space measurements. Also discussed are emerging areas of importance such as the potential of small satellites for sensor web based observations as well as advances in data fusion critical to the science and societal benefits of future missions, and the challenges ahead.

  18. Robopedia: Leveraging Sensorpedia for Web-Enabled Robot Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resseguie, David R

    There is a growing interest in building Internetscale sensor networks that integrate sensors from around the world into a single unified system. In contrast, robotics application development has primarily focused on building specialized systems. These specialized systems take scalability and reliability into consideration, but generally neglect exploring the key components required to build a large scale system. Integrating robotic applications with Internet-scale sensor networks will unify specialized robotics applications and provide answers to large scale implementation concerns. We focus on utilizing Internet-scale sensor network technology to construct a framework for unifying robotic systems. Our framework web-enables a surveillance robot smore » sensor observations and provides a webinterface to the robot s actuators. This lets robots seamlessly integrate into web applications. In addition, the framework eliminates most prerequisite robotics knowledge, allowing for the creation of general web-based robotics applications. The framework also provides mechanisms to create applications that can interface with any robot. Frameworks such as this one are key to solving large scale mobile robotics implementation problems. We provide an overview of previous Internetscale sensor networks, Sensorpedia (an ad-hoc Internet-scale sensor network), our framework for integrating robots with Sensorpedia, two applications which illustrate our frameworks ability to support general web-based robotic control, and offer experimental results that illustrate our framework s scalability, feasibility, and resource requirements.« less

  19. Born semantic: linking data from sensors to users and balancing hardware limitations with data standards

    NASA Astrophysics Data System (ADS)

    Buck, Justin; Leadbetter, Adam

    2015-04-01

    New users for the growing volume of ocean data for purposes such as 'big data' data products and operational data assimilation/ingestion require data to be readily ingestible. This can be achieved via the application of World Wide Web Consortium (W3C) Linked Data and Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) standards to data management. As part of several Horizons 2020 European projects (SenseOCEAN, ODIP, AtlantOS) the British Oceanographic Data Centre (BODC) are working on combining existing data centre architecture and SWE software such as Sensor Observation Services with a Linked Data front end. The standards to enable data delivery are proven and well documented1,2 There are practical difficulties when SWE standards are applied to real time data because of internal hardware bandwidth restrictions and a requirement to constrain data transmission costs. A pragmatic approach is proposed where sensor metadata and data output in OGC standards are implemented "shore-side" with sensors and instruments transmitting unique resolvable web linkages to persistent OGC SensorML records published at the BODC. References: 1. World Wide Web Consortium. (2013). Linked Data. Available: http://www.w3.org/standards/semanticweb/data. Last accessed 8th October 2014. 2. Open Geospatial Consortium. (2014). Sensor Web Enablement (SWE). Available: http://www.opengeospatial.org/ogc/markets-technologies/swe. Last accessed 8th October 2014.

  20. Automated Data Quality Assurance using OGC Sensor Web Enablement Frameworks for Marine Observatories

    NASA Astrophysics Data System (ADS)

    Toma, Daniel; Bghiel, Ikram; del Rio, Joaquin; Hidalgo, Alberto; Carreras, Normandino; Manuel, Antoni

    2014-05-01

    Over the past years, environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent. Therefore, many sensor networks are increasingly deployed to monitor our environment. But due to the large number of sensor manufacturers, accompanying protocols and data encoding, automated integration and data quality assurance of diverse sensors in an observing systems is not straightforward, requiring development of data management code and manual tedious configuration. However, over the past few years it has been demonstrated that Open-Geospatial Consortium (OGC) frameworks can enable web services with fully-described sensor systems, including data processing, sensor characteristics and quality control tests and results. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The data management software which enables access to sensors, data processing and quality control tests has to be implemented and the results have to be manually mapped to the SWE models. In this contribution, we describe a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) OGC PUCK protocol - a simple standard embedded instrument protocol to store and retrieve directly from the devices the declarative description of sensor characteristics and quality control tests, (2) an automatic mechanism for data processing and quality control tests underlying the Sensor Web - the Sensor Interface Descriptor (SID) concept, as well as (3) a model for the declarative description of sensor which serves as a generic data management mechanism - designed as a profile and extension of OGC SWE's SensorML standard. We implement and evaluate our approach by applying it to the OBSEA Observatory, and can be used to demonstrate the ability to assess data quality for temperature, salinity, air pressure and wind speed and direction observations off the coast of Garraf, in the north-eastern Spain.

  1. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks

    PubMed Central

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-01-01

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper. PMID:27873941

  2. A National Crop Progress Monitoring System Based on NASA Earth Science Results

    NASA Astrophysics Data System (ADS)

    Di, L.; Yu, G.; Zhang, B.; Deng, M.; Yang, Z.

    2011-12-01

    Crop progress is an important piece of information for food security and agricultural commodities. Timely monitoring and reporting are mandated for the operation of agricultural statistical agencies. Traditionally, the weekly reporting issued by the National Agricultural Statistics Service (NASS) of the United States Department of Agriculture (USDA) is based on reports from the knowledgeable state and county agricultural officials and farmers. The results are spatially coarse and subjective. In this project, a remote-sensing-supported crop progress monitoring system is being developed intensively using the data and derived products from NASA Earth Observing satellites. Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 product - MOD09 (Surface Reflectance) is used for deriving daily normalized vegetation index (NDVI), vegetation condition index (VCI), and mean vegetation condition index (MVCI). Ratio change to previous year and multiple year mean can be also produced on demand. The time-series vegetation condition indices are further combined with the NASS' remote-sensing-derived Cropland Data Layer (CDL) to estimate crop condition and progress crop by crop. To facilitate the operational requirement and increase the accessibility of data and products by different users, each component of the system has being developed and implemented following open specifications under the Web Service reference model of Open Geospatial Consortium Inc. Sensor observations and data are accessed through Web Coverage Service (WCS), Web Feature Service (WFS), or Sensor Observation Service (SOS) if available. Products are also served through such open-specification-compliant services. For rendering and presentation, Web Map Service (WMS) is used. A Web-service based system is set up and deployed at dss.csiss.gmu.edu/NDVIDownload. Further development will adopt crop growth models, feed the models with remotely sensed precipitation and soil moisture information, and incorporate the model results with vegetation-index time series for crop progress stage estimation.

  3. Triggers and monitoring in intelligent personal health record.

    PubMed

    Luo, Gang

    2012-10-01

    Although Web-based personal health records (PHRs) have been widely deployed, the existing ones have limited intelligence. Previously, we introduced expert system technology and Web search technology into the PHR domain and proposed the concept of an intelligent PHR (iPHR). iPHR provides personalized healthcare information to facilitate users' daily activities of living. The current iPHR is passive and follows the pull model of information distribution. This paper introduces triggers and monitoring into iPHR to make iPHR become active. Our idea is to let medical professionals pre-compile triggers and store them in iPHR's knowledge base. Each trigger corresponds to an abnormal event that may have potential medical impact. iPHR keeps collecting, processing, and analyzing the user's medical data from various sources such as wearable sensors. Whenever an abnormal event is detected from the user's medical data, the corresponding trigger fires and the related personalized healthcare information is pushed to the user using natural language generation technology, expert system technology, and Web search technology.

  4. Cloud/web mapping and geoprocessing services - Intelligently linking geoinformation

    NASA Astrophysics Data System (ADS)

    Veenendaal, Bert; Brovelli, Maria Antonia; Wu, Lixin

    2016-04-01

    We live in a world that is alive with information and geographies. "Everything happens somewhere" (Tosta, 2001). This reality is being exposed in the digital earth technologies providing a multi-dimensional, multi-temporal and multi-resolution model of the planet, based on the needs of diverse actors: from scientists to decision makers, communities and citizens (Brovelli et al., 2015). We are building up a geospatial information infrastructure updated in real time thanks to mobile, positioning and sensor observations. Users can navigate, not only through space but also through time, to access historical data and future predictions based on social and/or environmental models. But how do we find the information about certain geographic locations or localities when it is scattered in the cloud and across the web of data behind a diversity of databases, web services and hyperlinked pages? We need to be able to link geoinformation together in order to integrate it, make sense of it, and use it appropriately for managing the world and making decisions.

  5. Middleware for Plug and Play Integration of Heterogeneous Sensor Resources into the Sensor Web

    PubMed Central

    Toma, Daniel M.; Jirka, Simon; Del Río, Joaquín

    2017-01-01

    The study of global phenomena requires the combination of a considerable amount of data coming from different sources, acquired by different observation platforms and managed by institutions working in different scientific fields. Merging this data to provide extensive and complete data sets to monitor the long-term, global changes of our oceans is a major challenge. The data acquisition and data archival procedures usually vary significantly depending on the acquisition platform. This lack of standardization ultimately leads to information silos, preventing the data to be effectively shared across different scientific communities. In the past years, important steps have been taken in order to improve both standardization and interoperability, such as the Open Geospatial Consortium’s Sensor Web Enablement (SWE) framework. Within this framework, standardized models and interfaces to archive, access and visualize the data from heterogeneous sensor resources have been proposed. However, due to the wide variety of software and hardware architectures presented by marine sensors and marine observation platforms, there is still a lack of uniform procedures to integrate sensors into existing SWE-based data infrastructures. In this work, a framework aimed to enable sensor plug and play integration into existing SWE-based data infrastructures is presented. First, an analysis of the operations required to automatically identify, configure and operate a sensor are analysed. Then, the metadata required for these operations is structured in a standard way. Afterwards, a modular, plug and play, SWE-based acquisition chain is proposed. Finally different use cases for this framework are presented. PMID:29244732

  6. ContextProvider: Context awareness for medical monitoring applications.

    PubMed

    Mitchell, Michael; Meyers, Christopher; Wang, An-I Andy; Tyson, Gary

    2011-01-01

    Smartphones are sensor-rich and Internet-enabled. With their on-board sensors, web services, social media, and external biosensors, smartphones can provide contextual information about the device, user, and environment, thereby enabling the creation of rich, biologically driven applications. We introduce ContextProvider, a framework that offers a unified, query-able interface to contextual data on the device. Unlike other context-based frameworks, ContextProvider offers interactive user feedback, self-adaptive sensor polling, and minimal reliance on third-party infrastructure. ContextProvider also allows for rapid development of new context and bio-aware applications. Evaluation of ContextProvider shows the incorporation of an additional monitoring sensor into the framework with fewer than 100 lines of Java code. With adaptive sensor monitoring, power consumption per sensor can be reduced down to 1% overhead. Finally, through the use of context, accuracy of data interpretation can be improved by up to 80%.

  7. The exploitation of data from remote and human sensors for environment monitoring in the SMAT project.

    PubMed

    Meo, Rosa; Roglia, Elena; Bottino, Andrea

    2012-12-17

    In this paper, we outline the functionalities of a system that integrates and controls a fleet of Unmanned Aircraft Vehicles (UAVs). UAVs have a set of payload sensors employed for territorial surveillance, whose outputs are stored in the system and analysed by the data exploitation functions at different levels. In particular, we detail the second level data exploitation function whose aim is to improve the sensors data interpretation in the post-mission activities. It is concerned with the mosaicking of the aerial images and the cartography enrichment by human sensors--the social media users. We also describe the software architecture for the development of a mash-up (the integration of information and functionalities coming from the Web) and the possibility of using human sensors in the monitoring of the territory, a field in which, traditionally, the involved sensors were only the hardware ones.

  8. Environmental Monitoring Using Sensor Networks

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, C.; Li, X.; Huang, Y.; Fu, S.; Acevedo, M. F.

    2008-12-01

    Environmental observatories, consisting of a variety of sensor systems, computational resources and informatics, are important for us to observe, model, predict, and ultimately help preserve the health of the nature. The commoditization and proliferation of coin-to-palm sized wireless sensors will allow environmental monitoring with unprecedented fine spatial and temporal resolution. Once scattered around, these sensors can identify themselves, locate their positions, describe their functions, and self-organize into a network. They communicate through wireless channel with nearby sensors and transmit data through multi-hop protocols to a gateway, which can forward information to a remote data server. In this project, we describe an environmental observatory called Texas Environmental Observatory (TEO) that incorporates a sensor network system with intertwined wired and wireless sensors. We are enhancing and expanding the existing wired weather stations to include wireless sensor networks (WSNs) and telemetry using solar-powered cellular modems. The new WSNs will monitor soil moisture and support long-term hydrologic modeling. Hydrologic models are helpful in predicting how changes in land cover translate into changes in the stream flow regime. These models require inputs that are difficult to measure over large areas, especially variables related to storm events, such as soil moisture antecedent conditions and rainfall amount and intensity. This will also contribute to improve rainfall estimations from meteorological radar data and enhance hydrological forecasts. Sensor data are transmitted from monitoring site to a Central Data Collection (CDC) Server. We incorporate a GPRS modem for wireless telemetry, a single-board computer (SBC) as Remote Field Gateway (RFG) Server, and a WSN for distributed soil moisture monitoring. The RFG provides effective control, management, and coordination of two independent sensor systems, i.e., a traditional datalogger-based wired sensor system and the WSN-based wireless sensor system. The RFG also supports remote manipulation of the devices in the field such as the SBC, datalogger, and WSN. Sensor data collected from the distributed monitoring stations are stored in a database (DB) Server. The CDC Server acts as an intermediate component to hide the heterogeneity of different devices and support data validation required by the DB Server. Daemon programs running on the CDC Server pre-process the data before it is inserted into the database, and periodically perform synchronization tasks. A SWE-compliant data repository is installed to enable data exchange, accepting data from both internal DB Server and external sources through the OGC web services. The web portal, i.e. TEO Online, serves as a user-friendly interface for data visualization, analysis, synthesis, modeling, and K-12 educational outreach activities. It also provides useful capabilities for system developers and operators to remotely monitor system status and remotely update software and system configuration, which greatly simplifies the system debugging and maintenance tasks. We also implement Sensor Observation Services (SOS) at this layer, conforming to the SWE standard to facilitate data exchange. The standard SensorML/O&M data representation makes it easy to integrate our sensor data into the existing Geographic Information Systems (GIS) web services and exchange the data with other organizations.

  9. Applying Web-Based Tools for Research, Engineering, and Operations

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2011-01-01

    Personnel in the NASA Glenn Research Center Network and Architectures branch have performed a variety of research related to space-based sensor webs, network centric operations, security and delay tolerant networking (DTN). Quality documentation and communications, real-time monitoring and information dissemination are critical in order to perform quality research while maintaining low cost and utilizing multiple remote systems. This has been accomplished using a variety of Internet technologies often operating simultaneously. This paper describes important features of various technologies and provides a number of real-world examples of how combining Internet technologies can enable a virtual team to act efficiently as one unit to perform advanced research in operational systems. Finally, real and potential abuses of power and manipulation of information and information access is addressed.

  10. Hybrid Exploration Agent Platform and Sensor Web System

    NASA Technical Reports Server (NTRS)

    Stoffel, A. William; VanSteenberg, Michael E.

    2004-01-01

    A sensor web to collect the scientific data needed to further exploration is a major and efficient asset to any exploration effort. This is true not only for lunar and planetary environments, but also for interplanetary and liquid environments. Such a system would also have myriad direct commercial spin-off applications. The Hybrid Exploration Agent Platform and Sensor Web or HEAP-SW like the ANTS concept is a Sensor Web concept. The HEAP-SW is conceptually and practically a very different system. HEAP-SW is applicable to any environment and a huge range of exploration tasks. It is a very robust, low cost, high return, solution to a complex problem. All of the technology for initial development and implementation is currently available. The HEAP Sensor Web or HEAP-SW consists of three major parts, The Hybrid Exploration Agent Platforms or HEAP, the Sensor Web or SW and the immobile Data collection and Uplink units or DU. The HEAP-SW as a whole will refer to any group of mobile agents or robots where each robot is a mobile data collection unit that spends most of its time acting in concert with all other robots, DUs in the web, and the HEAP-SWs overall Command and Control (CC) system. Each DU and robot is, however, capable of acting independently. The three parts of the HEAP-SW system are discussed in this paper. The Goals of the HEAP-SW system are: 1) To maximize the amount of exploration enhancing science data collected; 2) To minimize data loss due to system malfunctions; 3) To minimize or, possibly, eliminate the risk of total system failure; 4) To minimize the size, weight, and power requirements of each HEAP robot; 5) To minimize HEAP-SW system costs. The rest of this paper discusses how these goals are attained.

  11. Standards-based sensor interoperability and networking SensorWeb: an overview

    NASA Astrophysics Data System (ADS)

    Bolling, Sam

    2012-06-01

    The War fighter lacks a unified Intelligence, Surveillance, and Reconnaissance (ISR) environment to conduct mission planning, command and control (C2), tasking, collection, exploitation, processing, and data discovery of disparate sensor data across the ISR Enterprise. Legacy sensors and applications are not standardized or integrated for assured, universal access. Existing tasking and collection capabilities are not unified across the enterprise, inhibiting robust C2 of ISR including near-real time, cross-cueing operations. To address these critical needs, the National Measurement and Signature Intelligence (MASINT) Office (NMO), and partnering Combatant Commands and Intelligence Agencies are developing SensorWeb, an architecture that harmonizes heterogeneous sensor data to a common standard for users to discover, access, observe, subscribe to and task sensors. The SensorWeb initiative long term goal is to establish an open commercial standards-based, service-oriented framework to facilitate plug and play sensors. The current development effort will produce non-proprietary deliverables, intended as a Government off the Shelf (GOTS) solution to address the U.S. and Coalition nations' inability to quickly and reliably detect, identify, map, track, and fully understand security threats and operational activities.

  12. An integrative solution for managing, tracing and citing sensor-related information

    NASA Astrophysics Data System (ADS)

    Koppe, Roland; Gerchow, Peter; Macario, Ana; Schewe, Ingo; Rehmcke, Steven; Düde, Tobias

    2017-04-01

    In a data-driven scientific world, the need to capture information on sensors used in the data acquisition process has become increasingly important. Following the recommendations of the Open Geospatial Consortium (OGC), we started by adopting the SensorML standard for describing platforms, devices and sensors. However, it soon became obvious to us that understanding, implementing and filling such standards costs significant effort and cannot be expected from every scientist individually. So we developed a web-based sensor management solution (https://sensor.awi.de) for describing platforms, devices and sensors as hierarchy of systems which supports tracing changes to a system whereas hiding complexity. Each platform contains devices where each device can have sensors associated with specific identifiers, contacts, events, related online resources (e.g. manufacturer factsheets, calibration documentation, data processing documentation), sensor output parameters and geo-location. In order to better understand and address real world requirements, we have closely interacted with field-going scientists in the context of the key national infrastructure project "FRontiers in Arctic marine Monitoring ocean observatory" (FRAM) during the software development. We learned that not only the lineage of observations is crucial for scientists but also alert services using value ranges, flexible output formats and information on data providers (e.g. FTP sources) for example. Mostly important, persistent and citable versions of sensor descriptions are required for traceability and reproducibility allowing seamless integration with existing information systems, e.g. PANGAEA. Within the context of the EU-funded Ocean Data Interoperability Platform project (ODIP II) and in cooperation with 52north we are proving near real-time data via Sensor Observation Services (SOS) along with sensor descriptions based on our sensor management solution. ODIP II also aims to develop a harmonized SensorML profile for the marine community which we will be adopting in our solution as soon as available. In this presentation we will show our sensor management solution which is embedded in our data flow framework to offer out-of-the-box interoperability with existing information systems and standards. In addition, we will present real world examples and challenges related to the description and traceability of sensor metadata.

  13. Automatic Earth observation data service based on reusable geo-processing workflow

    NASA Astrophysics Data System (ADS)

    Chen, Nengcheng; Di, Liping; Gong, Jianya; Yu, Genong; Min, Min

    2008-12-01

    A common Sensor Web data service framework for Geo-Processing Workflow (GPW) is presented as part of the NASA Sensor Web project. This framework consists of a data service node, a data processing node, a data presentation node, a Catalogue Service node and BPEL engine. An abstract model designer is used to design the top level GPW model, model instantiation service is used to generate the concrete BPEL, and the BPEL execution engine is adopted. The framework is used to generate several kinds of data: raw data from live sensors, coverage or feature data, geospatial products, or sensor maps. A scenario for an EO-1 Sensor Web data service for fire classification is used to test the feasibility of the proposed framework. The execution time and influences of the service framework are evaluated. The experiments show that this framework can improve the quality of services for sensor data retrieval and processing.

  14. A SOAP Web Service for accessing MODIS land product subsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SanthanaVannan, Suresh K; Cook, Robert B; Pan, Jerry Yun

    2011-01-01

    Remote sensing data from satellites have provided valuable information on the state of the earth for several decades. Since March 2000, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board NASA s Terra and Aqua satellites have been providing estimates of several land parameters useful in understanding earth system processes at global, continental, and regional scales. However, the HDF-EOS file format, specialized software needed to process the HDF-EOS files, data volume, and the high spatial and temporal resolution of MODIS data make it difficult for users wanting to extract small but valuable amounts of information from the MODIS record. Tomore » overcome this usability issue, the NASA-funded Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics at Oak Ridge National Laboratory (ORNL) developed a Web service that provides subsets of MODIS land products using Simple Object Access Protocol (SOAP). The ORNL DAAC MODIS subsetting Web service is a unique way of serving satellite data that exploits a fairly established and popular Internet protocol to allow users access to massive amounts of remote sensing data. The Web service provides MODIS land product subsets up to 201 x 201 km in a non-proprietary comma delimited text file format. Users can programmatically query the Web service to extract MODIS land parameters for real time data integration into models, decision support tools or connect to workflow software. Information regarding the MODIS SOAP subsetting Web service is available on the World Wide Web (WWW) at http://daac.ornl.gov/modiswebservice.« less

  15. Pervasive Monitoring—An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures

    PubMed Central

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a “digital skin for planet earth”. The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making. PMID:22163537

  16. Pervasive monitoring--an intelligent sensor pod approach for standardised measurement infrastructures.

    PubMed

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a "digital skin for planet earth". The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making.

  17. Assisted editing od SensorML with EDI. A bottom-up scenario towards the definition of sensor profiles.

    NASA Astrophysics Data System (ADS)

    Oggioni, Alessandro; Tagliolato, Paolo; Fugazza, Cristiano; Bastianini, Mauro; Pavesi, Fabio; Pepe, Monica; Menegon, Stefano; Basoni, Anna; Carrara, Paola

    2015-04-01

    Sensor observation systems for environmental data have become increasingly important in the last years. The EGU's Informatics in Oceanography and Ocean Science track stressed the importance of management tools and solutions for marine infrastructures. We think that full interoperability among sensor systems is still an open issue and that the solution to this involves providing appropriate metadata. Several open source applications implement the SWE specification and, particularly, the Sensor Observation Services (SOS) standard. These applications allow for the exchange of data and metadata in XML format between computer systems. However, there is a lack of metadata editing tools supporting end users in this activity. Generally speaking, it is hard for users to provide sensor metadata in the SensorML format without dedicated tools. In particular, such a tool should ease metadata editing by providing, for standard sensors, all the invariant information to be included in sensor metadata, thus allowing the user to concentrate on the metadata items that are related to the specific deployment. RITMARE, the Italian flagship project on marine research, envisages a subproject, SP7, for the set-up of the project's spatial data infrastructure. SP7 developed EDI, a general purpose, template-driven metadata editor that is composed of a backend web service and an HTML5/javascript client. EDI can be customized for managing the creation of generic metadata encoded as XML. Once tailored to a specific metadata format, EDI presents the users a web form with advanced auto completion and validation capabilities. In the case of sensor metadata (SensorML versions 1.0.1 and 2.0), the EDI client is instructed to send an "insert sensor" request to an SOS endpoint in order to save the metadata in an SOS server. In the first phase of project RITMARE, EDI has been used to simplify the creation from scratch of SensorML metadata by the involved researchers and data managers. An interesting by-product of this ongoing work is currently constituting an archive of predefined sensor descriptions. This information is being collected in order to further ease metadata creation in the next phase of the project. Users will be able to choose among a number of sensor and sensor platform prototypes: These will be specific instances on which it will be possible to define, in a bottom-up approach, "sensor profiles". We report on the outcome of this activity.

  18. Data and monitoring needs for a more ecological agriculture

    NASA Astrophysics Data System (ADS)

    Zaks, David P. M.; Kucharik, Christopher J.

    2011-01-01

    Information on the life-cycle environmental impacts of agricultural production is often limited. As demands grow for increasing agricultural output while reducing its negative environmental impacts, both existing and novel data sources can be leveraged to provide more information to producers, consumers, scientists and policy makers. We review the components and organization of an agroecological sensor web that integrates remote sensing technologies and in situ sensors with models in order to provide decision makers with effective management options at useful spatial and temporal scales for making more informed decisions about agricultural productivity while reducing environmental burdens. Several components of the system are already in place, but by increasing the extent and accessibility of information, decision makers will have the opportunity to enhance food security and environmental quality. Potential roadblocks to implementation include farmer acceptance, data transparency and technology deployment.

  19. Automating the Processing of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wan-Lin; Nemani, Ramakrishna; Votava, Petr

    2003-01-01

    NASA s vision for Earth science is to build a "sensor web": an adaptive array of heterogeneous satellites and other sensors that will track important events, such as storms, and provide real-time information about the state of the Earth to a wide variety of customers. Achieving this vision will require automation not only in the scheduling of the observations but also in the processing of the resulting data. To address this need, we are developing a planner-based agent to automatically generate and execute data-flow programs to produce the requested data products.

  20. SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System.

    PubMed

    Xiao, Changjiang; Chen, Nengcheng; Li, Dandan; Lv, You; Gong, Jianya

    2016-12-30

    Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web-enabled smart cultural relics management system (SCRMS). In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID) is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics.

  1. A Web-GIS Procedure Based on Satellite Multi-Spectral and Airborne LIDAR Data to Map the Road blockage Due to seismic Damages of Built-Up Urban Areas

    NASA Astrophysics Data System (ADS)

    Costanzo, Antonio; Montuori, Antonio; Silva, Juan Pablo; Silvestri, Malvina; Musacchio, Massimo; Buongiorno, Maria Fabrizia; Stramondo, Salvatore

    2016-08-01

    In this work, a web-GIS procedure to map the risk of road blockage in urban environments through the combined use of space-borne and airborne remote sensing sensors is presented. The methodology concerns (1) the provision of a geo-database through the integration of space-borne multispectral images and airborne LiDAR data products; (2) the modeling of building vulnerability, based on the corresponding 3D geometry and construction time information; (3) the GIS-based mapping of road closure due to seismic- related building collapses based on the building characteristic height and the width of the road. Experimental results, gathered for the Cosenza urban area, allow demonstrating the benefits of both the proposed approach and the GIS-based integration of multi-platforms remote sensing sensors and techniques for seismic road assessment purposes.

  2. Development of a GIS-based integrated framework for coastal seiches monitoring and forecasting: A North Jiangsu shoal case study

    NASA Astrophysics Data System (ADS)

    Qin, Rufu; Lin, Liangzhao

    2017-06-01

    Coastal seiches have become an increasingly important issue in coastal science and present many challenges, particularly when attempting to provide warning services. This paper presents the methodologies, techniques and integrated services adopted for the design and implementation of a Seiches Monitoring and Forecasting Integration Framework (SMAF-IF). The SMAF-IF is an integrated system with different types of sensors and numerical models and incorporates the Geographic Information System (GIS) and web techniques, which focuses on coastal seiche events detection and early warning in the North Jiangsu shoal, China. The in situ sensors perform automatic and continuous monitoring of the marine environment status and the numerical models provide the meteorological and physical oceanographic parameter estimates. A model outputs processing software was developed in C# language using ArcGIS Engine functions, which provides the capabilities of automatically generating visualization maps and warning information. Leveraging the ArcGIS Flex API and ASP.NET web services, a web based GIS framework was designed to facilitate quasi real-time data access, interactive visualization and analysis, and provision of early warning services for end users. The integrated framework proposed in this study enables decision-makers and the publics to quickly response to emergency coastal seiche events and allows an easy adaptation to other regional and scientific domains related to real-time monitoring and forecasting.

  3. Scalability Issues for Remote Sensing Infrastructure: A Case Study.

    PubMed

    Liu, Yang; Picard, Sean; Williamson, Carey

    2017-04-29

    For the past decade, a team of University of Calgary researchers has operated a large "sensor Web" to collect, analyze, and share scientific data from remote measurement instruments across northern Canada. This sensor Web receives real-time data streams from over a thousand Internet-connected sensors, with a particular emphasis on environmental data (e.g., space weather, auroral phenomena, atmospheric imaging). Through research collaborations, we had the opportunity to evaluate the performance and scalability of their remote sensing infrastructure. This article reports the lessons learned from our study, which considered both data collection and data dissemination aspects of their system. On the data collection front, we used benchmarking techniques to identify and fix a performance bottleneck in the system's memory management for TCP data streams, while also improving system efficiency on multi-core architectures. On the data dissemination front, we used passive and active network traffic measurements to identify and reduce excessive network traffic from the Web robots and JavaScript techniques used for data sharing. While our results are from one specific sensor Web system, the lessons learned may apply to other scientific Web sites with remote sensing infrastructure.

  4. WIFIRE Data Model and Catalog for Wildfire Data and Tools

    NASA Astrophysics Data System (ADS)

    Altintas, I.; Crawl, D.; Cowart, C.; Gupta, A.; Block, J.; de Callafon, R.

    2014-12-01

    The WIFIRE project (wifire.ucsd.edu) is building an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. WIFIRE may be used by wildfire management authorities in the future to predict wildfire rate of spread and direction, and assess the effectiveness of high-density sensor networks in improving fire and weather predictions. WIFIRE has created a data model for wildfire resources including sensed and archived data, sensors, satellites, cameras, modeling tools, workflows and social information including Twitter feeds. This data model and associated wildfire resource catalog includes a detailed description of the HPWREN sensor network, SDG&E's Mesonet, and NASA MODIS. In addition, the WIFIRE data-model describes how to integrate the data from multiple heterogeneous sources to provide detailed fire-related information. The data catalog describes 'Observables' captured by each instrument using multiple ontologies including OGC SensorML and NASA SWEET. Observables include measurements such as wind speed, air temperature, and relative humidity, as well as their accuracy and resolution. We have implemented a REST service for publishing to and querying from the catalog using Web Application Description Language (WADL). We are creating web-based user interfaces and mobile device Apps that use the REST interface for dissemination to wildfire modeling community and project partners covering academic, private, and government laboratories while generating value to emergency officials and the general public. Additionally, the Kepler scientific workflow system is instrumented to interact with this data catalog to access real-time streaming and archived wildfire data and stream it into dynamic data-driven wildfire models at scale.

  5. The Exploitation of Data from Remote and Human Sensors for Environment Monitoring in the SMAT Project

    PubMed Central

    Meo, Rosa; Roglia, Elena; Bottino, Andrea

    2012-01-01

    In this paper, we outline the functionalities of a system that integrates and controls a fleet of Unmanned Aircraft Vehicles (UAVs). UAVs have a set of payload sensors employed for territorial surveillance, whose outputs are stored in the system and analysed by the data exploitation functions at different levels. In particular, we detail the second level data exploitation function whose aim is to improve the sensors data interpretation in the post-mission activities. It is concerned with the mosaicking of the aerial images and the cartography enrichment by human sensors—the social media users. We also describe the software architecture for the development of a mash-up (the integration of information and functionalities coming from the Web) and the possibility of using human sensors in the monitoring of the territory, a field in which, traditionally, the involved sensors were only the hardware ones. PMID:23247415

  6. Seamonster: A Smart Sensor Web in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Heavner, M. J.; Hood, E.; Connor, C.; Nagorski, S.

    2006-12-01

    The NASA Research Opportunities in Space and Earth Science (ROSES) program is supporting a wireless sensor network project as part of its Advanced Information Systems Technology "Smart Sensor Web" initiative. The project, entitled Seamonster (for SouthEast Alaska MONitoring Network for Science, Telecomm, and Education Research) is led by the University of Alaska Southeast (Juneau) in collaboration with Microsoft- Vexcel in Boulder Colorado. This paper describes both the data acquisition components and science research objectives of Seamonster. The underlying data acquisition concept is to facilitate geophysics data acquisition by providing a wireless backbone for data recovery. Other researchers would be encouraged to emplace their own sensors together with short-range wireless (ZigBee, Bluetooth, etc). Through a common protocol the backbone will receive data from these sensors and relay them to a wired server. This means that the investigator can receive their data via email on a daily basis thereby cutting cost and monitoring sensor health. With environmental hardening and fairly high bandwidth and long range (100kbps/50km to 5mpbs/15km per hop) the network is intended to cover large areas and operate in harsh environments. Low power sensors and intelligent power management within the backbone are the dual ideas to contend with typical power/cost/data dilemmas. Seamonster science will focus over the next three years on hydrology and glaciology in a succession of valleys near Juneau in various stages of deglaciation, in effect providing a synopsis of a millennium-timescale process in a single moment. The instrumentation will include GPS, geophones, digital photography, met stations, and a suite of stream state and water quality sensors. Initial focus is on the Lemon Creek watershed with expansion to follow in subsequent years. The project will ideally expand to include marine and biological monitoring components.

  7. Using Psychophysiological Sensors to Assess Mental Workload During Web Browsing.

    PubMed

    Jimenez-Molina, Angel; Retamal, Cristian; Lira, Hernan

    2018-02-03

    Knowledge of the mental workload induced by a Web page is essential for improving users' browsing experience. However, continuously assessing the mental workload during a browsing task is challenging. To address this issue, this paper leverages the correlation between stimuli and physiological responses, which are measured with high-frequency, non-invasive psychophysiological sensors during very short span windows. An experiment was conducted to identify levels of mental workload through the analysis of pupil dilation measured by an eye-tracking sensor. In addition, a method was developed to classify mental workload by appropriately combining different signals (electrodermal activity (EDA), electrocardiogram, photoplethysmo-graphy (PPG), electroencephalogram (EEG), temperature and pupil dilation) obtained with non-invasive psychophysiological sensors. The results show that the Web browsing task involves four levels of mental workload. Also, by combining all the sensors, the efficiency of the classification reaches 93.7%.

  8. Using Psychophysiological Sensors to Assess Mental Workload During Web Browsing

    PubMed Central

    Jimenez-Molina, Angel; Retamal, Cristian; Lira, Hernan

    2018-01-01

    Knowledge of the mental workload induced by a Web page is essential for improving users’ browsing experience. However, continuously assessing the mental workload during a browsing task is challenging. To address this issue, this paper leverages the correlation between stimuli and physiological responses, which are measured with high-frequency, non-invasive psychophysiological sensors during very short span windows. An experiment was conducted to identify levels of mental workload through the analysis of pupil dilation measured by an eye-tracking sensor. In addition, a method was developed to classify mental workload by appropriately combining different signals (electrodermal activity (EDA), electrocardiogram, photoplethysmo-graphy (PPG), electroencephalogram (EEG), temperature and pupil dilation) obtained with non-invasive psychophysiological sensors. The results show that the Web browsing task involves four levels of mental workload. Also, by combining all the sensors, the efficiency of the classification reaches 93.7%. PMID:29401688

  9. Virtual Sensor Web Architecture

    NASA Astrophysics Data System (ADS)

    Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.

    2006-12-01

    NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.

  10. A Query Language for Handling Big Observation Data Sets in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Autermann, Christian; Stasch, Christoph; Jirka, Simon; Koppe, Roland

    2017-04-01

    The Sensor Web provides a framework for the standardized Web-based sharing of environmental observations and sensor metadata. While the issue of varying data formats and protocols is addressed by these standards, the fast growing size of observational data is imposing new challenges for the application of these standards. Most solutions for handling big observational datasets currently focus on remote sensing applications, while big in-situ datasets relying on vector features still lack a solid approach. Conventional Sensor Web technologies may not be adequate, as the sheer size of the data transmitted and the amount of metadata accumulated may render traditional OGC Sensor Observation Services (SOS) unusable. Besides novel approaches to store and process observation data in place, e.g. by harnessing big data technologies from mainstream IT, the access layer has to be amended to utilize and integrate these large observational data archives into applications and to enable analysis. For this, an extension to the SOS will be discussed that establishes a query language to dynamically process and filter observations at storage level, similar to the OGC Web Coverage Service (WCS) and it's Web Coverage Processing Service (WCPS) extension. This will enable applications to request e.g. spatial or temporal aggregated data sets in a resolution it is able to display or it requires. The approach will be developed and implemented in cooperation with the The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research whose catalogue of data compromises marine observations of physical, chemical and biological phenomena from a wide variety of sensors, including mobile (like research vessels, aircrafts or underwater vehicles) and stationary (like buoys or research stations). Observations are made with a high temporal resolution and the resulting time series may span multiple decades.

  11. A versatile and interoperable network sensors for water resources monitoring

    NASA Astrophysics Data System (ADS)

    Ortolani, Alberto; Brandini, Carlo; Costantini, Roberto; Costanza, Letizia; Innocenti, Lucia; Sabatini, Francesco; Gozzini, Bernardo

    2010-05-01

    Monitoring systems to assess water resources quantity and quality require extensive use of in-situ measurements, that have great limitations like difficulties to access and share data, and to customise and easy reconfigure sensors network to fulfil end-users needs during monitoring or crisis phases. In order to address such limitations Sensor Web Enablement technologies for sensors management have been developed and applied to different environmental context under the EU-funded OSIRIS project (Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors, www.osiris-fp6.eu). The main objective of OSIRIS was to create a monitoring system to manage different environmental crisis situations, through an efficient data processing chain where in-situ sensors are connected via an intelligent and versatile network infrastructure (based on web technologies) that enables end-users to remotely access multi-domain sensors information. Among the project application, one was focused on underground fresh-water monitoring and management. With this aim a monitoring system to continuously and automatically check water quality and quantity has been designed and built in a pilot test, identified as a portion of the Amiata aquifer feeding the Santa Fiora springs (Grosseto, Italy). This aquifer present some characteristics that make it greatly vulnerable under some conditions. It is a volcanic aquifer with a fractured structure. The volcanic nature in Santa Fiora causes levels of arsenic concentrations that normally are very close to the threshold stated by law, but that sometimes overpass such threshold for reasons still not fully understood. The presence of fractures makes the infiltration rate very inhomogeneous from place to place and very high in correspondence of big fractures. In case of liquid-pollutant spills (typically hydrocarbons spills from tanker accidents or leakage from house tanks containing fuel for heating), these fractures can act as shortcuts to the heart of the aquifer, causing water contamination much faster than what inferable from average infiltration rates. A new system has been set up, upgrading a legacy sensor network with new sensors to address the monitoring and emergency phase management. Where necessary sensors have been modified in order to manage the whole sensor network through SWE services. The network manage sensors for water parameters (physical and chemical) and for atmospheric ones (for supporting the management of accidental crises). A main property of the developed architecture is that it can be easily reconfigured to pass from the monitoring to the alert phase, by changing sampling frequencies of interesting parameters, or deploying specific additional sensors on identified optimal positions (as in case of the hydrocarbon spill). A hydrogeological model, coupled through a hydrological interface to the atmospheric forcing, has been implemented for the area. Model products (accessed through the same web interface than sensors) give a fundamental added value to the upgraded sensors network (e.g. for data merging procedures). Together with the available measurements, it is shown how the model improves the knowledge of the local hydrogeological system, gives a fundamental support to eventually reconfigure the system (e.g. support on transportable sensors position). The network, basically conceived for real-time monitoring, allow to accumulate an unprecedent amount of information for the aquifer. The availability of such a large set of data (in terms of continuously measured water levels, fluxes, precipitation, concentrations, etc.) from the system, gives a unique opportunity for studying the influences of hydrogeological and geopedological parameters on arsenic and concentrations of other chemicals that are naturally present in water.

  12. The MMI Device Ontology: Enabling Sensor Integration

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group

    2010-12-01

    The Marine Metadata Interoperability (MMI) project has developed an ontology for devices to describe sensors and sensor networks. This ontology is implemented in the W3C Web Ontology Language (OWL) and provides an extensible conceptual model and controlled vocabularies for describing heterogeneous instrument types, with different data characteristics, and their attributes. It can help users populate metadata records for sensors; associate devices with their platforms, deployments, measurement capabilities and restrictions; aid in discovery of sensor data, both historic and real-time; and improve the interoperability of observational oceanographic data sets. We developed the MMI Device Ontology following a community-based approach. By building on and integrating other models and ontologies from related disciplines, we sought to facilitate semantic interoperability while avoiding duplication. Key concepts and insights from various communities, including the Open Geospatial Consortium (eg., SensorML and Observations and Measurements specifications), Semantic Web for Earth and Environmental Terminology (SWEET), and W3C Semantic Sensor Network Incubator Group, have significantly enriched the development of the ontology. Individuals ranging from instrument designers, science data producers and consumers to ontology specialists and other technologists contributed to the work. Applications of the MMI Device Ontology are underway for several community use cases. These include vessel-mounted multibeam mapping sonars for the Rolling Deck to Repository (R2R) program and description of diverse instruments on deepwater Ocean Reference Stations for the OceanSITES program. These trials involve creation of records completely describing instruments, either by individual instances or by manufacturer and model. Individual terms in the MMI Device Ontology can be referenced with their corresponding Uniform Resource Identifiers (URIs) in sensor-related metadata specifications (e.g., SensorML, NetCDF). These identifiers can be resolved through a web browser, or other client applications via HTTP against the MMI Ontology Registry and Repository (ORR), where the ontology is maintained. SPARQL-based query capabilities, which are enhanced with reasoning, along with several supported output formats, allow the effective interaction of diverse client applications with the semantic information associated with the device ontology. In this presentation we describe the process for the development of the MMI Device Ontology and illustrate extensions and applications that demonstrate the benefits of adopting this semantic approach, including example queries involving inference. We also highlight the issues encountered and future work.

  13. GOOSE: semantic search on internet connected sensors

    NASA Astrophysics Data System (ADS)

    Schutte, Klamer; Bomhof, Freek; Burghouts, Gertjan; van Diggelen, Jurriaan; Hiemstra, Peter; van't Hof, Jaap; Kraaij, Wessel; Pasman, Huib; Smith, Arthur; Versloot, Corne; de Wit, Joost

    2013-05-01

    More and more sensors are getting Internet connected. Examples are cameras on cell phones, CCTV cameras for traffic control as well as dedicated security and defense sensor systems. Due to the steadily increasing data volume, human exploitation of all this sensor data is impossible for effective mission execution. Smart access to all sensor data acts as enabler for questions such as "Is there a person behind this building" or "Alert me when a vehicle approaches". The GOOSE concept has the ambition to provide the capability to search semantically for any relevant information within "all" (including imaging) sensor streams in the entire Internet of sensors. This is similar to the capability provided by presently available Internet search engines which enable the retrieval of information on "all" web pages on the Internet. In line with current Internet search engines any indexing services shall be utilized cross-domain. The two main challenge for GOOSE is the Semantic Gap and Scalability. The GOOSE architecture consists of five elements: (1) an online extraction of primitives on each sensor stream; (2) an indexing and search mechanism for these primitives; (3) a ontology based semantic matching module; (4) a top-down hypothesis verification mechanism and (5) a controlling man-machine interface. This paper reports on the initial GOOSE demonstrator, which consists of the MES multimedia analysis platform and the CORTEX action recognition module. It also provides an outlook into future GOOSE development.

  14. QuakeSim: a Web Service Environment for Productive Investigations with Earth Surface Sensor Data

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Donnellan, A.; Granat, R. A.; Lyzenga, G. A.; Glasscoe, M. T.; McLeod, D.; Al-Ghanmi, R.; Pierce, M.; Fox, G.; Grant Ludwig, L.; Rundle, J. B.

    2011-12-01

    The QuakeSim science gateway environment includes a visually rich portal interface, web service access to data and data processing operations, and the QuakeTables ontology-based database of fault models and sensor data. The integrated tools and services are designed to assist investigators by covering the entire earthquake cycle of strain accumulation and release. The Web interface now includes Drupal-based access to diverse and changing content, with new ability to access data and data processing directly from the public page, as well as the traditional project management areas that require password access. The system is designed to make initial browsing of fault models and deformation data particularly engaging for new users. Popular data and data processing include GPS time series with data mining techniques to find anomalies in time and space, experimental forecasting methods based on catalogue seismicity, faulted deformation models (both half-space and finite element), and model-based inversion of sensor data. The fault models include the CGS and UCERF 2.0 faults of California and are easily augmented with self-consistent fault models from other regions. The QuakeTables deformation data include the comprehensive set of UAVSAR interferograms as well as a growing collection of satellite InSAR data.. Fault interaction simulations are also being incorporated in the web environment based on Virtual California. A sample usage scenario is presented which follows an investigation of UAVSAR data from viewing as an overlay in Google Maps, to selection of an area of interest via a polygon tool, to fast extraction of the relevant correlation and phase information from large data files, to a model inversion of fault slip followed by calculation and display of a synthetic model interferogram.

  15. Neural Network Substorm Identification: Enabling TREx Sensor Web Modes

    NASA Astrophysics Data System (ADS)

    Chaddock, D.; Spanswick, E.; Arnason, K. M.; Donovan, E.; Liang, J.; Ahmad, S.; Jackel, B. J.

    2017-12-01

    Transition Region Explorer (TREx) is a ground-based sensor web of optical and radio instruments that is presently being deployed across central Canada. The project consists of an array of co-located blue-line, full-colour, and near-infrared all-sky imagers, imaging riometers, proton aurora spectrographs, and GNSS systems. A key goal of the TREx project is to create the world's first (artificial) intelligent sensor web for remote sensing space weather. The sensor web will autonomously control and coordinate instrument operations in real-time. To accomplish this, we will use real-time in-line analytics of TREx and other data to dynamically switch between operational modes. An operating mode could be, for example, to have a blue-line imager gather data at a one or two orders of magnitude higher cadence than it operates for its `baseline' mode. The software decision to increase the imaging cadence would be in response to an anticipated increase in auroral activity or other programmatic requirements. Our first test for TREx's sensor web technologies is to develop the capacity to autonomously alter the TREx operating mode prior to a substorm expansion phase onset. In this paper, we present our neural network analysis of historical optical and riometer data and our ability to predict an optical onset. We explore the preliminary insights into using a neural network to pick out trends and features which it deems are similar among substorms.

  16. Reconnaissance blind multi-chess: an experimentation platform for ISR sensor fusion and resource management

    NASA Astrophysics Data System (ADS)

    Newman, Andrew J.; Richardson, Casey L.; Kain, Sean M.; Stankiewicz, Paul G.; Guseman, Paul R.; Schreurs, Blake A.; Dunne, Jeffrey A.

    2016-05-01

    This paper introduces the game of reconnaissance blind multi-chess (RBMC) as a paradigm and test bed for understanding and experimenting with autonomous decision making under uncertainty and in particular managing a network of heterogeneous Intelligence, Surveillance and Reconnaissance (ISR) sensors to maintain situational awareness informing tactical and strategic decision making. The intent is for RBMC to serve as a common reference or challenge problem in fusion and resource management of heterogeneous sensor ensembles across diverse mission areas. We have defined a basic rule set and a framework for creating more complex versions, developed a web-based software realization to serve as an experimentation platform, and developed some initial machine intelligence approaches to playing it.

  17. Where and when should sensors move? Sampling using the expected value of information.

    PubMed

    de Bruin, Sytze; Ballari, Daniela; Bregt, Arnold K

    2012-11-26

    In case of an environmental accident, initially available data are often insufficient for properly managing the situation. In this paper, new sensor observations are iteratively added to an initial sample by maximising the global expected value of information of the points for decision making. This is equivalent to minimizing the aggregated expected misclassification costs over the study area. The method considers measurement error and different costs for class omissions and false class commissions. Constraints imposed by a mobile sensor web are accounted for using cost distances to decide which sensor should move to the next sample location. The method is demonstrated using synthetic examples of static and dynamic phenomena. This allowed computation of the true misclassification costs and comparison with other sampling approaches. The probability of local contamination levels being above a given critical threshold were computed by indicator kriging. In the case of multiple sensors being relocated simultaneously, a genetic algorithm was used to find sets of suitable new measurement locations. Otherwise, all grid nodes were searched exhaustively, which is computationally demanding. In terms of true misclassification costs, the method outperformed random sampling and sampling based on minimisation of the kriging variance.

