Sample records for information system spatial

  1. Implementing an SIG based platform of application and service for city spatial information in Shanghai

    NASA Astrophysics Data System (ADS)

    Yu, Bailang; Wu, Jianping

    2006-10-01

    Spatial Information Grid (SIG) is an infrastructure that has the ability to provide the services for spatial information according to users' needs by means of collecting, sharing, organizing and processing the massive distributed spatial information resources. This paper presents the architecture, technologies and implementation of the Shanghai City Spatial Information Application and Service System, a SIG based platform, which is an integrated platform that serves for administration, planning, construction and development of the city. In the System, there are ten categories of spatial information resources, including city planning, land-use, real estate, river system, transportation, municipal facility construction, environment protection, sanitation, urban afforestation and basic geographic information data. In addition, spatial information processing services are offered as a means of GIS Web Services. The resources and services are all distributed in different web-based nodes. A single database is created to store the metadata of all the spatial information. A portal site is published as the main user interface of the System. There are three main functions in the portal site. First, users can search the metadata and consequently acquire the distributed data by using the searching results. Second, some spatial processing web applications that developed with GIS Web Services, such as file format conversion, spatial coordinate transfer, cartographic generalization and spatial analysis etc, are offered to use. Third, GIS Web Services currently available in the System can be searched and new ones can be registered. The System has been working efficiently in Shanghai Government Network since 2005.

  2. Components of spatial information management in wildlife ecology: Software for statistical and modeling analysis [Chapter 14

    Treesearch

    Hawthorne L. Beyer; Jeff Jenness; Samuel A. Cushman

    2010-01-01

    Spatial information systems (SIS) is a term that describes a wide diversity of concepts, techniques, and technologies related to the capture, management, display and analysis of spatial information. It encompasses technologies such as geographic information systems (GIS), global positioning systems (GPS), remote sensing, and relational database management systems (...

  3. Onondaga Lake Watershed – A Geographic Information System Project Phase I – Needs assessment and spatial data framework

    USGS Publications Warehouse

    Freehafer, Douglas A.; Pierson, Oliver

    2004-01-01

    In the fall of 2002, the Onondaga Lake Partnership (OLP) formed a Geographic Information System (GIS) Planning Committee to begin the process of developing a comprehensive watershed geographic information system for Onondaga Lake. The goal of the Onondaga Lake Partnership geographic information system is to integrate the various types of spatial data used for scientific investigations, resource management, and planning and design of improvement projects in the Onondaga Lake Watershed. A needs-assessment survey was conducted and a spatial data framework developed to support the Onondaga Lake Partnership use of geographic information system technology. The design focused on the collection, management, and distribution of spatial data, maps, and internet mapping applications. A geographic information system library of over 100 spatial datasets and metadata links was assembled on the basis of the results of the needs assessment survey. Implementation options were presented, and the Geographic Information System Planning Committee offered recommendations for the management and distribution of spatial data belonging to Onondaga Lake Partnership members. The Onondaga Lake Partnership now has a strong foundation for building a comprehensive geographic information system for the Onondaga Lake watershed. The successful implementation of a geographic information system depends on the Onondaga Lake Partnership’s determination of: (1) the design and plan for a geographic information system, including the applications and spatial data that will be provided and to whom, (2) the level of geographic information system technology to be utilized and funded, and (3) the institutional issues of operation and maintenance of the system.

  4. Spatial information technologies for remote sensing today and tomorrow; Proceedings of the Ninth Pecora Symposium, Sioux Falls, SD, October 2-4, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.

  5. The agent-based spatial information semantic grid

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren

    2006-10-01

    Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.

  6. The display of spatial information and visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas

    1991-01-01

    The basic informational elements of spatial orientation are attitude and position within a coordinate system. The problem that faces aeronautical designers is that a pilot must deal with several coordinate systems, sometimes simultaneously. The display must depict unambiguously not only position and attitude, but also designate the relevant coordinate system. If this is not done accurately, spatial disorientation can occur. The different coordinate systems used in aeronautical tasks and the problems that occur in the display of spatial information are explained.

  7. Review of Spatial-Database System Usability: Recommendations for the ADDNS Project

    DTIC Science & Technology

    2007-12-01

    basic GIS background information , with a closer look at spatial databases. A GIS is also a computer- based system designed to capture, manage...foundation for deploying enterprise-wide spatial information systems . According to Oracle® [18], it enables accurate delivery of location- based services...Toronto TR 2007-141 Lanter, D.P. (1991). Design of a lineage- based meta-data base for GIS. Cartography and Geographic Information Systems , 18

  8. Design and realization of tourism spatial decision support system based on GIS

    NASA Astrophysics Data System (ADS)

    Ma, Zhangbao; Qi, Qingwen; Xu, Li

    2008-10-01

    In this paper, the existing problems of current tourism management information system are analyzed. GIS, tourism as well as spatial decision support system are introduced, and the application of geographic information system technology and spatial decision support system to tourism management and the establishment of tourism spatial decision support system based on GIS are proposed. System total structure, system hardware and software environment, database design and structure module design of this system are introduced. Finally, realization methods of this systemic core functions are elaborated.

  9. Spatial information semantic query based on SPARQL

    NASA Astrophysics Data System (ADS)

    Xiao, Zhifeng; Huang, Lei; Zhai, Xiaofang

    2009-10-01

    How can the efficiency of spatial information inquiries be enhanced in today's fast-growing information age? We are rich in geospatial data but poor in up-to-date geospatial information and knowledge that are ready to be accessed by public users. This paper adopts an approach for querying spatial semantic by building an Web Ontology language(OWL) format ontology and introducing SPARQL Protocol and RDF Query Language(SPARQL) to search spatial semantic relations. It is important to establish spatial semantics that support for effective spatial reasoning for performing semantic query. Compared to earlier keyword-based and information retrieval techniques that rely on syntax, we use semantic approaches in our spatial queries system. Semantic approaches need to be developed by ontology, so we use OWL to describe spatial information extracted by the large-scale map of Wuhan. Spatial information expressed by ontology with formal semantics is available to machines for processing and to people for understanding. The approach is illustrated by introducing a case study for using SPARQL to query geo-spatial ontology instances of Wuhan. The paper shows that making use of SPARQL to search OWL ontology instances can ensure the result's accuracy and applicability. The result also indicates constructing a geo-spatial semantic query system has positive efforts on forming spatial query and retrieval.

  10. Data Representations for Geographic Information Systems.

    ERIC Educational Resources Information Center

    Shaffer, Clifford A.

    1992-01-01

    Surveys the field and literature of geographic information systems (GIS) and spatial data representation as it relates to GIS. Highlights include GIS terms, data types, and operations; vector representations and raster, or grid, representations; spatial indexing; elevation data representations; large spatial databases; and problem areas and future…

  11. Tags Extarction from Spatial Documents in Search Engines

    NASA Astrophysics Data System (ADS)

    Borhaninejad, S.; Hakimpour, F.; Hamzei, E.

    2015-12-01

    Nowadays the selective access to information on the Web is provided by search engines, but in the cases which the data includes spatial information the search task becomes more complex and search engines require special capabilities. The purpose of this study is to extract the information which lies in spatial documents. To that end, we implement and evaluate information extraction from GML documents and a retrieval method in an integrated approach. Our proposed system consists of three components: crawler, database and user interface. In crawler component, GML documents are discovered and their text is parsed for information extraction; storage. The database component is responsible for indexing of information which is collected by crawlers. Finally the user interface component provides the interaction between system and user. We have implemented this system as a pilot system on an Application Server as a simulation of Web. Our system as a spatial search engine provided searching capability throughout the GML documents and thus an important step to improve the efficiency of search engines has been taken.

  12. Advances in spatial epidemiology and geographic information systems.

    PubMed

    Kirby, Russell S; Delmelle, Eric; Eberth, Jan M

    2017-01-01

    The field of spatial epidemiology has evolved rapidly in the past 2 decades. This study serves as a brief introduction to spatial epidemiology and the use of geographic information systems in applied research in epidemiology. We highlight technical developments and highlight opportunities to apply spatial analytic methods in epidemiologic research, focusing on methodologies involving geocoding, distance estimation, residential mobility, record linkage and data integration, spatial and spatio-temporal clustering, small area estimation, and Bayesian applications to disease mapping. The articles included in this issue incorporate many of these methods into their study designs and analytical frameworks. It is our hope that these studies will spur further development and utilization of spatial analysis and geographic information systems in epidemiologic research. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A study on spatial decision support systems for HIV/AIDS prevention based on COM GIS technology

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Luo, Huasong; Peng, Shungyun; Xu, Quanli

    2007-06-01

    Based on the deeply analysis of the current status and the existing problems of GIS technology applications in Epidemiology, this paper has proposed the method and process for establishing the spatial decision support systems of AIDS epidemic prevention by integrating the COM GIS, Spatial Database, GPS, Remote Sensing, and Communication technologies, as well as ASP and ActiveX software development technologies. One of the most important issues for constructing the spatial decision support systems of AIDS epidemic prevention is how to integrate the AIDS spreading models with GIS. The capabilities of GIS applications in the AIDS epidemic prevention have been described here in this paper firstly. Then some mature epidemic spreading models have also been discussed for extracting the computation parameters. Furthermore, a technical schema has been proposed for integrating the AIDS spreading models with GIS and relevant geospatial technologies, in which the GIS and model running platforms share a common spatial database and the computing results can be spatially visualized on Desktop or Web GIS clients. Finally, a complete solution for establishing the decision support systems of AIDS epidemic prevention has been offered in this paper based on the model integrating methods and ESRI COM GIS software packages. The general decision support systems are composed of data acquisition sub-systems, network communication sub-systems, model integrating sub-systems, AIDS epidemic information spatial database sub-systems, AIDS epidemic information querying and statistical analysis sub-systems, AIDS epidemic dynamic surveillance sub-systems, AIDS epidemic information spatial analysis and decision support sub-systems, as well as AIDS epidemic information publishing sub-systems based on Web GIS.

  14. Effective spatial database support for acquiring spatial information from remote sensing images

    NASA Astrophysics Data System (ADS)

    Jin, Peiquan; Wan, Shouhong; Yue, Lihua

    2009-12-01

    In this paper, a new approach to maintain spatial information acquiring from remote-sensing images is presented, which is based on Object-Relational DBMS. According to this approach, the detected and recognized results of targets are stored and able to be further accessed in an ORDBMS-based spatial database system, and users can access the spatial information using the standard SQL interface. This approach is different from the traditional ArcSDE-based method, because the spatial information management module is totally integrated into the DBMS and becomes one of the core modules in the DBMS. We focus on three issues, namely the general framework for the ORDBMS-based spatial database system, the definitions of the add-in spatial data types and operators, and the process to develop a spatial Datablade on Informix. The results show that the ORDBMS-based spatial database support for image-based target detecting and recognition is easy and practical to be implemented.

  15. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optimal configuration of optical systems with spatial light modulators

    NASA Astrophysics Data System (ADS)

    Fedorov, Yu V.

    1995-10-01

    A description is given of a novel optical system for optical information processing. An analysis is given of ways of increasing optoenergetic characteristics of optical information processing systems in which use is made of spatial light modulators with phase-relief (in thermoplastic materials) and polarisation (in crystalline structures of the DKDP type) information storage.

  16. Distributed spatial information integration based on web service

    NASA Astrophysics Data System (ADS)

    Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng

    2008-10-01

    Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.

  17. Distributed spatial information integration based on web service

    NASA Astrophysics Data System (ADS)

    Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng

    2009-10-01

    Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.

  18. Approach to spatial information security based on digital certificate

    NASA Astrophysics Data System (ADS)

    Cong, Shengri; Zhang, Kai; Chen, Baowen

    2005-11-01

    With the development of the online applications of geographic information systems (GIS) and the spatial information services, the spatial information security becomes more important. This work introduced digital certificates and authorization schemes into GIS to protect the crucial spatial information combining the techniques of the role-based access control (RBAC), the public key infrastructure (PKI) and the privilege management infrastructure (PMI). We investigated the spatial information granularity suited for sensitivity marking and digital certificate model that fits the need of GIS security based on the semantics analysis of spatial information. It implements a secure, flexible, fine-grained data access based on public technologies in GIS in the world.

  19. The Implementation of Spatial Technologies in Australian Schools: 1996-2005

    ERIC Educational Resources Information Center

    McInerney, Malcolm

    2006-01-01

    The story of Geographic Information Systems (GIS) in schools in Australia started in 1996 with the limited involvement of schools in the Australasian Urban and Regional Information Systems Association (AURISA) "GIS in schools" competition. AURISA is now known as the Spatial Science Institute (SSI) and is conducting the Spatial Technology…

  20. KBGIS-2: A knowledge-based geographic information system

    NASA Technical Reports Server (NTRS)

    Smith, T.; Peuquet, D.; Menon, S.; Agarwal, P.

    1986-01-01

    The architecture and working of a recently implemented knowledge-based geographic information system (KBGIS-2) that was designed to satisfy several general criteria for the geographic information system are described. The system has four major functions that include query-answering, learning, and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial objects language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is currently performing all its designated tasks successfully, although currently implemented on inadequate hardware. Future reports will detail the performance characteristics of the system, and various new extensions are planned in order to enhance the power of KBGIS-2.

  1. Geographic Information Systems and Martian Data: Compatibility and Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Jennifer L.

    2005-01-01

    Planning future landed Mars missions depends on accurate, informed data. This research has created and used spatially referenced instrument data from NASA missions such as the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter and the Mars Orbital Camera (MOC) on the Mars Global Surveyor (MGS) Orbiter. Creating spatially referenced data enables its use in Geographic Information Systems (GIS) such as ArcGIS. It has then been possible to integrate this spatially referenced data with global base maps and build and populate location based databases that are easy to access.

  2. Design and implementation of spatial knowledge grid for integrated spatial analysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiangnan; Guan, Li; Wang, Ping

    2006-10-01

    Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.

  3. Web-based GIS for spatial pattern detection: application to malaria incidence in Vietnam.

    PubMed

    Bui, Thanh Quang; Pham, Hai Minh

    2016-01-01

    There is a great concern on how to build up an interoperable health information system of public health and health information technology within the development of public information and health surveillance programme. Technically, some major issues remain regarding to health data visualization, spatial processing of health data, health information dissemination, data sharing and the access of local communities to health information. In combination with GIS, we propose a technical framework for web-based health data visualization and spatial analysis. Data was collected from open map-servers and geocoded by open data kit package and data geocoding tools. The Web-based system is designed based on Open-source frameworks and libraries. The system provides Web-based analyst tool for pattern detection through three spatial tests: Nearest neighbour, K function, and Spatial Autocorrelation. The result is a web-based GIS, through which end users can detect disease patterns via selecting area, spatial test parameters and contribute to managers and decision makers. The end users can be health practitioners, educators, local communities, health sector authorities and decision makers. This web-based system allows for the improvement of health related services to public sector users as well as citizens in a secure manner. The combination of spatial statistics and web-based GIS can be a solution that helps empower health practitioners in direct and specific intersectional actions, thus provide for better analysis, control and decision-making.

  4. Spatial information and modeling system for transportation (SIMST) : final report.

    DOT National Transportation Integrated Search

    1992-06-01

    This project was directed toward research in the development of spatial information systems for transportation. The project and all software development was done in the Intergraph MGE environment. One objective was to investigate software tools for l...

  5. Spatially referenced crash data system for application to commercial motor vehicle crashes.

    DOT National Transportation Integrated Search

    2003-05-01

    The Maryland Spatial Analysis of Crashes (MSAC) project involves the design of a : prototype of a geographic information system (GIS) for the State of Maryland that has : the capability of providing online crash information and statistical informatio...

  6. Modeling of digital information optical encryption system with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bondareva, Alyona P.; Cheremkhin, Pavel A.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.; Starikov, Sergey N.

    2015-10-01

    State of the art micromirror DMD spatial light modulators (SLM) offer unprecedented framerate up to 30000 frames per second. This, in conjunction with high speed digital camera, should allow to build high speed optical encryption system. Results of modeling of digital information optical encryption system with spatially incoherent illumination are presented. Input information is displayed with first SLM, encryption element - with second SLM. Factors taken into account are: resolution of SLMs and camera, holograms reconstruction noise, camera noise and signal sampling. Results of numerical simulation demonstrate high speed (several gigabytes per second), low bit error rate and high crypto-strength.

  7. From Resource-Adaptive Navigation Assistance to Augmented Cognition

    NASA Astrophysics Data System (ADS)

    Zimmer, Hubert D.; Münzer, Stefan; Baus, Jörg

    In an assistance scenario, a computer provides purposive information supporting a human user in an everyday situation. Wayfinding with navigation assistance is a prototypical assistance scenario. The present chapter analyzes the interplay of the resources of the assistance system and the resources of the user. The navigation assistance system provides geographic knowledge, positioning information, route planning, spatial overview information, and route commands at decision points. The user's resources encompass spatial knowledge, spatial abilities and visuo-spatial working memory, orientation strategies, and cultural habit. Flexible adaptations of the assistance system to available resources of the user are described, taking different wayfinding goals, situational constraints, and individual differences into account. Throughout the chapter, the idea is pursued that the available resources of the user should be kept active.

  8. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optical information processing with transformation of the spatial coherence of light

    NASA Astrophysics Data System (ADS)

    Bykovskii, Yurii A.; Markilov, A. A.; Rodin, V. G.; Starikov, S. N.

    1995-10-01

    A description is given of systems with spatially incoherent illumination, intended for spectral and correlation analysis, and for the recording of Fourier holograms. These systems make use of transformation of the degree of the spatial coherence of light. The results are given of the processing of images and signals, including those transmitted by a bundle of fibre-optic waveguides both as monochromatic light and as quasimonochromatic radiation from a cathode-ray tube. The feasibility of spatial frequency filtering and of correlation analysis of images with a bipolar impulse response is considered for systems with spatially incoherent illumination where these tasks are performed by double transformation of the spatial coherence of light. A description is given of experimental systems and the results of image processing are reported.

  9. Improving data management and dissemination in web based information systems by semantic enrichment of descriptive data aspects

    NASA Astrophysics Data System (ADS)

    Gebhardt, Steffen; Wehrmann, Thilo; Klinger, Verena; Schettler, Ingo; Huth, Juliane; Künzer, Claudia; Dech, Stefan

    2010-10-01

    The German-Vietnamese water-related information system for the Mekong Delta (WISDOM) project supports business processes in Integrated Water Resources Management in Vietnam. Multiple disciplines bring together earth and ground based observation themes, such as environmental monitoring, water management, demographics, economy, information technology, and infrastructural systems. This paper introduces the components of the web-based WISDOM system including data, logic and presentation tier. It focuses on the data models upon which the database management system is built, including techniques for tagging or linking metadata with the stored information. The model also uses ordered groupings of spatial, thematic and temporal reference objects to semantically tag datasets to enable fast data retrieval, such as finding all data in a specific administrative unit belonging to a specific theme. A spatial database extension is employed by the PostgreSQL database. This object-oriented database was chosen over a relational database to tag spatial objects to tabular data, improving the retrieval of census and observational data at regional, provincial, and local areas. While the spatial database hinders processing raster data, a "work-around" was built into WISDOM to permit efficient management of both raster and vector data. The data model also incorporates styling aspects of the spatial datasets through styled layer descriptions (SLD) and web mapping service (WMS) layer specifications, allowing retrieval of rendered maps. Metadata elements of the spatial data are based on the ISO19115 standard. XML structured information of the SLD and metadata are stored in an XML database. The data models and the data management system are robust for managing the large quantity of spatial objects, sensor observations, census and document data. The operational WISDOM information system prototype contains modules for data management, automatic data integration, and web services for data retrieval, analysis, and distribution. The graphical user interfaces facilitate metadata cataloguing, data warehousing, web sensor data analysis and thematic mapping.

  10. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07

    USGS Publications Warehouse

    Pearson, D.K.; Gary, R.H.; Wilson, Z.D.

    2007-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.

  11. The research and development of water resources management information system based on ArcGIS

    NASA Astrophysics Data System (ADS)

    Cui, Weiqun; Gao, Xiaoli; Li, Yuzhi; Cui, Zhencai

    According to that there are large amount of data, complexity of data type and format in the water resources management, we built the water resources calculation model and established the water resources management information system based on the advanced ArcGIS and Visual Studio.NET development platform. The system can integrate the spatial data and attribute data organically, and manage them uniformly. It can analyze spatial data, inquire by map and data bidirectionally, provide various charts and report forms automatically, link multimedia information, manage database etc. . So it can provide spatial and static synthetical information services for study, management and decision of water resources, regional geology and eco-environment etc..

  12. KBGIS-II: A knowledge-based geographic information system

    NASA Technical Reports Server (NTRS)

    Smith, Terence; Peuquet, Donna; Menon, Sudhakar; Agarwal, Pankaj

    1986-01-01

    The architecture and working of a recently implemented Knowledge-Based Geographic Information System (KBGIS-II), designed to satisfy several general criteria for the GIS, is described. The system has four major functions including query-answering, learning and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial object language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is performing all its designated tasks successfully. Future reports will relate performance characteristics of the system.

  13. Individual Differences in a Spatial-Semantic Virtual Environment.

    ERIC Educational Resources Information Center

    Chen, Chaomei

    2000-01-01

    Presents two empirical case studies concerning the role of individual differences in searching through a spatial-semantic virtual environment. Discusses information visualization in information systems; cognitive factors, including associative memory, spatial ability, and visual memory; user satisfaction; and cognitive abilities and search…

  14. Reference frames in allocentric representations are invariant across static and active encoding

    PubMed Central

    Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.

    2013-01-01

    An influential model of spatial memory—the so-called reference systems account—proposes that relationships between objects are biased by salient axes (“frames of reference”) provided by environmental cues, such as the geometry of a room. In this study, we sought to examine the extent to which a salient environmental feature influences the formation of spatial memories when learning occurs via a single, static viewpoint and via active navigation, where information has to be integrated across multiple viewpoints. In our study, participants learned the spatial layout of an object array that was arranged with respect to a prominent environmental feature within a virtual arena. Location memory was tested using judgments of relative direction. Experiment 1A employed a design similar to previous studies whereby learning of object-location information occurred from a single, static viewpoint. Consistent with previous studies, spatial judgments were significantly more accurate when made from an orientation that was aligned, as opposed to misaligned, with the salient environmental feature. In Experiment 1B, a fresh group of participants learned the same object-location information through active exploration, which required integration of spatial information over time from a ground-level perspective. As in Experiment 1A, object-location information was organized around the salient environmental cue. Taken together, the findings suggest that the learning condition (static vs. active) does not affect the reference system employed to encode object-location information. Spatial reference systems appear to be a ubiquitous property of spatial representations, and might serve to reduce the cognitive demands of spatial processing. PMID:24009595

  15. 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display.

    PubMed

    Fan, Zhencheng; Weng, Yitong; Chen, Guowen; Liao, Hongen

    2017-07-01

    Three-dimensional (3D) visualization of preoperative and intraoperative medical information becomes more and more important in minimally invasive surgery. We develop a 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display for surgeons to observe surgical target intuitively. The spatial information of regions of interest (ROIs) is captured by the mobile device and transferred to a server for further image processing. Triangular patches of intraoperative data with texture are calculated with a dimension-reduced triangulation algorithm and a projection-weighted mapping algorithm. A point cloud selection-based warm-start iterative closest point (ICP) algorithm is also developed for fusion of the reconstructed 3D intraoperative image and the preoperative image. The fusion images are rendered for 3D autostereoscopic display using integral videography (IV) technology. Moreover, 3D visualization of medical image corresponding to observer's viewing direction is updated automatically using mutual information registration method. Experimental results show that the spatial position error between the IV-based 3D autostereoscopic fusion image and the actual object was 0.38±0.92mm (n=5). The system can be utilized in telemedicine, operating education, surgical planning, navigation, etc. to acquire spatial information conveniently and display surgical information intuitively. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The Aging Navigational System.

    PubMed

    Lester, Adam W; Moffat, Scott D; Wiener, Jan M; Barnes, Carol A; Wolbers, Thomas

    2017-08-30

    The discovery of neuronal systems dedicated to computing spatial information, composed of functionally distinct cell types such as place and grid cells, combined with an extensive body of human-based behavioral and neuroimaging research has provided us with a detailed understanding of the brain's navigation circuit. In this review, we discuss emerging evidence from rodents, non-human primates, and humans that demonstrates how cognitive aging affects the navigational computations supported by these systems. Critically, we show 1) that navigational deficits cannot solely be explained by general deficits in learning and memory, 2) that there is no uniform decline across different navigational computations, and 3) that navigational deficits might be sensitive markers for impending pathological decline. Following an introduction to the mechanisms underlying spatial navigation and how they relate to general processes of learning and memory, the review discusses how aging affects the perception and integration of spatial information, the creation and storage of memory traces for spatial information, and the use of spatial information during navigational behavior. The closing section highlights the clinical potential of behavioral and neural markers of spatial navigation, with a particular emphasis on neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Quantum interference between transverse spatial waveguide modes.

    PubMed

    Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal

    2017-01-20

    Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.

  18. Advanced data structures for the interpretation of image and cartographic data in geo-based information systems

    NASA Technical Reports Server (NTRS)

    Peuquet, D. J.

    1986-01-01

    A growing need to usse geographic information systems (GIS) to improve the flexibility and overall performance of very large, heterogeneous data bases was examined. The Vaster structure and the Topological Grid structure were compared to test whether such hybrid structures represent an improvement in performance. The use of artificial intelligence in a geographic/earth sciences data base context is being explored. The architecture of the Knowledge Based GIS (KBGIS) has a dual object/spatial data base and a three tier hierarchial search subsystem. Quadtree Spatial Spectra (QTSS) are derived, based on the quadtree data structure, to generate and represent spatial distribution information for large volumes of spatial data.

  19. Using Geo-Spatial Technologies for Field Applications in Higher Geography Education

    ERIC Educational Resources Information Center

    Karatepe, Akif

    2012-01-01

    Today's important geo-spatial technologies, GIS (Geographic Information Systems), GPS (Global Positioning Systems) and Google Earth have been widely used in geography education. Transferring spatially oriented data taken by GPS to the GIS and Google Earth has provided great benefits in terms of showing the usage of spatial technologies for field…

  20. Requirements Engineering for inter-organizational health information systems with functions for spatial analyses: modeling a WHO safe community applying Use Case Maps.

    PubMed

    Olvingson, C; Hallberg, N; Timpka, T; Lindqvist, K

    2002-01-01

    To evaluate Use Case Maps (UCMs) as a technique for Requirements Engineering (RE) in the development of information systems with functions for spatial analyses in inter-organizational public health settings. In this study, Participatory Action Research (PAR) is used to explore the UCM notation for requirements elicitation and to gather the opinions of the users. The Delphi technique is used to reach consensus in the construction of UCMs. The results show that UCMs can provide a visualization of the system's functionality and in combination with PAR provide a sound basis for gathering requirements in inter-organizational settings. UCMs were found to represent a suitable level for describing the organization and the dynamic flux of information including spatial resolution to all stakeholders. Moreover, by using PAR, the voices of the users and their tacit knowledge is intercepted. Further, UCMs are found useful in generating intuitive requirements by the creation of use cases. With UCMs and PAR it is possible to study the effects of design changes in the general information display and the spatial resolution in the same context. Both requirements on the information system in general and the functions for spatial analyses are possible to elicit when identifying the different responsibilities and the demands on spatial resolution associated to the actions of each administrative unit. However, the development process of UCM is not well documented and needs further investigation and formulation of guidelines.

  1. A geographic data model for representing ground water systems.

    PubMed

    Strassberg, Gil; Maidment, David R; Jones, Norm L

    2007-01-01

    The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.

  2. geophylobuilder 1.0: an arcgis extension for creating 'geophylogenies'.

    PubMed

    Kidd, David M; Liu, Xianhua

    2008-01-01

    Evolution is inherently a spatiotemporal process; however, despite this, phylogenetic and geographical data and models remain largely isolated from one another. Geographical information systems provide a ready-made spatial modelling, analysis and dissemination environment within which phylogenetic models can be explicitly linked with their associated spatial data and subsequently integrated with other georeferenced data sets describing the biotic and abiotic environment. geophylobuilder 1.0 is an extension for the arcgis geographical information system that builds a 'geophylogenetic' data model from a phylogenetic tree and associated geographical data. Geophylogenetic database objects can subsequently be queried, spatially analysed and visualized in both 2D and 3D within a geographical information systems. © 2007 The Authors.

  3. Where and Why There? Spatial Thinking with Geographic Information Systems

    ERIC Educational Resources Information Center

    Milson, Andrew J.; Curtis, Mary D.

    2009-01-01

    The authors developed and implemented a project for high school geography students that modeled the processes in a site selection analysis using Geographic Information Systems (GIS). They sought to explore how spatial thinking could be fostered by using the MyWorld GIS software that was designed specifically for educational uses. The task posed…

  4. Managing Data in a GIS Environment

    NASA Technical Reports Server (NTRS)

    Beltran, Maria; Yiasemis, Haris

    1997-01-01

    A Geographic Information System (GIS) is a computer-based system that enables capture, modeling, manipulation, retrieval, analysis and presentation of geographically referenced data. A GIS operates in a dynamic environment of spatial and temporal information. This information is held in a database like any other information system, but performance is more of an issue for a geographic database than a traditional database due to the nature of the data. What distinguishes a GIS from other information systems is the spatial and temporal dimensions of the data and the volume of data (several gigabytes). Most traditional information systems are usually based around tables and textual reports, whereas GIS requires the use of cartographic forms and other visualization techniques. Much of the data can be represented using computer graphics, but a GIS is not a graphics database. A graphical system is concerned with the manipulation and presentation of graphical objects whereas a GIS handles geographic objects that have not only spatial dimensions but non-visual, i e., attribute and components. Furthermore, the nature of the data on which a GIS operates makes the traditional relational database approach inadequate for retrieving data and answering queries that reference spatial data. The purpose of this paper is to describe the efficiency issues behind storage and retrieval of data within a GIS database. Section 2 gives a general background on GIS, and describes the issues involved in custom vs. commercial and hybrid vs. integrated geographic information systems. Section 3 describes the efficiency issues concerning the management of data within a GIS environment. The paper ends with a summary of the main concerns of this paper.

  5. Remote sensing using MIMO systems

    DOEpatents

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  6. Conversion of environmental data to a digital-spatial database, Puget Sound area, Washington

    USGS Publications Warehouse

    Uhrich, M.A.; McGrath, T.S.

    1997-01-01

    Data and maps from the Puget Sound Environmental Atlas, compiled for the U.S. Environmental Protection Agency, the Puget Sound Water Quality Authority, and the U.S. Army Corps of Engineers, have been converted into a digital-spatial database using a geographic information system. Environmental data for the Puget Sound area,collected from sources other than the Puget SoundEnvironmental Atlas by different Federal, State, andlocal agencies, also have been converted into thisdigital-spatial database. Background on the geographic-information-system planning process, the design and implementation of the geographic information-system database, and the reasons for conversion to this digital-spatial database are included in this report. The Puget Sound Environmental Atlas data layers include information about seabird nesting areas, eelgrass and kelp habitat, marine mammal and fish areas, and shellfish resources and bed certification. Data layers, from sources other than the Puget Sound Environmental Atlas, include the Puget Sound shoreline, the water-body system, shellfish growing areas, recreational shellfish beaches, sewage-treatment outfalls, upland hydrography,watershed and political boundaries, and geographicnames. The sources of data, descriptions of the datalayers, and the steps and errors of processing associated with conversion to a digital-spatial database used in development of the Puget Sound Geographic Information System also are included in this report. The appendixes contain data dictionaries for each of the resource layers and error values for the conversion of Puget SoundEnvironmental Atlas data.

  7. Spatial Data Quality Control Procedure applied to the Okavango Basin Information System

    NASA Astrophysics Data System (ADS)

    Butchart-Kuhlmann, Daniel

    2014-05-01

    Spatial data is a powerful form of information, capable of providing information of great interest and tremendous use to a variety of users. However, much like other data representing the 'real world', precision and accuracy must be high for the results of data analysis to be deemed reliable and thus applicable to real world projects and undertakings. The spatial data quality control (QC) procedure presented here was developed as the topic of a Master's thesis, in the sphere of and using data from the Okavango Basin Information System (OBIS), itself a part of The Future Okavango (TFO) project. The aim of the QC procedure was to form the basis of a method through which to determine the quality of spatial data relevant for application to hydrological, solute, and erosion transport modelling using the Jena Adaptable Modelling System (JAMS). As such, the quality of all data present in OBIS classified under the topics of elevation, geoscientific information, or inland waters, was evaluated. Since the initial data quality has been evaluated, efforts are underway to correct the errors found, thus improving the quality of the dataset.

  8. Application of geo-spatial technology in schistosomiasis modelling in Africa: a review.

    PubMed

    Manyangadze, Tawanda; Chimbari, Moses John; Gebreslasie, Michael; Mukaratirwa, Samson

    2015-11-04

    Schistosomiasis continues to impact socio-economic development negatively in sub-Saharan Africa. The advent of spatial technologies, including geographic information systems (GIS), Earth observation (EO) and global positioning systems (GPS) assist modelling efforts. However, there is increasing concern regarding the accuracy and precision of the current spatial models. This paper reviews the literature regarding the progress and challenges in the development and utilization of spatial technology with special reference to predictive models for schistosomiasis in Africa. Peer-reviewed papers identified through a PubMed search using the following keywords: geo-spatial analysis OR remote sensing OR modelling OR earth observation OR geographic information systems OR prediction OR mapping AND schistosomiasis AND Africa were used. Statistical uncertainty, low spatial and temporal resolution satellite data and poor validation were identified as some of the factors that compromise the precision and accuracy of the existing predictive models. The need for high spatial resolution of remote sensing data in conjunction with ancillary data viz. ground-measured climatic and environmental information, local presence/absence intermediate host snail surveys as well as prevalence and intensity of human infection for model calibration and validation are discussed. The importance of a multidisciplinary approach in developing robust, spatial data capturing, modelling techniques and products applicable in epidemiology is highlighted.

  9. Mental "Space" Travel: Damage to Posterior Parietal Cortex Prevents Egocentric Navigation and Reexperiencing of Remote Spatial Memories

    ERIC Educational Resources Information Center

    Ciaramelli, Elisa; Rosenbaum, R. Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris

    2010-01-01

    The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the…

  10. Cultural Heritage Documentation in SIS Environment: AN Application for "PORTA SIRENA" in the Archaeological Site of Paestum

    NASA Astrophysics Data System (ADS)

    Pepe, M.; Parente, C.

    2017-05-01

    The Heritage Documentation allows the monitoring, maintenance and conservation by the most recent, efficient investigation techniques and storage of data. A key role in Heritage Documentation is represented by the Geographic Information Systems (GIS) and Spatial Information System (SIS), thanks to the possibility offered by this instrument not only to connect spatial elements (geographical features) to attribute tables, but also manage various information in the form of raster (terrestrial, aerial and satellite imagery), 3D point clouds, 3D models and other vector data. The paper describes all the activities that lead to the construction of a SIS, especially in relation to the new survey technologies with particular focus at survey performed by Close Range Photogrammetry (CRP). In addition, after explaining the relationships between the different information systems that contribute towards creating of a SIS and the various professions involved, a case study in Paestum area (Italy), showing the efficiency of Spatial Information System (SIS) technology, is discussed.

  11. Spatial inventory integrating raster databases and point sample data. [Geographic Information System for timber inventory

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.; Woodcock, C. E.; Logan, T. L.

    1983-01-01

    A timber inventory of the Eldorado National Forest, located in east-central California, provides an example of the use of a Geographic Information System (GIS) to stratify large areas of land for sampling and the collection of statistical data. The raster-based GIS format of the VICAR/IBIS software system allows simple and rapid tabulation of areas, and facilitates the selection of random locations for ground sampling. Algorithms that simplify the complex spatial pattern of raster-based information, and convert raster format data to strings of coordinate vectors, provide a link to conventional vector-based geographic information systems.

  12. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2013-11-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP) with spatial data and query processing capabilities of Geographic Information Systems (GIS), multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP) based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM) and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  13. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  14. Spatial Data Management System (SDMS)

    NASA Technical Reports Server (NTRS)

    Hutchison, Mark W.

    1994-01-01

    The Spatial Data Management System (SDMS) is a testbed for retrieval and display of spatially related material. SDMS permits the linkage of large graphical display objects with detail displays and explanations of its smaller components. SDMS combines UNIX workstations, MIT's X Window system, TCP/IP and WAIS information retrieval technology to prototype a means of associating aggregate data linked via spatial orientation. SDMS capitalizes upon and extends previous accomplishments of the Software Technology Branch in the area of Virtual Reality and Automated Library Systems.

  15. Integrating geospatial data and cropping system simulation within a geographic information system to analyze spatial seed cotton yield, water use, and irrigation requirements

    USDA-ARS?s Scientific Manuscript database

    The development of sensors that provide geospatial information on crop and soil conditions has been a primary success for precision agriculture. However, further developments are needed to integrate geospatial data into computer algorithms that spatially optimize crop production while considering po...

  16. Modularizing Spatial Ontologies for Assisted Living Systems

    NASA Astrophysics Data System (ADS)

    Hois, Joana

    Assisted living systems are intended to support daily-life activities in user homes by automatizing and monitoring behavior of the environment while interacting with the user in a non-intrusive way. The knowledge base of such systems therefore has to define thematically different aspects of the environment mostly related to space, such as basic spatial floor plan information, pieces of technical equipment in the environment and their functions and spatial ranges, activities users can perform, entities that occur in the environment, etc. In this paper, we present thematically different ontologies, each of which describing environmental aspects from a particular perspective. The resulting modular structure allows the selection of application-specific ontologies as necessary. This hides information and reduces complexity in terms of the represented spatial knowledge and reasoning practicability. We motivate and present the different spatial ontologies applied to an ambient assisted living application.

  17. Review and synthesis of problems and directions for large scale geographic information system development

    NASA Technical Reports Server (NTRS)

    Boyle, A. R.; Dangermond, J.; Marble, D.; Simonett, D. S.; Tomlinson, R. F.

    1983-01-01

    Problems and directions for large scale geographic information system development were reviewed and the general problems associated with automated geographic information systems and spatial data handling were addressed.

  18. Wyoming Department of Transportation geographic information system implementation project

    DOT National Transportation Integrated Search

    2000-01-01

    A geographic information system (GIS) was needed by the Wyoming Department of Transportation (WYDOT) to complement existing information management procedures and leverage the spatial components of its data. WYDOT contracted with Environmental Systems...

  19. "Commentary": Object and Spatial Visualization in Geosciences

    ERIC Educational Resources Information Center

    Kastens, Kim

    2010-01-01

    Cognitive science research shows that the brain has two systems for processing visual information, one specialized for spatial information such as position, orientation, and trajectory, and the other specialized for information used to identify objects, such as color, shape and texture. Some individuals seem to be more facile with the spatial…

  20. Smart Cities Intelligence System (SMACiSYS) Integrating Sensor Web with Spatial Data Infrastructures (sensdi)

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; Painho, M.

    2017-09-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  1. A conceptual holding model for veterinary applications.

    PubMed

    Ferrè, Nicola; Kuhn, Werner; Rumor, Massimo; Marangon, Stefano

    2014-05-01

    Spatial references are required when geographical information systems (GIS) are used for the collection, storage and management of data. In the veterinary domain, the spatial component of a holding (of animals) is usually defined by coordinates, and no other relevant information needs to be interpreted or used for manipulation of the data in the GIS environment provided. Users trying to integrate or reuse spatial data organised in such a way, frequently face the problem of data incompatibility and inconsistency. The root of the problem lies in differences with respect to syntax as well as variations in the semantic, spatial and temporal representations of the geographic features. To overcome these problems and to facilitate the inter-operability of different GIS, spatial data must be defined according to a \\"schema\\" that includes the definition, acquisition, analysis, access, presentation and transfer of such data between different users and systems. We propose an application \\"schema\\" of holdings for GIS applications in the veterinary domain according to the European directive framework (directive 2007/2/EC--INSPIRE). The conceptual model put forward has been developed at two specific levels to produce the essential and the abstract model, respectively. The former establishes the conceptual linkage of the system design to the real world, while the latter describes how the system or software works. The result is an application \\"schema\\" that formalises and unifies the information-theoretic foundations of how to spatially represent a holding in order to ensure straightforward information-sharing within the veterinary community.

  2. High spatial precision nano-imaging of polarization-sensitive plasmonic particles

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice

    2018-02-01

    Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.

  3. On the role of working memory in spatial contextual cueing.

    PubMed

    Travis, Susan L; Mattingley, Jason B; Dux, Paul E

    2013-01-01

    The human visual system receives more information than can be consciously processed. To overcome this capacity limit, we employ attentional mechanisms to prioritize task-relevant (target) information over less relevant (distractor) information. Regularities in the environment can facilitate the allocation of attention, as demonstrated by the spatial contextual cueing paradigm. When observers are exposed repeatedly to a scene and invariant distractor information, learning from earlier exposures enhances the search for the target. Here, we investigated whether spatial contextual cueing draws on spatial working memory resources and, if so, at what level of processing working memory load has its effect. Participants performed 2 tasks concurrently: a visual search task, in which the spatial configuration of some search arrays occasionally repeated, and a spatial working memory task. Increases in working memory load significantly impaired contextual learning. These findings indicate that spatial contextual cueing utilizes working memory resources.

  4. Imaging system design for improved information capacity

    NASA Technical Reports Server (NTRS)

    Fales, C. L.; Huck, F. O.; Samms, R. W.

    1984-01-01

    Shannon's theory of information for communication channels is used to assess the performance of line-scan and sensor-array imaging systems and to optimize the design trade-offs involving sensitivity, spatial response, and sampling intervals. Formulations and computational evaluations account for spatial responses typical of line-scan and sensor-array mechanisms, lens diffraction and transmittance shading, defocus blur, and square and hexagonal sampling lattices.

  5. Geospatial Based Information System Development in Public Administration for Sustainable Development and Planning in Urban Environment

    NASA Astrophysics Data System (ADS)

    Kouziokas, Georgios N.

    2016-09-01

    It is generally agreed that the governmental authorities should actively encourage the development of an efficient framework of information and communication technology initiatives so as to advance and promote sustainable development and planning strategies. This paper presents a prototype Information System for public administration which was designed to facilitate public management and decision making for sustainable development and planning. The system was developed by using several programming languages and programming tools and also a Database Management System (DBMS) for storing and managing urban data of many kinds. Furthermore, geographic information systems were incorporated into the system in order to make possible to the authorities to deal with issues of spatial nature such as spatial planning. The developed system provides a technology based management of geospatial information, environmental and crime data of urban environment aiming at improving public decision making and also at contributing to a more efficient sustainable development and planning.

  6. Development of water environment information management and water pollution accident response system

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ruan, H.

    2009-12-01

    In recent years, many water pollution accidents occurred with the rapid economical development. In this study, water environment information management and water pollution accident response system are developed based on geographic information system (GIS) techniques. The system integrated spatial database, attribute database, hydraulic model, and water quality model under a user-friendly interface in a GIS environment. System ran in both Client/Server (C/S) and Browser/Server (B/S) platform which focused on model and inquiry respectively. System provided spatial and attribute data inquiry, water quality evaluation, statics, water pollution accident response case management (opening reservoir etc) and 2D and 3D visualization function, and gave assistant information to make decision on water pollution accident response. Polluted plume in Huaihe River were selected to simulate the transport of pollutes.

  7. Turning Data into Information: Assessing and Reporting GIS Metadata Integrity Using Integrated Computing Technologies

    ERIC Educational Resources Information Center

    Mulrooney, Timothy J.

    2009-01-01

    A Geographic Information System (GIS) serves as the tangible and intangible means by which spatially related phenomena can be created, analyzed and rendered. GIS metadata serves as the formal framework to catalog information about a GIS data set. Metadata is independent of the encoded spatial and attribute information. GIS metadata is a subset of…

  8. Improving visual spatial working memory in younger and older adults: effects of cross-modal cues.

    PubMed

    Curtis, Ashley F; Turner, Gary R; Park, Norman W; Murtha, Susan J E

    2017-11-06

    Spatially informative auditory and vibrotactile (cross-modal) cues can facilitate attention but little is known about how similar cues influence visual spatial working memory (WM) across the adult lifespan. We investigated the effects of cues (spatially informative or alerting pre-cues vs. no cues), cue modality (auditory vs. vibrotactile vs. visual), memory array size (four vs. six items), and maintenance delay (900 vs. 1800 ms) on visual spatial location WM recognition accuracy in younger adults (YA) and older adults (OA). We observed a significant interaction between spatially informative pre-cue type, array size, and delay. OA and YA benefitted equally from spatially informative pre-cues, suggesting that attentional orienting prior to WM encoding, regardless of cue modality, is preserved with age.  Contrary to predictions, alerting pre-cues generally impaired performance in both age groups, suggesting that maintaining a vigilant state of arousal by facilitating the alerting attention system does not help visual spatial location WM.

  9. Ground subsidence information as a valuable layer in GIS analysis

    NASA Astrophysics Data System (ADS)

    Murdzek, Radosław; Malik, Hubert; Leśniak, Andrzej

    2018-04-01

    Among the technologies used to improve functioning of local governments the geographic information systems (GIS) are widely used. GIS tools allow to simultaneously integrate spatial data resources, analyse them, process and use them to make strategic decisions. Nowadays GIS analysis is widely used in spatial planning or environmental protection. In these applications a number of spatial information are utilized, but rarely it is an information about environmental hazards. This paper includes information about ground subsidence that occurred in USCB mining area into GIS analysis. Monitoring of this phenomenon can be carried out using the radar differential interferometry (DInSAR) method.

  10. Road landslide information management and forecasting system base on GIS.

    PubMed

    Wang, Wei Dong; Du, Xiang Gang; Xie, Cui Ming

    2009-09-01

    Take account of the characters of road geological hazard and its supervision, it is very important to develop the Road Landslides Information Management and Forecasting System based on Geographic Information System (GIS). The paper presents the system objective, function, component modules and key techniques in the procedure of system development. The system, based on the spatial information and attribute information of road geological hazard, was developed and applied in Guizhou, a province of China where there are numerous and typical landslides. The manager of communication, using the system, can visually inquire all road landslides information based on regional road network or on the monitoring network of individual landslide. Furthermore, the system, integrated with mathematical prediction models and the GIS's strongpoint on spatial analyzing, can assess and predict landslide developing procedure according to the field monitoring data. Thus, it can efficiently assists the road construction or management units in making decision to control the landslides and to reduce human vulnerability.

  11. Representing spatial information in a computational model for network management

    NASA Technical Reports Server (NTRS)

    Blaisdell, James H.; Brownfield, Thomas F.

    1994-01-01

    While currently available relational database management systems (RDBMS) allow inclusion of spatial information in a data model, they lack tools for presenting this information in an easily comprehensible form. Computer-aided design (CAD) software packages provide adequate functions to produce drawings, but still require manual placement of symbols and features. This project has demonstrated a bridge between the data model of an RDBMS and the graphic display of a CAD system. It is shown that the CAD system can be used to control the selection of data with spatial components from the database and then quickly plot that data on a map display. It is shown that the CAD system can be used to extract data from a drawing and then control the insertion of that data into the database. These demonstrations were successful in a test environment that incorporated many features of known working environments, suggesting that the techniques developed could be adapted for practical use.

  12. Extracting spatial information from large aperture exposures of diffuse sources

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Moos, H. W.

    1981-01-01

    The spatial properties of large aperture exposures of diffuse emission can be used both to investigate spatial variations in the emission and to filter out camera noise in exposures of weak emission sources. Spatial imaging can be accomplished both parallel and perpendicular to dispersion with a resolution of 5-6 arc sec, and a narrow median filter running perpendicular to dispersion across a diffuse image selectively filters out point source features, such as reseaux marks and fast particle hits. Spatial information derived from observations of solar system objects is presented.

  13. Scale Invariance in Lateral Head Scans During Spatial Exploration.

    PubMed

    Yadav, Chetan K; Doreswamy, Yoganarasimha

    2017-04-14

    Universality connects various natural phenomena through physical principles governing their dynamics, and has provided broadly accepted answers to many complex questions, including information processing in neuronal systems. However, its significance in behavioral systems is still elusive. Lateral head scanning (LHS) behavior in rodents might contribute to spatial navigation by actively managing (optimizing) the available sensory information. Our findings of scale invariant distributions in LHS lifetimes, interevent intervals and event magnitudes, provide evidence for the first time that the optimization takes place at a critical point in LHS dynamics. We propose that the LHS behavior is responsible for preprocessing of the spatial information content, critical for subsequent foolproof encoding by the respective downstream neural networks.

  14. Scale Invariance in Lateral Head Scans During Spatial Exploration

    NASA Astrophysics Data System (ADS)

    Yadav, Chetan K.; Doreswamy, Yoganarasimha

    2017-04-01

    Universality connects various natural phenomena through physical principles governing their dynamics, and has provided broadly accepted answers to many complex questions, including information processing in neuronal systems. However, its significance in behavioral systems is still elusive. Lateral head scanning (LHS) behavior in rodents might contribute to spatial navigation by actively managing (optimizing) the available sensory information. Our findings of scale invariant distributions in LHS lifetimes, interevent intervals and event magnitudes, provide evidence for the first time that the optimization takes place at a critical point in LHS dynamics. We propose that the LHS behavior is responsible for preprocessing of the spatial information content, critical for subsequent foolproof encoding by the respective downstream neural networks.

  15. ENVIRONMENTAL INFORMATION MANAGEMENT SYSTEM (EIMS)

    EPA Science Inventory

    The Environmental Information Management System (EIMS) organizes descriptive information (metadata) for data sets, databases, documents, models, projects, and spatial data. The EIMS design provides a repository for scientific documentation that can be easily accessed with standar...

  16. Combining Multiple Forms Of Visual Information To Specify Contact Relations In Spatial Layout

    NASA Astrophysics Data System (ADS)

    Sedgwick, Hal A.

    1990-03-01

    An expert system, called Layout2, has been described, which models a subset of available visual information for spatial layout. The system is used to examine detailed interactions between multiple, partially redundant forms of information in an environment-centered geometrical model of an environment obeying certain rather general constraints. This paper discusses the extension of Layout2 to include generalized contact relations between surfaces. In an environment-centered model, the representation of viewer-centered distance is replaced by the representation of environmental location. This location information is propagated through the representation of the environment by a network of contact relations between contiguous surfaces. Perspective information interacts with other forms of information to specify these contact relations. The experimental study of human perception of contact relations in extended spatial layouts is also discussed. Differences between human results and Layout2 results reveal limitations in the human ability to register available information; they also point to the existence of certain forms of information not yet formalized in Layout2.

  17. Spatialized audio improves call sign recognition during multi-aircraft control.

    PubMed

    Kim, Sungbin; Miller, Michael E; Rusnock, Christina F; Elshaw, John J

    2018-07-01

    We investigated the impact of a spatialized audio display on response time, workload, and accuracy while monitoring auditory information for relevance. The human ability to differentiate sound direction implies that spatial audio may be used to encode information. Therefore, it is hypothesized that spatial audio cues can be applied to aid differentiation of critical versus noncritical verbal auditory information. We used a human performance model and a laboratory study involving 24 participants to examine the effect of applying a notional, automated parser to present audio in a particular ear depending on information relevance. Operator workload and performance were assessed while subjects listened for and responded to relevant audio cues associated with critical information among additional noncritical information. Encoding relevance through spatial location in a spatial audio display system--as opposed to monophonic, binaural presentation--significantly reduced response time and workload, particularly for noncritical information. Future auditory displays employing spatial cues to indicate relevance have the potential to reduce workload and improve operator performance in similar task domains. Furthermore, these displays have the potential to reduce the dependence of workload and performance on the number of audio cues. Published by Elsevier Ltd.

  18. A mobile mapping system for spatial information based on DGPS/EGIS

    NASA Astrophysics Data System (ADS)

    Pei, Ling; Wang, Qing; Gu, Juan

    2007-11-01

    With the rapid developments of mobile device and wireless communication, it brings a new challenge for acquiring the spatial information. A mobile mapping system based on differential global position system (DGPS) integrated with embedded geographic information system (EGIS) is designed. A mobile terminal adapts to various GPS differential environments such as single base mode and network GPS mode like Virtual Reference Station (VRS) and Master- Auxiliary Concept (MAC) by the mobile communication technology. The spatial information collected through DGPS is organized in an EGIS running in the embedded device. A set of mobile terminal in real-time DGPS based on GPRS adopting multithreading technique of serial port in manner of simulating overlapped I/O operating is developed, further more, the GPS message analysis and checkout based on Strategy Pattern for various receivers are included in the process of development. A mobile terminal accesses to the GPS network successfully by NTRIP (Networked Transport of RTCM via Internet Protocol) compliance. Finally, the accuracy and reliability of the mobile mapping system are proved by a lot of testing in 9 provinces all over the country.

  19. Precoded spatial multiplexing MIMO system with spatial component interleaver.

    PubMed

    Gao, Xiang; Wu, Zhanji

    In this paper, the performance of precoded bit-interleaved coded modulation (BICM) spatial multiplexing multiple-input multiple-output (MIMO) system with spatial component interleaver is investigated. For the ideal precoded spatial multiplexing MIMO system with spatial component interleaver based on singular value decomposition (SVD) of the MIMO channel, the average pairwise error probability (PEP) of coded bits is derived. Based on the PEP analysis, the optimum spatial Q-component interleaver design criterion is provided to achieve the minimum error probability. For the limited feedback precoded proposed scheme with linear zero forcing (ZF) receiver, in order to minimize a bound on the average probability of a symbol vector error, a novel effective signal-to-noise ratio (SNR)-based precoding matrix selection criterion and a simplified criterion are proposed. Based on the average mutual information (AMI)-maximization criterion, the optimal constellation rotation angles are investigated. Simulation results indicate that the optimized spatial multiplexing MIMO system with spatial component interleaver can achieve significant performance advantages compared to the conventional spatial multiplexing MIMO system.

  20. The Pilot Study of Integrating Spatial Educational Experiences (Isee) in an Undergraduate Crop Production Course

    ERIC Educational Resources Information Center

    Mitzman, Stephanie; Snyder, Lori Unruh; Schulze, Darrell G.; Owens, Phillip R.; Bracke, Marianne Stowell

    2011-01-01

    Recent National Research Council reports make compelling arguments for the need to incorporate spatial abilities and use spatial technologies throughout our educational system. We conducted a pilot study to determine the pedagogical effectiveness of teaching with geographic information systems (GIS) by using a web-based GIS tool of Indiana soils.…

  1. Open source GIS for HIV/AIDS management

    PubMed Central

    Vanmeulebrouk, Bas; Rivett, Ulrike; Ricketts, Adam; Loudon, Melissa

    2008-01-01

    Background Reliable access to basic services can improve a community's resilience to HIV/AIDS. Accordingly, work is being done to upgrade the physical infrastructure in affected areas, often employing a strategy of decentralised service provision. Spatial characteristics are one of the major determinants in implementing services, even in the smaller municipal areas, and good quality spatial information is needed to inform decision making processes. However, limited funds, technical infrastructure and human resource capacity result in little or no access to spatial information for crucial infrastructure development decisions at local level. This research investigated whether it would be possible to develop a GIS for basic infrastructure planning and management at local level. Given the resource constraints of the local government context, particularly in small municipalities, it was decided that open source software should be used for the prototype system. Results The design and development of a prototype system illustrated that it is possible to develop an open source GIS system that can be used within the context of local information management. Usability tests show a high degree of usability for the system, which is important considering the heavy workload and high staff turnover that characterises local government in South Africa. Local infrastructure management stakeholders interviewed in a case study of a South African municipality see the potential for the use of GIS as a communication tool and are generally positive about the use of GIS for these purposes. They note security issues that may arise through the sharing of information, lack of skills and resource constraints as the major barriers to adoption. Conclusion The case study shows that spatial information is an identified need at local level. Open source GIS software can be used to develop a system to provide local-level stakeholders with spatial information. However, the suitability of the technology is only a part of the system – there are wider information and management issues which need to be addressed before the implementation of a local-level GIS for infrastructure management can be successful. PMID:18945338

  2. Modified Navigation Instructions for Spatial Navigation Assistance Systems Lead to Incidental Spatial Learning

    PubMed Central

    Gramann, Klaus; Hoepner, Paul; Karrer-Gauss, Katja

    2017-01-01

    Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan. PMID:28243219

  3. A method of constructing geo-object ontology in disaster system for prevention and decrease

    NASA Astrophysics Data System (ADS)

    Li, Bin; Liu, Jiping; Shi, Lihong; Wang, Zhenfeng

    2009-10-01

    A kind of formal system, which can express clearly a certain entity or information, is needed to express geographical concept. Besides, some rules explaining the interrelationship and action between different components are also required. Therefore, the conception of geo-object ontology is introduced. It is a shared formalization and display specification of conceptual knowledge system in the field of concrete application of spatial information science. It can constitute hierarchy structure, which derives from the concept classification system in the geographical area. Its concepts can be described by the property. Property sets can form a vector space with multi-dimensional characteristics. Geographic space is composed of different types of geographic entities. And its concept is formed by a series of geographic entities with the same properties and actions. Moreover, each of the geographic entities can be mapped to an object, and each object has its spatial property, time information and topology, semantic relationships associated with other objects. The biggest difference between ecumenical information ontology and geo-ontology is that the latter has the spatial characteristics. During the construction process of geo-object ontology, some important components, such as geographic type, spatial relation, spatial entity type and coordinates, time, should be included to make further research. Here, taking disaster as an example, by using Protégé and OWL, combined methods used by constructing the geo-object ontology in the form of being manual made by domanial experts and semi-automatic are investigated oriented to disaster to serve ultimately geographic information retrieval service driven by ontology.

  4. Spatially explicit assessment of estuarine fish after Deepwater Horizon oil spill: trade-off in complexity and parsimony

    EPA Science Inventory

    Evaluating long- term contaminant effects on wildlife populations depends on spatial information about habitat quality, heterogeneity in contaminant exposure, and sensitivities and distributions of species integrated into a systems modeling approach. Rarely is this information re...

  5. Decision Performance Using Spatial Decision Support Systems: A Geospatial Reasoning Ability Perspective

    ERIC Educational Resources Information Center

    Erskine, Michael A.

    2013-01-01

    As many consumer and business decision makers are utilizing Spatial Decision Support Systems (SDSS), a thorough understanding of how such decisions are made is crucial for the information systems domain. This dissertation presents six chapters encompassing a comprehensive analysis of the impact of geospatial reasoning ability on…

  6. Area-based tests for association between spatial patterns

    NASA Astrophysics Data System (ADS)

    Maruca, Susan L.; Jacquez, Geoffrey M.

    Edge effects pervade natural systems, and the processes that determine spatial heterogeneity (e.g. physical, geochemical, biological, ecological factors) occur on diverse spatial scales. Hence, tests for association between spatial patterns should be unbiased by edge effects and be based on null spatial models that incorporate the spatial heterogeneity characteristic of real-world systems. This paper develops probabilistic pattern association tests that are appropriate when edge effects are present, polygon size is heterogeneous, and the number of polygons varies from one classification to another. The tests are based on the amount of overlap between polygons in each of two partitions. Unweighted and area-weighted versions of the statistics are developed and verified using scenarios representing both polygon overlap and avoidance at different spatial scales and for different distributions of polygon sizes. These statistics were applied to Soda Butte Creek, Wyoming, to determine whether stream microhabitats, such as riffles, pools and glides, can be identified remotely using high spatial resolution hyperspectral imagery. These new ``spatially explicit'' techniques provide information and insights that cannot be obtained from the spectral information alone.

  7. Development of Critical Spatial Thinking through GIS Learning

    ERIC Educational Resources Information Center

    Kim, Minsung; Bednarz, Robert

    2013-01-01

    This study developed an interview-based critical spatial thinking oral test and used the test to investigate the effects of Geographic Information System (GIS) learning on three components of critical spatial thinking: evaluating data reliability, exercising spatial reasoning, and assessing problem-solving validity. Thirty-two students at a large…

  8. The Future Role of GIS Education in Creating Critical Spatial Thinkers

    ERIC Educational Resources Information Center

    Bearman, Nick; Jones, Nick; André, Isabel; Cachinho, Herculano Alberto; DeMers, Michael

    2016-01-01

    Teaching of critical spatial thinking in higher education empowers graduates to effectively engage with spatial data. Geographic information systems (GIS) and science are taught to undergraduates across many disciplines; we evaluate how this contributes to critical spatial thinking. The discipline of GIS covers the whole process of spatial…

  9. Elaboration of a framework for the compilation of countrywide, digital maps for the satisfaction of recent demands on spatial, soil related information in Hungary

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Dobos, Endre; Szabó, József; Bakacsi, Zsófia; Laborczi, Annamária

    2013-04-01

    There is a heap of evidences that demands on soil related information have been significant worldwide and it is still increasing. Soil maps were typically used for long time to satisfy these demands. By the spread of GI technology, spatial soil information systems (SSIS) and digital soil mapping (DSM) took the role of traditional soil maps. Due to the relatively high costs of data collection, new conventional soil surveys and inventories are getting less and less frequent, which fact valorises legacy soil information and the systems which are serving the their digitally processed version. The existing data contain a wealth of information that can be exploited by proper methodology. Not only the degree of current needs for soil information has changed but also its nature. Traditionally the agricultural functions of soils were focussed on, which was also reflected in the methodology of data collection and mapping. Recently the multifunctionality of soils is getting to gain more and more ground; consequently information related to additional functions of soils becomes identically important. The new types of information requirements however cannot be fulfilled generally with new data collections at least not on such a level as it was done in the frame of traditional soil surveys. Soil monitoring systems have been established for the collection of recent information on the various elements of the DPSIR (Driving Forces-Pressures-State-Impacts-Responses) framework, but the primary goal of these systems has not been mapping by all means. And definitely this is the case concerning the two recently working Hungarian soil monitoring systems. In Hungary, presently soil data requirements are fulfilled with the recently available datasets either by their direct usage or after certain specific and generally fortuitous, thematic and/or spatial inference. Due to the more and more frequently emerging discrepancies between the available and the expected data, there might be notable imperfection as for the accuracy and reliability of the delivered products. Since, similarly to the great majority of the world, large-scale, comprehensive new surveys cannot be expected in the near future, the actually available legacy data should be relied on. With a recently started project we would like to significantly extend the potential, how countrywide soil information requirements could be satisfied. In the frame of our project we plan the execution of spatial and thematic data mining of significant amount of soil related information available in the form of legacy soil data as well as digital databases and spatial soil information systems. In the course of the analyses we will lean on auxiliary, spatial data themes related to environmental elements. Based on the established relationships we will convert and integrate the specific data sets for the regionalization of the various, derived soil parameters. By the aid of GIS and geostatistical tools we will carry out the spatial extension of certain pedological variables featuring the (including degradation) state, processes or functions of soils. We plan to compile digital soil maps which fulfil optimally the national and international demands from points of view of thematic, spatial and temporal accuracy. The targeted spatial resolution of the proposed countrywide, digital, thematic soil property and function maps is at least 1:50.000 (approx. 50-100 meter raster). Our stressful objective is the definite solution of the regionalization of the information collected in the frame of two recent, contemporary, national, systematic soil data collection (not designed for mapping purpose) on the recent state of soils, in order to produce countrywide maps for the spatial inventory of certain soil properties, processes and functions with sufficient accuracy and reliability.

  10. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on the case study of a coal mining region in SW Poland where it has been applied to study characteristics and map mining induced ground deformations in a city in the last two decades of underground coal extraction and in the first decade after the end of mining. The mining subsidence area and its deformation parameters (tilt and curvature) have been calculated and the latter classified and mapped according to the Polish regulations. In addition possible areas of ground deformation have been indicated based on multivariate spatial data analysis of geological and mining operation characteristics with the geographically weighted regression method.

  11. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2008-09

    USGS Publications Warehouse

    ,

    2009-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is useful for analyzing a wide variety of spatial data. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This fact sheet presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup during 2008 and 2009. After a summary of GIS Workgroup capabilities, brief descriptions of activities by project at the local and national levels are presented. Projects are grouped by the fiscal year (October-September 2008 or 2009) the project ends and include overviews, project images, and Internet links to additional project information and related publications or articles.

  12. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  13. Working Memory Systems in the Rat.

    PubMed

    Bratch, Alexander; Kann, Spencer; Cain, Joshua A; Wu, Jie-En; Rivera-Reyes, Nilda; Dalecki, Stefan; Arman, Diana; Dunn, Austin; Cooper, Shiloh; Corbin, Hannah E; Doyle, Amanda R; Pizzo, Matthew J; Smith, Alexandra E; Crystal, Jonathon D

    2016-02-08

    A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Principles of logic and the use of digital geographic information systems

    USGS Publications Warehouse

    Robinove, Charles Joseph

    1986-01-01

    Digital geographic information systems allow many different types of data to be spatially and statistically analyzed. Logical operations can be performed on individual or multiple data planes by algorithms that can be implemented in computer systems. Users and creators of the systems should fully understand these operations. This paper describes the relationships of layers and features in geographic data bases and the principles of logic that can be applied by geographic information systems and suggests that a thorough knowledge of the data that are entered into a geographic data base and of the logical operations will produce results that are most satisfactory to the user. Methods of spatial analysis are reduced to their primitive logical operations and explained to further such understanding.

  15. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    NASA Astrophysics Data System (ADS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  16. The Wildland Fire Emissions Information System: Providing information for carbon cycle studies with open source geospatial tools

    NASA Astrophysics Data System (ADS)

    French, N. H.; Erickson, T.; McKenzie, D.

    2008-12-01

    A major goal of the North American Carbon Program is to resolve uncertainties in understanding and managing the carbon cycle of North America. As carbon modeling tools become more comprehensive and spatially oriented, accurate datasets to spatially quantify carbon emissions from fire are needed, and these data resources need to be accessible to users for decision-making. Under a new NASA Carbon Cycle Science project, Drs. Nancy French and Tyler Erickson, of the Michigan Technological University, Michigan Tech Research Institute (MTRI), are teaming with specialists with the USDA Forest Service Fire and Environmental Research Applications (FERA) team to provide information for mapping fire-derived carbon emissions to users. The project focus includes development of a web-based system to provide spatially resolved fire emissions estimates for North America in a user-friendly environment. The web-based Decision Support System will be based on a variety of open source technologies. The Fuel Characteristic Classification System (FCCS) raster map of fuels and MODIS-derived burned area vector maps will be processed using the Geographic Data Abstraction Library (GDAL) and OGR Simple Features Library. Tabular and spatial project data will be stored in a PostgreSQL/PostGIS, a spatially enabled relational database server. The browser-based user interface will be created using the Django web page framework to allow user input for the decision support system. The OpenLayers mapping framework will be used to provide users with interactive maps within the browser. In addition, the data products will be made available in standard open data formats such as KML, to allow for easy integration into other spatial models and data systems.

  17. Spatial prediction of landslide hazard using discriminant analysis and GIS

    Treesearch

    Peter V. Gorsevski; Paul Gessler; Randy B. Foltz

    2000-01-01

    Environmental attributes relevant for spatial prediction of landslides triggered by rain and snowmelt events were derived from digital elevation model (DEM). Those data in conjunction with statistics and geographic information system (GIS) provided a detailed basis for spatial prediction of landslide hazard. The spatial prediction of landslide hazard in this paper is...

  18. Noise Analysis of Spatial Phase coding in analog Acoustooptic Processors

    NASA Technical Reports Server (NTRS)

    Gary, Charles K.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Optical beams can carry information in their amplitude and phase; however, optical analog numerical calculators such as an optical matrix processor use incoherent light to achieve linear operation. Thus, the phase information is lost and only the magnitude can be used. This limits such processors to the representation of positive real numbers. Many systems have been devised to overcome this deficit through the use of digital number representations, but they all operate at a greatly reduced efficiency in contrast to analog systems. The most widely accepted method to achieve sign coding in analog optical systems has been the use of an offset for the zero level. Unfortunately, this results in increased noise sensitivity for small numbers. In this paper, we examine the use of spatially coherent sign coding in acoustooptical processors, a method first developed for digital calculations by D. V. Tigin. This coding technique uses spatial coherence for the representation of signed numbers, while temporal incoherence allows for linear analog processing of the optical information. We show how spatial phase coding reduces noise sensitivity for signed analog calculations.

  19. [Design and implementation of Geographical Information System on prevention and control of cholera].

    PubMed

    Li, Xiu-jun; Fang, Li-qun; Wang, Duo-chun; Wang, Lu-xi; Li, Ya-pin; Li, Yan-li; Yang, Hong; Kan, Biao; Cao, Wu-chun

    2012-04-01

    To build the Geographical Information System (GIS) database for prevention and control of cholera programs as well as using management analysis and function demonstration to show the spatial attribute of cholera. Data from case reporting system regarding diarrhoea, vibrio cholerae, serotypes of vibrio cholerae at the surveillance spots and seafoods, as well as surveillance data on ambient environment and climate were collected. All the data were imported to system database to show the incidence of vibrio cholerae in different provinces, regions and counties to support the spatial analysis through the spatial analysis of GIS. The epidemic trends of cholera, seasonal characteristics of the cholera and the variation of the vibrio cholerae with times were better understood. Information on hotspots, regions and time of epidemics was collected, and helpful in providing risk prediction on the incidence of vibrio cholerae. The exploitation of the software can predict and simulate the spatio-temporal risks, so as to provide guidance for the prevention and control of the disease.

  20. [Assessment on ecological security spatial differences of west areas of Liaohe River based on GIS].

    PubMed

    Wang, Geng; Wu, Wei

    2005-09-01

    Ecological security assessment and early warning research have spatiality; non-linearity; randomicity, it is needed to deal with much spatial information. Spatial analysis and data management are advantages of GIS, it can define distribution trend and spatial relations of environmental factors, and show ecological security pattern graphically. The paper discusses the method of ecological security spatial differences of west areas of Liaohe River based on GIS and ecosystem non-health. First, studying on pressure-state-response (P-S-R) assessment indicators system, investigating in person and gathering information; Second, digitizing the river, applying fuzzy AHP to put weight, quantizing and calculating by fuzzy comparing; Last, establishing grid data-base; expounding spatial differences of ecological security by GIS Interpolate and Assembly.

  1. Spatial Lattice Modulation for MIMO Systems

    NASA Astrophysics Data System (ADS)

    Choi, Jiwook; Nam, Yunseo; Lee, Namyoon

    2018-06-01

    This paper proposes spatial lattice modulation (SLM), a spatial modulation method for multipleinput-multiple-output (MIMO) systems. The key idea of SLM is to jointly exploit spatial, in-phase, and quadrature dimensions to modulate information bits into a multi-dimensional signal set that consists oflattice points. One major finding is that SLM achieves a higher spectral efficiency than the existing spatial modulation and spatial multiplexing methods for the MIMO channel under the constraint ofM-ary pulseamplitude-modulation (PAM) input signaling per dimension. In particular, it is shown that when the SLM signal set is constructed by using dense lattices, a significant signal-to-noise-ratio (SNR) gain, i.e., a nominal coding gain, is attainable compared to the existing methods. In addition, closed-form expressions for both the average mutual information and average symbol-vector-error-probability (ASVEP) of generic SLM are derived under Rayleigh-fading environments. To reduce detection complexity, a low-complexity detection method for SLM, which is referred to as lattice sphere decoding, is developed by exploiting lattice theory. Simulation results verify the accuracy of the conducted analysis and demonstrate that the proposed SLM techniques achieve higher average mutual information and lower ASVEP than do existing methods.

  2. Geographic Information Systems and Libraries: Patrons, Maps, and Spatial Information. Papers presented at the Clinic on Library Applications of Data Processing (Champaign, Illinois, April 10-12, 1995).

    ERIC Educational Resources Information Center

    Smith, Linda C., Ed.; Gluck, Myke, Ed.

    This document assembles conference papers which focus on how electronic technologies are creating new ways of meeting user needs for spatial and cartographic information. Contents include: (1) "Mapping Technology in Transition" (Mark Monmonier); (2) "Cataloging Planetospatial Data in Digital Form: Old Wine, New Bottles--New Wine,…

  3. Mapping invasive weeds and their control with spatial information technologies

    USDA-ARS?s Scientific Manuscript database

    We discuss applications of airborne multispectral digital imaging systems, imaging processing techniques, global positioning systems (GPS), and geographic information systems (GIS) for mapping the invasive weeds giant salvinia (Salvinia molesta) and Brazilian pepper (Schinus terebinthifolius) and fo...

  4. Detecting spatial regimes in ecosystems

    USGS Publications Warehouse

    Sundstrom, Shana M.; Eason, Tarsha; Nelson, R. John; Angeler, David G.; Barichievy, Chris; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance; Knutson, Melinda; Nash, Kirsty L.; Spanbauer, Trisha; Stow, Craig A.; Allen, Craig R.

    2017-01-01

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change.

  5. Spatial coding-based approach for partitioning big spatial data in Hadoop

    NASA Astrophysics Data System (ADS)

    Yao, Xiaochuang; Mokbel, Mohamed F.; Alarabi, Louai; Eldawy, Ahmed; Yang, Jianyu; Yun, Wenju; Li, Lin; Ye, Sijing; Zhu, Dehai

    2017-09-01

    Spatial data partitioning (SDP) plays a powerful role in distributed storage and parallel computing for spatial data. However, due to skew distribution of spatial data and varying volume of spatial vector objects, it leads to a significant challenge to ensure both optimal performance of spatial operation and data balance in the cluster. To tackle this problem, we proposed a spatial coding-based approach for partitioning big spatial data in Hadoop. This approach, firstly, compressed the whole big spatial data based on spatial coding matrix to create a sensing information set (SIS), including spatial code, size, count and other information. SIS was then employed to build spatial partitioning matrix, which was used to spilt all spatial objects into different partitions in the cluster finally. Based on our approach, the neighbouring spatial objects can be partitioned into the same block. At the same time, it also can minimize the data skew in Hadoop distributed file system (HDFS). The presented approach with a case study in this paper is compared against random sampling based partitioning, with three measurement standards, namely, the spatial index quality, data skew in HDFS, and range query performance. The experimental results show that our method based on spatial coding technique can improve the query performance of big spatial data, as well as the data balance in HDFS. We implemented and deployed this approach in Hadoop, and it is also able to support efficiently any other distributed big spatial data systems.

  6. Advanced techniques for the storage and use of very large, heterogeneous spatial databases

    NASA Technical Reports Server (NTRS)

    Peuquet, Donna J.

    1987-01-01

    Progress is reported in the development of a prototype knowledge-based geographic information system. The overall purpose of this project is to investigate and demonstrate the use of advanced methods in order to greatly improve the capabilities of geographic information system technology in the handling of large, multi-source collections of spatial data in an efficient manner, and to make these collections of data more accessible and usable for the Earth scientist.

  7. Evidence from Visuomotor Adaptation for Two Partially Independent Visuomotor Systems

    ERIC Educational Resources Information Center

    Thaler, Lore; Todd, James T.

    2010-01-01

    Visual information can specify spatial layout with respect to the observer (egocentric) or with respect to an external frame of reference (allocentric). People can use both of these types of visual spatial information to guide their hands. The question arises if movements based on egocentric and movements based on allocentric visual information…

  8. Geographic Information Systems (GIS) as an Evaluation Tool.

    ERIC Educational Resources Information Center

    Renger, Ralph; Cimetta, Adriana; Pettygrove, Sydney; Rogan, Seumas

    2002-01-01

    Describes how Geographic Information Systems (GIS) can be used to help evaluators convey complex information simply through a spatial representation. Demonstrates how GIS can be used to plot change over time, including impact and outcome data gathered by primary data collection. (SLD)

  9. The role of spatial integration in the perception of surface orientation with active touch.

    PubMed

    Giachritsis, Christos D; Wing, Alan M; Lovell, Paul G

    2009-10-01

    Vision research has shown that perception of line orientation, in the fovea area, improves with line length (Westheimer & Ley, 1997). This suggests that the visual system may use spatial integration to improve perception of orientation. In the present experiments, we investigated the role of spatial integration in the perception of surface orientation using kinesthetic and proprioceptive information from shoulder and elbow. With their left index fingers, participants actively explored virtual slanted surfaces of different lengths and orientations, and were asked to reproduce an orientation or discriminate between two orientations. Results showed that reproduction errors and discrimination thresholds improve with surface length. This suggests that the proprioceptive shoulder-elbow system may integrate redundant spatial information resulting from extended arm movements to improve orientation judgments.

  10. Detecting spatial regimes in ecosystems | Science Inventory ...

    EPA Pesticide Factsheets

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory based method, on both terrestrial and aquatic animal data (US Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps, and multivariate analysis such as nMDS (non-metric Multidimensional Scaling) and cluster analysis. We successfully detect spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change. Use an information theory based method to identify ecological boundaries and compare our results to traditional early warning

  11. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral–spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  12. Bridging the Gap Between Surveyors and the Geo-Spatial Society

    NASA Astrophysics Data System (ADS)

    Müller, H.

    2016-06-01

    For many years FIG, the International Association of Surveyors, has been trying to bridge the gap between surveyors and the geospatial society as a whole, with the geospatial industries in particular. Traditionally the surveying profession contributed to the good of society by creating and maintaining highly precise and accurate geospatial data bases, based on an in-depth knowledge of spatial reference frameworks. Furthermore in many countries surveyors may be entitled to make decisions about land divisions and boundaries. By managing information spatially surveyors today develop into the role of geo-data managers, the longer the more. Job assignments in this context include data entry management, data and process quality management, design of formal and informal systems, information management, consultancy, land management, all that in close cooperation with many different stakeholders. Future tasks will include the integration of geospatial information into e-government and e-commerce systems. The list of professional tasks underpins the capabilities of surveyors to contribute to a high quality geospatial data and information management. In that way modern surveyors support the needs of a geo-spatial society. The paper discusses several approaches to define the role of the surveyor within the modern geospatial society.

  13. Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics

    USGS Publications Warehouse

    Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.

    2005-01-01

    A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.

  14. The Fundamental Spatial Data in the Public Administration Registers

    NASA Astrophysics Data System (ADS)

    Čada, V.; Janečka, K.

    2016-06-01

    The system of basic registers was launched in the Czech Republic in 2012. The system provides a unique solution to centralize and keep actual most common and widely used information as a part of the eGovernment. The basic registers are the central information source for information systems of public authorities. In October 2014, the Czech government approved the conception of The Strategy for the Development of the Infrastructure for Spatial Information in the Czech Republic to 2020 (GeoInfoStrategy) that serves as a basis for the NSDI. The paper describes the challenges in building the National Spatial Data Infrastructure (NSDI) in the Czech Republic with focus on the fundamental spatial data and related basic registers. The GeoInfoStrategy should also contribute to increasing of the competitiveness of the economy. Therefore the paper also reflects the Directive 2014/61/EU of the European Parliament and of the Council on measures to reduce the cost of deploying high-speed electronic communication networks. The Directive states that citizens as well as the private and public sectors must have the opportunity to be part of the digital economy. A high quality digital infrastructure underpins virtually all sectors of a modern and innovative economy. To ensure a development of such infrastructure in the Czech Republic, the Register of passive infrastructure providing information on the features of passive infrastructure has to be established.

  15. Making Space for Place: Mapping Tools and Practices to Teach for Spatial Justice

    ERIC Educational Resources Information Center

    Rubel, Laurie H.; Hall-Wieckert, Maren; Lim, Vivian Y.

    2017-01-01

    This article presents a set of spatial tools for classroom learning about spatial justice. As part of a larger team, we designed a curriculum that engaged 10 learners with 3 spatial tools: (a) an oversized floor map, (b) interactive geographic information systems (GIS) maps, and (c) participatory mapping. We analyze how these tools supported…

  16. An Object-Based Approach to Evaluation of Climate Variability Projections and Predictions

    NASA Astrophysics Data System (ADS)

    Ammann, C. M.; Brown, B.; Kalb, C. P.; Bullock, R.

    2017-12-01

    Evaluations of the performance of earth system model predictions and projections are of critical importance to enhance usefulness of these products. Such evaluations need to address specific concerns depending on the system and decisions of interest; hence, evaluation tools must be tailored to inform about specific issues. Traditional approaches that summarize grid-based comparisons of analyses and models, or between current and future climate, often do not reveal important information about the models' performance (e.g., spatial or temporal displacements; the reason behind a poor score) and are unable to accommodate these specific information needs. For example, summary statistics such as the correlation coefficient or the mean-squared error provide minimal information to developers, users, and decision makers regarding what is "right" and "wrong" with a model. New spatial and temporal-spatial object-based tools from the field of weather forecast verification (where comparisons typically focus on much finer temporal and spatial scales) have been adapted to more completely answer some of the important earth system model evaluation questions. In particular, the Method for Object-based Diagnostic Evaluation (MODE) tool and its temporal (three-dimensional) extension (MODE-TD) have been adapted for these evaluations. More specifically, these tools can be used to address spatial and temporal displacements in projections of El Nino-related precipitation and/or temperature anomalies, ITCZ-associated precipitation areas, atmospheric rivers, seasonal sea-ice extent, and other features of interest. Examples of several applications of these tools in a climate context will be presented, using output of the CESM large ensemble. In general, these tools provide diagnostic information about model performance - accounting for spatial, temporal, and intensity differences - that cannot be achieved using traditional (scalar) model comparison approaches. Thus, they can provide more meaningful information that can be used in decision-making and planning. Future extensions and applications of these tools in a climate context will be considered.

  17. A Geographic Information Science (GISc) Approach to Characterizing Spatiotemporal Patterns of Terrorist Incidents in Iraq, 2004-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Richard M; Siebeneck, Laura K.; Hepner, George F.

    2011-01-01

    As terrorism on all scales continues, it is necessary to improve understanding of terrorist and insurgent activities. This article takes a Geographic Information Systems (GIS) approach to advance the understanding of spatial, social, political, and cultural triggers that influence terrorism incidents. Spatial, temporal, and spatiotemporal patterns of terrorist attacks are examined to improve knowledge about terrorist systems of training, planning, and actions. The results of this study aim to provide a foundation for understanding attack patterns and tactics in emerging havens as well as inform the creation and implementation of various counterterrorism measures.

  18. Artificial neural network does better spatiotemporal compressive sampling

    NASA Astrophysics Data System (ADS)

    Lee, Soo-Young; Hsu, Charles; Szu, Harold

    2012-06-01

    Spatiotemporal sparseness is generated naturally by human visual system based on artificial neural network modeling of associative memory. Sparseness means nothing more and nothing less than the compressive sensing achieves merely the information concentration. To concentrate the information, one uses the spatial correlation or spatial FFT or DWT or the best of all adaptive wavelet transform (cf. NUS, Shen Shawei). However, higher dimensional spatiotemporal information concentration, the mathematics can not do as flexible as a living human sensory system. The reason is obviously for survival reasons. The rest of the story is given in the paper.

  19. Snow Water Equivalent Retrieval Using Multitemporal COSMO Skymed X-Band SAR Images To Inform Water Systems Operation

    NASA Astrophysics Data System (ADS)

    Denaro, S.; Del Gobbo, U.; Castelletti, A.; Tebaldini, S.; Monti Guarnieri, A.

    2015-12-01

    In this work, we explore the use of exogenous snow-related information for enhancing the operation of water facilities in snow dominated watersheds. Traditionally, such information is assimilated into short-to-medium term streamflow forecasts, which are then used to inform water systems operation. Here, we adopt an alternative model-free approach, where the policy is directly conditioned upon a small set of selected observational data able to surrogate the snow-pack dynamics. In snow-fed water systems, the Snow Water Equivalent (SWE) stored in the basin often represents the largest contribution to the future season streamflow. The SWE estimation process is challenged by the high temporal and spatial variability of snow-pack and snow properties. Traditional retrieval methods, based on few ground sensors and optical satellites, often fail at representing the spatial diversity of snow conditions over large basins and at producing continuous (gap-free) data at the high sample frequency (e.g. daily) required to optimally control water systems. Against this background, SWE estimates from remote sensed radar products stand out, being able to acquire spatial information with no dependence on cloud coverage. In this work, we propose a technique for retrieving SWE estimates from Synthetic Aperture Radar (SAR) Cosmo SkyMed X-band images: a regression model, calibrated on ground SWE measurements, is implemented on dry snow maps obtained through a multi-temporal approach. The unprecedented spatial scale of this application is novel w.r.t. state of the art radar analysis conducted on limited spatial domains. The operational value of the SAR retrieved SWE estimates is evaluated based on ISA, a recently developed information selection and assessment framework. The method is demonstrated on a snow-rain fed river basin in the Italian Alps. Preliminary results show SAR images have a good potential for monitoring snow conditions and for improving water management operations.

  20. Spatial analysis of dengue fever in Guangdong Province, China, 2001-2006.

    PubMed

    Liu, Chunxiao; Liu, Qiyong; Lin, Hualiang; Xin, Benqiang; Nie, Jun

    2014-01-01

    Guangdong Province is the area most seriously affected by dengue fever in China. In this study, we describe the spatial distribution of dengue fever in Guangdong Province from 2001 to 2006 with the objective of informing priority areas for public health planning and resource allocation. Annualized incidence at a county level was calculated and mapped to show crude incidence, excess hazard, and spatial smoothed incidence. Geographic information system-based spatial scan statistics was conducted to detect the spatial distribution pattern of dengue fever incidence at the county level. Spatial scan cluster analyses suggested that counties around Guangzhou City and Chaoshan Region were at increased risk for dengue fever (P < .01). Some spatial clusters of dengue fever were found in Guangdong Province, which allowed intervention measures to be targeted for maximum effect.

  1. Remote Sensing Systems Optimization for Geobase Enhancement

    DTIC Science & Technology

    2003-03-01

    through feedback from base users, as well as the researcher’s observations. 3.1 GeoBase and GIS Learning GeoBase and Geographic Information System ...Abstract The U.S. Air Force is in the process of implementing GeoBase, a geographic information system (GIS), throughout its worldwide installations...Geographic Information System (GIS). A GIS is a computer database that contains geo-spatial information . It is the principal tool used to input, view

  2. Enabling heterogenous multi-scale database for emergency service functions through geoinformation technologies

    NASA Astrophysics Data System (ADS)

    Bhanumurthy, V.; Venugopala Rao, K.; Srinivasa Rao, S.; Ram Mohan Rao, K.; Chandra, P. Satya; Vidhyasagar, J.; Diwakar, P. G.; Dadhwal, V. K.

    2014-11-01

    Geographical Information Science (GIS) is now graduated from traditional desktop system to Internet system. Internet GIS is emerging as one of the most promising technologies for addressing Emergency Management. Web services with different privileges are playing an important role in dissemination of the emergency services to the decision makers. Spatial database is one of the most important components in the successful implementation of Emergency Management. It contains spatial data in the form of raster, vector, linked with non-spatial information. Comprehensive data is required to handle emergency situation in different phases. These database elements comprise core data, hazard specific data, corresponding attribute data, and live data coming from the remote locations. Core data sets are minimum required data including base, thematic, infrastructure layers to handle disasters. Disaster specific information is required to handle a particular disaster situation like flood, cyclone, forest fire, earth quake, land slide, drought. In addition to this Emergency Management require many types of data with spatial and temporal attributes that should be made available to the key players in the right format at right time. The vector database needs to be complemented with required resolution satellite imagery for visualisation and analysis in disaster management. Therefore, the database is interconnected and comprehensive to meet the requirement of an Emergency Management. This kind of integrated, comprehensive and structured database with appropriate information is required to obtain right information at right time for the right people. However, building spatial database for Emergency Management is a challenging task because of the key issues such as availability of data, sharing policies, compatible geospatial standards, data interoperability etc. Therefore, to facilitate using, sharing, and integrating the spatial data, there is a need to define standards to build emergency database systems. These include aspects such as i) data integration procedures namely standard coding scheme, schema, meta data format, spatial format ii) database organisation mechanism covering data management, catalogues, data models iii) database dissemination through a suitable environment, as a standard service for effective service dissemination. National Database for Emergency Management (NDEM) is such a comprehensive database for addressing disasters in India at the national level. This paper explains standards for integrating, organising the multi-scale and multi-source data with effective emergency response using customized user interfaces for NDEM. It presents standard procedure for building comprehensive emergency information systems for enabling emergency specific functions through geospatial technologies.

  3. Industrial implementation of spatial variability control by real-time SPC

    NASA Astrophysics Data System (ADS)

    Roule, O.; Pasqualini, F.; Borde, M.

    2016-10-01

    Advanced technology nodes require more and more information to get the wafer process well setup. The critical dimension of components decreases following Moore's law. At the same time, the intra-wafer dispersion linked to the spatial non-uniformity of tool's processes is not capable to decrease in the same proportions. APC systems (Advanced Process Control) are being developed in waferfab to automatically adjust and tune wafer processing, based on a lot of process context information. It can generate and monitor complex intrawafer process profile corrections between different process steps. It leads us to put under control the spatial variability, in real time by our SPC system (Statistical Process Control). This paper will outline the architecture of an integrated process control system for shape monitoring in 3D, implemented in waferfab.

  4. Urban gray vs. urban green vs. soil protection — Development of a systemic solution to soil sealing management on the example of Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artmann, Martina, E-mail: m.artmann@ioer.de

    Managing urban soil sealing is a difficult venture due to its spatial heterogeneity and embedding in a socio-ecological system. A systemic solution is needed to tackle its spatial, ecological and social sub-systems. This study develops a guideline for urban actors to find a systemic solution to soil sealing management based on two case studies in Germany: Munich and Leipzig. Legal-planning, informal-planning, economic-fiscal, co-operative and informational responses were evaluated by indicators to proof which strategy considers the spatial complexity of urban soil sealing (systemic spatial efficiency) and, while considering spatial complexity, to assess what the key management areas for action aremore » to reduce the ecological impacts by urban soil sealing (ecological impact efficiency) and to support an efficient implementation by urban actors (social implementation efficiency). Results suggest framing the systemic solution to soil sealing management through a cross-scale, legal-planning development strategy embedded in higher European policies. Within the socio-ecological system, the key management area for action should focus on the protection of green infrastructure being of high value for actors from the European to local scales. Further efforts are necessary to establish a systemic monitoring concept to optimize socio-ecological benefits and avoid trade-offs such as between urban infill development and urban green protection. This place-based study can be regarded as a stepping stone on how to develop systemic strategies by considering different spatial sub-targets and socio-ecological systems. - Highlights: • Urban soil sealing management is spatially complex. • The legal-planning strategy supports a systemic sealing management. • Urban green infrastructure protection should be in the management focus. • Soil protection requires policies from higher levels of government. • A systemic urban soil sealing monitoring concept is needed.« less

  5. Fractionating dead reckoning: role of the compass, odometer, logbook, and home base establishment in spatial orientation

    NASA Astrophysics Data System (ADS)

    Wallace, Douglas G.; Martin, Megan M.; Winter, Shawn S.

    2008-06-01

    Rats use multiple sources of information to maintain spatial orientation. Although previous work has focused on rats’ use of environmental cues, a growing number of studies have demonstrated that rats also use self-movement cues to organize navigation. This review examines the extent that kinematic analysis of naturally occurring behavior has provided insight into processes that mediate dead-reckoning-based navigation. This work supports a role for separate systems in processing self-movement cues that converge on the hippocampus. The compass system is involved in deriving directional information from self-movement cues; whereas, the odometer system is involved in deriving distance information from self-movement cues. The hippocampus functions similar to a logbook in that outward path unique information from the compass and odometer is used to derive the direction and distance of a path to the point at which movement was initiated. Finally, home base establishment may function to reset this system after each excursion and anchor environmental cues to self-movement cues. The combination of natural behaviors and kinematic analysis has proven to be a robust paradigm to investigate the neural basis of spatial orientation.

  6. Fractionating dead reckoning: role of the compass, odometer, logbook, and home base establishment in spatial orientation

    PubMed Central

    Martin, Megan M.; Winter, Shawn S.

    2008-01-01

    Rats use multiple sources of information to maintain spatial orientation. Although previous work has focused on rats' use of environmental cues, a growing number of studies have demonstrated that rats also use self-movement cues to organize navigation. This review examines the extent that kinematic analysis of naturally occurring behavior has provided insight into processes that mediate dead-reckoning-based navigation. This work supports a role for separate systems in processing self-movement cues that converge on the hippocampus. The compass system is involved in deriving directional information from self-movement cues; whereas, the odometer system is involved in deriving distance information from self-movement cues. The hippocampus functions similar to a logbook in that outward path unique information from the compass and odometer is used to derive the direction and distance of a path to the point at which movement was initiated. Finally, home base establishment may function to reset this system after each excursion and anchor environmental cues to self-movement cues. The combination of natural behaviors and kinematic analysis has proven to be a robust paradigm to investigate the neural basis of spatial orientation. PMID:18553065

  7. RADSS: an integration of GIS, spatial statistics, and network service for regional data mining

    NASA Astrophysics Data System (ADS)

    Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing

    2005-10-01

    Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and spatial statistics. The tool also includes some fundamental spatial and non-spatial database in regional population and environment, which can be updated by external database via CD or network. Utilizing this data mining and exploratory analytical tool, the users can easily and quickly analyse the huge mount of the interrelated regional data, and better understand the spatial patterns and trends of the regional development, so as to make a credible and scientific decision. Moreover, it can be used as an educational tool for spatial data analysis and environmental studies. In this paper, we also present a case study on Poyang Lake Basin as an application of the tool and spatial data mining in complex environmental studies. At last, several concluding remarks are discussed.

  8. Modeling structural change in spatial system dynamics: A Daisyworld example.

    PubMed

    Neuwirth, C; Peck, A; Simonović, S P

    2015-03-01

    System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed.

  9. Visualizing Opportunities: GIS Skills for Retail Marketing

    ERIC Educational Resources Information Center

    Wu, Peter Y.; Rathswohl, Eugene

    2011-01-01

    Business students need to develop skills in the intelligent use of information, especially spatial information, for decision-making. Geographic Information System (GIS) is a viable tool for that purpose. Yet the few GIS courses in the Information Systems curriculum offered in various business schools tend to focus on different concepts and skills.…

  10. Purely Translational Realignment in Grid Cell Firing Patterns Following Nonmetric Context Change

    PubMed Central

    Marozzi, Elizabeth; Ginzberg, Lin Lin; Alenda, Andrea; Jeffery, Kate J.

    2015-01-01

    Grid cells in entorhinal and parahippocampal cortices contribute to a network, centered on the hippocampal place cell system, that constructs a representation of spatial context for use in navigation and memory. In doing so, they use metric cues such as the distance and direction of nearby boundaries to position and orient their firing field arrays (grids). The present study investigated whether they also use purely nonmetric “context” information such as color and odor of the environment. We found that, indeed, purely nonmetric cues—sufficiently salient to cause changes in place cell firing patterns—can regulate grid positioning; they do so independently of orientation, and thus interact with linear but not directional spatial inputs. Grid cells responded homogeneously to context changes. We suggest that the grid and place cell networks receive context information directly and also from each other; the information is used by place cells to compute the final decision of the spatial system about which context the animal is in, and by grid cells to help inform the system about where the animal is within it. PMID:26048956

  11. Studies of the Interactions Between Vestibular Function and Tactual Orientation Display Systems

    NASA Technical Reports Server (NTRS)

    Cholewiak, Roger W.; Reschke, Millard F.