  18. Where and When Should Sensors Move? Sampling Using the Expected Value of Information

    PubMed Central

    de Bruin, Sytze; Ballari, Daniela; Bregt, Arnold K.

    2012-01-01

    In case of an environmental accident, initially available data are often insufficient for properly managing the situation. In this paper, new sensor observations are iteratively added to an initial sample by maximising the global expected value of information of the points for decision making. This is equivalent to minimizing the aggregated expected misclassification costs over the study area. The method considers measurement error and different costs for class omissions and false class commissions. Constraints imposed by a mobile sensor web are accounted for using cost distances to decide which sensor should move to the next sample location. The method is demonstrated using synthetic examples of static and dynamic phenomena. This allowed computation of the true misclassification costs and comparison with other sampling approaches. The probability of local contamination levels being above a given critical threshold were computed by indicator kriging. In the case of multiple sensors being relocated simultaneously, a genetic algorithm was used to find sets of suitable new measurement locations. Otherwise, all grid nodes were searched exhaustively, which is computationally demanding. In terms of true misclassification costs, the method outperformed random sampling and sampling based on minimisation of the kriging variance. PMID:23443379

  19. Evaluation of the impact of furniture on communications performance for ubiquitous deployment of Wireless Sensor Networks in smart homes.

    PubMed

    Bleda, Andrés L; Jara, Antonio J; Maestre, Rafael; Santa, Guadalupe; Gómez Skarmeta, Antonio F

    2012-01-01

    The extensions of the environment with the integration of sensing systems in any space, in conjunction with ubiquitous computing are enabling the so-called Smart Space Sensor Networks. This new generation of networks are offering full connectivity with any object, through the Internet of Things (IoT) and/or the Web, i.e., the Web of Things. These connectivity capabilities are making it feasible to sense the behaviours of people at home and act accordingly. These sensing systems must be integrated within typical elements found at home such as furniture. For that reason, this work considers furniture as an interesting element for the transparent location of sensors. Furniture is a ubiquitous object, i.e., it can be found everywhere at home or the office, and it can integrate and hide the sensors of a network. This work addresses the lack of an exhaustive study of the effect of furniture on signal losses. In addition an easy-to-use tool for estimating the robustness of the communication channel among the sensor nodes and gateways is proposed. Specifically, the losses in a sensor network signal due to the materials found within the communication link are evaluated. Then, this work proposes a software tool that gathers the obtained results and is capable of evaluating the impact of a given set of materials on the communications. This tool also provides a mechanism to optimize the sensor network deployments during the definition of smart spaces. Specifically, it provides information such as: maximum distances between sensor nodes, most suitable type of furniture to integrate sensors, or battery life of sensor nodes. This tool has been validated empirically in the lab, and it is currently being used by several enterprise partners of the Technological Centre of Furniture and Wood in the southeast of Spain.

  20. Evaluation of the Impact of Furniture on Communications Performance for Ubiquitous Deployment of Wireless Sensor Networks in Smart Homes

    PubMed Central

    Bleda, Andrés L.; Jara, Antonio J.; Maestre, Rafael; Santa, Guadalupe; Gómez Skarmeta, Antonio F.

    2012-01-01

    The extensions of the environment with the integration of sensing systems in any space, in conjunction with ubiquitous computing are enabling the so-called Smart Space Sensor Networks. This new generation of networks are offering full connectivity with any object, through the Internet of Things (IoT) and/or the Web, i.e., the Web of Things. These connectivity capabilities are making it feasible to sense the behaviours of people at home and act accordingly. These sensing systems must be integrated within typical elements found at home such as furniture. For that reason, this work considers furniture as an interesting element for the transparent location of sensors. Furniture is a ubiquitous object, i.e., it can be found everywhere at home or the office, and it can integrate and hide the sensors of a network. This work addresses the lack of an exhaustive study of the effect of furniture on signal losses. In addition an easy-to-use tool for estimating the robustness of the communication channel among the sensor nodes and gateways is proposed. Specifically, the losses in a sensor network signal due to the materials found within the communication link are evaluated. Then, this work proposes a software tool that gathers the obtained results and is capable of evaluating the impact of a given set of materials on the communications. This tool also provides a mechanism to optimize the sensor network deployments during the definition of smart spaces. Specifically, it provides information such as: maximum distances between sensor nodes, most suitable type of furniture to integrate sensors, or battery life of sensor nodes. This tool has been validated empirically in the lab, and it is currently being used by several enterprise partners of the Technological Centre of Furniture and Wood in the southeast of Spain. PMID:22778653

  1. Publication of sensor data in the long-term environmental monitoring infrastructure TERENO

    NASA Astrophysics Data System (ADS)

    Stender, V.; Schroeder, M.; Klump, J. F.

    2014-12-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR (TEreno Online Data repOsitORry). TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes data available through standard web services. TEODOOR accesses the OGC Sensor Web Enablement (SWE) interfaces offered by the regional observatories. In addition to the SWE interface, TERENO Northeast also publishes time series of environmental sensor data through the online research data publication platform DataCite. The metadata required by DataCite are created in an automated process by extracting information from the SWE SensorML to create ISO 19115 compliant metadata. The GFZ data management tool kit panMetaDocs is used to register Digital Object Identifiers (DOI) and preserve file based datasets. In addition to DOI, the International Geo Sample Numbers (IGSN) is used to uniquely identify research specimens.

  2. Seamless personal health information system in cloud computing.

    PubMed

    Chung, Wan-Young; Fong, Ee May

    2014-01-01

    Noncontact ECG measurement has gained popularity these days due to its noninvasive and conveniences to be applied on daily life. This approach does not require any direct contact between patient's skin and sensor for physiological signal measurement. The noncontact ECG measurement is integrated with mobile healthcare system for health status monitoring. Mobile phone acts as the personal health information system displaying health status and body mass index (BMI) tracking. Besides that, it plays an important role being the medical guidance providing medical knowledge database including symptom checker and health fitness guidance. At the same time, the system also features some unique medical functions that cater to the living demand of the patients or users, including regular medication reminders, alert alarm, medical guidance, appointment scheduling. Lastly, we demonstrate mobile healthcare system with web application for extended uses, thus health data are clouded into web server system and web database storage. This allows remote health status monitoring easily and so forth it promotes a cost effective personal healthcare system.

  3. Real-Time Remote Monitoring with Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Faizal Zainal Abidin, Ahmad; Huzaimy Jusoh, Mohammad; James, Elster; Junid, Syed Abdul Mutalib Al; Mohd Yassin, Ahmad Ihsan

    2015-11-01

    The purpose of this system is to provide monitoring system for an electrical device and enable remote monitoring via web based application. This monitoring system allow the user to monitor the device condition from anywhere as the information will be synchronised to the website. The current and voltage reading of the monitored equipment, ambient temperature and humidity level are monitored and recorded. These parameters will be updated on the web page. All these sensor are connected to the microcontroller and the data will saved in micro secure digital (SD) card and send all the gathered information to a web page using the GPRS service connection synchronously. The collected data will be displayed on the website and the user enable to download the data directly from the website. The system will help user to monitor the devices condition and ambient changes with ease. The system is successfully developed, tested and has been installed at residential area in Taman Cahaya Alam, Section U12, Shah Alam, Selangor, Malaysia.

  4. An Updated Status of the Experiments with Sensor Webs and OGC Service-Oriented Architectures to Enable Global Earth Observing System of Systems (GEOSS)

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Sohlberg, Rob; Frye, Stu; Cappelaere, P.; Derezinski, L.; Ungar, Steve; Ames, Troy; Chien, Steve; Tran, Danny

    2007-01-01

    A viewgraph presentation on experiments with sensor webs and service oriented architectures is shown. The topics include: 1) Problem; 2) Basic Service Oriented Architecture Approach; 3) Series of Experiments; and 4) Next Experiments.

  5. Ubiquitous-health (U-Health) monitoring systems for elders and caregivers

    NASA Astrophysics Data System (ADS)

    Moon, Gyu; Lim, Kyung-won; Yoo, Young-min; An, Hye-min; Lee, Ki Seop; Szu, Harold

    2011-06-01

    This paper presents two aordable low-tack system for household biomedical wellness monitoring. The rst system, JIKIMI (pronounced caregiver in Korean), is a remote monitoring system that analyzes the behavior patterns of elders that live alone. JIKIMI is composed of an in-house sensing system, a set of wireless sensor nodes containing a pyroelectric infrared sensor to detect the motion of elders, an emergency button and a magnetic sensor that detects the opening and closing of doors. The system is also equipped with a server system, which is comprised of a database and web server. The server provides the mechanism for web-based monitoring to caregivers. The second system, Reader of Bottle Information (ROBI), is an assistant system which advises the contents of bottles for elders. ROBI is composed of bottles that have connected RFID tags and an advice system, which is composed of a wireless RFID reader, a gateway and a remote database server. The RFID tags are connected to the caps of the bottles are used in conjunction with the advice system These systems have been in use for three years and have proven to be useful for caregivers to provide more ecient and eective care services.

  6. Low-energy, low-budget sensor web enablement of an amateur weather station

    NASA Astrophysics Data System (ADS)

    Schmidt, G.; Herrnkind, S.; Klump, J.

    2008-12-01

    Sensor Web Enablement (OGC SWE) has developed in into a powerful concept with many potential applications in environmental monitoring and in other fields. This has spurred development of software applications for Sensor Observation Services (SOS), while the development of client applications still lags behind. Furthermore, the deployment of sensors in the field often places tight constraints on energy and bandwidth available for data capture and transmission. As a "proof of concept" we equipped an amateur weather station with low-budget, standard components to read the data from its base station and feed it into a sensor observation service using its standard web- service interface. We chose the weather station as an example because of its simple measured phenomena and its low data volume. As sensor observation service we chose the open source software package offered by the 52North consortium. Power consumption can be problematic when deploying a sensor platform in the field. Instead of a common PC we used a Network Storage Link Unit (NSLU2) with a Linux operating system, a configuration also known as "Debian SLUG". The power consumption of a "SLUG" is of the order of 2 to 5 Watt, compared to 40W in a small PC. The "SLUG" provides one ethernet and two USB ports, one used by its external USB hard-drive. This modular setup is open to modifications, for example the addition of a GSM modem for data transmission over a cellular telephone network. The simple setup, low price, low power consumption, and the low technological entry-level allow many potential uses of a "SLUG" in environmental sensor networks in research, education and citizen science. The use of a mature sensor observation service software allows an easy integration of monitoring networks with other web services.

  7. Space-Based Sensor Web for Earth Science Applications: An Integrated Architecture for Providing Societal Benefits

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Talabac, Stephen J.

    2004-01-01

    There is a significant interest in the Earth Science research and user remote sensing community to substantially increase the number of useful observations relative to the current frequency of collection. The obvious reason for such a push is to improve the temporal, spectral, and spatial coverage of the area(s) under investigation. However, there is little analysis available in terms of the benefits, costs and the optimal set of sensors needed to make the necessary observations. Classic observing system solutions may no longer be applicable because of their point design philosophy. Instead, a new intelligent data collection system paradigm employing both reactive and proactive measurement strategies with adaptability to the dynamics of the phenomena should be developed. This is a complex problem that should be carefully studied and balanced across various boundaries including: science, modeling, applications, and technology. Modeling plays a crucial role in making useful predictions about naturally occurring or human-induced phenomena In particular, modeling can serve to mitigate the potentially deleterious impacts a phenomenon may have on human life, property, and the economy. This is especially significant when one is interested in learning about the dynamics of, for example, the spread of forest fires, regional to large-scale air quality issues, the spread of the harmful invasive species, or the atmospheric transport of volcanic plumes and ash. This paper identifies and examines these challenging issues and presents architectural alternatives for an integrated sensor web to provide observing scenarios driving the requisite dynamic spatial, spectral, and temporal characteristics to address these key application areas. A special emphasis is placed on the observing systems and its operational aspects in serving the multiple users and stakeholders in providing societal benefits. We also address how such systems will take advantage of technological advancement in small spacecraft and emerging information technologies, and how sensor web options may be realized and made affordable. Specialized detector subsystems and precision flying techniques may still require substantial innovation, development time and cost: we have presented the considerations for these issues. Finally, data and information gathering and compression techniques are also briefly described.

  8. Web-of-Objects (WoO)-Based Context Aware Emergency Fire Management Systems for the Internet of Things

    PubMed Central

    Shamszaman, Zia Ush; Ara, Safina Showkat; Chong, Ilyoung; Jeong, Youn Kwae

    2014-01-01

    Recent advancements in the Internet of Things (IoT) and the Web of Things (WoT) accompany a smart life where real world objects, including sensing devices, are interconnected with each other. The Web representation of smart objects empowers innovative applications and services for various domains. To accelerate this approach, Web of Objects (WoO) focuses on the implementation aspects of bringing the assorted real world objects to the Web applications. In this paper; we propose an emergency fire management system in the WoO infrastructure. Consequently, we integrate the formation and management of Virtual Objects (ViO) which are derived from real world physical objects and are virtually connected with each other into the semantic ontology model. The charm of using the semantic ontology is that it allows information reusability, extensibility and interoperability, which enable ViOs to uphold orchestration, federation, collaboration and harmonization. Our system is context aware, as it receives contextual environmental information from distributed sensors and detects emergency situations. To handle a fire emergency, we present a decision support tool for the emergency fire management team. The previous fire incident log is the basis of the decision support system. A log repository collects all the emergency fire incident logs from ViOs and stores them in a repository. PMID:24531299

  9. Web-of-Objects (WoO)-based context aware emergency fire management systems for the Internet of Things.

    PubMed

    Shamszaman, Zia Ush; Ara, Safina Showkat; Chong, Ilyoung; Jeong, Youn Kwae

    2014-02-13

    Recent advancements in the Internet of Things (IoT) and the Web of Things (WoT) accompany a smart life where real world objects, including sensing devices, are interconnected with each other. The Web representation of smart objects empowers innovative applications and services for various domains. To accelerate this approach, Web of Objects (WoO) focuses on the implementation aspects of bringing the assorted real world objects to the Web applications. In this paper; we propose an emergency fire management system in the WoO infrastructure. Consequently, we integrate the formation and management of Virtual Objects (ViO) which are derived from real world physical objects and are virtually connected with each other into the semantic ontology model. The charm of using the semantic ontology is that it allows information reusability, extensibility and interoperability, which enable ViOs to uphold orchestration, federation, collaboration and harmonization. Our system is context aware, as it receives contextual environmental information from distributed sensors and detects emergency situations. To handle a fire emergency, we present a decision support tool for the emergency fire management team. The previous fire incident log is the basis of the decision support system. A log repository collects all the emergency fire incident logs from ViOs and stores them in a repository.

  10. Network-Capable Application Process and Wireless Intelligent Sensors for ISHM

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Wang, Ray

    2011-01-01

    Intelligent sensor technology and systems are increasingly becoming attractive means to serve as frameworks for intelligent rocket test facilities with embedded intelligent sensor elements, distributed data acquisition elements, and onboard data acquisition elements. Networked intelligent processors enable users and systems integrators to automatically configure their measurement automation systems for analog sensors. NASA and leading sensor vendors are working together to apply the IEEE 1451 standard for adding plug-and-play capabilities for wireless analog transducers through the use of a Transducer Electronic Data Sheet (TEDS) in order to simplify sensor setup, use, and maintenance, to automatically obtain calibration data, and to eliminate manual data entry and error. A TEDS contains the critical information needed by an instrument or measurement system to identify, characterize, interface, and properly use the signal from an analog sensor. A TEDS is deployed for a sensor in one of two ways. First, the TEDS can reside in embedded, nonvolatile memory (typically flash memory) within the intelligent processor. Second, a virtual TEDS can exist as a separate file, downloadable from the Internet. This concept of virtual TEDS extends the benefits of the standardized TEDS to legacy sensors and applications where the embedded memory is not available. An HTML-based user interface provides a visual tool to interface with those distributed sensors that a TEDS is associated with, to automate the sensor management process. Implementing and deploying the IEEE 1451.1-based Network-Capable Application Process (NCAP) can achieve support for intelligent process in Integrated Systems Health Management (ISHM) for the purpose of monitoring, detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, mitigation to maintain operability, and integrated awareness of system health by the operator. It can also support local data collection and storage. This invention enables wide-area sensing and employs numerous globally distributed sensing devices that observe the physical world through the existing sensor network. This innovation enables distributed storage, distributed processing, distributed intelligence, and the availability of DiaK (Data, Information, and Knowledge) to any element as needed. It also enables the simultaneous execution of multiple processes, and represents models that contribute to the determination of the condition and health of each element in the system. The NCAP (intelligent process) can configure data-collection and filtering processes in reaction to sensed data, allowing it to decide when and how to adapt collection and processing with regard to sophisticated analysis of data derived from multiple sensors. The user will be able to view the sensing device network as a single unit that supports a high-level query language. Each query would be able to operate over data collected from across the global sensor network just as a search query encompasses millions of Web pages. The sensor web can preserve ubiquitous information access between the querier and the queried data. Pervasive monitoring of the physical world raises significant data and privacy concerns. This innovation enables different authorities to control portions of the sensing infrastructure, and sensor service authors may wish to compose services across authority boundaries.

  11. A case for user-generated sensor metadata

    NASA Astrophysics Data System (ADS)

    Nüst, Daniel

    2015-04-01

    Cheap and easy to use sensing technology and new developments in ICT towards a global network of sensors and actuators promise previously unthought of changes for our understanding of the environment. Large professional as well as amateur sensor networks exist, and they are used for specific yet diverse applications across domains such as hydrology, meteorology or early warning systems. However the impact this "abundance of sensors" had so far is somewhat disappointing. There is a gap between (community-driven) sensor networks that could provide very useful data and the users of the data. In our presentation, we argue this is due to a lack of metadata which allows determining the fitness of use of a dataset. Syntactic or semantic interoperability for sensor webs have made great progress and continue to be an active field of research, yet they often are quite complex, which is of course due to the complexity of the problem at hand. But still, we see the most generic information to determine fitness for use is a dataset's provenance, because it allows users to make up their own minds independently from existing classification schemes for data quality. In this work we will make the case how curated user-contributed metadata has the potential to improve this situation. This especially applies for scenarios in which an observed property is applicable in different domains, and for set-ups where the understanding about metadata concepts and (meta-)data quality differs between data provider and user. On the one hand a citizen does not understand the ISO provenance metadata. On the other hand a researcher might find issues in publicly accessible time series published by citizens, which the latter might not be aware of or care about. Because users will have to determine fitness for use for each application on their own anyway, we suggest an online collaboration platform for user-generated metadata based on an extremely simplified data model. In the most basic fashion, metadata generated by users can be boiled down to a basic property of the world wide web: many information items, such as news or blog posts, allow users to create comments and rate the content. Therefore we argue to focus a core data model on one text field for a textual comment, one optional numerical field for a rating, and a resolvable identifier for the dataset that is commented on. We present a conceptual framework that integrates user comments in existing standards and relevant applications of online sensor networks and discuss possible approaches, such as linked data, brokering, or standalone metadata portals. We relate this framework to existing work in user generated content, such as proprietary rating systems on commercial websites, microformats, the GeoViQua User Quality Model, the CHARMe annotations, or W3C Open Annotation. These systems are also explored for commonalities and based on their very useful concepts and ideas; we present an outline for future extensions of the minimal model. Building on this framework we present a concept how a simplistic comment-rating-system can be extended to capture provenance information for spatio-temporal observations in the sensor web, and how this framework can be evaluated.

  12. Effect of Using an Indoor Air Quality Sensor on Perceptions of and Behaviors Toward Air Pollution (Pittsburgh Empowerment Library Study): Online Survey and Interviews

    PubMed Central

    Dias, M Beatrice; Taylor, Michael

    2018-01-01

    Background Air quality affects us all and is a rapidly growing concern in the 21st century. We spend the majority of our lives indoors and can be exposed to a number of pollutants smaller than 2.5 microns (particulate matter, PM2.5) resulting in detrimental health effects. Indoor air quality sensors have the potential to provide people with the information they need to understand their risk and take steps to reduce their exposure. One such sensor is the Speck sensor developed at the Community Robotics, Education and Technology Empowerment Lab at Carnegie Mellon University. This sensor provides users with continuous real-time and historical PM2.5 information, a Web-based platform where people can track their PM2.5 levels over time and learn about ways to reduce their exposure, and a venue (blog post) for the user community to exchange information. Little is known about how the use of such monitors affects people’s knowledge, attitudes, and behaviors with respect to indoor air pollution. Objective The aim of this study was to assess whether using the sensor changes what people know and do about indoor air pollution. Methods We conducted 2 studies. In the first study, we recruited 276 Pittsburgh residents online and through local branches of the Carnegie Library of Pittsburgh, where the Speck sensor was made available by the researchers in the library catalog. Participants completed a 10- to 15-min survey on air pollution knowledge (its health impact, sources, and mitigation options), perceptions of indoor air quality, confidence in mitigation, current behaviors toward air quality, and personal empowerment and creativity in the spring and summer of 2016. In our second study, we surveyed 26 Pittsburgh residents in summer 2016 who checked out the Speck sensor for 3 weeks on the same measures assessed in the first study, with additional questions about the perception and use of the sensor. Follow-up interviews were conducted with a subset of those who used the Speck sensor. Results A series of paired t tests found participants were significantly more knowledgeable (t25=−2.61, P=.02), reported having significantly better indoor air quality (t25=−5.20, P<.001), and felt more confident about knowing how to mitigate their risk (t25=−1.87, P=.07) after using the Speck sensor than before. McNemar test showed participants tended to take more action to reduce indoor air pollution after using the sensor (χ225=2.7, P=.10). Qualitative analysis suggested possible ripple effects of use, including encouraging family and friends to learn about indoor air pollution. Conclusions Providing people with low- or no-cost portable indoor air quality monitors, with a supporting Web-based platform that offers information about how to reduce risk, can help people better express perceptions and adopt behaviors commensurate with the risks they face. Thus, thoughtfully designed and deployed personal sensing devices can help empower people to take steps to reduce their risk. PMID:29519779

  13. Effect of Using an Indoor Air Quality Sensor on Perceptions of and Behaviors Toward Air Pollution (Pittsburgh Empowerment Library Study): Online Survey and Interviews.

    PubMed

    Wong-Parodi, Gabrielle; Dias, M Beatrice; Taylor, Michael

    2018-03-08

    Air quality affects us all and is a rapidly growing concern in the 21st century. We spend the majority of our lives indoors and can be exposed to a number of pollutants smaller than 2.5 microns (particulate matter, PM 2.5 ) resulting in detrimental health effects. Indoor air quality sensors have the potential to provide people with the information they need to understand their risk and take steps to reduce their exposure. One such sensor is the Speck sensor developed at the Community Robotics, Education and Technology Empowerment Lab at Carnegie Mellon University. This sensor provides users with continuous real-time and historical PM 2.5 information, a Web-based platform where people can track their PM 2.5 levels over time and learn about ways to reduce their exposure, and a venue (blog post) for the user community to exchange information. Little is known about how the use of such monitors affects people's knowledge, attitudes, and behaviors with respect to indoor air pollution. The aim of this study was to assess whether using the sensor changes what people know and do about indoor air pollution. We conducted 2 studies. In the first study, we recruited 276 Pittsburgh residents online and through local branches of the Carnegie Library of Pittsburgh, where the Speck sensor was made available by the researchers in the library catalog. Participants completed a 10- to 15-min survey on air pollution knowledge (its health impact, sources, and mitigation options), perceptions of indoor air quality, confidence in mitigation, current behaviors toward air quality, and personal empowerment and creativity in the spring and summer of 2016. In our second study, we surveyed 26 Pittsburgh residents in summer 2016 who checked out the Speck sensor for 3 weeks on the same measures assessed in the first study, with additional questions about the perception and use of the sensor. Follow-up interviews were conducted with a subset of those who used the Speck sensor. A series of paired t tests found participants were significantly more knowledgeable (t 25 =-2.61, P=.02), reported having significantly better indoor air quality (t 25 =-5.20, P<.001), and felt more confident about knowing how to mitigate their risk (t 25 =-1.87, P=.07) after using the Speck sensor than before. McNemar test showed participants tended to take more action to reduce indoor air pollution after using the sensor (χ 2 25 =2.7, P=.10). Qualitative analysis suggested possible ripple effects of use, including encouraging family and friends to learn about indoor air pollution. Providing people with low- or no-cost portable indoor air quality monitors, with a supporting Web-based platform that offers information about how to reduce risk, can help people better express perceptions and adopt behaviors commensurate with the risks they face. Thus, thoughtfully designed and deployed personal sensing devices can help empower people to take steps to reduce their risk. ©Gabrielle Wong-Parodi, M Beatrice Dias, Michael Taylor. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 08.03.2018.

  14. Assimilation of Real-Time Satellite And Human Sensor Networks for Modeling Natural Disasters

    NASA Astrophysics Data System (ADS)

    Aulov, O.; Halem, M.; Lary, D. J.

    2011-12-01

    We describe the development of underlying technologies needed to address the merging of a web of real time satellite sensor Web (SSW) and Human Sensor Web (HSW) needed to augment the US response to extreme events. As an initial prototyping step and use case scenario, we consider the development of two major system tools that can be transitioned from research to the responding operational agency for mitigating coastal oil spills. These tools consist of the capture of Situation Aware (SA) Social Media (SM) Data, and assimilation of the processed information into forecasting models to provide incident decision managers with interactive virtual spatial temporal animations superimposed with probabilistic data estimates. The system methodologies are equally applicable to the wider class of extreme events such as plume dispersions from volcanoes or massive fires, major floods, hurricane impacts, radioactive isotope dispersions from nuclear accidents, etc. A successful feasibility demonstration of this technology has been shown in the case of the Deepwater Horizon Oil Spill where Human Sensor Networks have been combined with a geophysical model to perform parameter assessments. Flickr images of beached oil were mined from the spill area, geolocated and timestamped and converted into geophysical data. This data was incorporated into General NOAA Operational Modeling Environment (GNOME), a Lagrangian forecast model that uses near real-time surface winds, ocean currents, and satellite shape profiles of oil to generate a forecast of plume movement. As a result, improved estimates of diffusive coefficients and rates of oil spill were determined. Current approaches for providing satellite derived oil distributions are collected from a satellite sensor web of operational and research sensors from many countries, and a manual analysis is performed by NESDIS. A real time SA HSW processing system based on geolocated SM data from sources such as Twitter, Flickr, YouTube etc., greatly supplements the current operational practice of sending out teams of humans to gather samples of tarballs reaching coastal locations. We show that ensemble Kalman filter assimilation of the combination of SM data with model forecast background data fields can minimize the false positive cases of satellite observations alone. Our future framework consists of two parts, a real time SA HSW processing system and an on-demand SSW processing system. HSW processing system uses a geolocated SM data to provide observations of coastal oil contact. SSW system is composed of selected instruments from NASA EOS, NPP and available Decadal Survey mission satellites along with other in situ data to form a real time regional oil spill observing system. We will automate the NESDIS manual process of providing oil spill maps by using Self Organizing Feature Map (SOFM) algorithm. We use the LETKF scheme for assimilating the satellite sensor web and HSW observations into the GNOME model to reduce the uncertainty of the observations. We intend to infuse these developments in an SOA implementation for execution of event driven model forecast assimilation cycles in a dedicated HPC cloud.

  15. Application of Open Garden Sensor on Hydroponic Maintenance Management

    NASA Astrophysics Data System (ADS)

    Nasution, S.; Siregar, B.; Kurniawan, M.; Pranoto, H.; Andayani, U.; Fahmi, F.

    2018-03-01

    Hydroponic farming system is an agricultural system that uses direct water as a nutrient without using soil as a planting medium. This system allows smallholder farmers to have the opportunity to develop their crop production with less capital. In addition, hydroponic planting has also been widely adapted by individuals as a personal hobby. Application of technology has penetrated various fields including agricultural fields. One of the technologies that can be applied in a hydroponic farming system is the sensor. Sensors are devices that used to convert a physical quantity into a quantity of electricity so that it can be analyse with a certain electrical circuit. In this study, the technology to be applied is wireless sensor technology applied in human life to help get information quickly and accurately. Sensors to be used in this study are pH sensors, conductivity sensors, temperature sensors and humidity. In addition to sensors, the study also involved Arduino technology. Arduino is a microcontroller board that is used to interact with the environment based on programs that have been made. The final results of the application testing show that the system success to display diagram in real-time in an environment from Arduino board to database and web server.

  16. ESB-based Sensor Web integration for the prediction of electric power supply system vulnerability.

    PubMed

    Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja

    2013-08-15

    Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.

  17. ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability

    PubMed Central

    Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja

    2013-01-01

    Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application. PMID:23955435

  18. Proteus - A Free and Open Source Sensor Observation Service (SOS) Client

    NASA Astrophysics Data System (ADS)

    Henriksson, J.; Satapathy, G.; Bermudez, L. E.

    2013-12-01

    The Earth's 'electronic skin' is becoming ever more sophisticated with a growing number of sensors measuring everything from seawater salinity levels to atmospheric pressure. To further the scientific application of this data collection effort, it is important to make the data easily available to anyone who wants to use it. Making Earth Science data readily available will allow the data to be used in new and potentially groundbreaking ways. The US National Science and Technology Council made this clear in its most recent National Strategy for Civil Earth Observations report, when it remarked that Earth observations 'are often found to be useful for additional purposes not foreseen during the development of the observation system'. On the road to this goal the Open Geospatial Consortium (OGC) is defining uniform data formats and service interfaces to facilitate the discovery and access of sensor data. This is being done through the Sensor Web Enablement (SWE) stack of standards, which include the Sensor Observation Service (SOS), Sensor Model Language (SensorML), Observations & Measurements (O&M) and Catalog Service for the Web (CSW). End-users do not have to use these standards directly, but can use smart tools that leverage and implement them. We have developed such a tool named Proteus. Proteus is an open-source sensor data discovery client. The goal of Proteus is to be a general-purpose client that can be used by anyone for discovering and accessing sensor data via OGC-based services. Proteus is a desktop client and supports a straightforward workflow for finding sensor data. The workflow takes the user through the process of selecting appropriate services, bounding boxes, observed properties, time periods and other search facets. NASA World Wind is used to display the matching sensor offerings on a map. Data from any sensor offering can be previewed in a time series. The user can download data from a single sensor offering, or download data in bulk from all matching sensor offerings. Proteus leverages NASA World Wind's WMS capabilities and allow overlaying sensor offerings on top of any map. Specific search criteria (i.e. user discoveries) can be saved and later restored. Proteus is supports two user types: 1) the researcher/scientist interested in discovering and downloading specific sensor data as input to research processes, and 2) the data manager responsible for maintaining sensor data services (e.g. SOSs) and wants to ensure proper data and metadata delivery, verify sensor data, and receive sensor data alerts. Proteus has a Web-based companion product named the Community Hub that is used to generate sensor data alerts. Alerts can be received via an RSS feed, viewed in a Web browser or displayed directly in Proteus via a Web-based API. To advance the vision of making Earth Science data easily discoverable and accessible to end-users, professional or laymen, Proteus is available as open-source on GitHub (https://github.com/intelligentautomation/proteus).

  19. Towards a Ubiquitous User Model for Profile Sharing and Reuse

    PubMed Central

    de Lourdes Martinez-Villaseñor, Maria; Gonzalez-Mendoza, Miguel; Hernandez-Gress, Neil

    2012-01-01

    People interact with systems and applications through several devices and are willing to share information about preferences, interests and characteristics. Social networking profiles, data from advanced sensors attached to personal gadgets, and semantic web technologies such as FOAF and microformats are valuable sources of personal information that could provide a fair understanding of the user, but profile information is scattered over different user models. Some researchers in the ubiquitous user modeling community envision the need to share user model's information from heterogeneous sources. In this paper, we address the syntactic and semantic heterogeneity of user models in order to enable user modeling interoperability. We present a dynamic user profile structure based in Simple Knowledge Organization for the Web (SKOS) to provide knowledge representation for ubiquitous user model. We propose a two-tier matching strategy for concept schemas alignment to enable user modeling interoperability. Our proposal is proved in the application scenario of sharing and reusing data in order to deal with overweight and obesity. PMID:23201995

  20. ISTIMES Integrated System for Transport Infrastructures Surveillance and Monitoring by Electromagnetic Sensing

    NASA Astrophysics Data System (ADS)

    Argenti, M.; Giannini, V.; Averty, R.; Bigagli, L.; Dumoulin, J.

    2012-04-01

    The EC FP7 ISTIMES project has the goal of realizing an ICT-based system exploiting distributed and local sensors for non destructive electromagnetic monitoring in order to make critical transport infrastructures more reliable and safe. Higher situation awareness thanks to real time and detailed information and images of the controlled infrastructure status allows improving decision capabilities for emergency management stakeholders. Web-enabled sensors and a service-oriented approach are used as core of the architecture providing a sys-tem that adopts open standards (e.g. OGC SWE, OGC CSW etc.) and makes efforts to achieve full interoperability with other GMES and European Spatial Data Infrastructure initiatives as well as compliance with INSPIRE. The system exploits an open easily scalable network architecture to accommodate a wide range of sensors integrated with a set of tools for handling, analyzing and processing large data volumes from different organizations with different data models. Situation Awareness tools are also integrated in the system. Definition of sensor observations and services follows a metadata model based on the ISO 19115 Core set of metadata elements and the O&M model of OGC SWE. The ISTIMES infrastructure is based on an e-Infrastructure for geospatial data sharing, with a Data Cata-log that implements the discovery services for sensor data retrieval, acting as a broker through static connections based on standard SOS and WNS interfaces; a Decision Support component which helps decision makers providing support for data fusion and inference and generation of situation indexes; a Presentation component which implements system-users interaction services for information publication and rendering, by means of a WEB Portal using SOA design principles; A security framework using Shibboleth open source middleware based on the Security Assertion Markup Language supporting Single Sign On (SSO). ACKNOWLEDGEMENT - The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 225663

  1. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control.

    PubMed

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-04-09

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

  2. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control

    PubMed Central

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-01-01

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM2.5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM2.5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web. PMID:28397776

  3. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG.

    PubMed

    Jin, Wenquan; Kim, Do Hyeun

    2018-02-20

    Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system.

  4. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG

    PubMed Central

    Kim, Do Hyeun

    2018-01-01

    Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system. PMID:29461493

  5. Sensor web enablement in a network of low-energy, low-budget amateur weather stations

    NASA Astrophysics Data System (ADS)

    Herrnkind, S.; Klump, J.; Schmidt, G.

    2009-04-01

    Sensor Web Enablement (OGC SWE) has developed in into a powerful concept with many potential applications in environmental monitoring and in other fields. This has spurred development of software applications for Sensor Observation Services (SOS), while the development of client applications still lags behind. Furthermore, the deployment of sensors in the field often places tight constraints on energy and bandwidth available for data capture and transmission. As a „proof of concept" we equipped amateur weather stations with low-budget, standard components to read the data from its base station and feed the weather observation data into the sensor observation service using its standard web-service interface. We chose amateur weather station as an example because of the simplicity of measured phenomena and low data volume. As sensor observation service we chose the open source software package offered by the 52°North consortium. Furthermore, we investigated registry services for sensors and measured phenomena. When deploying a sensor platform in the field, power consumption can be an issue. Instead of common PCs we used Network Storage Link Units (NSLU2) with a Linux operating system, also known as "Debian SLUG". The power consumption of a "SLUG" is of the order of 1W, compared to 40W in a small PC. The "SLUG" provides one ethernet and two USB ports, one used by its external USB hard-drive. This modular set-up is open to modifications, for example the addition of a GSM modem for data transmission over a cellular telephone network. The simple set-up, low price, low power consumption, and the low technological entry-level allow many potential uses of a "SLUG" in environmental sensor networks in research, education and citizen science. The use of a mature sensor observation service software allows an easy integration of monitoring networks with other web services.

  6. Applying Semantic Web Services and Wireless Sensor Networks for System Integration

    NASA Astrophysics Data System (ADS)

    Berkenbrock, Gian Ricardo; Hirata, Celso Massaki; de Oliveira Júnior, Frederico Guilherme Álvares; de Oliveira, José Maria Parente

    In environments like factories, buildings, and homes automation services tend to often change during their lifetime. Changes are concerned to business rules, process optimization, cost reduction, and so on. It is important to provide a smooth and straightforward way to deal with these changes so that could be handled in a faster and low cost manner. Some prominent solutions use the flexibility of Wireless Sensor Networks and the meaningful description of Semantic Web Services to provide service integration. In this work, we give an overview of current solutions for machinery integration that combine both technologies as well as a discussion about some perspectives and open issues when applying Wireless Sensor Networks and Semantic Web Services for automation services integration.

  7. Exploitation of Semantic Building Model in Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Anjomshoaa, A.; Shayeganfar, F.; Tjoa, A. Min

    2009-04-01

    There are many types of indoor and outdoor navigation tools and methodologies available. A majority of these solutions are based on Global Positioning Systems (GPS) and instant video and image processing. These approaches are ideal for open world environments where very few information about the target location is available, but for large scale building environments such as hospitals, governmental offices, etc the end-user will need more detailed information about the surrounding context which is especially important in case of people with special needs. This paper presents a smart indoor navigation solution that is based on Semantic Web technologies and Building Information Model (BIM). The proposed solution is also aligned with Google Android's concepts to enlighten the realization of results. Keywords: IAI IFCXML, Building Information Model, Indoor Navigation, Semantic Web, Google Android, People with Special Needs 1 Introduction Built environment is a central factor in our daily life and a big portion of human life is spent inside buildings. Traditionally the buildings are documented using building maps and plans by utilization of IT tools such as computer-aided design (CAD) applications. Documenting the maps in an electronic way is already pervasive but CAD drawings do not suffice the requirements regarding effective building models that can be shared with other building-related applications such as indoor navigation systems. The navigation in built environment is not a new issue, however with the advances in emerging technologies like GPS, mobile and networked environments, and Semantic Web new solutions have been suggested to enrich the traditional building maps and convert them to smart information resources that can be reused in other applications and improve the interpretability with building inhabitants and building visitors. Other important issues that should be addressed in building navigation scenarios are location tagging and end-user communication. The available solutions for location tagging are mostly based on proximity sensors and the information are bound to sensor references. In the proposed solution of this paper, the sensors simply play a role similar to annotations in Semantic Web world. Hence the sensors data in ontology sense bridges the gap between sensed information and building model. Combining these two and applying the proper inference rules, the building visitors will be able to reach their destinations with instant support of their communication devices such as hand helds, wearable computers, mobiles, etc. In a typical scenario of this kind, user's profile will be delivered to the smart building (via building ad-hoc services) and the appropriate route for user will be calculated and delivered to user's end-device. The calculated route is calculated by considering all constraints and requirements of the end user. So for example if the user is using a wheelchair, the calculated route should not contain stairs or narrow corridors that the wheelchair does not pass through. Then user starts to navigate through building by following the instructions of the end-device which are in turn generated from the calculated route. During the navigation process, the end-device should also interact with the smart building to sense the locations by reading the surrounding tags. So for example when a visually impaired person arrives at an unknown space, the tags will be sensed and the relevant information will be delivered to user in the proper way of communication. For example the building model can be used to generate a voice message for a blind person about a space and tell him/her that "the space has 3 doors, and the door on the left should be chosen which needs to be pushed to open". In this paper we will mainly focus on automatic generation of semantic building information models (Semantic BIM) and delivery of results to the end user. Combining the building information model with the environment and user constraints using Semantic Web technologies will make many scenarios conceivable. The generated IFC ontology that is base on the commonly accepted IFC (Industry Foundation Classes) standard can be used as the basis of information sharing between buildings, people, and applications. The proposed solution is aiming to facilitate the building navigation in an intuitive and extendable way that is easy to use by end-users and at the same time easy to maintain and manage by building administrators.

  8. Increasing Mission Science Return Through Use of Spacecraft Autonomy and Sensor Webs: A Volcanology Example

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Chien, S. A.; Castano, R.; Tran, D. Q.; Scharenbroich, L. J.

    2006-12-01

    Mission science return is increased through use of onboard autonomy, and using disparate assets integrated into an autonomously-operating sensor web that can re-task these assets to rapidly obtain additional data. Software on spacecraft has been used to analyse data to detect dynamic events of high interest, such as on- going volcanic activity. This capability has been successfully demonstrated by the NASA New Millennium Program Autonomous Sciencecraft Experiment (ASE), on the Earth Observing 1 spacecraft in Earth-orbit [1-2]. The potential now exists for eruption parameters to be quantified onboard a spacecraft, using models that relate thermal emission to volumetric eruption rate. This promises a notification not only of on-going activity, but also the magnitude of the event, within a few hours of the original observation, a process that normally takes weeks. ASE/EO-1 is part of the JPL Volcano Sensor Web [3]. This autonomous system collates information of volcanic activity from numerous assets and retasks EO-1 to obtain observations as soon as practicable. The use of a ground-based planner allows rapid insertion or replacement of new observations, with no human intervention. Endusers are notified automatically by email. Spacecraft autonomy, involving automatic fault detection and mitigation, onboard processing of data, and replanning of observations, allows mission operations to break free from pre-ordained operations sequencing, necessary for studying dynamic volcanic processes on other bodies in the Solar System (e.g., Io and Enceladus). Onboard processing allows quantification of dynamic processes, improving both science content per returned byte and optimization of subsequent resource use. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. [1] Chien, S. et al. (2004) The EO-1 Autonomous Science Agent, Proceedings of the 2004 Conferences on Autonomous Agents and Multi-agent Systems (AAMAS), New York City, USA, July 2004. [2] Davies, A. G. et al. (2006) Monitoring active volcanism with the Autonomous Sciencecraft Experiment (ASE) on EO-1, RSE, 101, 427-446. [3] Davies, A. G. et al., (2006) Sensor Web enables rapid response to volcanic activity, Eos, 87, 1, 1&5.

  9. BAID: The Barrow Area Information Database - an interactive web mapping portal and cyberinfrastructure for scientific activities in the vicinity of Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Cody, R. P.; Kassin, A.; Gaylord, A. G.; Tweedie, C. E.

    2013-12-01

    In 2013, the Barrow Area Information Database (BAID, www.baid.utep.edu) project resumed field operations in Barrow, AK. The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 11,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, and save or print maps and query results. Data are described with metadata that meet Federal Geographic Data Committee standards and are archived at the University Corporation for Atmospheric Research Earth Observing Laboratory (EOL) where non-proprietary BAID data can be freely downloaded. Highlights for the 2013 season include the addition of more than 2000 additional research sites, providing differential global position system (dGPS) support to visiting scientists, surveying over 80 miles of coastline to document rates of erosion, training of local GIS personal, deployment of a wireless sensor network, and substantial upgrades to the BAID website and web mapping applications.

  10. Evolution of System Architectures: Where Do We Need to Fail Next?

    NASA Astrophysics Data System (ADS)

    Bermudez, Luis; Alameh, Nadine; Percivall, George

    2013-04-01

    Innovation requires testing and failing. Thomas Edison was right when he said "I have not failed. I've just found 10,000 ways that won't work". For innovation and improvement of standards to happen, service Architectures have to be tested and tested. Within the Open Geospatial Consortium (OGC), testing of service architectures has occurred for the last 15 years. This talk will present an evolution of these service architectures and a possible future path. OGC is a global forum for the collaboration of developers and users of spatial data products and services, and for the advancement and development of international standards for geospatial interoperability. The OGC Interoperability Program is a series of hands-on, fast paced, engineering initiatives to accelerate the development and acceptance of OGC standards. Each initiative is organized in threads that provide focus under a particular theme. The first testbed, OGC Web Services phase 1, completed in 2003 had four threads: Common Architecture, Web Mapping, Sensor Web and Web Imagery Enablement. The Common Architecture was a cross-thread theme, to ensure that the Web Mapping and Sensor Web experiments built on a base common architecture. The architecture was based on the three main SOA components: Broker, Requestor and Provider. It proposed a general service model defining service interactions and dependencies; categorization of service types; registries to allow discovery and access of services; data models and encodings; and common services (WMS, WFS, WCS). For the latter, there was a clear distinction on the different services: Data Services (e.g. WMS), Application services (e.g. Coordinate transformation) and server-side client applications (e.g. image exploitation). The latest testbed, OGC Web Service phase 9, completed in 2012 had 5 threads: Aviation, Cross-Community Interoperability (CCI), Security and Services Interoperability (SSI), OWS Innovations and Compliance & Interoperability Testing & Evaluation (CITE). Compared to the first testbed, OWS-9 did not have a separate common architecture thread. Instead the emphasis was on brokering information models, securing them and making data available efficiently on mobile devices. The outcome is an architecture based on usability and non-intrusiveness while leveraging mediation of information models from different communities. This talk will use lessons learned from the evolution from OGC Testbed phase 1 to phase 9 to better understand how global and complex infrastructures evolve to support many communities including the Earth System Science Community.

  11. National Scale Rainfall Map Based on Linearly Interpolated Data from Automated Weather Stations and Rain Gauges

    NASA Astrophysics Data System (ADS)

    Alconis, Jenalyn; Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo; Lester Saddi, Ivan; Mongaya, Candeze; Figueroa, Kathleen Gay

    2014-05-01

    In response to the slew of disasters that devastates the Philippines on a regular basis, the national government put in place a program to address this problem. The Nationwide Operational Assessment of Hazards, or Project NOAH, consolidates the diverse scientific research being done and pushes the knowledge gained to the forefront of disaster risk reduction and management. Current activities of the project include installing rain gauges and water level sensors, conducting LIDAR surveys of critical river basins, geo-hazard mapping, and running information education campaigns. Approximately 700 automated weather stations and rain gauges installed in strategic locations in the Philippines hold the groundwork for the rainfall visualization system in the Project NOAH web portal at http://noah.dost.gov.ph. The system uses near real-time data from these stations installed in critical river basins. The sensors record the amount of rainfall in a particular area as point data updated every 10 to 15 minutes. The sensor sends the data to a central server either via GSM network or satellite data transfer for redundancy. The web portal displays the sensors as a placemarks layer on a map. When a placemark is clicked, it displays a graph of the rainfall data for the past 24 hours. The rainfall data is harvested by batch determined by a one-hour time frame. The program uses linear interpolation as the methodology implemented to visually represent a near real-time rainfall map. The algorithm allows very fast processing which is essential in near real-time systems. As more sensors are installed, precision is improved. This visualized dataset enables users to quickly discern where heavy rainfall is concentrated. It has proven invaluable on numerous occasions, such as last August 2013 when intense to torrential rains brought about by the enhanced Southwest Monsoon caused massive flooding in Metro Manila. Coupled with observations from Doppler imagery and water level sensors along the Marikina River, the local officials used this information and determined that the river would overflow in a few hours. It gave them a critical lead time to evacuate residents along the floodplain and no casualties were reported after the event.