    1997-01-01

    When humans experience conditions in which internal vestibular cues to movement or spatial location are challenged or contradicted by external visual information, the result can be spatial disorientation, often leading to motion sickness. Spatial disorientation can occur in any situation in which the individual is passively moved in the environment, but is most common in automotive, aircraft, or undersea travel. Significantly, the incidence of motion sickness in space travel is great: The majority of individuals in Shuttle operations suffer from the syndrome. Even after the space-sickness-producing influences of spatial disorientation dissipate, usually within several days, there are other situations in which, because of the absence of reliable or familiar vestibular cues, individuals in space still experience disorientation, resulting in a reliance on the already preoccupied sense of vision. One possible technique to minimize the deleterious effects of spatial disorientation might be to present attitude information (including orientation, direction, and motion) through another less-used sensory modality - the sense of touch. Data from experiences with deaf and blind persons indicate that this channel can provide useful communication and mobility information on a real-time basis. More recently, technologies have developed to present effective attitude information to pilots in situations in which dangerously ambiguous and conflicting visual and vestibular sensations occur. This summers project at NASA-Johnson Space Center will evaluate the influence of motion-based spatial disorientation on the perception of tactual stimuli representing veridical position and orientation information, presented by new dynamic vibrotactile array display technologies. In addition, the possibility will be explored that tactile presentations of motion and direction from this alternative modality might be useful in mitigating or alleviating spatial disorientation produced by multi-axis rotatory systems, monitored by physiological recording techniques developed at JSC.

  12. Spatial Allocator for air quality modeling

    EPA Pesticide Factsheets

    The Spatial Allocator is a set of tools that helps users manipulate and generate data files related to emissions and air quality modeling without requiring the use of a commercial Geographic Information System.

  13. The Amateur Scientist: Simple Optical Experiments in Which Spatial Filtering Removes the "Noise" from Pictures.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1982-01-01

    Spatial filtering, based on diffraction/interference of light waves, is a technique by which unwanted information in a picture ("noise") can be separated from wanted information. A series of experiments is described in which students can create a system that functions as an optical computer to create clearer pictures. (Author/JN)

  14. U.S. Geological Survey spatial data access

    USGS Publications Warehouse

    Faundeen, John L.; Kanengieter, Ronald L.; Buswell, Michael D.

    2002-01-01

    The U.S. Geological Survey (USGS) has done a progress review on improving access to its spatial data holdings over the Web. The USGS EROS Data Center has created three major Web-based interfaces to deliver spatial data to the general public; they are Earth Explorer, the Seamless Data Distribution System (SDDS), and the USGS Web Mapping Portal. Lessons were learned in developing these systems, and various resources were needed for their implementation. The USGS serves as a fact-finding agency in the U.S. Government that collects, monitors, analyzes, and provides scientific information about natural resource conditions and issues. To carry out its mission, the USGS has created and managed spatial data since its inception. Originally relying on paper maps, the USGS now uses advanced technology to produce digital representations of the Earth’s features. The spatial products of the USGS include both source and derivative data. Derivative datasets include Digital Orthophoto Quadrangles (DOQ), Digital Elevation Models, Digital Line Graphs, land-cover Digital Raster Graphics, and the seamless National Elevation Dataset. These products, created with automated processes, use aerial photographs, satellite images, or other cartographic information such as scanned paper maps as source data. With Earth Explorer, users can search multiple inventories through metadata queries and can browse satellite and DOQ imagery. They can place orders and make payment through secure credit card transactions. Some USGS spatial data can be accessed with SDDS. The SDDS uses an ArcIMS map service interface to identify the user’s areas of interest and determine the output format; it allows the user to either download the actual spatial data directly for small areas or place orders for larger areas to be delivered on media. The USGS Web Mapping Portal provides views of national and international datasets through an ArcIMS map service interface. In addition, the map portal posts news about new map services available from the USGS, many simultaneously published on the Environmental Systems Research Institute Geography Network. These three information systems use new software tools and expanded hardware to meet the requirements of the users. The systems are designed to handle the required workload and are relatively easy to enhance and maintain. The software tools give users a high level of functionality and help the system conform to industry standards. The hardware and software architecture is designed to handle the large amounts of spatial data and Internet traffic required by the information systems. Last, customer support was needed to answer questions, monitor e-mail, and report customer problems.

  15. GIS Methodic and New Database for Magmatic Rocks. Application for Atlantic Oceanic Magmatism.

    NASA Astrophysics Data System (ADS)

    Asavin, A. M.

    2001-12-01

    There are several geochemical Databases in INTERNET available now. There one of the main peculiarities of stored geochemical information is geographical coordinates of each samples in those Databases. As rule the software of this Database use spatial information only for users interface search procedures. In the other side, GIS-software (Geographical Information System software),for example ARC/INFO software which using for creation and analyzing special geological, geochemical and geophysical e-map, have been deeply involved with geographical coordinates for of samples. We join peculiarities GIS systems and relational geochemical Database from special software. Our geochemical information system created in Vernadsky Geological State Museum and institute of Geochemistry and Analytical Chemistry from Moscow. Now we tested system with data of geochemistry oceanic rock from Atlantic and Pacific oceans, about 10000 chemical analysis. GIS information content consist from e-map covers Wold Globes. Parts of these maps are Atlantic ocean covers gravica map (with grid 2''), oceanic bottom hot stream, altimeteric maps, seismic activity, tectonic map and geological map. Combination of this information content makes possible created new geochemical maps and combination of spatial analysis and numerical geochemical modeling of volcanic process in ocean segment. Now we tested information system on thick client technology. Interface between GIS system Arc/View and Database resides in special multiply SQL-queries sequence. The result of the above gueries were simple DBF-file with geographical coordinates. This file act at the instant of creation geochemical and other special e-map from oceanic region. We used more complex method for geophysical data. From ARC\\View we created grid cover for polygon spatial geophysical information.

  16. Facilitating Spatial Thinking in World Geography Using Web-Based GIS

    ERIC Educational Resources Information Center

    Jo, Injeong; Hong, Jung Eun; Verma, Kanika

    2016-01-01

    Advocates for geographic information system (GIS) education contend that learning about GIS promotes students' spatial thinking. Empirical studies are still needed to elucidate the potential of GIS as an instructional tool to support spatial thinking in other geography courses. Using a non-equivalent control group research design, this study…

  17. Spatial analysis of rural land development

    Treesearch

    Seong-Hoon Cho; David H. Newman

    2005-01-01

    This article examines patterns of rural land development and density using spatial econometric models with the application of Geographical Information System (GIS). The cluster patterns of both development and high-density development indicate that the spatially continuous expansions of development and high-density development exist in relatively remote rural areas....

  18. Spatial allocation of forest recreation value

    Treesearch

    Kenneth A. Baerenklau; Armando Gonzalez-Caban; Catrina Paez; Edgard Chavez

    2009-01-01

    Non-market valuation methods and geographic information systems are useful planning and management tools for public land managers. Recent attention has been given to investigation and demonstration of methods for combining these tools to provide spatially-explicit representations of non-market value. Most of these efforts have focused on spatial allocation of...

  19. Image understanding systems based on the unifying representation of perceptual and conceptual information and the solution of mid-level and high-level vision problems

    NASA Astrophysics Data System (ADS)

    Kuvychko, Igor

    2001-10-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.

  20. Mapping the information landscape: Discerning peaks and valleys for ecological monitoring

    USGS Publications Warehouse

    Moniz, L.J.; Nichols, J.D.; Nichols, J.M.

    2007-01-01

    We investigate previously unreported phenomena that have a potentially significant impact on the design of surveillance monitoring programs for ecological systems. Ecological monitoring practitioners have long recognized that different species are differentially informative of a system?s dynamics, as codified in the well-known concepts of indicator or keystone species. Using a novel combination of analysis techniques from nonlinear dynamics, we describe marked variation among spatial sites in information content with respect to system dynamics in the entire region. We first observed these phenomena in a spatially extended predator?prey model, but we observed strikingly similar features in verified water-level data from a NOAA/NOS Great Lakes monitoring program. We suggest that these features may be widespread and the design of surveillance monitoring programs should reflect knowledge of their existence.

  1. Open Data, Open Specifications and Free and Open Source Software: A powerful mix to create distributed Web-based water information systems

    NASA Astrophysics Data System (ADS)

    Arias, Carolina; Brovelli, Maria Antonia; Moreno, Rafael

    2015-04-01

    We are in an age when water resources are increasingly scarce and the impacts of human activities on them are ubiquitous. These problems don't respect administrative or political boundaries and they must be addressed integrating information from multiple sources at multiple spatial and temporal scales. Communication, coordination and data sharing are critical for addressing the water conservation and management issues of the 21st century. However, different countries, provinces, local authorities and agencies dealing with water resources have diverse organizational, socio-cultural, economic, environmental and information technology (IT) contexts that raise challenges to the creation of information systems capable of integrating and distributing information across their areas of responsibility in an efficient and timely manner. Tight and disparate financial resources, and dissimilar IT infrastructures (data, hardware, software and personnel expertise) further complicate the creation of these systems. There is a pressing need for distributed interoperable water information systems that are user friendly, easily accessible and capable of managing and sharing large volumes of spatial and non-spatial data. In a distributed system, data and processes are created and maintained in different locations each with competitive advantages to carry out specific activities. Open Data (data that can be freely distributed) is available in the water domain, and it should be further promoted across countries and organizations. Compliance with Open Specifications for data collection, storage and distribution is the first step toward the creation of systems that are capable of interacting and exchanging data in a seamlessly (interoperable) way. The features of Free and Open Source Software (FOSS) offer low access cost that facilitate scalability and long-term viability of information systems. The World Wide Web (the Web) will be the platform of choice to deploy and access these systems. Geospatial capabilities for mapping, visualization, and spatial analysis will be important components of these new generation of Web-based interoperable information systems in the water domain. The purpose of this presentation is to increase the awareness of scientists, IT personnel and agency managers about the advantages offered by the combined use of Open Data, Open Specifications for geospatial and water-related data collection, storage and sharing, as well as mature FOSS projects for the creation of interoperable Web-based information systems in the water domain. A case study is used to illustrate how these principles and technologies can be integrated to create a system with the previously mentioned characteristics for managing and responding to flood events.

  2. Geoscience information integration and visualization research of Shandong Province, China based on ArcGIS engine

    NASA Astrophysics Data System (ADS)

    Xu, Mingzhu; Gao, Zhiqiang; Ning, Jicai

    2014-10-01

    To improve the access efficiency of geoscience data, efficient data model and storage solutions should be used. Geoscience data is usually classified by format or coordinate system in existing storage solutions. When data is large, it is not conducive to search the geographic features. In this study, a geographical information integration system of Shandong province, China was developed based on the technology of ArcGIS Engine, .NET, and SQL Server. It uses Geodatabase spatial data model and ArcSDE to organize and store spatial and attribute data and establishes geoscience database of Shangdong. Seven function modules were designed: map browse, database and subject management, layer control, map query, spatial analysis and map symbolization. The system's characteristics of can be browsed and managed by geoscience subjects make the system convenient for geographic researchers and decision-making departments to use the data.

  3. Updating visual memory across eye movements for ocular and arm motor control.

    PubMed

    Thompson, Aidan A; Henriques, Denise Y P

    2008-11-01

    Remembered object locations are stored in an eye-fixed reference frame, so that every time the eyes move, spatial representations must be updated for the arm-motor system to reflect the target's new relative position. To date, studies have not investigated how the brain updates these spatial representations during other types of eye movements, such as smooth-pursuit. Further, it is unclear what information is used in spatial updating. To address these questions we investigated whether remembered locations of pointing targets are updated following smooth-pursuit eye movements, as they are following saccades, and also investigated the role of visual information in estimating eye-movement amplitude for updating spatial memory. Misestimates of eye-movement amplitude were induced when participants visually tracked stimuli presented with a background that moved in either the same or opposite direction of the eye before pointing or looking back to the remembered target location. We found that gaze-dependent pointing errors were similar following saccades and smooth-pursuit and that incongruent background motion did result in a misestimate of eye-movement amplitude. However, the background motion had no effect on spatial updating for pointing, but did when subjects made a return saccade, suggesting that the oculomotor and arm-motor systems may rely on different sources of information for spatial updating.

  4. Geospatial data sharing, online spatial analysis and processing of Indian Biodiversity data in Internet GIS domain - A case study for raster based online geo-processing

    NASA Astrophysics Data System (ADS)

    Karnatak, H.; Pandey, K.; Oberai, K.; Roy, A.; Joshi, D.; Singh, H.; Raju, P. L. N.; Krishna Murthy, Y. V. N.

    2014-11-01

    National Biodiversity Characterization at Landscape Level, a project jointly sponsored by Department of Biotechnology and Department of Space, was implemented to identify and map the potential biodiversity rich areas in India. This project has generated spatial information at three levels viz. Satellite based primary information (Vegetation Type map, spatial locations of road & village, Fire occurrence); geospatially derived or modelled information (Disturbance Index, Fragmentation, Biological Richness) and geospatially referenced field samples plots. The study provides information of high disturbance and high biological richness areas suggesting future management strategies and formulating action plans. The study has generated for the first time baseline database in India which will be a valuable input towards climate change study in the Indian Subcontinent. The spatial data generated during the study is organized as central data repository in Geo-RDBMS environment using PostgreSQL and POSTGIS. The raster and vector data is published as OGC WMS and WFS standard for development of web base geoinformation system using Service Oriented Architecture (SOA). The WMS and WFS based system allows geo-visualization, online query and map outputs generation based on user request and response. This is a typical mashup architecture based geo-information system which allows access to remote web services like ISRO Bhuvan, Openstreet map, Google map etc., with overlay on Biodiversity data for effective study on Bio-resources. The spatial queries and analysis with vector data is achieved through SQL queries on POSTGIS and WFS-T operations. But the most important challenge is to develop a system for online raster based geo-spatial analysis and processing based on user defined Area of Interest (AOI) for large raster data sets. The map data of this study contains approximately 20 GB of size for each data layer which are five in number. An attempt has been to develop system using python, PostGIS and PHP for raster data analysis over the web for Biodiversity conservation and prioritization. The developed system takes inputs from users as WKT, Openlayer based Polygon geometry and Shape file upload as AOI to perform raster based operation using Python and GDAL/OGR. The intermediate products are stored in temporary files and tables which generate XML outputs for web representation. The raster operations like clip-zip-ship, class wise area statistics, single to multi-layer operations, diagrammatic representation and other geo-statistical analysis are performed. This is indigenous geospatial data processing engine developed using Open system architecture for spatial analysis of Biodiversity data sets in Internet GIS environment. The performance of this applications in multi-user environment like Internet domain is another challenging task which is addressed by fine tuning the source code, server hardening, spatial indexing and running the process in load balance mode. The developed system is hosted in Internet domain (http://bis.iirs.gov.in) for user access.

  5. Geospatial Data Standards for Indian Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Goyal, A.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2016-12-01

    Sustainable management of water resources is fundamental to the socio-economic development of any nation. There is an increasing degree of dependency on digital geographical data for monitoring, planning, managing and preserving the water resources and environmental quality. But the rising sophistication associated with the sharing of geospatial data among organizations or users, demands development of data standards for seamless information exchange among collaborators. Therefore, due to the realization that these datasets are vital for efficient use of Geographical Information Systems, there is a growing emphasis on data standards for modeling, encoding and communicating spatial data. Real world hydrologic interactions represented in a digital framework requires geospatial standards that may vary in contexts like: governance, resource inventory, cultural diversity, identifiers, role and scale. Though the prevalent standards for the hydrology data facilitate a particular need in a particular context but they lack a holistic approach. However, several worldwide initiatives such as Consortium for the Advancement of Hydrologic Sciences Inc. (USA), Infrastructure for Spatial Information in the European Community (Europe), Australian Water Resources Information System, etc., endeavour to address this issue of hydrology specific spatial data standards in a wholesome manner. But unfortunately there is no such provision for hydrology data exchange within the Indian community. Moreover, these standards somehow fail in providing powerful communication of the spatial hydrologic data. This study thus investigates the shortcomings of the existing industry standards for the hydrologic data models and then demonstrates a set of requirements for effective exchange of the hydrologic information in the Indian scenario.

  6. Design and Implementation of Campus Application APP Based on Android

    NASA Astrophysics Data System (ADS)

    dongxu, Zhu; yabin, liu; xian lei, PI; weixiang, Zhou; meng, Huang

    2017-07-01

    In this paper, "Internet + campus" as the entrance of the Android technology based on the application of campus design and implementation of Application program. Based on GIS(Geographic Information System) spatial database, GIS spatial analysis technology, Java development technology and Android development technology, this system server adopts the Model View Controller architectue to realize the efficient use of campus information and provide real-time information of all kinds of learning and life for campus student at the same time. "Fingertips on the Institute of Disaster Prevention Science and Technology" release for the campus students of all grades of life, learning, entertainment provides a convenient.

  7. Regional variation in the severity of pesticide exposure outcomes: applications of geographic information systems and spatial scan statistics.

    PubMed

    Sudakin, Daniel L; Power, Laura E

    2009-03-01

    Geographic information systems and spatial scan statistics have been utilized to assess regional clustering of symptomatic pesticide exposures reported to a state Poison Control Center (PCC) during a single year. In the present study, we analyzed five subsequent years of PCC data to test whether there are significant geographic differences in pesticide exposure incidents resulting in serious (moderate, major, and fatal) medical outcomes. A PCC provided the data on unintentional pesticide exposures for the time period 2001-2005. The geographic location of the caller, the location where the exposure occurred, the exposure route, and the medical outcome were abstracted. There were 273 incidents resulting in moderate effects (n = 261), major effects (n = 10), or fatalities (n = 2). Spatial scan statistics identified a geographic area consisting of two adjacent counties (one urban, one rural), where statistically significant clustering of serious outcomes was observed. The relative risk of moderate, major, and fatal outcomes was 2.0 in this spatial cluster (p = 0.0005). PCC data, geographic information systems, and spatial scan statistics can identify clustering of serious outcomes from human exposure to pesticides. These analyses may be useful for public health officials to target preventive interventions. Further investigation is warranted to understand better the potential explanations for geographical clustering, and to assess whether preventive interventions have an impact on reducing pesticide exposure incidents resulting in serious medical outcomes.

  8. Environmental Justice and the Spatial Distribution of Outdoor Recreation sites: an Applications of Geographic Information Systems

    Treesearch

    Michael A. Tarrant; H. Ken Cordell

    1999-01-01

    This study examines the spatial distribution of outdoor recreation sites and their proximity to census block groups (CBGs), in order to determine potential socio-economic inequities. It is framed within the context of environmental justice. Information from the Southern Appalachian Assessment database was applied to a case study of the Chattahoochee National Forest in...

  9. Knowing what and where: TMS evidence for the dual neural basis of geographical knowledge.

    PubMed

    Hoffman, Paul; Crutch, Sebastian

    2016-02-01

    All animals acquire knowledge about the topography of their immediate environment through direct exploration. Uniquely, humans also acquire geographical knowledge indirectly through exposure to maps and verbal information, resulting in a rich database of global geographical knowledge. We used transcranial magnetic stimulation to investigate the structure and neural basis of this critical but poorly understood component of semantic knowledge. Participants completed tests of geographical knowledge that probed either information about spatial locations (e.g., France borders Spain) or non-spatial taxonomic information (e.g., France is a country). TMS applied to the anterior temporal lobe, a region that codes conceptual knowledge for words and objects, had a general disruptive effect on the geographical tasks. In contrast, stimulation of the intraparietal sulcus (IPS), a region involved in the coding of spatial and numerical information, had a highly selective effect on spatial geographical decisions but no effect on taxonomic judgements. Our results establish that geographical concepts lie at the intersection of two distinct neural representation systems, and provide insights into how the interaction of these systems shape our understanding of the world. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Analyzing existing conventional soil information sources to be incorporated in thematic Spatial Data Infrastructures

    NASA Astrophysics Data System (ADS)

    Pascual-Aguilar, J. A.; Rubio, J. L.; Domínguez, J.; Andreu, V.

    2012-04-01

    New information technologies give the possibility of widespread dissemination of spatial information to different geographical scales from continental to local by means of Spatial Data Infrastructures. Also administrative awareness on the need for open access information services has allowed the citizens access to this spatial information through development of legal documents, such as the INSPIRE Directive of the European Union, adapted by national laws as in the case of Spain. The translation of the general criteria of generic Spatial Data Infrastructures (SDI) to thematic ones is a crucial point for the progress of these instruments as large tool for the dissemination of information. In such case, it must be added to the intrinsic criteria of digital information, such as the harmonization information and the disclosure of metadata, the own environmental information characteristics and the techniques employed in obtaining it. In the case of inventories and mapping of soils, existing information obtained by traditional means, prior to the digital technologies, is considered to be a source of valid information, as well as unique, for the development of thematic SDI. In this work, an evaluation of existing and accessible information that constitutes the basis for building a thematic SDI of soils in Spain is undertaken. This information framework has common features to other European Union states. From a set of more than 1,500 publications corresponding to the national territory of Spain, the study was carried out in those documents (94) found for five autonomous regions of northern Iberian Peninsula (Asturias, Cantabria, Basque Country, Navarra and La Rioja). The analysis was performed taking into account the criteria of soil mapping and inventories. The results obtained show a wide variation in almost all the criteria: geographic representation (projections, scales) and geo-referencing the location of the profiles, map location of profiles integrated with edaphic units, description and taxonomic classification systems of soils (FAO, Soil taxonomy, etc.), amount and type of soil analysis parameters and dates of the inventories. In conclusion, the construction of thematic SDI on soil should take into account, prior to the integration of all maps and inventories, a series of processes of harmonization that allows spatial continuity between existing information and also temporal identification of the inventories and maps. This should require the development of at least two types of integration tools: (1) enabling spatial continuity without contradictions between maps made at different times and with different criteria and (2) the development of information systems data (metadata) to highlight the characteristics of information and connection possibilities with other sources that comprise the Spatial Data Infrastructure. Acknowledgements This research has financed by the European Union within the framework of the GS Soil project (eContentplus Programme ECP-2008-GEO-318004).

  11. Temporal and spatial variability in North Carolina piedmont stream temperature

    Treesearch

    J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer

    2009-01-01

    Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...

  12. SPATIAL AND TEMPORAL VARIABILITY IN ZOOPLANKTON COMMUNITY DYNAMICS IN THREE URBANIZED BAYOUS OF THE PENSACOLA BAY SYSTEM, FLORIDA, USA

    EPA Science Inventory

    Spatial and temporal patterns in zooplankton community composition and abundance in near-coastal areas of the Gulf of Mexico are not well understood. This survey provides information on spatial and temporal differences in zoolplankton community composition and abundance for a coa...

  13. Learning to Think Spatially: What Do Students "See" in Numeracy Test Items?

    ERIC Educational Resources Information Center

    Diezmann, Carmel M.; Lowrie, Tom

    2012-01-01

    Learning to think spatially in mathematics involves developing proficiency with graphics. This paper reports on 2 investigations of spatial thinking and graphics. The first investigation explored the importance of graphics as 1 of 3 communication systems (i.e. text, symbols, graphics) used to provide information in numeracy test items. The results…

  14. Function modeling improves the efficiency of spatial modeling using big data from remote sensing

    Treesearch

    John Hogland; Nathaniel Anderson

    2017-01-01

    Spatial modeling is an integral component of most geographic information systems (GISs). However, conventional GIS modeling techniques can require substantial processing time and storage space and have limited statistical and machine learning functionality. To address these limitations, many have parallelized spatial models using multiple coding libraries and have...

  15. Spatial discretization of large watersheds and its influence on the estimation of hillslope sediment yield

    USDA-ARS?s Scientific Manuscript database

    The combined use of water erosion models and geographic information systems (GIS) has facilitated soil loss estimation at the watershed scale. Tools such as the Geo-spatial interface for the Water Erosion Prediction Project (GeoWEPP) model provide a convenient spatially distributed soil loss estimat...

  16. [Spatial distribution of occupational disease prevalence in Guangzhou and Foshan city by geographic information system].

    PubMed

    Tan, Q; Tu, H W; Gu, C H; Li, X D; Li, R Z; Wang, M; Chen, S G; Cheng, Y J; Liu, Y M

    2017-11-20

    Objective: To explore the occupational disease spatial distribution characteristics in Guangzhou and Foshan city in 2006-2013 with Geographic Information System and to provide evidence for making control strategy. Methods: The data on occupational disease diagnosis in Guangzhou and Foshan city from 2006 through 2013 were collected and linked to the digital map at administrative county level with Arc GIS12.0 software for spatial analysis. Results: The maps of occupational disease and Moran's spatial autocor-relation analysis showed that the spatial aggregation existed in Shunde and Nanhai region with Moran's index 1.727, -0.003. Local Moran's I spatial autocorrelation analysis pointed out the "positive high incidence re-gion" and the "negative high incidence region" during 2006~2013. Trend analysis showed that the diagnosis case increased slightly then declined from west to east, increase obviously from north to south, declined from? southwest to northeast, high in the middle and low on both sides in northwest-southeast direction. Conclusions: The occupational disease is obviously geographical distribution in Guangzhou and Foshan city. The corresponding prevention measures should be made according to the geographical distribution.

  17. Along-track calibration of SWIR push-broom hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2016-05-01

    Push-broom hyperspectral imaging systems are increasingly used for various medical, agricultural and military purposes. The acquired images contain spectral information in every pixel of the imaged scene collecting additional information about the imaged scene compared to the classical RGB color imaging. Due to the misalignment and imperfections in the optical components comprising the push-broom hyperspectral imaging system, variable spectral and spatial misalignments and blur are present in the acquired images. To capture these distortions, a spatially and spectrally variant response function must be identified at each spatial and spectral position. In this study, we propose a procedure to characterize the variant response function of Short-Wavelength Infrared (SWIR) push-broom hyperspectral imaging systems in the across-track and along-track direction and remove its effect from the acquired images. A custom laser-machined spatial calibration targets are used for the characterization. The spatial and spectral variability of the response function in the across-track and along-track direction is modeled by a parametrized basis function. Finally, the characterization results are used to restore the distorted hyperspectral images in the across-track and along-track direction by a Richardson-Lucy deconvolution-based algorithm. The proposed calibration method in the across-track and along-track direction is thoroughly evaluated on images of targets with well-defined geometric properties. The results suggest that the proposed procedure is well suited for fast and accurate spatial calibration of push-broom hyperspectral imaging systems.

  18. Optimizing information flow in small genetic networks. IV. Spatial coupling

    NASA Astrophysics Data System (ADS)

    Sokolowski, Thomas R.; Tkačik, Gašper

    2015-06-01

    We typically think of cells as responding to external signals independently by regulating their gene expression levels, yet they often locally exchange information and coordinate. Can such spatial coupling be of benefit for conveying signals subject to gene regulatory noise? Here we extend our information-theoretic framework for gene regulation to spatially extended systems. As an example, we consider a lattice of nuclei responding to a concentration field of a transcriptional regulator (the input) by expressing a single diffusible target gene. When input concentrations are low, diffusive coupling markedly improves information transmission; optimal gene activation functions also systematically change. A qualitatively different regulatory strategy emerges where individual cells respond to the input in a nearly steplike fashion that is subsequently averaged out by strong diffusion. While motivated by early patterning events in the Drosophila embryo, our framework is generically applicable to spatially coupled stochastic gene expression models.

  19. Research on spatio-temporal database techniques for spatial information service

    NASA Astrophysics Data System (ADS)

    Zhao, Rong; Wang, Liang; Li, Yuxiang; Fan, Rongshuang; Liu, Ping; Li, Qingyuan

    2007-06-01

    Geographic data should be described by spatial, temporal and attribute components, but the spatio-temporal queries are difficult to be answered within current GIS. This paper describes research into the development and application of spatio-temporal data management system based upon GeoWindows GIS software platform which was developed by Chinese Academy of Surveying and Mapping (CASM). Faced the current and practical requirements of spatial information application, and based on existing GIS platform, one kind of spatio-temporal data model which integrates vector and grid data together was established firstly. Secondly, we solved out the key technique of building temporal data topology, successfully developed a suit of spatio-temporal database management system adopting object-oriented methods. The system provides the temporal data collection, data storage, data management and data display and query functions. Finally, as a case study, we explored the application of spatio-temporal data management system with the administrative region data of multi-history periods of China as the basic data. With all the efforts above, the GIS capacity of management and manipulation in aspect of time and attribute of GIS has been enhanced, and technical reference has been provided for the further development of temporal geographic information system (TGIS).

  20. PHYLOGEOrec: A QGIS plugin for spatial phylogeographic reconstruction from phylogenetic tree and geographical information data

    NASA Astrophysics Data System (ADS)

    Nashrulloh, Maulana Malik; Kurniawan, Nia; Rahardi, Brian

    2017-11-01

    The increasing availability of genetic sequence data associated with explicit geographic and environment (including biotic and abiotic components) information offers new opportunities to study the processes that shape biodiversity and its patterns. Developing phylogeography reconstruction, by integrating phylogenetic and biogeographic knowledge, provides richer and deeper visualization and information on diversification events than ever before. Geographical information systems such as QGIS provide an environment for spatial modeling, analysis, and dissemination by which phylogenetic models can be explicitly linked with their associated spatial data, and subsequently, they will be integrated with other related georeferenced datasets describing the biotic and abiotic environment. We are introducing PHYLOGEOrec, a QGIS plugin for building spatial phylogeographic reconstructions constructed from phylogenetic tree and geographical information data based on QGIS2threejs. By using PHYLOGEOrec, researchers can integrate existing phylogeny and geographical information data, resulting in three-dimensional geographic visualizations of phylogenetic trees in the Keyhole Markup Language (KML) format. Such formats can be overlaid on a map using QGIS and finally, spatially viewed in QGIS by means of a QGIS2threejs engine for further analysis. KML can also be viewed in reputable geobrowsers with KML-support (i.e., Google Earth).

  1. Defining the cortical visual systems: "what", "where", and "how"

    NASA Technical Reports Server (NTRS)

    Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    The visual system historically has been defined as consisting of at least two broad subsystems subserving object and spatial vision. These visual processing streams have been organized both structurally as two distinct pathways in the brain, and functionally for the types of tasks that they mediate. The classic definition by Ungerleider and Mishkin labeled a ventral "what" stream to process object information and a dorsal "where" stream to process spatial information. More recently, Goodale and Milner redefined the two visual systems with a focus on the different ways in which visual information is transformed for different goals. They relabeled the dorsal stream as a "how" system for transforming visual information using an egocentric frame of reference in preparation for direct action. This paper reviews recent research from psychophysics, neurophysiology, neuropsychology and neuroimaging to define the roles of the ventral and dorsal visual processing streams. We discuss a possible solution that allows for both "where" and "how" systems that are functionally and structurally organized within the posterior parietal lobe.

  2. Application of system dynamics and participatory spatial group model building in animal health: A case study of East Coast Fever interventions in Lundazi and Monze districts of Zambia

    PubMed Central

    Skjerve, Eystein; Rich, Magda; Rich, Karl M.

    2017-01-01

    East Coast Fever (ECF) is the most economically important production disease among traditional beef cattle farmers in Zambia. Despite the disease control efforts by the government, donors, and farmers, ECF cases are increasing. Why does ECF oscillate over time? Can alternative approaches such as systems thinking contribute solutions to the complex ECF problem, avoid unintended consequences, and achieve sustainable results? To answer these research questions and inform the design and implementation of ECF interventions, we qualitatively investigated the influence of dynamic socio-economic, cultural, and ecological factors. We used system dynamics modelling to specify these dynamics qualitatively, and an innovative participatory framework called spatial group model building (SGMB). SGMB uses participatory geographical information system (GIS) concepts and techniques to capture the role of spatial phenomenon in the context of complex systems, allowing stakeholders to identify spatial phenomenon directly on physical maps and integrate such information in model development. Our SGMB process convened focus groups of beef value chain stakeholders in two distinct production systems. The focus groups helped to jointly construct a series of interrelated system dynamics models that described ECF in a broader systems context. Thus, a complementary objective of this study was to demonstrate the applicability of system dynamics modelling and SGMB in animal health. The SGMB process revealed policy leverage points in the beef cattle value chain that could be targeted to improve ECF control. For example, policies that develop sustainable and stable cattle markets and improve household income availability may have positive feedback effects on investment in animal health. The results obtained from a SGMB process also demonstrated that a “one-size-fits-all” approach may not be equally effective in policing ECF in different agro-ecological zones due to the complex interactions of socio-ecological context with important, and often ignored, spatial patterns. PMID:29244862

  3. Application of system dynamics and participatory spatial group model building in animal health: A case study of East Coast Fever interventions in Lundazi and Monze districts of Zambia.

    PubMed

    Mumba, Chisoni; Skjerve, Eystein; Rich, Magda; Rich, Karl M

    2017-01-01

    East Coast Fever (ECF) is the most economically important production disease among traditional beef cattle farmers in Zambia. Despite the disease control efforts by the government, donors, and farmers, ECF cases are increasing. Why does ECF oscillate over time? Can alternative approaches such as systems thinking contribute solutions to the complex ECF problem, avoid unintended consequences, and achieve sustainable results? To answer these research questions and inform the design and implementation of ECF interventions, we qualitatively investigated the influence of dynamic socio-economic, cultural, and ecological factors. We used system dynamics modelling to specify these dynamics qualitatively, and an innovative participatory framework called spatial group model building (SGMB). SGMB uses participatory geographical information system (GIS) concepts and techniques to capture the role of spatial phenomenon in the context of complex systems, allowing stakeholders to identify spatial phenomenon directly on physical maps and integrate such information in model development. Our SGMB process convened focus groups of beef value chain stakeholders in two distinct production systems. The focus groups helped to jointly construct a series of interrelated system dynamics models that described ECF in a broader systems context. Thus, a complementary objective of this study was to demonstrate the applicability of system dynamics modelling and SGMB in animal health. The SGMB process revealed policy leverage points in the beef cattle value chain that could be targeted to improve ECF control. For example, policies that develop sustainable and stable cattle markets and improve household income availability may have positive feedback effects on investment in animal health. The results obtained from a SGMB process also demonstrated that a "one-size-fits-all" approach may not be equally effective in policing ECF in different agro-ecological zones due to the complex interactions of socio-ecological context with important, and often ignored, spatial patterns.

  4. New tools for linking human and earth system models: The Toolbox for Human-Earth System Interaction & Scaling (THESIS)

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Kauffman, B.; Lawrence, P.

    2016-12-01

    Integrated analysis of questions regarding land, water, and energy resources often requires integration of models of different types. One type of integration is between human and earth system models, since both societal and physical processes influence these resources. For example, human processes such as changes in population, economic conditions, and policies govern the demand for land, water and energy, while the interactions of these resources with physical systems determine their availability and environmental consequences. We have begun to develop and use a toolkit for linking human and earth system models called the Toolbox for Human-Earth System Integration and Scaling (THESIS). THESIS consists of models and software tools to translate, scale, and synthesize information from and between human system models and earth system models (ESMs), with initial application to linking the NCAR integrated assessment model, iPETS, with the NCAR earth system model, CESM. Initial development is focused on urban areas and agriculture, sectors that are both explicitly represented in both CESM and iPETS. Tools are being made available to the community as they are completed (see https://www2.cgd.ucar.edu/sections/tss/iam/THESIS_tools). We discuss four general types of functions that THESIS tools serve (Spatial Distribution, Spatial Properties, Consistency, and Outcome Evaluation). Tools are designed to be modular and can be combined in order to carry out more complex analyses. We illustrate their application to both the exposure of population to climate extremes and to the evaluation of climate impacts on the agriculture sector. For example, projecting exposure to climate extremes involves use of THESIS tools for spatial population, spatial urban land cover, the characteristics of both, and a tool to bring urban climate information together with spatial population information. Development of THESIS tools is continuing and open to the research community.

  5. Developing a spatial-temporal method for the geographic investigation of shoeprint evidence.

    PubMed

    Lin, Ge; Elmes, Gregory; Walnoha, Mike; Chen, Xiannian

    2009-01-01

    This article examines the potential of a spatial-temporal method for analysis of forensic shoeprint data. The large volume of shoeprint evidence recovered at crime scenes results in varied success in matching a print to a known shoe type and subsequently linking sets of matched prints to suspected offenders. Unlike DNA and fingerprint data, a major challenge is to reduce the uncertainty in linking sets of matched shoeprints to a suspected serial offender. Shoeprint data for 2004 were imported from the Greater London Metropolitan Area Bigfoot database into a geographic information system, and a spatial-temporal algorithm developed for this project. The results show that by using distance and time constraints interactively, the number of candidate shoeprints that can implicate one or few suspects can be substantially reduced. It concludes that the use of space-time and other ancillary information within a geographic information system can be quite helpful for forensic investigation.

  6. The design and implementation of GML data management information system based on PostgreSQL

    NASA Astrophysics Data System (ADS)

    Zhang, Aiguo; Wu, Qunyong; Xu, Qifeng

    2008-10-01

    GML expresses geographic information in text, and it provides an extensible and standard way of spatial information encoding. At the present time, the management of GML data is in terms of document. By this way, the inquiry and update of GML data is inefficient, and it demands high memory when the document is comparatively large. In this respect, the paper put forward a data management of GML based on PostgreSQL. It designs four kinds of inquiries, which are inquiry of metadata, inquiry of geometry based on property, inquiry of property based on spatial information, and inquiry of spatial data based on location. At the same time, it designs and implements the visualization of the inquired WKT data.

  7. Solving Large-scale Spatial Optimization Problems in Water Resources Management through Spatial Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cai, X.

    2007-12-01

    A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.

  8. Balancing geo-privacy and spatial patterns in epidemiological studies.

    PubMed

    Chen, Chien-Chou; Chuang, Jen-Hsiang; Wang, Da-Wei; Wang, Chien-Min; Lin, Bo-Cheng; Chan, Ta-Chien

    2017-11-08

    To balance the protection of geo-privacy and the accuracy of spatial patterns, we developed a geo-spatial tool (GeoMasker) intended to mask the residential locations of patients or cases in a geographic information system (GIS). To elucidate the effects of geo-masking parameters, we applied 2010 dengue epidemic data from Taiwan testing the tool's performance in an empirical situation. The similarity of pre- and post-spatial patterns was measured by D statistics under a 95% confidence interval. In the empirical study, different magnitudes of anonymisation (estimated Kanonymity ≥10 and 100) were achieved and different degrees of agreement on the pre- and post-patterns were evaluated. The application is beneficial for public health workers and researchers when processing data with individuals' spatial information.

  9. Earthquake Information System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    IAEMIS (Integrated Automated Emergency Management Information System) is the principal tool of an earthquake preparedness program developed by Martin Marietta and the Mid-America Remote Sensing Center (MARC). It is a two-component set of software, data and procedures to provide information enabling management personnel to make informed decisions in disaster situations. The NASA-developed program ELAS, originally used to analyze Landsat data, provides MARC with a spatially-oriented information management system. Additional MARC projects include land resources management, and development of socioeconomic data.

  10. Improving carbon monitoring and reporting in forests using spatially-explicit information.

    PubMed

    Boisvenue, Céline; Smiley, Byron P; White, Joanne C; Kurz, Werner A; Wulder, Michael A

    2016-12-01

    Understanding and quantifying carbon (C) exchanges between the biosphere and the atmosphere-specifically the process of C removal from the atmosphere, and how this process is changing-is the basis for developing appropriate adaptation and mitigation strategies for climate change. Monitoring forest systems and reporting on greenhouse gas (GHG) emissions and removals are now required components of international efforts aimed at mitigating rising atmospheric GHG. Spatially-explicit information about forests can improve the estimates of GHG emissions and removals. However, at present, remotely-sensed information on forest change is not commonly integrated into GHG reporting systems. New, detailed (30-m spatial resolution) forest change products derived from satellite time series informing on location, magnitude, and type of change, at an annual time step, have recently become available. Here we estimate the forest GHG balance using these new Landsat-based change data, a spatial forest inventory, and develop yield curves as inputs to the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to estimate GHG emissions and removals at a 30 m resolution for a 13 Mha pilot area in Saskatchewan, Canada. Our results depict the forests as cumulative C sink (17.98 Tg C or 0.64 Tg C year -1 ) between 1984 and 2012 with an average C density of 206.5 (±0.6) Mg C ha -1 . Comparisons between our estimates and estimates from Canada's National Forest Carbon Monitoring, Accounting and Reporting System (NFCMARS) were possible only on a subset of our study area. In our simulations the area was a C sink, while the official reporting simulations, it was a C source. Forest area and overall C stock estimates also differ between the two simulated estimates. Both estimates have similar uncertainties, but the spatially-explicit results we present here better quantify the potential improvement brought on by spatially-explicit modelling. We discuss the source of the differences between these estimates. This study represents an important first step towards the integration of spatially-explicit information into Canada's NFCMARS.

  11. Lost in Time and Space: States of High Arousal Disrupt Implicit Acquisition of Spatial and Sequential Context Information

    PubMed Central

    Maran, Thomas; Sachse, Pierre; Martini, Markus; Weber, Barbara; Pinggera, Jakob; Zuggal, Stefan; Furtner, Marco

    2017-01-01

    Biased cognition during high arousal states is a relevant phenomenon in a variety of topics: from the development of post-traumatic stress disorders or stress-triggered addictive behaviors to forensic considerations regarding crimes of passion. Recent evidence indicates that arousal modulates the engagement of a hippocampus-based “cognitive” system in favor of a striatum-based “habit” system in learning and memory, promoting a switch from flexible, contextualized to more rigid, reflexive responses. Existing findings appear inconsistent, therefore it is unclear whether and which type of context processing is disrupted by enhanced arousal. In this behavioral study, we investigated such arousal-triggered cognitive-state shifts in human subjects. We validated an arousal induction procedure (three experimental conditions: violent scene, erotic scene, neutral control scene) using pupillometry (Preliminary Experiment, n = 13) and randomly administered this method to healthy young adults to examine whether high arousal states affect performance in two core domains of contextual processing, the acquisition of spatial (spatial discrimination paradigm; Experiment 1, n = 66) and sequence information (learned irrelevance paradigm; Experiment 2, n = 84). In both paradigms, spatial location and sequences were encoded incidentally and both displacements when retrieving spatial position as well as the predictability of the target by a cue in sequence learning changed stepwise. Results showed that both implicit spatial and sequence learning were disrupted during high arousal states, regardless of valence. Compared to the control group, participants in the arousal conditions showed impaired discrimination of spatial positions and abolished learning of associative sequences. Furthermore, Bayesian analyses revealed evidence against the null models. In line with recent models of stress effects on cognition, both experiments provide evidence for decreased engagement of flexible, cognitive systems supporting encoding of context information in active cognition during acute arousal, promoting reduced sensitivity for contextual details. We argue that arousal fosters cognitive adaptation towards less demanding, more present-oriented information processing, which prioritizes a current behavioral response set at the cost of contextual cues. This transient state of behavioral perseverance might reduce reliance on context information in unpredictable environments and thus represent an adaptive response in certain situations. PMID:29170634

  12. Integration and management of massive remote-sensing data based on GeoSOT subdivision model

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Cheng, Chengqi; Chen, Bo; Meng, Li

    2016-07-01

    Owing to the rapid development of earth observation technology, the volume of spatial information is growing rapidly; therefore, improving query retrieval speed from large, rich data sources for remote-sensing data management systems is quite urgent. A global subdivision model, geographic coordinate subdivision grid with one-dimension integer coding on 2n-tree, which we propose as a solution, has been used in data management organizations. However, because a spatial object may cover several grids, ample data redundancy will occur when data are stored in relational databases. To solve this redundancy problem, we first combined the subdivision model with the spatial array database containing the inverted index. We proposed an improved approach for integrating and managing massive remote-sensing data. By adding a spatial code column in an array format in a database, spatial information in remote-sensing metadata can be stored and logically subdivided. We implemented our method in a Kingbase Enterprise Server database system and compared the results with the Oracle platform by simulating worldwide image data. Experimental results showed that our approach performed better than Oracle in terms of data integration and time and space efficiency. Our approach also offers an efficient storage management system for existing storage centers and management systems.

  13. Geographical Information Systems in Victorian Secondary Schools: Current Constraints and Opportunities

    ERIC Educational Resources Information Center

    Wheeler, Peter; Gordon-Brown, Lee; Peterson, Jim; Ward, Marianne

    2010-01-01

    Whilst widespread diffusion and adoption of spatial enabling technology, such as geographic information systems (GIS), is taking place within Australian public and private sectors, the same cannot be said for GIS within Australian secondary schools and state-based geography curricula. In the Australian state of Victoria, information regarding the…

  14. Ecological Status of the St. Louis River System, as Informed by Spatially Comprehensive Surveys and Comparison to Coastal Wetlands Elsewhere

    EPA Science Inventory

    Extensive data on biota and the physical/chemical environment were collected across the lower St. Louis River in 2004-2007 as part of multiple studies undertaken by EPA. The 2005-2007 work provides a spatially highly-resolved assessment of conditions across the system, while the ...

  15. Peripheral Processing Facilitates Optic Flow-Based Depth Perception

    PubMed Central

    Li, Jinglin; Lindemann, Jens P.; Egelhaaf, Martin

    2016-01-01

    Flying insects, such as flies or bees, rely on consistent information regarding the depth structure of the environment when performing their flight maneuvers in cluttered natural environments. These behaviors include avoiding collisions, approaching targets or spatial navigation. Insects are thought to obtain depth information visually from the retinal image displacements (“optic flow”) during translational ego-motion. Optic flow in the insect visual system is processed by a mechanism that can be modeled by correlation-type elementary motion detectors (EMDs). However, it is still an open question how spatial information can be extracted reliably from the responses of the highly contrast- and pattern-dependent EMD responses, especially if the vast range of light intensities encountered in natural environments is taken into account. This question will be addressed here by systematically modeling the peripheral visual system of flies, including various adaptive mechanisms. Different model variants of the peripheral visual system were stimulated with image sequences that mimic the panoramic visual input during translational ego-motion in various natural environments, and the resulting peripheral signals were fed into an array of EMDs. We characterized the influence of each peripheral computational unit on the representation of spatial information in the EMD responses. Our model simulations reveal that information about the overall light level needs to be eliminated from the EMD input as is accomplished under light-adapted conditions in the insect peripheral visual system. The response characteristics of large monopolar cells (LMCs) resemble that of a band-pass filter, which reduces the contrast dependency of EMDs strongly, effectively enhancing the representation of the nearness of objects and, especially, of their contours. We furthermore show that local brightness adaptation of photoreceptors allows for spatial vision under a wide range of dynamic light conditions. PMID:27818631

  16. High-spatial-resolution nanoparticle x-ray fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.

    2016-03-01

    X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.

  17. When Distractors and To-Be-Remembered Items Compete for the Control of Action: A New Perspective on Serial Memory for Spatial Information

    ERIC Educational Resources Information Center

    Guerard, Katherine; Tremblay, Sebastien

    2011-01-01

    In serial memory for spatial information, performance is impaired when distractors are interpolated between to-be-remembered (TBR) stimuli (Tremblay, Nicholls, Parmentier, & Jones, 2005). The so-called sandwich effect, combined with the use of eye tracking, served as a tool for examining the role of the oculomotor system in serial memory for…

  18. Building the School Attendance Boundary Information System (SABINS): Collecting, Processing, and Modeling K to 12 Educational Geography

    PubMed Central

    Saporito, Salvatore; Van Riper, David; Wakchaure, Ashwini

    2017-01-01

    The School Attendance Boundary Information System is a social science data infrastructure project that assembles, processes, and distributes spatial data delineating K through 12th grade school attendance boundaries for thousands of school districts in U.S. Although geography is a fundamental organizing feature of K to 12 education, until now school attendance boundary data have not been made readily available on a massive basis and in an easy-to-use format. The School Attendance Boundary Information System removes these barriers by linking spatial data delineating school attendance boundaries with tabular data describing the demographic characteristics of populations living within those boundaries. This paper explains why a comprehensive GIS database of K through 12 school attendance boundaries is valuable, how original spatial information delineating school attendance boundaries is collected from local agencies, and techniques for modeling and storing the data so they provide maximum flexibility to the user community. An important goal of this paper is to share the techniques used to assemble the SABINS database so that local and state agencies apply a standard set of procedures and models as they gather data for their regions. PMID:29151773

  19. Building the School Attendance Boundary Information System (SABINS): Collecting, Processing, and Modeling K to 12 Educational Geography.

    PubMed

    Saporito, Salvatore; Van Riper, David; Wakchaure, Ashwini

    2013-01-01

    The School Attendance Boundary Information System is a social science data infrastructure project that assembles, processes, and distributes spatial data delineating K through 12 th grade school attendance boundaries for thousands of school districts in U.S. Although geography is a fundamental organizing feature of K to 12 education, until now school attendance boundary data have not been made readily available on a massive basis and in an easy-to-use format. The School Attendance Boundary Information System removes these barriers by linking spatial data delineating school attendance boundaries with tabular data describing the demographic characteristics of populations living within those boundaries. This paper explains why a comprehensive GIS database of K through 12 school attendance boundaries is valuable, how original spatial information delineating school attendance boundaries is collected from local agencies, and techniques for modeling and storing the data so they provide maximum flexibility to the user community. An important goal of this paper is to share the techniques used to assemble the SABINS database so that local and state agencies apply a standard set of procedures and models as they gather data for their regions.

  20. Experiment for Integrating Dutch 3d Spatial Planning and Bim for Checking Building Permits

    NASA Astrophysics Data System (ADS)

    van Berlo, L.; Dijkmans, T.; Stoter, J.

    2013-09-01

    This paper presents a research project in The Netherlands in which several SMEs collaborated to create a 3D model of the National spatial planning information. This 2D information system described in the IMRO data standard holds implicit 3D information that can be used to generate an explicit 3D model. The project realized a proof of concept to generate a 3D spatial planning model. The team used the model to integrate it with several 3D Building Information Models (BIMs) described in the open data standard Industry Foundation Classes (IFC). Goal of the project was (1) to generate a 3D BIM model from spatial planning information to be used by the architect during the early design phase, and (2) allow 3D checking of building permits. The team used several technologies like CityGML, BIM clash detection and GeoBIM to explore the potential of this innovation. Within the project a showcase was created with a part of the spatial plan from the city of The Hague. Several BIM models were integrated in the 3D spatial plan of this area. A workflow has been described that demonstrates the benefits of collaboration between the spatial domain and the AEC industry in 3D. The research results in a showcase with conclusions and considerations for both national and international practice.

  1. The photo-colorimetric space as a medium for the representation of spatial data

    NASA Technical Reports Server (NTRS)

    Kraiss, K. Friedrich; Widdel, Heino

    1989-01-01

    Spatial displays and instruments are usually used in the context of vehicle guidance, but it is hard to find applicable spatial formats in information retrieval and interaction systems. Human interaction with spatial data structures and the applicability of the CIE color space to improve dialogue transparency is discussed. A proposal is made to use the color space to code spatially represented data. The semantic distances of the categories of dialogue structures or, more general, of database structures, are determined empirically. Subsequently the distances are transformed and depicted into the color space. The concept is demonstrated for a car diagnosis system, where the category cooling system could, e.g., be coded in blue, the category ignition system in red. Hereby a correspondence between color and semantic distances is achieved. Subcategories can be coded as luminance differences within the color space.

  2. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    PubMed

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

  3. Geographic information system-based spatial analysis of sawmill wood procurement

    Treesearch

    Nathaniel M. Anderson; Rene H. Germain; Eddie Bevilacqua

    2011-01-01

    In the sawmill sector of the forest products industry, the clustering of mills and wide variation in forest stocking and ownership result in sawlog markets that are complex and spatially differentiated. Despite the inherent spatial attributes of markets for stumpage and logs, few studies have used geospatial methods to examine wood procurement in detail across...

  4. Histamine Enhances Theta-Coupled Spiking and Gamma Oscillations in the Medial Entorhinal Cortex Consistent With Successful Spatial Recognition.

    PubMed

    Chen, Quanhui; Luo, Fenlan; Yue, Faguo; Xia, Jianxia; Xiao, Qin; Liao, Xiang; Jiang, Jun; Zhang, Jun; Hu, Bo; Gao, Dong; He, Chao; Hu, Zhian

    2017-06-07

    Encoding of spatial information in the superficial layers of the medial entorhinal cortex (sMEC) involves theta-modulated spiking and gamma oscillations, as well as spatially tuned grid cells and border cells. Little is known about the role of the arousal-promoting histaminergic system in the modification of information encoded in the sMEC in vivo, and how such histamine-regulated information correlates with behavioral functions. Here, we show that histamine upregulates the neural excitability of a significant proportion of neurons (16.32%, 39.18%, and 52.94% at 30 μM, 300 μM, and 3 mM, respectively) and increases local theta (4-12 Hz) and gamma power (low: 25-48 Hz; high: 60-120 Hz) in the sMEC, through activation of histamine receptor types 1 and 3. During spatial exploration, the strength of theta-modulated firing of putative principal neurons and high gamma oscillations is enhanced about 2-fold by histamine. The histamine-mediated increase of theta phase-locking of spikes and high gamma power is consistent with successful spatial recognition. These results, for the first time, reveal possible mechanisms involving the arousal-promoting histaminergic system in the modulation of spatial cognition. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. A geographic information system applied to a malaria field study in western Kenya.

    PubMed

    Hightower, A W; Ombok, M; Otieno, R; Odhiambo, R; Oloo, A J; Lal, A A; Nahlen, B L; Hawley, W A

    1998-03-01

    This paper describes use of the global positioning system (GPS) in differential mode (DGPS) to obtain highly accurate longitudes, latitudes, and altitudes of 1,169 houses, 15 schools, 40 churches, four health care centers, 48 major mosquito breeding sites, 10 borehole wells, seven shopping areas, major roads, streams, the shore of Lake Victoria, and other geographic features of interest associated with a longitudinal study of malaria in 15 villages in western Kenya. The area mapped encompassed approximately 70 km2 and included 42.0 km of roads, 54.3 km of streams, and 15.0 km of lake shore. Location data were entered into a geographic information system for map production and linkage with various databases for spatial analyses. Spatial analyses using parasitologic and entomologic data are presented as examples. Background information on DGPS is presented along with estimates of effort and expense to produce the map information.

  6. Multisensory guidance of orienting behavior.

    PubMed

    Maier, Joost X; Groh, Jennifer M

    2009-12-01

    We use both vision and audition when localizing objects and events in our environment. However, these sensory systems receive spatial information in different coordinate systems: sounds are localized using inter-aural and spectral cues, yielding a head-centered representation of space, whereas the visual system uses an eye-centered representation of space, based on the site of activation on the retina. In addition, the visual system employs a place-coded, retinotopic map of space, whereas the auditory system's representational format is characterized by broad spatial tuning and a lack of topographical organization. A common view is that the brain needs to reconcile these differences in order to control behavior, such as orienting gaze to the location of a sound source. To accomplish this, it seems that either auditory spatial information must be transformed from a head-centered rate code to an eye-centered map to match the frame of reference used by the visual system, or vice versa. Here, we review a number of studies that have focused on the neural basis underlying such transformations in the primate auditory system. Although, these studies have found some evidence for such transformations, many differences in the way the auditory and visual system encode space exist throughout the auditory pathway. We will review these differences at the neural level, and will discuss them in relation to differences in the way auditory and visual information is used in guiding orienting movements.

  7. GIS-based spatial decision support system for grain logistics management

    NASA Astrophysics Data System (ADS)

    Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi

    2010-07-01

    Grain logistics is the important component of the social logistics, which can be attributed to frequent circulation and the great quantity. At present time, there is no modern grain logistics distribution management system, and the logistics cost is the high. Geographic Information Systems (GIS) have been widely used for spatial data manipulation and model operations and provide effective decision support through its spatial database management capabilities and cartographic visualization. In the present paper, a spatial decision support system (SDSS) is proposed to support policy makers and to reduce the cost of grain logistics. The system is composed of two major components: grain logistics goods tracking model and vehicle routing problem optimization model and also allows incorporation of data coming from external sources. The proposed system is an effective tool to manage grain logistics in order to increase the speed of grain logistics and reduce the grain circulation cost.

  8. Implementation of AN Agricultural Environmental Information System (aeis) for the Sanjiang Plain, Ne-China

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Brocks, S.; Lenz-Wiedemann, V.; Miao, Y.; Jiang, R.; Chen, X.; Zhang, F.; Bareth, G.

    2012-07-01

    The Sino-German Project between the China Agricultural University and the University of Cologne, Germany, focuses on regional agro-ecosystem modelling. One major focus of the cooperation activity is the establishment of joint rice field experiment research in Jiansanjiang, located in the Sanjiang Plain (Heilongjiang Province, north-eastern part of China), to investigate the different agricultural practices and their impact on yield and environment. An additional task is to set-up an Agricultural Environmental Information System (AEIS) for the Sanjiang Plain (SJP), which covers more than 100 000 km2. Research groups from Geography (e.g. GIS & Remote Sensing) and Plant Nutrition (e.g. Precision Agriculture) are involved in the project. The major aim of the AEIS for the SJP is to provide information about (i) agriculture in the region, (ii) the impact of agricultural practices on the environment, and (iii) simulation scenarios for sustainable strategies. Consequently, the AEIS for the SJP provides information for decision support and therefore could be regarded as a Spatial Decision Support System (SDSS), too. The investigation of agricultural and environmental issues has a spatial context, which requires the management, handling, and analysis of spatial data. The use of GIS enables the capture, storage, analysis and presentation of spatial data. Therefore, GIS is the major tool for the set-up of the AEIS for the SJP. This contribution presents the results of linking agricultural statistics with GIS to provide information about agriculture in the SJP and discusses the benefits of this method as well as the integration of methods to produce new data.

  9. A compilation of spatial digital databases for selected U.S. Geological Survey nonfuel mineral resource assessments for parts of Idaho and Montana

    USGS Publications Warehouse

    Carlson, Mary H.; Zientek, Michael L.; Causey, J. Douglas; Kayser, Helen Z.; Spanski, Gregory T.; Wilson, Anna B.; Van Gosen, Bradley S.; Trautwein, Charles M.

    2007-01-01

    This report compiles selected results from 13 U.S. Geological Survey (USGS) mineral resource assessment studies conducted in Idaho and Montana into consistent spatial databases that can be used in a geographic information system. The 183 spatial databases represent areas of mineral potential delineated in these studies and include attributes on mineral deposit type, level of mineral potential, certainty, and a reference. The assessments were conducted for five 1? x 2? quadrangles (Butte, Challis, Choteau, Dillon, and Wallace), several U.S. Forest Service (USFS) National Forests (including Challis, Custer, Gallatin, Helena, and Payette), and one Bureau of Land Management (BLM) Resource Area (Dillon). The data contained in the spatial databases are based on published information: no new interpretations are made. This digital compilation is part of an ongoing effort to provide mineral resource information formatted for use in spatial analysis. In particular, this is one of several reports prepared to address USFS needs for science information as forest management plans are revised in the Northern Rocky Mountains.

  10. Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations

    USDA-ARS?s Scientific Manuscript database

    Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...

  11. Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science

    NASA Astrophysics Data System (ADS)

    Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.

    2017-09-01

    Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  12. Electro-triggering and electrochemical monitoring of dopamine exocytosis from a single cell by using ultrathin electrodes based on Au nanowires

    NASA Astrophysics Data System (ADS)

    Kang, Mijeong; Yoo, Seung Min; Gwak, Raekeun; Eom, Gayoung; Kim, Jihwan; Lee, Sang Yup; Kim, Bongsoo

    2015-12-01

    A sophisticated set of an Au nanowire (NW) stimulator-Au NW detector system is developed for electrical cell stimulation and electrochemical analysis of subsequent exocytosis with very high spatial resolution. Dopamine release from a rat pheochromocytoma cell is more stimulated by a more negative voltage pulse. This system could help to improve the therapeutic efficacy of electrotherapies by providing valuable information on their healing mechanism.A sophisticated set of an Au nanowire (NW) stimulator-Au NW detector system is developed for electrical cell stimulation and electrochemical analysis of subsequent exocytosis with very high spatial resolution. Dopamine release from a rat pheochromocytoma cell is more stimulated by a more negative voltage pulse. This system could help to improve the therapeutic efficacy of electrotherapies by providing valuable information on their healing mechanism. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06021d

  13. Determination of Exterior Orientation Parameters Through Direct Geo-Referencing in a Real-Time Aerial Monitoring System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, J.; Choi, K.; Lee, I.

    2012-07-01

    Rapid responses for emergency situations such as natural disasters or accidents often require geo-spatial information describing the on-going status of the affected area. Such geo-spatial information can be promptly acquired by a manned or unmanned aerial vehicle based multi-sensor system that can monitor the emergent situations in near real-time from the air using several kinds of sensors. Thus, we are in progress of developing such a real-time aerial monitoring system (RAMS) consisting of both aerial and ground segments. The aerial segment acquires the sensory data about the target areas by a low-altitude helicopter system equipped with sensors such as a digital camera and a GPS/IMU system and transmits them to the ground segment through a RF link in real-time. The ground segment, which is a deployable ground station installed on a truck, receives the sensory data and rapidly processes them to generate ortho-images, DEMs, etc. In order to generate geo-spatial information, in this system, exterior orientation parameters (EOP) of the acquired images are obtained through direct geo-referencing because it is difficult to acquire coordinates of ground points in disaster area. The main process, since the data acquisition stage until the measurement of EOP, is discussed as follows. First, at the time of data acquisition, image acquisition time synchronized by GPS time is recorded as part of image file name. Second, the acquired data are then transmitted to the ground segment in real-time. Third, by processing software for ground segment, positions/attitudes of acquired images are calculated through a linear interpolation using the GPS time of the received position/attitude data and images. Finally, the EOPs of images are obtained from position/attitude data by deriving the relationships between a camera coordinate system and a GPS/IMU coordinate system. In this study, we evaluated the accuracy of the EOP decided by direct geo-referencing in our system. To perform this, we used the precisely calculated EOP through the digital photogrammetry workstation (DPW) as reference data. The results of the evaluation indicate that the accuracy of the EOP acquired by our system is reasonable in comparison with the performance of GPS/IMU system. Also our system can acquire precise multi-sensory data to generate the geo-spatial information in emergency situations. In the near future, we plan to complete the development of the rapid generation system of the ground segment. Our system is expected to be able to acquire the ortho-image and DEM on the damaged area in near real-time. Its performance along with the accuracy of the generated geo-spatial information will also be evaluated and reported in the future work.

  14. Information theory analysis of sensor-array imaging systems for computer vision

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.; Self, M. O.

    1983-01-01

    Information theory is used to assess the performance of sensor-array imaging systems, with emphasis on the performance obtained with image-plane signal processing. By electronically controlling the spatial response of the imaging system, as suggested by the mechanism of human vision, it is possible to trade-off edge enhancement for sensitivity, increase dynamic range, and reduce data transmission. Computational results show that: signal information density varies little with large variations in the statistical properties of random radiance fields; most information (generally about 85 to 95 percent) is contained in the signal intensity transitions rather than levels; and performance is optimized when the OTF of the imaging system is nearly limited to the sampling passband to minimize aliasing at the cost of blurring, and the SNR is very high to permit the retrieval of small spatial detail from the extensively blurred signal. Shading the lens aperture transmittance to increase depth of field and using a regular hexagonal sensor-array instead of square lattice to decrease sensitivity to edge orientation also improves the signal information density up to about 30 percent at high SNRs.

  15. Place-Based Education and Geographic Information Systems: Enhancing the Spatial Awareness of Middle School Students in Maine

    ERIC Educational Resources Information Center

    Perkins, Nancy; Hazelton, Eric; Erickson, Jeryl; Allan, Walter

    2010-01-01

    Spatial literacy is a new frontier in K-12 education. This article describes a place-based introductory GIS/GPS middle school curriculum unit in which students used measuring tools, GPS units, and My World GIS software to collect physical and spatial data of trees to create a schoolyard tree inventory. Maine students completed "memory…

  16. The dual impact of ecology and management on social incentives in marine common-pool resource systems.

    PubMed

    Klein, E S; Barbier, M R; Watson, J R

    2017-08-01

    Understanding how and when cooperative human behaviour forms in common-pool resource systems is critical to illuminating social-ecological systems and designing governance institutions that promote sustainable resource use. Before assessing the full complexity of social dynamics, it is essential to understand, concretely and mechanistically, how resource dynamics and human actions interact to create incentives and pay-offs for social behaviours. Here, we investigated how such incentives for information sharing are affected by spatial dynamics and management in a common-pool resource system. Using interviews with fishermen to inform an agent-based model, we reveal generic mechanisms through which, for a given ecological setting characterized by the spatial dynamics of the resource, the two 'human factors' of information sharing and management may heterogeneously impact various members of a group for whom theory would otherwise predict the same strategy. When users can deplete the resource, these interactions are further affected by the management approach. Finally, we discuss the implications of alternative motivations, such as equity among fishermen and consistency of the fleet's output. Our results indicate that resource spatial dynamics, form of management and level of depletion can interact to alter the sociality of people in common-pool resource systems, providing necessary insight for future study of strategic decision processes.

  17. Multi-Mission Geographic Information System for Science Operations: A Test Case Using MSL Data

    NASA Astrophysics Data System (ADS)

    Calef, F. J.; Abarca, H. E.; Soliman, T.; Abercrombie, S. P.; Powell, M. W.

    2017-06-01

    The Multi-Mission Geographic Information System (MMGIS) is a NASA AMMOS project in its second year of development, built to display and query science products in a spatial context. We present our progress building this tool using MSL in situ data.

  18. Unmanned Aircraft Systems for Studying Spatial Abundance of Ungulates: Relevance to Spatial Epidemiology

    PubMed Central

    Barasona, José A.; Mulero-Pázmány, Margarita; Acevedo, Pelayo; Negro, Juan J.; Torres, María J.; Gortázar, Christian; Vicente, Joaquín

    2014-01-01

    Complex ecological and epidemiological systems require multidisciplinary and innovative research. Low cost unmanned aircraft systems (UAS) can provide information on the spatial pattern of hosts’ distribution and abundance, which is crucial as regards modelling the determinants of disease transmission and persistence on a fine spatial scale. In this context we have studied the spatial epidemiology of tuberculosis (TB) in the ungulate community of Doñana National Park (South-western Spain) by modelling species host (red deer, fallow deer and cattle) abundance at fine spatial scale. The use of UAS high-resolution images has allowed us to collect data to model the environmental determinants of host abundance, and in a further step to evaluate their relationships with the spatial risk of TB throughout the ungulate community. We discuss the ecological, epidemiological and logistic conditions under which UAS may contribute to study the wildlife/livestock sanitary interface, where the spatial aggregation of hosts becomes crucial. These findings are relevant for planning and implementing research, fundamentally when managing disease in multi-host systems, and focusing on risky areas. Therefore, managers should prioritize the implementation of control strategies to reduce disease of conservation, economic and social relevance. PMID:25551673

  19. Spatial Case Information Management System (SCIMS)

    Science.gov Websites

    SCIMS facilitates the update of the Land Administration System (LAS) Case File location. Please select Cleanup Notes Utilities LAS Request Import Utility Privacy Copyright System Status Support User Guide

  20. Spatial analysis for the epidemiological study of cardiovascular diseases: A systematic literature search.

    PubMed

    Mena, Carlos; Sepúlveda, Cesar; Fuentes, Eduardo; Ormazábal, Yony; Palomo, Iván

    2018-05-07

    Cardiovascular diseases (CVDs) are the primary cause of death and disability in de world, and the detection of populations at risk as well as localization of vulnerable areas is essential for adequate epidemiological management. Techniques developed for spatial analysis, among them geographical information systems and spatial statistics, such as cluster detection and spatial correlation, are useful for the study of the distribution of the CVDs. These techniques, enabling recognition of events at different geographical levels of study (e.g., rural, deprived neighbourhoods, etc.), make it possible to relate CVDs to factors present in the immediate environment. The systemic literature presented here shows that this group of diseases is clustered with regard to incidence, mortality and hospitalization as well as obesity, smoking, increased glycated haemoglobin levels, hypertension physical activity and age. In addition, acquired variables such as income, residency (rural or urban) and education, contribute to CVD clustering. Both local cluster detection and spatial regression techniques give statistical weight to the findings providing valuable information that can influence response mechanisms in the health services by indicating locations in need of intervention and assignment of available resources.

  1. Harvester-based sensing system for cotton fiber-quality mapping

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture in cotton production attempts to maximize profitability by exploiting information on field spatial variability to optimize the fiber yield and quality. For precision agriculture to be economically viable, collection of spatial variability data within a field must be automated a...

  2. Application of future remote sensing systems to irrigation

    NASA Technical Reports Server (NTRS)

    Miller, L. D.

    1982-01-01

    Area estimates of irrigated crops and knowledge of crop type are required for modeling water consumption to assist farmers, rangers, and agricultural consultants in scheduling irrigation for distributed management of crop yields. Information on canopy physiology and soil moisture status on a spatial basis is potentially available from remote sensors, so the questions to be addressed relate to: (1) timing (data frequency, instantaneous and integrated measurement); and scheduling (widely distributed spatial demands); (2) spatial resolution; (3) radiometric and geometric accuracy and geoencoding; and (4) information/data distribution. This latter should be overnight, with no central storage, onsite capture, and low cost.

  3. A Geospatial Information Grid Framework for Geological Survey.

    PubMed

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  4. A Geospatial Information Grid Framework for Geological Survey

    PubMed Central

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255

  5. Challenges of Remote Sensing and Spatial Information Education and Technology Transfer in a Fast Developing Industry

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Chen, L.-C.

    2014-04-01

    During the past decade, Taiwan has experienced an unusual and fast growing in the industry of mapping, remote sensing, spatial information and related markets. A successful space program and dozens of advanced airborne and ground-based remote sensing instruments as well as mobile mapping systems have been implemented and put into operation to support the vast demands of geospatial data acquisition. Moreover, in addition to the government agencies and research institutes, there are also tens of companies in the private sector providing geo-spatial data and services. However, the fast developing industry is also posing a great challenge to the education sector in Taiwan, especially the higher education for geo-spatial information. Facing this fast developing industry, the demands of skilled professionals and new technologies in order to address diversified needs are indubitably high. Consequently, while delighting in the expanding and prospering benefitted from the fast growing industry, how to fulfill these demands has become a challenge for the remote sensing and spatial information disciplines in the higher education institutes in Taiwan. This paper provides a brief insight into the status of the remote sensing and spatial information industry in Taiwan as well as the challenges of the education and technology transfer to support the increasing demands and to ensure the continuous development of the industry. In addition to the report of the current status of the remote sensing and spatial information related courses and programs in the colleges and universities, current and potential threatening issues and possible resolutions are also discussed in different points of view.

  6. The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades.

    PubMed

    Boon, Paul J; Belopolsky, Artem V; Theeuwes, Jan

    2016-01-01

    Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location.

  7. HealthCyberMap: a semantic visual browser of medical Internet resources based on clinical codes and the human body metaphor.

    PubMed

    Kamel Boulos, Maged N; Roudsari, Abdul V; Carso N, Ewart R

    2002-12-01

    HealthCyberMap (HCM-http://healthcybermap.semanticweb.org) is a web-based service for healthcare professionals and librarians, patients and the public in general that aims at mapping parts of the health information resources in cyberspace in novel ways to improve their retrieval and navigation. HCM adopts a clinical metadata framework built upon a clinical coding ontology for the semantic indexing, classification and browsing of Internet health information resources. A resource metadata base holds information about selected resources. HCM then uses GIS (Geographic Information Systems) spatialization methods to generate interactive navigational cybermaps from the metadata base. These visual cybermaps are based on familiar medical metaphors. HCM cybermaps can be considered as semantically spatialized, ontology-based browsing views of the underlying resource metadata base. Using a clinical coding scheme as a metric for spatialization ('semantic distance') is unique to HCM and is very much suited for the semantic categorization and navigation of Internet health information resources. Clinical codes ensure reliable and unambiguous topical indexing of these resources. HCM also introduces a useful form of cyberspatial analysis for the detection of topical coverage gaps in the resource metadata base using choropleth (shaded) maps of human body systems.

  8. A discussion for integrating INSPIRE with volunteered geographic information (VGI) and the vision for a global spatial-based platform

    NASA Astrophysics Data System (ADS)

    Demetriou, Demetris; Campagna, Michele; Racetin, Ivana; Konecny, Milan

    2017-09-01

    INSPIRE is the EU's authoritative Spatial Data Infrastructure (SDI) in which each Member State provides access to their spatial data across a wide spectrum of data themes to support policy making. In contrast, Volunteered Geographic Information (VGI) is one type of user-generated geographic information where volunteers use the web and mobile devices to create, assemble and disseminate spatial information. There are similarities and differences between SDIs and VGI initiatives, as well as advantages and disadvantages. Thus, the integration of these two data sources will enhance what is offered to end users to facilitate decision makers and the wider community regarding solving complex spatial problems, managing emergency situations and getting useful information for peoples' daily activities. Although some efforts towards this direction have been arisen, several key issues need to be considered and resolved. Further to this integration, the vision is the development of a global integrated GIS platform, which extends the capabilities of a typical data-hub by embedding on-line spatial and non-spatial applications, to deliver both static and dynamic outputs to support planning and decision making. In this context, this paper discusses the challenges of integrating INSPIRE with VGI and outlines a generic framework towards creating a global integrated web-based GIS platform. The tremendous high speed evolution of the Web and Geospatial technologies suggest that this "super" global Geo-system is not far away.

  9. SARANA: language, compiler and run-time system support for spatially aware and resource-aware mobile computing.

    PubMed

    Hari, Pradip; Ko, Kevin; Koukoumidis, Emmanouil; Kremer, Ulrich; Martonosi, Margaret; Ottoni, Desiree; Peh, Li-Shiuan; Zhang, Pei

    2008-10-28

    Increasingly, spatial awareness plays a central role in many distributed and mobile computing applications. Spatially aware applications rely on information about the geographical position of compute devices and their supported services in order to support novel functionality. While many spatial application drivers already exist in mobile and distributed computing, very little systems research has explored how best to program these applications, to express their spatial and temporal constraints, and to allow efficient implementations on highly dynamic real-world platforms. This paper proposes the SARANA system architecture, which includes language and run-time system support for spatially aware and resource-aware applications. SARANA allows users to express spatial regions of interest, as well as trade-offs between quality of result (QoR), latency and cost. The goal is to produce applications that use resources efficiently and that can be run on diverse resource-constrained platforms ranging from laptops to personal digital assistants and to smart phones. SARANA's run-time system manages QoR and cost trade-offs dynamically by tracking resource availability and locations, brokering usage/pricing agreements and migrating programs to nodes accordingly. A resource cost model permeates the SARANA system layers, permitting users to express their resource needs and QoR expectations in units that make sense to them. Although we are still early in the system development, initial versions have been demonstrated on a nine-node system prototype.

  10. Land-use planning of Volyn region (Ukraine) using Geographic Information Systems (GIS) technologies

    NASA Astrophysics Data System (ADS)

    Strielko, Irina; Pereira, Paulo

    2014-05-01

    Land-use development planning is carried out in order to create a favourable environment for human life, sustainable socioeconomic and spatial development. Landscape planning is an important part of land-use development that aims to meet the fundamental principles of sustainable development. Geographic Information Systems (GIS) is a fundamental tool to make a better landscape planning at different territorial levels, providing data and maps to support decision making. The objective of this work is to create spatio-temporal, territorial and ecological model of development of Volyn region (Ukraine). It is based on existing spatial raster and vector data and includes the analysis of territory dynamics as the aspects responsible for it. A spatial analyst tool was used to zone the areas according to their environmental components and economic activity. This analysis is fundamental to define the basic parameters of sustainability of Volyn region. To carry out this analysis, we determined the demographic capacity of districts and the analysis of spatial parameters of land use. On the basis of the existing natural resources, we observed that there is a need of landscape protection and integration of more are natural areas in the Pan-European Ecological Network. Using GIS technologies to landscape planning in Volyn region, allowed us to identify, natural areas of interest, contribute to a better resource management and conflict resolution. Geographic Information Systems will help to formulate and implement landscape policies, reform the existing administrative system of Volyn region and contribute to a better sustainable development.

  11. Analyzing long-term changes in vegetation with geographic information system and remotely sensed data

    Treesearch

    Louis. R. Iverson; Paul. G. Risser; Paul. G. Risser

    1987-01-01

    Geographic information systems and remote sensing techniques are powerful tools in the analysis of long-term changes in vegetation and land use, especially because spatial information from two or more time intervals can be compared more readily than by manual methods. A primary restriction is the paucity of data that has been digitized from earlier periods. The...

  12. Geographic Information System (GIS) capabilities in traffic accident information management: a qualitative approach.

    PubMed

    Ahmadi, Maryam; Valinejadi, Ali; Goodarzi, Afshin; Safari, Ameneh; Hemmat, Morteza; Majdabadi, Hesamedin Askari; Mohammadi, Ali

    2017-06-01

    Traffic accidents are one of the more important national and international issues, and their consequences are important for the political, economical, and social level in a country. Management of traffic accident information requires information systems with analytical and accessibility capabilities to spatial and descriptive data. The aim of this study was to determine the capabilities of a Geographic Information System (GIS) in management of traffic accident information. This qualitative cross-sectional study was performed in 2016. In the first step, GIS capabilities were identified via literature retrieved from the Internet and based on the included criteria. Review of the literature was performed until data saturation was reached; a form was used to extract the capabilities. In the second step, study population were hospital managers, police, emergency, statisticians, and IT experts in trauma, emergency and police centers. Sampling was purposive. Data was collected using a questionnaire based on the first step data; validity and reliability were determined by content validity and Cronbach's alpha of 75%. Data was analyzed using the decision Delphi technique. GIS capabilities were identified in ten categories and 64 sub-categories. Import and process of spatial and descriptive data and so, analysis of this data were the most important capabilities of GIS in traffic accident information management. Storing and retrieving of descriptive and spatial data, providing statistical analysis in table, chart and zoning format, management of bad structure issues, determining the cost effectiveness of the decisions and prioritizing their implementation were the most important capabilities of GIS which can be efficient in the management of traffic accident information.

  13. Making Geographic Information Systems (GIS) Sustainable in Schools

    ERIC Educational Resources Information Center

    Dascombe, Brett

    2006-01-01

    Spatial technologies, particularly Geographic Information Systems (GIS), have become invaluable and persuasive tools in society today. These technologies have also made their way into classrooms around the world and Australian teachers are leaders in implementing GIS technology into their classrooms. There is still a way to go in order to make…

  14. Exploration into technical procedures for vertical integration. [information systems

    NASA Technical Reports Server (NTRS)

    Michel, R. J.; Maw, K. D.

    1979-01-01

    Issues in the design and use of a digital geographic information system incorporating landuse, zoning, hazard, LANDSAT, and other data are discussed. An eleven layer database was generated. Issues in spatial resolution, registration, grid versus polygonal structures, and comparison of photointerpreted landuse to LANDSAT land cover are examined.

  15. Representing Historical Knowledge in Geographic Information Systems

    ERIC Educational Resources Information Center

    Grossner, Karl Eric

    2010-01-01

    A growing number of historical scholars in social science and humanities fields are using geographic information systems (GIS) to help investigate spatial questions and map their findings. The nature of historical data and historiographic practices present several challenges in using GIS that have been addressed only partially to date. For…

  16. Students Investigate Local Communities with Geographic Information Systems (GIS).

    ERIC Educational Resources Information Center

    Carlstrom, Dick; Quinlan, Laurie A.

    1997-01-01

    Describes the use of Geographic Information Systems (GIS) in elementary and secondary school classrooms to analyze neighborhoods, cities, and regions. Discusses GIS software, databases, graphing data, and spatial analysis, and includes an example of a project for secondary school students investigating the local economy for summer jobs. (LRW)

  17. Developing Trainee Teacher Practice with Geographical Information Systems (GIS)

    ERIC Educational Resources Information Center

    Walshe, Nicola

    2017-01-01

    There is general agreement that geographical information systems (GIS) have a place within the geography classroom; they offer the potential to support geographical learning, exploring real-world problems through student-centred learning, and developing spatial thinking. Despite this, teachers often avoid engaging with GIS and research suggests…

  18. A High Spatial Resolution Depth Sensing Method Based on Binocular Structured Light

    PubMed Central

    Yao, Huimin; Ge, Chenyang; Xue, Jianru; Zheng, Nanning

    2017-01-01

    Depth information has been used in many fields because of its low cost and easy availability, since the Microsoft Kinect was released. However, the Kinect and Kinect-like RGB-D sensors show limited performance in certain applications and place high demands on accuracy and robustness of depth information. In this paper, we propose a depth sensing system that contains a laser projector similar to that used in the Kinect, and two infrared cameras located on both sides of the laser projector, to obtain higher spatial resolution depth information. We apply the block-matching algorithm to estimate the disparity. To improve the spatial resolution, we reduce the size of matching blocks, but smaller matching blocks generate lower matching precision. To address this problem, we combine two matching modes (binocular mode and monocular mode) in the disparity estimation process. Experimental results show that our method can obtain higher spatial resolution depth without loss of the quality of the range image, compared with the Kinect. Furthermore, our algorithm is implemented on a low-cost hardware platform, and the system can support the resolution of 1280 × 960, and up to a speed of 60 frames per second, for depth image sequences. PMID:28397759

  19. Development of an electronic emergency department-based geo-information injury surveillance system in Hong Kong.

    PubMed

    Chow, C B; Leung, M; Lai, Adela; Chow, Y H; Chung, Joanne; Tong, K M; Lit, Albert

    2012-06-01

    To describe the experience in the development of an electronic emergency department (ED)-based injury surveillance (IS) system in Hong Kong using data-mining and geo-spatial information technology (IT) for a Safe Community setup. This paper described the phased development of an emergency department-based IS system based on World Health Organization (WHO) injury surveillance Guideline to support safety promotion and injury prevention in a Safe Community in Hong Kong starting 2002. The initial ED data-based only collected data on name, sex, age, address, eight general categories of injury types (traffic, domestic, common assault, indecent assault, batter, industrial, self-harm and sports) and disposal from ED. Phase 1--manual data collection on International Classification of External Causes of Injury pre-event data; Phase 2--manual form was converted to electronic format using web-based data mining technology with built in data quality monitoring mechanism; Phase 3--integration of injury surveillance-data with in-patient hospital information; and Phase 4--geo-spatial information and body mapping were introduced to geo-code exact place of injury in an electronic map and site of injury on body map. It was feasible to develop a geo-spatial IS system at busy ED to collect valuable information for safety promotion and injury prevention at Safe Community setting. The keys for successful development and implementation involves engagement of all stakeholders at design and implementation of the system with injury prevention as ultimate goal, detail workflow planning at front end, support from the management, building on exiting system and appropriate utilisation of modern technology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A Core Knowledge Architecture of Visual Working Memory

    ERIC Educational Resources Information Center

    Wood, Justin N.

    2011-01-01

    Visual working memory (VWM) is widely thought to contain specialized buffers for retaining spatial and object information: a "spatial-object architecture." However, studies of adults, infants, and nonhuman animals show that visual cognition builds on core knowledge systems that retain more specialized representations: (1) spatiotemporal…

  1. Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning.

    PubMed

    Hiloidhari, Moonmoon; Baruah, D C; Singh, Anoop; Kataki, Sampriti; Medhi, Kristina; Kumari, Shilpi; Ramachandra, T V; Jenkins, B M; Thakur, Indu Shekhar

    2017-10-01

    Sustainability of a bioenergy project depends on precise assessment of biomass resource, planning of cost-effective logistics and evaluation of possible environmental implications. In this context, this paper reviews the role and applications of geo-spatial tool such as Geographical Information System (GIS) for precise agro-residue resource assessment, biomass logistic and power plant design. Further, application of Life Cycle Assessment (LCA) in understanding the potential impact of agro-residue bioenergy generation on different ecosystem services has also been reviewed and limitations associated with LCA variability and uncertainty were discussed. Usefulness of integration of GIS into LCA (i.e. spatial LCA) to overcome the limitations of conventional LCA and to produce a holistic evaluation of the environmental benefits and concerns of bioenergy is also reviewed. Application of GIS, LCA and spatial LCA can help alleviate the challenges faced by ambitious bioenergy projects by addressing both economics and environmental goals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Humanoid monocular stereo measuring system with two degrees of freedom using bionic optical imaging system

    NASA Astrophysics Data System (ADS)

    Du, Jia-Wei; Wang, Xuan-Yin; Zhu, Shi-Qiang

    2017-10-01

    Based on the process by which the spatial depth clue is obtained by a single eye, a monocular stereo vision to measure the depth information of spatial objects was proposed in this paper and a humanoid monocular stereo measuring system with two degrees of freedom was demonstrated. The proposed system can effectively obtain the three-dimensional (3-D) structure of spatial objects of different distances without changing the position of the system and has the advantages of being exquisite, smart, and flexible. The bionic optical imaging system we proposed in a previous paper, named ZJU SY-I, was employed and its vision characteristic was just like the resolution decay of the eye's vision from center to periphery. We simplified the eye's rotation in the eye socket and the coordinated rotation of other organs of the body into two rotations in the orthogonal direction and employed a rotating platform with two rotation degrees of freedom to drive ZJU SY-I. The structure of the proposed system was described in detail. The depth of a single feature point on the spatial object was deduced, as well as its spatial coordination. With the focal length adjustment of ZJU SY-I and the rotation control of the rotation platform, the spatial coordinates of all feature points on the spatial object could be obtained and then the 3-D structure of the spatial object could be reconstructed. The 3-D structure measurement experiments of two spatial objects with different distances and sizes were conducted. Some main factors affecting the measurement accuracy of the proposed system were analyzed and discussed.

  3. Optical performance analysis of plenoptic camera systems

    NASA Astrophysics Data System (ADS)

    Langguth, Christin; Oberdörster, Alexander; Brückner, Andreas; Wippermann, Frank; Bräuer, Andreas

    2014-09-01

    Adding an array of microlenses in front of the sensor transforms the capabilities of a conventional camera to capture both spatial and angular information within a single shot. This plenoptic camera is capable of obtaining depth information and providing it for a multitude of applications, e.g. artificial re-focusing of photographs. Without the need of active illumination it represents a compact and fast optical 3D acquisition technique with reduced effort in system alignment. Since the extent of the aperture limits the range of detected angles, the observed parallax is reduced compared to common stereo imaging systems, which results in a decreased depth resolution. Besides, the gain of angular information implies a degraded spatial resolution. This trade-off requires a careful choice of the optical system parameters. We present a comprehensive assessment of possible degrees of freedom in the design of plenoptic systems. Utilizing a custom-built simulation tool, the optical performance is quantified with respect to particular starting conditions. Furthermore, a plenoptic camera prototype is demonstrated in order to verify the predicted optical characteristics.

  4. Texture-specific bag of visual words model and spatial cone matching-based method for the retrieval of focal liver lesions using multiphase contrast-enhanced CT images.

    PubMed

    Xu, Yingying; Lin, Lanfen; Hu, Hongjie; Wang, Dan; Zhu, Wenchao; Wang, Jian; Han, Xian-Hua; Chen, Yen-Wei

    2018-01-01

    The bag of visual words (BoVW) model is a powerful tool for feature representation that can integrate various handcrafted features like intensity, texture, and spatial information. In this paper, we propose a novel BoVW-based method that incorporates texture and spatial information for the content-based image retrieval to assist radiologists in clinical diagnosis. This paper presents a texture-specific BoVW method to represent focal liver lesions (FLLs). Pixels in the region of interest (ROI) are classified into nine texture categories using the rotation-invariant uniform local binary pattern method. The BoVW-based features are calculated for each texture category. In addition, a spatial cone matching (SCM)-based representation strategy is proposed to describe the spatial information of the visual words in the ROI. In a pilot study, eight radiologists with different clinical experience performed diagnoses for 20 cases with and without the top six retrieved results. A total of 132 multiphase computed tomography volumes including five pathological types were collected. The texture-specific BoVW was compared to other BoVW-based methods using the constructed dataset of FLLs. The results show that our proposed model outperforms the other three BoVW methods in discriminating different lesions. The SCM method, which adds spatial information to the orderless BoVW model, impacted the retrieval performance. In the pilot trial, the average diagnosis accuracy of the radiologists was improved from 66 to 80% using the retrieval system. The preliminary results indicate that the texture-specific features and the SCM-based BoVW features can effectively characterize various liver lesions. The retrieval system has the potential to improve the diagnostic accuracy and the confidence of the radiologists.

  5. Spatial Thinking: Precept for Understanding Operational Environments

    DTIC Science & Technology

    2016-06-10

    A Computer Movie Simulating Urban Growth in the Detroit Region,” 236. 29 U.S. National Research Council, Learning to Think Spatially: GIS as a... children and spatial language, the article focuses on the use of geospatial information systems (GIS) as a support mechanism for learning to think...Thinking, Cognition, Learning , Geospatial, Operating Environment, Space Perception 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  6. Spatial Data Web Services Pricing Model Infrastructure

    NASA Astrophysics Data System (ADS)

    Ozmus, L.; Erkek, B.; Colak, S.; Cankurt, I.; Bakıcı, S.

    2013-08-01

    The General Directorate of Land Registry and Cadastre (TKGM) which is the leader in the field of cartography largely continues its missions which are; to keep and update land registry and cadastre system of the country under the responsibility of the treasure, to perform transactions related to real estate and to establish Turkish national spatial information system. TKGM a public agency has completed many projects. Such as; Continuously Operating GPS Reference Stations (TUSAGA-Aktif), Geo-Metadata Portal (HBB), Orthophoto-Base Map Production and web services, Completion of Initial Cadastre, Cadastral Renovation Project (TKMP), Land Registry and Cadastre Information System (TAKBIS), Turkish National Spatial Data Infrastructure Project (TNSDI), Ottoman Land Registry Archive Information System (TARBIS). TKGM provides updated map and map information to not only public institutions but also to related society in the name of social responsibility principals. Turkish National Spatial Data Infrastructure activities have been started by the motivation of Circular No. 2003/48 which was declared by Turkish Prime Ministry in 2003 within the context of e-Transformation of Turkey Short-term Action Plan. Action No. 47 in the mentioned action plan implies that "A Feasibility Study shall be made in order to establish the Turkish National Spatial Data Infrastructure" whose responsibility has been given to General Directorate of Land Registry and Cadastre. Feasibility report of NSDI has been completed in 10th of December 2010. After decision of Steering Committee, feasibility report has been send to Development Bank (old name State Planning Organization) for further evaluation. There are two main arrangements with related this project (feasibility report).First; Now there is only one Ministry which is Ministry of Environment and Urbanism responsible for establishment, operating and all national level activities of NSDI. And Second arrangement is related to institutional Level. The most important law with related NSDI is the establishment of General Directorate of Geographic Information System under the Ministry of Environment and Urbanism. due to; to do or to have do works and activities with related to the establishment of National Geographic Information Systems (NGIS), usage of NGIS and improvements of NGIS. Outputs of these projects are served to not only public administration but also to Turkish society. Today for example, TAKBIS data (cadastre services) are shared more than 50 institutions by Web services, Tusaga-Aktif system has more than 3800 users who are having real-time GPS data correction, Orthophoto WMS services has been started for two years as a charge of free. Today there is great discussion about data pricing among the institutions. Some of them think that the pricing is storage of the data. Some of them think that the pricing is value of data itself. There is no certain rule about pricing. On this paper firstly, pricing of data storage and later on spatial data pricing models in different countries are investigated to improve institutional understanding in Turkey.

  7. Geographic information system/watershed model interface

    USGS Publications Warehouse

    Fisher, Gary T.

    1989-01-01

    Geographic information systems allow for the interactive analysis of spatial data related to water-resources investigations. A conceptual design for an interface between a geographic information system and a watershed model includes functions for the estimation of model parameter values. Design criteria include ease of use, minimal equipment requirements, a generic data-base management system, and use of a macro language. An application is demonstrated for a 90.1-square-kilometer subbasin of the Patuxent River near Unity, Maryland, that performs automated derivation of watershed parameters for hydrologic modeling.

  8. Commercial Applications Multispectral Sensor System

    NASA Technical Reports Server (NTRS)

    Birk, Ronald J.; Spiering, Bruce

    1993-01-01

    NASA's Office of Commercial Programs is funding a multispectral sensor system to be used in the development of remote sensing applications. The Airborne Terrestrial Applications Sensor (ATLAS) is designed to provide versatility in acquiring spectral and spatial information. The ATLAS system will be a test bed for the development of specifications for airborne and spaceborne remote sensing instrumentation for dedicated applications. This objective requires spectral coverage from the visible through thermal infrared wavelengths, variable spatial resolution from 2-25 meters; high geometric and geo-location accuracy; on-board radiometric calibration; digital recording; and optimized performance for minimized cost, size, and weight. ATLAS is scheduled to be available in 3rd quarter 1992 for acquisition of data for applications such as environmental monitoring, facilities management, geographic information systems data base development, and mineral exploration.

  9. Navigating Monogamy: Nonapeptide Sensitivity in a Memory Neural Circuit May Shape Social Behavior and Mating Decisions.

    PubMed

    Ophir, Alexander G

    2017-01-01

    The role of memory in mating systems is often neglected despite the fact that most mating systems are defined in part by how animals use space. Monogamy, for example, is usually characterized by affiliative (e.g., pairbonding) and defensive (e.g., mate guarding) behaviors, but a high degree of spatial overlap in home range use is the easiest defining feature of monogamous animals in the wild. The nonapeptides vasopressin and oxytocin have been the focus of much attention for their importance in modulating social behavior, however this work has largely overshadowed their roles in learning and memory. To date, the understanding of memory systems and mechanisms governing social behavior have progressed relatively independently. Bridging these two areas will provide a deeper appreciation for understanding behavior, and in particular the mechanisms that mediate reproductive decision-making. Here, I argue that the ability to mate effectively as monogamous individuals is linked to the ability to track conspecifics in space. I discuss the connectivity across some well-known social and spatial memory nuclei, and propose that the nonapeptide receptors within these structures form a putative "socio-spatial memory neural circuit." This purported circuit may function to integrate social and spatial information to shape mating decisions in a context-dependent fashion. The lateral septum and/or the nucleus accumbens, and neuromodulation therein, may act as an intermediary to relate socio-spatial information with social behavior. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating mating tactics is crucial to fully appreciate the suite of factors driving reproductive decisions and social decision-making.

  10. Estimating regional plant biodiversity with GIS modelling

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad

    1998-01-01

    We analyzed a statewide species database together with a county-level geographic information system to build a model based on well-surveyed areas to estimate species richness in less surveyed counties. The model involved GIS (Arc/Info) and statistics (S-PLUS), including spatial statistics (S+SpatialStats).

  11. MURI Center for Photonic Quantum Information Systems

    DTIC Science & Technology

    2009-10-16

    conversion; solid- state quantum gates based on quantum dots in semiconductors and on NV centers in diamond; quantum memories using optical storage...of our high-speed quantum cryptography systems, and also by continuing to work on quantum information encoding into transverse spatial modes. 14...make use of cavity QED effects for quantum information processing, the quantum dot needs to be addressed coherently . We have probed the QD-cavity

  12. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content.

    PubMed

    McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja

    2014-05-01

    Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.

  13. Oculomotor preparation as a rehearsal mechanism in spatial working memory.

    PubMed

    Pearson, David G; Ball, Keira; Smith, Daniel T

    2014-09-01

    There is little consensus regarding the specific processes responsible for encoding, maintenance, and retrieval of information in visuo-spatial working memory (VSWM). One influential theory is that VSWM may involve activation of the eye-movement (oculomotor) system. In this study we experimentally prevented healthy participants from planning or executing saccadic eye-movements during the encoding, maintenance, and retrieval stages of visual and spatial working memory tasks. Participants experienced a significant reduction in spatial memory span only when oculomotor preparation was prevented during encoding or maintenance. In contrast there was no reduction when oculomotor preparation was prevented only during retrieval. These results show that (a) involvement of the oculomotor system is necessary for optimal maintenance of directly-indicated locations in spatial working memory and (b) oculomotor preparation is not necessary during retrieval from spatial working memory. We propose that this study is the first to unambiguously demonstrate that the oculomotor system contributes to the maintenance of spatial locations in working memory independently from the involvement of covert attention. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Spatial and symbolic queries for 3D image data

    NASA Astrophysics Data System (ADS)

    Benson, Daniel C.; Zick, Gregory L.