  12. Invited review: sensors to support health management on dairy farms.

    PubMed

    Rutten, C J; Velthuis, A G J; Steeneveld, W; Hogeveen, H

    2013-04-01

    Since the 1980s, efforts have been made to develop sensors that measure a parameter from an individual cow. The development started with individual cow recognition and was followed by sensors that measure the electrical conductivity of milk and pedometers that measure activity. The aim of this review is to provide a structured overview of the published sensor systems for dairy health management. The development of sensor systems can be described by the following 4 levels: (I) techniques that measure something about the cow (e.g., activity); (II) interpretations that summarize changes in the sensor data (e.g., increase in activity) to produce information about the cow's status (e.g., estrus); (III) integration of information where sensor information is supplemented with other information (e.g., economic information) to produce advice (e.g., whether to inseminate a cow or not); and (IV) the farmer makes a decision or the sensor system makes the decision autonomously (e.g., the inseminator is called). This review has structured a total of 126 publications describing 139 sensor systems and compared them based on the 4 levels. The publications were published in the Thomson Reuters (formerly ISI) Web of Science database from January 2002 until June 2012 or in the proceedings of 3 conferences on precision (dairy) farming in 2009, 2010, and 2011. Most studies concerned the detection of mastitis (25%), fertility (33%), and locomotion problems (30%), with fewer studies (16%) related to the detection of metabolic problems. Many studies presented sensor systems at levels I and II, but none did so at levels III and IV. Most of the work for mastitis (92%) and fertility (75%) is done at level II. For locomotion (53%) and metabolism (69%), more than half of the work is done at level I. The performance of sensor systems varies based on the choice of gold standards, algorithms, and test sizes (number of farms and cows). Studies on sensor systems for mastitis and estrus have shown that sensor systems are brought to a higher level; however, the need to improve detection performance still exists. Studies on sensor systems for locomotion problems have shown that the search continues for the most appropriate indicators, sensor techniques, and gold standards. Studies on metabolic problems show that it is still unclear which indicator reflects best the metabolic problems that should be detected. No systems with integrated decision support models have been found. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Sensor-Web Operations Explorer

    NASA Technical Reports Server (NTRS)

    Meemong, Lee; Miller, Charles; Bowman, Kevin; Weidner, Richard

    2008-01-01

    Understanding the atmospheric state and its impact on air quality requires observations of trace gases, aerosols, clouds, and physical parameters across temporal and spatial scales that range from minutes to days and from meters to more than 10,000 kilometers. Observations include continuous local monitoring for particle formation; field campaigns for emissions, local transport, and chemistry; and periodic global measurements for continental transport and chemistry. Understanding includes global data assimilation framework capable of hierarchical coupling, dynamic integration of chemical data and atmospheric models, and feedback loops between models and observations. The objective of the sensor-web system is to observe trace gases, aerosols, clouds, and physical parameters, an integrated observation infrastructure composed of space-borne, air-borne, and in-situ sensors will be simulated based on their measurement physics properties. The objective of the sensor-web operation is to optimally plan for heterogeneous multiple sensors, the sampling strategies will be explored and science impact will be analyzed based on comprehensive modeling of atmospheric phenomena including convection, transport, and chemical process. Topics include system architecture, software architecture, hardware architecture, process flow, technology infusion, challenges, and future direction.

  14. A web-based system for home monitoring of patients with Parkinson's disease using wearable sensors.

    PubMed

    Chen, Bor-Rong; Patel, Shyamal; Buckley, Thomas; Rednic, Ramona; McClure, Douglas J; Shih, Ludy; Tarsy, Daniel; Welsh, Matt; Bonato, Paolo

    2011-03-01

    This letter introduces MercuryLive, a platform to enable home monitoring of patients with Parkinson's disease (PD) using wearable sensors. MercuryLive contains three tiers: a resource-aware data collection engine that relies upon wearable sensors, web services for live streaming and storage of sensor data, and a web-based graphical user interface client with video conferencing capability. Besides, the platform has the capability of analyzing sensor (i.e., accelerometer) data to reliably estimate clinical scores capturing the severity of tremor, bradykinesia, and dyskinesia. Testing results showed an average data latency of less than 400 ms and video latency of about 200 ms with video frame rate of about 13 frames/s when 800 kb/s of bandwidth were available and we used a 40% video compression, and data feature upload requiring 1 min of extra time following a 10 min interactive session. These results indicate that the proposed platform is suitable to monitor patients with PD to facilitate the titration of medications in the late stages of the disease.

  15. Scalability Issues for Remote Sensing Infrastructure: A Case Study

    PubMed Central

    Liu, Yang; Picard, Sean; Williamson, Carey

    2017-01-01

    For the past decade, a team of University of Calgary researchers has operated a large “sensor Web” to collect, analyze, and share scientific data from remote measurement instruments across northern Canada. This sensor Web receives real-time data streams from over a thousand Internet-connected sensors, with a particular emphasis on environmental data (e.g., space weather, auroral phenomena, atmospheric imaging). Through research collaborations, we had the opportunity to evaluate the performance and scalability of their remote sensing infrastructure. This article reports the lessons learned from our study, which considered both data collection and data dissemination aspects of their system. On the data collection front, we used benchmarking techniques to identify and fix a performance bottleneck in the system’s memory management for TCP data streams, while also improving system efficiency on multi-core architectures. On the data dissemination front, we used passive and active network traffic measurements to identify and reduce excessive network traffic from the Web robots and JavaScript techniques used for data sharing. While our results are from one specific sensor Web system, the lessons learned may apply to other scientific Web sites with remote sensing infrastructure. PMID:28468262

  16. Operational Marine Data Acquisition and Delivery Powered by Web and Geospatial Standards

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Buck, J. J. H.

    2015-12-01

    As novel sensor types and new platforms are deployed to monitor the global oceans, the volumes of scientific and environmental data collected in the marine context are rapidly growing. In order to use these data in both the traditional operational modes and in innovative "Big Data" applications the data must be readily understood by software agents. One approach to achieving this is the application of both World Wide Web and Open Geospatial Consortium standards: namely Linked Data1 and Sensor Web Enablement2 (SWE). The British Oceanographic Data Centre (BODC) is adopting this strategy in a number of European Commission funded projects (NETMAR; SenseOCEAN; Ocean Data Interoperability Platform - ODIP; and AtlantOS) to combine its existing data archiving architecture with SWE components (such as Sensor Observation Services) and a Linked Data interface. These will evolve the data management and data transfer from a process that requires significant manual intervention to an automated operational process enabling the rapid, standards-based, ingestion and delivery of data. This poster will show the current capabilities of BODC and the status of on-going implementation of this strategy. References1. World Wide Web Consortium. (2013). Linked Data. Available:http://www.w3.org/standards/semanticweb/data. Last accessed 7th April 20152. Open Geospatial Consortium. (2014). Sensor Web Enablement (SWE). Available:http://www.opengeospatial.org/ogc/markets-technologies/swe. Last accessed 8th October 2014

  17. Intelligent On-Board Processing in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Tanner, S.

    2005-12-01

    Most existing sensing systems are designed as passive, independent observers. They are rarely aware of the phenomena they observe, and are even less likely to be aware of what other sensors are observing within the same environment. Increasingly, intelligent processing of sensor data is taking place in real-time, using computing resources on-board the sensor or the platform itself. One can imagine a sensor network consisting of intelligent and autonomous space-borne, airborne, and ground-based sensors. These sensors will act independently of one another, yet each will be capable of both publishing and receiving sensor information, observations, and alerts among other sensors in the network. Furthermore, these sensors will be capable of acting upon this information, perhaps altering acquisition properties of their instruments, changing the location of their platform, or updating processing strategies for their own observations to provide responsive information or additional alerts. Such autonomous and intelligent sensor networking capabilities provide significant benefits for collections of heterogeneous sensors within any environment. They are crucial for multi-sensor observations and surveillance, where real-time communication with external components and users may be inhibited, and the environment may be hostile. In all environments, mission automation and communication capabilities among disparate sensors will enable quicker response to interesting, rare, or unexpected events. Additionally, an intelligent network of heterogeneous sensors provides the advantage that all of the sensors can benefit from the unique capabilities of each sensor in the network. The University of Alabama in Huntsville (UAH) is developing a unique approach to data processing, integration and mining through the use of the Adaptive On-Board Data Processing (AODP) framework. AODP is a key foundation technology for autonomous internetworking capabilities to support situational awareness by sensors and their on-board processes. The two primary research areas for this project are (1) the on-board processing and communications framework itself, and (2) data mining algorithms targeted to the needs and constraints of the on-board environment. The team is leveraging its experience in on-board processing, data mining, custom data processing, and sensor network design. Several unique UAH-developed technologies are employed in the AODP project, including EVE, an EnVironmEnt for on-board processing, and the data mining tools included in the Algorithm Development and Mining (ADaM) toolkit.

  18. Next generation of weather generators on web service framework

    NASA Astrophysics Data System (ADS)

    Chinnachodteeranun, R.; Hung, N. D.; Honda, K.; Ines, A. V. M.

    2016-12-01

    Weather generator is a statistical model that synthesizes possible realization of long-term historical weather in future. It generates several tens to hundreds of realizations stochastically based on statistical analysis. Realization is essential information as a crop modeling's input for simulating crop growth and yield. Moreover, they can be contributed to analyzing uncertainty of weather to crop development stage and to decision support system on e.g. water management and fertilizer management. Performing crop modeling requires multidisciplinary skills which limit the usage of weather generator only in a research group who developed it as well as a barrier for newcomers. To improve the procedures of performing weather generators as well as the methodology to acquire the realization in a standard way, we implemented a framework for providing weather generators as web services, which support service interoperability. Legacy weather generator programs were wrapped in the web service framework. The service interfaces were implemented based on an international standard that was Sensor Observation Service (SOS) defined by Open Geospatial Consortium (OGC). Clients can request realizations generated by the model through SOS Web service. Hierarchical data preparation processes required for weather generator are also implemented as web services and seamlessly wired. Analysts and applications can invoke services over a network easily. The services facilitate the development of agricultural applications and also reduce the workload of analysts on iterative data preparation and handle legacy weather generator program. This architectural design and implementation can be a prototype for constructing further services on top of interoperable sensor network system. This framework opens an opportunity for other sectors such as application developers and scientists in other fields to utilize weather generators.

  19. Automatic optimisation of gamma dose rate sensor networks: The DETECT Optimisation Tool

    NASA Astrophysics Data System (ADS)

    Helle, K. B.; Müller, T. O.; Astrup, P.; Dyve, J. E.

    2014-05-01

    Fast delivery of comprehensive information on the radiological situation is essential for decision-making in nuclear emergencies. Most national radiological agencies in Europe employ gamma dose rate sensor networks to monitor radioactive pollution of the atmosphere. Sensor locations were often chosen using regular grids or according to administrative constraints. Nowadays, however, the choice can be based on more realistic risk assessment, as it is possible to simulate potential radioactive plumes. To support sensor planning, we developed the DETECT Optimisation Tool (DOT) within the scope of the EU FP 7 project DETECT. It evaluates the gamma dose rates that a proposed set of sensors might measure in an emergency and uses this information to optimise the sensor locations. The gamma dose rates are taken from a comprehensive library of simulations of atmospheric radioactive plumes from 64 source locations. These simulations cover the whole European Union, so the DOT allows evaluation and optimisation of sensor networks for all EU countries, as well as evaluation of fencing sensors around possible sources. Users can choose from seven cost functions to evaluate the capability of a given monitoring network for early detection of radioactive plumes or for the creation of dose maps. The DOT is implemented as a stand-alone easy-to-use JAVA-based application with a graphical user interface and an R backend. Users can run evaluations and optimisations, and display, store and download the results. The DOT runs on a server and can be accessed via common web browsers; it can also be installed locally.

  20. CB-EMIS CELL PHONE CLIENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lurie, Gordon

    2007-01-02

    The cell phone software allows any Java enabled cell phone to view sensor and meteorological data via an internet connection using a secure connection to the CB-EMIS Web Service. Users with appropriate privileges can monitor the state of the sensors and perform simple maintenance tasks remotely. All sensitive data is downloaded from the web service, thus protecting sensitive data in the event a cell phone is lost.

  1. Central Asia Water (CAWa) - A visualization platform for hydro-meteorological sensor data

    NASA Astrophysics Data System (ADS)

    Stender, Vivien; Schroeder, Matthias; Wächter, Joachim

    2014-05-01

    Water is an indispensable necessity of life for people in the whole world. In central Asia, water is the key factor for economic development, but is already a narrow resource in this region. In fact of climate change, the water problem handling will be a big challenge for the future. The regional research Network "Central Asia Water" (CAWa) aims at providing a scientific basis for transnational water resources management for the five Central Asia States Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan and Kazakhstan. CAWa is part of the Central Asia Water Initiative (also known as the Berlin Process) which was launched by the Federal Foreign Office on 1 April 2008 at the "Water Unites" conference in Berlin. To produce future scenarios and strategies for sustainable water management, data on water reserves and the use of water in Central Asia must therefore be collected consistently across the region. Hydro-meteorological stations equipped with sophisticated sensors are installed in Central Asia and send their data via real-time satellite communication to the operation centre of the monitoring network and to the participating National Hydro-meteorological Services.[1] The challenge for CAWa is to integrate the whole aspects of data management, data workflows, data modeling and visualizations in a proper design of a monitoring infrastructure. The use of standardized interfaces to support data transfer and interoperability is essential in CAWa. An uniform treatment of sensor data can be realized by the OGC Sensor Web Enablement (SWE) , which makes a number of standards and interface definitions available: Observation & Measurement (O&M) model for the description of observations and measurements, Sensor Model Language (SensorML) for the description of sensor systems, Sensor Observation Service (SOS) for obtaining sensor observations, Sensor Planning Service (SPS) for tasking sensors, Web Notification Service (WNS) for asynchronous dialogues and Sensor Alert Service (SAS) for sending alerts. An OpenSource web-platform bundles the data, provided by the SWE web services of the hydro-meteorological stations, and provides tools for data visualization and data access. The visualization tool was implemented by using OpenSource tools like GeoExt/ExtJS and OpenLayers. Using the application the user can query the relevant sensor data, select parameter and time period, visualize and finally download the data. [1] http://www.cawa-project.net

  2. THE TSUNAMI SERVICE BUS, AN INTEGRATION PLATFORM FOR HETEROGENEOUS SENSOR SYSTEMS

    NASA Astrophysics Data System (ADS)

    Fleischer, J.; Häner, R.; Herrnkind, S.; Kriegel, U.; Schwarting, H.; Wächter, J.

    2009-12-01

    The Tsunami Service Bus (TSB) is the sensor integration platform of the German Indonesian Tsunami Early Warning System (GITEWS) [1]. The primary goal of GITEWS is to deliver reliable tsunami warnings as fast as possible. This is achieved on basis of various sensor systems like seismometers, ocean instrumentation, and GPS stations, all providing fundamental data to support prediction of tsunami wave propagation by the GITEWS warning center. However, all these sensors come with their own proprietary data formats and specific behavior. Also new sensor types might be added, old sensors will be replaced. To keep GITEWS flexible the TSB was developed in order to access and control sensors in a uniform way. To meet these requirements the TSB follows the architectural blueprint of a Service Oriented Architecture (SOA). The integration platform implements dedicated services communicating via a service infrastructure. The functionality required for early warnings is provided by loosely coupled services replacing the "hard-wired" coupling at data level. Changes in the sensor specification are confined to the data level without affecting the warning center. Great emphasis was laid on following the Sensor Web Enablement (SWE) standard [2], specified by the Open Geospatial Consortium (OGC) [3]. As a result the full functionality needed in GITEWS could be achieved by implementing the four SWE services: The Sensor Observation Service for retrieving sensor measurements, the Sensor Alert Service in order to deliver sensor alerts, the Sensor Planning Service for tasking sensors, and the Web Notification Service for conduction messages to various media channels. Beyond these services the TSB also follows SWE Observation & Measurements specifications (O&M) for data encoding and Sensor Model Language (SensorML) for meta information. Moreover, accessing sensors via the TSB is not restricted to GITEWS. Multiple instances of the TSB can be composed to realize federate warning system. Beside the already operating TSB at the BMKG warning center [4], two other organizations in Indonesia ([5], [6]) consider using the TSB, making their data centers available to GITEWS. The presentation takes a look at the concepts and implementation and reflects the usefulness of the mentioned standards. REFERENCES [1] GITEWS is a project of the German Federal Government to aid the recon¬struction of the tsunami-prone region of the Indian Ocean, http://www.gitews.org/ [2] SWE, www.opengeospatial.org/projects/groups/sensorweb [3] OGC, www.opengeospatial.org [4] Meteorological and Geophysical Agency of Indonesia (BMKG), www.bmg.go.id [5] National Coordinating Agency for Surveys and Mapping (BAKOSURTANAL), www.bakosurtanal.go.id [6] Agency for the Assessment & Application of Technology (BPPT), www.bppt.go.id

  3. DISTANT EARLY WARNING SYSTEM for Tsunamis - A wide-area and multi-hazard approach

    NASA Astrophysics Data System (ADS)

    Hammitzsch, Martin; Lendholt, Matthias; Wächter, Joachim

    2010-05-01

    The DEWS (Distant Early Warning System) [1] project, funded under the 6th Framework Programme of the European Union, has the objective to create a new generation of interoperable early warning systems based on an open sensor platform. This platform integrates OGC [2] SWE [3] compliant sensor systems for the rapid detection of hazardous events, like earthquakes, sea level anomalies, ocean floor occurrences, and ground displacements in the case of tsunami early warning. Based on the upstream information flow DEWS focuses on the improvement of downstream capacities of warning centres especially by improving information logistics for effective and targeted warning message aggregation for a multilingual environment. Multiple telecommunication channels will be used for the dissemination of warning messages. Wherever possible, existing standards have been integrated. The Command and Control User Interface (CCUI), a rich client application based on Eclipse RCP (Rich Client Platform) [4] and the open source GIS uDig [5], integrates various OGC services. Using WMS (Web Map Service) [6] and WFS (Web Feature Service) [7] spatial data are utilized to depict the situation picture and to integrate a simulation system via WPS (Web Processing Service) [8] to identify affected areas. Warning messages are compiled and transmitted in the OASIS [9] CAP (Common Alerting Protocol) [10] standard together with addressing information defined via EDXL-DE (Emergency Data Exchange Language - Distribution Element) [11]. Internal interfaces are realized with SOAP [12] web services. Based on results of GITEWS [13] - in particular the GITEWS Tsunami Service Bus [14] - the DEWS approach provides an implementation for tsunami early warning systems but other geological paradigms are going to follow, e.g. volcanic eruptions or landslides. Therefore in future also multi-hazard functionality is conceivable. The specific software architecture of DEWS makes it possible to dock varying sensors to the system and to extend the CCUI with hazard specific functionality. The presentation covers the DEWS project, the system architecture and the CCUI in conjunction with details of information logistics. The DEWS Wide Area Centre connecting national centres to allow the international communication and warning exchange is presented also. REFERENCES: [1] DEWS, www.dews-online.org [2] OGC, www.opengeospatial.org [3] SWE, www.opengeospatial.org/projects/groups/sensorweb [4] Eclipse RCP, www.eclipse.org/home/categories/rcp.php [5] uDig, udig.refractions.net [6] WMS, www.opengeospatial.org/standards/wms [7] WFS, www.opengeospatial.org/standards/wfs [8] WPS, www.opengeospatial.org/standards/wps [9] OASIS, www.oasis-open.org [10] CAP, www.oasis-open.org/specs/#capv1.1 [11] EDXL-DE, www.oasis-open.org/specs/#edxlde-v1.0 [12] SOAP, www.w3.org/TR/soap [13] GITEWS (German Indonesian Tsunami Early Warning System) is a project of the German Federal Government to aid the recon¬struction of the tsunami-prone Indian Ocean region, www.gitews.org [14] The Tsunami Service Bus is the GITEWS sensor system integration platform offering standardised services for the detection and monitoring of tsunamis

  4. The Namibia Early Flood Warning System, A CEOS Pilot Project

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Frye, Stuart; Cappelaere, Pat; Sohlberg, Robert; Handy, Matthew; Grossman, Robert

    2012-01-01

    Over the past year few years, an international collaboration has developed a pilot project under the auspices of Committee on Earth Observation Satellite (CEOS) Disasters team. The overall team consists of civilian satellite agencies. For this pilot effort, the development team consists of NASA, Canadian Space Agency, Univ. of Maryland, Univ. of Colorado, Univ. of Oklahoma, Ukraine Space Research Institute and Joint Research Center(JRC) for European Commission. This development team collaborates with regional , national and international agencies to deliver end-to-end disaster coverage. In particular, the team in collaborating on this effort with the Namibia Department of Hydrology to begin in Namibia . However, the ultimate goal is to expand the functionality to provide early warning over the South Africa region. The initial collaboration was initiated by United Nations Office of Outer Space Affairs and CEOS Working Group for Information Systems and Services (WGISS). The initial driver was to demonstrate international interoperability using various space agency sensors and models along with regional in-situ ground sensors. In 2010, the team created a preliminary semi-manual system to demonstrate moving and combining key data streams and delivering the data to the Namibia Department of Hydrology during their flood season which typically is January through April. In this pilot, a variety of moderate resolution and high resolution satellite flood imagery was rapidly delivered and used in conjunction with flood predictive models in Namibia. This was collected in conjunction with ground measurements and was used to examine how to create a customized flood early warning system. During the first year, the team made use of SensorWeb technology to gather various sensor data which was used to monitor flood waves traveling down basins originating in Angola, but eventually flooding villages in Namibia. The team made use of standardized interfaces such as those articulated under the Open Cloud Consortium (OGC) Sensor Web Enablement (SWE) set of web services was good [1][2]. However, it was discovered that in order to make a system like this functional, there were many performance issues. Data sets were large and located in a variety of location behind firewalls and had to be accessed across open networks, so security was an issue. Furthermore, the network access acted as bottleneck to transfer map products to where they are needed. Finally, during disasters, many users and computer processes act in parallel and thus it was very easy to overload the single string of computers stitched together in a virtual system that was initially developed. To address some of these performance issues, the team partnered with the Open Cloud Consortium (OCC) who supplied a Computation Cloud located at the University of Illinois at Chicago and some manpower to administer this Cloud. The Flood SensorWeb [3] system was interfaced to the Cloud to provide a high performance user interface and product development engine. Figure 1 shows the functional diagram of the Flood SensorWeb. Figure 2 shows some of the functionality of the Computation Cloud that was integrated. A significant portion of the original system was ported to the Cloud and during the past year, technical issues were resolved which included web access to the Cloud, security over the open Internet, beginning experiments on how to handle surge capacity by using the virtual machines in the cloud in parallel, using tiling techniques to render large data sets as layers on map, interfaces to allow user to customize the data processing/product chain and other performance enhancing techniques. The conclusion reached from the effort and this presentation is that defining the interoperability standards in a small fraction of the work. For example, once open web service standards were defined, many users could not make use of the standards due to security restrictions. Furthermore, once an interoperable sysm is functional, then a surge of users can render a system unusable, especially in the disaster domain.

  5. Online catalog of world-wide test sites for the post-launch characterization and calibration of optical sensors

    USGS Publications Warehouse

    Chander, G.; Christopherson, J.B.; Stensaas, G.L.; Teillet, P.M.

    2007-01-01

    In an era when the number of Earth-observing satellites is rapidly growing and measurements from these sensors are used to answer increasingly urgent global issues, it is imperative that scientists and decision-makers can rely on the accuracy of Earth-observing data products. The characterization and calibration of these sensors are vital to achieve an integrated Global Earth Observation System of Systems (GEOSS) for coordinated and sustained observations of Earth. The U.S. Geological Survey (USGS), as a supporting member of the Committee on Earth Observation Satellites (CEOS) and GEOSS, is working with partners around the world to establish an online catalog of prime candidate test sites for the post-launch characterization and calibration of space-based optical imaging sensors. The online catalog provides easy public Web site access to this vital information for the global community. This paper describes the catalog, the test sites, and the methodologies to use the test sites. It also provides information regarding access to the online catalog and plans for further development of the catalog in cooperation with calibration specialists from agencies and organizations around the world. Through greater access to and understanding of these vital test sites and their use, the validity and utility of information gained from Earth remote sensing will continue to improve. Copyright IAF/IAA. All rights reserved.

  6. Publication of sensor data in the long-term environmental sub-observatory TERENO Northeast

    NASA Astrophysics Data System (ADS)

    Stender, Vivien; Ulbricht, Damian; Klump, Jens

    2017-04-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR (TEreno Online Data repOsitORry). TEODOOR bundles the data provided by the different web services of the single observatories and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes data available through standard web services. TEODOOR accesses the OGC Sensor Web Enablement (SWE) interfaces offered by the regional observatories. In addition to the SWE interface, TERENO Northeast also publishes time series of environmental sensor data through the DOI registration service at GFZ Potsdam. This service uses the DataCite infrastructure to make research data citable and is able to keep and disseminate metadata popular to the geosciences [1]. The metadata required by DataCite are created in an automated process by extracting information from the SWE SensorML metadata. The GFZ data management tool kit panMetaDocs is used to manage and archive file based datasets and to register Digital Object Identifiers (DOI) for published data. In this presentation we will report on current advances in publication of time series data from environmental sensor networks. [1]http://doidb.wdc-terra.org/oaip/oai?verb=ListRecords&metadataPrefix=iso19139&set=DOIDB.TERENO

  7. Web-GIS platform for green infrastructure in Bucharest, Romania

    NASA Astrophysics Data System (ADS)

    Sercaianu, Mihai; Petrescu, Florian; Aldea, Mihaela; Oana, Luca; Rotaru, George

    2015-06-01

    In the last decade, reducing urban pollution and improving quality of public spaces became a more and more important issue for public administration authorities in Romania. The paper describes the development of a web-GIS solution dedicated to monitoring of the green infrastructure in Bucharest, Romania. Thus, the system allows the urban residents (citizens) to collect themselves and directly report relevant information regarding the current status of the green infrastructure of the city. Consequently, the citizens become an active component of the decision-support process within the public administration. Besides the usual technical characteristics of such geo-information processing systems, due to the complex legal and organizational problems that arise in collecting information directly from the citizens, additional analysis was required concerning, for example, local government involvement, environmental protection agencies regulations or public entities requirements. Designing and implementing the whole information exchange process, based on the active interaction between the citizens and public administration bodies, required the use of the "citizen-sensor" concept deployed with GIS tools. The information collected and reported from the field is related to a lot of factors, which are not always limited to the city level, providing the possibility to consider the green infrastructure as a whole. The "citizen-request" web-GIS for green infrastructure monitoring solution is characterized by a very diverse urban information, due to the fact that the green infrastructure itself is conditioned by a lot of urban elements, such as urban infrastructures, urban infrastructure works and construction density.

  8. Sensors for observing ecosystem status

    NASA Astrophysics Data System (ADS)

    Kröger, S.; Parker, E. R.; Metcalfe, J. D.; Greenwood, N.; Forster, R. M.; Sivyer, D. B.; Pearce, D. J.

    2009-11-01

    This paper aims to review the availability and application of sensors for observing marine ecosystem status. It gives a broad overview of important ecosystem variables to be investigated, such as biogeochemical cycles, primary and secondary production, species distribution, animal movements, habitats and pollutants. Some relevant legislative drivers are listed, as they provide one context in which ecosystem studies are undertaken. In addition to literature cited within the text the paper contains some useful web links to assist the reader in making an informed instrument choice, as the authors feel that the topic is so broad, it is impossible to discuss all relevant systems or to provide appropriate detail for those discussed. It is therefore an introduction to how and why ecosystem status is currently observed, what variables are quantified, from what platforms, using remote sensing or in-situ measurements, and gives examples of useful sensor based tools. Starting with those presently available, to those under development and also highlighting sensors not yet realised but desirable for future studies.

  9. Sensors for observing ecosystem status

    NASA Astrophysics Data System (ADS)

    Kröger, S.; Parker, E. R.; Metcalfe, J. D.; Greenwood, N.; Forster, R. M.; Sivyer, D. B.; Pearce, D. J.

    2009-04-01

    This paper aims to review the availability and application of sensors for observing marine ecosystem status. It gives a broad overview of important ecosystem variables to be investigated, such as biogeochemical cycles, primary and secondary production, species distribution, animal movements, habitats and pollutants. Some relevant legislative drivers are listed, as they provide one context in which ecosystem studies are undertaken. In addition to literature cited within the text the paper contains some useful web links to assist the reader in making an informed instrument choice, as the authors feel that the topic is so broad, it is impossible to discuss all relevant systems or to provide appropriate detail for those discussed. This is therefore an introduction to how and why ecosystem status is currently observed, what variables are quantified, from what platforms, using remote sensing or in-situ measurements, and gives examples of useful sensor based tools. Starting with those presently available, to those under development and also highlighting sensors not yet realised but desirable for future studies.

  10. Virtual Sensors in a Web 2.0 Digital Watershed

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hill, D. J.; Marini, L.; Kooper, R.; Rodriguez, A.; Myers, J. D.

    2008-12-01

    The lack of rainfall data in many watersheds is one of the major barriers for modeling and studying many environmental and hydrological processes and supporting decision making. There are just not enough rain gages on the ground. To overcome this data scarcity issue, a Web 2.0 digital watershed is developed at NCSA(National Center for Supercomputing Applications), where users can point-and-click on a web-based google map interface and create new precipitation virtual sensors at any location within the same coverage region as a NEXRAD station. A set of scientific workflows are implemented to perform spatial, temporal and thematic transformations to the near-real-time NEXRAD Level II data. Such workflows can be triggered by the users' actions and generate either rainfall rate or rainfall accumulation streaming data at a user-specified time interval. We will discuss some underlying components of this digital watershed, which consists of a semantic content management middleware, a semantically enhanced streaming data toolkit, virtual sensor management functionality, and RESTful (REpresentational State Transfer) web service that can trigger the workflow execution. Such loosely coupled architecture presents a generic framework for constructing a Web 2.0 style digital watershed. An implementation of this architecture at the Upper Illinois Rive Basin will be presented. We will also discuss the implications of the virtual sensor concept for the broad environmental observatory community and how such concept will help us move towards a participatory digital watershed.

  11. Development of a Cloud Computing-Based Pier Type Port Structure Stability Evaluation Platform Using Fiber Bragg Grating Sensors.

    PubMed

    Jo, Byung Wan; Jo, Jun Ho; Khan, Rana Muhammad Asad; Kim, Jung Hoon; Lee, Yun Sung

    2018-05-23

    Structure Health Monitoring is a topic of great interest in port structures due to the ageing of structures and the limitations of evaluating structures. This paper presents a cloud computing-based stability evaluation platform for a pier type port structure using Fiber Bragg Grating (FBG) sensors in a system consisting of a FBG strain sensor, FBG displacement gauge, FBG angle meter, gateway, and cloud computing-based web server. The sensors were installed on core components of the structure and measurements were taken to evaluate the structures. The measurement values were transmitted to the web server via the gateway to analyze and visualize them. All data were analyzed and visualized in the web server to evaluate the structure based on the safety evaluation index (SEI). The stability evaluation platform for pier type port structures involves the efficient monitoring of the structures which can be carried out easily anytime and anywhere by converging new technologies such as cloud computing and FBG sensors. In addition, the platform has been successfully implemented at “Maryang Harbor” situated in Maryang-Meyon of Korea to test its durability.

  12. Some legal concerns with the use of crowd-sourced Geospatial Information

    NASA Astrophysics Data System (ADS)

    Cho, George

    2014-06-01

    Volunteered geographic Information (VGI), citizens as sensors, crowd-sourcing and 'Wikipedia' of maps have been used to describe activity facilitated by the Internet and the dynamic Web 2.0 environment to collect geographic information (GI). Legal concerns raised in the creation, assembly and dissemination of GI by produsers include: quality, ownership and liability. In detail, accuracy and authoritativeness of the crowd-sourced GI; the ownership and moral rights to the information, and contractual and tort liability are key concerns. A legal framework and governance structure may be necessary whereby technology, networked governance and provision of legal protections may be combined to mitigate geo-liability as a 'chilling' factor in VGI development.

  13. Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming

    PubMed Central

    Cambra, Carlos; Lacuesta, Raquel

    2018-01-01

    Improving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical costs. This article presents an auto-calibrated pH sensor able to detect and adjust the imbalances in the pH levels of the nutrient solution used in hydroponic agriculture. The sensor is composed by a pH probe and a set of micropumps that sequentially pour the different liquid solutions to maintain the sensor calibration and the water samples from the channels that contain the nutrient solution. To implement our architecture, we use an auto-calibrated pH sensor connected to a wireless node. Several nodes compose our wireless sensor networks (WSN) to control our greenhouse. The sensors periodically measure the pH level of each hydroponic support and send the information to a data base (DB) which stores and analyzes the data to warn farmers about the measures. The data can then be accessed through a user-friendly, web-based interface that can be accessed through the Internet by using desktop or mobile devices. This paper also shows the design and test bench for both the auto-calibrated pH sensor and the wireless network to check their correct operation. PMID:29693611

  14. Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming.

    PubMed

    Cambra, Carlos; Sendra, Sandra; Lloret, Jaime; Lacuesta, Raquel

    2018-04-25

    Improving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical costs. This article presents an auto-calibrated pH sensor able to detect and adjust the imbalances in the pH levels of the nutrient solution used in hydroponic agriculture. The sensor is composed by a pH probe and a set of micropumps that sequentially pour the different liquid solutions to maintain the sensor calibration and the water samples from the channels that contain the nutrient solution. To implement our architecture, we use an auto-calibrated pH sensor connected to a wireless node. Several nodes compose our wireless sensor networks (WSN) to control our greenhouse. The sensors periodically measure the pH level of each hydroponic support and send the information to a data base (DB) which stores and analyzes the data to warn farmers about the measures. The data can then be accessed through a user-friendly, web-based interface that can be accessed through the Internet by using desktop or mobile devices. This paper also shows the design and test bench for both the auto-calibrated pH sensor and the wireless network to check their correct operation.

  15. [The Development of Information Centralization and Management Integration System for Monitors Based on Wireless Sensor Network].

    PubMed

    Xu, Xiu; Zhang, Honglei; Li, Yiming; Li, Bin

    2015-07-01

    Developed the information centralization and management integration system for monitors of different brands and models with wireless sensor network technologies such as wireless location and wireless communication, based on the existing wireless network. With adaptive implementation and low cost, the system which possesses the advantages of real-time, efficiency and elaboration is able to collect status and data of the monitors, locate the monitors, and provide services with web server, video server and locating server via local network. Using an intranet computer, the clinical and device management staffs can access the status and parameters of monitors. Applications of this system provide convenience and save human resource for clinical departments, as well as promote the efficiency, accuracy and elaboration for the device management. The successful achievement of this system provides solution for integrated and elaborated management of the mobile devices including ventilator and infusion pump.

  16. Low Frequency Radioastronomy at Moon: possible approach and architecture

    NASA Astrophysics Data System (ADS)

    Skalsky, A.; Mogilevsky, M.; Nazarov, V.; Nazirov, R.; Batanov, O.; Sadovski, A.

    2009-04-01

    The Moon, the Earth's neighbor, attracts an attention as a celestial body, as a source for mineral and other resources and as a possible base for fundamental scientific researches. The conducting ionosphere of Earth completely shields radioemissions coming from outer space and propagating at frequencies below a few MHz. In contrary, the Moon possessing a week atmosphereionosphere around its surface seems to be a perfect base for carrying out measurements of low frequency radio emissions originated from the space. The radio facility deployed at Moon's surface seems to be a powerful tool for various fundamental space researches related to astrophysics, solar system and magnetospheric investigations. The most intriguing objective is a search of terrestrial-like planets in the exosolar system, i.e. planets possessing the intrinsic magnetic fields and developed magnetospheres which interaction with the star wind results in generation of radioemissions (similar to AKR radiation of the terrestrial magnetosphere). Creating the infrastructure of antennas (sensors) on Moon's surface is planned for reaching the described goals. Ideology of such infrastructure (which may be treated as macro-instrument) is closely to SensorWeb approach. The different sensors are collected to unified platforms (PODs in terms of SensorWeb) which provide omni-and bidirectional information flows between PODs. Thus a set of sensors is integrated self-organizing amorphous organism on the base of wireless network. It increases reliability of the research complex and allows quick reconfiguring and adopting it for different investigation tasks. For additional redundancy and openness of the complex at least some PODs will support not only inter-PODs protocol but IEEE 802.16 Wireless LAN standard used in NASA Lunar Communication and Navigation Architecture also. The paper presents a possible approach to the development of the radio facility deployed at Moon's surface, its implementation for various fundamental researches

  17. Method and system of measuring ultrasonic signals in the plane of a moving web

    DOEpatents

    Hall, Maclin S.; Jackson, Theodore G.; Wink, Wilmer A.; Knerr, Christopher

    1996-01-01

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefor, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  18. Method and system of measuring ultrasonic signals in the plane of a moving web

    DOEpatents

    Hall, M.S.; Jackson, T.G.; Wink, W.A.; Knerr, C.

    1996-02-27

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like is disclosed. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefore, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.

  19. Enviro-Net: From Networks of Ground-Based Sensor Systems to a Web Platform for Sensor Data Management

    PubMed Central

    Pastorello, Gilberto Z.; Sanchez-Azofeifa, G. Arturo; Nascimento, Mario A.

    2011-01-01

    Ecosystems monitoring is essential to properly understand their development and the effects of events, both climatological and anthropological in nature. The amount of data used in these assessments is increasing at very high rates. This is due to increasing availability of sensing systems and the development of new techniques to analyze sensor data. The Enviro-Net Project encompasses several of such sensor system deployments across five countries in the Americas. These deployments use a few different ground-based sensor systems, installed at different heights monitoring the conditions in tropical dry forests over long periods of time. This paper presents our experience in deploying and maintaining these systems, retrieving and pre-processing the data, and describes the Web portal developed to help with data management, visualization and analysis. PMID:22163965

  20. BAID: The Barrow Area Information Database - an interactive web mapping portal and cyberinfrastructure for scientific activities in the vicinity of Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Cody, R. P.; Kassin, A.; Kofoed, K. B.; Copenhaver, W.; Laney, C. M.; Gaylord, A. G.; Collins, J. A.; Tweedie, C. E.

    2014-12-01

    The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic and the Barrow Area Information Database (BAID, www.barrowmapped.org) tracks and facilitates a gamut of research, management, and educational activities in the area. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 12,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, save or print maps and query results, and filter or view information by space, time, and/or other tags. Data are described with metadata that meet Federal Geographic Data Committee standards and are archived at the University Corporation for Atmospheric Research Earth Observing Laboratory (EOL) where non-proprietary BAID data can be freely downloaded. Recent advances include the addition of more than 2000 new research sites, provision of differential global position system (dGPS) and Unmanned Aerial Vehicle (UAV) support to visiting scientists, surveying over 80 miles of coastline to document rates of erosion, training of local GIS personal to better make use of science in local decision making, deployment and near real time connectivity to a wireless micrometeorological sensor network, links to Barrow area datasets housed at national data archives and substantial upgrades to the BAID website and web mapping applications.

  1. A Web-based geographic information system for monitoring animal welfare during long journeys.

    PubMed

    Ippoliti, Carla; Di Pasquale, Adriano; Fiore, Gianluca; Savini, Lara; Conte, Annamaria; Di Gianvito, Federica; Di Francesco, Cesare

    2007-01-01

    Animal welfare protection during long journeys is mandatory according to European Union regulations designed to ensure that animals are transported in accordance with animal welfare requirements and to provide control bodies with a regulatory tool to react promptly in cases of non-compliance and to ensure a safe network between products, animals and farms. Regulation 1/2005/EC foresees recourse to a system of traceability within European Union member states. The Joint Research Centre of the European Commission (JRC) has developed a prototype system fulfilling the requirements of the Regulation which is able to monitor compliance with animal welfare requirements during transportation, register electronic identification of transported animals and store data in a central database shared with the other member states through a Web-based application. Test equipment has recently been installed on a vehicle that records data on vehicle position (geographic coordinates, date/time) and animal welfare conditions (measurements of internal temperature of the vehicle, etc.). The information is recorded at fixed intervals and transmitted to the central database. The authors describe the Web-based geographic information system, through which authorised users can visualise instantly the real-time position of the vehicle, monitor the sensor-recorded data and follow the time-space path of the truck during journeys.

  2. New Web Services for Broader Access to National Deep Submergence Facility Data Resources Through the Interdisciplinary Earth Data Alliance

    NASA Astrophysics Data System (ADS)

    Ferrini, V. L.; Grange, B.; Morton, J. J.; Soule, S. A.; Carbotte, S. M.; Lehnert, K.

    2016-12-01

    The National Deep Submergence Facility (NDSF) operates the Human Occupied Vehicle (HOV) Alvin, the Remotely Operated Vehicle (ROV) Jason, and the Autonomous Underwater Vehicle (AUV) Sentry. These vehicles are deployed throughout the global oceans to acquire sensor data and physical samples for a variety of interdisciplinary science programs. As part of the EarthCube Integrative Activity Alliance Testbed Project (ATP), new web services were developed to improve access to existing online NDSF data and metadata resources. These services make use of tools and infrastructure developed by the Interdisciplinary Earth Data Alliance (IEDA) and enable programmatic access to metadata and data resources as well as the development of new service-driven user interfaces. The Alvin Frame Grabber and Jason Virtual Van enable the exploration of frame-grabbed images derived from video cameras on NDSF dives. Metadata available for each image includes time and vehicle position, data from environmental sensors, and scientist-generated annotations, and data are organized and accessible by cruise and/or dive. A new FrameGrabber web service and service-driven user interface were deployed to offer integrated access to these data resources through a single API and allows users to search across content curated in both systems. In addition, a new NDSF Dive Metadata web service and service-driven user interface was deployed to provide consolidated access to basic information about each NDSF dive (e.g. vehicle name, dive ID, location, etc), which is important for linking distributed data resources curated in different data systems.

  3. Contributions of the SDR Task Network tool to Calibration and Validation of the NPOESS Preparatory Project instruments

    NASA Astrophysics Data System (ADS)

    Feeley, J.; Zajic, J.; Metcalf, A.; Baucom, T.

    2009-12-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) Calibration and Validation (Cal/Val) team is planning post-launch activities to calibrate the NPP sensors and validate Sensor Data Records (SDRs). The IPO has developed a web-based data collection and visualization tool in order to effectively collect, coordinate, and manage the calibration and validation tasks for the OMPS, ATMS, CrIS, and VIIRS instruments. This tool is accessible to the multi-institutional Cal/Val teams consisting of the Prime Contractor and Government Cal/Val leads along with the NASA NPP Mission team, and is used for mission planning and identification/resolution of conflicts between sensor activities. Visualization techniques aid in displaying task dependencies, including prerequisites and exit criteria, allowing for the identification of a critical path. This presentation will highlight how the information is collected, displayed, and used to coordinate the diverse instrument calibration/validation teams.

  4. Information security threats and an easy-to-implement attack detection framework for wireless sensor network-based smart grid applications

    NASA Astrophysics Data System (ADS)

    Tuna, G.; Örenbaş, H.; Daş, R.; Kogias, D.; Baykara, M.; K, K.

    2016-03-01

    Wireless Sensor Networks (WSNs) when combined with various energy harvesting solutions managing to prolong the overall lifetime of the system and enhanced capabilities of the communication protocols used by modern sensor nodes are efficiently used in are efficiently used in Smart Grid (SG), an evolutionary system for the modernization of existing power grids. However, wireless communication technology brings various types of security threats. In this study, firstly the use of WSNs for SG applications is presented. Second, the security related issues and challenges as well as the security threats are presented. In addition, proposed security mechanisms for WSN-based SG applications are discussed. Finally, an easy- to-implement and simple attack detection framework to prevent attacks directed to sink and gateway nodes with web interfaces is proposed and its efficiency is proved using a case study.

  5. Sensor Management for Applied Research Technologies (SMART)-On Demand Modeling (ODM) Project

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.

    2006-01-01

    NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) - On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.

  6. Web-based interactive drone control using hand gesture

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng

    2018-01-01

    This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.

  7. Web-based interactive drone control using hand gesture.

    PubMed

    Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng

    2018-01-01

    This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.

  8. Common Data Models and Efficient Reproducible Workflows for Distributed Ocean Model Skill Assessment

    NASA Astrophysics Data System (ADS)

    Signell, R. P.; Snowden, D. P.; Howlett, E.; Fernandes, F. A.

    2014-12-01

    Model skill assessment requires discovery, access, analysis, and visualization of information from both sensors and models, and traditionally has been possible only by a few experts. The US Integrated Ocean Observing System (US-IOOS) consists of 17 Federal Agencies and 11 Regional Associations that produce data from various sensors and numerical models; exactly the information required for model skill assessment. US-IOOS is seeking to develop documented skill assessment workflows that are standardized, efficient, and reproducible so that a much wider community can participate in the use and assessment of model results. Standardization requires common data models for observational and model data. US-IOOS relies on the CF Conventions for observations and structured grid data, and on the UGRID Conventions for unstructured (e.g. triangular) grid data. This allows applications to obtain only the data they require in a uniform and parsimonious way using web services: OPeNDAP for model output and OGC Sensor Observation Service (SOS) for observed data. Reproducibility is enabled with IPython Notebooks shared on GitHub (http://github.com/ioos). These capture the entire skill assessment workflow, including user input, search, access, analysis, and visualization, ensuring that workflows are self-documenting and reproducible by anyone, using free software. Python packages for common data models are Pyugrid and the British Met Office Iris package. Python packages required to run the workflows (pyugrid, pyoos, and the British Met Office Iris package) are also available on GitHub and on Binstar.org so that users can run scenarios using the free Anaconda Python distribution. Hosted services such as Wakari enable anyone to reproduce these workflows for free, without installing any software locally, using just their web browser. We are also experimenting with Wakari Enterprise, which allows multi-user access from a web browser to an IPython Server running where large quantities of model output reside, increasing the efficiency. The open development and distribution of these workflows, and the software on which they depend, is an educational resource for those new to the field and a center of focus where practitioners can contribute new software and ideas.

  9. Wearable inertial sensors in swimming motion analysis: a systematic review.

    PubMed

    de Magalhaes, Fabricio Anicio; Vannozzi, Giuseppe; Gatta, Giorgio; Fantozzi, Silvia

    2015-01-01

    The use of contemporary technology is widely recognised as a key tool for enhancing competitive performance in swimming. Video analysis is traditionally used by coaches to acquire reliable biomechanical data about swimming performance; however, this approach requires a huge computational effort, thus introducing a delay in providing quantitative information. Inertial and magnetic sensors, including accelerometers, gyroscopes and magnetometers, have been recently introduced to assess the biomechanics of swimming performance. Research in this field has attracted a great deal of interest in the last decade due to the gradual improvement of the performance of sensors and the decreasing cost of miniaturised wearable devices. With the aim of describing the state of the art of current developments in this area, a systematic review of the existing methods was performed using the following databases: PubMed, ISI Web of Knowledge, IEEE Xplore, Google Scholar, Scopus and Science Direct. Twenty-seven articles published in indexed journals and conference proceedings, focusing on the biomechanical analysis of swimming by means of inertial sensors were reviewed. The articles were categorised according to sensor's specification, anatomical sites where the sensors were attached, experimental design and applications for the analysis of swimming performance. Results indicate that inertial sensors are reliable tools for swimming biomechanical analyses.

  10. Common Approach to Geoprocessing of Uav Data across Application Domains

    NASA Astrophysics Data System (ADS)

    Percivall, G. S.; Reichardt, M.; Taylor, T.

    2015-08-01

    UAVs are a disruptive technology bringing new geographic data and information to many application domains. UASs are similar to other geographic imagery systems so existing frameworks are applicable. But the diversity of UAVs as platforms along with the diversity of available sensors are presenting challenges in the processing and creation of geospatial products. Efficient processing and dissemination of the data is achieved using software and systems that implement open standards. The challenges identified point to the need for use of existing standards and extending standards. Results from the use of the OGC Sensor Web Enablement set of standards are presented. Next steps in the progress of UAVs and UASs may follow the path of open data, open source and open standards.

  11. QBCov: A Linked Data interface for Discrete Global Grid Systems, a new approach to delivering coverage data on the web

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Toyer, S.; Brizhinev, D.; Ledger, M.; Taylor, K.; Purss, M. B. J.