    1992-04-01

    We present a query system for an object-oriented biomedical imaging database containing 3-D anatomical structures and their corresponding 2-D images. The graphical interface facilitates the formation of spatial queries, nonspatial or symbolic queries, and combined spatial/symbolic queries. A query editor is used for the creation and manipulation of 3-D query objects as volumes, surfaces, lines, and points. Symbolic predicates are formulated through a combination of text fields and multiple choice selections. Query results, which may include images, image contents, composite objects, graphics, and alphanumeric data, are displayed in multiple views. Objects returned by the query may be selected directly within the views for further inspection or modification, or for use as query objects in subsequent queries. Our image database query system provides visual feedback and manipulation of spatial query objects, multiple views of volume data, and the ability to combine spatial and symbolic queries. The system allows for incremental enhancement of existing objects and the addition of new objects and spatial relationships. The query system is designed for databases containing symbolic and spatial data. This paper discuses its application to data acquired in biomedical 3- D image reconstruction, but it is applicable to other areas such as CAD/CAM, geographical information systems, and computer vision.

  15. Research on the information security system in electrical gis system in mobile application

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Feng, Renjun; Jiang, Haitao; Huang, Wei; Zhu, Daohua

    2017-05-01

    With the rapid development of social informatization process, the demands of government, enterprise, and individuals for spatial information becomes larger. In addition, the combination of wireless network technology and spatial information technology promotes the generation and development of mobile technologies. In today’s rapidly developed information technology field, network technology and mobile communication have become the two pillar industries by leaps and bounds. They almost absorbed and adopted all the latest information, communication, computer, electronics and so on new technologies. Concomitantly, the network coverage is more and more big, the transmission rate is faster and faster, the volume of user’s terminal is smaller and smaller. What’s more, from LAN to WAN, from wired network to wireless network, from wired access to mobile wireless access, people’s demand for communication technology is increasingly higher. As a result, mobile communication technology is facing unprecedented challenges as well as unprecedented opportunities. When combined with the existing mobile communication network, it led to the development of leaps and bounds. However, due to the inherent dependence of the system on the existing computer communication network, information security problems cannot be ignored. Today’s information security has penetrated into all aspects of life. Information system is a complex computer system, and it’s physical, operational and management vulnerabilities constitute the security vulnerability of the system. Firstly, this paper analyzes the composition of mobile enterprise network and information security threat. Secondly, this paper puts forward the security planning and measures, and constructs the information security structure.

  16. An Overview of the GIS Weasel

    USGS Publications Warehouse

    Viger, Roland J.

    2008-01-01

    This fact sheet provides a high-level description of the GIS Weasel, a software system designed to aid users in preparing spatial information as input to lumped and distributed parameter environmental simulation models (ESMs). The GIS Weasel provides geographic information system (GIS) tools to help create maps of geographic features relevant to the application of a user?s ESM and to generate parameters from those maps. The operation of the GIS Weasel does not require a user to be a GIS expert, only that a user has an understanding of the spatial information requirements of the model. The GIS Weasel software system provides a GIS-based graphical user interface (GUI), C programming language executables, and general utility scripts. The software will run on any computing platform where ArcInfo Workstation (version 8.1 or later) and the GRID extension are accessible. The user controls the GIS Weasel by interacting with menus, maps, and tables.

  17. GIS Tools For Improving Pedestrian & Bicycle Safety

    DOT National Transportation Integrated Search

    2000-07-01

    Geographic Information System (GIS) software turns statistical data, such as accidents, and geographic data, such as roads and crash locations, into meaningful information for spatial analysis and mapping. In this project, GIS-based analytical techni...

  18. DigiFract: A software and data model implementation for flexible acquisition and processing of fracture data from outcrops

    NASA Astrophysics Data System (ADS)

    Hardebol, N. J.; Bertotti, G.

    2013-04-01

    This paper presents the development and use of our new DigiFract software designed for acquiring fracture data from outcrops more efficiently and more completely than done with other methods. Fracture surveys often aim at measuring spatial information (such as spacing) directly in the field. Instead, DigiFract focuses on collecting geometries and attributes and derives spatial information through subsequent analyses. Our primary development goal was to support field acquisition in a systematic digital format and optimized for a varied range of (spatial) analyses. DigiFract is developed using the programming interface of the Quantum Geographic Information System (GIS) with versatile functionality for spatial raster and vector data handling. Among other features, this includes spatial referencing of outcrop photos, and tools for digitizing geometries and assigning attribute information through a graphical user interface. While a GIS typically operates in map-view, DigiFract collects features on a surface of arbitrary orientation in 3D space. This surface is overlain with an outcrop photo and serves as reference frame for digitizing geologic features. Data is managed through a data model and stored in shapefiles or in a spatial database system. Fracture attributes, such as spacing or length, is intrinsic information of the digitized geometry and becomes explicit through follow-up data processing. Orientation statistics, scan-line or scan-window analyses can be performed from the graphical user interface or can be obtained through flexible Python scripts that directly access the fractdatamodel and analysisLib core modules of DigiFract. This workflow has been applied in various studies and enabled a faster collection of larger and more accurate fracture datasets. The studies delivered a better characterization of fractured reservoirs analogues in terms of fracture orientation and intensity distributions. Furthermore, the data organisation and analyses provided more independent constraints on the bed-confined or through-going nature of fractures relative to the stratigraphic layering.

  19. The highs and lows of object impossibility: effects of spatial frequency on holistic processing of impossible objects.

    PubMed

    Freud, Erez; Avidan, Galia; Ganel, Tzvi

    2015-02-01

    Holistic processing, the decoding of a stimulus as a unified whole, is a basic characteristic of object perception. Recent research using Garner's speeded classification task has shown that this processing style is utilized even for impossible objects that contain an inherent spatial ambiguity. In particular, similar Garner interference effects were found for possible and impossible objects, indicating similar holistic processing styles for the two object categories. In the present study, we further investigated the perceptual mechanisms that mediate such holistic representation of impossible objects. We relied on the notion that, whereas information embedded in the high-spatial-frequency (HSF) content supports fine-detailed processing of object features, the information conveyed by low spatial frequencies (LSF) is more crucial for the emergence of a holistic shape representation. To test the effects of image frequency on the holistic processing of impossible objects, participants performed the Garner speeded classification task on images of possible and impossible cubes filtered for their LSF and HSF information. For images containing only LSF, similar interference effects were observed for possible and impossible objects, indicating that the two object categories were processed in a holistic manner. In contrast, for the HSF images, Garner interference was obtained only for possible, but not for impossible objects. Importantly, we provided evidence to show that this effect could not be attributed to a lack of sensitivity to object possibility in the LSF images. Particularly, even for full-spectrum images, Garner interference was still observed for both possible and impossible objects. Additionally, performance in an object classification task revealed high sensitivity to object possibility, even for LSF images. Taken together, these findings suggest that the visual system can tolerate the spatial ambiguity typical to impossible objects by relying on information embedded in LSF, whereas HSF information may underlie the visual system's susceptibility to distortions in objects' spatial layouts.

  20. BOREAS Level-1B TIMS Imagery: At-sensor Radiance in BSQ Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Strub, Richard; Newcomer, Jeffrey A.; Chernobieff, Sonia

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) Staff Science Aircraft Data Acquisition Program focused on providing the research teams with the remotely sensed satellite data products they needed to compare and spatially extend point results. For BOREAS, the Thermal Infrared Multispectral Scanner (TIMS) imagery, along with other aircraft images, was collected to provide spatially extensive information over the primary study areas. The Level-1b TIMS images cover the time periods of 16 to 20 Apr 1994 and 06 to 17 Sep 1994. The system calibrated images are stored in binary image format files. The TIMS images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  1. GeoCrystal: graphic-interactive access to geodata archives

    NASA Astrophysics Data System (ADS)

    Goebel, Stefan; Haist, Joerg; Jasnoch, Uwe

    2002-03-01

    Recently there is spent a lot of effort to establish information systems and global infrastructures enabling both data suppliers and users to describe (-> eCommerce, metadata) as well as to find appropriate data. Examples for this are metadata information systems, online-shops or portals for geodata. The main disadvantages of existing approaches are insufficient methods and mechanisms leading users to (e.g. spatial) data archives. This affects aspects concerning usability and personalization in general as well as visual feedback techniques in the different steps of the information retrieval process. Several approaches aim at the improvement of graphical user interfaces by using intuitive metaphors, but only some of them offer 3D interfaces in the form of information landscapes or geographic result scenes in the context of information systems for geodata. This paper presents GeoCrystal, which basic idea is to adopt Venn diagrams to compose complex queries and to visualize search results in a 3D information and navigation space for geodata. These concepts are enhanced with spatial metaphors and 3D information landscapes (library for geodata) wherein users can specify searches for appropriate geodata and are enabled to graphic-interactively communicate with search results (book metaphor).

  2. Knowledge-based geographic information systems (KBGIS): New analytic and data management tools

    USGS Publications Warehouse

    Albert, T.M.

    1988-01-01

    In its simplest form, a geographic information system (GIS) may be viewed as a data base management system in which most of the data are spatially indexed, and upon which sets of procedures operate to answer queries about spatial entities represented in the data base. Utilization of artificial intelligence (AI) techniques can enhance greatly the capabilities of a GIS, particularly in handling very large, diverse data bases involved in the earth sciences. A KBGIS has been developed by the U.S. Geological Survey which incorporates AI techniques such as learning, expert systems, new data representation, and more. The system, which will be developed further and applied, is a prototype of the next generation of GIS's, an intelligent GIS, as well as an example of a general-purpose intelligent data handling system. The paper provides a description of KBGIS and its application, as well as the AI techniques involved. ?? 1988 International Association for Mathematical Geology.

  3. A strategy for rangeland management based on best available knowledge and information

    USDA-ARS?s Scientific Manuscript database

    Changes to rangeland systems are happening at spatial and temporal scales beyond the capability of our current knowledge and information systems. In this paper we look at how Web 2.0 tools such as wikis and crowd-sourcing and new technologies including mobile devices and massive online databases are...

  4. Web-based GIS for collaborative planning and public participation: an application to the strategic planning of wind farm sites.

    PubMed

    Simão, Ana; Densham, Paul J; Haklay, Mordechai Muki

    2009-05-01

    Spatial planning typically involves multiple stakeholders. To any specific planning problem, stakeholders often bring different levels of knowledge about the components of the problem and make assumptions, reflecting their individual experiences, that yield conflicting views about desirable planning outcomes. Consequently, stakeholders need to learn about the likely outcomes that result from their stated preferences; this learning can be supported through enhanced access to information, increased public participation in spatial decision-making and support for distributed collaboration amongst planners, stakeholders and the public. This paper presents a conceptual system framework for web-based GIS that supports public participation in collaborative planning. The framework combines an information area, a Multi-Criteria Spatial Decision Support System (MC-SDSS) and an argumentation map to support distributed and asynchronous collaboration in spatial planning. After analysing the novel aspects of this framework, the paper describes its implementation, as a proof of concept, in a system for Web-based Participatory Wind Energy Planning (WePWEP). Details are provided on the specific implementation of each of WePWEP's four tiers, including technical and structural aspects. Throughout the paper, particular emphasis is placed on the need to support user learning throughout the planning process.

  5. Selective 4D modelling framework for spatial-temporal land information management system

    NASA Astrophysics Data System (ADS)

    Doulamis, Anastasios; Soile, Sofia; Doulamis, Nikolaos; Chrisouli, Christina; Grammalidis, Nikos; Dimitropoulos, Kosmas; Manesis, Charalambos; Potsiou, Chryssy; Ioannidis, Charalabos

    2015-06-01

    This paper introduces a predictive (selective) 4D modelling framework where only the spatial 3D differences are modelled at the forthcoming time instances, while regions of no significant spatial-temporal alterations remain intact. To accomplish this, initially spatial-temporal analysis is applied between 3D digital models captured at different time instances. So, the creation of dynamic change history maps is made. Change history maps indicate spatial probabilities of regions needed further 3D modelling at forthcoming instances. Thus, change history maps are good examples for a predictive assessment, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 4D Land Information Management System (LIMS) is implemented using open interoperable standards based on the CityGML framework. CityGML allows the description of the semantic metadata information and the rights of the land resources. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 4D LIMS digital parcels and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics. An application is made to detect the change through time of a 3D block of plots in an urban area of Athens, Greece. Starting with an accurate 3D model of the buildings in 1983, a change history map is created using automated dense image matching on aerial photos of 2010. For both time instances meshes are created and through their comparison the changes are detected.

  6. Topographic controls on soil nutrient variations in a Silvopasture system

    USDA-ARS?s Scientific Manuscript database

    Topography plays a crucial role in the spatial distribution of nutrients in soils because of its influence on the flow and (re)distribution of water and energy in a landscape. Information on the spatial pattern of soil nutrient distribution would benefit management decisions to maximize crop yield a...

  7. Spatially offset Raman spectroscopy based on a line-scan hyperspectral Raman system

    USDA-ARS?s Scientific Manuscript database

    Spatially offset Raman spectroscopy (SORS) is a technique that can obtain subsurface layered information by collecting Raman spectra from a series of surface positions laterally offset from the excitation laser. The current methods of SORS measurement are typically either slow due to mechanical move...

  8. Spatially Explicit West Nile Virus Risk Modeling in Santa Clara County, CA

    USDA-ARS?s Scientific Manuscript database

    A geographic information systems model designed to identify regions of West Nile virus (WNV) transmission risk was tested and calibrated with data collected in Santa Clara County, California. American Crows that died from WNV infection in 2005, provided spatial and temporal ground truth. When the mo...

  9. Spatially explicit West Nile virus risk modeling in Santa Clara County, California

    USDA-ARS?s Scientific Manuscript database

    A previously created Geographic Information Systems model designed to identify regions of West Nile virus (WNV) transmission risk is tested and calibrated in Santa Clara County, California. American Crows that died from WNV infection in 2005 provide the spatial and temporal ground truth. Model param...

  10. Learning in Authentic Contexts: Projects Integrating Spatial Technologies and Fieldwork

    ERIC Educational Resources Information Center

    Huang, Kuo-Hung

    2011-01-01

    In recent years, professional practice has been an issue of concern in higher education. The purpose of this study is to design students' projects to facilitate collaborative learning in authentic contexts. Ten students majoring in Management Information Systems conducted fieldwork with spatial technologies to collect data and provided information…

  11. Multi-modal diffuse optical techniques for breast cancer neoadjuvant chemotherapy monitoring (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cochran, Jeffrey M.; Busch, David R.; Ban, Han Y.; Kavuri, Venkaiah C.; Schweiger, Martin J.; Arridge, Simon R.; Yodh, Arjun G.

    2017-02-01

    We present high spatial density, multi-modal, parallel-plate Diffuse Optical Tomography (DOT) imaging systems for the purpose of breast tumor detection. One hybrid instrument provides time domain (TD) and continuous wave (CW) DOT at 64 source fiber positions. The TD diffuse optical spectroscopy with PMT- detection produces low-resolution images of absolute tissue scattering and absorption while the spatially dense array of CCD-coupled detector fibers (108 detectors) provides higher-resolution CW images of relative tissue optical properties. Reconstruction of the tissue optical properties, along with total hemoglobin concentration and tissue oxygen saturation, is performed using the TOAST software suite. Comparison of the spatially-dense DOT images and MR images allows for a robust validation of DOT against an accepted clinical modality. Additionally, the structural information from co-registered MR images is used as a spatial prior to improve the quality of the functional optical images and provide more accurate quantification of the optical and hemodynamic properties of tumors. We also present an optical-only imaging system that provides frequency domain (FD) DOT at 209 source positions with full CCD detection and incorporates optical fringe projection profilometry to determine the breast boundary. This profilometry serves as a spatial constraint, improving the quality of the DOT reconstructions while retaining the benefits of an optical-only device. We present initial images from both human subjects and phantoms to display the utility of high spatial density data and multi-modal information in DOT reconstruction with the two systems.

  12. Geographic Information for Analysis of Highway Runoff-Quality Data on a National or Regional Scale in the Conterminous United States

    USGS Publications Warehouse

    Smieszek, Tomas W.; Granato, Gregory E.

    2000-01-01

    Spatial data are important for interpretation of water-quality information on a regional or national scale. Geographic information systems (GIS) facilitate interpretation and integration of spatial data. The geographic information and data compiled for the conterminous United States during the National Highway Runoff Water-Quality Data and Methodology Synthesis project is described in this document, which also includes information on the structure, file types, and the geographic information in the data files. This 'geodata' directory contains two subdirectories, labeled 'gisdata' and 'gisimage.' The 'gisdata' directory contains ArcInfo coverages, ArcInfo export files, shapefiles (used in ArcView), Spatial Data Transfer Standard Topological Vector Profile format files, and meta files in subdirectories organized by file type. The 'gisimage' directory contains the GIS data in common image-file formats. The spatial geodata includes two rain-zone region maps and a map of national ecosystems originally published by the U.S. Environmental Protection Agency; regional estimates of mean annual streamflow, and water hardness published by the Federal Highway Administration; and mean monthly temperature, mean annual precipitation, and mean monthly snowfall modified from data published by the National Climatic Data Center and made available to the public by the Oregon Climate Service at Oregon State University. These GIS files were compiled for qualitative spatial analysis of available data on a national and(or) regional scale and therefore should be considered as qualitative representations, not precise geographic location information.

  13. Toward critical spatial thinking in the social sciences and humanities.

    PubMed

    Goodchild, Michael F; Janelle, Donald G

    2010-02-01

    The integration of geographically referenced information into the conceptual frameworks and applied uses of the social sciences and humanities has been an ongoing process over the past few centuries. It has gained momentum in recent decades with advances in technologies for computation and visualization and with the arrival of new data sources. This article begins with an overview of this transition, and argues that the spatial integration of information resources and the cross-disciplinary sharing of analysis and representation methodologies are important forces for the integration of scientific and artistic expression, and that they draw on core concepts in spatial (and spatio-temporal) thinking. We do not suggest that this is akin to prior concepts of unified knowledge systems, but we do maintain that the boundaries to knowledge transfer are disintegrating and that our abilities in problem solving for purposes of artistic expression and scientific development are enhanced through spatial perspectives. Moreover, approaches to education at all levels must recognize the need to impart proficiency in the critical and efficient application of these fundamental spatial concepts, if students and researchers are to make use of expanding access to a broadening range of spatialized information and data processing technologies.

  14. Geo-spatial Informatics in International Public Health Nursing Education.

    PubMed

    Kerr, Madeleine J; Honey, Michelle L L; Krzyzanowski, Brittany

    2016-01-01

    This poster describes results of an undergraduate nursing informatics experience. Students applied geo-spatial methods to community assessments in two urban regions of New Zealand and the United States. Students used the Omaha System standardized language to code their observations during a brief community assessment activity and entered their data into a mapping program developed in Esri ArcGIS Online, a geographic information system. Results will be displayed in tables and maps to allow comparison among the communities. The next generation of nurses can employ geo-spatial informatics methods to contribute to innovative community assessment, planning and policy development.

  15. [Human body meridian spatial decision support system for clinical treatment and teaching of acupuncture and moxibustion].

    PubMed

    Wu, Dehua

    2016-01-01

    The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian.

  16. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  17. Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, G.; Lin, T.

    2013-12-01

    Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the potential assist in the NWP model.

  18. Role of Geographic Information System in Assessing Determinants of Cardiovascular Disease: An Experience From a Low- and Middle-Income Country.

    PubMed

    Valamparampil, Mathew Joseph; Mohan, Ananth; Jose, Chinu; Sadheesan, Deepthi Kottassery; Aby, Jemin Jose; Vasudevakaimal, Prasannakumar; Varghese, Sara; Surendrannair, Anish Tekkumkara; Ashokan, Achu Laila; Madhusoodhanan, Resmi Santhakumari; Ilyas, Insija Selene; Rajeevan, Amjith; Karthikeyan, Sreekanth Balakrishnan; Devadhas, Krishna Sulochana; Raghunath, Rajesh; Surendran, Sethulekshmi; Muraleedharanpillai, Harikrishnan; Nujum, Zinia Thajudeen

    2018-04-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the world. The determinants of CVD in an urban population using conventional and geographic information system techniques were attempted as a community-based census-type cross-sectional study in Kerala, India, among 1649 individuals residing in 452 households. Sociodemographic details, risk factor exposures, and self-reported disease prevalence were determined. Location of houses, wells from which subjects drew drinking water, and distances of the house from the outer road (proxy for air pollution) were mapped using differential global positioning system and pH of water samples determined. Prevalence of CVD was 5.8%. Significant predictors of CVD were male gender, diabetes mellitus, hypertension, and hypothyroidism. Statistically significant spatial association was found between CVD and groundwater pH. Geographic information system technology is useful in identification of spatial clustering and disease hotspots for designing preventive strategies targeting CVD.

  19. HIS Design: Big Data that Supports Hydrologic Modeling from Continental to Hillslope Scales

    NASA Astrophysics Data System (ADS)

    Rasmussen, T. C.; Deemy, J. B.; Younger, S. E.; Kirk, S. E.; Brockman, L. E.

    2016-12-01

    Analogous to Google Maps, hydrologic data, information, and knowledge resolve differently depending upon the spatial and temporal scales of interest. We show how a multi-scale hydrologic information system (HIS) can be designed and populated for a broad range of spatial (e.g., hillslope, local, regional, continental) and temporal (e.g., current, recent, historic, geologic) scales. Surface and subsurface hydrologic and transport processes are assumed to be scale-dependent, requiring unique governing equations and parameters at each scale. This robust and flexible framework is designed to meet the inventory, monitoring, and management needs of multiple federal agencies (i.e., Forest Service, National Park Service, Fish and Wildlife Service, National Wildlife Reserves). Multi-scale HIS examples are provided using Geographic Information Systems (GIS) for the Southeastern US.

  20. Geographic Information System (GIS) capabilities in traffic accident information management: a qualitative approach

    PubMed Central

    Ahmadi, Maryam; Valinejadi, Ali; Goodarzi, Afshin; Safari, Ameneh; Hemmat, Morteza; Majdabadi, Hesamedin Askari; Mohammadi, Ali

    2017-01-01

    Background Traffic accidents are one of the more important national and international issues, and their consequences are important for the political, economical, and social level in a country. Management of traffic accident information requires information systems with analytical and accessibility capabilities to spatial and descriptive data. Objective The aim of this study was to determine the capabilities of a Geographic Information System (GIS) in management of traffic accident information. Methods This qualitative cross-sectional study was performed in 2016. In the first step, GIS capabilities were identified via literature retrieved from the Internet and based on the included criteria. Review of the literature was performed until data saturation was reached; a form was used to extract the capabilities. In the second step, study population were hospital managers, police, emergency, statisticians, and IT experts in trauma, emergency and police centers. Sampling was purposive. Data was collected using a questionnaire based on the first step data; validity and reliability were determined by content validity and Cronbach’s alpha of 75%. Data was analyzed using the decision Delphi technique. Results GIS capabilities were identified in ten categories and 64 sub-categories. Import and process of spatial and descriptive data and so, analysis of this data were the most important capabilities of GIS in traffic accident information management. Conclusion Storing and retrieving of descriptive and spatial data, providing statistical analysis in table, chart and zoning format, management of bad structure issues, determining the cost effectiveness of the decisions and prioritizing their implementation were the most important capabilities of GIS which can be efficient in the management of traffic accident information. PMID:28848627

  1. Validating crash locations for quantitative spatial analysis: a GIS-based approach.

    PubMed

    Loo, Becky P Y

    2006-09-01

    In this paper, the spatial variables of the crash database in Hong Kong from 1993 to 2004 are validated. The proposed spatial data validation system makes use of three databases (the crash, road network and district board databases) and relies on GIS to carry out most of the validation steps so that the human resource required for manually checking the accuracy of the spatial data can be enormously reduced. With the GIS-based spatial data validation system, it was found that about 65-80% of the police crash records from 1993 to 2004 had correct road names and district board information. In 2004, the police crash database contained about 12.7% mistakes for road names and 9.7% mistakes for district boards. The situation was broadly comparable to the United Kingdom. However, the results also suggest that safety researchers should carefully validate spatial data in the crash database before scientific analysis.

  2. Spatial and Activities Models of Airport Based on GIS and Dynamic Model

    NASA Astrophysics Data System (ADS)

    Masri, R. M.; Purwaamijaya, I. M.

    2017-02-01

    The purpose of research were (1) a conceptual, functional model designed and implementation for spatial airports, (2) a causal, flow diagrams and mathematical equations made for airport activity, (3) obtained information on the conditions of space and activities at airports assessment, (4) the space and activities evaluation at airports based on national and international airport services standards, (5) options provided to improve the spatial and airport activities performance become the international standards airport. Descriptive method is used for the research. Husein Sastranegara Airport in Bandung, West Java, Indonesia was study location. The research was conducted on September 2015 to April 2016. A spatial analysis is used to obtain runway, taxiway and building airport geometric information. A system analysis is used to obtain the relationship between components in airports, dynamic simulation activity at airports and information on the results tables and graphs of dynamic model. Airport national and international standard could not be fulfilled by spatial and activity existing condition of Husein Sastranegara. Idea of re-location program is proposed as problem solving for constructing new airport which could be serving international air transportation.

  3. Connecting mathematics learning through spatial reasoning

    NASA Astrophysics Data System (ADS)

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-03-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new pathways for mathematics learning, pedagogy and curriculum. Novel analytical tools will map the unknown complex systems linking spatial and mathematical concepts. It will involve the design, implementation and evaluation of a Spatial Reasoning Mathematics Program (SRMP) in Grades 3 to 5. Benefits will be seen through development of critical spatial skills for students, increased teacher capability and informed policy and curriculum across STEM education.

  4. Application of information theory to the design of line-scan imaging systems

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Park, S. K.; Halyo, N.; Stallman, S.

    1981-01-01

    Information theory is used to formulate a single figure of merit for assessing the performance of line scan imaging systems as a function of their spatial response (point spread function or modulation transfer function), sensitivity, sampling and quantization intervals, and the statistical properties of a random radiance field. Computational results for the information density and efficiency (i.e., the ratio of information density to data density) are intuitively satisfying and compare well with experimental and theoretical results obtained by earlier investigators concerned with the performance of TV systems.

  5. Regional forest land cover characterisation using medium spatial resolution satellite data

    USGS Publications Warehouse

    Huang, Chengquan; Homer, Collin G.; Yang, Limin; Wulder, Michael A.; Franklin, Steven E.

    2003-01-01

    Increasing demands on forest resources require comprehensive, consistent and up-to-date information on those resources at spatial scales appropriate for management decision-making and for scientific analysis. While such information can be derived using coarse spatial resolution satellite data (e.g. Tucker et al. 1984; Zhu and Evans 1994; Cihlar et al. 1996; Cihlar et al., Chapter 12), many regional applications require more spatial and thematic details than can be derived by using coarse resolution imagery. High spatial resolution satellite data such as IKONOS and Quick Bird images (Aplin et al. 1997), though usable for deriving detailed forest information (Culvenor, Chapter 9), are currently not feasible for wall-to-wall regional applications because of extremely high data cost, huge data volume, and lack of contiguous coverage over large areas. Forest studies over large areas have often been accomplished using data acquired by intermediate spatial resolution sensor systems, including the Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+) of Landsat, the High Resolution Visible (HRV) of the Systeme Pour l'Observation de la Terre (SPOT), and the Linear Image Self-Scanner (LISS) of the Indian Remote Sensing satellite. These sensor systems are more appropriate for regional applications because they can routinely produce spatially contiguous data over large areas at relatively low cost, and can be used to derive a host of forest attributes (e.g. Cohen et al. 1995; Kimes et al. 1999; Cohen et al. 2001; Huang et al. 2001; Sugumaran 2001). Of the above intermediate spatial resolution satellites, Landsat is perhaps the most widely used in various types of land remote sensing applications, in part because it has provided more extensive spatial and temporal coverage of the globe than any other intermediate resolution satellite. Spatially contiguous Landsat data have been developed for many regions of the globe (e.g. Lunetta and Sturdevant 1993; Fuller et al. 1994b; Skole et al. 1997), and a circa 1990 Landsat image data set covering the entire land area of the globe has also been developed recently (Jones and Smith 2001). An acquisition strategy aimed at acquiring at least one cloud free image per year for the entire land area of the globe has been initiated for Landsat-7 (Arvidson et al. 2001). This will probably ensure the continued dominance of Landsat in the near future.

  6. Vestibular pathways involved in cognition

    PubMed Central

    Hitier, Martin; Besnard, Stephane; Smith, Paul F.

    2014-01-01

    Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the “vestibular cortical projection areas”, defined as the cortical areas activated by vestibular stimulation, has dramatically increased over the last several years from both anatomical and functional points of view. Four major pathways have been hypothesized to transmit vestibular information to the vestibular cortex: (1) the vestibulo-thalamo-cortical pathway, which probably transmits spatial information about the environment via the parietal, entorhinal and perirhinal cortices to the hippocampus and is associated with spatial representation and self-versus object motion distinctions; (2) the pathway from the dorsal tegmental nucleus via the lateral mammillary nucleus, the anterodorsal nucleus of the thalamus to the entorhinal cortex, which transmits information for estimations of head direction; (3) the pathway via the nucleus reticularis pontis oralis, the supramammillary nucleus and the medial septum to the hippocampus, which transmits information supporting hippocampal theta rhythm and memory; and (4) a possible pathway via the cerebellum, and the ventral lateral nucleus of the thalamus (perhaps to the parietal cortex), which transmits information for spatial learning. Finally a new pathway is hypothesized via the basal ganglia, potentially involved in spatial learning and spatial memory. From these pathways, progressively emerges the anatomical network of vestibular cognition. PMID:25100954

  7. Development of an oil spill information system combining remote sensing data and surveillance metadata

    NASA Astrophysics Data System (ADS)

    Tufte, Lars; Trieschmann, Olaf; Carreau, Philippe; Hunsaenger, Thomas; Clayton, Peter J. S.; Barjenbruch, Ulrich

    2004-02-01

    The detection of accidentally or illegal marine oil discharges in the German territorial waters of the North Sea and Baltic Sea is of great importance for combating of oil spills and protection of the marine ecosystem. Therefore the German Federal Ministry of Transport set up an airborne surveillance system consisting of two Dornier DO 228-212 aircrafts equipped with a Side-Looking Airborne Radar (SLAR), a IR/UV sensor, a Microwave Radiometer (MWR) for quantification and a Laser-Flurosensor (LFS) for classification purposes of the oil spills. The flight parameters and the remote sensing data are stored in a database during the flight. A Pollution Observation Log is completed by the operator consisting of information about the detected oil spill (e.g. position, length, width) and several other information about the flight (e.g. name of navigator, name of observer). The objective was to develop an oil spill information system which integrates the described data, metadata and includes visualization and spatial analysis capabilities. The metadata are essential for further statistical analysis in spatial and temporal domains of oil spill occurrences and of the surveillance itself. It should facilitate the communication and distribution of metadata between the administrative bodies and partners of the German oil spill surveillance system. A connection between a GIS and the database allows to use the powerful visualization and spatial analysis functionality of the GIS in conjunction with the oil spill database.

  8. Spatial Paradigm for Information Retrieval and Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The SPIRE system consists of software for visual analysis of primarily text based information sources. This technology enables the content analysis of text documents without reading all the documents. It employs several algorithms for text and word proximity analysis. It identifies the key themes within the text documents. From this analysis, it projects the results onto a visual spatial proximity display (Galaxies or Themescape) where items (documents and/or themes) visually close to each other are known to have content which is close to each other. Innovative interaction techniques then allow for dynamic visual analysis of large text based information spaces.

  9. SPIRE1.03. Spatial Paradigm for Information Retrieval and Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, K.J.; Bohn, S.; Crow, V.

    The SPIRE system consists of software for visual analysis of primarily text based information sources. This technology enables the content analysis of text documents without reading all the documents. It employs several algorithms for text and word proximity analysis. It identifies the key themes within the text documents. From this analysis, it projects the results onto a visual spatial proximity display (Galaxies or Themescape) where items (documents and/or themes) visually close to each other are known to have content which is close to each other. Innovative interaction techniques then allow for dynamic visual analysis of large text based information spaces.

  10. GIS and Geodatabase Disaster Risk for Spatial Planning

    NASA Astrophysics Data System (ADS)

    Hendriawan Nur, Wawan; Kumoro, Yugo; Susilowati, Yuliana

    2018-02-01

    The spatial planning in Indonesia needs to consider the information on the potential disaster. That is because disaster is a serious and detrimental problem that often occurs and causes casualties in some areas in Indonesia as well as inhibits the development. Various models and research were developed to calculate disaster risk assessment. GIS is a system for assembling, storing, analyzing, and displaying geographically referenced disaster. The information can be collaborated with geodatabases to model and to estimate disaster risk in an automated way. It also offers the possibility to customize most of the parameters used in the models. This paper describes a framework which can improve GIS and Geodatabase for the vulnerability, capacity or disaster risk assessment to support the spatial planning activities so they can be more adaptable. By using this framework, GIS application can be used in any location by adjusting variables or calculation methods without changing or rebuilding system from scratch.

  11. UTILIZATION OF GEOGRAPHIC INFORMATION SYSTEMS TECHNOLOGY IN THE ASSESSMENT OF REGIONAL GROUND-WATER QUALITY.

    USGS Publications Warehouse

    Nebert, Douglas; Anderson, Dean

    1987-01-01

    The U. S. Geological Survey (USGS) in cooperation with the U. S. Environmental Protection Agency Office of Pesticide Programs and several State agencies in Oregon has prepared a digital spatial database at 1:500,000 scale to be used as a basis for evaluating the potential for ground-water contamination by pesticides and other agricultural chemicals. Geographic information system (GIS) software was used to assemble, analyze, and manage spatial and tabular environmental data in support of this project. Physical processes were interpreted relative to published spatial data and an integrated database to support the appraisal of regional ground-water contamination was constructed. Ground-water sampling results were reviewed relative to the environmental factors present in several agricultural areas to develop an empirical knowledge base which could be used to assist in the selection of future sampling or study areas.

  12. The role of spatial frequency information for ERP components sensitive to faces and emotional facial expression.

    PubMed

    Holmes, Amanda; Winston, Joel S; Eimer, Martin

    2005-10-01

    To investigate the impact of spatial frequency on emotional facial expression analysis, ERPs were recorded in response to low spatial frequency (LSF), high spatial frequency (HSF), and unfiltered broad spatial frequency (BSF) faces with fearful or neutral expressions, houses, and chairs. In line with previous findings, BSF fearful facial expressions elicited a greater frontal positivity than BSF neutral facial expressions, starting at about 150 ms after stimulus onset. In contrast, this emotional expression effect was absent for HSF and LSF faces. Given that some brain regions involved in emotion processing, such as amygdala and connected structures, are selectively tuned to LSF visual inputs, these data suggest that ERP effects of emotional facial expression do not directly reflect activity in these regions. It is argued that higher order neocortical brain systems are involved in the generation of emotion-specific waveform modulations. The face-sensitive N170 component was neither affected by emotional facial expression nor by spatial frequency information.

  13. Integrationof Remote Sensing and Geographic information system in Ground Water Quality Assessment and Management

    NASA Astrophysics Data System (ADS)

    Shakak, N.

    2015-04-01

    Spatial variations in ground water quality in the Khartoum state, Sudan, have been studied using geographic information system (GIS) and remote sensing technique. Gegraphical informtion system a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground water quality information. Khartoum landsat mosac image aquired in 2013was used, Arc/Gis software applied to extract the boundary of the study area, the image was classified to create land use/land cover map. The land use map,geological and soil map are used for correlation between land use , geological formations, and soil types to understand the source of natural pollution that can lower the ground water quality. For this study, the global positioning system (GPS), used in the field to identify the borehole location in a three dimentional coordinate (Latitude, longitude, and altitude), water samples were collected from 156 borehole wells, and analyzed for physico-chemical parameters like electrical conductivity, Total dissolved solid,Chloride, Nitrate, Sodium, Magnisium, Calcium,and Flouride, using standard techniques in the laboratory and compared with the standards.The ground water quality maps of the entire study area have been prepared using spatial interpolation technique for all the above parameters.then the created maps used to visualize, analyze, and understand the relationship among the measured points. Mapping was coded for potable zones, non-potable zones in the study area, in terms of water quality sutability for drinking water and sutability for irrigation. In general satellite remote sensing in conjunction with geographical information system (GIS) offers great potential for water resource development and management.

  14. Spatial analysis and characteristics of pig farming in Thailand.

    PubMed

    Thanapongtharm, Weerapong; Linard, Catherine; Chinson, Pornpiroon; Kasemsuwan, Suwicha; Visser, Marjolein; Gaughan, Andrea E; Epprech, Michael; Robinson, Timothy P; Gilbert, Marius

    2016-10-06

    In Thailand, pig production intensified significantly during the last decade, with many economic, epidemiological and environmental implications. Strategies toward more sustainable future developments are currently investigated, and these could be informed by a detailed assessment of the main trends in the pig sector, and on how different production systems are geographically distributed. This study had two main objectives. First, we aimed to describe the main trends and geographic patterns of pig production systems in Thailand in terms of pig type (native, breeding, and fattening pigs), farm scales (smallholder and large-scale farming systems) and type of farming systems (farrow-to-finish, nursery, and finishing systems) based on a very detailed 2010 census. Second, we aimed to study the statistical spatial association between these different types of pig farming distribution and a set of spatial variables describing access to feed and markets. Over the last decades, pig population gradually increased, with a continuously increasing number of pigs per holder, suggesting a continuing intensification of the sector. The different pig-production systems showed very contrasted geographical distributions. The spatial distribution of large-scale pig farms corresponds with that of commercial pig breeds, and spatial analysis conducted using Random Forest distribution models indicated that these were concentrated in lowland urban or peri-urban areas, close to means of transportation, facilitating supply to major markets such as provincial capitals and the Bangkok Metropolitan region. Conversely the smallholders were distributed throughout the country, with higher densities located in highland, remote, and rural areas, where they supply local rural markets. A limitation of the study was that pig farming systems were defined from the number of animals per farm, resulting in their possible misclassification, but this should have a limited impact on the main patterns revealed by the analysis. The very contrasted distribution of different pig production systems present opportunities for future regionalization of pig production. More specifically, the detailed geographical analysis of the different production systems will be used to spatially-inform planning decisions for pig farming accounting for the specific health, environment and economical implications of the different pig production systems.

  15. Strategic Resource Allocation in the Human Brain Supports Cognitive Coordination of Object and Spatial Working Memory

    PubMed Central

    Jackson, Margaret C; Morgan, Helen M; Shapiro, Kimron L; Mohr, Harald; Linden, David EJ

    2011-01-01

    The ability to integrate different types of information (e.g., object identity and spatial orientation) and maintain or manipulate them concurrently in working memory (WM) facilitates the flow of ongoing tasks and is essential for normal human cognition. Research shows that object and spatial information is maintained and manipulated in WM via separate pathways in the brain (object/ventral versus spatial/dorsal). How does the human brain coordinate the activity of different specialized systems to conjoin different types of information? Here we used functional magnetic resonance imaging to investigate conjunction- versus single-task manipulation of object (compute average color blend) and spatial (compute intermediate angle) information in WM. Object WM was associated with ventral (inferior frontal gyrus, occipital cortex), and spatial WM with dorsal (parietal cortex, superior frontal, and temporal sulci) regions. Conjoined object/spatial WM resulted in intermediate activity in these specialized areas, but greater activity in different prefrontal and parietal areas. Unique to our study, we found lower temporo-occipital activity and greater deactivation in temporal and medial prefrontal cortices for conjunction- versus single-tasks. Using structural equation modeling, we derived a conjunction-task connectivity model that comprises a frontoparietal network with a bidirectional DLPFC-VLPFC connection, and a direct parietal-extrastriate pathway. We suggest that these activation/deactivation patterns reflect efficient resource allocation throughout the brain and propose a new extended version of the biased competition model of WM. Hum Brain Mapp, 2011. © 2010 Wiley-Liss, Inc. PMID:20715083

  16. Coherent visualization of spatial data adapted to roles, tasks, and hardware

    NASA Astrophysics Data System (ADS)

    Wagner, Boris; Peinsipp-Byma, Elisabeth

    2012-06-01

    Modern crisis management requires that users with different roles and computer environments have to deal with a high volume of various data from different sources. For this purpose, Fraunhofer IOSB has developed a geographic information system (GIS) which supports the user depending on available data and the task he has to solve. The system provides merging and visualization of spatial data from various civilian and military sources. It supports the most common spatial data standards (OGC, STANAG) as well as some proprietary interfaces, regardless if these are filebased or database-based. To set the visualization rules generic Styled Layer Descriptors (SLDs) are used, which are an Open Geospatial Consortium (OGC) standard. SLDs allow specifying which data are shown, when and how. The defined SLDs consider the users' roles and task requirements. In addition it is possible to use different displays and the visualization also adapts to the individual resolution of the display. Too high or low information density is avoided. Also, our system enables users with different roles to work together simultaneously using the same data base. Every user is provided with the appropriate and coherent spatial data depending on his current task. These so refined spatial data are served via the OGC services Web Map Service (WMS: server-side rendered raster maps), or the Web Map Tile Service - (WMTS: pre-rendered and cached raster maps).

  17. The topology of geology 1: Topological analysis

    NASA Astrophysics Data System (ADS)

    Thiele, Samuel T.; Jessell, Mark W.; Lindsay, Mark; Ogarko, Vitaliy; Wellmann, J. Florian; Pakyuz-Charrier, Evren

    2016-10-01

    Topology has been used to characterise and quantify the properties of complex systems in a diverse range of scientific domains. This study explores the concept and applications of topological analysis in geology. We have developed an automatic system for extracting first order 2D topological information from geological maps, and 3D topological information from models built with the Noddy kinematic modelling system, and equivalent analyses should be possible for other implicit modelling systems. A method is presented for describing the spatial and temporal topology of geological models using a set of adjacency relationships that can be expressed as a topology network, thematic adjacency matrix or hive diagram. We define three types of spatial topology (cellular, structural and lithological) that allow us to analyse different aspects of the geology, and then apply them to investigate the geology of the Hamersley Basin, Western Australia.

  18. Development of a forestry government agency enterprise GIS system: a disconnected editing approach

    NASA Astrophysics Data System (ADS)

    Zhu, Jin; Barber, Brad L.

    2008-10-01

    The Texas Forest Service (TFS) has developed a geographic information system (GIS) for use by agency personnel in central Texas for managing oak wilt suppression and other landowner assistance programs. This Enterprise GIS system was designed to support multiple concurrent users accessing shared information resources. The disconnected editing approach was adopted in this system to avoid the overhead of maintaining an active connection between TFS central Texas field offices and headquarters since most field offices are operating with commercially provided Internet service. The GIS system entails maintaining a personal geodatabase on each local field office computer. Spatial data from the field is periodically up-loaded into a central master geodatabase stored in a Microsoft SQL Server at the TFS headquarters in College Station through the ESRI Spatial Database Engine (SDE). This GIS allows users to work off-line when editing data and requires connecting to the central geodatabase only when needed.

  19. Mapping soil landscape as spatial continua: The Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Zhu, A.-Xing

    2000-03-01

    A neural network approach was developed to populate a soil similarity model that was designed to represent soil landscape as spatial continua for hydroecological modeling at watersheds of mesoscale size. The approach employs multilayer feed forward neural networks. The input to the network was data on a set of soil formative environmental factors; the output from the network was a set of similarity values to a set of prescribed soil classes. The network was trained using a conjugate gradient algorithm in combination with a simulated annealing technique to learn the relationships between a set of prescribed soils and their environmental factors. Once trained, the network was used to compute for every location in an area the similarity values of the soil to the set of prescribed soil classes. The similarity values were then used to produce detailed soil spatial information. The approach also included a Geographic Information System procedure for selecting representative training and testing samples and a process of determining the network internal structure. The approach was applied to soil mapping in a watershed, the Lubrecht Experimental Forest, in western Montana. The case study showed that the soil spatial information derived using the neural network approach reveals much greater spatial detail and has a higher quality than that derived from the conventional soil map. Implications of this detailed soil spatial information for hydroecological modeling at the watershed scale are also discussed.

  20. Information science team

    NASA Technical Reports Server (NTRS)

    Billingsley, F.

    1982-01-01

    Concerns are expressed about the data handling aspects of system design and about enabling technology for data handling and data analysis. The status, contributing factors, critical issues, and recommendations for investigations are listed for data handling, rectification and registration, and information extraction. Potential supports to individual P.I., research tasks, systematic data system design, and to system operation. The need for an airborne spectrometer class instrument for fundamental research in high spectral and spatial resolution is indicated. Geographic information system formatting and labelling techniques, very large scale integration, and methods for providing multitype data sets must also be developed.

  1. Pilot Weather Advisor System

    NASA Technical Reports Server (NTRS)

    Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.

    2006-01-01

    The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand

  2. Vgi Based Urban Public Transport

    NASA Astrophysics Data System (ADS)

    Teymurian, F.; Alesheikh, A. A.; Alimohammadi, A.; Sadeghi-Niaraki, A.

    2013-09-01

    Recent advances in information technology have made geographic information system (GIS) a powerful and affordable tool for planning and decision making in various fields such as the public transportation. These technologies such as the social network (e.g. face-book, twitter), new technologies such as ubiquitous, mobile, Web 2.0, geo tagging and RFID can help to create better shapes and forms of the communication and geo-collaboration for public. By using these, user-generated content and spatial information can be easily and quickly produced and shared in a dynamic, interactive, multimedia and distributed environment. The concept of volunteered geographic information (VGI) has been introduced by the transaction from consultation to content interaction. VGI describes any type of content that has a geographic element and has been voluntarily collected. In other words, ordinary users; without a professional training, can participate in generating and using the spatial information. As a result, the gaps between the producers and users of GIS and spatial information, has been considerably reduced. Public transportation is one of the most important elements of the transportation system. Rapid growth of the cities has resulted in high increase of demand for the public transportation which created new challenges. Improvement of the desirability of public transportation can increase its efficiency, reduction of the environmental pollution (such as air and noise pollution), traffic problems, and fuel consumption. Hence, development of an urban public transportation system which is responsive to citizen's need and motivates them to use public transportation system is one of the most important objectives and issues that urban planners and designers are concerned about. One solution to achieve this, goal is to develop public transportation system by assistance from the system users. According to approach, users are considered as the valuable resources, because people who are in constant contact with the system can have detailed and updated information about the problems, solutions and they are affected by the related implemented policies. Thus user involvement is an essential part in public transport decision making process. Although GIS in transportation (GIS-T) has been used for data collection, spatial analysis, and spatial modeling, due to recent promotions, GIS-T is moving towards the use of capabilities of VGI to user-centric services. The main goals of this paper are two as follows: First is to survey and review the key concepts of the geo-collaboration, to introduce and present fields to utilizing the VGI in the public transportation system to improve the performance of that system. The Second goal is to propose a VGI-based public transport conceptual framework. in this paper in the first part capabilities of VGI is explored, and areas of public transport that can utilize the public involvement is assessed and classified. Then, by surveying the related works in this context, a classification based on the models of participation is provided. Finally, a VGI-based conceptual framework for organizing a public participation for performance measurement of urban public transport for Tehran city is proposed. Results of this paper show that utilizing VGI presents an efficient solution for public transport problems.

  3. Introduction of Geographical Information Systems (GIS) in Technical University Education in Ghana: Challenges and the Way Forward

    ERIC Educational Resources Information Center

    Acquah, Prince C.; Asamoah, Jack N.; Konadu, Daniel D.

    2017-01-01

    Geographic Information System (GIS) continue to play very important role in improving spatial thinking skills of graduates from higher educational institutions. However, teaching and learning of GIS at the technical university level in Ghana remains very limited due to some implementation challenges. This paper reviews the implementation of GIS in…

  4. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Treesearch

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  5. Parallelization of a spatial random field characterization process using the Method of Anchored Distributions and the HTCondor high throughput computing system

    NASA Astrophysics Data System (ADS)

    Osorio-Murillo, C. A.; Over, M. W.; Frystacky, H.; Ames, D. P.; Rubin, Y.

    2013-12-01

    A new software application called MAD# has been coupled with the HTCondor high throughput computing system to aid scientists and educators with the characterization of spatial random fields and enable understanding the spatial distribution of parameters used in hydrogeologic and related modeling. MAD# is an open source desktop software application used to characterize spatial random fields using direct and indirect information through Bayesian inverse modeling technique called the Method of Anchored Distributions (MAD). MAD relates indirect information with a target spatial random field via a forward simulation model. MAD# executes inverse process running the forward model multiple times to transfer information from indirect information to the target variable. MAD# uses two parallelization profiles according to computational resources available: one computer with multiple cores and multiple computers - multiple cores through HTCondor. HTCondor is a system that manages a cluster of desktop computers for submits serial or parallel jobs using scheduling policies, resources monitoring, job queuing mechanism. This poster will show how MAD# reduces the time execution of the characterization of random fields using these two parallel approaches in different case studies. A test of the approach was conducted using 1D problem with 400 cells to characterize saturated conductivity, residual water content, and shape parameters of the Mualem-van Genuchten model in four materials via the HYDRUS model. The number of simulations evaluated in the inversion was 10 million. Using the one computer approach (eight cores) were evaluated 100,000 simulations in 12 hours (10 million - 1200 hours approximately). In the evaluation on HTCondor, 32 desktop computers (132 cores) were used, with a processing time of 60 hours non-continuous in five days. HTCondor reduced the processing time for uncertainty characterization by a factor of 20 (1200 hours reduced to 60 hours.)

  6. GIS based solid waste management information system for Nagpur, India.

    PubMed

    Vijay, Ritesh; Jain, Preeti; Sharma, N; Bhattacharyya, J K; Vaidya, A N; Sohony, R A

    2013-01-01

    Solid waste management is one of the major problems of today's world and needs to be addressed by proper utilization of technologies and design of effective, flexible and structured information system. Therefore, the objective of this paper was to design and develop a GIS based solid waste management information system as a decision making and planning tool for regularities and municipal authorities. The system integrates geo-spatial features of the city and database of existing solid waste management. GIS based information system facilitates modules of visualization, query interface, statistical analysis, report generation and database modification. It also provides modules like solid waste estimation, collection, transportation and disposal details. The information system is user-friendly, standalone and platform independent.

  7. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN.

    PubMed

    Sen, Alper; Gümüsay, M Umit; Kavas, Aktül; Bulucu, Umut

    2008-09-25

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.

  8. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN

    PubMed Central

    Şen, Alper; Gümüşay, M. Ümit; Kavas, Aktül; Bulucu, Umut

    2008-01-01

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN. PMID:27873854

  9. A spatial model to aggregate point-source and nonpoint-source water-quality data for large areas

    USGS Publications Warehouse

    White, D.A.; Smith, R.A.; Price, C.V.; Alexander, R.B.; Robinson, K.W.

    1992-01-01

    More objective and consistent methods are needed to assess water quality for large areas. A spatial model, one that capitalizes on the topologic relationships among spatial entities, to aggregate pollution sources from upstream drainage areas is described that can be implemented on land surfaces having heterogeneous water-pollution effects. An infrastructure of stream networks and drainage basins, derived from 1:250,000-scale digital-elevation models, define the hydrologic system in this spatial model. The spatial relationships between point- and nonpoint pollution sources and measurement locations are referenced to the hydrologic infrastructure with the aid of a geographic information system. A maximum-branching algorithm has been developed to simulate the effects of distance from a pollutant source to an arbitrary downstream location, a function traditionally employed in deterministic water quality models. ?? 1992.

  10. On the Role of Working Memory in Spatial Contextual Cueing

    ERIC Educational Resources Information Center

    Travis, Susan L.; Mattingley, Jason B.; Dux, Paul E.

    2013-01-01

    The human visual system receives more information than can be consciously processed. To overcome this capacity limit, we employ attentional mechanisms to prioritize task-relevant (target) information over less relevant (distractor) information. Regularities in the environment can facilitate the allocation of attention, as demonstrated by the…

  11. Site-specific nutrient management systems

    USDA-ARS?s Scientific Manuscript database

    Site-specific nutrient management systems were created to manage for spatial and temporal variability in biophysical factors that determine the availability and demand of crop nutrients. These systems differ among geographical regions in the information utilized and way they operate to accomplish th...

  12. Navigating Monogamy: Nonapeptide Sensitivity in a Memory Neural Circuit May Shape Social Behavior and Mating Decisions

    PubMed Central

    Ophir, Alexander G.

    2017-01-01

    The role of memory in mating systems is often neglected despite the fact that most mating systems are defined in part by how animals use space. Monogamy, for example, is usually characterized by affiliative (e.g., pairbonding) and defensive (e.g., mate guarding) behaviors, but a high degree of spatial overlap in home range use is the easiest defining feature of monogamous animals in the wild. The nonapeptides vasopressin and oxytocin have been the focus of much attention for their importance in modulating social behavior, however this work has largely overshadowed their roles in learning and memory. To date, the understanding of memory systems and mechanisms governing social behavior have progressed relatively independently. Bridging these two areas will provide a deeper appreciation for understanding behavior, and in particular the mechanisms that mediate reproductive decision-making. Here, I argue that the ability to mate effectively as monogamous individuals is linked to the ability to track conspecifics in space. I discuss the connectivity across some well-known social and spatial memory nuclei, and propose that the nonapeptide receptors within these structures form a putative “socio-spatial memory neural circuit.” This purported circuit may function to integrate social and spatial information to shape mating decisions in a context-dependent fashion. The lateral septum and/or the nucleus accumbens, and neuromodulation therein, may act as an intermediary to relate socio-spatial information with social behavior. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating mating tactics is crucial to fully appreciate the suite of factors driving reproductive decisions and social decision-making. PMID:28744194

  13. Multicriteria decision model for retrofitting existing buildings

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, B.

    2003-04-01

    In this paper a model to decide which buildings from an urban area should be retrofitted is presented. The model has been cast into existing ones by choosing the decision rule, criterion weighting and decision support system types most suitable for the spatial problem of reducing earthquake risk in urban areas, considering existing spatial multiatributive and multiobjective decision methods and especially collaborative issues. Due to the participative character of the group decision problem "retrofitting existing buildings" the decision making model is based on interactivity. Buildings have been modeled following the criteria of spatial decision support systems. This includes identifying the corresponding spatial elements of buildings according to the information needs of actors from different sphaeres like architects, construction engineers and economists. The decision model aims to facilitate collaboration between this actors. The way of setting priorities interactivelly will be shown, by detailing the two phases: judgemental and computational, in this case site analysis, collection and evaluation of the unmodified data and converting survey data to information with computational methods using additional expert support. Buildings have been divided into spatial elements which are characteristic for the survey, present typical damages in case of an earthquake and are decisive for a better seismic behaviour in case of retrofitting. The paper describes the architectural and engineering characteristics as well as the structural damage for constuctions of different building ages on the example of building types in Bucharest, Romania in compressible and interdependent charts, based on field observation, reports from the 1977 earthquake and detailed studies made by the author together with a local engineer for the EERI Web Housing Encyclopedia. On this base criteria for setting priorities flow into the expert information contained in the system.

  14. A SOA-based approach to geographical data sharing

    NASA Astrophysics Data System (ADS)

    Li, Zonghua; Peng, Mingjun; Fan, Wei

    2009-10-01

    In the last few years, large volumes of spatial data have been available in different government departments in China, but these data are mainly used within these departments. With the e-government project initiated, spatial data sharing become more and more necessary. Currently, the Web has been used not only for document searching but also for the provision and use of services, known as Web services, which are published in a directory and may be automatically discovered by software agents. Particularly in the spatial domain, the possibility of accessing these large spatial datasets via Web services has motivated research into the new field of Spatial Data Infrastructure (SDI) implemented using service-oriented architecture. In this paper a Service-Oriented Architecture (SOA) based Geographical Information Systems (GIS) is proposed, and a prototype system is deployed based on Open Geospatial Consortium (OGC) standard in Wuhan, China, thus that all the departments authorized can access the spatial data within the government intranet, and also these spatial data can be easily integrated into kinds of applications.

  15. National spatial data infrastructure - coming together of GIS and EO in India

    NASA Astrophysics Data System (ADS)

    Rao, Mukund; Pandey, Amitabha; Ahuja, A. K.; Ramamurthy, V. S.; Kasturirangan, K.

    2002-07-01

    A new wave of technological innovation is allowing us to capture, store, process and display an unprecedented amount of geographical and spatial information about Society and a wide variety of environmental and cultural phenomena. Much of this information is "spatial" - that is, it refers to a coordinate system and is representable in map form. Current and accurate spatial data must be readily available to contribute to local, state and national development and contribute to economic growth, environmental quality and stability, and social progress. India has, over the past years, produced a rich "base" of map information through systematic topographic surveys, geological surveys, soil surveys, cadastral surveys, various natural resources inventory programmes and the use of the remote sensing images. Further, with the availability of precision, high-resolution satellite images, data enabling the organisation of GIS, combined with the Global Positioning System (GPS), the accuracy and information content of these spatial datasets or maps is extremely high. Encapsulating these maps and images into a National Spatial Data Infrastructure (NSDI) is the need of the hour and the emphasis has to be on information transparency and sharing, with the recognition that spatial information is a national resource and citizens, society, private enterprise and government have a right to access it, appropriately. Only through common conventions and technical agreements, standards, metadata definitions, network and access protocols will it be easily possible for the NSDI to come into existence. India has now a NSDI strategy and the "NSDI Strategy and Action Plan" report has been prepared and is being opened up to a national debate. The first steps have been taken but the end-goal is farther away but in sight now. While Government must provide the lead, private enterprise, NGOs and academia have a major role to play in making the NSDI a reality. NSDI will require for coming together of various "groups" and harmonizing their efforts in making this national endeavor a success. The paper discusses how the convergence of technologies is being strategised in NSDI - specifically of EO images and GIS technologies and how the nation would benefit from access to these datasets. The paper also discusses and illustrates with specific examples the techniques being developed and how the NSDI would support development efforts on the country.

  16. Commanding the Direction of Passive Whole-Body Rotations Facilitates Egocentric Spatial Updating

    ERIC Educational Resources Information Center

    Fery, Yves-Andre; Magnac, Richard; Israel, Isabelle

    2004-01-01

    In conditions of slow passive transport without vision, even tenuous inertial signals from semi-circular canals and the haptic-kinaesthetic system should provide information about changes relative to the environment provided that it is possible to command the direction of the body's movements voluntarily. Without such control, spatial updating…

  17. Research in Review: Building Foundations for Spatial Literacy in Early Childhood

    ERIC Educational Resources Information Center

    Golbeck, Susan L.

    2005-01-01

    Words are only one way of symbolizing ideas. Numbers, pictures, graphs, maps, diagrams, photographs, and other means are also used to convey information. Researchers refer to notational systems such as graphs, diagrams, and maps as "inscriptions." Inscriptions are tools that help people to perceive and to talk about spatial worlds. Spatial…

  18. Spatial Citizenship Education and Digital Geomedia: Composing Competences for Teacher Education and Training

    ERIC Educational Resources Information Center

    Schulze, Uwe; Gryl, Inga; Kanwischer, Detlef

    2015-01-01

    Based on the idea of Spatial Citizenship, which endeavours to promote individuals' maturity and participation in the geospatial society, we focus on teachers' competence in the field of Geographic Information Systems (GIS) teaching and learning. By employing methods of qualitative social research, we have determined the dimensions and structures…

  19. ArcAtlas in the Classroom: Pattern Identification, Description, and Explanation

    ERIC Educational Resources Information Center

    DeMers, Michael N.; Vincent, Jeffrey S.

    2007-01-01

    The use of geographic information systems (GIS) in the classroom provides a robust and effective method of teaching the primary spatial skills of identification, description, and explanation of spatial pattern. A major handicap for the development of GIS-based learning experiences, especially for non-GIS specialist educators, is the availability…

  20. A study of spatial data management and analysis systems

    NASA Technical Reports Server (NTRS)

    Christopher, Clyde; Galle, Richard

    1989-01-01

    The Earth Resources Laboratory of the NASA Stennis Space Center is a center of space related technology for Earth observations. It has assumed the task, in a joint effort with Jackson State University, to reach out to the science community and acquire information pertaining to characteristics of spatially oriented data processing.

  1. Simulating spatial and temporal context of forest management using hypothetical landscapes

    Treesearch

    Eric J. Gustafson; Thomas R. Crow

    1998-01-01

    Spatially explicit models that combine remote sensing with geographic information systems (GIS) offer great promise to land managers because they consider the arrangement of landscape elements in time and space. Their visual and geographic nature facilitate the comparison of alternative landscape designs. Among various activities associated with forest management,...

  2. Landsat's role in ecological applications of remote sensing.

    Treesearch

    Warren B. Cohen; Samuel N. Goward

    2004-01-01

    Remote sensing, geographic information systems, and modeling have combined to produce a virtual explosion of growth in ecological investigations and applications that are explicitly spatial and temporal. Of all remotely sensed data, those acquired by landsat sensors have played the most pivotal role in spatial and temporal scaling. Modern terrestrial ecology relies on...

  3. Forest Ecosystem Analysis Using a GIS

    Treesearch

    S.G. McNulty; W.T. Swank

    1996-01-01

    Forest ecosystem studies have expanded spatially in recent years to address large scale environmental issues. We are using a geographic information system (GIS) to understand and integrate forest processes at landscape to regional spatial scales. This paper presents three diverse research studies using a GIS. First, we used a GIS to develop a landscape scale model to...

  4. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M [Albuquerque, NM; Wehlburg, Christine M [Albuquerque, NM; Wehlburg, Joseph C [Albuquerque, NM; Smith, Mark W [Albuquerque, NM; Smith, Jody L [Albuquerque, NM

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  5. Assessing wildfire risks at multiple spatial scales

    Treesearch

    Justin Fitch

    2008-01-01

    In continuation of the efforts to advance wildfire science and develop tools for wildland fire managers, a spatial wildfire risk assessment was carried out using Classification and Regression Tree analysis (CART) and Geographic Information Systems (GIS). The analysis was performed at two scales. The small-scale assessment covered the entire state of New Mexico, while...

  6. Distance Education and Spatial Citizenship in Africa--Challenges and Prospects

    ERIC Educational Resources Information Center

    Kanwischer, Detlef; Quennet, Fabienne

    2012-01-01

    The relevance of GIS for sustainable development in Africa is undisputed. One web 2.0 application which plays a particularly strong role within local governance structures in Africa is PGIS (Participatory Geographical Information System). In fact, Spatial Citizenship education is the basis for the empowerment of the indigenous capacity for using…

  7. [Spatial distribution characteristics of China cotton fiber quality and climatic factors based on GIS].

    PubMed

    Xiong, Zong-Wei; Gu, Sheng-Hao; Mao, Li-Li; Wang, Xue-Jiao; Zhang, Li-Zhen; Zhou, Zhi-Guo

    2012-12-01

    By using geographical information system (GIS), the cotton fiber quality data from 2005 to 2011 and the daily meteorological data from 1981 to 2010 at 82 sites (counties and cities) in China major cotton production regions were collected and treated with spatial interpolation. The spatial information system of cotton fiber quality in China major cotton production regions was established based on GIS, and the spatial distribution characteristics of the cotton fiber quality and their relationships with the local climatic factors were analyzed. In the northwest region (especially Xinjiang) of China, due to the abundant sunlight, low precipitation, and low relative humidity, the cotton fiber length, micronaire, and grade ranked the first. In the Yangtze River region and Yellow River region, the specific strength of cotton fiber was higher, and in the Yangtze River region, the cotton fiber length and specific strength were higher, while the micronaire and grade were lower than those in the Yellow River region. The cotton fiber quality was closely related to the climate factors such as temperature, sunlight, rainfall, and humidity.

  8. Spatial and numerical abilities without a complete natural language.

    PubMed

    Hyde, Daniel C; Winkler-Rhoades, Nathan; Lee, Sang-Ah; Izard, Veronique; Shapiro, Kevin A; Spelke, Elizabeth S

    2011-04-01

    We studied the cognitive abilities of a 13-year-old deaf child, deprived of most linguistic input from late infancy, in a battery of tests designed to reveal the nature of numerical and geometrical abilities in the absence of a full linguistic system. Tests revealed widespread proficiency in basic symbolic and non-symbolic numerical computations involving the use of both exact and approximate numbers. Tests of spatial and geometrical abilities revealed an interesting patchwork of age-typical strengths and localized deficits. In particular, the child performed extremely well on navigation tasks involving geometrical or landmark information presented in isolation, but very poorly on otherwise similar tasks that required the combination of the two types of spatial information. Tests of number- and space-specific language revealed proficiency in the use of number words and deficits in the use of spatial terms. This case suggests that a full linguistic system is not necessary to reap the benefits of linguistic vocabulary on basic numerical tasks. Furthermore, it suggests that language plays an important role in the combination of mental representations of space. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Enriching Spatial Data Infrastructure (sdi) by User Generated Contents for Transportation

    NASA Astrophysics Data System (ADS)

    Shakeri, M.; Alimohammadi, A.; Sadeghi-Niaraki, A.; Alesheikh, A. A.

    2013-09-01

    Spatial data is one of the most critical elements underpinning decision making for many disciplines. Accessing and sharing spatial data have always been a great struggle for researchers. Spatial data infrastructure (SDI) plays a key role in spatial data sharing by building a suitable platform for collaboration and cooperation among the different data producer organizations. In recent years, SDI vision has been moved toward a user-centric platform which has led to development of a new and enriched generation of SDI (third generation). This vision is to provide an environment where users can cooperate to handle spatial data in an effective and satisfactory way. User-centric SDI concentrates on users, their requirements and preferences while in the past, SDI initiatives were mainly concentrated on technological issues such as the data harmonization, standardized metadata models, standardized web services for data discovery, visualization and download. On the other hand, new technologies such as the GPS-equipped smart phones, navigation devices and Web 2.0 technologies have enabled citizens to actively participate in production and sharing of the spatial information. This has led to emergence of the new phenomenon called the Volunteered Geographic Information (VGI). VGI describes any type of content that has a geographic element which has been voluntarily collected. However, its distinctive element is the geographic information that can be collected and produced by citizens with different formal expertise and knowledge of the spatial or geographical concepts. Therefore, ordinary citizens can cooperate in providing massive sources of information that cannot be ignored. These can be considered as the valuable spatial information sources in SDI. These sources can be used for completing, improving and updating of the existing databases. Spatial information and technologies are an important part of the transportation systems. Planning, design and operation of the transportation systems requires the exchange of large volumes of spatial data and often close cooperation among the various organizations. However, there is no technical and organizational process to get a suitable data infrastructure to address diverse needs of the transportation. Hence, development of a common standards and a simple data exchange mechanism is strongly needed in the field of transportation for decision support. Since one of the main purposes of transportation projects is to improve the quality of services provided to users, it is necessary to involve the users themselves in the decision making processes. This should be done through a public participation and involvement in all stages of the transportation projects. In other words, using public knowledge and information as another source of information is very important to make better and more efficient decisions. Public participation in transportation projects can also help organizations to enhance their public supports; because the lack of public support can lead to failure of technically valid projects. However, due to complexity of the transportation tasks, lack of appropriate environment and methods for facilitation of the public participation, collection and analysis of the public information and opinions, public participation in this field has not been well considered so far. This paper reviews the previous researches based on the enriched SDI development and its movement toward the VGI by focusing on the public participation in transportation projects. To this end, methods and models that have been used in previous researches are studied and classified initially. Then, methods of the previous researchers on VGI and transportation are conceptualized in SDI. Finally, the suggested method for transportation projects is presented. Results indicate success of the new generation of SDI in integration with public participation for transportation projects.

  10. A map of abstract relational knowledge in the human hippocampal-entorhinal cortex.

    PubMed

    Garvert, Mona M; Dolan, Raymond J; Behrens, Timothy Ej

    2017-04-27

    The hippocampal-entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal-entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal-entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns.

  11. Self-similarity in nature

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.

    2000-02-01

    A general phenomenological approach to the analysis of experimental temporal, spatial and energetic series for extracting truly physical non-model parameters ("passport data") is presented, which may be used to characterize and distinguish the evolution as well as the spatial and energetic structure of any open nonlinear dissipative system. This methodology is based on a postulate concerning the crucial information contained in the sequences of non-regularities of the measured dynamic variable (temporal, spatial, energetic). In accordance with this approach, multi-parametric formulas for dynamic variable power spectra as well as for structural functions of different orders are identical for every spatial-temporal-energetic level of the system under consideration. In effect, this entails the introduction of a new kind of self-similarity in Nature. An algorithm has been developed for obtaining as many "passport data" as are necessary for the characterization of a dynamic system. Applications of this approach in the analysis of various experimental series (temporal, spatial, energetic) demonstrate its potential for defining adequate phenomenological parameters of different dynamic processes and structures.

  12. A Spatial Data Model Desing For The Management Of Agricultural Data (Farmer, Agricultural Land And Agricultural Production)

    NASA Astrophysics Data System (ADS)

    Taşkanat, Talha; İbrahim İnan, Halil

    2016-04-01

    Since the beginning of the 2000s, it has been conducted many projects such as Agricultural Sector Integrated Management Information System, Agriculture Information System, Agricultural Production Registry System and Farmer Registry System by the Turkish Ministry of Food, Agriculture and Livestock and the Turkish Statistical Institute in order to establish and manage better agricultural policy and produce better agricultural statistics in Turkey. Yet, it has not been carried out any study for the structuring of a system which can meet the requirements of different institutions and organizations that need similar agricultural data. It has been tried to meet required data only within the frame of the legal regulations from present systems. Whereas the developments in GIS (Geographical Information Systems) and standardization, and Turkey National GIS enterprise in this context necessitate to meet the demands of organizations that use the similar data commonly and to act in terms of a data model logic. In this study, 38 institutions or organization which produce and use agricultural data were detected, that and thanks to survey and interviews undertaken, their needs were tried to be determined. In this study which is financially supported by TUBITAK, it was worked out relationship between farmer, agricultural land and agricultural production data and all of the institutions and organizations in Turkey and in this context, it was worked upon the best detailed and effective possible data model. In the model design, UML which provides object-oriented design was used. In the data model, for the management of spatial data, sub-parcel data model was used. Thanks to this data model, declared and undeclared areas can be detected spatially, and thus declarations can be associated to sub-parcels. Within this framework, it will be able to developed agricultural policies as a result of acquiring more extensive, accurate, spatially manageable and easily updatable farmer and agricultural data throughout the country.

  13. Geostatistics, remote sensing and precision farming.

    PubMed

    Mulla, D J

    1997-01-01

    Precision farming is possible today because of advances in farming technology, procedures for mapping and interpolating spatial patterns, and geographic information systems for overlaying and interpreting several soil, landscape and crop attributes. The key component of precision farming is the map showing spatial patterns in field characteristics. Obtaining information for this map is often achieved by soil sampling. This approach, however, can be cost-prohibitive for grain crops. Soil sampling strategies can be simplified by use of auxiliary data provided by satellite or aerial photo imagery. This paper describes geostatistical methods for estimating spatial patterns in soil organic matter, soil test phosphorus and wheat grain yield from a combination of Thematic Mapper imaging and soil sampling.

  14. Spatial Dmbs Architecture for a Free and Open Source Bim

    NASA Astrophysics Data System (ADS)

    Logothetis, S.; Valari, E.; Karachaliou, E.; Stylianidis, E.

    2017-08-01

    Recent research on the field of Building Information Modelling (BIM) technology, revealed that except of a few, accessible and free BIM viewers there is a lack of Free & Open Source Software (FOSS) BIM software for the complete BIM process. With this in mind and considering BIM as the technological advancement of Computer-Aided Design (CAD) systems, the current work proposes the use of a FOSS CAD software in order to extend its capabilities and transform it gradually into a FOSS BIM platform. Towards this undertaking, a first approach on developing a spatial Database Management System (DBMS) able to store, organize and manage the overall amount of information within a single application, is presented.

  15. A spatial national health facility database for public health sector planning in Kenya in 2008.

    PubMed

    Noor, Abdisalan M; Alegana, Victor A; Gething, Peter W; Snow, Robert W

    2009-03-06

    Efforts to tackle the enormous burden of ill-health in low-income countries are hampered by weak health information infrastructures that do not support appropriate planning and resource allocation. For health information systems to function well, a reliable inventory of health service providers is critical. The spatial referencing of service providers to allow their representation in a geographic information system is vital if the full planning potential of such data is to be realized. A disparate series of contemporary lists of health service providers were used to update a public health facility database of Kenya last compiled in 2003. These new lists were derived primarily through the national distribution of antimalarial and antiretroviral commodities since 2006. A combination of methods, including global positioning systems, was used to map service providers. These spatially-referenced data were combined with high-resolution population maps to analyze disparity in geographic access to public health care. The updated 2008 database contained 5,334 public health facilities (67% ministry of health; 28% mission and nongovernmental organizations; 2% local authorities; and 3% employers and other ministries). This represented an overall increase of 1,862 facilities compared to 2003. Most of the additional facilities belonged to the ministry of health (79%) and the majority were dispensaries (91%). 93% of the health facilities were spatially referenced, 38% using global positioning systems compared to 21% in 2003. 89% of the population was within 5 km Euclidean distance to a public health facility in 2008 compared to 71% in 2003. Over 80% of the population outside 5 km of public health service providers was in the sparsely settled pastoralist areas of the country. We have shown that, with concerted effort, a relatively complete inventory of mapped health services is possible with enormous potential for improving planning. Expansion in public health care in Kenya has resulted in significant increases in geographic access although several areas of the country need further improvements. This information is key to future planning and with this paper we have released the digital spatial database in the public domain to assist the Kenyan Government and its partners in the health sector.

  16. Introduction to the Special Issue on Visual Working Memory

    PubMed Central

    Wolfe, Jeremy M

    2014-01-01

    Objects are not represented individually in visual working memory (VWM), but in relation to the contextual information provided by other memorized objects. We studied whether the contextual information provided by the spatial configuration of all memorized objects is viewpoint-dependent. We ran two experiments asking participants to detect changes in locations between memory and probe for one object highlighted in the probe image. We manipulated the changes in viewpoint between memory and probe (Exp. 1: 0°, 30°, 60°; Exp. 2: 0°, 60°), as well as the spatial configuration visible in the probe image (Exp. 1: full configuration, partial configuration; Exp. 2: full configuration, no configuration). Location change detection was higher with the full spatial configuration than with the partial configuration or with no spatial configuration at viewpoint changes of 0°, thus replicating previous findings on the nonindependent representations of individual objects in VWM. Most importantly, the effect of spatial configurations decreased with increasing viewpoint changes, suggesting a viewpoint-dependent representation of contextual information in VWM. We discuss these findings within the context of this special issue, in particular whether research performed within the slots-versus-resources debate and research on the effects of contextual information might focus on two different storage systems within VWM. PMID:25341647

  17. Oceanography Information System of Spanish Institute of Oceanography (IEO)

    NASA Astrophysics Data System (ADS)

    Tello, Olvido; Gómez, María; González, Sonsoles

    2016-04-01

    Since 1914, the Spanish Institute of Oceanography (IEO) performs multidisciplinary studies of the marine environment. In same case are systematic studies and in others are specific studies for special requirements (El Hierro submarine volcanic episode, spill Prestige, others.). Different methodologies and data acquisition techniques are used depending on studies aims. The acquired data are stored and presented in different formats. The information is organized into different databases according to the subject and the variables represented (geology, fisheries, aquaculture, pollution, habitats, etc.). Related to physical and chemical oceanography data, in 1964 was created the DATA CENTER of IEO (CEDO), in order to organize the data about physical and chemical variables, to standardize this information and to serve the international data network SeaDataNet. www.seadatanet.org. This database integrates data about temperature, salinity, nutrients, and tidal data. CEDO allows consult and download the data. http://indamar.ieo.es On the other hand, related to data about marine species in 1999 was developed SIRENO DATABASE. All data about species collected in oceanographic surveys carried out by researches of IEO, and data from observers on fishing vessels are incorporated in SIRENO database. In this database is stored catch data, biomass, abundance, etc. This system is based on architecture ORACLE. Due to the large amount of information collected over the 100 years of IEO history, there is a clear need to organize, standardize, integrate and relate the different databases and information, and to provide interoperability and access to the information. Consequently, in 2000 it emerged the first initiative to organize the IEO spatial information in an Oceanography Information System, based on a Geographical Information System (GIS). The GIS was consolidated as IEO institutional GIS and was created the Spatial Data Infrastructure of IEO (IDEO) following trend of INSPIRE. All data included in the GIS have their corresponding metadata about ISO19115 and INSPIRE. IDEO is based on Web services, Quality of Services, Open standards, ISO (OGC) and INSPIRE standards, and both provide access to the geographical marine information of IEO. The GIS allows the information to be organized, visualized, consulted and analyzed. The data from different IEO databases are integrated into a GIS corporate Geodatabase (Esri format). This tool is essential in the decision making of aspects like: - Protection of marine environment - Sustainable management of resources - Natural Hazards. - Marine spatial planning. Examples of the use of GIS as a spatial analysis tool are: - Mud volcanoes explored in LIFE-INDEMARES project. - Cartographic series about Spanish continental shelf, developed from data integrated in IEO marine GIS, acquired from oceanographic surveys in ESPACE project. - Cartography developed from the information gathered in Initial Assessment of Marine Strategy Framework Directive. - Studies of natural hazards related to submarine canyons in southeast region marine Spanish. Currently the IEO is participating in many European initiatives, especially in several lots of EMODNET. The IEO besides is working in consonance with INSPIRE, Growth Blue, Horizon 2020, etc., to contribute to, the knowledge of marine environment, its protection and its spatial planning are extremely relevant issues. In order to facilitate the access to the Spatial Data Infrastructure of IEO, the IEO Geoportal was developed in 2012. It mainly involves a metadata catalog, access to the data viewers and Web Services of IDEO. http://www.geo-ideo.ieo.es/geoportalideo/catalog/main/home.page

  18. Evaluation of spatial accessibility to primary healthcare using GIS

    NASA Astrophysics Data System (ADS)

    Jamtsho, S.; Corner, R. J.

    2014-11-01

    Primary health care is considered to be one of the most important aspects of the health care system in any country, which directly helps in improving the health of the population. Potential spatial accessibility is a very important component of the primary health care system. One technique for studying spatial accessibility is by computing a gravity-based measure within a geographic information system (GIS) framework. In this study, straight-line distances between the associated population clusters and the health facilities and the provider-to-population ratio were used to compute the spatial accessibility of the population clusters for the whole country. Bhutan has been chosen as the case study area because it is quite easy to acquire and process data for the whole country due to its small size and population. The spatial accessibility measure of the 203 sub-districts shows noticeable disparities in health care accessibility in this country with about only 19 sub-districts achieving good health accessibility ranking. This study also examines a number of different health accessibility policy scenarios which can assist in identifying the most effective health policy from amongst many probable planning scenarios. Such a health accessibility measuring system can be incorporated into an existing spatial health system in developing countries to facilitate the proper planning and equitable distribution of health resources.

  19. Interfaces between statistical analysis packages and the ESRI geographic information system

    NASA Technical Reports Server (NTRS)

    Masuoka, E.

    1980-01-01

    Interfaces between ESRI's geographic information system (GIS) data files and real valued data files written to facilitate statistical analysis and display of spatially referenced multivariable data are described. An example of data analysis which utilized the GIS and the statistical analysis system is presented to illustrate the utility of combining the analytic capability of a statistical package with the data management and display features of the GIS.

  20. Development of management information system for land in mine area based on MapInfo

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Dong; Liu, Chuang-Hua; Wang, Xin-Chuang; Pan, Yan-Yu

    2008-10-01

    MapInfo is current a popular GIS software. This paper introduces characters of MapInfo and GIS second development methods offered by MapInfo, which include three ones based on MapBasic, OLE automation, and MapX control usage respectively. Taking development of land management information system in mine area for example, in the paper, the method of developing GIS applications based on MapX has been discussed, as well as development of land management information system in mine area has been introduced in detail, including development environment, overall design, design and realization of every function module, and simple application of system, etc. The system uses MapX 5.0 and Visual Basic 6.0 as development platform, takes SQL Server 2005 as back-end database, and adopts Matlab 6.5 to calculate number in back-end. On the basis of integrated design, the system develops eight modules including start-up, layer control, spatial query, spatial analysis, data editing, application model, document management, results output. The system can be used in mine area for cadastral management, land use structure optimization, land reclamation, land evaluation, analysis and forecasting for land in mine area and environmental disruption, thematic mapping, and so on.

  1. Coding Strategies and Implementations of Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han

    This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.

  2. The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades

    PubMed Central

    Boon, Paul J.; Belopolsky, Artem V.; Theeuwes, Jan

    2016-01-01

    Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location. PMID:27631767

  3. Using spatial analysis to demonstrate the heterogeneity of the cardiovascular drug-prescribing pattern in Taiwan

    PubMed Central

    2011-01-01

    Background Geographic Information Systems (GIS) combined with spatial analytical methods could be helpful in examining patterns of drug use. Little attention has been paid to geographic variation of cardiovascular prescription use in Taiwan. The main objective was to use local spatial association statistics to test whether or not the cardiovascular medication-prescribing pattern is homogenous across 352 townships in Taiwan. Methods The statistical methods used were the global measures of Moran's I and Local Indicators of Spatial Association (LISA). While Moran's I provides information on the overall spatial distribution of the data, LISA provides information on types of spatial association at the local level. LISA statistics can also be used to identify influential locations in spatial association analysis. The major classes of prescription cardiovascular drugs were taken from Taiwan's National Health Insurance Research Database (NHIRD), which has a coverage rate of over 97%. The dosage of each prescription was converted into defined daily doses to measure the consumption of each class of drugs. Data were analyzed with ArcGIS and GeoDa at the township level. Results The LISA statistics showed an unusual use of cardiovascular medications in the southern townships with high local variation. Patterns of drug use also showed more low-low spatial clusters (cold spots) than high-high spatial clusters (hot spots), and those low-low associations were clustered in the rural areas. Conclusions The cardiovascular drug prescribing patterns were heterogeneous across Taiwan. In particular, a clear pattern of north-south disparity exists. Such spatial clustering helps prioritize the target areas that require better education concerning drug use. PMID:21609462

  4. A virtual display system for conveying three-dimensional acoustic information

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Wightman, Frederic L.; Foster, Scott H.

    1988-01-01

    The development of a three-dimensional auditory display system is discussed. Theories of human sound localization and techniques for synthesizing various features of auditory spatial perceptions are examined. Psychophysical data validating the system are presented. The human factors applications of the system are considered.

  5. Review of integrated digital systems: evolution and adoption

    NASA Astrophysics Data System (ADS)

    Fritz, Lawrence W.

    The factors that are influencing the evolution of photogrammetric and remote sensing technology to transition into fully integrated digital systems are reviewed. These factors include societal pressures for new, more timely digital products from the Spatial Information Sciencesand the adoption of rapid technological advancements in digital processing hardware and software. Current major developments in leading government mapping agencies of the USA, such as the Digital Production System (DPS) modernization programme at the Defense Mapping Agency, and the Automated Nautical Charting System II (ANCS-II) programme and Integrated Digital Photogrammetric Facility (IDPF) at NOAA/National Ocean Service, illustrate the significant benefits to be realized. These programmes are examples of different levels of integrated systems that have been designed to produce digital products. They provide insights to the management complexities to be considered for very large integrated digital systems. In recognition of computer industry trends, a knowledge-based architecture for managing the complexity of the very large spatial information systems of the future is proposed.

  6. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems

    NASA Astrophysics Data System (ADS)

    Du, Louise Y.; Umoh, Joseph; Nikolov, Hristo N.; Pollmann, Steven I.; Lee, Ting-Yim; Holdsworth, David W.

    2007-12-01

    Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 µm, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm-1 and noise of ±35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy.

  7. Interactions between a Trawl Fishery and Spatial Closures for Biodiversity Conservation in the Great Barrier Reef World Heritage Area, Australia

    PubMed Central

    Grech, Alana; Coles, Rob

    2011-01-01

    Background The Queensland East Coast Otter Trawl Fishery (ECOTF) for penaeid shrimp fishes within Australia's Great Barrier Reef World Heritage Area (GBRWHA). The past decade has seen the implementation of conservation and fisheries management strategies to reduce the impact of the ECOTF on the seabed and improve biodiversity conservation. New information from electronic vessel location monitoring systems (VMS) provides an opportunity to review the interactions between the ECOTF and spatial closures for biodiversity conservation. Methodology and Results We used fishing metrics and spatial information on the distribution of closures and modelled VMS data in a geographical information system (GIS) to assess change in effort of the trawl fishery from 2001–2009 and to quantify the exposure of 70 reef, non-reef and deep water bioregions to trawl fishing. The number of trawlers and the number of days fished almost halved between 2001 and 2009 and new spatial closures introduced in 2004 reduced the area zoned available for trawl fishing by 33%. However, we found that there was only a relatively minor change in the spatial footprint of the fishery as a result of new spatial closures. Non-reef bioregions benefited the most from new spatial closures followed by deep and reef bioregions. Conclusions/Significance Although the catch of non target species remains an issue of concern for fisheries management, the small spatial footprint of the ECOTF relative to the size of the GBRWHA means that the impact on benthic habitats is likely to be negligible. The decline in effort as a result of fishing industry structural adjustment, increasing variable costs and business decisions of fishers is likely to continue a trend to fish only in the most productive areas. This will provide protection for most benthic habitats without any further legislative or management intervention. PMID:21695155

  8. Descriptions of selected digital spatial data for Ravenna Army Ammunition Plant, Ohio

    USGS Publications Warehouse

    Schalk, C.W.; Darner, R.A.

    1998-01-01

    Digital spatial data of Ravenna Army Ammunition Plant (RVAAP), in northeastern Ohio, were compiled or generated from existing maps for U.S. Army Industrial Operations Command. The data are in the Ohio north state-plane coordinate system (North American Datum of 1983) in an ARC/INFO geographic information system format. The data comprise 15 layers, which include boundaries, topography, and natural and cultural features. An additional layer comprises scanned and rectified aerial photographs of RVAAP.

  9. AgBufferBuilder: A geographic information system (GIS) tool for precision design and performance assessment of filter strips

    Treesearch

    M. G. Dosskey; S. Neelakantan; T. G. Mueller; T. Kellerman; M. J. Helmers; E. Rienzi

    2015-01-01

    Spatially nonuniform runoif reduces the water qua1iry perfortnance of constant- width filter strips. A geographic inlormation system (Gls)-based tool was developed and tested that ernploys terrain analysis to account lor spatially nonuniform runoffand produce more ellbctive filter strip designs.The computer program,AgBufTerBuilder, runs with ATcGIS versions 10.0 and 10...

  10. Development of a Heterogenic Distributed Environment for Spatial Data Processing Using Cloud Technologies

    NASA Astrophysics Data System (ADS)

    Garov, A. S.; Karachevtseva, I. P.; Matveev, E. V.; Zubarev, A. E.; Florinsky, I. V.

    2016-06-01

    We are developing a unified distributed communication environment for processing of spatial data which integrates web-, desktop- and mobile platforms and combines volunteer computing model and public cloud possibilities. The main idea is to create a flexible working environment for research groups, which may be scaled according to required data volume and computing power, while keeping infrastructure costs at minimum. It is based upon the "single window" principle, which combines data access via geoportal functionality, processing possibilities and communication between researchers. Using an innovative software environment the recently developed planetary information system (http://cartsrv.mexlab.ru/geoportal) will be updated. The new system will provide spatial data processing, analysis and 3D-visualization and will be tested based on freely available Earth remote sensing data as well as Solar system planetary images from various missions. Based on this approach it will be possible to organize the research and representation of results on a new technology level, which provides more possibilities for immediate and direct reuse of research materials, including data, algorithms, methodology, and components. The new software environment is targeted at remote scientific teams, and will provide access to existing spatial distributed information for which we suggest implementation of a user interface as an advanced front-end, e.g., for virtual globe system.

  11. Spatial Models of Prebiotic Evolution: Soup Before Pizza?

    NASA Astrophysics Data System (ADS)

    Scheuring, István; Czárán, Tamás; Szabó, Péter; Károlyi, György; Toroczkai, Zoltán

    2003-10-01

    The problem of information integration and resistance to the invasion of parasitic mutants in prebiotic replicator systems is a notorious issue of research on the origin of life. Almost all theoretical studies published so far have demonstrated that some kind of spatial structure is indispensable for the persistence and/or the parasite resistance of any feasible replicator system. Based on a detailed critical survey of spatial models on prebiotic information integration, we suggest a possible scenario for replicator system evolution leading to the emergence of the first protocells capable of independent life. We show that even the spatial versions of the hypercycle model are vulnerable to selfish parasites in heterogeneous habitats. Contrary, the metabolic system remains persistent and coexistent with its parasites both on heterogeneous surfaces and in chaotically mixing flowing media. Persistent metabolic parasites can be converted to metabolic cooperators, or they can gradually obtain replicase activity. Our simulations show that, once replicase activity emerged, a gradual and simultaneous evolutionary improvement of replicase functionality (speed and fidelity) and template efficiency is possible only on a surface that constrains the mobility of macromolecule replicators. Based on the results of the models reviewed, we suggest that open chaotic flows (`soup') and surface dynamics (`pizza') both played key roles in the sequence of evolutionary events ultimately concluding in the appearance of the first living cell on Earth.

  12. Development of flood routing simulation system of digital Qingjiang based on integrated spatial information technology

    NASA Astrophysics Data System (ADS)

    Yuan, Yanbin; Zhou, You; Zhu, Yaqiong; Yuan, Xiaohui; Sælthun, N. R.

    2007-11-01

    Based on digital technology, flood routing simulation system development is an important component of "digital catchment". Taking QingJiang catchment as a pilot case, in-depth analysis on informatization of Qingjiang catchment management being the basis, aiming at catchment data's multi-source, - dimension, -element, -subject, -layer and -class feature, the study brings the design thought and method of "subject-point-source database" (SPSD) to design system structure in order to realize the unified management of catchments data in great quantity. Using the thought of integrated spatial information technology for reference, integrating hierarchical structure development model of digital catchment is established. The model is general framework of the flood routing simulation system analysis, design and realization. In order to satisfy the demands of flood routing three-dimensional simulation system, the object-oriented spatial data model are designed. We can analyze space-time self-adapting relation between flood routing and catchments topography, express grid data of terrain by using non-directed graph, apply breadth first search arithmetic, set up search method for the purpose of dynamically searching stream channel on the basis of simulated three-dimensional terrain. The system prototype is therefore realized. Simulation results have demonstrated that the proposed approach is feasible and effective in the application.

  13. Classified one-step high-radix signed-digit arithmetic units

    NASA Astrophysics Data System (ADS)

    Cherri, Abdallah K.

    1998-08-01

    High-radix number systems enable higher information storage density, less complexity, fewer system components, and fewer cascaded gates and operations. A simple one-step fully parallel high-radix signed-digit arithmetic is proposed for parallel optical computing based on new joint spatial encodings. This reduces hardware requirements and improves throughput by reducing the space-bandwidth produce needed. The high-radix signed-digit arithmetic operations are based on classifying the neighboring input digit pairs into various groups to reduce the computation rules. A new joint spatial encoding technique is developed to present both the operands and the computation rules. This technique increases the spatial bandwidth product of the spatial light modulators of the system. An optical implementation of the proposed high-radix signed-digit arithmetic operations is also presented. It is shown that our one-step trinary signed-digit and quaternary signed-digit arithmetic units are much simpler and better than all previously reported high-radix signed-digit techniques.

  14. Psychophysics and Neuronal Bases of Sound Localization in Humans

    PubMed Central

    Ahveninen, Jyrki; Kopco, Norbert; Jääskeläinen, Iiro P.

    2013-01-01

    Localization of sound sources is a considerable computational challenge for the human brain. Whereas the visual system can process basic spatial information in parallel, the auditory system lacks a straightforward correspondence between external spatial locations and sensory receptive fields. Consequently, the question how different acoustic features supporting spatial hearing are represented in the central nervous system is still open. Functional neuroimaging studies in humans have provided evidence for a posterior auditory “where” pathway that encompasses non-primary auditory cortex areas, including the planum temporale (PT) and posterior superior temporal gyrus (STG), which are strongly activated by horizontal sound direction changes, distance changes, and movement. However, these areas are also activated by a wide variety of other stimulus features, posing a challenge for the interpretation that the underlying areas are purely spatial. This review discusses behavioral and neuroimaging studies on sound localization, and some of the competing models of representation of auditory space in humans. PMID:23886698

  15. Follow your nose: Implicit spatial processing within the chemosensory systems.

    PubMed

    Wudarczyk, Olga A; Habel, Ute; Turetsky, Bruce I; Gur, Raquel E; Kellermann, Thilo; Schneider, Frank; Moessnang, Carolin

    2016-11-01

    Although most studies agree that humans cannot smell in stereo, it was recently suggested that olfactory localization is possible when assessed implicitly. In a spatial cueing paradigm, lateralized olfactory cues impaired the detection of congruently presented visual targets, an effect contrary to the typical facilitation observed in other sensory domains. Here, we examined the specificity and the robustness of this finding by studying implicit localization abilities in another chemosensory system and by accounting for possible confounds in a modified paradigm. Sixty participants completed a spatial cueing task along with an explicit localization task, using trigeminal (Experiment 1) and olfactory (Experiment 2) stimuli. A control task was implemented to control for residual somatosensory stimulation (Experiment 3). In the trigeminal experiment, stimuli were localized with high accuracy on the explicit level, while the cueing effect in form of facilitation was limited to response accuracy. In the olfactory experiment, responses were slowed by congruent cues on the implicit level, while no explicit localization was observed. Our results point to the robustness of the olfactory interference effect, corroborating the implicit-explicit dissociation of olfactory localization, and challenging the view that humans lost the ability to extract spatial information from smell. The absence of a similar interference for trigeminal cues suggests distinct implicit spatial processing mechanisms within the chemosensory systems. Moreover, the lack of a typical facilitation effect in the trigeminal domain points to important differences from spatial information processing in other, nonchemosensory domains. The possible mechanisms driving the effects are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. GeoMedStat: an integrated spatial surveillance system to track air pollution and associated healthcare events.

    PubMed

    Faruque, Fazlay S; Li, Hui; Williams, Worth B; Waller, Lance A; Brackin, Bruce T; Zhang, Lei; Grimes, Kim A; Finley, Richard W

    2014-12-01

    Air pollutants, such as particulate matter with a diameter ≤2.5 microns (PM2.5) and ozone (O3), are known to exacerbate asthma and other respiratory diseases. An integrated surveillance system that tracks such air pollutants and associated disease incidence can assist in risk assessment, healthcare preparedness and public awareness. However, the implementation of such an integrated environmental health surveillance system is a challenge due to the disparate sources of many types of data and the implementation becomes even more complicated for a spatial and real-time system due to lack of standardised technological components and data incompatibility. In addition, accessing and utilising health data that are considered as Protected Health Information (PHI) require maintaining stringent protocols, which have to be supported by the system. This paper aims to illustrate the development of a spatial surveillance system (GeoMedStat) that is capable of tracking daily environmental pollutants along with both daily and historical patient encounter data. It utilises satellite data and the groundmonitor data from the US National Aeronautics and Space Administration (NASA) and the US Environemental Protection Agenecy (EPA), rspectively as inputs estimating air pollutants and is linked to hospital information systems for accessing chief complaints and disease classification codes. The components, developmental methods, functionality of GeoMedStat and its use as a real-time environmental health surveillance system for asthma and other respiratory syndromes in connection with with PM2.5 and ozone are described. It is expected that the framework presented will serve as an example to others developing real-time spatial surveillance systems for pollutants and hospital visits.