    2016-12-01

    We are witnessing a rapid proliferation of geoscientific and geospatial data from an increasing variety of sensors and sensor networks. This data presents great opportunities to resolve cross-disciplinary problems. However, working with it often requires an understanding of file formats and protocols seldom used outside of scientific computing, potentially limiting the data's value to other disciplines. In this paper, we present a new approach to serving satellite coverage data on the web, which improves ease-of-access using the principles of linked data. Linked data adapts the concepts and protocols of the human-readable web to machine-readable data; the number of developers familiar with web technologies makes linked data a natural choice for bringing coverages to a wider audience. Our approach to using linked data also makes it possible to efficiently service high-level SPARQL queries: for example, "Retrieve all Landsat ETM+ observations of San Francisco between July and August 2016" can easily be encoded in a single query. We validate the new approach, which we call QBCov, with a reference implementation of the entire stack, including a simple web-based client for interacting with Landsat observations. In addition to demonstrating the utility of linked data for publishing coverages, we investigate the heretofore unexplored relationship between Discrete Global Grid Systems (DGGS) and linked data. Our conclusions are informed by the aforementioned reference implementation of QBCov, which is backed by a hierarchical file format designed around the rHEALPix DGGS. Not only does the choice of a DGGS-based representation provide an efficient mechanism for accessing large coverages at multiple scales, but the ability of DGGS to produce persistent, unique identifiers for spatial regions is especially valuable in a linked data context. This suggests that DGGS has an important role to play in creating sustainable and scalable linked data infrastructures. QBCov is being developed as a contribution to the Spatial Data on the Web working group--a joint activity of the Open Geospatial Consortium and World Wide Web Consortium.

  12. Sensor node for remote monitoring of waterborne disease-causing bacteria.

    PubMed

    Kim, Kyukwang; Myung, Hyun

    2015-05-05

    A sensor node for sampling water and checking for the presence of harmful bacteria such as E. coli in water sources was developed in this research. A chromogenic enzyme substrate assay method was used to easily detect coliform bacteria by monitoring the color change of the sampled water mixed with a reagent. Live webcam image streaming to the web browser of the end user with a Wi-Fi connected sensor node shows the water color changes in real time. The liquid can be manipulated on the web-based user interface, and also can be observed by webcam feeds. Image streaming and web console servers run on an embedded processor with an expansion board. The UART channel of the expansion board is connected to an external Arduino board and a motor driver to control self-priming water pumps to sample the water, mix the reagent, and remove the water sample after the test is completed. The sensor node can repeat water testing until the test reagent is depleted. The authors anticipate that the use of the sensor node developed in this research can decrease the cost and required labor for testing samples in a factory environment and checking the water quality of local water sources in developing countries.

  13. Current Efforts in European Projects to Facilitate the Sharing of Scientific Observation Data

    NASA Astrophysics Data System (ADS)

    Bredel, Henning; Rieke, Matthes; Maso, Joan; Jirka, Simon; Stasch, Christoph

    2017-04-01

    This presentation is intended to provide an overview of currently ongoing efforts in European projects to facilitate and promote the interoperable sharing of scientific observation data. This will be illustrated through two examples: a prototypical portal developed in the ConnectinGEO project for matching available (in-situ) data sources to the needs of users and a joint activity of several research projects to harmonise the usage of the OGC Sensor Web Enablement standards for providing access to marine observation data. ENEON is an activity initiated by the European ConnectinGEO project to coordinate in-situ Earth observation networks with the aim to harmonise the access to observations, improve discoverability, and identify/close gaps in European earth observation data resources. In this context, ENEON commons has been developed as a supporting Web portal for facilitating discovery, access, re-use and creation of knowledge about observations, networks, and related activities (e.g. projects). The portal is based on developments resulting from the European WaterInnEU project and has been extended to cover the requirements for handling knowledge about in-situ earth observation networks. A first prototype of the portal was completed in January 2017 which offers functionality for interactive discussion, information exchange and querying information about data delivered by different observation networks. Within this presentation, we will introduce the presented prototype and initiate a discussion about potential future work directions. The second example concerns the harmonisation of data exchange in the marine domain. There are many organisation who operate ocean observatories or data archives. In recent years, the application of the OGC Sensor Web Enablement (SWE) technology has become more and more popular to increase the interoperability between marine observation networks. However, as the SWE standards were intentionally designed in a domain independent manner, there are still a significant degrees of freedom how the same information could be handled in the SWE framework. Thus, further domain-specific agreements are necessary to describe more precisely, how SWE standards shall be applied in specific contexts. Within this presentation we will report the current status of the marine SWE profiles initiative which has the aim to develop guidance and recommendations for the application of SWE standards for ocean observation data. This initiative which is supported by projects such as NeXOS, FixO3, ODIP 2, BRIDGES and SeaDataCloud has already lead to first results, which will be introduced in the proposed presentation. In summary we will introduce two different building blocks how earth observation networks can be coordinated to ensure better discoverability through intelligent portal solutions and to ensure a common, interoperable exchange of the collected data through dedicated domain profiles of Sensor Web standard.

  14. A Tsunami-Focused Tide Station Data Sharing Framework

    NASA Astrophysics Data System (ADS)

    Kari, U. S.; Marra, J. J.; Weinstein, S. A.

    2006-12-01

    The Indian Ocean Tsunami of 26 December 2004 made it clear that information about tide stations that could be used to support detection and warning (such as location, collection and transmission capabilities, operator identification) are insufficiently known or not readily accessible. Parties interested in addressing this problem united under the Pacific Region Data Integrated Data Enterprise (PRIDE), and in 2005 began a multiyear effort to develop a distributed metadata system describing tide stations starting with pilot activities in a regional framework and focusing on tsunami detection and warning systems being developed by various agencies. First, a plain semantic description of the tsunami-focused tide station metadata was developed. The semantic metadata description was, in turn, developed into a formal metadata schema championed by International Tsunami Information Centre (ITIC) as part of a larger effort to develop a prototype web service under the PRIDE program in 2005. Under the 2006 PRIDE program the formal metadata schema was then expanded to corral input parameters for the TideTool application used by Pacific Tsunami Warning Center (PTWC) to drill down into wave activity at a tide station that is located using a web service developed on this metadata schema. This effort contributed to formalization of web service dissemination of PTWC watch and warning tsunami bulletins. During this time, the data content and sharing issues embodied in this schema have been discussed at various forums. The result is that the various stakeholders have different data provider and user perspectives (semantic content) and also exchange formats (not limited to just XML). The challenge then, is not only to capture all data requirements, but also to have formal representation that is easily transformed into any specified format. The latest revision of the tide gauge schema (Version 0.3), begins to address this challenge. It encompasses a broader range of provider and user perspectives, such as station operators, warning system managers, disaster managers, other marine hazard warning systems (such as storm surges and sea level change monitoring and research. In the next revision(s), we hope to take into account various relevant standards, including specifically, the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Framework, that will serve all prospective stakeholders in the most useful (extensible, scalable) manner. This is because Sensor ML has addressed many of the challenges we face already, through very useful fundamental modeling consideration and data types that are particular to sensors in general, with perhaps some extension needed for tide gauges. As a result of developing this schema, and associated client application architectures, we hope to have a much more distributed network of data providers, who are able to contribute to a global tide station metadata from the comfort of their own Information Technology (IT) departments.

  15. Citizen-sensor-networks to confront government decision-makers: Two lessons from the Netherlands.

    PubMed

    Carton, Linda; Ache, Peter

    2017-07-01

    This paper presents one emerging social-technical innovation: The evolution of citizen-sensor-networks where citizens organize themselves from the 'bottom up', for the sake of confronting governance officials with measured information about environmental qualities. We have observed how citizen-sensor-networks have been initiated in the Netherlands in cases where official government monitoring and business organizations leave gaps. The formed citizen-sensor-networks collect information about issues that affect the local community in their quality-of-living. In particular, two community initiatives are described where the sensed environmental information, on noise pollution and gas-extraction induced earthquakes respectively, is published through networked geographic information methods. Both community initiatives pioneered in developing an approach that comprises the combined setting-up of sensor data flows, real-time map portals and community organization. Two particular cases are analyzed to trace the emergence and network operation of such 'networked geo-information tools' in practice: (1) The Groningen earthquake monitor, and (2) The Airplane Monitor Schiphol. In both cases, environmental 'externalities' of spatial-economic activities play an important role, having economic dimensions of national importance (e.g. gas extraction and national airport development) while simultaneously affecting the regional community with environmental consequences. The monitoring systems analyzed in this paper are established bottom-up, by citizens for citizens, to serve as 'information power' in dialogue with government institutions. The goal of this paper is to gain insight in how these citizen-sensor-networks come about: how the idea for establishing a sensor network originated, how their value gets recognized and adopted in the overall 'system of governance'; to what extent they bring countervailing power against vested interests and established discourses to the table and influence power-laden conflicts over environmental pressures; and whether or not they achieve (some form of) institutionalization and, ultimately, policy change. We find that the studied-citizen-sensor networks gain strength by uniting efforts and activities in crowdsourcing data, providing factual, 'objectivized data' or 'evidence' of the situation 'on the ground' on a matter of local community-wide concern. By filling an information need of the local community, a process of 'collective sense-making' combined with citizen empowerment could grow, which influenced societal discourse and challenged prevailing truth-claims of public institutions. In both cases similar, 'competing' web-portals were developed in response, both by the gas-extraction company and the airport. But with the citizen-sensor-networks alongside, we conclude there is a shift in power balance involved between government and affected communities, as the government no longer has information monopoly on environmental measurements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Flood Damage and Loss Estimation for Iowa on Web-based Systems using HAZUS

    NASA Astrophysics Data System (ADS)

    Yildirim, E.; Sermet, M. Y.; Demir, I.

    2016-12-01

    Importance of decision support systems for flood emergency response and loss estimation increases with its social and economic impacts. To estimate the damage of the flood, there are several software systems available to researchers and decision makers. HAZUS-MH is one of the most widely used desktop program, developed by FEMA (Federal Emergency Management Agency), to estimate economic loss and social impacts of disasters such as earthquake, hurricane and flooding (riverine and coastal). HAZUS used loss estimation methodology and implements through geographic information system (GIS). HAZUS contains structural, demographic, and vehicle information across United States. Thus, it allows decision makers to understand and predict possible casualties and damage of the floods by running flood simulations through GIS application. However, it doesn't represent real time conditions because of using static data. To close this gap, an overview of a web-based infrastructure coupling HAZUS and real time data provided by IFIS (Iowa Flood Information System) is presented by this research. IFIS is developed by the Iowa Flood Center, and a one-stop web-platform to access community-based flood conditions, forecasts, visualizations, inundation maps and flood-related data, information, and applications. Large volume of real-time observational data from a variety of sensors and remote sensing resources (radars, rain gauges, stream sensors, etc.) and flood inundation models are staged on a user-friendly maps environment that is accessible to the general public. Providing cross sectional analyses between HAZUS-MH and IFIS datasets, emergency managers are able to evaluate flood damage during flood events easier and more accessible in real time conditions. With matching data from HAZUS-MH census tract layer and IFC gauges, economical effects of flooding can be observed and evaluated by decision makers. The system will also provide visualization of the data by using augmented reality for see-through displays. Emergency management experts can take advantage of this visualization mode to manage flood response activities in real time. Also, forecast system developed by the Iowa Flood Center will be used to predict probable damage of the flood.

  17. Web-GIS platform for monitoring and forecasting of regional climate and ecological changes

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Krupchatnikov, V. N.; Lykosov, V. N.; Okladnikov, I.; Titov, A. G.; Shulgina, T. M.

    2012-12-01

    Growing volume of environmental data from sensors and model outputs makes development of based on modern information-telecommunication technologies software infrastructure for information support of integrated scientific researches in the field of Earth sciences urgent and important task (Gordov et al, 2012, van der Wel, 2005). It should be considered that original heterogeneity of datasets obtained from different sources and institutions not only hampers interchange of data and analysis results but also complicates their intercomparison leading to a decrease in reliability of analysis results. However, modern geophysical data processing techniques allow combining of different technological solutions for organizing such information resources. Nowadays it becomes a generally accepted opinion that information-computational infrastructure should rely on a potential of combined usage of web- and GIS-technologies for creating applied information-computational web-systems (Titov et al, 2009, Gordov et al. 2010, Gordov, Okladnikov and Titov, 2011). Using these approaches for development of internet-accessible thematic information-computational systems, and arranging of data and knowledge interchange between them is a very promising way of creation of distributed information-computation environment for supporting of multidiscipline regional and global research in the field of Earth sciences including analysis of climate changes and their impact on spatial-temporal vegetation distribution and state. Experimental software and hardware platform providing operation of a web-oriented production and research center for regional climate change investigations which combines modern web 2.0 approach, GIS-functionality and capabilities of running climate and meteorological models, large geophysical datasets processing, visualization, joint software development by distributed research groups, scientific analysis and organization of students and post-graduate students education is presented. Platform software developed (Shulgina et al, 2012, Okladnikov et al, 2012) includes dedicated modules for numerical processing of regional and global modeling results for consequent analysis and visualization. Also data preprocessing, run and visualization of modeling results of models WRF and «Planet Simulator» integrated into the platform is provided. All functions of the center are accessible by a user through a web-portal using common graphical web-browser in the form of an interactive graphical user interface which provides, particularly, capabilities of visualization of processing results, selection of geographical region of interest (pan and zoom) and data layers manipulation (order, enable/disable, features extraction). Platform developed provides users with capabilities of heterogeneous geophysical data analysis, including high-resolution data, and discovering of tendencies in climatic and ecosystem changes in the framework of different multidisciplinary researches (Shulgina et al, 2011). Using it even unskilled user without specific knowledge can perform computational processing and visualization of large meteorological, climatological and satellite monitoring datasets through unified graphical web-interface.

  18. Capturing, Harmonizing and Delivering Data and Quality Provenance

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Lynnes, Christopher

    2011-01-01

    Satellite remote sensing data have proven to be vital for various scientific and applications needs. However, the usability of these data depends not only on the data values but also on the ability of data users to assess and understand the quality of these data for various applications and for comparison or inter-usage of data from different sensors and models. In this paper, we describe some aspects of capturing, harmonizing and delivering this information to users in the framework of distributed web-based data tools.

  19. Useful Sensor Web Capabilities to Enable Progressive Mission Autonomy

    NASA Technical Reports Server (NTRS)

    Mandl, Dan

    2007-01-01

    This viewgraph presentation reviews using the Sensor Web capabilities as an enabling technology to allow for progressive autonomy of NASA space missions. The presentation reviews technical challenges for future missions, and some of the capabilities that exist to meet those challenges. To establish the ability of the technology to meet the challenges, experiments were conducted on three missions: Earth Observing 1 (EO-1), Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) and Space Technology 5 (ST-5). These experiments are reviewed.

  20. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOEpatents

    Hall, M.S.; Jackson, T.G.; Knerr, C.

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.

  1. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOEpatents

    Hall, Maclin S.; Jackson, Theodore G.; Knerr, Christopher

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  2. An intelligent tool for activity data collection.

    PubMed

    Sarkar, A M Jehad

    2011-01-01

    Activity recognition systems using simple and ubiquitous sensors require a large variety of real-world sensor data for not only evaluating their performance but also training the systems for better functioning. However, a tremendous amount of effort is required to setup an environment for collecting such data. For example, expertise and resources are needed to design and install the sensors, controllers, network components, and middleware just to perform basic data collections. It is therefore desirable to have a data collection method that is inexpensive, flexible, user-friendly, and capable of providing large and diverse activity datasets. In this paper, we propose an intelligent activity data collection tool which has the ability to provide such datasets inexpensively without physically deploying the testbeds. It can be used as an inexpensive and alternative technique to collect human activity data. The tool provides a set of web interfaces to create a web-based activity data collection environment. It also provides a web-based experience sampling tool to take the user's activity input. The tool generates an activity log using its activity knowledge and the user-given inputs. The activity knowledge is mined from the web. We have performed two experiments to validate the tool's performance in producing reliable datasets.

  3. A Web Service Protocol Realizing Interoperable Internet of Things Tasking Capability.

    PubMed

    Huang, Chih-Yuan; Wu, Cheng-Hung

    2016-08-31

    The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable devices using the Internet. By interconnecting everyday appliances, various monitoring, and physical mashup applications can be constructed to improve human's daily life. In general, IoT devices provide two main capabilities: sensing and tasking capabilities. While the sensing capability is similar to the World-Wide Sensor Web, this research focuses on the tasking capability. However, currently, IoT devices created by different manufacturers follow different proprietary protocols and are locked in many closed ecosystems. This heterogeneity issue impedes the interconnection between IoT devices and damages the potential of the IoT. To address this issue, this research aims at proposing an interoperable solution called tasking capability description that allows users to control different IoT devices using a uniform web service interface. This paper demonstrates the contribution of the proposed solution by interconnecting different IoT devices for different applications. In addition, the proposed solution is integrated with the OGC SensorThings API standard, which is a Web service standard defined for the IoT sensing capability. Consequently, the Extended SensorThings API can realize both IoT sensing and tasking capabilities in an integrated and interoperable manner.

  4. NASA SensorWeb and OGC Standards for Disaster Management

    NASA Technical Reports Server (NTRS)

    Mandl, Dan

    2010-01-01

    I. Goal: Enable user to cost-effectively find and create customized data products to help manage disasters; a) On-demand; b) Low cost and non-specialized tools such as Google Earth and browsers; c) Access via open network but with sufficient security. II. Use standards to interface various sensors and resultant data: a) Wrap sensors in Open Geospatial Consortium (OGC) standards; b) Wrap data processing algorithms and servers with OGC standards c) Use standardized workflows to orchestrate and script the creation of these data; products. III. Target Web 2.0 mass market: a) Make it simple and easy to use; b) Leverage new capabilities and tools that are emerging; c) Improve speed and responsiveness.

  5. The Global Sensor Web: A Platform for Citizen Science (Invited)

    NASA Astrophysics Data System (ADS)

    Simons, A. L.

    2013-12-01

    The Global Sensor Web (GSW) is an effort to provide an infrastructure for the collection, sharing and visualizing sensor data from around the world. Over the past three years the GSW has been developed and tested as a standardized platform for citizen science. The most developed of the citizen science projects built onto the GSW has been Distributed Electronic Cosmic-ray Observatory (DECO), which is an Android application designed to harness a global network of mobile devices, to detect the origin and behavior of the cosmic radiation. Other projects which can be readily built on top of GSW as a platform are also discussed. A cosmic-ray track candidate captured on a cell phone camera.

  6. Sensor web enables rapid response to volcanic activity

    USGS Publications Warehouse

    Davies, Ashley G.; Chien, Steve; Wright, Robert; Miklius, Asta; Kyle, Philip R.; Welsh, Matt; Johnson, Jeffrey B.; Tran, Daniel; Schaffer, Steven R.; Sherwood, Robert

    2006-01-01

    Rapid response to the onset of volcanic activity allows for the early assessment of hazard and risk [Tilling, 1989]. Data from remote volcanoes and volcanoes in countries with poor communication infrastructure can only be obtained via remote sensing [Harris et al., 2000]. By linking notifications of activity from ground-based and spacebased systems, these volcanoes can be monitored when they erupt.Over the last 18 months, NASA's Jet Propulsion Laboratory (JPL) has implemented a Volcano Sensor Web (VSW) in which data from ground-based and space-based sensors that detect current volcanic activity are used to automatically trigger the NASA Earth Observing 1 (EO-1) spacecraft to make highspatial-resolution observations of these volcanoes.

  7. mobile Digital Access to a Web-enhanced Network (mDAWN): Assessing the Feasibility of Mobile Health Tools for Self-Management of Type-2 Diabetes.

    PubMed

    Ho, Kendall; Newton, Lana; Boothe, Allison; Novak-Lauscher, Helen

    2015-01-01

    The mobile Digital Access to a Web-enhanced Network (mDAWN) program was implemented as an online, mobile self-management system to support patients with type-2 diabetes and their informal caregivers. Patients used wireless physiological sensors, received text messages, and had access to a secure web platform with health resources and semi-facilitated discussion forum. Outcomes were evaluated using (1) pre and post self-reported health behavior measures, (2) physiological outcomes, (3) program cost, and (4) in-depth participant interviews. The group had significantly decreased health distress, HbA1c levels, and systolic blood pressure. Participants largely saw the mDAWN as providing good value for the costs involved and found the program to be empowering in gaining control over their diabetes. mHealth programs have the potential to improve clinical outcomes through cost effective patient-led care for chronic illness. Further evaluation needs to examine integration of similar mHealth programs into the patient-physician relationship.

  8. Real Time Integration of Field Data Into a GIS Platform for the Management of Hydrological Emergencies

    NASA Astrophysics Data System (ADS)

    Mangiameli, M.; Mussumeci, G.

    2013-01-01

    A wide series of events requires immediate availability of information and field data to be provided to decision-makers. An example is the necessity of quickly transferring the information acquired from monitoring and alerting sensors or the data of the reconnaissance of damage after a disastrous event to an Emergency Operations Center. To this purpose, we developed an integrated GIS and WebGIS system to dynamically create and populate via Web a database with spatial features. In particular, this work concerns the gathering and transmission of spatial data and related information to the desktop GIS so that they can be displayed and analyzed in real time to characterize the operational scenario and to decide the rescue interventions. As basic software, we used only free and open source: QuantumGIS and Grass as Desktop GIS, Map Server with PMapper application for the Web-Gis functionality and PostGreSQL/PostGIS as Data Base Management System (DBMS). The approach has been designed, developed and successfully tested in the management of GIS-based navigation of an autonomous robot, both to map its trajectories and to assign optimal paths. This paper presents the application of our system to a simulated hydrological event that could interest the province of Catania, in Sicily. In particular, assuming that more teams draw up an inventory of the damage, we highlight the benefits of real-time transmission of the information collected from the field to headquarters.

  9. Automatic Control of Silicon Melt Level

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Stickel, W. B.

    1982-01-01

    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  10. Disease Surveillance on Complex Social Networks.

    PubMed

    Herrera, Jose L; Srinivasan, Ravi; Brownstein, John S; Galvani, Alison P; Meyers, Lauren Ancel

    2016-07-01

    As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors-sampling the most connected, random, and friends of random individuals-in three complex social networks-a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals-early and accurate detection of epidemic emergence and peak, and general situational awareness-we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information.

  11. A Novel Petri Nets-Based Modeling Method for the Interaction between the Sensor and the Geographic Environment in Emerging Sensor Networks

    PubMed Central

    Zhang, Feng; Xu, Yuetong; Chou, Jarong

    2016-01-01

    The service of sensor device in Emerging Sensor Networks (ESNs) is the extension of traditional Web services. Through the sensor network, the service of sensor device can communicate directly with the entity in the geographic environment, and even impact the geographic entity directly. The interaction between the sensor device in ESNs and geographic environment is very complex, and the interaction modeling is a challenging problem. This paper proposed a novel Petri Nets-based modeling method for the interaction between the sensor device and the geographic environment. The feature of the sensor device service in ESNs is more easily affected by the geographic environment than the traditional Web service. Therefore, the response time, the fault-tolerant ability and the resource consumption become important factors in the performance of the whole sensor application system. Thus, this paper classified IoT services as Sensing services and Controlling services according to the interaction between IoT service and geographic entity, and classified GIS services as data services and processing services. Then, this paper designed and analyzed service algebra and Colored Petri Nets model to modeling the geo-feature, IoT service, GIS service and the interaction process between the sensor and the geographic enviroment. At last, the modeling process is discussed by examples. PMID:27681730

  12. SEnviro: a sensorized platform proposal using open hardware and open standards.

    PubMed

    Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín

    2015-03-06

    The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and theWeb of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented.

  13. SEnviro: A Sensorized Platform Proposal Using Open Hardware and Open Standards

    PubMed Central

    Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín

    2015-01-01

    The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and the Web of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented. PMID:25756864

  14. A distributed cloud-based cyberinfrastructure framework for integrated bridge monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seongwoon; Hou, Rui; Lynch, Jerome P.; Sohn, Hoon; Law, Kincho H.

    2017-04-01

    This paper describes a cloud-based cyberinfrastructure framework for the management of the diverse data involved in bridge monitoring. Bridge monitoring involves various hardware systems, software tools and laborious activities that include, for examples, a structural health monitoring (SHM), sensor network, engineering analysis programs and visual inspection. Very often, these monitoring systems, tools and activities are not coordinated, and the collected information are not shared. A well-designed integrated data management framework can support the effective use of the data and, thereby, enhance bridge management and maintenance operations. The cloud-based cyberinfrastructure framework presented herein is designed to manage not only sensor measurement data acquired from the SHM system, but also other relevant information, such as bridge engineering model and traffic videos, in an integrated manner. For the scalability and flexibility, cloud computing services and distributed database systems are employed. The information stored can be accessed through standard web interfaces. For demonstration, the cyberinfrastructure system is implemented for the monitoring of the bridges located along the I-275 Corridor in the state of Michigan.

  15. A Walk through TRIDEC's intermediate Tsunami Early Warning System for the Turkish and Portuguese NEAMWave12 exercise tsunami scenarios

    NASA Astrophysics Data System (ADS)

    Hammitzsch, Martin; Lendholt, Matthias; Reißland, Sven; Schulz, Jana

    2013-04-01

    On November 27-28, 2012, the Kandilli Observatory and Earthquake Research Institute (KOERI) and the Portuguese Institute for the Sea and Atmosphere (IPMA) joined other countries in the North-eastern Atlantic, the Mediterranean and Connected Seas (NEAM) region as participants in an international tsunami response exercise. The exercise, titled NEAMWave12, simulated widespread Tsunami Watch situations throughout the NEAM region. It is the first international exercise as such, in this region, where the UNESCO-IOC ICG/NEAMTWS tsunami warning chain has been tested to a full scale for the first time with different systems. One of the systems is developed in the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC) and has been validated in this exercise among others by KOERI and IPMA. In TRIDEC new developments in Information and Communication Technology (ICT) are used to extend the existing platform realising a component-based technology framework for building distributed tsunami warning systems for deployment, e.g. in the North-eastern Atlantic, the Mediterranean and Connected Seas (NEAM) region. The TRIDEC system will be implemented in three phases, each with a demonstrator. Successively, the demonstrators are addressing related challenges. The first and second phase system demonstrator, deployed at KOERI's crisis management room and deployed at IPMA has been designed and implemented, firstly, to support plausible scenarios for the Turkish NTWC and for the Portuguese NTWC to demonstrate the treatment of simulated tsunami threats with an essential subset of a NTWC. Secondly, the feasibility and the potentials of the implemented approach are demonstrated covering ICG/NEAMTWS standard operations as well as tsunami detection and alerting functions beyond ICG/NEAMTWS requirements. The demonstrator presented addresses information management and decision-support processes for hypothetical tsunami-related crisis situations in the context of the ICG/NEAMTWS NEAMWave12 exercise for the Turkish and Portuguese tsunami exercise scenarios. Impressions gained with the standards compliant TRIDEC system during the exercise will be reported. The system version presented is based on event-driven architecture (EDA) and service-oriented architecture (SOA) concepts and is making use of relevant standards of the Open Geospatial Consortium (OGC), the World Wide Web Consortium (W3C) and the Organization for the Advancement of Structured Information Standards (OASIS). In this way the system continuously gathers, processes and displays events and data coming from open sensor platforms to enable operators to quickly decide whether an early warning is necessary and to send personalized warning messages to the authorities and the population at large through a wide range of communication channels. The system integrates OGC Sensor Web Enablement (SWE) compliant sensor systems for the rapid detection of hazardous events, like earthquakes, sea level anomalies, ocean floor occurrences, and ground displacements. Using OGC Web Map Service (WMS) and Web Feature Service (WFS) spatial data are utilized to depict the situation picture. The integration of a simulation system to identify affected areas is considered using the OGC Web Processing Service (WPS). Warning messages are compiled and transmitted in the OASIS Common Alerting Protocol (CAP) together with addressing information defined via the OASIS Emergency Data Exchange Language - Distribution Element (EDXL-DE). This demonstration is linked with the talk 'Experiences with TRIDEC's Crisis Management Demonstrator in the Turkish NEAMWave12 exercise tsunami scenario' (EGU2013-2833) given in the session "Architecture of Future Tsunami Warning Systems" (NH5.6).

  16. Harvesting data from advanced technologies.

    DOT National Transportation Integrated Search

    2014-11-01

    Data streams are emerging everywhere such as Web logs, Web page click streams, sensor data streams, and credit card transaction flows. : Different from traditional data sets, data streams are sequentially generated and arrive one by one rather than b...

  17. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy

    PubMed Central

    Kim, Dae-Hyeong; Ghaffari, Roozbeh; Lu, Nanshu; Wang, Shuodao; Lee, Stephen P.; Keum, Hohyun; D’Angelo, Robert; Klinker, Lauren; Su, Yewang; Lu, Chaofeng; Kim, Yun-Soung; Ameen, Abid; Li, Yuhang; Zhang, Yihui; de Graff, Bassel; Hsu, Yung-Yu; Liu, ZhuangJian; Ruskin, Jeremy; Xu, Lizhi; Lu, Chi; Omenetto, Fiorenzo G.; Huang, Yonggang; Mansour, Moussa; Slepian, Marvin J.; Rogers, John A.

    2012-01-01

    Curved surfaces, complex geometries, and time-dynamic deformations of the heart create challenges in establishing intimate, nonconstraining interfaces between cardiac structures and medical devices or surgical tools, particularly over large areas. We constructed large area designs for diagnostic and therapeutic stretchable sensor and actuator webs that conformally wrap the epicardium, establishing robust contact without sutures, mechanical fixtures, tapes, or surgical adhesives. These multifunctional web devices exploit open, mesh layouts and mount on thin, bio-resorbable sheets of silk to facilitate handling in a way that yields, after dissolution, exceptionally low mechanical moduli and thicknesses. In vivo studies in rabbit and pig animal models demonstrate the effectiveness of these device webs for measuring and spatially mapping temperature, electrophysiological signals, strain, and physical contact in sheet and balloon-based systems that also have the potential to deliver energy to perform localized tissue ablation. PMID:23150574

  18. A Service Oriented Architecture to Enable Sensor Webs

    NASA Technical Reports Server (NTRS)

    Sohlberg, Rob; Frye, Stu; Cappelaere, Pat; Ungar, Steve; Ames, Troy; Chien, Steve

    2006-01-01

    This viewgraph presentation reviews the development of a Service Oriented Architecture to assist in lowering the cost of new Earth Science products. This architecture will enable rapid and cost effective reconfiguration of new sensors.

  19. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  20. Net-Centric Sensors and Data Sources (N-CSDS) GEODSS Sidecar

    NASA Astrophysics Data System (ADS)

    Richmond, D.

    2012-09-01

    Vast amounts of Space Situational Sensor data is collected each day on closed, legacy systems. Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL) developed a Net-Centric approach to expose this data under the Extended Space Sensors Architecture (ESSA) Advanced Concept Technology Demonstration (ACTD). The Net-Centric Sensors and Data Sources (N-CSDS) Ground-based Electro Optical Deep Space Surveillance (GEODSS) Sidecar is the next generation that moves the ESSA ACTD engineering tools to an operational baseline. The N-CSDS GEODSS sidecar high level architecture will be presented, highlighting the features that supports deployment at multiple diverse sensor sites. Other key items that will be covered include: 1) The Web Browser interface to perform searches of historical data 2) The capabilities of the deployed Web Services and example service request/responses 3) Example data and potential user applications will be highlighted 4) Specifics regarding the process to gain access to the N-CSDS GEODSS sensor data in near real time 5) Current status and future deployment plans (Including plans for deployment to the Maui GEODSS Site)

  1. Sensor Webs: Autonomous Rapid Response to Monitor Transient Science Events

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Grosvenor, Sandra; Frye, Stu; Sherwood, Robert; Chien, Steve; Davies, Ashley; Cichy, Ben; Ingram, Mary Ann; Langley, John; Miranda, Felix

    2005-01-01

    To better understand how physical phenomena, such as volcanic eruptions, evolve over time, multiple sensor observations over the duration of the event are required. Using sensor web approaches that integrate original detections by in-situ sensors and global-coverage, lower-resolution, on-orbit assets with automated rapid response observations from high resolution sensors, more observations of significant events can be made with increased temporal, spatial, and spectral resolution. This paper describes experiments using Earth Observing 1 (EO-1) along with other space and ground assets to implement progressive mission autonomy to identify, locate and image with high resolution instruments phenomena such as wildfires, volcanoes, floods and ice breakup. The software that plans, schedules and controls the various satellite assets are used to form ad hoc constellations which enable collaborative autonomous image collections triggered by transient phenomena. This software is both flight and ground based and works in concert to run all of the required assets cohesively and includes software that is model-based, artificial intelligence software.

  2. Automatic aeroponic irrigation system based on Arduino’s platform

    NASA Astrophysics Data System (ADS)

    Montoya, A. P.; Obando, F. A.; Morales, J. G.; Vargas, G.

    2017-06-01

    The recirculating hydroponic culture techniques, as aeroponics, has several advantages over traditional agriculture, aimed to improve the efficiently and environmental impact of agriculture. These techniques require continuous monitoring and automation for proper operation. In this work was developed an automatic monitored aeroponic-irrigation system based on the Arduino’s free software platform. Analog and digital sensors for measuring the temperature, flow and level of a nutrient solution in a real greenhouse were implemented. In addition, the pH and electric conductivity of nutritive solutions are monitored using the Arduino’s differential configuration. The sensor network, the acquisition and automation system are managed by two Arduinos modules in master-slave configuration, which communicate one each other wireless by Wi-Fi. Further, data are stored in micro SD memories and the information is loaded on a web page in real time. The developed device brings important agronomic information when is tested with an arugula culture (Eruca sativa Mill). The system also could be employ as an early warning system to prevent irrigation malfunctions.

  3. A web-based non-intrusive ambient system to measure and classify activities of daily living.

    PubMed

    Stucki, Reto A; Urwyler, Prabitha; Rampa, Luca; Müri, René; Mosimann, Urs P; Nef, Tobias

    2014-07-21

    The number of older adults in the global population is increasing. This demographic shift leads to an increasing prevalence of age-associated disorders, such as Alzheimer's disease and other types of dementia. With the progression of the disease, the risk for institutional care increases, which contrasts with the desire of most patients to stay in their home environment. Despite doctors' and caregivers' awareness of the patient's cognitive status, they are often uncertain about its consequences on activities of daily living (ADL). To provide effective care, they need to know how patients cope with ADL, in particular, the estimation of risks associated with the cognitive decline. The occurrence, performance, and duration of different ADL are important indicators of functional ability. The patient's ability to cope with these activities is traditionally assessed with questionnaires, which has disadvantages (eg, lack of reliability and sensitivity). Several groups have proposed sensor-based systems to recognize and quantify these activities in the patient's home. Combined with Web technology, these systems can inform caregivers about their patients in real-time (e.g., via smartphone). We hypothesize that a non-intrusive system, which does not use body-mounted sensors, video-based imaging, and microphone recordings would be better suited for use in dementia patients. Since it does not require patient's attention and compliance, such a system might be well accepted by patients. We present a passive, Web-based, non-intrusive, assistive technology system that recognizes and classifies ADL. The components of this novel assistive technology system were wireless sensors distributed in every room of the participant's home and a central computer unit (CCU). The environmental data were acquired for 20 days (per participant) and then stored and processed on the CCU. In consultation with medical experts, eight ADL were classified. In this study, 10 healthy participants (6 women, 4 men; mean age 48.8 years; SD 20.0 years; age range 28-79 years) were included. For explorative purposes, one female Alzheimer patient (Montreal Cognitive Assessment score=23, Timed Up and Go=19.8 seconds, Trail Making Test A=84.3 seconds, Trail Making Test B=146 seconds) was measured in parallel with the healthy subjects. In total, 1317 ADL were performed by the participants, 1211 ADL were classified correctly, and 106 ADL were missed. This led to an overall sensitivity of 91.27% and a specificity of 92.52%. Each subject performed an average of 134.8 ADL (SD 75). The non-intrusive wireless sensor system can acquire environmental data essential for the classification of activities of daily living. By analyzing retrieved data, it is possible to distinguish and assign data patterns to subjects' specific activities and to identify eight different activities in daily living. The Web-based technology allows the system to improve care and provides valuable information about the patient in real-time.

  4. The drainage information and control system of smart city

    NASA Astrophysics Data System (ADS)

    Mao, Tonglei; Li, Lei; Liu, JiChang; Cheng, Liang; Zhang, Jing; Song, Zengzhong; Liu, Lianhai; Hu, Zichen

    2018-03-01

    At present, due to the continuous expansion of city and the increase of the municipal drainage facilities, which leads to a serious lack of management and operation personnel, the existing production management pattern already can't adapt to the new requirements. In this paper, according to river drainage management, flood control, water management, auditing, administrative license, etc. different business management requirement, an information management system for water planning and design of smart city based on WebGIS in Linyi was introduced, which can collect the various information of gate dam, water pump, bridge sensor and traffic guide terminal nodes etc. together. The practical application show that the system can not only implement the sharing, resources integration and collaborative application for the regional water information, but also improve the level of the integrated water management.

  5. High-sensitivity acoustic sensors from nanofibre webs.

    PubMed

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-03-23

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa(-1). They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors.

  6. High-sensitivity acoustic sensors from nanofibre webs

    PubMed Central

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-01-01

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa−1. They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors. PMID:27005010

  7. Design and development of an IoT-based web application for an intelligent remote SCADA system

    NASA Astrophysics Data System (ADS)

    Kao, Kuang-Chi; Chieng, Wei-Hua; Jeng, Shyr-Long

    2018-03-01

    This paper presents a design of an intelligent remote electrical power supervisory control and data acquisition (SCADA) system based on the Internet of Things (IoT), with Internet Information Services (IIS) for setting up web servers, an ASP.NET model-view- controller (MVC) for establishing a remote electrical power monitoring and control system by using responsive web design (RWD), and a Microsoft SQL Server as the database. With the web browser connected to the Internet, the sensing data is sent to the client by using the TCP/IP protocol, which supports mobile devices with different screen sizes. The users can provide instructions immediately without being present to check the conditions, which considerably reduces labor and time costs. The developed system incorporates a remote measuring function by using a wireless sensor network and utilizes a visual interface to make the human-machine interface (HMI) more instinctive. Moreover, it contains an analog input/output and a basic digital input/output that can be applied to a motor driver and an inverter for integration with a remote SCADA system based on IoT, and thus achieve efficient power management.

  8. BAID: The Barrow Area Information Database - an Interactive Web Mapping Portal and Cyberinfrastructure for Science and Land Management in the Vicinity of Barrow on the North Slope of Alaska.

    NASA Astrophysics Data System (ADS)

    Escarzaga, S. M.; Cody, R. P.; Gaylord, A. G.; Kassin, A.; Barba, M.; Aiken, Q.; Nelson, L.; Mazza Ramsay, F. D.; Tweedie, C. E.

    2016-12-01

    The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic and the Barrow Area Information Database (BAID, www.barrowmapped.org) tracks and facilitates a gamut of research, management, and educational activities in the area. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 16,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, save or print maps and query results, and filter or view information by space, time, and/or other tags. Recent advances include provision of differential global positioning (dGPS) system and high resolution aerial imagery support to visiting scientists, analysis and multitemporal mapping of over 120 km of coastline for erosion monitoring; maintenance of a wireless micrometeorological sensor network; links to Barrow area datasets housed at national data archives; and substantial upgrades to the BAID website. Web mapping applications that have launched to the public include: an Imagery Time Viewer that allows users to compare imagery of the Barrow area between 1949 and the present; a Coastal Erosion Viewer that allows users to view long-term (1955-2015) and recent (2013-2015) rates of erosion for the Barrow area; and a Community Planning Tool that allows users to view and print dynamic reports based on an array of basemaps including a new 0.5m resolution wetlands map designed to enhance decision making for development and land management.

  9. Social Sensor Analytics: Making Sense of Network Models in Social Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Chase P.; Harrison, Joshua J.; Sathanur, Arun V.

    Social networks can be thought of as noisy sensor networks mapping real world information to the web. Owing to the extensive body of literature in sensor network analysis, this work sought to apply several novel and traditional methods in sensor network analysis for the purposes of efficiently interrogating social media data streams from raw data. We carefully revisit our definition of a social media signal from previous work both in terms of time-varying features within the data and the networked nature of the medium. Further, we detail our analysis of global patterns in Twitter over the months of November 2013more » and June 2014, detect and categorize events, and illustrate how these analyses can be used to inform graph-based models of Twitter, namely using a recent network influence model called PhySense: similar to PageRank but tuned to behavioral analysis by leveraging a sociologically inspired probabilistic model. We ultimately identify forms of information dissemination via analysis of time series and dynamic graph spectra and corroborate these findings through manual investigation of the data as a requisite step in modeling the diffusion process with PhySense. We hope to sufficiently characterize global behavior in a medium such as Twitter as a means of learning global model parameters one may use to predict or simulate behavior on a large scale. We have made our time series and dynamic graph analytical code available via a GitHub repository https://github.com/cpatdowling/salsa and our data are available upon request.« less

  10. NeXOS, developing and evaluating a new generation of insitu ocean observation systems.

    NASA Astrophysics Data System (ADS)

    Delory, Eric; del Rio, Joaquin; Golmen, Lars; Roar Hareide, Nils; Pearlman, Jay; Rolin, Jean-Francois; Waldmann, Christoph; Zielinski, Oliver

    2017-04-01

    Ocean biological, chemical or physical processes occur over widely varying scales in space and time: from micro- to kilometer scales, from less than seconds to centuries. While space systems supply important data and information, insitu data is necessary for comprehensive modeling and forecasting of ocean dynamics. Yet, collection of in-situ observation on these scales is inherently challenging and remains generally difficult and costly in time and resources. This paper address the innovations and significant developments for a new generation of insitu sensors in FP7 European Union project "Next generation, Cost- effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management" or "NeXOS" for short. Optical and acoustics sensors are the focus of NeXOS but NeXOS moves beyond just sensors as systems that simultaneously address multiple objectives and applications are becoming increasingly important. Thus NeXOS takes a perspective of both sensors and sensor systems with significant advantages over existing observing capabilities via the implementation of innovations such as multiplatform integration, greater reliability through better antifouling management and greater sensor and data interoperability through use of OGC standards. This presentation will address the sensor system development and field-testing of the new NeXOS sensor systems. This is being done on multiple platforms including profiling floats, gliders, ships, buoys and subsea stations. The implementation of a data system based on SWE and PUCK furthers interoperability across measurements and platforms. This presentation will review the sensor system capabilities, the status of field tests and recommendations for long-term ocean monitoring.

  11. Advances in the TRIDEC Cloud

    NASA Astrophysics Data System (ADS)

    Hammitzsch, Martin; Spazier, Johannes; Reißland, Sven

    2016-04-01

    The TRIDEC Cloud is a platform that merges several complementary cloud-based services for instant tsunami propagation calculations and automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The platform offers a modern web-based graphical user interface so that operators in warning centres and stakeholders of other involved parties (e.g. CPAs, ministries) just need a standard web browser to access a full-fledged early warning and information system with unique interactive features such as Cloud Messages and Shared Maps. Furthermore, the TRIDEC Cloud can be accessed in different modes, e.g. the monitoring mode, which provides important functionality required to act in a real event, and the exercise-and-training mode, which enables training and exercises with virtual scenarios re-played by a scenario player. The software system architecture and open interfaces facilitate global coverage so that the system is applicable for any region in the world and allow the integration of different sensor systems as well as the integration of other hazard types and use cases different to tsunami early warning. Current advances of the TRIDEC Cloud platform will be summarized in this presentation.

  12. Wireless Integrated Microelectronic Vacuum Sensor System

    NASA Technical Reports Server (NTRS)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum-gauge measurements automatically and wirelessly, in near-real time - using a low-maintenance, lowpower sensor mesh network. The WIMVSS operates by using a self-configuring mesh network of wireless sensor units. Mesh networking is a type of networking where each sensor or node can capture and disseminate its own data, but also serve as a relay to receive and transmit data from other sensors. Each sensor node can synchronize with adjacent sensors, and propagate data from one sensor to the next, until the destination is reached. In this case, the destination is a Network Interface Unit (NIU). The WIMVSS sensors are mounted on the existing vacuum gauges. Information gathered by the sensors is sent to the NIU. Because of the mesh networking, if a sensor cannot directly send the data to the NIU, it can be propagated through the network of sensors. The NIU requires antenna access to the sensor units, AC power, and an Ethernet connection. The NIU bridges the sensor network to a WIMVSS server via an Ethernet connection. The server is configured with a database, a Web server, and proprietary interface software that makes it possible for the vacuum measurements from vacuum jacketed fluid lines to be saved, retrieved, and then displayed from any Web-enabled PC that has access to the Internet. Authorized users can then simply access the data from any PC with Internet connection. Commands can also be sent directly from the Web interface for control and maintenance of the sensor network. The technology enabled by the WIMVSS decreases labor required for gathering vacuum measurements, increases access to vacuum data by making it available on any computer with access to the Internet, increases the frequency with which data points can be acquired for evaluating the system, and decreases the recurring cost of the sensors by using off-the-shelf components and integrating these with heritage vacuum gauges.

  13. Decentralized coordinated control of elastic web winding systems without tension sensor.

    PubMed

    Hou, Hailiang; Nian, Xiaohong; Chen, Jie; Xiao, Dengfeng

    2018-06-26

    In elastic web winding systems, precise regulation of web tension in each span is critical to ensure final product quality, and to achieve low cost by reducing the occurrence of web break or fold. Generally, web winding systems use load cells or swing rolls as tension sensors, which add cost, reduce system reliability and increase the difficulty of control. In this paper, a decentralized coordinated control scheme with tension observers is designed for a three-motor web-winding system. First, two tension observers are proposed to estimate the unwinding and winding tension. The designed observers consider the essential dynamic, radius, and inertial variation effects and only require the modest computational effort. Then, using the estimated tensions as feedback signals, a robust decentralized coordinated controller is adopted to reduce the interaction between subsystems. Asymptotic stabilities of the observer error dynamics and the closed-loop winding systems are demonstrated via Lyapunov stability theory. The observer gains and the controller gains can be obtained by solving matrix inequalities. Finally, some simulations and experiments are performed on a paper winding setup to test the performance of the designed observers and the observer-base DCC method, respectively. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Service Oriented Architecture for Wireless Sensor Networks in Agriculture

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Adinarayana, J.; Durbha, S. S.; Tripathy, A. K.; Sudharsan, D.

    2012-08-01

    Rapid advances in Wireless Sensor Network (WSN) for agricultural applications has provided a platform for better decision making for crop planning and management, particularly in precision agriculture aspects. Due to the ever-increasing spread of WSNs there is a need for standards, i.e. a set of specifications and encodings to bring multiple sensor networks on common platform. Distributed sensor systems when brought together can facilitate better decision making in agricultural domain. The Open Geospatial Consortium (OGC) through Sensor Web Enablement (SWE) provides guidelines for semantic and syntactic standardization of sensor networks. In this work two distributed sensing systems (Agrisens and FieldServer) were selected to implement OGC SWE standards through a Service Oriented Architecture (SOA) approach. Online interoperable data processing was developed through SWE components such as Sensor Model Language (SensorML) and Sensor Observation Service (SOS). An integrated web client was developed to visualize the sensor observations and measurements that enables the retrieval of crop water resources availability and requirements in a systematic manner for both the sensing devices. Further, the client has also the ability to operate in an interoperable manner with any other OGC standardized WSN systems. The study of WSN systems has shown that there is need to augment the operations / processing capabilities of SOS in order to understand about collected sensor data and implement the modelling services. Also, the very low cost availability of WSN systems in future, it is possible to implement the OGC standardized SWE framework for agricultural applications with open source software tools.