  17. Monitoring Method of Cow Anthrax Based on Gis and Spatial Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Li, Lin; Yang, Yong; Wang, Hongbin; Dong, Jing; Zhao, Yujun; He, Jianbin; Fan, Honggang

    Geographic information system (GIS) is a computer application system, which possesses the ability of manipulating spatial information and has been used in many fields related with the spatial information management. Many methods and models have been established for analyzing animal diseases distribution models and temporal-spatial transmission models. Great benefits have been gained from the application of GIS in animal disease epidemiology. GIS is now a very important tool in animal disease epidemiological research. Spatial analysis function of GIS can be widened and strengthened by using spatial statistical analysis, allowing for the deeper exploration, analysis, manipulation and interpretation of spatial pattern and spatial correlation of the animal disease. In this paper, we analyzed the cow anthrax spatial distribution characteristics in the target district A (due to the secret of epidemic data we call it district A) based on the established GIS of the cow anthrax in this district in combination of spatial statistical analysis and GIS. The Cow anthrax is biogeochemical disease, and its geographical distribution is related closely to the environmental factors of habitats and has some spatial characteristics, and therefore the correct analysis of the spatial distribution of anthrax cow for monitoring and the prevention and control of anthrax has a very important role. However, the application of classic statistical methods in some areas is very difficult because of the pastoral nomadic context. The high mobility of livestock and the lack of enough suitable sampling for the some of the difficulties in monitoring currently make it nearly impossible to apply rigorous random sampling methods. It is thus necessary to develop an alternative sampling method, which could overcome the lack of sampling and meet the requirements for randomness. The GIS computer application software ArcGIS9.1 was used to overcome the lack of data of sampling sites.Using ArcGIS 9.1 and GEODA to analyze the cow anthrax spatial distribution of district A. we gained some conclusions about cow anthrax' density: (1) there is a spatial clustering model. (2) there is an intensely spatial autocorrelation. We established a prediction model to estimate the anthrax distribution based on the spatial characteristic of the density of cow anthrax. Comparing with the true distribution, the prediction model has a well coincidence and is feasible to the application. The method using a GIS tool facilitates can be implemented significantly in the cow anthrax monitoring and investigation, and the space statistics - related prediction model provides a fundamental use for other study on space-related animal diseases.

  18. Evaluating the Use of Auditory Systems to Improve Performance in Combat Search and Rescue

    DTIC Science & Technology

    2012-03-01

    take advantage of human binaural hearing to present spatial information through auditory stimuli as it would occur in the real world. This allows the...multiple operators unambiguously and in a short amount of time. Spatial audio basics Spatial audio works with human binaural hearing to generate... binaural recordings “sound better” when heard in the same location where the recordings were made. While this appears to be related to the acoustic

  19. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan

    2017-04-01

    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.

  20. Image sharpening for mixed spatial and spectral resolution satellite systems

    NASA Technical Reports Server (NTRS)

    Hallada, W. A.; Cox, S.

    1983-01-01

    Two methods of image sharpening (reconstruction) are compared. The first, a spatial filtering technique, extrapolates edge information from a high spatial resolution panchromatic band at 10 meters and adds it to the low spatial resolution narrow spectral bands. The second method, a color normalizing technique, is based on the ability to separate image hue and brightness components in spectral data. Using both techniques, multispectral images are sharpened from 30, 50, 70, and 90 meter resolutions. Error rates are calculated for the two methods and all sharpened resolutions. The results indicate that the color normalizing method is superior to the spatial filtering technique.

  1. Change of spatial information under rescaling: A case study using multi-resolution image series

    NASA Astrophysics Data System (ADS)

    Chen, Weirong; Henebry, Geoffrey M.

    Spatial structure in imagery depends on a complicated interaction between the observational regime and the types and arrangements of entities within the scene that the image portrays. Although block averaging of pixels has commonly been used to simulate coarser resolution imagery, relatively little attention has been focused on the effects of simple rescaling on spatial structure and the explanation and a possible solution to the problem. Yet, if there are significant differences in spatial variance between rescaled and observed images, it may affect the reliability of retrieved biogeophysical quantities. To investigate these issues, a nested series of high spatial resolution digital imagery was collected at a research site in eastern Nebraska in 2001. An airborne Kodak DCS420IR camera acquired imagery at three altitudes, yielding nominal spatial resolutions ranging from 0.187 m to 1 m. The red and near infrared (NIR) bands of the co-registered image series were normalized using pseudo-invariant features, and the normalized difference vegetation index (NDVI) was calculated. Plots of grain sorghum planted in orthogonal crop row orientations were extracted from the image series. The finest spatial resolution data were then rescaled by averaging blocks of pixels to produce a rescaled image series that closely matched the spatial resolution of the observed image series. Spatial structures of the observed and rescaled image series were characterized using semivariogram analysis. Results for NDVI and its component bands show, as expected, that decreasing spatial resolution leads to decreasing spatial variability and increasing spatial dependence. However, compared to the observed data, the rescaled images contain more persistent spatial structure that exhibits limited variation in both spatial dependence and spatial heterogeneity. Rescaling via simple block averaging fails to consider the effect of scene object shape and extent on spatial information. As the features portrayed by pixels are equally weighted regardless of the shape and extent of the underlying scene objects, the rescaled image retains more of the original spatial information than would occur through direct observation at a coarser sensor spatial resolution. In contrast, for the observed images, due to the effect of the modulation transfer function (MTF) of the imaging system, high frequency features like edges are blurred or lost as the pixel size increases, resulting in greater variation in spatial structure. Successive applications of a low-pass spatial convolution filter are shown to mimic a MTF. Accordingly, it is recommended that such a procedure be applied prior to rescaling by simple block averaging, if insufficient image metadata exist to replicate the net MTF of the imaging system, as might be expected in land cover change analysis studies using historical imagery.

  2. Comparison of Programs Used for FIA Inventory Information Dissemination and Spatial Representation

    Treesearch

    Roger C. Lowe; Chris J. Cieszewski

    2005-01-01

    Six online applications developed for the interactive display of Forest Inventory and Analysis (FIA) data in which FIA database information and query results can be viewed as or selected from interactive geographic maps are compared. The programs evaluated are the U.S. Department of Agriculture Forest Service?s online systems; a SAS server-based mapping system...

  3. Quantifying forest fragmentation using Geographic Information Systems and Forest Inventory and Analysis plot data

    Treesearch

    Dacia M. Meneguzzo; Mark H. Hansen

    2009-01-01

    Fragmentation metrics provide a means of quantifying and describing forest fragmentation. The most common method of calculating these metrics is through the use of Geographic Information System software to analyze raster data, such as a satellite or aerial image of the study area; however, the spatial resolution of the imagery has a significant impact on the results....

  4. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambon, Ilaria, E-mail: ilaria.zambon@unitus.it; Colantoni, Andrea; Carlucci, Margherita

    Land Degradation (LD) in socio-environmental systems negatively impacts sustainable development paths. This study proposes a framework to LD evaluation based on indicators of diversification in the spatial distribution of sensitive land. We hypothesize that conditions for spatial heterogeneity in a composite index of land sensitivity are more frequently associated to areas prone to LD than spatial homogeneity. Spatial heterogeneity is supposed to be associated with degraded areas that act as hotspots for future degradation processes. A diachronic analysis (1960–2010) was performed at the Italian agricultural district scale to identify environmental factors associated with spatial heterogeneity in the degree of landmore » sensitivity to degradation based on the Environmentally Sensitive Area Index (ESAI). In 1960, diversification in the level of land sensitivity measured using two common indexes of entropy (Shannon's diversity and Pielou's evenness) increased significantly with the ESAI, indicating a high level of land sensitivity to degradation. In 2010, surface area classified as “critical” to LD was the highest in districts with diversification in the spatial distribution of ESAI values, confirming the hypothesis formulated above. Entropy indexes, based on observed alignment with the concept of LD, constitute a valuable base to inform mitigation strategies against desertification. - Highlights: • Spatial heterogeneity is supposed to be associated with degraded areas. • Entropy indexes can inform mitigation strategies against desertification. • Assessing spatial diversification in the degree of land sensitivity to degradation. • Mediterranean rural areas have an evident diversity in agricultural systems. • A diachronic analysis carried out at the Italian agricultural district scale.« less

  5. Exploratory spatial analysis of pilot fatality rates in general aviation crashes using geographic information systems.

    PubMed

    Grabowski, Jurek G; Curriero, Frank C; Baker, Susan P; Li, Guohua

    2002-03-01

    Geographic information systems and exploratory spatial analysis were used to describe the geographic characteristics of pilot fatality rates in 1983-1998 general aviation crashes within the continental United States. The authors plotted crash sites on a digital map; rates were computed at regular grid intersections and then interpolated by using geographic information systems. A test for significance was performed by using Monte Carlo simulations. Further analysis compared low-, medium-, and high-rate areas in relation to pilot characteristics, aircraft type, and crash circumstance. Of the 14,051 general aviation crashes studied, 31% were fatal. Seventy-four geographic areas were categorized as having low fatality rates and 53 as having high fatality rates. High-fatality-rate areas tended to be mountainous, such as the Rocky Mountains and the Appalachian region, whereas low-rate areas were relatively flat, such as the Great Plains. Further analysis comparing low-, medium-, and high-fatality-rate areas revealed that crashes in high-fatality-rate areas were more likely than crashes in other areas to have occurred under instrument meteorologic conditions and to involve aircraft fire. This study demonstrates that geographic information systems are a valuable tool for injury prevention and aviation safety research.

  6. An automated system for rail transit infrastructure inspection.

    DOT National Transportation Integrated Search

    2015-03-01

    This project applied commercial remote sensing and spatial information (CRS&SI) : technologies such as Ground Penetrating Radar (GPR), laser, GIS, and GPS to passenger rail : inspections. An integrated rail inspection system that can be mounted on hi...

  7. SADA: Ecological Risk Based Decision Support System for Selective Remediation

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is freeware that implements terrestrial ecological risk assessment and yields a selective remediation design using its integral geographical information system, based on ecological and risk assessment inputs. Selective remediation ...

  8. Secured network sensor-based defense system

    NASA Astrophysics Data System (ADS)

    Wei, Sixiao; Shen, Dan; Ge, Linqiang; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    Network sensor-based defense (NSD) systems have been widely used to defend against cyber threats. Nonetheless, if the adversary finds ways to identify the location of monitor sensors, the effectiveness of NSD systems can be reduced. In this paper, we propose both temporal and spatial perturbation based defense mechanisms to secure NSD systems and make the monitor sensor invisible to the adversary. The temporal-perturbation based defense manipulates the timing information of published data so that the probability of successfully recognizing monitor sensors can be reduced. The spatial-perturbation based defense dynamically redeploys monitor sensors in the network so that the adversary cannot obtain the complete information to recognize all of the monitor sensors. We carried out experiments using real-world traffic traces to evaluate the effectiveness of our proposed defense mechanisms. Our data shows that our proposed defense mechanisms can reduce the attack accuracy of recognizing detection sensors.

  9. Interactive classification and content-based retrieval of tissue images

    NASA Astrophysics Data System (ADS)

    Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof

    2002-11-01

    We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.

  10. Research on image evidence in land supervision and GIS management

    NASA Astrophysics Data System (ADS)

    Li, Qiu; Wu, Lixin

    2006-10-01

    Land resource development and utilization brings many problems. The numbers, the scale and volume of illegal land use cases are on the increasing. Since the territory is vast, and the land violations are concealment, it is difficulty for an effective land supervision and management. In this paper, the concepts of evidence, and preservation of evidence were described first. The concepts of image evidence (IE), natural evidence (NE), natural preservation of evidence (NPE), general preservation of evidence (GPE) were proposed based on the characteristics of remote sensing image (RSI) which has a characteristic of objectiveness, truthfulness, high spatial resolution, more information included. Using MapObjects and Visual Basic 6.0, under the Access management to implement the conjunction of spatial vector database and attribute data table; taking RSI as the data sources and background layer; combining the powerful management of geographic information system (GIS) for spatial data, and visual analysis, a land supervision and GIS management system was design and implemented based on NPE. The practical use in Beijing shows that the system is running well, and solved some problems in land supervision and management.

  11. A reconstruction algorithm for three-dimensional object-space data using spatial-spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Wu, Zhejun; Kudenov, Michael W.

    2017-05-01

    This paper presents a reconstruction algorithm for the Spatial-Spectral Multiplexing (SSM) optical system. The goal of this algorithm is to recover the three-dimensional spatial and spectral information of a scene, given that a one-dimensional spectrometer array is used to sample the pupil of the spatial-spectral modulator. The challenge of the reconstruction is that the non-parametric representation of the three-dimensional spatial and spectral object requires a large number of variables, thus leading to an underdetermined linear system that is hard to uniquely recover. We propose to reparameterize the spectrum using B-spline functions to reduce the number of unknown variables. Our reconstruction algorithm then solves the improved linear system via a least- square optimization of such B-spline coefficients with additional spatial smoothness regularization. The ground truth object and the optical model for the measurement matrix are simulated with both spatial and spectral assumptions according to a realistic field of view. In order to test the robustness of the algorithm, we add Poisson noise to the measurement and test on both two-dimensional and three-dimensional spatial and spectral scenes. Our analysis shows that the root mean square error of the recovered results can be achieved within 5.15%.

  12. Toward a Federal Land Information System: Experiences and issues

    USGS Publications Warehouse

    Sturdevant, James A.

    1988-01-01

    From 1983 to 1987, the U.S. Geological Survey conducted research to develop a national resource data base of Federal lands under the auspices of the Federal Land Information System (FLIS) program. The program's goal was to develop the capability to provide information to national mineral-use policymakers. Prototype spatial data bases containing mineral, land status, and base cartographic data were developed for the Medford, Oreg., area, the State of Alaska, and the Silver City, N. Mex., area. Other accomplishments included (1) the preparation of a digital format for U.S. Geological Survey mineral assessment data and (2) the development of a procedure for integrating parcel-level tabular Alaska land status data into a section-level geographic information system. Overall findings indicated that both vector and raster capabilities are required for a FLIS and that nationwide data availability is a limiting factor in FLIS development. As a result of a 1986 interbureau (U.S. Geological Survey, Bureau of Land Management, and Bureau of Mines) review of the FLIS program, activities were redirected to undertake research on large-area geographic information system techniques. Land use and land cover data generalization strategies were tested, and areafiltering software was found to be the optimum type. In addition, a procedure was developed for transferring tabular land status data of surveyed areas in the contiguous 48 States to spatial data for use in geographic information systems. The U.S. Geological Survey FLIS program, as an administrative unit, ended in 1987, but FLIS-related research on large-area geographic information systems continues.

  13. Information system of mineral deposits in Slovenia

    NASA Astrophysics Data System (ADS)

    Hribernik, K.; Rokavec, D.; Šinigioj, J.; Šolar, S.

    2010-03-01

    At the Geologic Survey of Slovenia the need for complex overview and control of the deposits of available non-metallic mineral raw materials and of their exploitations became urgent. In the framework of the Geologic Information System we established the Database of non-metallic mineral deposits comprising all important data of deposits and concessionars. Relational database is built with program package MS Access, but in year 2008 we plan to transfer it on SQL server. In the evidence there is 272 deposits and 200 concessionars. The mineral resources information system of Slovenia, which was started back in 2002, consists of two integrated parts, mentioned relational database of mineral deposits, which relates information in tabular way so that rules of relational algebra can be applied, and geographic information system (GIS), which relates spatial information of deposits. . The complex relationships between objects and the concepts of normalized data structures, lead to the practical informative and useful data model, transparent to the user and to better decision-making by allowing future scenarios to be developed and inspected. Computerized storage, and display system is as already said, developed and managed under the support of Geological Survey of Slovenia, which conducts research on the occurrence, quality, quantity, and availability of mineral resources in order to help the Nation make informed decisions using earth-science information. Information about deposit is stored in records in approximately hundred data fields. A numeric record number uniquely identifies each site. The data fields are grouped under principal categories. Each record comprise elementary data of deposit (name, type, location, prospect, rock), administrative data (concessionar, number of decree in official paper, object of decree, number of contract and its duration) and data of mineral resource produced amount and size of exploration area). The data can also be searched, sorted and printed using any of these fields. New records are being added annually, and existing records updated or upgraded. Relational database is connected with scanned exploration/exploitation areas of deposits, defined on the base of digital ortofoto. Register of those areas is indispensable because of spatial planning and spatial municipal and regional strategy development. Database is also part of internet application for quick search and review of data and part of web page of mineral resources of Slovenia. The technology chosen for internet application is ESRI's ArcIMS Internet Map Server. ArcIMS allows users to readily and easily display, analyze, and interpret spatial data from desktop using a Web browser connected to the Internet. We believe that there is an opportunity for cooperation within this activity. We can offer a single location where users can come to browse relatively simply for geoscience-related digital data sets.

  14. Thinking Spatially: GIS in the High School Classroom.

    ERIC Educational Resources Information Center

    Alibrandi, Marsha

    1997-01-01

    Discusses the Geographic Information System (GIS) which can display information from a database in a geo-referenced map, the speed with which it can correlate many layers of information, the varied angles it can provide, and other images that it can rotate and transform. States benefits for the classroom including interdisciplinary applications…

  15. Spatial configuration and distribution of forest patches in Champaign County, Illinois: 1940 to 1993

    Treesearch

    J. Danilo Chinea

    1997-01-01

    Spatial configuration and distribution of landscape elements have implications for the dynamics of forest ecosystems, and, therefore, for the management of these resources. The forest cover of Champaign County, in east-central Illinois, was mapped from 1940 and 1993 aerial photography and entered in a geographical information system database. In 1940, 208 forest...

  16. Integrating Geospatial Technologies in Fifth-Grade Curriculum: Impact on Spatial Ability and Map-Analysis Skills

    ERIC Educational Resources Information Center

    Jadallah, May; Hund, Alycia M.; Thayn, Jonathan; Studebaker, Joel Garth; Roman, Zachary J.; Kirby, Elizabeth

    2017-01-01

    This study explores the effects of geographic information systems (GIS) curriculum on fifth-grade students' spatial ability and map-analysis skills. A total of 174 students from an urban public school district and their teachers participated in a quasi-experimental design study. Four teachers implemented a GIS curriculum in experimental classes…

  17. A Geographic-Information-Systems-Based Approach to Analysis of Characteristics Predicting Student Persistence and Graduation

    ERIC Educational Resources Information Center

    Ousley, Chris

    2010-01-01

    This study sought to provide empirical evidence regarding the use of spatial analysis in enrollment management to predict persistence and graduation. The research utilized data from the 2000 U.S. Census and applicant records from The University of Arizona to study the spatial distributions of enrollments. Based on the initial results, stepwise…

  18. An Effect of Spatial-Temporal Association of Response Codes: Understanding the Cognitive Representations of Time

    ERIC Educational Resources Information Center

    Vallesi, Antonino; Binns, Malcolm A.; Shallice, Tim

    2008-01-01

    The present study addresses the question of how such an abstract concept as time is represented by our cognitive system. Specifically, the aim was to assess whether temporal information is cognitively represented through left-to-right spatial coordinates, as already shown for other ordered sequences (e.g., numbers). In Experiment 1, the…

  19. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Treesearch

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  20. Preliminary results of spatial modeling of selected forest health variables in Georgia

    Treesearch

    Brock Stewart; Chris J. Cieszewski

    2009-01-01

    Variables relating to forest health monitoring, such as mortality, are difficult to predict and model. We present here the results of fitting various spatial regression models to these variables. We interpolate plot-level values compiled from the Forest Inventory and Analysis National Information Management System (FIA-NIMS) data that are related to forest health....

  1. Development of a prototype spatial information processing system for hydrologic research

    NASA Technical Reports Server (NTRS)

    Sircar, Jayanta K.

    1991-01-01

    Significant advances have been made in the last decade in the areas of Geographic Information Systems (GIS) and spatial analysis technology, both in hardware and software. Science user requirements are so problem specific that currently no single system can satisfy all of the needs. The work presented here forms part of a conceptual framework for an all-encompassing science-user workstation system. While definition and development of the system as a whole will take several years, it is intended that small scale projects such as the current work will address some of the more short term needs. Such projects can provide a quick mechanism to integrate tools into the workstation environment forming a larger, more complete hydrologic analysis platform. Described here are two components that are very important to the practical use of remote sensing and digital map data in hydrology. Described here is a graph-theoretic technique to rasterize elevation contour maps. Also described is a system to manipulate synthetic aperture radar (SAR) data files and extract soil moisture data.

  2. Equivalent ZF precoding scheme for downlink indoor MU-MIMO VLC systems

    NASA Astrophysics Data System (ADS)

    Fan, YangYu; Zhao, Qiong; Kang, BoChao; Deng, LiJun

    2018-01-01

    In indoor visible light communication (VLC) systems, the channels of photo detectors (PDs) at one user are highly correlated, which determines the choice of spatial diversity model for individual users. In a spatial diversity model, the signals received by PDs belonging to one user carry the same information, and can be combined directly. Based on the above, we propose an equivalent zero-forcing (ZF) precoding scheme for multiple-user multiple-input single-output (MU-MIMO) VLC systems by transforming an indoor MU-MIMO VLC system into an indoor multiple-user multiple-input single-output (MU-MISO) VLC system through simply processing. The power constraints of light emitting diodes (LEDs) are also taken into account. Comprehensive computer simulations in three scenarios indicate that our scheme can not only reduce the computational complexity, but also guarantee the system performance. Furthermore, the proposed scheme does not require noise information in the calculating of the precoding weights, and has no restrictions on the numbers of APs and PDs.

  3. A GIS-based modeling system for petroleum waste management. Geographical information system.

    PubMed

    Chen, Z; Huang, G H; Li, J B

    2003-01-01

    With an urgent need for effective management of petroleum-contaminated sites, a GIS-aided simulation (GISSIM) system is presented in this study. The GISSIM contains two components: an advanced 3D numerical model and a geographical information system (GIS), which are integrated within a general framework. The modeling component undertakes simulation for the fate of contaminants in subsurface unsaturated and saturated zones. The GIS component is used in three areas throughout the system development and implementation process: (i) managing spatial and non-spatial databases; (ii) linking inputs, model, and outputs; and (iii) providing an interface between the GISSIM and its users. The developed system is applied to a North American case study. Concentrations of benzene, toluene, and xylenes in groundwater under a petroleum-contaminated site are dynamically simulated. Reasonable outputs have been obtained and presented graphically. They provide quantitative and scientific bases for further assessment of site-contamination impacts and risks, as well as decisions on practical remediation actions.

  4. Using Moran's I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China

    NASA Astrophysics Data System (ADS)

    Fu, W. J.; Jiang, P. K.; Zhou, G. M.; Zhao, K. L.

    2014-04-01

    Spatial pattern information of carbon density in forest ecosystem including forest litter carbon (FLC) plays an important role in evaluating carbon sequestration potentials. The spatial variation of FLC density in the typical subtropical forests in southeastern China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (south-north) × 6 km (east-west) grid system in Zhejiang province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha-1 to 8841.3 kg ha-1, with an average of 1786.7 kg ha-1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate "nugget-to-sill" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas, while Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) Basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS, could be used to study spatial patterns of environmental variables related to forest ecosystem.

  5. A Biophysical Modeling Framework for Assessing the Environmental Impact of Biofuel Production

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Izaurradle, C.; Manowitz, D.; West, T. O.; Post, W. M.; Thomson, A. M.; Nichols, J.; Bandaru, V.; Williams, J. R.

    2009-12-01

    Long-term sustainability of a biofuel economy necessitates environmentally friendly biofuel production systems. We describe a biophysical modeling framework developed to understand and quantify the environmental value and impact (e.g. water balance, nutrients balance, carbon balance, and soil quality) of different biomass cropping systems. This modeling framework consists of three major components: 1) a Geographic Information System (GIS) based data processing system, 2) a spatially-explicit biophysical modeling approach, and 3) a user friendly information distribution system. First, we developed a GIS to manage the large amount of geospatial data (e.g. climate, land use, soil, and hydrograhy) and extract input information for the biophysical model. Second, the Environmental Policy Integrated Climate (EPIC) biophysical model is used to predict the impact of various cropping systems and management intensities on productivity, water balance, and biogeochemical variables. Finally, a geo-database is developed to distribute the results of ecosystem service variables (e.g. net primary productivity, soil carbon balance, soil erosion, nitrogen and phosphorus losses, and N2O fluxes) simulated by EPIC for each spatial modeling unit online using PostgreSQL. We applied this framework in a Regional Intensive Management Area (RIMA) of 9 counties in Michigan. A total of 4,833 spatial units with relatively homogeneous biophysical properties were derived using SSURGO, Crop Data Layer, County, and 10-digit watershed boundaries. For each unit, EPIC was executed from 1980 to 2003 under 54 cropping scenarios (eg. corn, switchgrass, and hybrid poplar). The simulation results were compared with historical crop yields from USDA NASS. Spatial mapping of the results show high variability among different cropping scenarios in terms of the simulated ecosystem services variables. Overall, the framework developed in this study enables the incorporation of environmental factors into economic and life-cycle analysis in order to optimize biomass cropping production scenarios.

  6. Spatial analysis of lettuce downy mildew using geostatistics and geographic information systems.

    PubMed

    Wu, B M; van Bruggen, A H; Subbarao, K V; Pennings, G G

    2001-02-01

    ABSTRACT The epidemiology of lettuce downy mildew has been investigated extensively in coastal California. However, the spatial patterns of the disease and the distance that Bremia lactucae spores can be transported have not been determined. During 1995 to 1998, we conducted several field- and valley-scale surveys to determine spatial patterns of this disease in the Salinas valley. Geostatistical analyses of the survey data at both scales showed that the influence range of downy mildew incidence at one location on incidence at other locations was between 80 and 3,000 m. A linear relationship was detected between semivariance and lag distance at the field scale, although no single statistical model could fit the semi-variograms at the valley scale. Spatial interpolation by the inverse distance weighting method with a power of 2 resulted in plausible estimates of incidence throughout the valley. Cluster analysis in geographic information systems on the interpolated disease incidence from different dates demonstrated that the Salinas valley could be divided into two areas, north and south of Salinas City, with high and low disease pressure, respectively. Seasonal and spatial trends along the valley suggested that the distinction between the downy mildew conducive and nonconducive areas might be determined by environmental factors.

  7. Visualization of spatial-temporal data based on 3D virtual scene

    NASA Astrophysics Data System (ADS)

    Wang, Xianghong; Liu, Jiping; Wang, Yong; Bi, Junfang

    2009-10-01

    The main purpose of this paper is to realize the expression of the three-dimensional dynamic visualization of spatialtemporal data based on three-dimensional virtual scene, using three-dimensional visualization technology, and combining with GIS so that the people's abilities of cognizing time and space are enhanced and improved by designing dynamic symbol and interactive expression. Using particle systems, three-dimensional simulation, virtual reality and other visual means, we can simulate the situations produced by changing the spatial location and property information of geographical entities over time, then explore and analyze its movement and transformation rules by changing the interactive manner, and also replay history and forecast of future. In this paper, the main research object is the vehicle track and the typhoon path and spatial-temporal data, through three-dimensional dynamic simulation of its track, and realize its timely monitoring its trends and historical track replaying; according to visualization techniques of spatialtemporal data in Three-dimensional virtual scene, providing us with excellent spatial-temporal information cognitive instrument not only can add clarity to show spatial-temporal information of the changes and developments in the situation, but also be used for future development and changes in the prediction and deduction.

  8. Geographic Information Systems and Web Page Development

    NASA Technical Reports Server (NTRS)

    Reynolds, Justin

    2004-01-01

    The Facilities Engineering and Architectural Branch is responsible for the design and maintenance of buildings, laboratories, and civil structures. In order to improve efficiency and quality, the FEAB has dedicated itself to establishing a data infrastructure based on Geographic Information Systems, GIS. The value of GIS was explained in an article dating back to 1980 entitled "Need for a Multipurpose Cadastre" which stated, "There is a critical need for a better land-information system in the United States to improve land-conveyance procedures, furnish a basis for equitable taxation, and provide much-needed information for resource management and environmental planning." Scientists and engineers both point to GIS as the solution. What is GIS? According to most text books, Geographic Information Systems is a class of software that stores, manages, and analyzes mapable features on, above, or below the surface of the earth. GIS software is basically database management software to the management of spatial data and information. Simply put, Geographic Information Systems manage, analyze, chart, graph, and map spatial information. GIS can be broken down into two main categories, urban GIS and natural resource GIS. Further still, natural resource GIS can be broken down into six sub-categories, agriculture, forestry, wildlife, catchment management, archaeology, and geology/mining. Agriculture GIS has several applications, such as agricultural capability analysis, land conservation, market analysis, or whole farming planning. Forestry GIs can be used for timber assessment and management, harvest scheduling and planning, environmental impact assessment, and pest management. GIS when used in wildlife applications enables the user to assess and manage habitats, identify and track endangered and rare species, and monitor impact assessment.

  9. A Bayesian Framework for Analysis of Pseudo-Spatial Models of Comparable Engineered Systems with Application to Spacecraft Anomaly Prediction Based on Precedent Data

    NASA Astrophysics Data System (ADS)

    Ndu, Obibobi Kamtochukwu

    To ensure that estimates of risk and reliability inform design and resource allocation decisions in the development of complex engineering systems, early engagement in the design life cycle is necessary. An unfortunate constraint on the accuracy of such estimates at this stage of concept development is the limited amount of high fidelity design and failure information available on the actual system under development. Applying the human ability to learn from experience and augment our state of knowledge to evolve better solutions mitigates this limitation. However, the challenge lies in formalizing a methodology that takes this highly abstract, but fundamentally human cognitive, ability and extending it to the field of risk analysis while maintaining the tenets of generalization, Bayesian inference, and probabilistic risk analysis. We introduce an integrated framework for inferring the reliability, or other probabilistic measures of interest, of a new system or a conceptual variant of an existing system. Abstractly, our framework is based on learning from the performance of precedent designs and then applying the acquired knowledge, appropriately adjusted based on degree of relevance, to the inference process. This dissertation presents a method for inferring properties of the conceptual variant using a pseudo-spatial model that describes the spatial configuration of the family of systems to which the concept belongs. Through non-metric multidimensional scaling, we formulate the pseudo-spatial model based on rank-ordered subjective expert perception of design similarity between systems that elucidate the psychological space of the family. By a novel extension of Kriging methods for analysis of geospatial data to our "pseudo-space of comparable engineered systems", we develop a Bayesian inference model that allows prediction of the probabilistic measure of interest.

  10. Optimization of Decision-Making for Spatial Sampling in the North China Plain, Based on Remote-Sensing a Priori Knowledge

    NASA Astrophysics Data System (ADS)

    Feng, J.; Bai, L.; Liu, S.; Su, X.; Hu, H.

    2012-07-01

    In this paper, the MODIS remote sensing data, featured with low-cost, high-timely and moderate/low spatial resolutions, in the North China Plain (NCP) as a study region were firstly used to carry out mixed-pixel spectral decomposition to extract an useful regionalized indicator parameter (RIP) (i.e., an available ratio, that is, fraction/percentage, of winter wheat planting area in each pixel as a regionalized indicator variable (RIV) of spatial sampling) from the initial selected indicators. Then, the RIV values were spatially analyzed, and the spatial structure characteristics (i.e., spatial correlation and variation) of the NCP were achieved, which were further processed to obtain the scalefitting, valid a priori knowledge or information of spatial sampling. Subsequently, founded upon an idea of rationally integrating probability-based and model-based sampling techniques and effectively utilizing the obtained a priori knowledge or information, the spatial sampling models and design schemes and their optimization and optimal selection were developed, as is a scientific basis of improving and optimizing the existing spatial sampling schemes of large-scale cropland remote sensing monitoring. Additionally, by the adaptive analysis and decision strategy the optimal local spatial prediction and gridded system of extrapolation results were able to excellently implement an adaptive report pattern of spatial sampling in accordance with report-covering units in order to satisfy the actual needs of sampling surveys.

  11. Vasu Kilaru

    EPA Pesticide Factsheets

    Vasu Kilaru's expertise is in Geographic Information Systems, Spatial Analysis, and satellite remote sensing particularly with respect to trying to detect ground-level fine particles using space borne instruments.

  12. Dopaminergic and cholinergic modulations of visual-spatial attention and working memory: insights from molecular genetic research and implications for adult cognitive development.

    PubMed

    Störmer, Viola S; Passow, Susanne; Biesenack, Julia; Li, Shu-Chen

    2012-05-01

    Attention and working memory are fundamental for selecting and maintaining behaviorally relevant information. Not only do both processes closely intertwine at the cognitive level, but they implicate similar functional brain circuitries, namely the frontoparietal and the frontostriatal networks, which are innervated by cholinergic and dopaminergic pathways. Here we review the literature on cholinergic and dopaminergic modulations of visual-spatial attention and visual working memory processes to gain insights on aging-related changes in these processes. Some extant findings have suggested that the cholinergic system plays a role in the orienting of attention to enable the detection and discrimination of visual information, whereas the dopaminergic system has mainly been associated with working memory processes such as updating and stabilizing representations. However, since visual-spatial attention and working memory processes are not fully dissociable, there is also evidence of interacting cholinergic and dopaminergic modulations of both processes. We further review gene-cognition association studies that have shown that individual differences in visual-spatial attention and visual working memory are associated with acetylcholine- and dopamine-relevant genes. The efficiency of these 2 transmitter systems declines substantially during healthy aging. These declines, in part, contribute to age-related deficits in attention and working memory functions. We report novel data showing an effect of dopamine COMT gene on spatial updating processes in older but not in younger adults, indicating potential magnification of genetic effects in old age.

  13. Integrated approach to monitor water dynamics with drones

    NASA Astrophysics Data System (ADS)

    Raymaekers, Dries; De Keukelaere, Liesbeth; Knaeps, Els; Strackx, Gert; Decrop, Boudewijn; Bollen, Mark

    2017-04-01

    Remote sensing has been used for more than 20 years to estimate water quality in the open ocean and study the evolution of vegetation on land. More recently big improvements have been made to extend these practices to coastal and inland waters, opening new monitoring opportunities, eg. monitoring the impact of dredging activities on the aquatic environment. While satellite sensors can provide complete coverage and historical information of the study area, they are limited in their temporal revisit time and spatial resolution. Therefore, deployment of drones can create an added value and in combination with satellite information increase insights in the dynamics and actors of coastal and aquatic systems. Drones have the advantages of monitoring at high spatial detail (cm scale), with high frequency and are flexible. One of the important water quality parameters is the suspended sediment concentration. However, retrieving sediment concentrations from unmanned systems is a challenging task. The sediment dynamics in the port of Breskens, the Netherlands, were investigated by combining information retrieved from different data sources: satellite, drone and in-situ data were collected, analysed and inserted in sediment models. As such, historical (satellite), near-real time (drone) and predictive (sediment models) information, integrated in a spatial data infrastructure, allow to perform data analysis and can support decision makers.

  14. The design and research of poverty alleviation monitoring and evaluation system: a case study in the Jiangxi province

    NASA Astrophysics Data System (ADS)

    Mo, Hong-yuan; Wang, Ying-jie; Yu, Zhuo-yuan

    2009-07-01

    The Poverty Alleviation Monitoring and Evaluation System (PAMES) is introduced in this paper. The authors present environment platform selection, and details of system design and realization. Different with traditional research of poverty alleviation, this paper develops a new analytical geo-visualization approach to study the distribution and causes of poverty phenomena within Geographic Information System (GIS). Based on the most detailed poverty population data, the spatial location and population statistical indicators of poverty village in Jiangxi province, the distribution characteristics of poverty population are detailed. The research results can provide much poverty alleviation decision support from a spatial-temporal view. It should be better if the administrative unit of poverty-stricken area to be changed from county to village according to spatial distribution pattern of poverty.

  15. Guidelines for the creation and management of geographic data bases within a GIS environment, version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durfee, R.C.; Land, M.L.; McCord, R.A.

    1994-07-01

    A Geographic Information System (GIS) provides the ability to manage and analyze all types of geographic and environmental information. It performs these functions by providing the tools necessary to capture, access, analyze, and display spatially referenced information in graphic and tabular form. Typical data elements that can be visualized in a map might include roads, buildings, topography, streams, waste areas, monitoring wells, groundwater measurements, soil sample results, landcover, and demography. The intent of this document is to provide data management and quality assurance (QA) guidelines that will aid implementors and users of GIS technology and data bases. These guidelines shouldmore » be useful in all, phases of GIS activities, including the following: (1) project planning, (2) data collection and generation, (3) data maintenance and management, (4) QA and standards, (5) project implementation, (6) spatial analysis and data interpretation, (7) data transformation and exchange, and (8) output and reporting. The daily use of desktop GIS technologies within Martin Marietta Energy Systems, Inc. (Energy Systems), is a relatively new phenomenon, but usage is increasing rapidly. Large volumes of GIS-related data are now being collected and analyzed for the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) and its facilities. It is very important to establish and follow good data management practices for GIS. In the absence of such practices, data-related problems will overwhelm users for many years. In comparison with traditional data processing and software life-cycle management, there is limited information on GIS QA techniques, data standards and structures, configuration control, and documentation practices. This lack of information partially results from the newness of the technology and the complexity of spatial information and geographic analysis techniques as compared to typical tabular data management.« less

  16. Resolution improvement in positron emission tomography using anatomical Magnetic Resonance Imaging.

    PubMed

    Chu, Yong; Su, Min-Ying; Mandelkern, Mark; Nalcioglu, Orhan

    2006-08-01

    An ideal imaging system should provide information with high-sensitivity, high spatial, and temporal resolution. Unfortunately, it is not possible to satisfy all of these desired features in a single modality. In this paper, we discuss methods to improve the spatial resolution in positron emission imaging (PET) using a priori information from Magnetic Resonance Imaging (MRI). Our approach uses an image restoration algorithm based on the maximization of mutual information (MMI), which has found significant success for optimizing multimodal image registration. The MMI criterion is used to estimate the parameters in the Sharpness-Constrained Wiener filter. The generated filter is then applied to restore PET images of a realistic digital brain phantom. The resulting restored images show improved resolution and better signal-to-noise ratio compared to the interpolated PET images. We conclude that a Sharpness-Constrained Wiener filter having parameters optimized from a MMI criterion may be useful for restoring spatial resolution in PET based on a priori information from correlated MRI.

  17. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames.

    PubMed

    Knierim, James J; Neunuebel, Joshua P; Deshmukh, Sachin S

    2014-02-05

    The hippocampus receives its major cortical input from the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). It is commonly believed that the MEC provides spatial input to the hippocampus, whereas the LEC provides non-spatial input. We review new data which suggest that this simple dichotomy between 'where' versus 'what' needs revision. We propose a refinement of this model, which is more complex than the simple spatial-non-spatial dichotomy. MEC is proposed to be involved in path integration computations based on a global frame of reference, primarily using internally generated, self-motion cues and external input about environmental boundaries and scenes; it provides the hippocampus with a coordinate system that underlies the spatial context of an experience. LEC is proposed to process information about individual items and locations based on a local frame of reference, primarily using external sensory input; it provides the hippocampus with information about the content of an experience.

  18. Progress in building a cognitive vision system

    NASA Astrophysics Data System (ADS)

    Benjamin, D. Paul; Lyons, Damian; Yue, Hong

    2016-05-01

    We are building a cognitive vision system for mobile robots that works in a manner similar to the human vision system, using saccadic, vergence and pursuit movements to extract information from visual input. At each fixation, the system builds a 3D model of a small region, combining information about distance, shape, texture and motion to create a local dynamic spatial model. These local 3D models are composed to create an overall 3D model of the robot and its environment. This approach turns the computer vision problem into a search problem whose goal is the acquisition of sufficient spatial understanding for the robot to succeed at its tasks. The research hypothesis of this work is that the movements of the robot's cameras are only those that are necessary to build a sufficiently accurate world model for the robot's current goals. For example, if the goal is to navigate through a room, the model needs to contain any obstacles that would be encountered, giving their approximate positions and sizes. Other information does not need to be rendered into the virtual world, so this approach trades model accuracy for speed.

  19. Mitotic Cortical Waves Predict Future Division Sites by Encoding Positional and Size Information.

    PubMed

    Xiao, Shengping; Tong, Cheesan; Yang, Yang; Wu, Min

    2017-11-20

    Dynamic spatial patterns such as traveling waves could theoretically encode spatial information, but little is known about whether or how they are employed by biological systems, especially higher eukaryotes. Here, we show that concentric target or spiral waves of active Cdc42 and the F-BAR protein FBP17 are invoked in adherent cells at the onset of mitosis. These waves predict the future sites of cell divisions and represent the earliest known spatial cues for furrow assembly. Unlike interphase waves, the frequencies and wavelengths of the mitotic waves display size-dependent scaling properties. While the positioning role of the metaphase waves requires microtubule dynamics, spindle and microtubule-independent inhibitory signals are propagated by the mitotic waves to ensure the singularity of furrow formation. Taken together, we propose that metaphase cortical waves integrate positional and cell size information for division-plane specification in adhesion-dependent cytokinesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system.

    PubMed

    Wu, Yuehao; Mirza, Iftekhar O; Arce, Gonzalo R; Prather, Dennis W

    2011-07-15

    We report on the development of a digital-micromirror-device (DMD)-based multishot snapshot spectral imaging (DMD-SSI) system as an alternative to current piezostage-based multishot coded aperture snapshot spectral imager (CASSI) systems. In this system, a DMD is used to implement compressive sensing (CS) measurement patterns for reconstructing the spatial/spectral information of an imaging scene. Based on the CS measurement results, we demonstrated the concurrent reconstruction of 24 spectral images. The DMD-SSI system is versatile in nature as it can be used to implement independent CS measurement patterns in addition to spatially shifted patterns that piezostage-based systems can offer. © 2011 Optical Society of America

  1. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    PubMed Central

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641

  2. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    PubMed

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  3. Spatial problem-solving strategies of middle school students: Wayfinding with geographic information systems

    NASA Astrophysics Data System (ADS)

    Wigglesworth, John C.

    2000-06-01

    Geographic Information Systems (GIS) is a powerful computer software package that emphasizes the use of maps and the management of spatially referenced environmental data archived in a systems data base. Professional applications of GIS have been in place since the 1980's, but only recently has GIS gained significant attention in the K--12 classroom. Students using GIS are able to manipulate and query data in order to solve all manners of spatial problems. Very few studies have examined how this technological innovation can support classroom learning. In particular, there has been little research on how experience in using the software correlates with a child's spatial cognition and his/her ability to understand spatial relationships. This study investigates the strategies used by middle school students to solve a wayfinding (route-finding) problem using the ArcView GIS software. The research design combined an individual background questionnaire, results from the Group Assessment of Logical Thinking (GALT) test, and analysis of reflective think-aloud sessions to define the characteristics of the strategies students' used to solve this particular class of spatial problem. Three uniquely different spatial problem solving strategies were identified. Visual/Concrete Wayfinders used a highly visual strategy; Logical/Abstract Wayfinders used GIS software tools to apply a more analytical and systematic approach; Transitional Wayfinders used an approach that showed evidence of one that was shifting from a visual strategy to one that was more analytical. The triangulation of data sources indicates that this progression of wayfinding strategy can be correlated both to Piagetian stages of logical thought and to experience with the use of maps. These findings suggest that GIS teachers must be aware that their students' performance will lie on a continuum that is based on cognitive development, spatial ability, and prior experience with maps. To be most effective, GIS teaching strategies and curriculum development should also represent a progression that correlates to the learners' current skills and experience.

  4. [Modality specific systems of representation and processing of information. Superfluous images, useful representations, necessary evil or inevitable consequences of optimal stimulus processing].

    PubMed

    Zimmer, H D

    1993-01-01

    It is discussed what is underlying the assumption of modality-specific processing systems and representations. Starting from the information processing approach relevant aspects of mental representations and their physiological realizations are discussed. Then three different forms of modality-specific systems are distinguished: as stimulus specific processing, as specific informational formats, and as modular part systems. Parallel to that three kinds of analogue systems are differentiated: as holding an analogue-relation, as having a specific informational format and as a set of specific processing constraints. These different aspects of the assumption of modality-specific systems are demonstrated in the example of visual and spatial information processing. It is concluded that postulating information-specific systems is not a superfluous assumption, but it is necessary, and even more likely it is an inevitable consequence of an optimization of stimulus processing.

  5. GEOGRAPHICAL INFORMATION SYSTEM, DECISION SUPPORT SYSTEMS, AND URBAN STORMWATER MANAGEMENT

    EPA Science Inventory

    The full report reviews the application of Geographic Inforamtion System (GIS) technology to the field of urban stormwater modeling. The GIS literature is reviewed in the context of its use as a spatial database for urban stormwater modeling, integration of GIS and hydroloic time...

  6. Processing of spatial and non-spatial information in rats with lesions of the medial and lateral entorhinal cortex: Environmental complexity matters.

    PubMed

    Rodo, Christophe; Sargolini, Francesca; Save, Etienne

    2017-03-01

    The entorhinal-hippocampal circuitry has been suggested to play an important role in episodic memory but the contribution of the entorhinal cortex remains elusive. Predominant theories propose that the medial entorhinal cortex (MEC) processes spatial information whereas the lateral entorhinal cortex (LEC) processes non spatial information. A recent study using an object exploration task has suggested that the involvement of the MEC and LEC spatial and non-spatial information processing could be modulated by the amount of information to be processed, i.e. environmental complexity. To address this hypothesis we used an object exploration task in which rats with excitotoxic lesions of the MEC and LEC had to detect spatial and non-spatial novelty among a set of objects and we varied environmental complexity by decreasing the number of objects or amount of object diversity. Reducing diversity resulted in restored ability to process spatial and non-spatial information in MEC and LEC groups, respectively. Reducing the number of objects yielded restored ability to process non-spatial information in the LEC group but not the ability to process spatial information in the MEC group. The findings indicate that the MEC and LEC are not strictly necessary for spatial and non-spatial processing but that their involvement depends on the complexity of the information to be processed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A NEW FRAMEWORK FOR URBAN SUSTAINABILITY ASSESSMENTS: LINKING COMPLEXITY, INFORMATION AND POLICY

    EPA Science Inventory

    Urban systems emerge as distinct entities from the complex interactions among social, economic and cultural attributes, and information, energy and material stocks and flows that operate on different temporal and spatial scales. Such complexity poses a challenge to identify the...

  8. NEW FRAMEWORKS FOR URBAN SUSTAINABILITY ASSESSMENTS: LINKING COMPLEXITY, INFORMATION AND POLICY

    EPA Science Inventory

    Urban systems emerge as distinct entities from the complex interactions among social, economic and cultural attributes, and information, energy and material stocks and flows that operate on different temporal and spatial scales. Such complexity poses a challenge to identify the c...

  9. Principles of Temporal Processing Across the Cortical Hierarchy.

    PubMed

    Himberger, Kevin D; Chien, Hsiang-Yun; Honey, Christopher J

    2018-05-02

    The world is richly structured on multiple spatiotemporal scales. In order to represent spatial structure, many machine-learning models repeat a set of basic operations at each layer of a hierarchical architecture. These iterated spatial operations - including pooling, normalization and pattern completion - enable these systems to recognize and predict spatial structure, while robust to changes in the spatial scale, contrast and noisiness of the input signal. Because our brains also process temporal information that is rich and occurs across multiple time scales, might the brain employ an analogous set of operations for temporal information processing? Here we define a candidate set of temporal operations, and we review evidence that they are implemented in the mammalian cerebral cortex in a hierarchical manner. We conclude that multiple consecutive stages of cortical processing can be understood to perform temporal pooling, temporal normalization and temporal pattern completion. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Development of spatial data guidelines and standards: spatial data set documentation to support hydrologic analysis in the U.S. Geological Survey

    USGS Publications Warehouse

    Fulton, James L.