  15. A Web Service Protocol Realizing Interoperable Internet of Things Tasking Capability

    PubMed Central

    Huang, Chih-Yuan; Wu, Cheng-Hung

    2016-01-01

    The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable devices using the Internet. By interconnecting everyday appliances, various monitoring, and physical mashup applications can be constructed to improve human’s daily life. In general, IoT devices provide two main capabilities: sensing and tasking capabilities. While the sensing capability is similar to the World-Wide Sensor Web, this research focuses on the tasking capability. However, currently, IoT devices created by different manufacturers follow different proprietary protocols and are locked in many closed ecosystems. This heterogeneity issue impedes the interconnection between IoT devices and damages the potential of the IoT. To address this issue, this research aims at proposing an interoperable solution called tasking capability description that allows users to control different IoT devices using a uniform web service interface. This paper demonstrates the contribution of the proposed solution by interconnecting different IoT devices for different applications. In addition, the proposed solution is integrated with the OGC SensorThings API standard, which is a Web service standard defined for the IoT sensing capability. Consequently, the Extended SensorThings API can realize both IoT sensing and tasking capabilities in an integrated and interoperable manner. PMID:27589759

  16. An Intelligent Tool for Activity Data Collection

    PubMed Central

    Jehad Sarkar, A. M.

    2011-01-01

    Activity recognition systems using simple and ubiquitous sensors require a large variety of real-world sensor data for not only evaluating their performance but also training the systems for better functioning. However, a tremendous amount of effort is required to setup an environment for collecting such data. For example, expertise and resources are needed to design and install the sensors, controllers, network components, and middleware just to perform basic data collections. It is therefore desirable to have a data collection method that is inexpensive, flexible, user-friendly, and capable of providing large and diverse activity datasets. In this paper, we propose an intelligent activity data collection tool which has the ability to provide such datasets inexpensively without physically deploying the testbeds. It can be used as an inexpensive and alternative technique to collect human activity data. The tool provides a set of web interfaces to create a web-based activity data collection environment. It also provides a web-based experience sampling tool to take the user’s activity input. The tool generates an activity log using its activity knowledge and the user-given inputs. The activity knowledge is mined from the web. We have performed two experiments to validate the tool’s performance in producing reliable datasets. PMID:22163832

  17. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1980-01-01

    A barrier crucible design which consistently maintains melt stability over long periods of time was successfully tested and used in long growth runs. The pellet feeder for melt replenishment was operated continuously for growth runs of up to 17 hours. The liquid level sensor comprising a laser/sensor system was operated, performed well, and meets the requirements for maintaining liquid level height during growth and melt replenishment. An automated feedback loop connecting the feed mechanism and the liquid level sensing system was designed and constructed and operated successfully for 3.5 hours demonstrating the feasibility of semi-automated dendritic web growth. The sensitivity of the cost of sheet, to variations in capital equipment cost and recycling dendrites was calculated and it was shown that these factors have relatively little impact on sheet cost. Dendrites from web which had gone all the way through the solar cell fabrication process, when melted and grown into web, produce crystals which show no degradation in cell efficiency. Material quality remains high and cells made from web grown at the start, during, and the end of a run from a replenished melt show comparable efficiencies.

  18. Efficient Sensor Integration on Platforms (NeXOS)

    NASA Astrophysics Data System (ADS)

    Memè, S.; Delory, E.; Del Rio, J.; Jirka, S.; Toma, D. M.; Martinez, E.; Frommhold, L.; Barrera, C.; Pearlman, J.

    2016-12-01

    In-situ ocean observing platforms provide power and information transmission capability to sensors. Ocean observing platforms can be mobile, such as ships, autonomous underwater vehicles, drifters and profilers, or fixed, such as buoys, moorings and cabled observatories. The process of integrating sensors on platforms can imply substantial engineering time and resources. Constraints range from stringent mechanical constraints to proprietary communication and control firmware. In NeXOS, the implementation of a PUCK plug and play capability is being done with applications to multiple sensors and platforms. This is complemented with a sensor web enablement that addresses the flow of information from sensor to user. Open standards are being tested in order to assess their costs and benefits in existing and future observing systems. Part of the testing implied open-source coding and hardware prototyping of specific control devices in particular for closed commercial platforms where firmware upgrading is not straightforward or possible without prior agreements or service fees. Some platform manufacturers such as European companies ALSEAMAR[1] and NKE Instruments [2] are currently upgrading their control and communication firmware as part of their activities in NeXOS. The sensor development companies Sensorlab[3] SMID[4] and TRIOS [5]upgraded their firmware with this plug and play functionality. Other industrial players in Europe and the US have been sent NeXOS sensors emulators to test the new protocol on their platforms. We are currently demonstrating that with little effort, it is also possible to have such middleware implemented on very low-cost compact computers such as the open Raspberry Pi[6], and have a full end-to-end interoperable communication path from sensor to user with sensor plug and play capability. The result is an increase in sensor integration cost-efficiency and the demonstration will be used to highlight the benefit to users and ocean observatory operators. [1] http://www.alseamar-alcen.com [2] http://www.nke-instrumentation.com [3] http://sensorlab.es [4] http://www.smidtechnology.it/ [5] http://www.trios.de/en/products/ [6] Raspberry Pi is a trademark of the Raspberry Pi Foundation

  19. Programmatic access to data and information at the IRIS DMC via web services

    NASA Astrophysics Data System (ADS)

    Weertman, B. R.; Trabant, C.; Karstens, R.; Suleiman, Y. Y.; Ahern, T. K.; Casey, R.; Benson, R. B.

    2011-12-01

    The IRIS Data Management Center (DMC) has developed a suite of web services that provide access to the DMC's time series holdings, their related metadata and earthquake catalogs. In addition, services are available to perform simple, on-demand time series processing at the DMC prior to being shipped to the user. The primary goal is to provide programmatic access to data and processing services in a manner usable by and useful to the research community. The web services are relatively simple to understand and use and will form the foundation on which future DMC access tools will be built. Based on standard Web technologies they can be accessed programmatically with a wide range of programming languages (e.g. Perl, Python, Java), command line utilities such as wget and curl or with any web browser. We anticipate these services being used for everything from simple command line access, used in shell scripts and higher programming languages to being integrated within complex data processing software. In addition to improving access to our data by the seismological community the web services will also make our data more accessible to other disciplines. The web services available from the DMC include ws-bulkdataselect for the retrieval of large volumes of miniSEED data, ws-timeseries for the retrieval of individual segments of time series data in a variety of formats (miniSEED, SAC, ASCII, audio WAVE, and PNG plots) with optional signal processing, ws-station for station metadata in StationXML format, ws-resp for the retrieval of instrument response in RESP format, ws-sacpz for the retrieval of sensor response in the SAC poles and zeros convention and ws-event for the retrieval of earthquake catalogs. To make the services even easier to use, the DMC is developing a library that allows Java programmers to seamlessly retrieve and integrate DMC information into their own programs. The library will handle all aspects of dealing with the services and will parse the returned data. By using this library a developer will not need to learn the details of the service interfaces or understand the data formats returned. This library will be used to build the software bridge needed to request data and information from within MATLAB°. We also provide several client scripts written in Perl for the retrieval of waveform data, metadata and earthquake catalogs using command line programs. For more information on the DMC's web services please visit http://www.iris.edu/ws/

  20. Vision-Based Sensor for Early Detection of Periodical Defects in Web Materials

    PubMed Central

    Bulnes, Francisco G.; Usamentiaga, Rubén; García, Daniel F.; Molleda, Julio

    2012-01-01

    During the production of web materials such as plastic, textiles or metal, where there are rolls involved in the production process, periodically generated defects may occur. If one of these rolls has some kind of flaw, it can generate a defect on the material surface each time it completes a full turn. This can cause the generation of a large number of surface defects, greatly degrading the product quality. For this reason, it is necessary to have a system that can detect these situations as soon as possible. This paper presents a vision-based sensor for the early detection of this kind of defects. It can be adapted to be used in the inspection of any web material, even when the input data are very noisy. To assess its performance, the sensor system was used to detect periodical defects in hot steel strips. A total of 36 strips produced in ArcelorMittal Avilés factory were used for this purpose, 18 to determine the optimal configuration of the proposed sensor using a full-factorial experimental design and the other 18 to verify the validity of the results. Next, they were compared with those provided by a commercial system used worldwide, showing a clear improvement. PMID:23112629

  1. Spider-web inspired multi-resolution graphene tactile sensor.

    PubMed

    Liu, Lu; Huang, Yu; Li, Fengyu; Ma, Ying; Li, Wenbo; Su, Meng; Qian, Xin; Ren, Wanjie; Tang, Kanglai; Song, Yanlin

    2018-05-08

    Multi-dimensional accurate response and smooth signal transmission are critical challenges in the advancement of multi-resolution recognition and complex environment analysis. Inspired by the structure-activity relationship between discrepant microstructures of the spiral and radial threads in a spider web, we designed and printed graphene with porous and densely-packed microstructures to integrate into a multi-resolution graphene tactile sensor. The three-dimensional (3D) porous graphene structure performs multi-dimensional deformation responses. The laminar densely-packed graphene structure contributes excellent conductivity with flexible stability. The spider-web inspired printed pattern inherits orientational and locational kinesis tracking. The multi-structure construction with homo-graphene material can integrate discrepant electronic properties with remarkable flexibility, which will attract enormous attention for electronic skin, wearable devices and human-machine interactions.

  2. Citizen Sensors for SHM: Towards a Crowdsourcing Platform

    PubMed Central

    Ozer, Ekin; Feng, Maria Q.; Feng, Dongming

    2015-01-01

    This paper presents an innovative structural health monitoring (SHM) platform in terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of smartphones has provided an opportunity to create low-cost sensor networks for SHM. Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, valuable but heterogeneous data. Previously, the authors have investigated the reliability of smartphone accelerometers for vibration-based SHM. This paper takes a step further to integrate mobile sensing and web-based computing for a prospective crowdsourcing-based SHM platform. An iOS application was developed to enable citizens to measure structural vibration and upload the data to a server with smartphones. A web-based platform was developed to collect and process the data automatically and store the processed data, such as modal properties of the structure, for long-term SHM purposes. Finally, the integrated mobile and web-based platforms were tested to collect the low-amplitude ambient vibration data of a bridge structure. Possible sources of uncertainties related to citizens were investigated, including the phone location, coupling conditions, and sampling duration. The field test results showed that the vibration data acquired by smartphones operated by citizens without expertise are useful for identifying structural modal properties with high accuracy. This platform can be further developed into an automated, smart, sustainable, cost-free system for long-term monitoring of structural integrity of spatially distributed urban infrastructure. Citizen Sensors for SHM will be a novel participatory sensing platform in the way that it offers hybrid solutions to transitional crowdsourcing parameters. PMID:26102490

  3. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick O'Neill

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested onmore » two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests. This proved to be a major challenge for the project and was ultimately abandoned in favor of a directly wired solution for collecting sensor data at the building. The primary reason for this was the relatively short ranges at which we were able to effectively place the sensor nodes from the central receiving unit. Several different mesh technologies were attempted with similar results. Two hardware devices were created during the original performance period of the project. The first device, the WEB-MC, is a master control unit that has two radios, a CPU, memory, and serves as the central communications device for the WEB-MC System (Currently called the 'BEST Wireless HVAC Maintenance System' as a tentative commercial product name). The WEB-MC communicates with the local mesh network system via one of its antennas. Communication with the mesh network enables the WEB-MC to configure the network, send/receive data from individual motes, and serves as the primary mechanism for collecting sensor data at remote locations. The second antenna enables the WEB-MC to connect to a cellular network ('Long-Haul Communications') to transfer data to and from the NorthWrite Network Operations Center (NOC). A third 'all-in-one' hardware solution was created after the project was extended (Phase 2) and additional resources were provided. The project team leveraged a project funded by the State of Washington to develop a hardware solution that integrated the functionality of the original two devices. The primary reason for this approach was to eliminate the mesh network technical difficulties that severely limited the functionality of the original hardware approach. There were five separate software developments required to deliver the functionality needed for this project. These include the Data Server (or Network Operations Center), Web Application, Diagnostic Software, WEB-MC Embedded Software, Mote Embedded Software. Each of these developments was necessarily dependent on the others. This resulted in a challenging management task - requiring high bandwidth communications among all the team members. Fortunately, the project team performed exceptionally well together and was able to work through the various challenges that this presented - for example, when one software tool required a detailed description of the output of a second tool, before that tool had been fully designed.« less

  4. A FPGA embedded web server for remote monitoring and control of smart sensors networks.

    PubMed

    Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique

    2013-12-27

    This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.

  5. A FPGA Embedded Web Server for Remote Monitoring and Control of Smart Sensors Networks

    PubMed Central

    Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique

    2014-01-01

    This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology. PMID:24379047

  6. Real-time new satellite product demonstration from microwave sensors and GOES-16 at NRL TC web

    NASA Astrophysics Data System (ADS)

    Cossuth, J.; Richardson, K.; Surratt, M. L.; Bankert, R.

    2017-12-01

    The Naval Research Laboratory (NRL) Tropical Cyclone (TC) satellite webpage (https://www.nrlmry.navy.mil/TC.html) provides demonstration analyses of storm imagery to benefit operational TC forecast centers around the world. With the availability of new spectral information provided by GOES-16 satellite data and recent research into improved visualization methods of microwave data, experimental imagery was operationally tested to visualize the structural changes of TCs during the 2017 hurricane season. This presentation provides an introduction into these innovative satellite analysis methods, NRL's next generation satellite analysis system (the Geolocated Information Processing System, GeoIPSTM), and demonstration the added value of additional spectral frequencies when monitoring storms in near-realtime.

  7. Webcam classification using simple features

    NASA Astrophysics Data System (ADS)

    Pramoun, Thitiporn; Choe, Jeehyun; Li, He; Chen, Qingshuang; Amornraksa, Thumrongrat; Lu, Yung-Hsiang; Delp, Edward J.

    2015-03-01

    Thousands of sensors are connected to the Internet and many of these sensors are cameras. The "Internet of Things" will contain many "things" that are image sensors. This vast network of distributed cameras (i.e. web cams) will continue to exponentially grow. In this paper we examine simple methods to classify an image from a web cam as "indoor/outdoor" and having "people/no people" based on simple features. We use four types of image features to classify an image as indoor/outdoor: color, edge, line, and text. To classify an image as having people/no people we use HOG and texture features. The features are weighted based on their significance and combined. A support vector machine is used for classification. Our system with feature weighting and feature combination yields 95.5% accuracy.

  8. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications

    PubMed Central

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-01-01

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers. PMID:28216556

  9. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.

    PubMed

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-02-14

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  10. Automated Data Processing as an AI Planning Problem

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wanlin; Nemani, Ramakrishna; Votava, Petr

    2003-01-01

    NASA s vision for Earth Science is to build a "sensor web"; an adaptive array of heterogeneous satellites and other sensors that will track important events, such as storms, and provide real-time information about the state of the Earth to a wide variety of customers. Achieving his vision will require automation not only in the scheduling of the observations but also in the processing af tee resulting data. Ta address this need, we have developed a planner-based agent to automatically generate and execute data-flow programs to produce the requested data products. Data processing domains are substantially different from other planning domains that have been explored, and this has led us to substantially different choices in terms of representation and algorithms. We discuss some of these differences and discuss the approach we have adopted.

  11. Highways Disturbance Detection with the Use of Open Source Code Geographic Information Systems, Mobile and Web Applications

    NASA Astrophysics Data System (ADS)

    Sabah, L.; Şimşek, M.

    2017-11-01

    Road disturbances are occurring in our country due to the highway-weighted transportation. These disturbances are caused by human and natural causes. Disturbances in the roads have a negative effect on human life as well as damage to the vehicles. Regardless of how it occurs, it is important to quickly detect and eliminate roadside disturbances. The use of mobile devices has become widespread with developing technologies. Today, many sensors such as GPS and accelerometer are used to detect road disturbances on mobile devices. In this context, it is important to use mobile applications for fast and in-situ detection. In this study, it is investigated the use of mobile devices' location data received from GPS sensors with special mobile interfaces in gathering road data for road disturbances.

  12. Semantic markup of sensor capabilities: how simple it too simple?

    NASA Astrophysics Data System (ADS)

    Rueda-Velasquez, C. A.; Janowicz, K.; Fredericks, J.

    2016-12-01

    Semantics plays a key role for the publication, retrieval, integration, and reuse of observational data across the geosciences. In most cases, one can safely assume that the providers of such data, e.g., individual scientists, understand the observation context in which their data are collected,e.g., the used observation procedure, the sampling strategy, the feature of interest being studied, and so forth. However, can we expect that the same is true for the technical details of the used sensors and especially the nuanced changes that can impact observations in often unpredictable ways? Should the burden of annotating the sensor capabilities, firmware, operation ranges, and so forth be really part of a scientist's responsibility? Ideally, semantic annotations should be provided by the parties that understand these details and have a vested interest in maintaining these data. With manufactures providing semantically-enabled metadata for their sensors and instruments, observations could more easily be annotated and thereby enriched using this information. Unfortunately, today's sensor ontologies and tool chains developed for the Semantic Web community require expertise beyond the knowledge and interest of most manufacturers. Consequently, knowledge engineers need to better understand the sweet spot between simple ontologies/vocabularies and sufficient expressivity as well as the tools required to enable manufacturers to share data about their sensors. Here, we report on the current results of EarthCube's X-Domes project that aims to address the questions outlined above.

  13. Data Exploration using Unsupervised Feature Extraction for Mixed Micro-Seismic Signals

    NASA Astrophysics Data System (ADS)

    Meyer, Matthias; Weber, Samuel; Beutel, Jan

    2017-04-01

    We present a system for the analysis of data originating in a multi-sensor and multi-year experiment focusing on slope stability and its underlying processes in fractured permafrost rock walls undertaken at 3500m a.s.l. on the Matterhorn Hörnligrat, (Zermatt, Switzerland). This system incorporates facilities for the transmission, management and storage of large-scales of data ( 7 GB/day), preprocessing and aggregation of multiple sensor types, machine-learning based automatic feature extraction for micro-seismic and acoustic emission data and interactive web-based visualization of the data. Specifically, a combination of three types of sensors are used to profile the frequency spectrum from 1 Hz to 80 kHz with the goal to identify the relevant destructive processes (e.g. micro-cracking and fracture propagation) leading to the eventual destabilization of large rock masses. The sensors installed for this profiling experiment (2 geophones, 1 accelerometers and 2 piezo-electric sensors for detecting acoustic emission), are further augmented with sensors originating from a previous activity focusing on long-term monitoring of temperature evolution and rock kinematics with the help of wireless sensor networks (crackmeters, cameras, weather station, rock temperature profiles, differential GPS) [Hasler2012]. In raw format, the data generated by the different types of sensors, specifically the micro-seismic and acoustic emission sensors, is strongly heterogeneous, in part unsynchronized and the storage and processing demand is large. Therefore, a purpose-built signal preprocessing and event-detection system is used. While the analysis of data from each individual sensor follows established methods, the application of all these sensor types in combination within a field experiment is unique. Furthermore, experience and methods from using such sensors in laboratory settings cannot be readily transferred to the mountain field site setting with its scale and full exposure to the natural environment. Consequently, many state-of-the-art algorithms for big data analysis and event classification requiring a ground truth dataset cannot be applied. The above mentioned challenges require a tool for data exploration. In the presented system, data exploration is supported by unsupervised feature learning based on convolutional neural networks, which is used to automatically extract common features for preliminary clustering and outlier detection. With this information, an interactive web-tool allows for a fast identification of interesting time segments on which segment-selective algorithms for visualization, feature extraction and statistics can be applied. The combination of manual labeling based and unsupervised feature extraction provides an event catalog for classification of different characteristic events related to internal progression of micro-crack in steep fractured bedrock permafrost. References Hasler, A., S. Gruber, and J. Beutel (2012), Kinematics of steep bedrock permafrost, J. Geophys. Res., 117, F01016, doi:10.1029/2011JF001981.

  14. Development of Smart Grid for Community and Cyber based Landslide Hazard Monitoring and Early Warning System

    NASA Astrophysics Data System (ADS)

    Karnawati, D.; Wilopo, W.; Fathani, T. F.; Fukuoka, H.; Andayani, B.

    2012-12-01

    A Smart Grid is a cyber-based tool to facilitate a network of sensors for monitoring and communicating the landslide hazard and providing the early warning. The sensor is designed as an electronic sensor installed in the existing monitoring and early warning instruments, and also as the human sensors which comprise selected committed-people at the local community, such as the local surveyor, local observer, member of the local task force for disaster risk reduction, and any person at the local community who has been registered to dedicate their commitments for sending reports related to the landslide symptoms observed at their living environment. This tool is designed to be capable to receive up to thousands of reports/information at the same time through the electronic sensors, text message (mobile phone), the on-line participatory web as well as various social media such as Twitter and Face book. The information that should be recorded/ reported by the sensors is related to the parameters of landslide symptoms, for example the progress of cracks occurrence, ground subsidence or ground deformation. Within 10 minutes, this tool will be able to automatically elaborate and analyse the reported symptoms to predict the landslide hazard and risk levels. The predicted level of hazard/ risk can be sent back to the network of electronic and human sensors as the early warning information. The key parameters indicating the symptoms of landslide hazard were recorded/ monitored by the electrical and the human sensors. Those parameters were identified based on the investigation on geological and geotechnical conditions, supported with the laboratory analysis. The cause and triggering mechanism of landslide in the study area was also analysed in order to define the critical condition to launch the early warning. However, not only the technical but also social system were developed to raise community awareness and commitments to serve the mission as the human sensors, which will be responsible for reporting and informing the early warning. Therefore, a community empowerment and encouragement program through public education was conducted. Strategy and approach for this program was formulated based on the socio-engineering investigation. Finally, the results of technical and social engineering investigations, have been elaborated to further enhance the performance of expert system of the Smart Grid, in order to completely establish this system as an innovative and effective tool for the landslide monitoring and early warning in tropical-developing country.

  15. Integrating Dynamic Data and Sensors with Semantic 3D City Models in the Context of Smart Cities

    NASA Astrophysics Data System (ADS)

    Chaturvedi, K.; Kolbe, T. H.

    2016-10-01

    Smart cities provide effective integration of human, physical and digital systems operating in the built environment. The advancements in city and landscape models, sensor web technologies, and simulation methods play a significant role in city analyses and improving quality of life of citizens and governance of cities. Semantic 3D city models can provide substantial benefits and can become a central information backbone for smart city infrastructures. However, current generation semantic 3D city models are static in nature and do not support dynamic properties and sensor observations. In this paper, we propose a new concept called Dynamizer allowing to represent highly dynamic data and providing a method for injecting dynamic variations of city object properties into the static representation. The approach also provides direct capability to model complex patterns based on statistics and general rules and also, real-time sensor observations. The concept is implemented as an Application Domain Extension for the CityGML standard. However, it could also be applied to other GML-based application schemas including the European INSPIRE data themes and national standards for topography and cadasters like the British Ordnance Survey Mastermap or the German cadaster standard ALKIS.

  16. Advancements in Open Geospatial Standards for Photogrammetry and Remote Sensing from Ogc

    NASA Astrophysics Data System (ADS)

    Percivall, George; Simonis, Ingo

    2016-06-01

    The necessity of open standards for effective sharing and use of remote sensing continues to receive increasing emphasis in policies of agencies and projects around the world. Coordination on the development of open standards for geospatial information is a vital step to insure that the technical standards are ready to support the policy objectives. The mission of the Open Geospatial Consortium (OGC) is to advance development and use of international standards and supporting services that promote geospatial interoperability. To accomplish this mission, OGC serves as the global forum for the collaboration of geospatial data / solution providers and users. Photogrammetry and remote sensing are sources of the largest and most complex geospatial information. Some of the most mature OGC standards for remote sensing include the Sensor Web Enablement (SWE) standards, the Web Coverage Service (WCS) suite of standards, encodings such as NetCDF, GMLJP2 and GeoPackage, and the soon to be approved Discrete Global Grid Systems (DGGS) standard. In collaboration with ISPRS, OGC working with government, research and industrial organizations continue to advance the state of geospatial standards for full use of photogrammetry and remote sensing.

  17. Plug and Play web-based visualization of mobile air monitoring data (Abstract)

    EPA Science Inventory

    EPA’s Real-Time Geospatial (RETIGO) Data Viewer web-based tool is a new program reducing the technical barrier to visualize and understand geospatial air data time series collected using wearable, bicycle-mounted, or vehicle-mounted air sensors. The RETIGO tool, with anticipated...

  18. Network Science Research Laboratory (NSRL) Telemetry Warehouse

    DTIC Science & Technology

    2016-06-01

    Functionality and architecture of the NSRL Telemetry Warehouse are also described as well as the web interface, data structure, security aspects, and...Experiment Controller 6 4.5 Telemetry Sensors 7 4.6 Custom Data Processing Nodes 7 5. Web Interface 8 6. Data Structure 8 6.1 Measurements 8...telemetry in comma-separated value (CSV) format from the web interface or via custom applications developed by researchers using the client application

  19. Reviews Equipment: Data logger Book: Imagined Worlds Equipment: Mini data loggers Equipment: PICAXE-18M2 data logger Books: Engineering: A Very Short Introduction and To Engineer Is Human Book: Soap, Science, & Flat-Screen TVs Equipment: uLog and SensorLab Web Watch

    NASA Astrophysics Data System (ADS)

    2012-07-01

    WE RECOMMEND Data logger Fourier NOVA LINK: data logging and analysis To Engineer is Human Engineering: essays and insights Soap, Science, & Flat-Screen TVs People, politics, business and science overlap uLog sensors and sensor adapter A new addition to the LogIT range offers simplicity and ease of use WORTH A LOOK Imagined Worlds Socio-scientific predictions for the future Mini light data logger and mini temperature data logger Small-scale equipment for schools SensorLab Plus LogIT's supporting software, with extra features HANDLE WITH CARE CAXE110P PICAXE-18M2 data logger Data logger 'on view' but disappoints Engineering: A Very Short Introduction A broad-brush treatment fails to satisfy WEB WATCH Two very different websites for students: advanced physics questions answered and a more general BBC science resource

  20. Teaching the Geoweb: Interdisciplinary Undergraduate Research in Wireless Sensor Networks, Web Mapping, and Geospatial Data Management

    ERIC Educational Resources Information Center

    Abernathy, David

    2011-01-01

    This article addresses an effort to incorporate wireless sensor networks and the emerging tools of the Geoweb into undergraduate teaching and research at a small liberal arts college. The primary goal of the research was to identify the hardware, software, and skill sets needed to deploy a local sensor network, collect data, and transmit that data…

  1. Disease Surveillance on Complex Social Networks

    PubMed Central

    Herrera, Jose L.; Srinivasan, Ravi; Brownstein, John S.; Galvani, Alison P.; Meyers, Lauren Ancel

    2016-01-01

    As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors—sampling the most connected, random, and friends of random individuals—in three complex social networks—a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals—early and accurate detection of epidemic emergence and peak, and general situational awareness—we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information. PMID:27415615

  2. Volunteered Geographic Information for Disaster Management with Application to Earthquake Disaster Databank & Sharing Platform

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zhang, W. C.; Deng, C.; Nie, N.; Yi, L.

    2017-02-01

    All phases of disaster management require up-to-date and accurate information. Different in-situ and remote sensor systems help to monitor dynamic properties such as air quality, water level or inundated areas. The rapid emergence of web-based services has facilitated the collection, dissemination, and cartographic representation of spatial information from the public, giving rise to the idea of using Volunteered Geographic Information (VGI) to aid disaster management. In this study, with a brief review on the concept and the development of disaster management, opportunities and challenges for applying VGI in disaster management were explored. The challenges, including Data availability, Data quality, Data management and Legal issues of using VGI for disaster management, were discussed in detail with particular emphasis on the actual needs of disaster management practice in China. Three different approaches to assure VGI data quality, namely the classification and authority design of volunteers, a government-led VGI data acquisition framework for disaster management and a quality assessment system for VGI, respectively, were presented and discussed. As a case study, a prototype of VGI oriented earthquake disaster databank & sharing platform, an open WebGIS system for volunteers and other interested individuals collaboratively create and manage the earthquake disaster related information, was proposed, to provide references for improving the level of earthquake emergency response and disaster mitigation in China.

  3. Open Source Web Tool for Tracking in a Lowcost Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Fissore, F.; Pirotti, F.; Vettore, A.

    2017-11-01

    During the last decade several Mobile Mapping Systems (MMSs), i.e. systems able to acquire efficiently three dimensional data using moving sensors (Guarnieri et al., 2008, Schwarz and El-Sheimy, 2004), have been developed. Research and commercial products have been implemented on terrestrial, aerial and marine platforms, and even on human-carried equipment, e.g. backpack (Lo et al., 2015, Nex and Remondino, 2014, Ellum and El-Sheimy, 2002, Leica Pegasus backpack, 2016, Masiero et al., 2017, Fissore et al., 2018). Such systems are composed of an integrated array of time-synchronised navigation sensors and imaging sensors mounted on a mobile platform (Puente et al., 2013, Tao and Li, 2007). Usually the MMS implies integration of different types of sensors, such as GNSS, IMU, video camera and/or laser scanners that allow accurate and quick mapping (Li, 1997, Petrie, 2010, Tao, 2000). The typical requirement of high-accuracy 3D georeferenced reconstruction often makes such systems quite expensive. Indeed, at time of writing most of the terrestrial MMSs on the market have a cost usually greater than 50000, which might be expensive for certain applications (Ellum and El-Sheimy, 2002, Piras et al., 2008). In order to allow best performance sensors have to be properly calibrated (Dong et al., 2007, Ellum and El-Sheimy, 2002). Sensors in MMSs are usually integrated and managed through a dedicated software, which is developed ad hoc for the devices mounted on the mobile platform and hence tailored for the specific used sensors. Despite the fact that commercial solutions are complete, very specific and particularly related to the typology of survey, their price is a factor that restricts the number of users and the possible interested sectors. This paper describes a (relatively low cost) terrestrial Mobile Mapping System developed at the University of Padua (TESAF, Department of Land Environment Agriculture and Forestry) by the research team in CIRGEO, in order to test an alternative solution to other more expensive MMSs. The first objective of this paper is to report on the development of a prototype of MMS for the collection of geospatial data based on the assembly of low cost sensors managed through a web interface developed using open source libraries. The main goal is to provide a system accessible by any type of user, and flexible to any type of upgrade or introduction of new models of sensors or versions thereof. After a presentation of the hardware components used in our system, a more detailed description of the software developed for the management of the MMS will be provided, which is the part of the innovation of the project. According to the worldwide request for having big data available through the web from everywhere in the world (Pirotti et al., 2011), the proposed solution allows to retrieve data from a web interface Figure 4. Actually, this is part of a project for the development of a new web infrastructure in the University of Padua (but it will be available for external users as well), in order to ease collaboration between researchers from different areas. Finally, strengths, weaknesses and future developments of the low cost MMS are discussed.

  4. SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System

    PubMed Central

    Xiao, Changjiang; Chen, Nengcheng; Li, Dandan; Lv, You; Gong, Jianya

    2016-01-01

    Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web–enabled smart cultural relics management system (SCRMS). In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID) is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics. PMID:28042820

  5. BAID: The Barrow Area Information Database - an interactive web mapping portal and cyberinfrastructure for scientific activities in the vicinity of Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Cody, R. P.; Kassin, A.; Gaylord, A.; Brown, J.; Tweedie, C. E.

    2012-12-01

    The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic. The Barrow Area Information Database (BAID, www.baidims.org) is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 9,600 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, and save or print maps and query results. Data are described with metadata that meet Federal Geographic Data Committee standards and are archived at the University Corporation for Atmospheric Research Earth Observing Laboratory (EOL) where non-proprietary BAID data can be freely downloaded. BAID has been used to: Optimize research site choice; Reduce duplication of science effort; Discover complementary and potentially detrimental research activities in an area of scientific interest; Re-establish historical research sites for resampling efforts assessing change in ecosystem structure and function over time; Exchange knowledge across disciplines and generations; Facilitate communication between western science and traditional ecological knowledge; Provide local residents access to science data that facilitates adaptation to arctic change; (and) Educate the next generation of environmental and computer scientists. This poster describes key activities that will be undertaken over the next three years to provide BAID users with novel software tools to interact with a current and diverse selection of information and data about the Barrow area. Key activities include: 1. Collecting data on research activities, generating geospatial data, and providing mapping support. 2. Maintaining, updating and innovating the existing suite of BAID geobrowsers. 3. Maintaining and updating aging server hardware supporting BAID. 4. Adding interoperability with other CI using workflows, controlled vocabularies and web services. 5. Linking BAID to data archives at the National Snow and Ice Data Center (NSIDC). 6. Developing a wireless sensor network that provides web based interaction with near-real time climate and other data. 7. Training next generation of environmental and computer scientists and conducting outreach.

  6. Converging Redundant Sensor Network Information for Improved Building Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale Tiller; D. Phil; Gregor Henze

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-planmore » office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.« less

  7. Micro-Power Sources Enabling Robotic Outpost Based Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    West, W. C.; Whitacre, J. F.; Ratnakumar, B. V.; Brandon, E. J.; Studor, G. F.

    2001-01-01

    Robotic outpost based exploration represents a fundamental shift in mission design from conventional, single spacecraft missions towards a distributed risk approach with many miniaturized semi-autonomous robots and sensors. This approach can facilitate wide-area sampling and exploration, and may consist of a web of orbiters, landers, or penetrators. To meet the mass and volume constraints of deep space missions such as the Europa Ocean Science Station, the distributed units must be fully miniaturized to fully leverage the wide-area exploration approach. However, presently there is a dearth of available options for powering these miniaturized sensors and robots. This group is currently examining miniaturized, solid state batteries as candidates to meet the demand of applications requiring low power, mass, and volume micro-power sources. These applications may include powering microsensors, battery-backing rad-hard CMOS memory and providing momentary chip back-up power. Additional information is contained in the original extended abstract.

  8. Empowerment of Patients with Hypertension through BPM, IoT and Remote Sensing.

    PubMed

    Ruiz-Fernández, Daniel; Marcos-Jorquera, Diego; Gilart-Iglesias, Virgilio; Vives-Boix, Víctor; Ramírez-Navarro, Javier

    2017-10-04

    Hypertension affects one in five adults worldwide. Healthcare processes require interdisciplinary cooperation and coordination between medical teams, clinical processes, and patients. The lack of patients' empowerment and adherence to treatment makes necessary to integrate patients, data collecting devices and clinical processes. For this reason, in this paper we propose a model based on Business Process Management paradigm, together with a group of technologies, techniques and IT principles which increase the benefits of the paradigm. To achieve the proposed model, the clinical process of the hypertension is analyzed with the objective of detecting weaknesses and improving the process. Once the process is analyzed, an architecture that joins health devices and environmental sensors, together with an information system, has been developed. To test the architecture, a web system connected with health monitors and environment sensors, and with a mobile app have been implemented.

  9. Empowerment of Patients with Hypertension through BPM, IoT and Remote Sensing

    PubMed Central

    Ramírez-Navarro, Javier

    2017-01-01

    Hypertension affects one in five adults worldwide. Healthcare processes require interdisciplinary cooperation and coordination between medical teams, clinical processes, and patients. The lack of patients’ empowerment and adherence to treatment makes necessary to integrate patients, data collecting devices and clinical processes. For this reason, in this paper we propose a model based on Business Process Management paradigm, together with a group of technologies, techniques and IT principles which increase the benefits of the paradigm. To achieve the proposed model, the clinical process of the hypertension is analyzed with the objective of detecting weaknesses and improving the process. Once the process is analyzed, an architecture that joins health devices and environmental sensors, together with an information system, has been developed. To test the architecture, a web system connected with health monitors and environment sensors, and with a mobile app have been implemented. PMID:28976940

  10. Automatic Web-based Calibration of Network-Capable Shipboard Sensors

    DTIC Science & Technology

    2007-09-01

    Server, Java , Applet, and Servlet . 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE...49 b. Sensor Applet...........................................................................49 3. Java Servlet ...Table 1. Required System Environment Variables for Java Servlet Development. ......25 Table 2. Payload Data Format of the POST Requests from

  11. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  12. Scaleable wireless web-enabled sensor networks

    NASA Astrophysics Data System (ADS)

    Townsend, Christopher P.; Hamel, Michael J.; Sonntag, Peter A.; Trutor, B.; Arms, Steven W.

    2002-06-01

    Our goal was to develop a long life, low cost, scalable wireless sensing network, which collects and distributes data from a wide variety of sensors over the internet. Time division multiple access was employed with RF transmitter nodes (each w/unique16 bit address) to communicate digital data to a single receiver (range 1/3 mile). One thousand five channel nodes can communicate to one receiver (30 minute update). Current draw (sleep) is 20 microamps, allowing 5 year battery life w/one 3.6 volt Li-Ion AA size battery. The network nodes include sensor excitation (AC or DC), multiplexer, instrumentation amplifier, 16 bit A/D converter, microprocessor, and RF link. They are compatible with thermocouples, strain gauges, load/torque transducers, inductive/capacitive sensors. The receiver (418 MHz) includes a single board computer (SBC) with Ethernet capability, internet file transfer protocols (XML/HTML), and data storage. The receiver detects data from specific nodes, performs error checking, records the data. The web server interrogates the SBC (from Microsoft's Internet Explorer or Netscape's Navigator) to distribute data. This system can collect data from thousands of remote sensors on a smart structure, and be shared by an unlimited number of users.

  13. Enabling task-based information prioritization via semantic web encodings

    NASA Astrophysics Data System (ADS)

    Michaelis, James R.

    2016-05-01

    Modern Soldiers rely upon accurate and actionable information technology to achieve mission objectives. While increasingly rich sensor networks for Areas of Operation (AO) can offer many directions for aiding Soldiers, limitations are imposed by current tactical edge systems on the rate that content can be transmitted. Furthermore, mission tasks will often require very specific sets of information which may easily be drowned out by other content sources. Prior research on Quality and Value of Information (QoI/VoI) has aimed to define ways to prioritize information objects based on their intrinsic attributes (QoI) and perceived value to a consumer (VoI). As part of this effort, established ranking approaches for obtaining Subject Matter Expert (SME) recommendations, such as the Analytic Hierarchy Process (AHP) have been considered. However, limited work has been done to tie Soldier context - such as descriptions of their mission and tasks - back to intrinsic attributes of information objects. As a first step toward addressing the above challenges, this work introduces an ontology-backed approach - rooted in Semantic Web publication practices - for expressing both AHP decision hierarchies and corresponding SME feedback. Following a short discussion on related QoI/VoI research, an ontology-based data structure is introduced for supporting evaluation of Information Objects, using AHP rankings designed to facilitate information object prioritization. Consistent with alternate AHP approaches, prioritization in this approach is based on pairwise comparisons between Information Objects with respect to established criteria, as well as on pairwise comparison of the criteria to assess their relative importance. The paper concludes with a discussion of both ongoing and future work.

  14. An Internet of Things Example: Classrooms Access Control over Near Field Communication

    PubMed Central

    Palma, Daniel; Agudo, Juan Enrique; Sánchez, Héctor; Macías, Miguel Macías

    2014-01-01

    The Internet of Things is one of the ideas that has become increasingly relevant in recent years. It involves connecting things to the Internet in order to retrieve information from them at any time and from anywhere. In the Internet of Things, sensor networks that exchange information wirelessly via Wi-Fi, Bluetooth, Zigbee or RF are common. In this sense, our paper presents a way in which each classroom control is accessed through Near Field Communication (NFC) and the information is shared via radio frequency. These data are published on the Web and could easily be used for building applications from the data collected. As a result, our application collects information from the classroom to create a control classroom tool that displays access to and the status of all the classrooms graphically and also connects this data with social networks. PMID:24755520

  15. An internet of things example: classrooms access control over near field communication.

    PubMed

    Palma, Daniel; Agudo, Juan Enrique; Sánchez, Héctor; Macías, Miguel Macías

    2014-04-21

    The Internet of Things is one of the ideas that has become increasingly relevant in recent years. It involves connecting things to the Internet in order to retrieve information from them at any time and from anywhere. In the Internet of Things, sensor networks that exchange information wirelessly via Wi-Fi, Bluetooth, Zigbee or RF are common. In this sense, our paper presents a way in which each classroom control is accessed through Near Field Communication (NFC) and the information is shared via radio frequency. These data are published on the Web and could easily be used for building applications from the data collected. As a result, our application collects information from the classroom to create a control classroom tool that displays access to and the status of all the classrooms graphically and also connects this data with social networks.

  16. Web Service Architecture Framework for Embedded Devices

    ERIC Educational Resources Information Center

    Yanzick, Paul David

    2009-01-01

    The use of Service Oriented Architectures, namely web services, has become a widely adopted method for transfer of data between systems across the Internet as well as the Enterprise. Adopting a similar approach to embedded devices is also starting to emerge as personal devices and sensor networks are becoming more common in the industry. This…

  17. BAID: The Barrow Area Information Database - an interactive web mapping portal and cyberinfrastructure for science and land management in the vicinity of Utqiaġvik (Barrow) on the North Slope of Alaska.

    NASA Astrophysics Data System (ADS)

    Cody, R. P.; Escarzaga, S. M.; Gaylord, A. G.; Kassin, A.; Barba, M.; Tweedie, C. E.

    2017-12-01

    The Utqiaġvik (Barrow) area of northern Alaska is one of the most intensely researched locations in the Arctic and the Barrow Area Information Database (BAID, www.barrowmapped.org) tracks and facilitates a gamut of research, management, and educational activities in the area. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 18,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, save or print maps and query results, and filter or view information by space, time, and/or other tags. Recent advances include provision of differential global positioning (dGPS) system and high resolution aerial imagery support to visiting scientists, analysis and multitemporal mapping of over 120 km of coastline for erosion monitoring; maintenance of a wireless micrometeorological sensor network; links to Barrow area datasets housed at national data archives; a NOAA funded community outreach program for citizen science and public outreach on costal erosion; and substantial upgrades to the BAID website. Web mapping applications that have launched to the public include: an Imagery Time Viewer that allows users to compare imagery of the Barrow area between 1948 and the present; a Coastal Erosion Viewer that allows users to view long-term (1955-2015) and recent (2013-2015) rates of erosion for the Barrow area; and a Community Planning tool that allows users to view and print dynamic reports based on an array of basemaps including a new 0.5m resolution wetlands map designed to enhance decision making for development and land management.

  18. Development of Download System for Waveform Data Observed at Long-Term Borehole Monitoring System installed in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Tsuboi, Seiji; Horikawa, Hiroki; Takaesu, Morifumi; Sueki, Kentaro; Araki, Eiichiro; Sonoda, Akira; Takahashi, Narumi

    2016-04-01

    The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP). We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough. We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site. Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor informations. In addition, before data download, user can check that data is abailable or not by data check function. In this presentation, we show our web application system and discuss our future plans for developments of monitoring data download system.

  19. A survey of tools and resources for the next generation analyst

    NASA Astrophysics Data System (ADS)

    Hall, David L.; Graham, Jake; Catherman, Emily

    2015-05-01

    We have previously argued that a combination of trends in information technology (IT) and changing habits of people using IT provide opportunities for the emergence of a new generation of analysts that can perform effective intelligence, surveillance and reconnaissance (ISR) on a "do it yourself" (DIY) or "armchair" approach (see D.L. Hall and J. Llinas (2014)). Key technology advances include: i) new sensing capabilities including the use of micro-scale sensors and ad hoc deployment platforms such as commercial drones, ii) advanced computing capabilities in mobile devices that allow advanced signal and image processing and modeling, iii) intelligent interconnections due to advances in "web N" capabilities, and iv) global interconnectivity and increasing bandwidth. In addition, the changing habits of the digital natives reflect new ways of collecting and reporting information, sharing information, and collaborating in dynamic teams. This paper provides a survey and assessment of tools and resources to support this emerging analysis approach. The tools range from large-scale commercial tools such as IBM i2 Analyst Notebook, Palantir, and GeoSuite to emerging open source tools such as GeoViz and DECIDE from university research centers. The tools include geospatial visualization tools, social network analysis tools and decision aids. A summary of tools is provided along with links to web sites for tool access.

  20. Guilt by Association-Based Discovery of Botnet Footprints

    DTIC Science & Technology

    2010-11-01

    our fast flux database using our Fast Flux Monitor ( FFM ); a Web service application designed to detect whether a domain exhibits fast flux (FF) or...double flux (DF) behaviour. The primary technical components of FFM include: (1) sensors which perform real-time detection of FF service networks...sensors for our FFM active sensors: (1) FF Activity Index, (2) Footprint Index, and (3) Time To Live (TTL), and (4) Guilt by Association Score. In

  1. European Marine Observation Data Network - EMODnet Physics

    NASA Astrophysics Data System (ADS)

    Manzella, Giuseppe M. R.; Novellino, Antonio; D'Angelo, Paolo; Gorringe, Patrick; Schaap, Dick; Pouliquen, Sylvie; Loubrieu, Thomas; Rickards, Lesley

    2015-04-01

    The EMODnet-Physics portal (www.emodnet-physics.eu) makes layers of physical data and their metadata available for use and contributes towards the definition of an operational European Marine Observation and Data Network (EMODnet). It is based on a strong collaboration between EuroGOOS associates and its regional operational systems (ROOSs), and it is bringing together two very different marine communities: the "real time" ocean observing institute/centers and the National Oceanographic Data Centres (NODCs) that are in charge of ocean data validation, quality check and update for marine environmental monitoring. The EMODnet-Physics is a Marine Observation and Data Information System that provides a single point of access to near real time and historical achieved data (www.emodnet-physics.eu/map) it is built on existing infrastructure by adding value and avoiding any unless complexity, it provides data access to users, it is aimed at attracting new data holders, better and more data. With a long-term vision for a pan European Ocean Observation System sustainability, the EMODnet-Physics is supporting the coordination of the EuroGOOS Regional components and the empowerment and improvement of their data management infrastructure. In turn, EMODnet-Physics already implemented high-level interoperability features (WMS, Web catalogue, web services, etc…) to facilitate connection and data exchange with the ROOS and the Institutes within the ROOSs (www.emodnet-physics.eu/services). The on-going EMODnet-Physics structure delivers environmental marine physical data from the whole Europe (wave height and period, temperature of the water column, wind speed and direction, salinity of the water column, horizontal velocity of the water column, light attenuation, and sea level) as monitored by fixed stations, ARGO floats, drifting buoys, gliders, and ferry-boxes. It does provide discovering of data sets (both NRT - near real time - and Historical data sets), visualization and free download of data from more than 1500 platforms. The portal is composed mainly of three sections: the Map, the Selection List and the Station Info Panel. The Map is the core of the EMODnet-Physics system: here the user can access all available data, customize the map visualization and set different display layers. It is also possible to interact with all the information on the map using the filters provided by the service that can be used to select the stations of interest depending on the type, physical parameters measured, the time period of the observations in the database of the system, country of origin, the water basin of reference. It is also possible to browse the data in time by means of the slider in the lower part of the page that allows the user to view the stations that recorded data in a particular time period. Finally, it is possible to change the standard map view with different layers that provide additional visual information on the status of the waters. The Station Info panel available from the main map by clicking on a single platform provides information on the measurements carried out by the station. Moreover, the system provides full interoperability with third-party software through WMS service, Web Service and Web catalogue in order to exchange data and products according to the most recent interop standards. Further developments will ensure the compatibility to the OGS-SWE (Sensor Web Enablement) standard for the description of sensors and related observations using OpenGIS specifications (SensorML, O&M, SOS). The full list of services is available at www.emodnet-physics.eu/services. The result is an excellent example of innovative technologies for providing open and free access to geo-referenced data for the creation of new advanced (operational) oceanography services.

  2. Scene Recognition for Indoor Localization Using a Multi-Sensor Fusion Approach.

    PubMed

    Liu, Mengyun; Chen, Ruizhi; Li, Deren; Chen, Yujin; Guo, Guangyi; Cao, Zhipeng; Pan, Yuanjin

    2017-12-08

    After decades of research, there is still no solution for indoor localization like the GNSS (Global Navigation Satellite System) solution for outdoor environments. The major reasons for this phenomenon are the complex spatial topology and RF transmission environment. To deal with these problems, an indoor scene constrained method for localization is proposed in this paper, which is inspired by the visual cognition ability of the human brain and the progress in the computer vision field regarding high-level image understanding. Furthermore, a multi-sensor fusion method is implemented on a commercial smartphone including cameras, WiFi and inertial sensors. Compared to former research, the camera on a smartphone is used to "see" which scene the user is in. With this information, a particle filter algorithm constrained by scene information is adopted to determine the final location. For indoor scene recognition, we take advantage of deep learning that has been proven to be highly effective in the computer vision community. For particle filter, both WiFi and magnetic field signals are used to update the weights of particles. Similar to other fingerprinting localization methods, there are two stages in the proposed system, offline training and online localization. In the offline stage, an indoor scene model is trained by Caffe (one of the most popular open source frameworks for deep learning) and a fingerprint database is constructed by user trajectories in different scenes. To reduce the volume requirement of training data for deep learning, a fine-tuned method is adopted for model training. In the online stage, a camera in a smartphone is used to recognize the initial scene. Then a particle filter algorithm is used to fuse the sensor data and determine the final location. To prove the effectiveness of the proposed method, an Android client and a web server are implemented. The Android client is used to collect data and locate a user. The web server is developed for indoor scene model training and communication with an Android client. To evaluate the performance, comparison experiments are conducted and the results demonstrate that a positioning accuracy of 1.32 m at 95% is achievable with the proposed solution. Both positioning accuracy and robustness are enhanced compared to approaches without scene constraint including commercial products such as IndoorAtlas.

  3. Scene Recognition for Indoor Localization Using a Multi-Sensor Fusion Approach

    PubMed Central

    Chen, Ruizhi; Li, Deren; Chen, Yujin; Guo, Guangyi; Cao, Zhipeng

    2017-01-01

    After decades of research, there is still no solution for indoor localization like the GNSS (Global Navigation Satellite System) solution for outdoor environments. The major reasons for this phenomenon are the complex spatial topology and RF transmission environment. To deal with these problems, an indoor scene constrained method for localization is proposed in this paper, which is inspired by the visual cognition ability of the human brain and the progress in the computer vision field regarding high-level image understanding. Furthermore, a multi-sensor fusion method is implemented on a commercial smartphone including cameras, WiFi and inertial sensors. Compared to former research, the camera on a smartphone is used to “see” which scene the user is in. With this information, a particle filter algorithm constrained by scene information is adopted to determine the final location. For indoor scene recognition, we take advantage of deep learning that has been proven to be highly effective in the computer vision community. For particle filter, both WiFi and magnetic field signals are used to update the weights of particles. Similar to other fingerprinting localization methods, there are two stages in the proposed system, offline training and online localization. In the offline stage, an indoor scene model is trained by Caffe (one of the most popular open source frameworks for deep learning) and a fingerprint database is constructed by user trajectories in different scenes. To reduce the volume requirement of training data for deep learning, a fine-tuned method is adopted for model training. In the online stage, a camera in a smartphone is used to recognize the initial scene. Then a particle filter algorithm is used to fuse the sensor data and determine the final location. To prove the effectiveness of the proposed method, an Android client and a web server are implemented. The Android client is used to collect data and locate a user. The web server is developed for indoor scene model training and communication with an Android client. To evaluate the performance, comparison experiments are conducted and the results demonstrate that a positioning accuracy of 1.32 m at 95% is achievable with the proposed solution. Both positioning accuracy and robustness are enhanced compared to approaches without scene constraint including commercial products such as IndoorAtlas. PMID:29292761

  4. Collaborative Science Using Web Services and the SciFlo Grid Dataflow Engine

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Manipon, G.; Xing, Z.; Yunck, T.

    2006-12-01

    The General Earth Science Investigation Suite (GENESIS) project is a NASA-sponsored partnership between the Jet Propulsion Laboratory, academia, and NASA data centers to develop a new suite of Web Services tools to facilitate multi-sensor investigations in Earth System Science. The goal of GENESIS is to enable large-scale, multi-instrument atmospheric science using combined datasets from the AIRS, MODIS, MISR, and GPS sensors. Investigations include cross-comparison of spaceborne climate sensors, cloud spectral analysis, study of upper troposphere-stratosphere water transport, study of the aerosol indirect cloud effect, and global climate model validation. The challenges are to bring together very large datasets, reformat and understand the individual instrument retrievals, co-register or re-grid the retrieved physical parameters, perform computationally-intensive data fusion and data mining operations, and accumulate complex statistics over months to years of data. To meet these challenges, we have developed a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data access, subsetting, registration, mining, fusion, compression, and advanced statistical analysis. SciFlo leverages remote Web Services, called via Simple Object Access Protocol (SOAP) or REST (one-line) URLs, and the Grid Computing standards (WS-* &Globus Alliance toolkits), and enables scientists to do multi-instrument Earth Science by assembling reusable Web Services and native executables into a distributed computing flow (tree of operators). The SciFlo client &server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. In particular, SciFlo exploits the wealth of datasets accessible by OpenGIS Consortium (OGC) Web Mapping Servers & Web Coverage Servers (WMS/WCS), and by Open Data Access Protocol (OpenDAP) servers. The scientist injects a distributed computation into the Grid by simply filling out an HTML form or directly authoring the underlying XML dataflow document, and results are returned directly to the scientist's desktop. Once an analysis has been specified for a chunk or day of data, it can be easily repeated with different control parameters or over months of data. Recently, the Earth Science Information Partners (ESIP) Federation sponsored a collaborative activity in which several ESIP members advertised their respective WMS/WCS and SOAP services, developed some collaborative science scenarios for atmospheric and aerosol science, and then choreographed services from multiple groups into demonstration workflows using the SciFlo engine and a Business Process Execution Language (BPEL) workflow engine. For several scenarios, the same collaborative workflow was executed in three ways: using hand-coded scripts, by executing a SciFlo document, and by executing a BPEL workflow document. We will discuss the lessons learned from this activity, the need for standardized interfaces (like WMS/WCS), the difficulty in agreeing on even simple XML formats and interfaces, and further collaborations that are being pursued.

  5. Heterogeneous Sensor Webs for Automated Target Recognition and Tracking in Urban Terrain

    DTIC Science & Technology

    2012-04-09

    Seto, E. Martin , A. Yang, P. Yan, R. Gravina, I. Lin, C. Wang, M. Roy, V. Shia, R. Bajcsy, “Opportunistic strategies for lightweight signal...processing for body sensor networks,” PETRAE , 2010. 10. Dheeraj Singaraju, Roberto Tron, Ehsan Elhamifar, Allen Yang, and Shankar Sastry. On the Lagrangian

  6. An active monitoring method for flood events

    NASA Astrophysics Data System (ADS)

    Chen, Zeqiang; Chen, Nengcheng; Du, Wenying; Gong, Jianya

    2018-07-01

    Timely and active detecting and monitoring of a flood event are critical for a quick response, effective decision-making and disaster reduction. To achieve the purpose, this paper proposes an active service framework for flood monitoring based on Sensor Web services and an active model for the concrete implementation of the active service framework. The framework consists of two core components-active warning and active planning. The active warning component is based on a publish-subscribe mechanism implemented by the Sensor Event Service. The active planning component employs the Sensor Planning Service to control the execution of the schemes and models and plans the model input data. The active model, called SMDSA, defines the quantitative calculation method for five elements, scheme, model, data, sensor, and auxiliary information, as well as their associations. Experimental monitoring of the Liangzi Lake flood in the summer of 2010 is conducted to test the proposed framework and model. The results show that 1) the proposed active service framework is efficient for timely and automated flood monitoring. 2) The active model, SMDSA, is a quantitative calculation method used to monitor floods from manual intervention to automatic computation. 3) As much preliminary work as possible should be done to take full advantage of the active service framework and the active model.

  7. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review.

    PubMed

    Camomilla, Valentina; Bergamini, Elena; Fantozzi, Silvia; Vannozzi, Giuseppe

    2018-03-15

    Recent technological developments have led to the production of inexpensive, non-invasive, miniature magneto-inertial sensors, ideal for obtaining sport performance measures during training or competition. This systematic review evaluates current evidence and the future potential of their use in sport performance evaluation. Articles published in English (April 2017) were searched in Web-of-Science, Scopus, Pubmed, and Sport-Discus databases. A keyword search of titles, abstracts and keywords which included studies using accelerometers, gyroscopes and/or magnetometers to analyse sport motor-tasks performed by athletes (excluding risk of injury, physical activity, and energy expenditure) resulted in 2040 papers. Papers and reference list screening led to the selection of 286 studies and 23 reviews. Information on sport, motor-tasks, participants, device characteristics, sensor position and fixing, experimental setting and performance indicators was extracted. The selected papers dealt with motor capacity assessment (51 papers), technique analysis (163), activity classification (19), and physical demands assessment (61). Focus was placed mainly on elite and sub-elite athletes (59%) performing their sport in-field during training (62%) and competition (7%). Measuring movement outdoors created opportunities in winter sports (8%), water sports (16%), team sports (25%), and other outdoor activities (27%). Indications on the reliability of sensor-based performance indicators are provided, together with critical considerations and future trends.

  8. The design and implementation of web mining in web sites security

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zhang, Guo-Yin; Gu, Guo-Chang; Li, Jian-Li

    2003-06-01

    The backdoor or information leak of Web servers can be detected by using Web Mining techniques on some abnormal Web log and Web application log data. The security of Web servers can be enhanced and the damage of illegal access can be avoided. Firstly, the system for discovering the patterns of information leakages in CGI scripts from Web log data was proposed. Secondly, those patterns for system administrators to modify their codes and enhance their Web site security were provided. The following aspects were described: one is to combine web application log with web log to extract more information, so web data mining could be used to mine web log for discovering the information that firewall and Information Detection System cannot find. Another approach is to propose an operation module of web site to enhance Web site security. In cluster server session, Density-Based Clustering technique is used to reduce resource cost and obtain better efficiency.

  9. Open Source Hardware for DIY Environmental Sensing

    NASA Astrophysics Data System (ADS)

    Aufdenkampe, A. K.; Hicks, S. D.; Damiano, S. G.; Montgomery, D. S.

    2014-12-01

    The Arduino open source electronics platform has been very popular within the DIY (Do It Yourself) community for several years, and it is now providing environmental science researchers with an inexpensive alternative to commercial data logging and transmission hardware. Here we present the designs for our latest series of custom Arduino-based dataloggers, which include wireless communication options like self-meshing radio networks and cellular phone modules. The main Arduino board uses a custom interface board to connect to various research-grade sensors to take readings of turbidity, dissolved oxygen, water depth and conductivity, soil moisture, solar radiation, and other parameters. Sensors with SDI-12 communications can be directly interfaced to the logger using our open Arduino-SDI-12 software library (https://github.com/StroudCenter/Arduino-SDI-12). Different deployment options are shown, like rugged enclosures to house the loggers and rigs for mounting the sensors in both fresh water and marine environments. After the data has been collected and transmitted by the logger, the data is received by a mySQL-PHP stack running on a web server that can be accessed from anywhere in the world. Once there, the data can be visualized on web pages or served though REST requests and Water One Flow (WOF) services. Since one of the main benefits of using open source hardware is the easy collaboration between users, we are introducing a new web platform for discussion and sharing of ideas and plans for hardware and software designs used with DIY environmental sensors and data loggers.

  10. Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  11. Iowa Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  12. Flood Risk Management in Iowa through an Integrated Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  13. Romanian Complex Data Center for Dense Seismic network

    NASA Astrophysics Data System (ADS)

    Neagoe, Cristian; Ionescu, Constantin; Marius Manea, Liviu

    2010-05-01

    Since 2002 the National Institute for Earth Physics (NIEP) developed its own real-time digital seismic network: consisting of 96 seismic stations of which 35 are broadband sensors and 24 stations equipped with short period sensors and two arrays earthquakes that transmit data in real time at the National Data Center (NDC) and Eforie Nord (EFOR) Seismic Observatory. EFOR is the back-up for the NDC and also a monitoring center for Black Sea tsunamis. Seismic stations are equipped with Quanterra Q330 and K2 digitizers, broadband seismometers (STS2, CMG40T, CMG 3ESP, CMG3T) and acceleration sensors Episensor Kinemetrics (+ / - 2G). SeedLink who is a part of Seiscomp2.5 and Antelope are software packages used for acquisition in real time (RT) and for data exchange. Communication of digital seismic stations to the National Data Center in Bucharest and Seismic Observatory Eforie Nord is assured by 5 providers (GPRS, VPN, satellite radio and Internet communication). For acquisition and data processing at the two centers of reception and processing is used AntelopeTM 4.11 running on 2 workstations: one for real-time and other for offline processing and also a Seiscomp 3 server that works as back-up for Antelope 4.11 Both acquisition and analysis of seismic data systems produced information about local and global parameters of earthquakes, in addition Antelope is used for manual processing (association events, the calculation of magnitude, creating a database, sending seismic bulletins, calculation of PGA and PGV , etc.), generating ShakeMap products and interacts with global data centers. In order to make all this information easily available across the Web and also lay the grounds for a more modular and flexible development environment the National Data Center developed tools to enable centralizing of data from software such as Antelope which is using a dedicated database system ( Datascope, a database system based on text files ) to a more general-purpose database, MySQL which acts like a hub between the different acquisition and analysis systems used in the data center while also providing better connectivity at no expense in security. Mirroring certain data to MySQL also allows the National Data Center to easily share information to the public via the new application which is being developed and also mix in data collected from the public (e.g. information about the damages observed after an earthquake which intern is being used to produce macroseismic intensity indices which are then stored in the database and also made available via the web application). For internal usage there is also a web application which using data stored in the database displays earthquake information like location, magnitude and depth in semi-real-time thus aiding the personnel on duty. Another usage for the collected data is to create and maintain contact lists to which the datacenter sends notifications (SMS and emails) based on the parameters of the earthquake. For future development, amongst others the Data Center plans to develop the means to crosscheck the generated data between the different acquisition and analysis systems (e.g. comparing data generated by Antelope with data generated by Seiscomp).

  14. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  15. Hand-writing motion tracking with vision-inertial sensor fusion: calibration and error correction.

    PubMed

    Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J

    2014-08-25

    The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model.

  16. Smart sensing surveillance system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4 network and use the specific presentation methods. In addition, the S4 is compliant with Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE) standards to efficiently discover, access, use, and control heterogeneous sensors and their metadata. These S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. The S4 system is directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  17. Urban Climate Resilience - Connecting climate models with decision support cyberinfrastructure using open standards

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Percivall, G.; Idol, T. A.

    2015-12-01

    Experts in climate modeling, remote sensing of the Earth, and cyber infrastructure must work together in order to make climate predictions available to decision makers. Such experts and decision makers worked together in the Open Geospatial Consortium's (OGC) Testbed 11 to address a scenario of population displacement by coastal inundation due to the predicted sea level rise. In a Policy Fact Sheet "Harnessing Climate Data to Boost Ecosystem & Water Resilience", issued by White House Office of Science and Technology (OSTP) in December 2014, OGC committed to increase access to climate change information using open standards. In July 2015, the OGC Testbed 11 Urban Climate Resilience activity delivered on that commitment with open standards based support for climate-change preparedness. Using open standards such as the OGC Web Coverage Service and Web Processing Service and the NetCDF and GMLJP2 encoding standards, Testbed 11 deployed an interoperable high-resolution flood model to bring climate model outputs together with global change assessment models and other remote sensing data for decision support. Methods to confirm model predictions and to allow "what-if-scenarios" included in-situ sensor webs and crowdsourcing. A scenario was in two locations: San Francisco Bay Area and Mozambique. The scenarios demonstrated interoperation and capabilities of open geospatial specifications in supporting data services and processing services. The resultant High Resolution Flood Information System addressed access and control of simulation models and high-resolution data in an open, worldwide, collaborative Web environment. The scenarios examined the feasibility and capability of existing OGC geospatial Web service specifications in supporting the on-demand, dynamic serving of flood information from models with forecasting capacity. Results of this testbed included identification of standards and best practices that help researchers and cities deal with climate-related issues. Results of the testbeds will now be deployed in pilot applications. The testbed also identified areas of additional development needed to help identify scientific investments and cyberinfrastructure approaches needed to improve the application of climate science research results to urban climate resilence.

  18. Implementations of Sensor Webs Utilizing Uninhabited Aerial Systems

    NASA Technical Reports Server (NTRS)

    Sullivan, Donald V.

    2009-01-01

    In this paper we describe the web services, processes, communication protocols and ad-hoc service chains utilized in the late summer and early fall 2007 Ikhana UAS response to the wildfires burning in southern California. Additionally, we describe the lessons learned that will be applied to the upcoming Global Hawk UAS Aura Satellite Validation Experiment planned for early 2009.

  19. Transforming Space Missions into Service Oriented Architectures

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Frye, Stuart; Cappelaere, Pat

    2006-01-01

    This viewgraph presentation reviews the vision of the sensor web enablement via a Service Oriented Architecture (SOA). An generic example is given of a user finding a service through the Web, and initiating a request for the desired observation. The parts that comprise this system and how they interact are reviewed. The advantages of the use of SOA are reviewed.

  20. Rapid-response Sensor Networks Leveraging Open Standards and the Internet of Things

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Lieberman, J. E.; Lewis, L.; Botts, M.; Liang, S.

    2016-12-01

    New sensor technologies provide an unparalleled capability to collect large numbers of diverse observations about the world around us. Networks of such sensors are especially effective for capturing and analyzing unexpected, fast moving events if they can be deployed with a minimum of time, effort, and cost. A rapid-response sensing and processing capability is extremely important in quickly unfolding events not only to collect data for future research.but also to support response efforts that may be needed by providing up-to-date knowledge of the situation. A recent pilot activity coordinated by the Open Geospatial Consortium combined Sensor Web Enablement (SWE) standards with Internet of Things (IoT) practices to understand better how to set up rapid-response sensor networks in comparable event situations involving accidents or disasters. The networks included weather and environmental sensors, georeferenced UAV and PTZ imagery collectors, and observations from "citizen sensors", as well as virtual observations generated by predictive models. A key feature of each "SWE-IoT" network was one or more Sensor Hubs that connected local, often proprietary sensor device protocols to a common set of standard SWE data types and standard Web interfaces on an IP-based internetwork. This IoT approach provided direct, common, interoperable access to all sensor readings from anywhere on the internetwork of sensors, Hubs, and applications. Sensor Hubs also supported an automated discovery protocol in which activated Hubs registered themselves with a canonical catalog service. As each sensor (wireless or wired) was activated within range of an authorized Hub, it registered itself with that Hub, which in turn registered the sensor and its capabilities with the catalog. Sensor Hub functions were implemented in a range of component types, from personal devices such as smartphones and Raspberry Pi's to full cloud-based sensor services platforms. Connected into a network "constellation" the Hubs also enabled reliable exchange and persistence of sensor data in constrained communications environments. Pilot results are being documented in public OGC engineering reports and are feeding into improved standards to support SWE-IoT networks for a range of domains and applications.

  1. Web Content Accessibility of Consumer Health Information Web Sites for People with Disabilities: A Cross Sectional Evaluation

    PubMed Central

    Parmanto, Bambang

    2004-01-01

    Background The World Wide Web (WWW) has become an increasingly essential resource for health information consumers. The ability to obtain accurate medical information online quickly, conveniently and privately provides health consumers with the opportunity to make informed decisions and participate actively in their personal care. Little is known, however, about whether the content of this online health information is equally accessible to people with disabilities who must rely on special devices or technologies to process online information due to their visual, hearing, mobility, or cognitive limitations. Objective To construct a framework for an automated Web accessibility evaluation; to evaluate the state of accessibility of consumer health information Web sites; and to investigate the possible relationships between accessibility and other features of the Web sites, including function, popularity and importance. Methods We carried out a cross-sectional study of the state of accessibility of health information Web sites to people with disabilities. We selected 108 consumer health information Web sites from the directory service of a Web search engine. A measurement framework was constructed to automatically measure the level of Web Accessibility Barriers (WAB) of Web sites following Web accessibility specifications. We investigated whether there was a difference between WAB scores across various functional categories of the Web sites, and also evaluated the correlation between the WAB and Alexa traffic rank and Google Page Rank of the Web sites. Results We found that none of the Web sites we looked at are completely accessible to people with disabilities, i.e., there were no sites that had no violation of Web accessibility rules. However, governmental and educational health information Web sites do exhibit better Web accessibility than the other categories of Web sites (P < 0.001). We also found that the correlation between the WAB score and the popularity of a Web site is statistically significant (r = 0.28, P < 0.05), although there is no correlation between the WAB score and the importance of the Web sites (r = 0.15, P = 0.111). Conclusions Evaluation of health information Web sites shows that no Web site scrupulously abides by Web accessibility specifications, even for entities mandated under relevant laws and regulations. Government and education Web sites show better performance than Web sites among other categories. Accessibility of a Web site may have a positive impact on its popularity in general. However, the Web accessibility of a Web site may not have a significant relationship with its importance on the Web. PMID:15249268

  2. Study of the ubiquitous hog farm system using wireless sensor networks for environmental monitoring and facilities control.

    PubMed

    Hwang, Jeonghwan; Yoe, Hyun

    2010-01-01

    Many hog farmers are now suffering from high pig mortality rates due to various wasting diseases and increased breeding costs, etc. It is therefore necessary for hog farms to implement systematic and scientific pig production technology to increase productivity and produce high quality pork in order to solve these problems. In this study, we describe such a technology by suggesting a ubiquitous hog farm system which applies WSN (Wireless Sensor Network) technology to the pig industry. We suggest that a WSN and CCTV (Closed-circuit television) should be installed on hog farms to collect environmental and image information which shall then help producers not only in monitoring the hog farm via the Web from outside the farm, but also facilitate the control of hog farm facilities in remote locations. In addition, facilities can be automatically controlled based on breeding environment parameters which are already set up and a SMS notice service to notify of deviations shall provide users with convenience. Hog farmers may increase production and improve pork quality through this ubiquitous hog farm system and prepare a database with information collected from environmental factors and the hog farm control devices, which is expected to provide information needed to design and implement suitable control strategies for hog farm operation.

  3. Study of the Ubiquitous Hog Farm System Using Wireless Sensor Networks for Environmental Monitoring and Facilities Control

    PubMed Central

    Hwang, Jeonghwan; Yoe, Hyun

    2010-01-01

    Many hog farmers are now suffering from high pig mortality rates due to various wasting diseases and increased breeding costs, etc. It is therefore necessary for hog farms to implement systematic and scientific pig production technology to increase productivity and produce high quality pork in order to solve these problems. In this study, we describe such a technology by suggesting a ubiquitous hog farm system which applies WSN (Wireless Sensor Network) technology to the pig industry. We suggest that a WSN and CCTV (Closed-circuit television) should be installed on hog farms to collect environmental and image information which shall then help producers not only in monitoring the hog farm via the Web from outside the farm, but also facilitate the control of hog farm facilities in remote locations. In addition, facilities can be automatically controlled based on breeding environment parameters which are already set up and a SMS notice service to notify of deviations shall provide users with convenience. Hog farmers may increase production and improve pork quality through this ubiquitous hog farm system and prepare a database with information collected from environmental factors and the hog farm control devices, which is expected to provide information needed to design and implement suitable control strategies for hog farm operation. PMID:22163497

  4. Data Sets and Data Services at the Northern California Earthquake Data Center

    NASA Astrophysics Data System (ADS)

    Neuhauser, D. S.; Zuzlewski, S.; Allen, R. M.

    2014-12-01

    The Northern California Earthquake Data Center (NCEDC) houses a unique and comprehensive data archive and provides real-time services for a variety of seismological and geophysical data sets that encompass northern and central California. We have over 80 terabytes of continuous and event-based time series data from broadband, short-period, strong motion, and strain sensors as well as continuous and campaign GPS data at both standard and high sample rates in both raw and RINEX format. The Northen California Seismic System (NCSS), operated by UC Berkeley and USGS Menlo Park, has recorded over 890,000 events from 1984 to the present, and the NCEDC provides catalog, parametric information, moment tensors and first motion mechanisms, and time series data for these events. We also host and provide event catalogs, parametric information, and event waveforms for DOE enhanced geothermal system monitoring in northern California and Nevada. The NCEDC provides a variety of ways for users to access these data. The most recent development are web services, which provide interactive, command-line, or program-based workflow access to data. Web services use well-established server and client protocols and RESTful software architecture that allow users to easily submit queries and receive the requested data in real-time rather than through batch or email-based requests. Data are returned to the user in the appropriate format such as XML, RESP, simple text, or MiniSEED depending on the service and selected output format. The NCEDC supports all FDSN-defined web services as well as a number of IRIS-defined and NCEDC-defined services. We also continue to support older email-based and browser-based access to data. NCEDC data and web services can be found at http://www.ncedc.org and http://service.ncedc.org.

  5. Northern California Earthquake Data Center: Data Sets and Data Services

    NASA Astrophysics Data System (ADS)

    Neuhauser, D. S.; Allen, R. M.; Zuzlewski, S.

    2015-12-01

    The Northern California Earthquake Data Center (NCEDC) provides a permanent archive and real-time data distribution services for a unique and comprehensive data set of seismological and geophysical data sets encompassing northern and central California. We provide access to over 85 terabytes of continuous and event-based time series data from broadband, short-period, strong motion, and strain sensors as well as continuous and campaign GPS data at both standard and high sample rates. The Northen California Seismic System (NCSS), operated by UC Berkeley and USGS Menlo Park, has recorded over 900,000 events from 1984 to the present, and the NCEDC serves catalog, parametric information, moment tensors and first motion mechanisms, and time series data for these events. We also serve event catalogs, parametric information, and event waveforms for DOE enhanced geothermal system monitoring in northern California and Nevada. The NCEDC provides a several ways for users to access these data. The most recent development are web services, which provide interactive, command-line, or program-based workflow access to data. Web services use well-established server and client protocols and RESTful software architecture that allow users to easily submit queries and receive the requested data in real-time rather than through batch or email-based requests. Data are returned to the user in the appropriate format such as XML, RESP, simple text, or MiniSEED depending on the service and selected output format. The NCEDC supports all FDSN-defined web services as well as a number of IRIS-defined and NCEDC-defined services. We also continue to support older email-based and browser-based access to data. NCEDC data and web services can be found at http://www.ncedc.org and http://service.ncedc.org.

  6. An overview of the U.S. Army Research Laboratory's Sensor Information Testbed for Collaborative Research Environment (SITCORE) and Automated Online Data Repository (AODR) capabilities

    NASA Astrophysics Data System (ADS)

    Ward, Dennis W.; Bennett, Kelly W.

    2017-05-01

    The Sensor Information Testbed COllaberative Research Environment (SITCORE) and the Automated Online Data Repository (AODR) are significant enablers of the U.S. Army Research Laboratory (ARL)'s Open Campus Initiative and together create a highly-collaborative research laboratory and testbed environment focused on sensor data and information fusion. SITCORE creates a virtual research development environment allowing collaboration from other locations, including DoD, industry, academia, and collation facilities. SITCORE combined with AODR provides end-toend algorithm development, experimentation, demonstration, and validation. The AODR enterprise allows the U.S. Army Research Laboratory (ARL), as well as other government organizations, industry, and academia to store and disseminate multiple intelligence (Multi-INT) datasets collected at field exercises and demonstrations, and to facilitate research and development (R and D), and advancement of analytical tools and algorithms supporting the Intelligence, Surveillance, and Reconnaissance (ISR) community. The AODR provides a potential central repository for standards compliant datasets to serve as the "go-to" location for lessons-learned and reference products. Many of the AODR datasets have associated ground truth and other metadata which provides a rich and robust data suite for researchers to develop, test, and refine their algorithms. Researchers download the test data to their own environments using a sophisticated web interface. The AODR allows researchers to request copies of stored datasets and for the government to process the requests and approvals in an automated fashion. Access to the AODR requires two-factor authentication in the form of a Common Access Card (CAC) or External Certificate Authority (ECA)

  7. My World Is Your World: Web Portal Design For Environmental Data

    NASA Astrophysics Data System (ADS)

    Laney, C.; Cody, R. P.; Gaylord, A. G.; Kassin, A.; Manley, W. F.; Score, R.; Tweedie, C. E.

    2013-12-01

    In the environmental sciences, researchers are increasingly relying on automated sensors as necessary components of their work. There are many software packages available that will help users download data from internet-connected data loggers; process, store, document, and analyze the data; or provide web-based geoportals for visualization and sharing of both spatial and time-series data. However, few (if any) software packages provide a complete, end-to-end system that will meet all of the needs of any given research group. Such systems often need to be designed and built as needed. Our group specializes in creating such systems. Our portals provide rapid data discovery and contextualization, and promote collaboration. We work at multiple scales, from a small lab working at a single site in the Chihuahuan desert (SEL-Jornada), to a community portal for environmental data from Barrow, Alaska (Barrow Area Information Database Information Management System [BAID-IMS]), to a project-tracking system for US Arctic research efforts (Arctic Research Mapping Application/Arctic Observing Viewer [ARMAP/AON]). Here, we share our experiences of creating scalable systems and improving practices that address both user community and research needs.

  8. Distributed spatial information integration based on web service

    NASA Astrophysics Data System (ADS)

    Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng

    2008-10-01

    Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.

  9. Distributed spatial information integration based on web service

    NASA Astrophysics Data System (ADS)

    Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng

    2009-10-01

    Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.

  10. Review of Extracting Information From the Social Web for Health Personalization

    PubMed Central

    Karlsen, Randi; Bonander, Jason

    2011-01-01

    In recent years the Web has come into its own as a social platform where health consumers are actively creating and consuming Web content. Moreover, as the Web matures, consumers are gaining access to personalized applications adapted to their health needs and interests. The creation of personalized Web applications relies on extracted information about the users and the content to personalize. The Social Web itself provides many sources of information that can be used to extract information for personalization apart from traditional Web forms and questionnaires. This paper provides a review of different approaches for extracting information from the Social Web for health personalization. We reviewed research literature across different fields addressing the disclosure of health information in the Social Web, techniques to extract that information, and examples of personalized health applications. In addition, the paper includes a discussion of technical and socioethical challenges related to the extraction of information for health personalization. PMID:21278049

  11. Next Generation Waste Tracking: Linking Legacy Systems with Modern Networking Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Randy M.; Resseguie, David R.; Shankar, Mallikarjun

    2010-01-01

    This report describes results from a preliminary analysis to satisfy the Department of Energy (DOE) objective to ensure the safe, secure, efficient packaging and transportation of materials both hazardous and non hazardous [1, 2]. The DOE Office of Environmental Management (OEM) through Oak Ridge National Laboratory (ORNL) has embarked on a project to further this objective. OEM and ORNL have agreed to develop, demonstrate and make available modern day cost effective technologies for characterization, identification, tracking, monitoring and disposal of radioactive waste when transported by, or between, motor, air, rail, and water modes. During the past 8 years ORNL hasmore » investigated and deployed Web 2.0 compliant sensors into the transportation segment of the supply chain. ORNL has recently demonstrated operational experience with DOE Oak Ridge Operations Office (ORO) and others in national test beds and applications within this domain of the supply chain. Furthermore, in addition to DOE, these hazardous materials supply chain partners included Federal and State enforcement agencies, international ports, and commercial sector shipping operations in a hazardous/radioactive materials tracking and monitoring program called IntelligentFreight. IntelligentFreight is an ORNL initiative encompassing 5 years of research effort associated with the supply chain. The ongoing ORNL SmartFreight programs include RadSTraM [3], GRadSTraM , Trusted Corridors, SensorPedia [4], SensorNet, Southeastern Transportation Corridor Pilot (SETCP) and Trade Data Exchange [5]. The integration of multiple technologies aimed at safer more secure conveyance has been investigated with the core research question being focused on testing distinctly different distributed supply chain information sharing systems. ORNL with support from ORO have demonstrated capabilities when transporting Environmental Management (EM) waste materials for disposal over an onsite haul road. ORNL has unified the operations of existing legacy hazardous, radioactive and related informational databases and systems using emerging Web 2.0 technologies. These capabilities were used to interoperate ORNL s waste generating, packaging, transportation and disposal with other DOE ORO waste management contractors. Importantly, the DOE EM objectives were accomplished in a cost effective manner without altering existing information systems. A path forward is to demonstrate and share these technologies with DOE EM, contractors and stakeholders. This approach will not alter existing DOE assets, i.e. Automated Traffic Management Systems (ATMS), Transportation Tracking and Communications System (TRANSCOM), the Argonne National Laboratory (ANL) demonstrated package tracking system, etc« less

  12. Future of Hydroinformatics: Towards Open, Integrated and Interactive Online Platforms

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2012-12-01

    Hydroinformatics is a domain of science and technology dealing with the management of information in the field of hydrology (IWA, 2011). There is the need for innovative solutions to the challenges towards open information, integration, and communication in the Internet. This presentation provides an overview of the trends and challenges in the future of hydroinformatics, and demonstrates an information system, Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for more than 1000 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods.

  13. Sexual information seeking on web search engines.

    PubMed

    Spink, Amanda; Koricich, Andrew; Jansen, B J; Cole, Charles

    2004-02-01

    Sexual information seeking is an important element within human information behavior. Seeking sexually related information on the Internet takes many forms and channels, including chat rooms discussions, accessing Websites or searching Web search engines for sexual materials. The study of sexual Web queries provides insight into sexually-related information-seeking behavior, of value to Web users and providers alike. We qualitatively analyzed queries from logs of 1,025,910 Alta Vista and AlltheWeb.com Web user queries from 2001. We compared the differences in sexually-related Web searching between Alta Vista and AlltheWeb.com users. Differences were found in session duration, query outcomes, and search term choices. Implications of the findings for sexual information seeking are discussed.

  14. Developing an Online Framework for Publication of Uncertainty Information in Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Etienne, E.; Piasecki, M.

    2012-12-01

    Inaccuracies in data collection and parameters estimation, and imperfection of models structures imply uncertain predictions of the hydrological models. Finding a way to communicate the uncertainty information in a model output is important in decision-making. This work aims to publish uncertainty information (computed by project partner at Penn State) associated with hydrological predictions on catchments. To this end we have developed a DB schema (derived from the CUAHSI ODM design) which is focused on storing uncertainty information and its associated metadata. The technologies used to build the system are: OGC's Sensor Observation Service (SOS) for publication, the uncertML markup language (also developed by the OGC) to describe uncertainty information, and use of the Interoperability and Automated Mapping (INTAMAP) Web Processing Service (WPS) that handles part of the statistics computations. We develop a service to provide users with the capability to exploit all the functionality of the system (based on DRUPAL). Users will be able to request and visualize uncertainty data, and also publish their data in the system.

  15. Datacube Interoperability, Encoding Independence, and Analytics

    NASA Astrophysics Data System (ADS)

    Baumann, Peter; Hirschorn, Eric; Maso, Joan

    2017-04-01

    Datacubes are commonly accepted as an enabling paradigm which provides a handy abstraction for accessing and analyzing the zillions of image files delivered by the manifold satellite instruments and climate simulations, among others. Additionally, datacubes are the classic model for statistical and OLAP datacubes, so a further information category can be integrated. From a standards perspective, spatio-temporal datacubes naturally are included in the concept of coverages which encompass regular and irregular grids, point clouds, and general meshes - or, more abstractly, digital representations of spatio-temporally varying phenomena. ISO 19123, which is identical to OGC Abstract Topic 6, gives a high-level abstract definition which is complemented by the OGC Coverage Implementation Schema (CIS) which is an interoperable, yet format independent concretization of the abstract model. Currently, ISO is working on adopting OGC CIS as ISO 19123-2; the existing ISO 19123 standard is under revision by one of the abstract authors and will become ISO 19123-1. The roadmap agreed by ISO further foresees adoption of the OGC Web Coverage Service (WCS) as an ISO standard so that a complete data and service model will exist. In 2016, INSPIRE has adopted WCS as Coverage Download Service, including the datacube analytics language Web Coverage Processing Service (WCPS). The rasdaman technology (www.rasdaman.org) is both OGC and INSPIRE Reference Implementation. In the global EarthServer initiative rasdaman database sizes are exceeding 250 TB today, heading for the Petabyte frontier well in 2017. Technically, CIS defines a compact, efficient model for representing multi-dimensional datacubes in several ways. The classical coverage cube defines a domain set (where are values?), a range set (what are these values?), and range type (what do the values mean?), as well as a "bag" for arbitrary metadata. With CIS 1.1, coordinate/value pair sequences have been added, as well as tiled representations. Further, CIS 1.1 offers a unified model for any kind of regular and irregular grids, also allowing sensor models as per SensorML. Encodings include ASCII formats like GML, JSON, RDF as well as binary formats like GeoTIFF, NetCDF, JPEG2000, and GRIB2; further, a container concept allows mixed representations within one coverage file utilizing zip or other convenient package formats. Through the tight integration with the Sensor Web Enablement (SWE), a lossless "transport" from sensor into coverage world is ensured. The corresponding service model of WCS supports datacube operations ranging from simple data extraction to complex ad-hoc analytics with WPCS. Notably, W3C is working has set out on a coverage model as well; it has been designed relatively independently from the abovementioned standards, but there is informal agreement to link it into the CIS universe (which allows for different, yet interchangeable representations). Particularly interesting in the W3C proposal is the detailed semantic modeling of metadata; as CIS 1.1 supports RDF, a tight coupling seems feasible.

  16. Using Web Server Logs in Evaluating Instructional Web Sites.

    ERIC Educational Resources Information Center

    Ingram, Albert L.

    2000-01-01

    Web server logs contain a great deal of information about who uses a Web site and how they use it. This article discusses the analysis of Web logs for instructional Web sites; reviews the data stored in most Web server logs; demonstrates what further information can be gleaned from the logs; and discusses analyzing that information for the…

  17. A Web-based Google-Earth Coincident Imaging Tool for Satellite Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Killough, B. D.; Chander, G.; Gowda, S.

    2009-12-01

    The Group on Earth Observations (GEO) is coordinating international efforts to build a Global Earth Observation System of Systems (GEOSS) to meet the needs of its nine “Societal Benefit Areas”, of which the most demanding, in terms of accuracy, is climate. To accomplish this vision, satellite on-orbit and ground-based data calibration and validation (Cal/Val) of Earth observation measurements are critical to our scientific understanding of the Earth system. Existing tools supporting space mission Cal/Val are often developed for specific campaigns or events with little desire for broad application. This paper describes a web-based Google-Earth based tool for the calculation of coincident satellite observations with the intention to support a diverse international group of satellite missions to improve data continuity, interoperability and data fusion. The Committee on Earth Observing Satellites (CEOS), which includes 28 space agencies and 20 other national and international organizations, are currently operating and planning over 240 Earth observation satellites in the next 15 years. The technology described here will better enable the use of multiple sensors to promote increased coordination toward a GEOSS. The CEOS Systems Engineering Office (SEO) and the Working Group on Calibration and Validation (WGCV) support the development of the CEOS Visualization Environment (COVE) tool to enhance international coordination of data exchange, mission planning and Cal/Val events. The objective is to develop a simple and intuitive application tool that leverages the capabilities of Google-Earth web to display satellite sensor coverage areas and for the identification of coincident scene locations along with dynamic menus for flexibility and content display. Key features and capabilities include user-defined evaluation periods (start and end dates) and regions of interest (rectangular areas) and multi-user collaboration. Users can select two or more CEOS missions from a database including Satellite Tool Kit (STK) generated orbit information and perform rapid calculations to identify coincident scenes where the groundtracks of the CEOS mission instrument fields-of-view intersect. Calculated results are displayed on a customized Google-Earth web interface to view location and time information along with optional output to EXCEL table format. In addition, multiple viewports can be used for comparisons. COVE was first introduced to the CEOS WGCV community in May 2009. Since that time, the development of a prototype version has progressed. It is anticipated that the capabilities and applications of COVE can support a variety of international Cal/Val activities as well as provide general information on Earth observation coverage for education and societal benefit. This project demonstrates the utility of a systems engineering tool with broad international appeal for enhanced communication and data evaluation opportunities among international CEOS agencies. The COVE tool is publicly accessible via NASA servers.

  18. Chemiresistor microsensors for in-situ monitoring of volatile organic compounds : final LDRD report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Michael Loren; Hughes, Robert Clark; Kooser, Ara S.

    2003-09-01

    This report provides a summary of the three-year LDRD (Laboratory Directed Research and Development) project aimed at developing microchemical sensors for continuous, in-situ monitoring of volatile organic compounds. A chemiresistor sensor array was integrated with a unique, waterproof housing that allows the sensors to be operated in a variety of media including air, soil, and water. Numerous tests were performed to evaluate and improve the sensitivity, stability, and discriminatory capabilities of the chemiresistors. Field tests were conducted in California, Nevada, and New Mexico to further test and develop the sensors in actual environments within integrated monitoring systems. The field testsmore » addressed issues regarding data acquisition, telemetry, power requirements, data processing, and other engineering requirements. Significant advances were made in the areas of polymer optimization, packaging, data analysis, discrimination, design, and information dissemination (e.g., real-time web posting of data; see www.sandia.gov/sensor). This project has stimulated significant interest among commercial and academic institutions. A CRADA (Cooperative Research and Development Agreement) was initiated in FY03 to investigate manufacturing methods, and a Work for Others contract was established between Sandia and Edwards Air Force Base for FY02-FY04. Funding was also obtained from DOE as part of their Advanced Monitoring Systems Initiative program from FY01 to FY03, and a DOE EMSP contract was awarded jointly to Sandia and INEEL for FY04-FY06. Contracts were also established for collaborative research with Brigham Young University to further evaluate, understand, and improve the performance of the chemiresistor sensors.« less

  19. Monitoring Heart Disease and Diabetes with Mobile Internet Communications

    PubMed Central

    Mulvaney, David; Woodward, Bryan; Datta, Sekharjit; Harvey, Paul; Vyas, Anoop; Thakker, Bhaskar; Farooq, Omar; Istepanian, Robert

    2012-01-01

    A telemedicine system is described for monitoring vital signs and general health indicators of patients with cardiac and diabetic conditions. Telemetry from wireless sensors and readings from other instruments are combined into a comprehensive set of measured patient parameters. Using a combination of mobile device applications and web browser, the data can be stored, accessed, and displayed using mobile internet communications to the central server. As an extra layer of security in the data transmission, information embedded in the data is used in its verification. The paper highlights features that could be enhanced from previous systems by using alternative components or methods. PMID:23213330

  20. Silicon Web Process Development. [for solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.

  1. A mobile phone-based care model for outpatient cardiac rehabilitation: the care assessment platform (CAP).

    PubMed

    Walters, Darren L; Sarela, Antti; Fairfull, Anita; Neighbour, Kylie; Cowen, Cherie; Stephens, Belinda; Sellwood, Tom; Sellwood, Bernadette; Steer, Marie; Aust, Michelle; Francis, Rebecca; Lee, Chi-Keung; Hoffman, Sheridan; Brealey, Gavin; Karunanithi, Mohan

    2010-01-28

    Cardiac rehabilitation programs offer effective means to prevent recurrence of a cardiac event, but poor uptake of current programs have been reported globally. Home based models are considered as a feasible alternative to avoid various barriers related to care centre based programs. This paper sets out the study design for a clinical trial seeking to test the hypothesis that these programs can be better and more efficiently supported with novel Information and Communication Technologies (ICT). We have integrated mobile phones and web services into a comprehensive home- based care model for outpatient cardiac rehabilitation. Mobile phones with a built-in accelerometer sensor are used to measure physical exercise and WellnessDiary software is used to collect information on patients' physiological risk factors and other health information. Video and teleconferencing are used for mentoring sessions aiming at behavioural modifications through goal setting. The mentors use web-portal to facilitate personal goal setting and to assess the progress of each patient in the program. Educational multimedia content are stored or transferred via messaging systems to the patients phone to be viewed on demand. We have designed a randomised controlled trial to compare the health outcomes and cost efficiency of the proposed model with a traditional community based rehabilitation program. The main outcome measure is adherence to physical exercise guidelines. The study will provide evidence on using mobile phones and web services for mentoring and self management in a home-based care model targeting sustainable behavioural modifications in cardiac rehabilitation patients. The trial has been registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) with number ACTRN12609000251224.

  2. A mobile phone-based care model for outpatient cardiac rehabilitation: the care assessment platform (CAP)

    PubMed Central

    2010-01-01

    Background Cardiac rehabilitation programs offer effective means to prevent recurrence of a cardiac event, but poor uptake of current programs have been reported globally. Home based models are considered as a feasible alternative to avoid various barriers related to care centre based programs. This paper sets out the study design for a clinical trial seeking to test the hypothesis that these programs can be better and more efficiently supported with novel Information and Communication Technologies (ICT). Methods/Design We have integrated mobile phones and web services into a comprehensive home- based care model for outpatient cardiac rehabilitation. Mobile phones with a built-in accelerometer sensor are used to measure physical exercise and WellnessDiary software is used to collect information on patients' physiological risk factors and other health information. Video and teleconferencing are used for mentoring sessions aiming at behavioural modifications through goal setting. The mentors use web-portal to facilitate personal goal setting and to assess the progress of each patient in the program. Educational multimedia content are stored or transferred via messaging systems to the patients phone to be viewed on demand. We have designed a randomised controlled trial to compare the health outcomes and cost efficiency of the proposed model with a traditional community based rehabilitation program. The main outcome measure is adherence to physical exercise guidelines. Discussion The study will provide evidence on using mobile phones and web services for mentoring and self management in a home-based care model targeting sustainable behavioural modifications in cardiac rehabilitation patients. Trial registration The trial has been registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) with number ACTRN12609000251224. PMID:20109196

  3. Wearable Sensors Integrated with Internet of Things for Advancing eHealth Care.

    PubMed

    Bayo-Monton, Jose-Luis; Martinez-Millana, Antonio; Han, Weisi; Fernandez-Llatas, Carlos; Sun, Yan; Traver, Vicente

    2018-06-06

    Health and sociological indicators alert that life expectancy is increasing, hence so are the years that patients have to live with chronic diseases and co-morbidities. With the advancement in ICT, new tools and paradigms are been explored to provide effective and efficient health care. Telemedicine and health sensors stand as indispensable tools for promoting patient engagement, self-management of diseases and assist doctors to remotely follow up patients. In this paper, we evaluate a rapid prototyping solution for information merging based on five health sensors and two low-cost ubiquitous computing components: Arduino and Raspberry Pi. Our study, which is entirely described with the purpose of reproducibility, aimed to evaluate the extent to which portable technologies are capable of integrating wearable sensors by comparing two deployment scenarios: Raspberry Pi 3 and Personal Computer. The integration is implemented using a choreography engine to transmit data from sensors to a display unit using web services and a simple communication protocol with two modes of data retrieval. Performance of the two set-ups is compared by means of the latency in the wearable data transmission and data loss. PC has a delay of 0.051 ± 0.0035 s (max = 0.2504 s), whereas the Raspberry Pi yields a delay of 0.0175 ± 0.149 s (max = 0.294 s) for N = 300. Our analysis confirms that portable devices ( p < < 0 . 01 ) are suitable to support the transmission and analysis of biometric signals into scalable telemedicine systems.

  4. A novel architecture for information retrieval system based on semantic web

    NASA Astrophysics Data System (ADS)

    Zhang, Hui

    2011-12-01

    Nowadays, the web has enabled an explosive growth of information sharing (there are currently over 4 billion pages covering most areas of human endeavor) so that the web has faced a new challenge of information overhead. The challenge that is now before us is not only to help people locating relevant information precisely but also to access and aggregate a variety of information from different resources automatically. Current web document are in human-oriented formats and they are suitable for the presentation, but machines cannot understand the meaning of document. To address this issue, Berners-Lee proposed a concept of semantic web. With semantic web technology, web information can be understood and processed by machine. It provides new possibilities for automatic web information processing. A main problem of semantic web information retrieval is that when these is not enough knowledge to such information retrieval system, the system will return to a large of no sense result to uses due to a huge amount of information results. In this paper, we present the architecture of information based on semantic web. In addiction, our systems employ the inference Engine to check whether the query should pose to Keyword-based Search Engine or should pose to the Semantic Search Engine.

  5. Information about Sexual Health on Crisis Pregnancy Center Web Sites: Accurate for Adolescents?

    PubMed

    Bryant-Comstock, Katelyn; Bryant, Amy G; Narasimhan, Subasri; Levi, Erika E

    2016-02-01

    The objective of this study was to evaluate the quality and accuracy of sexual health information on crisis pregnancy center Web sites listed in state resource directories for pregnant women, and whether these Web sites specifically target adolescents. A survey of sexual health information presented on the Web sites of crisis pregnancy centers. Internet. Crisis pregnancy center Web sites. Evaluation of the sexual health information presented on crisis pregnancy center Web sites. Themes included statements that condoms are not effective, promotion of abstinence-only education, availability of comprehensive sexual education, appeal to a young audience, provision of comprehensive sexual health information, and information about sexually transmitted infections (STIs). Crisis pregnancy center Web sites provide inaccurate and misleading information about condoms, STIs, and methods to prevent STI transmission. This information might be particularly harmful to adolescents, who might be unable to discern the quality of sexual health information on crisis pregnancy center Web sites. Listing crisis pregnancy centers in state resource directories might lend legitimacy to the information on these Web sites. States should be discouraged from listing Web sites as an accurate source of information in their resource directories. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  6. Information Diversity in Web Search

    ERIC Educational Resources Information Center

    Liu, Jiahui

    2009-01-01

    The web is a rich and diverse information source with incredible amounts of information about all kinds of subjects in various forms. This information source affords great opportunity to build systems that support users in their work and everyday lives. To help users explore information on the web, web search systems should find information that…

  7. The Afternoon Constellation: A Formation of Earth Observing Systems for the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2002-01-01

    Two of the large EOS observatories, Aqua (formerly EOS-PM) and Aura (formerly EOS-CHEM) will fly is nearly the same inclination with 1:30 PM -15 min ascending node equatorial crossing times. Between Aura and Aqua a series of smaller satellites will be stationed: Cloudsat, CALYPSO (formerly PICASSO-CENA), and PARASOL. This constellation of low earth orbit satellites will provide an unprecedented opportunity to make near simultaneous atmospheric cloud and aerosol observations. This paper will provide details of the science opportunity and describe the sensor types for the afternoon constellation. This constellation by accretion provides a prototype for the Earth Science Vision sensor web and represent the building books for a future web structure.

  8. A Web-based home welfare and care services support system using a pen type image sensor.

    PubMed

    Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Sato, Haruhiko; Hahn, Allen W; Caldwell, W Morton

    2003-01-01

    A long-term care insurance law for elderly persons was put in force two years ago in Japan. The Home Helpers, who are employed by hospitals, care companies or the welfare office, provide home welfare and care services for the elderly, such as cooking, bathing, washing, cleaning, shopping, etc. We developed a web-based home welfare and care services support system using wireless Internet mobile phones and Internet client computers, which employs a pen type image sensor. The pen type image sensor is used by the elderly people as the entry device for their care requests. The client computer sends the requests to the server computer in the Home Helper central office, and then the server computer automatically transfers them to the Home Helper's mobile phone. This newly-developed home welfare and care services support system is easily operated by elderly persons and enables Homes Helpers to save a significant amount of time and extra travel.

  9. Information-based self-organization of sensor nodes of a sensor network

    DOEpatents

    Ko, Teresa H [Castro Valley, CA; Berry, Nina M [Tracy, CA

    2011-09-20

    A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.

  10. Model My Watershed: A high-performance cloud application for public engagement, watershed modeling and conservation decision support

    NASA Astrophysics Data System (ADS)

    Aufdenkampe, A. K.; Tarboton, D. G.; Horsburgh, J. S.; Mayorga, E.; McFarland, M.; Robbins, A.; Haag, S.; Shokoufandeh, A.; Evans, B. M.; Arscott, D. B.

    2017-12-01

    The Model My Watershed Web app (https://app.wikiwatershed.org/) and the BiG-CZ Data Portal (http://portal.bigcz.org/) and are web applications that share a common codebase and a common goal to deliver high-performance discovery, visualization and analysis of geospatial data in an intuitive user interface in web browser. Model My Watershed (MMW) was designed as a decision support system for watershed conservation implementation. BiG CZ Data Portal was designed to provide context and background data for research sites. Users begin by creating an Area of Interest, via an automated watershed delineation tool, a free draw tool, selection of a predefined area such as a county or USGS Hydrological Unit (HUC), or uploading a custom polygon. Both Web apps visualize and provide summary statistics of land use, soil groups, streams, climate and other geospatial information. MMW then allows users to run a watershed model to simulate different scenarios of human impacts on stormwater runoff and water-quality. BiG CZ Data Portal allows users to search for scientific and monitoring data within the Area of Interest, which also serves as a prototype for the upcoming Monitor My Watershed web app. Both systems integrate with CUAHSI cyberinfrastructure, including visualizing observational data from CUAHSI Water Data Center and storing user data via CUAHSI HydroShare. Both systems also integrate with the new EnviroDIY Water Quality Data Portal (http://data.envirodiy.org/), a system for crowd-sourcing environmental monitoring data using open-source sensor stations (http://envirodiy.org/mayfly/) and based on the Observations Data Model v2.

  11. A Web-based vital sign telemonitor and recorder for telemedicine applications.

    PubMed

    Mendoza, Patricia; Gonzalez, Perla; Villanueva, Brenda; Haltiwanger, Emily; Nazeran, Homer

    2004-01-01

    We describe a vital sign telemonitor (VST) that acquires, records, displays, and provides readings such as: electrocardiograms (ECGs), temperature (T), and oxygen saturation (SaO2) over the Internet to any site. The design of this system consisted of three parts: sensors, analog signal processing circuits, and a user-friendly graphical user interface (GUI). The first part involved selection of appropriate sensors. For ECG, disposable Ag/AgCl electrodes; for temperature, LM35 precision temperature sensor; and for SaO2 the Nonin Oximetry Development Kit equipped with a finger clip were selected. The second part consisted of processing the analog signals obtained from these sensors. This was achieved by implementing suitable amplifiers and filters for the vital signs. The final part focused on development of a GUI to display the vital signs in the LabVIEW environment. From these measurements, important values such as heart rate (HR), beat-to-beat (RR) intervals, SaO2 percentages, and T in both degrees Celsius and Fahrenheit were calculated The GUI could be accessed through the Internet in a Web-page facilitating the possibility of real-time patient telemonitoring. The final system was completed and tested on volunteers with satisfactory results.

  12. 7 CFR 2902.6 - Providing product information to Federal agencies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Web site. An informational USDA Web site implementing section 9002 can be found at: http://www.biobased.oce.usda.gov. USDA will maintain a voluntary Web-based information site for manufacturers and... information. This Web site will provide information as to the availability, relative price, biobased content...

  13. 7 CFR 3201.6 - Providing product information to Federal agencies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Informational Web site. An informational USDA Web site implementing section 9002 can be found at: http://www.biopreferred.gov. USDA will maintain a voluntary Web-based information site for manufacturers and vendors of... Web site will provide information as to the availability, relative price, biobased content...

  14. 7 CFR 3201.6 - Providing product information to Federal agencies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Informational Web site. An informational USDA Web site implementing section 9002 can be found at: http://www.biopreferred.gov. USDA will maintain a voluntary Web-based information site for manufacturers and vendors of... Web site will provide information as to the availability, relative price, biobased content...

  15. Hand-Writing Motion Tracking with Vision-Inertial Sensor Fusion: Calibration and Error Correction

    PubMed Central

    Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J.

    2014-01-01

    The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model. PMID:25157546

  16. Digital seismo-acoustic signal processing aboard a wireless sensor platform

    NASA Astrophysics Data System (ADS)

    Marcillo, O.; Johnson, J. B.; Lorincz, K.; Werner-Allen, G.; Welsh, M.

    2006-12-01

    We are developing a low power, low-cost wireless sensor array to conduct real-time signal processing of earthquakes at active volcanoes. The sensor array, which integrates data from both seismic and acoustic sensors, is based on Moteiv TMote Sky wireless sensor nodes (www.moteiv.com). The nodes feature a Texas Instruments MSP430 microcontroller, 48 Kbytes of program memory, 10 Kbytes of static RAM, 1 Mbyte of external flash memory, and a 2.4-GHz Chipcon CC2420 IEEE 802.15.4 radio. The TMote Sky is programmed in TinyOS. Basic signal processing occurs on an array of three peripheral sensor nodes. These nodes are tied into a dedicated GPS receiver node, which is focused on time synchronization, and a central communications node, which handles data integration and additional processing. The sensor nodes incorporate dual 12-bit digitizers sampling a seismic sensor and a pressure transducer at 100 samples per second. The wireless capabilities of the system allow flexible array geometry, with a maximum aperture of 200m. We have already developed the digital signal processing routines on board the Moteiv Tmote sensor nodes. The developed routines accomplish Real-time Seismic-Amplitude Measurement (RSAM), Seismic Spectral- Amplitude Measurement (SSAM), and a user-configured Short Term Averaging / Long Term Averaging (STA LTA ratio), which is used to calculate first arrivals. The processed data from individual nodes are transmitted back to a central node, where additional processing may be performed. Such processing will include back azimuth determination and other wave field analyses. Future on-board signal processing will focus on event characterization utilizing pattern recognition and spectral characterization. The processed data is intended as low bandwidth information which can be transmitted periodically and at low cost through satellite telemetry to a web server. The processing is limited by the computational capabilities (RAM, ROM) of the nodes. Nevertheless, we envision this product to be a useful tool for assessing the state of unrest at remote volcanoes.

  17. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  18. ISTIMES project: status and outcomes

    NASA Astrophysics Data System (ADS)

    Cuomo, V.; Proto, M.; Soldovieri, F.

    2012-04-01

    ISTIMES is a project approved in the Seventh Framework Programme of the European Union under the Joint Call FP7-ICT-SEC-2007-1. It has a three years duration and will be completed within June 2012. According to the aims of the proposal, ISTIMES project has designed, assessed and developed a prototypical modular and scalable ICT-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring; the specific application field was the reliability and safety of critical transport infrastructures, even if the modularity of the ISTIMES approach has permitted to extend it successfully to other critical infrastructures as dams. The continuous and fruitful involvement of end users (as Italian Civil Protection) allowed to develop applications focused on users needs. ISTIMES couples current monitoring of infrastructures with a high situational awareness during crises management, providing updated and detailed real and near real time information about the infrastructure status to improve decision support for emergency and disasters stakeholders. The system exploits an open network architecture that can accommodate a wide range of heterogeneous sensors, static and mobile, and can be easily scaled up to allow the integration of additional sensors and interfaces with other networks. It relies on state-of-the-art electromagnetic sensors, enabling a networking of terrestrial sensors, supported by specific satellite and airborne measurements. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance at different temporal and spatial scales, providing indexes and images of the critical transport infrastructures. The project has exploited, assessed and improved many different non-invasive technologies based on electromagnetic sensing as: Optic Fiber Sensors, Synthetic Aperture; Radar (SAR) satellite platform; Hyperspectral Spectroscopy; Infrared Thermography; Ground Penetrating Radar; low-frequency Geophysical Techniques; ground based SAR and optical cameras for the assessment of the dynamical behaviour of the infrastructure. A great effort has been devoted to "transfer" these novel and state-of art technologies from the laboratory experience to actual on field applications by adapting/improving them and developing prototypes for the specific application domain of the monitoring of transport and critical infrastructures. Sensor synergy, data cross correlation and novel concepts of information fusion have permitted to carry out a multi-method, multi-resolution and multi-scale electromagnetic detection and monitoring of the infrastructure, including surface and subsurface aspects. The project has allowed to develop an ICT architecture based on web sensors and serviceoriented- technologies that comply with specific end-user requirements, including interoperability, economical convenience, exportability, efficiency and reliability. The efforts have focussed mainly to the creation of web based interfaces able to control "not standard" sensors, as the ones proposed in the project, and to the standardization necessary to have a full interoperability and modularity of the monitoring system. In addition, the system is able to provide a more easily accessible and transparent scheme for use by different end-users and to integrate the monitoring results and images with other kind of information such as GIS layer and historical datasets relating to the site. The ISTIMES system has been evaluated at two test sites and two test beds. At the two test sites of Montagnole rock-fall station (Chambery, France) and Hydrogeosite Laboratory (Potenza, Italy), the attention was posed to a thorough analysis of the performances of the in situ sensing techniques, by investigating, with good outcomes, also the possibility to correlate and have a synergy from the different sensors. In particular, it is worth noting that the experiment realized at Montagnole is unique, at least at European level, regarding both the high mechanical impact on a real scale elements of civil engineering structure, and also for the exploitation of all sensor techniques set up in a cooperative way. The effectiveness of the overall monitoring system has been assessed by the experiments at real test beds as Sihlhochstrasse bridge, a 1.5 km bridge representing one of the main entrance road to Zurich city (Switzerland), Varco Izzo railway tunnel and Musmeci motorway bridge located in the area of Potenza city in Basilicata region (Italy) affected by a high seismic risk. In particular, for the Musmeci bridge, the main entrance road to Potenza city and a masterpiece of architectural/civil engineering realized by Sergio Musmeci in 60' years, all the sensing technologies involved in the project have been exploited to perform a monitoring/diagnostics; the Musmeci bridge results have been correlated and tested also by the comparison with the sensors mostly used by civil engineers for this kind of infrastructures (Proto et al., 2010). Acknowledgment The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 225663.

  19. Coordinated Science Campaign Scheduling for Sensor Webs

    NASA Technical Reports Server (NTRS)

    Edgington, Will; Morris, Robert; Dungan, Jennifer; Williams, Jenny; Carlson, Jean; Fleming, Damian; Wood, Terri; Yorke-Smith, Neil

    2005-01-01

    Future Earth observing missions will study different aspects and interacting pieces of the Earth's eco-system. Scientists are designing increasingly complex, interdisciplinary campaigns to exploit the diverse capabilities of multiple Earth sensing assets. In addition, spacecraft platforms are being configured into clusters, trains, or other distributed organizations in order to improve either the quality or the coverage of observations. These simultaneous advances in the design of science campaigns and in the missions that will provide the sensing resources to support them offer new challenges in the coordination of data and operations that are not addressed by current practice. For example, the scheduling of scientific observations for satellites in low Earth orbit is currently conducted independently by each mission operations center. An absence of an information infrastructure to enable the scheduling of coordinated observations involving multiple sensors makes it difficult to execute campaigns involving multiple assets. This paper proposes a software architecture and describes a prototype system called DESOPS (Distributed Earth Science Observation Planning and Scheduling) that will address this deficiency.

  20. Design of Weft Detection System in The Stenter Machine

    NASA Astrophysics Data System (ADS)

    Gu, Minming; Xu, Xianju; Dai, Wenzhan

    2017-12-01

    In order to build an effective automatic weft-straightening system, it is important for the sensing device to detect most the possible fabric styles, designs, colours and structures, an optical sensing system that detects the angular orientation of weft threads in a moving web of a textile has been built. It contains an adjustable light source, two lens systems and photodiode sensor array. The sensor array includes 13 radial pattern of photosensitive areas that each generate an electrical signal proportional to the total intensity of the light incident on the area. The moving shadow of a weft thread passing over the area will modulate the output signal. A signal processed circuit was built to do the I/V conversion, amplifying, hardware filtering. An embed micro control system then deals with the information of these signals, calculates the angle of the weft drew. Finally, the experiments were done, the results showed that the weft detection system can deal with the fabric weft skew up to 30° and has achieved good results in the application.

  1. HyspIRI Low Latency Concept and Benchmarks

    NASA Technical Reports Server (NTRS)

    Mandl, Dan

    2010-01-01

    Topics include HyspIRI low latency data ops concept, HyspIRI data flow, ongoing efforts, experiment with Web Coverage Processing Service (WCPS) approach to injecting new algorithms into SensorWeb, low fidelity HyspIRI IPM testbed, compute cloud testbed, open cloud testbed environment, Global Lambda Integrated Facility (GLIF) and OCC collaboration with Starlight, delay tolerant network (DTN) protocol benchmarking, and EO-1 configuration for preliminary DTN prototype.

  2. Automatic geospatial information Web service composition based on ontology interface matching

    NASA Astrophysics Data System (ADS)

    Xu, Xianbin; Wu, Qunyong; Wang, Qinmin

    2008-10-01

    With Web services technology the functions of WebGIS can be presented as a kind of geospatial information service, and helped to overcome the limitation of the information-isolated situation in geospatial information sharing field. Thus Geospatial Information Web service composition, which conglomerates outsourced services working in tandem to offer value-added service, plays the key role in fully taking advantage of geospatial information services. This paper proposes an automatic geospatial information web service composition algorithm that employed the ontology dictionary WordNet to analyze semantic distances among the interfaces. Through making matching between input/output parameters and the semantic meaning of pairs of service interfaces, a geospatial information web service chain can be created from a number of candidate services. A practice of the algorithm is also proposed and the result of it shows the feasibility of this algorithm and the great promise in the emerging demand for geospatial information web service composition.

  3. Building and evaluating sensor-based Citizens' Observatories for improving quality of life in cities

    NASA Astrophysics Data System (ADS)

    Castell, Nuria; Lahoz, William; Schneider, Philipp; Høiskar, Britt Ann; Grossberndt, Sonja; Naderer, Clemens; Robinson, Johanna; Kocman, David; Horvat, Milena; Bartonova, Alena

    2014-05-01

    Urban air quality, the environmental quality of public spaces and indoor areas such as schools, are areas of great concern to citizens and policymakers. However, access to information addressing these areas is not always available in a user-friendly manner. In particular, the quality and quantity of this information is not consistent across these areas, and does not reflect differences in needs among users. The EU-funded CITI-SENSE project will build on the concept of the Citizens' Observatories to empower citizens to contribute to and participate in environmental governance, and enable them to support and influence decision making by policymakers. To achieve this goal, CITI-SENSE will develop, test, demonstrate and validate a community-based environmental monitoring and information system using low-cost sensors and Earth Observation applications. Key to achieving this goal is the chain "sensors-platforms-products-users" linking providers of technology to users: (i) technologies for distributed monitoring (sensors); (ii) information and communication technologies (platform); (iii) information products and services (products); (iv) and citizen involvement in both monitoring and societal decisions (users). The CITI-SENSE observatories cover three empowerment initiatives: urban air quality; public spaces; and school indoor quality. The empowerment initiatives are being performed at nine locations across Europe. Each location has adapted the generic case study to their local circumstances and has contacted the urban stakeholders needed to run the study. The empowerment initiatives are divided into two phases: a first phase (Pilot Study), and a second phase (Full Implementation). The main goal of the Pilot Study is to test and evaluate the chain "sensors-platform-products-users". To assess the results of the empowerment initiatives, key performance indicators (KPIs) are being developed; these include questionnaires for users. The KPIs will be used to design the full implementation phase of the project. First results from the Pilot Study will be presented for three participating cities: Ljubljana (Slovenia), Vienna (Austria) and Oslo (Norway), which differ in size, environmental conditions and social perception on local air quality. Ljubljana and Oslo empowerment initiatives include urban air quality, and school indoor air quality, while Vienna only includes urban air quality. For the area of urban air quality, the three cities will deploy a wireless network of five static sensor nodes and distribute five personal sensors among people to be carried while performing daily activities in the pilot study. The data will be accessible to users through mobile phones, web services and other devices. For the full implementation phase the sensor network will comprise a total of 20 to 40 static nodes, depending on the size of the city, and 20 personal nodes. For the school indoor air quality three sensors will be allocated inside the school and one outside. The data will be visible provided in school classrooms giving the students a unique and innovative approach to learn about air quality by being involved. Acknowledgements: CITI-SENSE is a Collaborative Project partly funded by the EU FP7-ENV-2012 under grant agreement no 308524. www.citi-sense.eu.

  4. OOSTethys - Open Source Software for the Global Earth Observing Systems of Systems

    NASA Astrophysics Data System (ADS)

    Bridger, E.; Bermudez, L. E.; Maskey, M.; Rueda, C.; Babin, B. L.; Blair, R.

    2009-12-01

    An open source software project is much more than just picking the right license, hosting modular code and providing effective documentation. Success in advancing in an open collaborative way requires that the process match the expected code functionality to the developer's personal expertise and organizational needs as well as having an enthusiastic and responsive core lead group. We will present the lessons learned fromOOSTethys , which is a community of software developers and marine scientists who develop open source tools, in multiple languages, to integrate ocean observing systems into an Integrated Ocean Observing System (IOOS). OOSTethys' goal is to dramatically reduce the time it takes to install, adopt and update standards-compliant web services. OOSTethys has developed servers, clients and a registry. Open source PERL, PYTHON, JAVA and ASP tool kits and reference implementations are helping the marine community publish near real-time observation data in interoperable standard formats. In some cases publishing an OpenGeospatial Consortium (OGC), Sensor Observation Service (SOS) from NetCDF files or a database or even CSV text files could take only minutes depending on the skills of the developer. OOSTethys is also developing an OGC standard registry, Catalog Service for Web (CSW). This open source CSW registry was implemented to easily register and discover SOSs using ISO 19139 service metadata. A web interface layer over the CSW registry simplifies the registration process by harvesting metadata describing the observations and sensors from the “GetCapabilities” response of SOS. OPENIOOS is the web client, developed in PERL to visualize the sensors in the SOS services. While the number of OOSTethys software developers is small, currently about 10 around the world, the number of OOSTethys toolkit implementers is larger and growing and the ease of use has played a large role in spreading the use of interoperable standards compliant web services widely in the marine community.

  5. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review

    PubMed Central

    2018-01-01

    Recent technological developments have led to the production of inexpensive, non-invasive, miniature magneto-inertial sensors, ideal for obtaining sport performance measures during training or competition. This systematic review evaluates current evidence and the future potential of their use in sport performance evaluation. Articles published in English (April 2017) were searched in Web-of-Science, Scopus, Pubmed, and Sport-Discus databases. A keyword search of titles, abstracts and keywords which included studies using accelerometers, gyroscopes and/or magnetometers to analyse sport motor-tasks performed by athletes (excluding risk of injury, physical activity, and energy expenditure) resulted in 2040 papers. Papers and reference list screening led to the selection of 286 studies and 23 reviews. Information on sport, motor-tasks, participants, device characteristics, sensor position and fixing, experimental setting and performance indicators was extracted. The selected papers dealt with motor capacity assessment (51 papers), technique analysis (163), activity classification (19), and physical demands assessment (61). Focus was placed mainly on elite and sub-elite athletes (59%) performing their sport in-field during training (62%) and competition (7%). Measuring movement outdoors created opportunities in winter sports (8%), water sports (16%), team sports (25%), and other outdoor activities (27%). Indications on the reliability of sensor-based performance indicators are provided, together with critical considerations and future trends. PMID:29543747

  6. The Use of Wearable Inertial Motion Sensors in Human Lower Limb Biomechanics Studies: A Systematic Review

    PubMed Central

    Fong, Daniel Tik-Pui; Chan, Yue-Yan

    2010-01-01

    Wearable motion sensors consisting of accelerometers, gyroscopes and magnetic sensors are readily available nowadays. The small size and low production costs of motion sensors make them a very good tool for human motions analysis. However, data processing and accuracy of the collected data are important issues for research purposes. In this paper, we aim to review the literature related to usage of inertial sensors in human lower limb biomechanics studies. A systematic search was done in the following search engines: ISI Web of Knowledge, Medline, SportDiscus and IEEE Xplore. Thirty nine full papers and conference abstracts with related topics were included in this review. The type of sensor involved, data collection methods, study design, validation methods and its applications were reviewed. PMID:22163542

  7. The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review.

    PubMed

    Fong, Daniel Tik-Pui; Chan, Yue-Yan

    2010-01-01

    Wearable motion sensors consisting of accelerometers, gyroscopes and magnetic sensors are readily available nowadays. The small size and low production costs of motion sensors make them a very good tool for human motions analysis. However, data processing and accuracy of the collected data are important issues for research purposes. In this paper, we aim to review the literature related to usage of inertial sensors in human lower limb biomechanics studies. A systematic search was done in the following search engines: ISI Web of Knowledge, Medline, SportDiscus and IEEE Xplore. Thirty nine full papers and conference abstracts with related topics were included in this review. The type of sensor involved, data collection methods, study design, validation methods and its applications were reviewed.

  8. The Use of Web Search Engines in Information Science Research.

    ERIC Educational Resources Information Center

    Bar-Ilan, Judit

    2004-01-01

    Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…

  9. Userscripts for the life sciences.

    PubMed

    Willighagen, Egon L; O'Boyle, Noel M; Gopalakrishnan, Harini; Jiao, Dazhi; Guha, Rajarshi; Steinbeck, Christoph; Wild, David J

    2007-12-21

    The web has seen an explosion of chemistry and biology related resources in the last 15 years: thousands of scientific journals, databases, wikis, blogs and resources are available with a wide variety of types of information. There is a huge need to aggregate and organise this information. However, the sheer number of resources makes it unrealistic to link them all in a centralised manner. Instead, search engines to find information in those resources flourish, and formal languages like Resource Description Framework and Web Ontology Language are increasingly used to allow linking of resources. A recent development is the use of userscripts to change the appearance of web pages, by on-the-fly modification of the web content. This opens possibilities to aggregate information and computational results from different web resources into the web page of one of those resources. Several userscripts are presented that enrich biology and chemistry related web resources by incorporating or linking to other computational or data sources on the web. The scripts make use of Greasemonkey-like plugins for web browsers and are written in JavaScript. Information from third-party resources are extracted using open Application Programming Interfaces, while common Universal Resource Locator schemes are used to make deep links to related information in that external resource. The userscripts presented here use a variety of techniques and resources, and show the potential of such scripts. This paper discusses a number of userscripts that aggregate information from two or more web resources. Examples are shown that enrich web pages with information from other resources, and show how information from web pages can be used to link to, search, and process information in other resources. Due to the nature of userscripts, scientists are able to select those scripts they find useful on a daily basis, as the scripts run directly in their own web browser rather than on the web server. This flexibility allows the scientists to tune the features of web resources to optimise their productivity.

  10. Userscripts for the Life Sciences

    PubMed Central

    Willighagen, Egon L; O'Boyle, Noel M; Gopalakrishnan, Harini; Jiao, Dazhi; Guha, Rajarshi; Steinbeck, Christoph; Wild, David J

    2007-01-01

    Background The web has seen an explosion of chemistry and biology related resources in the last 15 years: thousands of scientific journals, databases, wikis, blogs and resources are available with a wide variety of types of information. There is a huge need to aggregate and organise this information. However, the sheer number of resources makes it unrealistic to link them all in a centralised manner. Instead, search engines to find information in those resources flourish, and formal languages like Resource Description Framework and Web Ontology Language are increasingly used to allow linking of resources. A recent development is the use of userscripts to change the appearance of web pages, by on-the-fly modification of the web content. This opens possibilities to aggregate information and computational results from different web resources into the web page of one of those resources. Results Several userscripts are presented that enrich biology and chemistry related web resources by incorporating or linking to other computational or data sources on the web. The scripts make use of Greasemonkey-like plugins for web browsers and are written in JavaScript. Information from third-party resources are extracted using open Application Programming Interfaces, while common Universal Resource Locator schemes are used to make deep links to related information in that external resource. The userscripts presented here use a variety of techniques and resources, and show the potential of such scripts. Conclusion This paper discusses a number of userscripts that aggregate information from two or more web resources. Examples are shown that enrich web pages with information from other resources, and show how information from web pages can be used to link to, search, and process information in other resources. Due to the nature of userscripts, scientists are able to select those scripts they find useful on a daily basis, as the scripts run directly in their own web browser rather than on the web server. This flexibility allows the scientists to tune the features of web resources to optimise their productivity. PMID:18154664

  11. Rapid Deployment of a RESTful Service for Oceanographic Research Cruises

    NASA Astrophysics Data System (ADS)

    Fu, Linyun; Arko, Robert; Leadbetter, Adam

    2014-05-01

    The Ocean Data Interoperability Platform (ODIP) seeks to increase data sharing across scientific domains and international boundaries, by providing a forum to harmonize diverse regional data systems. ODIP participants from the US include the Rolling Deck to Repository (R2R) program, whose mission is to capture, catalog, and describe the underway/environmental sensor data from US oceanographic research vessels and submit the data to public long-term archives. R2R publishes information online as Linked Open Data, making it widely available using Semantic Web standards. Each vessel, sensor, cruise, dataset, person, organization, funding award, log, report, etc, has a Uniform Resource Identifier (URI). Complex queries that federate results from other data providers are supported, using the SPARQL query language. To facilitate interoperability, R2R uses controlled vocabularies developed collaboratively by the science community (eg. SeaDataNet device categories) and published online by the NERC Vocabulary Server (NVS). In response to user feedback, we are developing a standard programming interface (API) and Web portal for R2R's Linked Open Data. The API provides a set of simple REST-type URLs that are translated on-the-fly into SPARQL queries, and supports common output formats (eg. JSON). We will demonstrate an implementation based on the Epimorphics Linked Data API (ELDA) open-source Java package. Our experience shows that constructing a simple portal with limited schema elements in this way can significantly reduce development time and maintenance complexity.

  12. The quality of online antidepressant drug information: an evaluation of English and Finnish language Web sites.

    PubMed

    Prusti, Marjo; Lehtineva, Susanna; Pohjanoksa-Mäntylä, Marika; Bell, J Simon

    2012-01-01

    The Internet is a frequently used source of drug information, including among people with mental disorders. Online drug information may be narrow in scope, incomplete, and contain errors of omission. To evaluate the quality of online antidepressant drug information in English and Finnish. Forty Web sites were identified using the search terms antidepressants and masennuslääkkeet in English and Finnish, respectively. Included Web sites (14 English, 8 Finnish) were evaluated for aesthetics, interactivity, content coverage, and content correctness using published criteria. All Web sites were assessed using the Date, Author, References, Type, Sponsor (DARTS) and DISCERN quality assessment tools. English and Finnish Web sites had similar aesthetics, content coverage, and content correctness scores. English Web sites were more interactive than Finnish Web sites (P<.05). Overall, adverse drug reactions were covered on 21 of 22 Web sites; however, drug-alcohol interactions were addressed on only 9 of 22 Web sites, and dose was addressed on only 6 of 22 Web sites. Few (2/22 Web sites) provided incorrect information. The DISCERN score was significantly correlated with content coverage (r=0.670, P<.01), content correctness (r=0.663, P<.01), and the DARTS score (r=0.459, P<.05). No Web site provided information about all aspects of antidepressant treatment. Nevertheless, few Web sites provided incorrect information. Both English and Finnish Web sites were similar in terms of aesthetics, content coverage, and content correctness. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Optimizing Crawler4j using MapReduce Programming Model

    NASA Astrophysics Data System (ADS)

    Siddesh, G. M.; Suresh, Kavya; Madhuri, K. Y.; Nijagal, Madhushree; Rakshitha, B. R.; Srinivasa, K. G.

    2017-06-01

    World wide web is a decentralized system that consists of a repository of information on the basis of web pages. These web pages act as a source of information or data in the present analytics world. Web crawlers are used for extracting useful information from web pages for different purposes. Firstly, it is used in web search engines where the web pages are indexed to form a corpus of information and allows the users to query on the web pages. Secondly, it is used for web archiving where the web pages are stored for later analysis phases. Thirdly, it can be used for web mining where the web pages are monitored for copyright purposes. The amount of information processed by the web crawler needs to be improved by using the capabilities of modern parallel processing technologies. In order to solve the problem of parallelism and the throughput of crawling this work proposes to optimize the Crawler4j using the Hadoop MapReduce programming model by parallelizing the processing of large input data. Crawler4j is a web crawler that retrieves useful information about the pages that it visits. The crawler Crawler4j coupled with data and computational parallelism of Hadoop MapReduce programming model improves the throughput and accuracy of web crawling. The experimental results demonstrate that the proposed solution achieves significant improvements with respect to performance and throughput. Hence the proposed approach intends to carve out a new methodology towards optimizing web crawling by achieving significant performance gain.

  14. River Basin Standards Interoperability Pilot

    NASA Astrophysics Data System (ADS)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture tests the combination of Gauge data in a WPS that is triggered by a meteorological alert. The data is translated into OGC WaterML 2.0 time series data format and will be ingested in a SOS 2.0. SOS data is visualized in a SOS Client that is able to handle time series. The meteorological forecast data (with the supervision of an operator manipulating the WPS user interface) ingests with WaterML 2.0 time series and terrain data is input for a flooding modelling algorithm. The WPS is able to produce flooding datasets in the form of coverages that is offered to clients via a WCS 2.0 service or a WMS 1.3 service, and downloaded and visualized by the respective clients. The WPS triggers a notification or an alert that will be monitored from an emergency control response service. Acronyms AS: Alert Service ES: Event Service ICT: Information and Communication Technology NS: Notification Service OGC: Open Geospatial Consortium RIBASE: River Basin Standards Interoperability Pilot SOS: Sensor Observation Service WaterML: Water Markup Language WCS: Web Coverage Service WMS: Web Map Service WPS: Web Processing Service

  15. A Web Browser Interface to Manage the Searching and Organizing of Information on the Web by Learners

    ERIC Educational Resources Information Center

    Li, Liang-Yi; Chen, Gwo-Dong

    2010-01-01

    Information Gathering is a knowledge construction process. Web learners make a plan for their Information Gathering task based on their prior knowledge. The plan is evolved with new information encountered and their mental model is constructed through continuously assimilating and accommodating new information gathered from different Web pages. In…

  16. Development of Download System for Waveform Data Observed at Long-Term Borehole Monitoring System installed in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Araki, E.; Sonoda, A.; Takahashi, N.; Tsuboi, S.

    2015-12-01

    The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP).We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real-time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough.We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site (*1). Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor information. In addition, before data download, user can check that data is available or not by data check function.In this presentation, we briefly introduce NanTroSEIZE and then show our web application system. We also discuss our future plans for developments of monitoring data download system.*1 Long-Term Borehole Monitoring Data Site http://join-web.jamstec.go.jp/borehole/borehole_top_e.html

  17. CliniWeb: managing clinical information on the World Wide Web.

    PubMed

    Hersh, W R; Brown, K E; Donohoe, L C; Campbell, E M; Horacek, A E

    1996-01-01

    The World Wide Web is a powerful new way to deliver on-line clinical information, but several problems limit its value to health care professionals: content is highly distributed and difficult to find, clinical information is not separated from non-clinical information, and the current Web technology is unable to support some advanced retrieval capabilities. A system called CliniWeb has been developed to address these problems. CliniWeb is an index to clinical information on the World Wide Web, providing a browsing and searching interface to clinical content at the level of the health care student or provider. Its database contains a list of clinical information resources on the Web that are indexed by terms from the Medical Subject Headings disease tree and retrieved with the assistance of SAPHIRE. Limitations of the processes used to build the database are discussed, together with directions for future research.

  18. 78 FR 42537 - Agency Information Collection Activities: Online Survey of Web Services Employers; New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ...-NEW] Agency Information Collection Activities: Online Survey of Web Services Employers; New... Information Collection: New information collection. (2) Title of the Form/Collection: Online Survey of Web... sector. It is necessary that USCIS obtains data on the E-Verify Program Web Services. Gaining an...

  19. The Sensor Management for Applied Research Technologies (SMART) Project

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Jedlovec, Gary; Conover, Helen; Botts, Mike; Robin, Alex; Blakeslee, Richard; Hood, Robbie; Ingenthron, Susan; Li, Xiang; Maskey, Manil; hide

    2007-01-01

    NASA seeks on-demand data processing and analysis of Earth science observations to facilitate timely decision-making that can lead to the realization of the practical benefits of satellite instruments, airborne and surface remote sensing systems. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep "learning curve" associated with each sensor, data type, and associated products. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output.

  20. Analysis of governmental Web sites on food safety issues: a global perspective.

    PubMed

    Namkung, Young; Almanza, Barbara A

    2006-10-01

    Despite a growing concern over food safety issues, as well as a growing dependence on the Internet as a source of information, little research has been done to examine the presence and relevance of food safety-related information on Web sites. The study reported here conducted Web site analysis in order to examine the current operational status of governmental Web sites on food safety issues. The study also evaluated Web site usability, especially information dimensionalities such as utility, currency, and relevance of content, from the perspective of the English-speaking consumer. Results showed that out of 192 World Health Organization members, 111 countries operated governmental Web sites that provide information about food safety issues. Among 171 searchable Web sites from the 111 countries, 123 Web sites (71.9 percent) were accessible, and 81 of those 123 (65.9 percent) were available in English. The majority of Web sites offered search engine tools and related links for more information, but their availability and utility was limited. In terms of content, 69.9 percent of Web sites offered information on foodborne-disease outbreaks, compared with 31.5 percent that had travel- and health-related information.

  1. No Longer Conveyor but Creator: Developing an Epistemology of the World Wide Web.

    ERIC Educational Resources Information Center

    Trombley, Laura E. Skandera; Flanagan, William G.

    2001-01-01

    Discusses the impact of the World Wide Web in terms of epistemology. Topics include technological innovations, including new dimensions of virtuality; the accessibility of information; tracking Web use via cookies; how the Web transforms the process of learning and knowing; linking information sources; and the Web as an information delivery…

  2. Handling Internet-Based Health Information: Improving Health Information Web Site Literacy Among Undergraduate Nursing Students.

    PubMed

    Wang, Weiwen; Sun, Ran; Mulvehill, Alice M; Gilson, Courtney C; Huang, Linda L

    2017-02-01

    Patient care problems arise when health care consumers and professionals find health information on the Internet because that information is often inaccurate. To mitigate this problem, nurses can develop Web literacy and share that skill with health care consumers. This study evaluated a Web-literacy intervention for undergraduate nursing students to find reliable Web-based health information. A pre- and postsurvey queried undergraduate nursing students in an informatics course; the intervention comprised lecture, in-class practice, and assignments about health Web site evaluation tools. Data were analyzed using Wilcoxon and ANOVA signed-rank tests. Pre-intervention, 75.9% of participants reported using Web sites to obtain health information. Postintervention, 87.9% displayed confidence in using an evaluation tool. Both the ability to critique health Web sites (p = .005) and confidence in finding reliable Internet-based health information (p = .058) increased. Web-literacy education guides nursing students to find, evaluate, and use reliable Web sites, which improves their ability to deliver safer patient care. [J Nurs Educ. 2017;56(2):110-114.]. Copyright 2017, SLACK Incorporated.

  3. An Extraction Method of an Informative DOM Node from a Web Page by Using Layout Information

    NASA Astrophysics Data System (ADS)

    Tsuruta, Masanobu; Masuyama, Shigeru

    We propose an informative DOM node extraction method from a Web page for preprocessing of Web content mining. Our proposed method LM uses layout data of DOM nodes generated by a generic Web browser, and the learning set consists of hundreds of Web pages and the annotations of informative DOM nodes of those Web pages. Our method does not require large scale crawling of the whole Web site to which the target Web page belongs. We design LM so that it uses the information of the learning set more efficiently in comparison to the existing method that uses the same learning set. By experiments, we evaluate the methods obtained by combining one that consists of the method for extracting the informative DOM node both the proposed method and the existing methods, and the existing noise elimination methods: Heur removes advertisements and link-lists by some heuristics and CE removes the DOM nodes existing in the Web pages in the same Web site to which the target Web page belongs. Experimental results show that 1) LM outperforms other methods for extracting the informative DOM node, 2) the combination method (LM, {CE(10), Heur}) based on LM (precision: 0.755, recall: 0.826, F-measure: 0.746) outperforms other combination methods.

  4. An overview of the web-based Google Earth coincident imaging tool

    USGS Publications Warehouse

    Chander, Gyanesh; Kilough, B.; Gowda, S.

    2010-01-01

    The Committee on Earth Observing Satellites (CEOS) Visualization Environment (COVE) tool is a browser-based application that leverages Google Earth web to display satellite sensor coverage areas. The analysis tool can also be used to identify near simultaneous surface observation locations for two or more satellites. The National Aeronautics and Space Administration (NASA) CEOS System Engineering Office (SEO) worked with the CEOS Working Group on Calibration and Validation (WGCV) to develop the COVE tool. The CEOS member organizations are currently operating and planning hundreds of Earth Observation (EO) satellites. Standard cross-comparison exercises between multiple sensors to compare near-simultaneous surface observations and to identify corresponding image pairs are time-consuming and labor-intensive. COVE is a suite of tools that have been developed to make such tasks easier.

  5. Theoretical Background and Prognostic Modeling for Benchmarking SHM Sensors for Composite Structures

    DTIC Science & Technology

    2010-10-01

    minimum flaw size can be detected by the existing SHM based monitoring methods. Sandwich panels with foam , WebCore and honeycomb structures were...Whether it be hat stiffened, corrugated sandwich, honeycomb sandwich, or foam filled sandwich, all composite structures have one basic handicap in...based monitoring methods. Sandwich panels with foam , WebCore and honeycomb structures were considered for use in this study. Eigenmode frequency

  6. Sensor Nanny, data management services for marine observation operators

    NASA Astrophysics Data System (ADS)

    Loubrieu, Thomas; Détoc, Jérôme; Thorel, Arnaud; Azelmat, Hamza

    2016-04-01

    In marine sciences, the diversity of observed properties (from water physic to contaminants in observed in biological individuals or sediment) and observation methodologies (from manned sampling and analysis in labs to large automated networks of homogeneous platforms) requires different expertises and thus dedicated scientific program (ARGO, EMSO, GLOSS, GOSHIP, OceanSites, GOSUD, Geotrace, SOCAT, member state environment monitoring networks, experimental research…). However, all of them requires similar IT services to support the maintenance of their network (calibrations, deployment strategy, spare part management...) and their data management. In Europe, the National Oceanographic Data Centres coordinated by the IOC/IODE and SeaDataNet provide reliable reference services (e.g. vocabularies, contact directories), standards and long term data preservation. Besides the regional operational oceanographic centres (ROOSes) coordinated by EuroGOOS and Copernicus In-Situ Thematic Assembly Centre provide efficient data management for near real time or delayed mode services focused on physics and bio-geo-chemistry in the water column. Other e-infrastructures, such as euroBIS for biodiversity, are focused on specific disciplines. Beyond the current scope of these well established infrastructures, Sensor Nanny is a web application providing services for operators of observatories to manage their observations on the "cloud". The application stands against the reference services (vocabularies, organization directory) and standard profiles (OGC/Sensor Web Enablement) provided by SeaDataNet. The application provides an on-line editor to graphically describe, literally draw, their observatory (acquisition and processing systems). The observatory description is composed by the user from a palette of hundreds of pre-defined sensors or hardware linked together. In addition, the data providers can upload their data in CSV and netCDF formats on a dropbox-like system. The latest enables to synchronise and safe guard in real-time local data resources on the cloud. The users can thus share their data on-line with their partners. The native format for the observatory and observation description are sensorML and O&M from the OGC/Sensor Web Enablement suite. This provides the flexibility required by the diversity and complexity of the observation programs. The observatory descriptions and observation data are indexed so to be very fluently browsed, filtered and visualized in a portal, with spatio-temporal and keyword criteria, whatever the number of observations (currently 2.5 millions observation points from French research vessels, ARGO profiling floats and EMSO-Azores deep sea observatory). The key component used for the development are owncloud for the file synchronization and sharing and elasticSearch for the scalable indexation of the observatories and observation. The foreseen developments aim at interfacing the application with Information Systems used to manage instrument maintenance (calibration, spare parts), for example LabCollector. Downstream, the application could also be further integrated with marine data services (SeaDataNet, Copernicus, EMODNET, ...). This will help data providers to streamline the publication or their data in these infrastructures. As feedback, the application will provide data providers with usage statistics dashboards. This latest part is funded by JERICO-NEXT project. The application has been also demonstrated in ODIP and SeaDataNet2 project and is being developed further for data providers in AtlantOS.

  7. ShakeMapple : tapping laptop motion sensors to map the felt extents of an earthquake

    NASA Astrophysics Data System (ADS)

    Bossu, Remy; McGilvary, Gary; Kamb, Linus

    2010-05-01

    There is a significant pool of untapped sensor resources available in portable computer embedded motion sensors. Included primarily to detect sudden strong motion in order to park the disk heads to prevent damage to the disks in the event of a fall or other severe motion, these sensors may also be tapped for other uses as well. We have developed a system that takes advantage of the Apple Macintosh laptops' embedded Sudden Motion Sensors to record earthquake strong motion data to rapidly build maps of where and to what extent an earthquake has been felt. After an earthquake, it is vital to understand the damage caused especially in urban environments as this is often the scene for large amounts of damage caused by earthquakes. Gathering as much information from these impacts to determine where the areas that are likely to be most effected, can aid in distributing emergency services effectively. The ShakeMapple system operates in the background, continuously saving the most recent data from the motion sensors. After an earthquake has occurred, the ShakeMapple system calculates the peak acceleration within a time window around the expected arrival and sends that to servers at the EMSC. A map plotting the felt responses is then generated and presented on the web. Because large-scale testing of such an application is inherently difficult, we propose to organize a broadly distributed "simulated event" test. The software will be available for download in April, after which we plan to organize a large-scale test by the summer. At a specified time, participating testers will be asked to create their own strong motion to be registered and submitted by the ShakeMapple client. From these responses, a felt map will be produced representing the broadly-felt effects of the simulated event.

  8. Uncloaking the Scientific Process

    NASA Astrophysics Data System (ADS)

    Leitzell, K.; Meier, W.

    2009-12-01

    Since April 2008, NSIDC has offered daily updates of sea ice data on our Arctic Sea Ice News & Analysis Web page (http://nsidc.org/arcticseaicenews). The images provide near-real-time data to the general public and policy makers, accompanied by monthly or more frequent analysis updates. In February 2009, a crucial channel of the Special Sensor Microwave/Imager (SSM/I) sensor on the Defense Meteorological Satellite Program (DMSP) F15 satellite, from which NSIDC was obtaining near-real-time Arctic sea ice data, suddenly failed. The daily image, which is automatically updated, showed a sudden drop in ice extent of over 50,000 square kilometers. Even after taking the images down, skeptical blogs jumped on the event, posting headlines such as “Errors in publicly presented data - Worth blogging about?” and “NSIDC pulls the plug on sea ice data.” In fact, NSIDC data managers and scientists were well aware that the F15 satellite sensor would eventually fail. NSIDC switched to a previously used back-up sensor, F13, and work to transition to a newer sensor on the F17 satellite had been underway for several weeks. While the deluge of questions from readers and bloggers were frustrating to NSIDC communications staff and scientists, they also presented a chance to give readers a window into the scientific process, and specifically into the collection of satellite data. We decided to publish a clear account of the process used to transition between sensors, as well as a basic explanation of the satellites used to measure sea ice data. While most scientists are familiar with the limitations of near-real-time data, the concept is unfamiliar to many in the general public. The Web page includes links to information on near-real-time data, including notes that images sometimes contain missing or erroneous data, and that delays can occur. However, to a skeptical person, the words that scientists use to describe the processing of final data, including “adjustment,” “bias,” and “correction,” can convey a sinister or political motive. How much information is really necessary for the general public? How much should we share about our processes and motives? This poster/presentation will address some of the dangers and opportunities of presenting near-real-time data to the public, and share some of strategies we used to respond to attacks on our data quality. In order to develop effective responses to climate change, it is important for policymakers to focus on complete data records and not short-term variability in near-real-time data, which may not be indicative of long-term trends or, as in the case presented here, may have errors that need to be corrected. NSIDC clearly states that its near-real-time images and data should not be used for significant conclusions about the long-term state of the climate, but are an initial snapshot for informational purposes. Nonetheless, NSIDC did hear from some policymakers that our data was regularly being used in various briefs within governmental agencies. This has led to greater attention to how our data may be used. However, we hope that our transparency and clear explanations will be valuable in guiding how policymakers employ our data and images in the future.

  9. 78 FR 49480 - Proposed Information Collection; Comment Request; NTIA/FCC Web-based Frequency Coordination System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... Information Collection; Comment Request; NTIA/FCC Web- based Frequency Coordination System AGENCY: National... INFORMATION: I. Abstract The National Telecommunications and Information Administration (NTIA) hosts a web... (RF) bands that are shared on a co-primary basis by federal and non-federal users. The web-based...

  10. Sensor Alerting Capability

    NASA Astrophysics Data System (ADS)

    Henriksson, Jakob; Bermudez, Luis; Satapathy, Goutam

    2013-04-01

    There is a large amount of sensor data generated today by various sensors, from in-situ buoys to mobile underwater gliders. Providing sensor data to the users through standardized services, language and data model is the promise of OGC's Sensor Web Enablement (SWE) initiative. As the amount of data grows it is becoming difficult for data providers, planners and managers to ensure reliability of data and services and to monitor critical data changes. Intelligent Automation Inc. (IAI) is developing a net-centric alerting capability to address these issues. The capability is built on Sensor Observation Services (SOSs), which is used to collect and monitor sensor data. The alerts can be configured at the service level and at the sensor data level. For example it can alert for irregular data delivery events or a geo-temporal statistic of sensor data crossing a preset threshold. The capability provides multiple delivery mechanisms and protocols, including traditional techniques such as email and RSS. With this capability decision makers can monitor their assets and data streams, correct failures or be alerted about a coming phenomena.

  11. Increasing efficiency of information dissemination and collection through the World Wide Web

    Treesearch

    Daniel P. Huebner; Malchus B. Baker; Peter F. Ffolliott

    2000-01-01

    Researchers, managers, and educators have access to revolutionary technology for information transfer through the World Wide Web (Web). Using the Web to effectively gather and distribute information is addressed in this paper. Tools, tips, and strategies are discussed. Companion Web sites are provided to guide users in selecting the most appropriate tool for searching...

  12. Fish freshness detection by a computer screen photoassisted based gas sensor array.

    PubMed

    Alimelli, Adriano; Pennazza, Giorgio; Santonico, Marco; Paolesse, Roberto; Filippini, Daniel; D'Amico, Arnaldo; Lundström, Ingemar; Di Natale, Corrado

    2007-01-23

    In the last years a large number of different measurement methodologies were applied to measure the freshness of fishes. Among them the connection between freshness and headspace composition has been considered by gas chromatographic analysis and from the last two decades by a number of sensors and biosensors aimed at measuring some characteristic indicators (usually amines). More recently also the so-called artificial olfaction systems gathering together many non-specific sensors have shown a certain capability to transduce the global composition of the fish headspace capturing the differences between fresh and spoiled products. One of the main objectives related to the introduction of sensor systems with respect to the analytical methods is the claimed possibility to distribute the freshness control since sensors are expected to be "portable" and "simple". In spite of these objectives, until now sensor systems did not result in any tool that may be broadly distributed. In this paper, we present a chemical sensor array where the optical features of layers of chemicals, sensitive to volatile compounds typical of spoilage processes in fish, are interrogated by a very simple platform based on a computer screen and a web cam. An array of metalloporphyrins is here used to classify fillets of thawed fishes according to their storage days and to monitor the spoilage in filleted anchovies for a time of 8 h. Results indicate a complete identification of the storage days of thawed fillets and a determination of the storage time of anchovies held at room temperature with a root mean square error of validation of about 30 min. The optical system produces a sort of spectral fingerprint containing information about both the absorbance and the emission of the sensitive layer. The system here illustrated, based on computer peripherals, can be easily scaled to any device endowed with a programmable screen and a camera such as cellular phones offering for the first time the possibility to fulfil the sensor expectation of diffused and efficient analytical capabilities.

  13. Rethinking GIS Towards The Vision Of Smart Cities Through CityGML

    NASA Astrophysics Data System (ADS)

    Guney, C.

    2016-10-01

    Smart cities present a substantial growth opportunity in the coming years. The role of GIS in the smart city ecosystem is to integrate different data acquired by sensors in real time and provide better decisions, more efficiency and improved collaboration. Semantically enriched vision of GIS will help evolve smart cities into tomorrow's much smarter cities since geospatial/location data and applications may be recognized as a key ingredient of smart city vision. However, it is need for the Geospatial Information communities to debate on "Is 3D Web and mobile GIS technology ready for smart cities?" This research places an emphasis on the challenges of virtual 3D city models on the road to smarter cities.

  14. Model-driven methodology for rapid deployment of smart spaces based on resource-oriented architectures.

    PubMed

    Corredor, Iván; Bernardos, Ana M; Iglesias, Josué; Casar, José R

    2012-01-01

    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.

  15. AirNow Information Management System - Global Earth Observation System of Systems Data Processor for Real-Time Air Quality Data Products

    NASA Astrophysics Data System (ADS)

    Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.

    2012-12-01

    Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor (ASDP) was recently developed to merge PM2.5 estimates from National Aeronautics and Space Administration (NASA) satellite data and AirNow observational data, creating more precise maps and gridded data products for under-monitored areas. The ASDP can easily incorporate other data feeds, including fire and smoke locations, to build enhanced real-time air quality data products. In this presentation, we provide an overview of the features and functions of IMS, an explanation of how data moves through IMS, the rationale of the system architecture, and highlights of the ASDP as an example of the modularity and scalability of IMS.

  16. Using Open Web APIs in Teaching Web Mining

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Li, Xin; Chau, M.; Ho, Yi-Jen; Tseng, Chunju

    2009-01-01

    With the advent of the World Wide Web, many business applications that utilize data mining and text mining techniques to extract useful business information on the Web have evolved from Web searching to Web mining. It is important for students to acquire knowledge and hands-on experience in Web mining during their education in information systems…

  17. Concept Mapping Your Web Searches: A Design Rationale and Web-Enabled Application

    ERIC Educational Resources Information Center

    Lee, Y.-J.

    2004-01-01

    Although it has become very common to use World Wide Web-based information in many educational settings, there has been little research on how to better search and organize Web-based information. This paper discusses the shortcomings of Web search engines and Web browsers as learning environments and describes an alternative Web search environment…

  18. Understanding Instructional Support Needs of Emerging Internet Users for Web-Based Information Seeking

    ERIC Educational Resources Information Center

    Gupta, Naman K.; Penstein Rosé, Carolyn

    2010-01-01

    As the wealth of information available on the Web increases, Web-based information seeking becomes a more and more important skill for supporting both formal education and lifelong learning. However, Web-based information access poses hurdles that must be overcome by certain student populations, such as low English competency users, low literacy…

  19. Quality and accuracy of sexual health information web sites visited by young people.

    PubMed

    Buhi, Eric R; Daley, Ellen M; Oberne, Alison; Smith, Sarah A; Schneider, Tali; Fuhrmann, Hollie J

    2010-08-01

    We assessed online sexual health information quality and accuracy and the utility of web site quality indicators. In reviewing 177 sexual health web sites, we found below average quality but few inaccuracies. Web sites with the most technically complex information and/or controversial topics contained the most inaccuracies. We found no association between inaccurate information and web site quality. (c) 2010 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  20. Big data in wildlife research: remote web-based monitoring of hibernating black bears.

    PubMed

    Laske, Timothy G; Garshelis, David L; Iaizzo, Paul A

    2014-12-11

    Numerous innovations for the management and collection of "big data" have arisen in the field of medicine, including implantable computers and sensors, wireless data transmission, and web-based repositories for collecting and organizing information. Recently, human clinical devices have been deployed in captive and free-ranging wildlife to aid in the characterization of both normal physiology and the interaction of animals with their environment, including reactions to humans. Although these devices have had a significant impact on the types and quantities of information that can be collected, their utility has been limited by internal memory capacities, the efforts required to extract and analyze information, and by the necessity to handle the animals in order to retrieve stored data. We surgically implanted miniaturized cardiac monitors (1.2 cc, Reveal LINQ™, Medtronic Inc.), a newly developed human clinical system, into hibernating wild American black bears (N = 6). These devices include wireless capabilities, which enabled frequent transmissions of detailed physiological data from bears in their remote den sites to a web-based data storage and management system. Solar and battery powered telemetry stations transmitted detailed physiological data over the cellular network during the winter months. The system provided the transfer of large quantities of data in near-real time. Observations included changes in heart rhythms associated with birthing and caring for cubs, and in all bears, long periods without heart beats (up to 16 seconds) occurred during each respiratory cycle. For the first time, detailed physiological data were successfully transferred from an animal in the wild to a web-based data collection and management system, overcoming previous limitations on the quantities of data that could be transferred. The system provides an opportunity to detect unusual events as they are occurring, enabling investigation of the animal and site shortly afterwards. Although the current study was limited to bears in winter dens, we anticipate that future systems will transmit data from implantable monitors to wearable transmitters, allowing for big data transfer on non-stationary animals.

  1. NASA Spacecraft Watches as Eruption Reshapes African Volcano

    NASA Image and Video Library

    2017-02-23

    On Jan. 24, 2017, the Hyperion Imager on NASA's Earth Observing 1 (EO-1) spacecraft observed a new eruption at Erta'Ale volcano, Ethiopia, from an altitude of 438 miles (705 kilometers). Data were collected at a resolution of 98 feet (30 meters) per pixel at different visible and infrared wavelengths and were combined to create these images. A visible-wavelength image is on the left. An infrared image is shown on the right. The infrared image emphasizes the hottest areas and reveals a spectacular rift eruption, where a crack opens and lava gushes forth, fountaining into the air. The lava flows spread away from the crack. Erta'Ale is the location of a long-lived lava lake, and it remains to be seen if this survives this new eruption. The observation was scheduled via the Volcano Sensor Web, a network of sensors linked by artificial intelligence software to create an autonomous global monitoring program of satellite observations of volcanoes. The Volcano Sensor Web was alerted to this new activity by data from another spacecraft. http://photojournal.jpl.nasa.gov/catalog/PIA11239

  2. Architecture and the Web.

    ERIC Educational Resources Information Center

    Money, William H.

    Instructors should be concerned with how to incorporate the World Wide Web into an information systems (IS) curriculum organized across three areas of knowledge: information technology, organizational and management concepts, and theory and development of systems. The Web fits broadly into the information technology component. For the Web to be…

  3. Managing the Web-Enhanced Geographic Information Service.

    ERIC Educational Resources Information Center

    Stephens, Denise

    1997-01-01

    Examines key management issues involved in delivering geographic information services on the World Wide Web, using the Geographic Information Center (GIC) program at the University of Virginia Library as a reference. Highlights include integrating the Web into services; building collections for Web delivery; and evaluating spatial information…

  4. IT Middleware Services for an 'Exploration Web'

    NASA Technical Reports Server (NTRS)

    Lamarra, Norm

    2003-01-01

    This slide presentation reviews the application of middleware in space exploration, and satellite communications. The aim of the use of Space middleware is ot use remote sensors and other resources more efficiently.

  5. Evaluation of Web Accessibility of Consumer Health Information Websites

    PubMed Central

    Zeng, Xiaoming; Parmanto, Bambang

    2003-01-01

    The objectives of the study are to construct a comprehensive framework for web accessibility evaluation, to evaluate the current status of web accessibility of consumer health information websites and to investigate the relationship between web accessibility and property of the websites. We selected 108 consumer health information websites from the directory service of a Web search engine. We used Web accessibility specifications to construct a framework for the measurement of Web Accessibility Barriers (WAB) of website. We found that none of the websites is completely accessible to people with disabilities, but governmental and educational health information websites exhibit better performance on web accessibility than other categories of websites. We also found that the correlation between the WAB score and the popularity of a website is statistically significant. PMID:14728272

  6. Evaluation of web accessibility of consumer health information websites.

    PubMed

    Zeng, Xiaoming; Parmanto, Bambang

    2003-01-01

    The objectives of the study are to construct a comprehensive framework for web accessibility evaluation, to evaluate the current status of web accessibility of consumer health information websites and to investigate the relationship between web accessibility and property of the websites. We selected 108 consumer health information websites from the directory service of a Web search engine. We used Web accessibility specifications to construct a framework for the measurement of Web Accessibility Barriers (WAB) of website. We found that none of the websites is completely accessible to people with disabilities, but governmental and educational health information websites exhibit better performance on web accessibility than other categories of websites. We also found that the correlation between the WAB score and the popularity of a website is statistically significant.

  7. Evaluation of the content and accessibility of web sites for accredited orthopaedic sports medicine fellowships.

    PubMed

    Mulcahey, Mary K; Gosselin, Michelle M; Fadale, Paul D

    2013-06-19

    The Internet is a common source of information for orthopaedic residents applying for sports medicine fellowships, with the web sites of the American Orthopaedic Society for Sports Medicine (AOSSM) and the San Francisco Match serving as central databases. We sought to evaluate the web sites for accredited orthopaedic sports medicine fellowships with regard to content and accessibility. We reviewed the existing web sites of the ninety-five accredited orthopaedic sports medicine fellowships included in the AOSSM and San Francisco Match databases from February to March 2012. A Google search was performed to determine the overall accessibility of program web sites and to supplement information obtained from the AOSSM and San Francisco Match web sites. The study sample consisted of the eighty-seven programs whose web sites connected to information about the fellowship. Each web site was evaluated for its informational value. Of the ninety-five programs, fifty-one (54%) had links listed in the AOSSM database. Three (3%) of all accredited programs had web sites that were linked directly to information about the fellowship. Eighty-eight (93%) had links listed in the San Francisco Match database; however, only five (5%) had links that connected directly to information about the fellowship. Of the eighty-seven programs analyzed in our study, all eighty-seven web sites (100%) provided a description of the program and seventy-six web sites (87%) included information about the application process. Twenty-one web sites (24%) included a list of current fellows. Fifty-six web sites (64%) described the didactic instruction, seventy (80%) described team coverage responsibilities, forty-seven (54%) included a description of cases routinely performed by fellows, forty-one (47%) described the role of the fellow in seeing patients in the office, eleven (13%) included call responsibilities, and seventeen (20%) described a rotation schedule. Two Google searches identified direct links for 67% to 71% of all accredited programs. Most accredited orthopaedic sports medicine fellowships lack easily accessible or complete web sites in the AOSSM or San Francisco Match databases. Improvement in the accessibility and quality of information on orthopaedic sports medicine fellowship web sites would facilitate the ability of applicants to obtain useful information.

  8. MiniFluo fluorescence sensor, advances in FDOM Ocean Measurements

    NASA Astrophysics Data System (ADS)

    Cyr, Frédéric; Tedetti, Marc; Goutx, Madeleine

    2017-04-01

    As part of the European project "Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management (NeXOS)", we developed the MiniFluo, a glider-compatible optical sensor for measurements of fluorescent dissolved organic matter (FDOM). In situ applications of the MiniFluo are presented here. The configuration used targets both natural (Tryptophan) and an anthropogenic (Phenanthrene) DOM fluorophores. Observations from three glider campaigns in the NW Mediterranean (Fall 2015 and Spring and Summer 2016) are presented. It is shown that the use of the Minifluo highlights new features of DOM dynamics in the region. For example, the Tryptophan (an amino-acid traditionally used as a tracer for waste waters) is found here closely related to open sea Chl-a fluorescence. Differences between Chl-a and Tryptophan fluorescence also give subtle information on seasonal changes in ecosystem structure and DOM release that could not be observed with traditional glider measurements. The study also highlights the presence of phenanthrene (an anthropogenic polycyclic aromatic hydrocarbon (PAH) in the surface and sub-surface waters of the Mediterranean. Implications of these finding will be put in the context of both the Mediterranean Sea DOM dynamics and also the ocean carbon cycle, from which the Dissolved Organic Carbon pool remains qualitatively unknown.

  9. The Implementation Internet of Things(IoT) Technology in Real Time Monitoring of Electrical Quantities

    NASA Astrophysics Data System (ADS)

    Despa, D.; Nama, G. F.; Muhammad, M. A.; Anwar, K.

    2018-04-01

    Electrical quantities such as Voltage, Current, Power, Power Factor, Energy, and Frequency in electrical power system tends to fluctuate, as a result of load changes, disturbances, or other abnormal states. The change-state in electrical quantities should be identify immediately, otherwise it can lead to serious problem for whole system. Therefore a necessity is required to determine the condition of electricity change-state quickly and appropriately in order to make effective decisions. Online monitoring of power distribution system based on Internet of Things (IoT) technology was deploy and implemented on Department of Mechanical Engineering University of Lampung (Unila), especially at three-phase main distribution panel H-building. The measurement system involve multiple sensors such current sensors and voltage sensors, while data processing conducted by Arduino, the measurement data stored in to the database server and shown in a real-time through a web-based application. This measurement system has several important features especially for realtime monitoring, robust data acquisition and logging, system reporting, so it will produce an important information that can be used for various purposes of future power analysis such estimation and planning. The result of this research shown that the condition of electrical power system at H-building performed unbalanced load, which often leads to drop-voltage condition

  10. The Great War: Online Resources.

    ERIC Educational Resources Information Center

    Duncanson, Bruce

    2002-01-01

    Presents an annotated bibliography of Web sites about World War I. Includes: (1) general Web sites; (2) Web sites with information during the war; (3) Web sites with information about post-World War I; (4) Web sites that provide photos, sound files of speeches, and propaganda posters; and (5) Web sites with lesson plans. (CMK)

  11. 78 FR 60303 - Agency Information Collection Activities: Online Survey of Web Services Employers; New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ...-NEW] Agency Information Collection Activities: Online Survey of Web Services Employers; New... Web site at http://www.Regulations.gov under e-Docket ID number USCIS-2013- 0003. When submitting... information collection. (2) Title of the Form/Collection: Online Survey of Web Services Employers. (3) Agency...

  12. 78 FR 76187 - 30-Day Notice of Proposed Information Collection: Exchange Programs Alumni Web Site Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ...: Exchange Programs Alumni Web Site Registration ACTION: Notice of request for public comment and submission... Information Collection: Exchange Programs Alumni Web site Registration. OMB Control Number: 1405-0192. Type of... proposed collection: The International Exchange Alumni Web site requires information to process users...

  13. Introduction to the JASIST Special Topic Issue on Web Retrieval and Mining: A Machine Learning Perspective.

    ERIC Educational Resources Information Center

    Chen, Hsinchun

    2003-01-01

    Discusses information retrieval techniques used on the World Wide Web. Topics include machine learning in information extraction; relevance feedback; information filtering and recommendation; text classification and text clustering; Web mining, based on data mining techniques; hyperlink structure; and Web size. (LRW)

  14. How Japanese students characterize information from web-sites.

    PubMed

    Iwahara, A; Yamada, M; Hatta, T; Kawakami, A; Okamoto, M

    2000-12-01

    How 352 Japanese university students regard web-site information was investigated by two kinds of survey. Application of correspondence analysis and cluster analysis to the questionnaire responses to the web-site advertisement showed students regarded a web-site as a new alien medium which is different from current media. Students regarded web-sites as simply complicated, intellectual, and impermanent, or not memorable. Students got precise information from web-sites but they did not use it in making decisions to purchase goods.

  15. Information-computational platform for collaborative multidisciplinary investigations of regional climatic changes and their impacts

    NASA Astrophysics Data System (ADS)

    Gordov, Evgeny; Lykosov, Vasily; Krupchatnikov, Vladimir; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara

    2013-04-01

    Analysis of growing volume of related to climate change data from sensors and model outputs requires collaborative multidisciplinary efforts of researchers. To do it timely and in reliable way one needs in modern information-computational infrastructure supporting integrated studies in the field of environmental sciences. Recently developed experimental software and hardware platform Climate (http://climate.scert.ru/) provides required environment for regional climate change related investigations. The platform combines modern web 2.0 approach, GIS-functionality and capabilities to run climate and meteorological models, process large geophysical datasets and support relevant analysis. It also supports joint software development by distributed research groups, and organization of thematic education for students and post-graduate students. In particular, platform software developed includes dedicated modules for numerical processing of regional and global modeling results for consequent analysis and visualization. Also run of integrated into the platform WRF and «Planet Simulator» models, modeling results data preprocessing and visualization is provided. All functions of the platform are accessible by a user through a web-portal using common graphical web-browser in the form of an interactive graphical user interface which provides, particularly, capabilities of selection of geographical region of interest (pan and zoom), data layers manipulation (order, enable/disable, features extraction) and visualization of results. Platform developed provides users with capabilities of heterogeneous geophysical data analysis, including high-resolution data, and discovering of tendencies in climatic and ecosystem changes in the framework of different multidisciplinary researches. Using it even unskilled user without specific knowledge can perform reliable computational processing and visualization of large meteorological, climatic and satellite monitoring datasets through unified graphical web-interface. Partial support of RF Ministry of Education and Science grant 8345, SB RAS Program VIII.80.2 and Projects 69, 131, 140 and APN CBA2012-16NSY project is acknowledged.

  16. Validity and client use of information from the World Wide Web regarding veterinary anesthesia in dogs.

    PubMed

    Hofmeister, Erik H; Watson, Victoria; Snyder, Lindsey B C; Love, Emma J

    2008-12-15

    To determine the validity of the information on the World Wide Web concerning veterinary anesthesia in dogs and to determine the methods dog owners use to obtain that information. Web-based search and client survey. 73 Web sites and 92 clients. Web sites were scored on a 5-point scale for completeness and accuracy of information about veterinary anesthesia by 3 board-certified anesthesiologists. A search for anesthetic information regarding 49 specific breeds of dogs was also performed. A survey was distributed to the clients who visited the University of Georgia Veterinary Teaching Hospital during a 4-month period to solicit data about sources used by clients to obtain veterinary medical information and the manner in which information obtained from Web sites was used. The general search identified 73 Web sites that included information on veterinary anesthesia; these sites received a mean score of 3.4 for accuracy and 2.5 for completeness. Of 178 Web sites identified through the breed-specific search, 57 (32%) indicated that a particular breed was sensitive to anesthesia. Of 83 usable, completed surveys, 72 (87%) indicated the client used the Web for veterinary medical information. Fifteen clients (18%) indicated they believed their animal was sensitive to anesthesia because of its breed. Information available on the internet regarding anesthesia in dogs is generally not complete and may be misleading with respect to risks to specific breeds. Consequently, veterinarians should appropriately educate clients regarding anesthetic risk to their particular dog.

  17. Systematic Review of Quality of Patient Information on Phalloplasty in the Internet.

    PubMed

    Karamitros, Georgios A; Kitsos, Nikolaos A; Sapountzis, Stamatis

    2017-12-01

    An increasing number of patients, considering aesthetic surgery, use Internet health information as their first source of information. However, the quality of information available in the Internet on phalloplasty is currently unknown. This study aimed to assess the quality of patient information on phalloplasty available in the Internet. The assessment of the Web sites was based on the modified Ensuring Quality Information for Patients (EQIP) instrument (36 items). Three hundred Web sites were identified by the most popular Web search engines. Ninety Web sites were assessed after, duplicates, irrelevant sources and Web sites in other languages rather than English were excluded. Only 16 (18%) Web sites addressed >21 items, and scores tended to be higher for Web sites developed by academic centers and the industry than for Web sites developed by private practicing surgeons. The EQIP score achieved by Web sites ranged between 4 and 29 of the total 36 points, with a median value of 17.5 points (interquartile range, 13-21). The top 5 Web sites with the highest scores were identified. The quality of patient information on phalloplasty in the Internet is substandard, and the existing Web sites present inadequate information. There is a dire need to improve the quality of Internet phalloplasty resources for potential patients who might consider this procedure. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  18. WebDMS: A Web-Based Data Management System for Environmental Data

    NASA Astrophysics Data System (ADS)

    Ekstrand, A. L.; Haderman, M.; Chan, A.; Dye, T.; White, J. E.; Parajon, G.

    2015-12-01

    DMS is an environmental Data Management System to manage, quality-control (QC), summarize, document chain-of-custody, and disseminate data from networks ranging in size from a few sites to thousands of sites, instruments, and sensors. The server-client desktop version of DMS is used by local and regional air quality agencies (including the Bay Area Air Quality Management District, the South Coast Air Quality Management District, and the California Air Resources Board), the EPA's AirNow Program, and the EPA's AirNow-International (AirNow-I) program, which offers countries the ability to run an AirNow-like system. As AirNow's core data processing engine, DMS ingests, QCs, and stores real-time data from over 30,000 active sensors at over 5,280 air quality and meteorological sites from over 130 air quality agencies across the United States. As part of the AirNow-I program, several instances of DMS are deployed in China, Mexico, and Taiwan. The U.S. Department of State's StateAir Program also uses DMS for five regions in China and plans to expand to other countries in the future. Recent development has begun to migrate DMS from an onsite desktop application to WebDMS, a web-based application designed to take advantage of cloud hosting and computing services to increase scalability and lower costs. WebDMS will continue to provide easy-to-use data analysis tools, such as time-series graphs, scatterplots, and wind- or pollution-rose diagrams, as well as allowing data to be exported to external systems such as the EPA's Air Quality System (AQS). WebDMS will also provide new GIS analysis features and a suite of web services through a RESTful web API. These changes will better meet air agency needs and allow for broader national and international use (for example, by the AirNow-I partners). We will talk about the challenges and advantages of migrating DMS to the web, modernizing the DMS user interface, and making it more cost-effective to enhance and maintain over time.

  19. A SMART groundwater portal: An OGC web services orchestration framework for hydrology to improve data access and visualisation in New Zealand

    NASA Astrophysics Data System (ADS)

    Klug, Hermann; Kmoch, Alexander

    2014-08-01

    Transboundary and cross-catchment access to hydrological data is the key to designing successful environmental policies and activities. Electronic maps based on distributed databases are fundamental for planning and decision making in all regions and for all spatial and temporal scales. Freshwater is an essential asset in New Zealand (and globally) and the availability as well as accessibility of hydrological information held by or held for public authorities and businesses are becoming a crucial management factor. Access to and visual representation of environmental information for the public is essential for attracting greater awareness of water quality and quantity matters. Detailed interdisciplinary knowledge about the environment is required to ensure that the environmental policy-making community of New Zealand considers regional and local differences of hydrological statuses, while assessing the overall national situation. However, cross-regional and inter-agency sharing of environmental spatial data is complex and challenging. In this article, we firstly provide an overview of the state of the art standard compliant techniques and methodologies for the practical implementation of simple, measurable, achievable, repeatable, and time-based (SMART) hydrological data management principles. Secondly, we contrast international state of the art data management developments with the present status for groundwater information in New Zealand. Finally, for the topics (i) data access and harmonisation, (ii) sensor web enablement and (iii) metadata, we summarise our findings, provide recommendations on future developments and highlight the specific advantages resulting from a seamless view, discovery, access, and analysis of interoperable hydrological information and metadata for decision making.

  20. Emergency Response Virtual Environment for Safe Schools

    NASA Technical Reports Server (NTRS)

    Wasfy, Ayman; Walker, Teresa

    2008-01-01

    An intelligent emergency response virtual environment (ERVE) that provides emergency first responders, response planners, and managers with situational awareness as well as training and support for safe schools is presented. ERVE incorporates an intelligent agent facility for guiding and assisting the user in the context of the emergency response operations. Response information folders capture key information about the school. The system enables interactive 3D visualization of schools and academic campuses, including the terrain and the buildings' exteriors and interiors in an easy to use Web..based interface. ERVE incorporates live camera and sensors feeds and can be integrated with other simulations such as chemical plume simulation. The system is integrated with a Geographical Information System (GIS) to enable situational awareness of emergency events and assessment of their effect on schools in a geographic area. ERVE can also be integrated with emergency text messaging notification systems. Using ERVE, it is now possible to address safe schools' emergency management needs with a scaleable, seamlessly integrated and fully interactive intelligent and visually compelling solution.

  1. Analysis of pathology department Web sites and practical recommendations.

    PubMed

    Nero, Christopher; Dighe, Anand S

    2008-09-01

    There are numerous customers for pathology departmental Web sites, including pathology department staff, clinical staff, residency applicants, job seekers, and other individuals outside the department seeking department information. Despite the increasing importance of departmental Web sites as a means of distributing information, no analysis has been done to date of the content and usage of pathology department Web sites. In this study, we analyzed pathology department Web sites to examine the elements present on each site and to evaluate the use of search technology on these sites. Further, we examined the usage patterns of our own departmental Internet and internet Web sites to better understand the users of pathology Web sites. We reviewed selected departmental pathology Web sites and analyzed their content and functionality. Our institution's departmental pathology Web sites were modified to enable detailed information to be stored regarding users and usage patterns, and that information was analyzed. We demonstrate considerable heterogeneity in departmental Web sites with many sites lacking basic content and search features. In addition, we demonstrate that increasing the traffic of a department's informational Web sites may result in reduced phone inquiries to the laboratory. We propose recommendations for pathology department Web sites to maximize promotion of a department's mission. A departmental pathology Web site is an essential communication tool for all pathology departments, and attention to the users and content of the site can have operational impact.

  2. A systematic review of patient inflammatory bowel disease information resources on the World Wide Web.

    PubMed

    Bernard, André; Langille, Morgan; Hughes, Stephanie; Rose, Caren; Leddin, Desmond; Veldhuyzen van Zanten, Sander

    2007-09-01

    The Internet is a widely used information resource for patients with inflammatory bowel disease, but there is variation in the quality of Web sites that have patient information regarding Crohn's disease and ulcerative colitis. The purpose of the current study is to systematically evaluate the quality of these Web sites. The top 50 Web sites appearing in Google using the terms "Crohn's disease" or "ulcerative colitis" were included in the study. Web sites were evaluated using a (a) Quality Evaluation Instrument (QEI) that awarded Web sites points (0-107) for specific information on various aspects of inflammatory bowel disease, (b) a five-point Global Quality Score (GQS), (c) two reading grade level scores, and (d) a six-point integrity score. Thirty-four Web sites met the inclusion criteria, 16 Web sites were excluded because they were portals or non-IBD oriented. The median QEI score was 57 with five Web sites scoring higher than 75 points. The median Global Quality Score was 2.0 with five Web sites achieving scores of 4 or 5. The average reading grade level score was 11.2. The median integrity score was 3.0. There is marked variation in the quality of the Web sites containing information on Crohn's disease and ulcerative colitis. Many Web sites suffered from poor quality but there were five high-scoring Web sites.

  3. Information Retrieval System for Japanese Standard Disease-Code Master Using XML Web Service

    PubMed Central

    Hatano, Kenji; Ohe, Kazuhiko

    2003-01-01

    Information retrieval system of Japanese Standard Disease-Code Master Using XML Web Service is developed. XML Web Service is a new distributed processing system by standard internet technologies. With seamless remote method invocation of XML Web Service, users are able to get the latest disease code master information from their rich desktop applications or internet web sites, which refer to this service. PMID:14728364

  4. A review of guidelines on home drug testing web sites for parents.

    PubMed

    Washio, Yukiko; Fairfax-Columbo, Jaymes; Ball, Emily; Cassey, Heather; Arria, Amelia M; Bresani, Elena; Curtis, Brenda L; Kirby, Kimberly C

    2014-01-01

    To update and extend prior work reviewing Web sites that discuss home drug testing for parents, and assess the quality of information that the Web sites provide, to assist them in deciding when and how to use home drug testing. We conducted a worldwide Web search that identified 8 Web sites providing information for parents on home drug testing. We assessed the information on the sites using a checklist developed with field experts in adolescent substance abuse and psychosocial interventions that focus on urine testing. None of the Web sites covered all the items on the 24-item checklist, and only 3 covered at least half of the items (12, 14, and 21 items, respectively). The remaining 5 Web sites covered less than half of the checklist items. The mean number of items covered by the Web sites was 11. Among the Web sites that we reviewed, few provided thorough information to parents regarding empirically supported strategies to effectively use drug testing to intervene on adolescent substance use. Furthermore, most Web sites did not provide thorough information regarding the risks and benefits to inform parents' decision to use home drug testing. Empirical evidence regarding efficacy, benefits, risks, and limitations of home drug testing is needed.

  5. Understanding microbial/DOM interactions using fluorescence and flow cytometry

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Rushworth, Cathy; Attridge, John; Anesio, Alexandre; Cox, Tim; Reynolds, Darren

    2015-04-01

    The transformation and movement of dissolved organic carbon (DOC) within freshwater aquatic systems is an important factor in the global cycling of carbon. DOC within aquatic systems is known to underpin the microbial food web and therefore plays an essential role in supporting and maintaining the aquatic ecosystem. Despite this the interactions between bacteria and dissolved organic matter (DOM) are not well understood, although the literature indicates that the microbial processing of bioavailable DOM is essential during the production of autochthonous, labile, DOM. DOM can be broadly characterised by its fluorescing properties and Coble et al. (2014) define terrestrially derived DOM as exhibiting "peak C" fluorescence, whilst labile microbially derived DOM is defined as showing "peak T" fluorescence. Our work explores the microbial/DOM interactions by analysing aquatic samples using fluorescence excitation and emission matrices (EEMs) in conjunction with microbial consumption of dissolved oxygen. Environmental and synthetic water samples were subjected to fluorescence characterisation using both fluorescence spectroscopy and in situ fluorescence sensors (Chelsea Technologies Group Ltd.). PARAFAC analysis and peak picking were performed on EEMs and compared with flow cytometry data, used to quantify bacterial numbers present within samples. Synthetic samples were created using glucose, glutamic acid, nutrient-rich water and a standard bacterial seed. Synthetic samples were provided with terrestrially derived DOM via the addition of an aliquot of environmental water. Using a closed system approach, samples were incubated over time (up to a maximum of 20 days) and analysed at pre-defined intervals. The main focus of our work is to improve our understanding of microbial/DOM interactions and how these interactions affect both the DOM characteristics and microbial food web in freshwater aquatic systems. The information gained, in relation to the origin, microbial processing and subsequent production of DOM, will inform the development of a new generation of in situ fluorescence sensors. Ultimately, our aim is develop a novel technology that enables the monitoring of ecosystem health in freshwater aquatic systems.

  6. The Earth Observation Monitor - Automated monitoring and alerting for spatial time-series data based on OGC web services

    NASA Astrophysics Data System (ADS)

    Eberle, J.; Hüttich, C.; Schmullius, C.

    2014-12-01

    Spatial time series data are freely available around the globe from earth observation satellites and meteorological stations for many years until now. They provide useful and important information to detect ongoing changes of the environment; but for end-users it is often too complex to extract this information out of the original time series datasets. This issue led to the development of the Earth Observation Monitor (EOM), an operational framework and research project to provide simple access, analysis and monitoring tools for global spatial time series data. A multi-source data processing middleware in the backend is linked to MODIS data from Land Processes Distributed Archive Center (LP DAAC) and Google Earth Engine as well as daily climate station data from NOAA National Climatic Data Center. OGC Web Processing Services are used to integrate datasets from linked data providers or external OGC-compliant interfaces to the EOM. Users can either use the web portal (webEOM) or the mobile application (mobileEOM) to execute these processing services and to retrieve the requested data for a given point or polygon in userfriendly file formats (CSV, GeoTiff). Beside providing just data access tools, users can also do further time series analyses like trend calculations, breakpoint detections or the derivation of phenological parameters from vegetation time series data. Furthermore data from climate stations can be aggregated over a given time interval. Calculated results can be visualized in the client and downloaded for offline usage. Automated monitoring and alerting of the time series data integrated by the user is provided by an OGC Sensor Observation Service with a coupled OGC Web Notification Service. Users can decide which datasets and parameters are monitored with a given filter expression (e.g., precipitation value higher than x millimeter per day, occurrence of a MODIS Fire point, detection of a time series anomaly). Datasets integrated in the SOS service are updated in near-realtime based on the linked data providers mentioned above. An alert is automatically pushed to the user if the new data meets the conditions of the registered filter expression. This monitoring service is available on the web portal with alerting by email and within the mobile app with alerting by email and push notification.

  7. Health information seeking and the World Wide Web: an uncertainty management perspective.

    PubMed

    Rains, Stephen A

    2014-01-01

    Uncertainty management theory was applied in the present study to offer one theoretical explanation for how individuals use the World Wide Web to acquire health information and to help better understand the implications of the Web for information seeking. The diversity of information sources available on the Web and potential to exert some control over the depth and breadth of one's information-acquisition effort is argued to facilitate uncertainty management. A total of 538 respondents completed a questionnaire about their uncertainty related to cancer prevention and information-seeking behavior. Consistent with study predictions, use of the Web for information seeking interacted with respondents' desired level of uncertainty to predict their actual level of uncertainty about cancer prevention. The results offer evidence that respondents who used the Web to search for cancer information were better able than were respondents who did not seek information to achieve a level of uncertainty commensurate with the level of uncertainty they desired.

  8. Inertial sensor-based methods in walking speed estimation: a systematic review.

    PubMed

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  9. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review

    PubMed Central

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm. PMID:22778632

  10. Evaluation of Norwegian cancer hospitals' Web sites and explorative survey among cancer patients on their use of the Internet

    PubMed Central

    2001-01-01

    Background Hospital homepages should provide comprehensive information on the hospital's services, such as departments and treatments available, prices, waiting time, leisure facilities, and other information important for patients and their relatives. Norway, with its population of approximately 4.3 million, ranks among the top countries globally for its ability to absorb and use technology. It is unclear to what degree Norwegian hospitals and patients use the Internet for information about health services. Objectives This study was undertaken to evaluate the quality of the biggest Norwegian cancer hospitals' Web sites and to gather some preliminary data on patients' use of the Internet. Methods In January 2001, we analyzed Web sites of 5 of the 7 biggest Norwegian hospitals treating cancer patients using a scoring system. The scoring instrument was based on recommendations developed by the Norwegian Central Information Service for Web sites and reflects the scope and depth of service information offered on hospital Web pages. In addition, 31 cancer patients visiting one hospital-based medical oncologist were surveyed about their use of the Internet. Results Of the 7 hospitals, 5 had a Web site. The Web sites differed markedly in quality. Types of information included - and number of Web sites that included each type of information - were, for example: search option, 1; interpreter service, 2; date of last update, 2; postal address, phone number, and e-mail service, 3; information in English, 2. None of the Web sites included information on waiting time or prices. Of the 31 patients surveyed, 12 had personal experience using the Internet and 4 had searched for medical information. The Internet users were significantly younger (mean age 47.8 years, range 28.4-66.8 years) than the nonusers (mean age 61.8 years, range 33.1-90.0 years) ( P= 0.007). Conclusions The hospitals' Web sites offer cancer patients and relatives useful information, but the Web sites were not impressive. PMID:11772545

  11. VisGets: coordinated visualizations for web-based information exploration and discovery.

    PubMed

    Dörk, Marian; Carpendale, Sheelagh; Collins, Christopher; Williamson, Carey

    2008-01-01

    In common Web-based search interfaces, it can be difficult to formulate queries that simultaneously combine temporal, spatial, and topical data filters. We investigate how coordinated visualizations can enhance search and exploration of information on the World Wide Web by easing the formulation of these types of queries. Drawing from visual information seeking and exploratory search, we introduce VisGets--interactive query visualizations of Web-based information that operate with online information within a Web browser. VisGets provide the information seeker with visual overviews of Web resources and offer a way to visually filter the data. Our goal is to facilitate the construction of dynamic search queries that combine filters from more than one data dimension. We present a prototype information exploration system featuring three linked VisGets (temporal, spatial, and topical), and used it to visually explore news items from online RSS feeds.

  12. Systematic Review of Quality of Patient Information on Liposuction in the Internet

    PubMed Central

    Zuk, Grzegorz; Eylert, Gertraud; Raptis, Dimitri Aristotle; Guggenheim, Merlin; Shafighi, Maziar

    2016-01-01

    Background: A large number of patients who are interested in esthetic surgery actively search the Internet, which represents nowadays the first source of information. However, the quality of information available in the Internet on liposuction is currently unknown. The aim of this study was to assess the quality of patient information on liposuction available in the Internet. Methods: The quantitative and qualitative assessment of Web sites was based on a modified Ensuring Quality Information for Patients tool (36 items). Five hundred Web sites were identified by the most popular web search engines. Results: Two hundred forty-five Web sites were assessed after duplicates and irrelevant sources were excluded. Only 72 (29%) Web sites addressed >16 items, and scores tended to be higher for professional societies, portals, patient groups, health departments, and academic centers than for Web sites developed by physicians, respectively. The Ensuring Quality Information for Patients score achieved by Web sites ranged between 8 and 29 of total 36 points, with a median value of 16 points (interquartile range, 14–18). The top 10 Web sites with the highest scores were identified. Conclusions: The quality of patient information on liposuction available in the Internet is poor, and existing Web sites show substantial shortcomings. There is an urgent need for improvement in offering superior quality information on liposuction for patients intending to undergo this procedure. PMID:27482498

  13. Systematic Review of Quality of Patient Information on Liposuction in the Internet.

    PubMed

    Zuk, Grzegorz; Palma, Adrian Fernando; Eylert, Gertraud; Raptis, Dimitri Aristotle; Guggenheim, Merlin; Shafighi, Maziar

    2016-06-01

    A large number of patients who are interested in esthetic surgery actively search the Internet, which represents nowadays the first source of information. However, the quality of information available in the Internet on liposuction is currently unknown. The aim of this study was to assess the quality of patient information on liposuction available in the Internet. The quantitative and qualitative assessment of Web sites was based on a modified Ensuring Quality Information for Patients tool (36 items). Five hundred Web sites were identified by the most popular web search engines. Two hundred forty-five Web sites were assessed after duplicates and irrelevant sources were excluded. Only 72 (29%) Web sites addressed >16 items, and scores tended to be higher for professional societies, portals, patient groups, health departments, and academic centers than for Web sites developed by physicians, respectively. The Ensuring Quality Information for Patients score achieved by Web sites ranged between 8 and 29 of total 36 points, with a median value of 16 points (interquartile range, 14-18). The top 10 Web sites with the highest scores were identified. The quality of patient information on liposuction available in the Internet is poor, and existing Web sites show substantial shortcomings. There is an urgent need for improvement in offering superior quality information on liposuction for patients intending to undergo this procedure.

  14. Older Cancer Patients’ User Experiences With Web-Based Health Information Tools: A Think-Aloud Study

    PubMed Central

    Romijn, Geke; Smets, Ellen M A; Loos, Eugene F; Kunneman, Marleen; van Weert, Julia C M

    2016-01-01

    Background Health information is increasingly presented on the Internet. Several Web design guidelines for older Web users have been proposed; however, these guidelines are often not applied in website development. Furthermore, although we know that older individuals use the Internet to search for health information, we lack knowledge on how they use and evaluate Web-based health information. Objective This study evaluates user experiences with existing Web-based health information tools among older (≥ 65 years) cancer patients and survivors and their partners. The aim was to gain insight into usability issues and the perceived usefulness of cancer-related Web-based health information tools. Methods We conducted video-recorded think-aloud observations for 7 Web-based health information tools, specifically 3 websites providing cancer-related information, 3 Web-based question prompt lists (QPLs), and 1 values clarification tool, with colorectal cancer patients or survivors (n=15) and their partners (n=8) (median age: 73; interquartile range 70-79). Participants were asked to think aloud while performing search, evaluation, and application tasks using the Web-based health information tools. Results Overall, participants perceived Web-based health information tools as highly useful and indicated a willingness to use such tools. However, they experienced problems in terms of usability and perceived usefulness due to difficulties in using navigational elements, shortcomings in the layout, a lack of instructions on how to use the tools, difficulties with comprehensibility, and a large amount of variety in terms of the preferred amount of information. Although participants frequently commented that it was easy for them to find requested information, we observed that the large majority of the participants were not able to find it. Conclusions Overall, older cancer patients appreciate and are able to use cancer information websites. However, this study shows the importance of maintaining awareness of age-related problems such as cognitive and functional decline and navigation difficulties with this target group in mind. The results of this study can be used to design usable and useful Web-based health information tools for older (cancer) patients. PMID:27457709

  15. We have "born digital" - now what about "born semantic"?

    NASA Astrophysics Data System (ADS)

    Leadbetter, Adam; Fredericks, Janet

    2014-05-01

    The phrase "born-digital" refers to those materials which originate in a digital form. In Earth and Space Sciences, this is now very much the norm for data: analogue to digital converters sit on instrument boards and produce a digital record of the observed environment. While much effort has been put in to creating and curating these digital data, there has been little work on using semantic mark up of data from the point of collection - what we term 'born semantic'. In this presentation we report on two efforts to expand this area: Qartod-to-OGC (Q2O) and SenseOCEAN. These projects have taken a common approach to 'born semantic': create or reuse appropriate controlled vocabularies, published to World Wide Web Commission (W3C) standards use standards from the Open Geospatial Consortium's Sensor Web Enablement (SWE) initiative to describe instrument setup, deployment and/or outputs using terms from those controlled vocabularies embed URLs from the controlled vocabularies within the SWE documents in a "Linked Data" conformant approach Q2O developed best practices examples of SensorML descriptions of Original Equipment Manufacturers' metadata (model characteristics, capabilities, manufacturer contact, etc ...) set-up and deployment SensorML files; and data centre process-lineage using registered vocabularies to describe terms (including input, output, processes, parameters, quality control flags) One Q2O use case, the Martha's Vineyard Coastal Observatory ADCP Waves instance, uses SensorML and registered vocabularies to fully describe the process of computing wave parameters from sensed properties, including quality control tests and associated results. The European Commission Framework Programme 7 project SenseOCEAN draws together world leading marine sensor developers to create a highly integrated multifunction and cost-effective in situ marine biogeochemical sensor system. This project will provide a quantum leap in the ability to measure crucial biogeochemical parameters. Innovations will be combined with state of the art sensor technology to produce a modular sensor system that can be deployed on many platforms. The sensor descriptions are being profiled in SensorML and the controlled vocabularies are being repurposed from those used within the European Commission SeaDataNet project and published on the community standard NERC Vocabulary Server.

  16. 75 FR 42376 - Proposed Information Collection; Comment Request; NTIA/FCC Web-based Frequency Coordination System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... Information Collection; Comment Request; NTIA/FCC Web- based Frequency Coordination System AGENCY: National.... Abstract The National Telecommunications and Information Administration (NTIA) hosts a Web-based system...) bands that are shared on a co-primary basis by federal and non-federal users. The Web-based system...

  17. 75 FR 66413 - 30-Day Notice of Proposed Information Collection: Exchange Programs Alumni Web Site Registration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ...: Exchange Programs Alumni Web Site Registration, DS-7006 ACTION: Notice of request for public comment and... Collection The Exchange Programs Alumni Web site requires information to process users' voluntary requests for participation in the Web site. Other than contact information, which is required for website...

  18. Remote monitoring of vibrational information in spider webs.

    PubMed

    Mortimer, B; Soler, A; Siviour, C R; Vollrath, F

    2018-05-22

    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.

  19. Information on infantile colic on the World Wide Web.

    PubMed

    Bailey, Shana D; D'Auria, Jennifer P; Haushalter, Jamie P

    2013-01-01

    The purpose of this study was to explore and describe the type and quality of information on infantile colic that a parent might access on the World Wide Web. Two checklists were used to evaluate the quality indicators of 24 Web sites and the colic-specific content. Fifteen health information Web sites met more of the quality parameters than the nine commercial sites. Eight Web sites included information about colic and infant abuse, with six being health information sites. The colic-specific content on 24 Web sites reflected current issues and controversies; however, the completeness of the information in light of current evidence varied among the Web sites. Strategies to avoid complications of parental stress or infant abuse were not commonly found on the Web sites. Pediatric professionals must guide parents to reliable colic resources that also include emotional support and understanding of infant crying. A best evidence guideline for the United States would eliminate confusion and uncertainty about which colic therapies are safe and effective for parents and professionals. Copyright © 2013 National Association of Pediatric Nurse Practitioners. Published by Mosby, Inc. All rights reserved.

  20. Remote monitoring of vibrational information in spider webs

    NASA Astrophysics Data System (ADS)

    Mortimer, B.; Soler, A.; Siviour, C. R.; Vollrath, F.

    2018-06-01

    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.

Top