    1992-01-01

    Spatial data analysis has become an integral component in many surface and sub-surface hydrologic investigations within the U.S. Geological Survey (USGS). Currently, one of the largest costs in applying spatial data analysis is the cost of developing the needed spatial data. Therefore, guidelines and standards are required for the development of spatial data in order to allow for data sharing and reuse; this eliminates costly redevelopment. In order to attain this goal, the USGS is expanding efforts to identify guidelines and standards for the development of spatial data for hydrologic analysis. Because of the variety of project and database needs, the USGS has concentrated on developing standards for documenting spatial sets to aid in the assessment of data set quality and compatibility of different data sets. An interim data set documentation standard (1990) has been developed that provides a mechanism for associating a wide variety of information with a data set, including data about source material, data automation and editing procedures used, projection parameters, data statistics, descriptions of features and feature attributes, information on organizational contacts lists of operations performed on the data, and free-form comments and notes about the data, made at various times in the evolution of the data set. The interim data set documentation standard has been automated using a commercial geographic information system (GIS) and data set documentation software developed by the USGS. Where possible, USGS developed software is used to enter data into the data set documentation file automatically. The GIS software closely associates a data set with its data set documentation file; the documentation file is retained with the data set whenever it is modified, copied, or transferred to another computer system. The Water Resources Division of the USGS is continuing to develop spatial data and data processing standards, with emphasis on standards needed to support hydrologic analysis, hydrologic data processing, and publication of hydrologic thermatic maps. There is a need for the GIS vendor community to develop data set documentation tools similar to those developed by the USGS, or to incorporate USGS developed tools in their software.

  11. Leveraging Geographic Information Systems in an Integrated Health Care Delivery Organization

    PubMed Central

    Clift, Kathryn; Scott, Luther; Johnson, Michael; Gonzalez, Carlos

    2014-01-01

    A handful of the many changes resulting from the Affordable Care Act underscore the need for a geographic understanding of existing and prospective member communities. Health exchanges require that health provider networks are geographically accessible to underserved populations, and nonprofit hospitals nationwide are required to conduct community health needs assessments every three years. Beyond these requirements, health care providers are using maps and spatial analysis to better address health outcomes that are related in complex ways to social and economic factors. Kaiser Permanente is applying geographic information systems, with spatial analytics and map-based visualizations, to data sourced from its electronic medical records and from publicly and commercially available datasets. The results are helping to shape an understanding of the health needs of Kaiser Permanente members in the context of their communities. This understanding is part of a strategy to inform partnerships and interventions in and beyond traditional care delivery settings. PMID:24694317

  12. Image gathering and processing - Information and fidelity

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Halyo, N.; Samms, R. W.; Stacy, K.

    1985-01-01

    In this paper we formulate and use information and fidelity criteria to assess image gathering and processing, combining optical design with image-forming and edge-detection algorithms. The optical design of the image-gathering system revolves around the relationship among sampling passband, spatial response, and signal-to-noise ratio (SNR). Our formulations of information, fidelity, and optimal (Wiener) restoration account for the insufficient sampling (i.e., aliasing) common in image gathering as well as for the blurring and noise that conventional formulations account for. Performance analyses and simulations for ordinary optical-design constraints and random scences indicate that (1) different image-forming algorithms prefer different optical designs; (2) informationally optimized designs maximize the robustness of optimal image restorations and lead to the highest-spatial-frequency channel (relative to the sampling passband) for which edge detection is reliable (if the SNR is sufficiently high); and (3) combining the informationally optimized design with a 3 by 3 lateral-inhibitory image-plane-processing algorithm leads to a spatial-response shape that approximates the optimal edge-detection response of (Marr's model of) human vision and thus reduces the data preprocessing and transmission required for machine vision.

  13. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    NASA Astrophysics Data System (ADS)

    Chrystal, C.; Burrell, K. H.; Grierson, B. A.; Pace, D. C.

    2015-10-01

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  14. Multimodal MSI in Conjunction with Broad Coverage Spatially Resolved MS2 Increases Confidence in Both Molecular Identification and Localization.

    PubMed

    Veličković, Dušan; Chu, Rosalie K; Carrell, Alyssa A; Thomas, Mathew; Paša-Tolić, Ljiljana; Weston, David J; Anderton, Christopher R

    2018-01-02

    One critical aspect of mass spectrometry imaging (MSI) is the need to confidently identify detected analytes. While orthogonal tandem MS (e.g., LC-MS 2 ) experiments from sample extracts can assist in annotating ions, the spatial information about these molecules is lost. Accordingly, this could cause mislead conclusions, especially in cases where isobaric species exhibit different distributions within a sample. In this Technical Note, we employed a multimodal imaging approach, using matrix assisted laser desorption/ionization (MALDI)-MSI and liquid extraction surface analysis (LESA)-MS 2 I, to confidently annotate and localize a broad range of metabolites involved in a tripartite symbiosis system of moss, cyanobacteria, and fungus. We found that the combination of these two imaging modalities generated very congruent ion images, providing the link between highly accurate structural information onfered by LESA and high spatial resolution attainable by MALDI. These results demonstrate how this combined methodology could be very useful in differentiating metabolite routes in complex systems.

  15. Geographic information systems (GIS) spatial data compilation of geodynamic, tectonic, metallogenic, mineral deposit, and geophysical maps and associated descriptive data for northeast Asia

    USGS Publications Warehouse

    Naumova, Vera V.; Patuk, Mikhail I.; Kapitanchuk, Marina Yu.; Nokleberg, Warren J.; Khanchuk, Alexander I.; Parfenov, Leonid M.; Rodionov, Sergey M.; Miller, Robert J.; Diggles, Michael F.

    2006-01-01

    This is the online version of a CD-ROM publication. It contains all of the data that are on the disc but extra files have been removed: index files, software installers, and Windows autolaunch files. The purpose of this publication is to provide a high-quality spatial data compilation (Geographical Information System or GIS) of geodynamic, mineral deposit, and metallogenic belt maps, and descriptive data for Northeast Asia for customers and users. This area consists of Eastern Siberia, Russian Far East, Mongolia, northern China, South Korea, and Japan. The GIS compilation contains integrated spatial data for: (1) a geodynamics map at a scale of 1:5,000,000; (2) a mineral deposit location map; (3) metallogenic belt maps; (4) detailed descriptions of geologic units, including tectonostratigraphic terranes, cratons, major melange zones, and overlap assemblages, with references; (5) detailed descriptions of metallogenic belts with references; (6) detailed mineral deposit descriptions with references; and (7) page-size stratigraphic columns for major terranes.

  16. Spatial accessibility of the population to urban health centres in Kermanshah, Islamic Republic of Iran: a geographic information systems analysis.

    PubMed

    Reshadat, S; Saedi, S; Zangeneh, A; Ghasemi, S R; Gilan, N R; Karbasi, A; Bavandpoor, E

    2015-09-08

    Geographic information systems (GIS) analysis has not been widely used in underdeveloped countries to ensure that vulnerable populations have accessibility to primary health-care services. This study applied GIS methods to analyse the spatial accessibility to urban primary-care centres of the population in Kermanshah city, Islamic Republic of Iran, by age and sex groups. In a descriptive-analytical study over 3 time periods, network analysis, mean centre and standard distance methods were applied using ArcGIS 9.3. The analysis was based on a standard radius of 750 m distance from health centres, walking speed of 1 m/s and desired access time to health centres of 12.5 mins. The proportion of the population with inadequate geographical access to health centres rose from 47.3% in 1997 to 58.4% in 2012. The mean centre and standard distance mapping showed that the spatial distribution of health centres in Kermanshah needed to be adjusted to changes in population distribution.

  17. VisGets: coordinated visualizations for web-based information exploration and discovery.

    PubMed

    Dörk, Marian; Carpendale, Sheelagh; Collins, Christopher; Williamson, Carey

    2008-01-01

    In common Web-based search interfaces, it can be difficult to formulate queries that simultaneously combine temporal, spatial, and topical data filters. We investigate how coordinated visualizations can enhance search and exploration of information on the World Wide Web by easing the formulation of these types of queries. Drawing from visual information seeking and exploratory search, we introduce VisGets--interactive query visualizations of Web-based information that operate with online information within a Web browser. VisGets provide the information seeker with visual overviews of Web resources and offer a way to visually filter the data. Our goal is to facilitate the construction of dynamic search queries that combine filters from more than one data dimension. We present a prototype information exploration system featuring three linked VisGets (temporal, spatial, and topical), and used it to visually explore news items from online RSS feeds.

  18. Development of an intelligent interface for adding spatial objects to a knowledge-based geographic information system

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Goettsche, Craig

    1989-01-01

    Earth Scientists lack adequate tools for quantifying complex relationships between existing data layers and studying and modeling the dynamic interactions of these data layers. There is a need for an earth systems tool to manipulate multi-layered, heterogeneous data sets that are spatially indexed, such as sensor imagery and maps, easily and intelligently in a single system. The system can access and manipulate data from multiple sensor sources, maps, and from a learned object hierarchy using an advanced knowledge-based geographical information system. A prototype Knowledge-Based Geographic Information System (KBGIS) was recently constructed. Many of the system internals are well developed, but the system lacks an adequate user interface. A methodology is described for developing an intelligent user interface and extending KBGIS to interconnect with existing NASA systems, such as imagery from the Land Analysis System (LAS), atmospheric data in Common Data Format (CDF), and visualization of complex data with the National Space Science Data Center Graphics System. This would allow NASA to quickly explore the utility of such a system, given the ability to transfer data in and out of KBGIS easily. The use and maintenance of the object hierarchies as polymorphic data types brings, to data management, a while new set of problems and issues, few of which have been explored above the prototype level.

  19. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  20. The biology of the dance language.

    PubMed

    Dyer, Fred C

    2002-01-01

    Honey bee foragers dance to communicate the spatial location of food and other resources to their nestmates. This remarkable communication system has long served as an important model system for studying mechanisms and evolution of complex behavior. I provide a broad synthesis of recent research on dance communication, concentrating on the areas that are currently the focus of active research. Specific issues considered are as follows: (a) the sensory and integrative mechanisms underlying the processing of spatial information in dance communication, (b) the role of dance communication in regulating the recruitment of workers to resources in the environment, (c) the evolution of the dance language, and (d) the adaptive fine-tuning of the dance for efficient spatial communication.

  1. Visualization tool for human-machine interface designers

    NASA Astrophysics Data System (ADS)

    Prevost, Michael P.; Banda, Carolyn P.

    1991-06-01

    As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.

  2. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    NASA Astrophysics Data System (ADS)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  3. Sustainability and Resilience in the Urban Environment

    EPA Science Inventory

    Urban systems are formed by a diversity of actors and activities, and consist of complex interactions involving financial, information, energy, ecological, and material stocks and flows that operate on different spatial and temporal scales. The urban systems that emerge from thes...

  4. ENVISIONING ALTERNATIVES: USING CITIZEN GUIDANCE TO MAP FUTURE LAND AND WATER USE

    EPA Science Inventory

    Spatially explicit landscape analyses are a central activity in research on the relationships between people and changes in natural systems. Using geographical information systems and related tools, the Pacific Northwest Ecosystem Research Consortium depicted historical (pre-Eur...

  5. The AgESGUI geospatial simulation system for environmental model application and evaluation

    USDA-ARS?s Scientific Manuscript database

    Practical decision making in spatially-distributed environmental assessment and management is increasingly being based on environmental process-based models linked to geographical information systems (GIS). Furthermore, powerful computers and Internet-accessible assessment tools are providing much g...

  6. Spatial analysis of fuel treatment options for chaparral on the Angeles national forest

    Treesearch

    G. Jones; J. Chew; R. Silverstein; C. Stalling; J. Sullivan; J. Troutwine; D. Weise; D. Garwood

    2008-01-01

    Spatial fuel treatment schedules were developed for the chaparral vegetation type on the Angeles National Forest using the Multi-resource Analysis and Geographic Information System (MAGIS). Schedules varied by the priority given to various wildland urban interface areas and the general forest, as well as by the number of acres treated per decade. The effectiveness of...

  7. Assessment and mapping of water pollution indices in zone-III of municipal corporation of hyderabad using remote sensing and geographic information system.

    PubMed

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2005-01-01

    A preliminary survey of area under Zone-III of MCH was undertaken to assess the ground water quality, demonstrate its spatial distribution and correlate with the land use patterns using advance techniques of remote sensing and geographical information system (GIS). Twenty-seven ground water samples were collected and their chemical analysis was done to form the attribute database. Water quality index was calculated from the measured parameters, based on which the study area was classified into five groups with respect to suitability of water for drinking purpose. Thematic maps viz., base map, road network, drainage and land use/land cover were prepared from IRS ID PAN + LISS III merged satellite imagery forming the spatial database. Attribute database was integrated with spatial sampling locations map in Arc/Info and maps showing spatial distribution of water quality parameters were prepared in Arc View. Results indicated that high concentrations of total dissolved solids (TDS), nitrates, fluorides and total hardness were observed in few industrial and densely populated areas indicating deteriorated water quality while the other areas exhibited moderate to good water quality.

  8. A geo-spatial data management system for potentially active volcanoes—GEOWARN project

    NASA Astrophysics Data System (ADS)

    Gogu, Radu C.; Dietrich, Volker J.; Jenny, Bernhard; Schwandner, Florian M.; Hurni, Lorenz

    2006-02-01

    Integrated studies of active volcanic systems for the purpose of long-term monitoring and forecast and short-term eruption prediction require large numbers of data-sets from various disciplines. A modern database concept has been developed for managing and analyzing multi-disciplinary volcanological data-sets. The GEOWARN project (choosing the "Kos-Yali-Nisyros-Tilos volcanic field, Greece" and the "Campi Flegrei, Italy" as test sites) is oriented toward potentially active volcanoes situated in regions of high geodynamic unrest. This article describes the volcanological database of the spatial and temporal data acquired within the GEOWARN project. As a first step, a spatial database embedded in a Geographic Information System (GIS) environment was created. Digital data of different spatial resolution, and time-series data collected at different intervals or periods, were unified in a common, four-dimensional representation of space and time. The database scheme comprises various information layers containing geographic data (e.g. seafloor and land digital elevation model, satellite imagery, anthropogenic structures, land-use), geophysical data (e.g. from active and passive seismicity, gravity, tomography, SAR interferometry, thermal imagery, differential GPS), geological data (e.g. lithology, structural geology, oceanography), and geochemical data (e.g. from hydrothermal fluid chemistry and diffuse degassing features). As a second step based on the presented database, spatial data analysis has been performed using custom-programmed interfaces that execute query scripts resulting in a graphical visualization of data. These query tools were designed and compiled following scenarios of known "behavior" patterns of dormant volcanoes and first candidate signs of potential unrest. The spatial database and query approach is intended to facilitate scientific research on volcanic processes and phenomena, and volcanic surveillance.

  9. A map of abstract relational knowledge in the human hippocampal–entorhinal cortex

    PubMed Central

    Garvert, Mona M; Dolan, Raymond J; Behrens, Timothy EJ

    2017-01-01

    The hippocampal–entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal–entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal–entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns. DOI: http://dx.doi.org/10.7554/eLife.17086.001 PMID:28448253

  10. Wireless tracking of cotton modules Part II: automatic machine identification and system testing

    USDA-ARS?s Scientific Manuscript database

    Mapping the harvest location of cotton modules is essential to practical understanding and utilization of spatial-variability information in fiber quality. A wireless module-tracking system was recently developed, but automation of the system is required before it will find practical use on the far...

  11. Uses of GIS for Homeland Security and Emergency Management for Higher Education Institutions

    ERIC Educational Resources Information Center

    Murchison, Stuart B.

    2010-01-01

    Geographic information systems (GIS) are a major component of the geospatial sciences, which are also composed of geostatistical analysis, remote sensing, and global positional satellite systems. These systems can be integrated into GIS for georeferencing, pattern analysis, visualization, and understanding spatial concepts that transcend…

  12. How verbal and spatial manipulation networks contribute to calculation: an fMRI study.

    PubMed

    Zago, Laure; Petit, Laurent; Turbelin, Marie-Renée; Andersson, Frédéric; Vigneau, Mathieu; Tzourio-Mazoyer, Nathalie

    2008-01-01

    The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and maintenance tasks were proposed with syllables, locations, or two-digit numbers. As compared to their maintenance, numbers manipulation (addition) elicited increased activation within a widespread cortical network including inferior temporal, parietal, and prefrontal regions. Our results demonstrate that mastery of arithmetic calculation requires the cooperation of three WM manipulation systems: an executive manipulation system conjointly recruited by the three manipulation tasks, including the anterior cingulate cortex (ACC), the orbital part of the inferior frontal gyrus, and the caudate nuclei; a left-lateralized, language-related, inferior fronto-temporal system elicited by numbers and syllables manipulation tasks required for retrieval, selection, and association of symbolic information; and a right superior and posterior fronto-parietal system elicited by numbers and locations manipulation tasks for spatial WM and attentional processes. Our results provide new information that the anterior intraparietal sulcus (IPS) is involved in tasks requiring a magnitude processing with symbolic (numbers) and nonsymbolic (locations) stimuli. Furthermore, the specificity of arithmetic processing is mediated by a left-hemispheric specialization of the anterior and posterior parts of the IPS as compared to a spatial task involving magnitude processing with nonsymbolic material.

  13. Technical Note: Atmospheric CO2 inversions on the mesoscale using data-driven prior uncertainties: methodology and system evaluation

    NASA Astrophysics Data System (ADS)

    Kountouris, Panagiotis; Gerbig, Christoph; Rödenbeck, Christian; Karstens, Ute; Koch, Thomas Frank; Heimann, Martin

    2018-03-01

    Atmospheric inversions are widely used in the optimization of surface carbon fluxes on a regional scale using information from atmospheric CO2 dry mole fractions. In many studies the prior flux uncertainty applied to the inversion schemes does not directly reflect the true flux uncertainties but is used to regularize the inverse problem. Here, we aim to implement an inversion scheme using the Jena inversion system and applying a prior flux error structure derived from a model-data residual analysis using high spatial and temporal resolution over a full year period in the European domain. We analyzed the performance of the inversion system with a synthetic experiment, in which the flux constraint is derived following the same residual analysis but applied to the model-model mismatch. The synthetic study showed a quite good agreement between posterior and true fluxes on European, country, annual and monthly scales. Posterior monthly and country-aggregated fluxes improved their correlation coefficient with the known truth by 7 % compared to the prior estimates when compared to the reference, with a mean correlation of 0.92. The ratio of the SD between the posterior and reference and between the prior and reference was also reduced by 33 % with a mean value of 1.15. We identified temporal and spatial scales on which the inversion system maximizes the derived information; monthly temporal scales at around 200 km spatial resolution seem to maximize the information gain.

  14. Building hydrologic information systems to promote climate resilience in the Blue Nile/Abay higlands

    USDA-ARS?s Scientific Manuscript database

    Climate adaptation requires information about climate and land-surface conditions – spatially distributed, and at scales of human influence (the field scale). This article describes a project aimed at combining meteorological data, satellite remote sensing, hydrologic modeling, and downscaled clima...

  15. Vehicle-borne IED detection using the ULTOR correlation processor

    NASA Astrophysics Data System (ADS)

    Burcham, Joel D.; Vachon, Joyce E.

    2006-05-01

    Advanced Optical Systems, Inc. developed the ULTOR(r) system, a real-time correlation processor that looks for improvised explosive devices (IED) by examining imagery of vehicles. The system determines the level of threat an approaching vehicle may represent. The system works on incoming video collected at different wavelengths, including visible, infrared, and synthetic aperture radar. Sensors that attach to ULTOR can be located wherever necessary to improve the safety around a checkpoint. When a suspect vehicle is detected, ULTOR can track the vehicle, alert personnel, check for previous instances of the vehicle, and update other networked systems with the threat information. The ULTOR processing engine focuses on the spatial frequency information available in the image. It correlates the imagery with templates that specify the criteria defining a suspect vehicle. It can perform full field correlations at a rate of 180 Hz or better. Additionally, the spatial frequency information is applied to a trained neural network to identify suspect vehicles. We have performed various laboratory and field experiments to verify the performance of the ULTOR system in a counter IED environment. The experiments cover tracking specific targets in video clips to demonstrating real-time ULTOR system performance. The selected targets in the experiments include various automobiles in both visible and infrared video.

  16. Spatial Variability of Grapevine Bud Burst Percentage and Its Association with Soil Properties at Field Scale

    PubMed Central

    Li, Tao; Hao, Xinmei; Kang, Shaozhong

    2016-01-01

    There is a growing interest in precision viticulture with the development of global positioning system and geographical information system technologies. Limited information is available on spatial variation of bud behavior and its possible association with soil properties. The objective of this study was to investigate spatial variability of bud burst percentage and its association with soil properties based on 2-year experiments at a vineyard of arid northwest China. Geostatistical approach was used to describe the spatial variation in bud burst percentage within the vineyard. Partial least square regressions (PLSRs) of bud burst percentage with soil properties were used to evaluate the contribution of soil properties to overall spatial variability in bud burst percentage for the high, medium and low bud burst percentage groups. Within the vineyard, the coefficient of variation (CV) of bud burst percentage was 20% and 15% for 2012 and 2013 respectively. Bud burst percentage within the vineyard showed moderate spatial variability, and the overall spatial pattern of bud burst percentage was similar between the two years. Soil properties alone explained 31% and 37% of the total spatial variation respectively for the low group of 2012 and 2013, and 16% and 24% for the high group of 2012 and 2013 respectively. For the low group, the fraction of variations explained by soil properties was found similar between the two years, while there was substantial difference for the high group. The findings are expected to lay a good foundation for developing remedy measures in the areas with low bud burst percentage, thus in turn improving the overall grape yield and quality. PMID:27798692

  17. Research on key technologies for data-interoperability-based metadata, data compression and encryption, and their application

    NASA Astrophysics Data System (ADS)

    Yu, Xu; Shao, Quanqin; Zhu, Yunhai; Deng, Yuejin; Yang, Haijun

    2006-10-01

    With the development of informationization and the separation between data management departments and application departments, spatial data sharing becomes one of the most important objectives for the spatial information infrastructure construction, and spatial metadata management system, data transmission security and data compression are the key technologies to realize spatial data sharing. This paper discusses the key technologies for metadata based on data interoperability, deeply researches the data compression algorithms such as adaptive Huffman algorithm, LZ77 and LZ78 algorithm, studies to apply digital signature technique to encrypt spatial data, which can not only identify the transmitter of spatial data, but also find timely whether the spatial data are sophisticated during the course of network transmission, and based on the analysis of symmetric encryption algorithms including 3DES,AES and asymmetric encryption algorithm - RAS, combining with HASH algorithm, presents a improved mix encryption method for spatial data. Digital signature technology and digital watermarking technology are also discussed. Then, a new solution of spatial data network distribution is put forward, which adopts three-layer architecture. Based on the framework, we give a spatial data network distribution system, which is efficient and safe, and also prove the feasibility and validity of the proposed solution.

  18. Design and application analysis of prediction system of geo-hazards based on GIS in the Three Gorges Reservoir

    NASA Astrophysics Data System (ADS)

    Li, Deying; Yin, Kunlong; Gao, Huaxi; Liu, Changchun

    2009-10-01

    Although the project of the Three Gorges Dam across the Yangtze River in China can utilize this huge potential source of hydroelectric power, and eliminate the loss of life and damage by flood, it also causes environmental problems due to the big rise and fluctuation of the water, such as geo-hazards. In order to prevent and predict geo-hazards, the establishment of prediction system of geo-hazards is very necessary. In order to implement functions of hazard prediction of regional and urban geo-hazard, single geo-hazard prediction, prediction of landslide surge and risk evaluation, logical layers of the system consist of data capturing layer, data manipulation and processing layer, analysis and application layer, and information publication layer. Due to the existence of multi-source spatial data, the research on the multi-source transformation and fusion data should be carried on in the paper. Its applicability of the system was testified on the spatial prediction of landslide hazard through spatial analysis of GIS in which information value method have been applied aims to identify susceptible areas that are possible to future landslide, on the basis of historical record of past landslide, terrain parameter, geology, rainfall and anthropogenic activity. Detailed discussion was carried out on spatial distribution characteristics of landslide hazard in the new town of Badong. These results can be used for risk evaluation. The system can be implemented as an early-warning and emergency management tool by the relevant authorities of the Three Gorges Reservoir in the future.

  19. Spatial awareness comparisons between large-screen, integrated pictorial displays and conventional EFIS displays during simulated landing approaches

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.

    1994-01-01

    An extensive simulation study was performed to determine and compare the spatial awareness of commercial airline pilots on simulated landing approaches using conventional flight displays with their awareness using advanced pictorial 'pathway in the sky' displays. Sixteen commercial airline pilots repeatedly made simulated complex microwave landing system approaches to closely spaced parallel runways with an extremely short final segment. Scenarios involving conflicting traffic situation assessments and recoveries from flight path offset conditions were used to assess spatial awareness (own ship position relative the the desired flight route, the runway, and other traffic) with the various display formats. The situation assessment tools are presented, as well as the experimental designs and the results. The results demonstrate that the integrated pictorial displays substantially increase spatial awareness over conventional electronic flight information systems display formats.

  20. Spatially distributed modeling of soil organic carbon across China with improved accuracy

    NASA Astrophysics Data System (ADS)

    Li, Qi-quan; Zhang, Hao; Jiang, Xin-ye; Luo, Youlin; Wang, Chang-quan; Yue, Tian-xiang; Li, Bing; Gao, Xue-song

    2017-06-01

    There is a need for more detailed spatial information on soil organic carbon (SOC) for the accurate estimation of SOC stock and earth system models. As it is effective to use environmental factors as auxiliary variables to improve the prediction accuracy of spatially distributed modeling, a combined method (HASM_EF) was developed to predict the spatial pattern of SOC across China using high accuracy surface modeling (HASM), artificial neural network (ANN), and principal component analysis (PCA) to introduce land uses, soil types, climatic factors, topographic attributes, and vegetation cover as predictors. The performance of HASM_EF was compared with ordinary kriging (OK), OK, and HASM combined, respectively, with land uses and soil types (OK_LS and HASM_LS), and regression kriging combined with land uses and soil types (RK_LS). Results showed that HASM_EF obtained the lowest prediction errors and the ratio of performance to deviation (RPD) presented the relative improvements of 89.91%, 63.77%, 55.86%, and 42.14%, respectively, compared to the other four methods. Furthermore, HASM_EF generated more details and more realistic spatial information on SOC. The improved performance of HASM_EF can be attributed to the introduction of more environmental factors, to explicit consideration of the multicollinearity of selected factors and the spatial nonstationarity and nonlinearity of relationships between SOC and selected factors, and to the performance of HASM and ANN. This method may play a useful tool in providing more precise spatial information on soil parameters for global modeling across large areas.

  1. a Preliminary Study of Web-Based Spatial Data Analysis Feasibility - One of Possible Solutions for Disaster Response and Management

    NASA Astrophysics Data System (ADS)

    Lim, C. C.; Chang, K.-C.

    2012-07-01

    As the massive tsunami that struck northeast Japan in 11 March 2011 after a magnitude 9.0 earthquake, it reveals that people are living in a critical environment. Although great improvement has been achieved in disaster prevention technologies, many natural disasters are still unpredictable. In addition to the prevention, rapid and effective responses to such disasters are also crucial. One of the key elements to success is the information dissemination of disaster, including both area and people living within that region. In the past decade, web-based spatial information system has become the major platform for both data sharing and displaying. What is coming next is the development of web-based spatial data analysis. A web-based service allows people to implement spatial analysis immediately as long as the internet connection among database and application servers is available. This useful and helpful spatial information is able to be accessed by all users around the world almost simultaneously. The main goal of this paper is to implement a spatial data analysis module based on service oriented architecture (SOA) concept. The main interest and focus of our study is based on the knowledge regularization processes of spatial data analysis to achieve the automated land cover change detection (LCCD) over internet. The proposed automated model is tested and verified by FORMOSAT-2 imageries taken in 2005 and in 2008. It will be published online for users around the world to maximize the add-on value and minimize the cost of the spatial data, moreover, to reveal the situations of disaster rapidly.

  2. A prototype system based on visual interactive SDM called VGC

    NASA Astrophysics Data System (ADS)

    Jia, Zelu; Liu, Yaolin; Liu, Yanfang

    2009-10-01

    In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. For spatial data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today's computers. Visual spatial data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the information and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper a visual interactive spatial data mining prototype system (visual geo-classify) based on VC++6.0 and MapObject2.0 are designed and developed, the basic algorithms of the spatial data mining is used decision tree and Bayesian networks, and data classify are used training and learning and the integration of the two to realize. The result indicates it's a practical and extensible visual interactive spatial data mining tool.

  3. The Challenges to Coupling Dynamic Geospatial Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, N

    2006-06-23

    Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanizationmore » and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.« less

  4. Multiple-source spatial data fusion and integration research in the region unified planning management information system

    NASA Astrophysics Data System (ADS)

    Liu, Zhijun; Zhang, Liangpei; Liu, Zhenmin; Jiao, Hongbo; Chen, Liqun

    2008-12-01

    In order to manage the internal resources of Gulf of Tonkin and integrate multiple-source spatial data, the establishment of region unified plan management system is needed. The data fusion and the integrated research should be carried on because there are some difficulties in the course of the system's establishment. For example, kinds of planning and the project data format are different, and data criterion is not unified. Besides, the time state property is strong, and spatial reference is inconsistent, etc. In this article the ARCGIS ENGINE is introduced as the developing platform, key technologies are researched, such as multiple-source data transformation and fusion, remote sensing data and DEM fusion and integrated, plan and project data integration, and so on. Practice shows that the system improves the working efficiency of Guangxi Gulf of Tonkin Economic Zone Management Committee significantly and promotes planning construction work of the economic zone remarkably.

  5. Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schröder, T.; Walsh, M.; Zheng, J.

    2017-04-06

    Towards building large-scale integrated photonic systems for quantum information processing, spatial and spectral alignment of single quantum systems to photonic nanocavities is required. In this paper, we demonstrate spatially targeted implantation of nitrogen vacancy (NV) centers into the mode maximum of 2-d diamond photonic crystal cavities with quality factors up to 8000, achieving an average of 1.1 ± 0.2 NVs per cavity. Nearly all NV-cavity systems have significant emission intensity enhancement, reaching a cavity-fed spectrally selective intensity enhancement, F int, of up to 93. Although spatial NV-cavity overlap is nearly guaranteed within about 40 nm, spectral tuning of the NV’smore » zero-phonon-line (ZPL) is still necessary after fabrication. To demonstrate spectral control, we temperature tune a cavity into an NV ZPL, yielding F ZPL int~5 at cryogenic temperatures.« less

  6. Spatial Relation Predicates in Topographic Feature Semantics

    USGS Publications Warehouse

    Varanka, Dalia E.; Caro, Holly K.

    2013-01-01

    Topographic data are designed and widely used for base maps of diverse applications, yet the power of these information sources largely relies on the interpretive skills of map readers and relational database expert users once the data are in map or geographic information system (GIS) form. Advances in geospatial semantic technology offer data model alternatives for explicating concepts and articulating complex data queries and statements. To understand and enrich the vocabulary of topographic feature properties for semantic technology, English language spatial relation predicates were analyzed in three standard topographic feature glossaries. The analytical approach drew from disciplinary concepts in geography, linguistics, and information science. Five major classes of spatial relation predicates were identified from the analysis; representations for most of these are not widely available. The classes are: part-whole (which are commonly modeled throughout semantic and linked-data networks), geometric, processes, human intention, and spatial prepositions. These are commonly found in the ‘real world’ and support the environmental science basis for digital topographical mapping. The spatial relation concepts are based on sets of relation terms presented in this chapter, though these lists are not prescriptive or exhaustive. The results of this study make explicit the concepts forming a broad set of spatial relation expressions, which in turn form the basis for expanding the range of possible queries for topographical data analysis and mapping.

  7. Framing spatial cognition: Neural representations of proximal and distal frames of reference and their roles in navigation

    PubMed Central

    Knierim, James J.; Hamilton, Derek A.

    2011-01-01

    The most common behavioral test of hippocampus-dependent, spatial learning and memory is the Morris water task, and the most commonly studied behavioral correlate of hippocampal neurons is the spatial specificity of place cells. Despite decades of intensive research, it is not completely understood how animals solve the water task and how place cells generate their spatially specific firing fields. Based on early work, it has become the accepted wisdom in the general neuroscience community that distal spatial cues are the primary sources of information used by animals to solve the water task (and similar spatial tasks) and by place cells to generate their spatial specificity. More recent research, along with earlier studies that were overshadowed by the emphasis on distal cues, put this common view into question by demonstrating primary influences of local cues and local boundaries on spatial behavior and place-cell firing. This paper first reviews the historical underpinnings of the “standard” view from a behavioral perspective, and then reviews newer results demonstrating that an animal's behavior in such spatial tasks is more strongly controlled by a local-apparatus frame of reference than by distal landmarks. The paper then reviews similar findings from the literature on the neurophysiological correlates of place cells and other spatially-correlated cells from related brain areas. A model is proposed by which distal cues primarily set the orientation of the animal's internal spatial coordinate system, via the head direction cell system, whereas local cues and apparatus boundaries primarily set the translation and scale of that coordinate system. PMID:22013211

  8. SoilGrids1km — Global Soil Information Based on Automated Mapping

    PubMed Central

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license. PMID:25171179

  9. Seventh symposium on systems analysis in forest resources; 1997 May 28-31; Traverse City, MI.

    Treesearch

    J. Michael Vasievich; Jeremy S. Fried; Larry A. Leefers

    2000-01-01

    This international symposium included presentations by representatives from government, academic, and private institutions. Topics covered management objectives; information systems: modeling, optimization, simulation and decision support techniques; spatial methods; timber supply; and economic and operational analyses.

  10. Paradise: A Parallel Information System for EOSDIS

    NASA Technical Reports Server (NTRS)

    DeWitt, David

    1996-01-01

    The Paradise project was begun-in 1993 in order to explore the application of the parallel and object-oriented database system technology developed as a part of the Gamma, Exodus. and Shore projects to the design and development of a scaleable, geo-spatial database system for storing both massive spatial and satellite image data sets. Paradise is based on an object-relational data model. In addition to the standard attribute types such as integers, floats, strings and time, Paradise also provides a set of and multimedia data types, designed to facilitate the storage and querying of complex spatial and multimedia data sets. An individual tuple can contain any combination of this rich set of data types. For example, in the EOSDIS context, a tuple might mix terrain and map data for an area along with the latest satellite weather photo of the area. The use of a geo-spatial metaphor simplifies the task of fusing disparate forms of data from multiple data sources including text, image, map, and video data sets.

  11. Geographic Information Systems and travel health.

    PubMed

    Bauer, Irmgard L; Puotinen, Marji

    2002-01-01

    Questions dealing with space and/or location have always been integral to understanding and addressing health issues, such as charting the spread of a disease. Health researchers have traditionally used paper maps to explore the spatial dimensions of health. However, due to advances in technology, it is now possible to ask such questions using a suite of computer-based methods and tools that are collectively known as a Geographic Information System (GIS).

  12. The C3-System User. Volume 1. A Review of Research on Human Performance as It Relates to the Design and Operation of Command, Control and Communication Systems

    DTIC Science & Technology

    1977-02-01

    Complex Displays.............................. 121 *The Nature of the Internal Representation................ 122 Spatial Memory...Purpose Function Keyboards....................... 290 Natural Language.......................................... 291 - .Human Speech...course, the information with which any given individual has to cope is likely to be of more than one type. In general, the nature of the information that

  13. Information Technology Implementation and Sustainment Model: Data Collection Instrument

    DTIC Science & Technology

    2005-03-01

    users (Wing and Bettinger , 2003). A GIS is a computerized system for spatial (geographically-referenced) data management (Davis and Schultz, 1990:3...AFIT/GEM/ENV/05M-15 Abstract The goal of this research was to develop a data collection instrument for an existing information technology...implementation and sustsinment model. In 2003, a unique system dynamics model was developed at the Air Force Institute of Technology to predict the

  14. "SABER": A new software tool for radiotherapy treatment plan evaluation.

    PubMed

    Zhao, Bo; Joiner, Michael C; Orton, Colin G; Burmeister, Jay

    2010-11-01

    Both spatial and biological information are necessary in order to perform true optimization of a treatment plan and for predicting clinical outcome. The goal of this work is to develop an enhanced treatment plan evaluation tool which incorporates biological parameters and retains spatial dose information. A software system is developed which provides biological plan evaluation with a novel combination of features. It incorporates hyper-radiosensitivity using the induced-repair model and applies the new concept of dose convolution filter (DCF) to simulate dose wash-out effects due to cell migration, bystander effect, and/or tissue motion during treatment. Further, the concept of spatial DVH (sDVH) is introduced to evaluate and potentially optimize the spatial dose distribution in the target volume. Finally, generalized equivalent uniform dose is derived from both the physical dose distribution (gEUD) and the distribution of equivalent dose in 2 Gy fractions (gEUD2) and the software provides three separate models for calculation of tumor control probability (TCP), normal tissue complication probability (NTCP), and probability of uncomplicated tumor control (P+). TCP, NTCP, and P+ are provided as a function of prescribed dose and multivariable TCP, NTCP, and P+ plots are provided to illustrate the dependence on individual parameters used to calculate these quantities. Ten plans from two clinical treatment sites are selected to test the three calculation models provided by this software. By retaining both spatial and biological information about the dose distribution, the software is able to distinguish features of radiotherapy treatment plans not discernible using commercial systems. Plans that have similar DVHs may have different spatial and biological characteristics and the application of novel tools such as sDVH and DCF within the software may substantially change the apparent plan quality or predicted plan metrics such as TCP and NTCP. For the cases examined, both the calculation method and the application of DCF can change the ranking order of competing plans. The voxel-by-voxel TCP model makes it feasible to incorporate spatial variations of clonogen densities (n), radiosensitivities (SF2), and fractionation sensitivities (alpha/beta) as those data become available. The new software incorporates both spatial and biological information into the treatment planning process. The application of multiple methods for the incorporation of biological and spatial information has demonstrated that the order of application of biological models can change the order of plan ranking. Thus, the results of plan evaluation and optimization are dependent not only on the models used but also on the order in which they are applied. This software can help the planner choose more biologically optimal treatment plans and potentially predict treatment outcome more accurately.

  15. Simulations inform design of regional occupancy-based monitoring for a sparsely distributed, territorial species

    Treesearch

    Quresh S. Latif; Martha M. Ellis; Victoria A. Saab; Kim Mellen-McLean

    2017-01-01

    Sparsely distributed species attract conservation concern, but insufficient information on population trends challenges conservation and funding prioritization. Occupancy-based monitoring is attractive for these species, but appropriate sampling design and inference depend on particulars of the study system. We employed spatially explicit simulations to identify...

  16. A coastal information system to propel emerging science and inform environmental management decisions

    EPA Science Inventory

    The Estuary Data Mapper (EDM) is a free, interactive virtual gateway to coastal data aimed to promote research and aid in environmental management. The graphical user interface allows users to custom select and subset data based on their spatial and temporal interests giving them...

  17. The Ecological Approach to Text Visualization.

    ERIC Educational Resources Information Center

    Wise, James A.

    1999-01-01

    Presents both theoretical and technical bases on which to build a "science of text visualization." The Spatial Paradigm for Information Retrieval and Exploration (SPIRE) text-visualization system, which images information from free-text documents as natural terrains, serves as an example of the "ecological approach" in its visual metaphor, its…

  18. Functional MRI Representational Similarity Analysis Reveals a Dissociation between Discriminative and Relative Location Information in the Human Visual System.

    PubMed

    Roth, Zvi N

    2016-01-01

    Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream.

  19. Functional MRI Representational Similarity Analysis Reveals a Dissociation between Discriminative and Relative Location Information in the Human Visual System

    PubMed Central

    Roth, Zvi N.

    2016-01-01

    Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream. PMID:27242455

  20. Geostatistical and GIS analysis of the spatial variability of alluvial gold content in Ngoura-Colomines area, Eastern Cameroon: Implications for the exploration of primary gold deposit

    NASA Astrophysics Data System (ADS)

    Takodjou Wambo, Jonas Didero; Ganno, Sylvestre; Djonthu Lahe, Yannick Sthopira; Kouankap Nono, Gus Djibril; Fossi, Donald Hermann; Tchouatcha, Milan Stafford; Nzenti, Jean Paul

    2018-06-01

    Linear and nonlinear geostatistic is commonly used in ore grade estimation and seldom used in Geographical Information System (GIS) technology. In this study, we suggest an approach based on geostatistic linear ordinary kriging (OK) and Geographical Information System (GIS) techniques to investigate the spatial distribution of alluvial gold content, mineralized and gangue layers thicknesses from 73 pits at the Ngoura-Colomines area with the aim to determine controlling factors for the spatial distribution of mineralization and delineate the most prospective area for primary gold mineralization. Gold content varies between 0.1 and 4.6 g/m3 and has been broadly grouped into three statistical classes. These classes have been spatially subdivided into nine zones using ordinary kriging model based on physical and topographical characteristics. Both mineralized and barren layer thicknesses show randomly spatial distribution, and there is no correlation between these parameters and the gold content. This approach has shown that the Ngoura-Colomines area is located in a large shear zone compatible with the Riedel fault system composed of P and P‧ fractures oriented NE-SW and NNE-SSW respectively; E-W trending R fractures and R‧ fractures with NW-SE trends that could have contributed significantly to the establishment of this gold mineralization. The combined OK model and GIS analysis have led to the delineation of Colomines, Tissongo, Madubal and Boutou villages as the most prospective areas for the exploration of primary gold deposit in the study area.

  1. GIS, geostatistics, metadata banking, and tree-based models for data analysis and mapping in environmental monitoring and epidemiology.

    PubMed

    Schröder, Winfried

    2006-05-01

    By the example of environmental monitoring, some applications of geographic information systems (GIS), geostatistics, metadata banking, and Classification and Regression Trees (CART) are presented. These tools are recommended for mapping statistically estimated hot spots of vectors and pathogens. GIS were introduced as tools for spatially modelling the real world. The modelling can be done by mapping objects according to the spatial information content of data. Additionally, this can be supported by geostatistical and multivariate statistical modelling. This is demonstrated by the example of modelling marine habitats of benthic communities and of terrestrial ecoregions. Such ecoregionalisations may be used to predict phenomena based on the statistical relation between measurements of an interesting phenomenon such as, e.g., the incidence of medically relevant species and correlated characteristics of the ecoregions. The combination of meteorological data and data on plant phenology can enhance the spatial resolution of the information on climate change. To this end, meteorological and phenological data have to be correlated. To enable this, both data sets which are from disparate monitoring networks have to be spatially connected by means of geostatistical estimation. This is demonstrated by the example of transformation of site-specific data on plant phenology into surface data. The analysis allows for spatial comparison of the phenology during the two periods 1961-1990 and 1991-2002 covering whole Germany. The changes in both plant phenology and air temperature were proved to be statistically significant. Thus, they can be combined by GIS overlay technique to enhance the spatial resolution of the information on the climate change and use them for the prediction of vector incidences at the regional scale. The localisation of such risk hot spots can be done by geometrically merging surface data on promoting factors. This is demonstrated by the example of the transfer of heavy metals through soils. The predicted hot spots of heavy metal transfer can be validated empirically by measurement data which can be inquired by a metadata base linked with a geographic information system. A corresponding strategy for the detection of vector hot spots in medical epidemiology is recommended. Data on incidences and habitats of the Anophelinae in the marsh regions of Lower Saxony (Germany) were used to calculate a habitat model by CART, which together with climate data and data on ecoregions can be further used for the prediction of habitats of medically relevant vector species. In the future, this approach should be supported by an internet-based information system consisting of three components: metadata questionnaire, metadata base, and GIS to link metadata, surface data, and measurement data on incidences and habitats of medically relevant species and related data on climate, phenology, and ecoregional characteristic conditions.

  2. Long-term monitoring on environmental disasters using multi-source remote sensing technique

    NASA Astrophysics Data System (ADS)

    Kuo, Y. C.; Chen, C. F.

    2017-12-01

    Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.

  3. Combined multispectral spatial frequency domain imaging and computed tomography system for intraoperative breast tumor margin assessment

    NASA Astrophysics Data System (ADS)

    McClatchy, D. M.; Rizzo, E. J.; Krishnaswamy, V.; Kanick, S. C.; Wells, W. A.; Paulsen, K. D.; Pogue, B. W.

    2017-02-01

    There is a dire clinical need for surgical margin guidance in breast conserving therapy (BCT). We present a multispectral spatial frequency domain imaging (SFDI) system, spanning the visible and near-infrared (NIR) wavelengths, combined with a shielded X-ray computed tomography (CT) system, designed for intraoperative breast tumor margin assessment. While the CT can provide a volumetric visualization of the tumor core and its spiculations, the co-registered SFDI can provide superficial and quantitative information about localized changes tissue morphology from light scattering parameters. These light scattering parameters include both model-based parameters of sub-diffusive light scattering related to the particle size scale distribution and also textural information of the high spatial frequency reflectance. Because the SFDI and CT components are rigidly fixed, a simple transformation can be used to simultaneously display the SFDI and CT data in the same coordinate system. This is achieved through the Visualization Toolkit (vtk) file format in the open-source Slicer medical imaging software package. In this manuscript, the instrumentation, data processing, and preliminary human specimen data will be presented. The ultimate goal of this work is to evaluate this technology in a prospective clinical trial, and the current limitations and engineering solutions to meet this goal will also be discussed.

  4. A 'user friendly' geographic information system in a color interactive digital image processing system environment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Goldberg, M.

    1982-01-01

    NASA's Eastern Regional Remote Sensing Applications Center (ERRSAC) has recognized the need to accommodate spatial analysis techniques in its remote sensing technology transfer program. A computerized Geographic Information System to incorporate remotely sensed data, specifically Landsat, with other relevant data was considered a realistic approach to address a given resource problem. Questions arose concerning the selection of a suitable available software system to demonstrate, train, and undertake demonstration projects with ERRSAC's user community. The very specific requirements for such a system are discussed. The solution found involved the addition of geographic information processing functions to the Interactive Digital Image Manipulation System (IDIMS). Details regarding the functions of the new integrated system are examined along with the characteristics of the software.

  5. Remote sensing information sciences research group

    NASA Technical Reports Server (NTRS)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1988-01-01

    Research conducted under this grant was used to extend and expand existing remote sensing activities at the University of California, Santa Barbara in the areas of georeferenced information systems, matching assisted information extraction from image data and large spatial data bases, artificial intelligence, and vegetation analysis and modeling. The research thrusts during the past year are summarized. The projects are discussed in some detail.

  6. Geoscience after ITPart G. Familiarization with spatial analysis

    NASA Astrophysics Data System (ADS)

    Pundt, Hardy; Brinkkötter-Runde, Klaus

    2000-04-01

    Field based and GPS supported GIS are increasingly applied in various spatial disciplines. Such systems represent more sophisticated, time and cost effective tools than traditional field forms for data acquisition. Meanwhile, various systems are on the market. These mostly enable the user to define geo-objects by means of GPS information, supported by functionalities to collect and analyze geometric information. The digital acquisition of application specific attributes is often underrepresented within such systems. This is surprising because pen computer based GIS can be used to collect attributes in a profitable manner, thus adequately supporting the requirements of the user. Visualization and graphic displays of spatial data are helpful means to improve such a data collection process. In section one and two basic aspects of visualization and current uses of visualization techniques for field based GIS are described. Section three mentions new developments within the framework of wearable computing and augmented reality. Section four describes current activities aimed at the realization of real time online field based GIS. This includes efforts to realize an online GIS data link to improve the efficiency and the quality of fieldwork. A brief discussion in section five leads to conclusions and some key issues for future research.

  7. Optical Security System Based on the Biometrics Using Holographic Storage Technique with a Simple Data Format

    NASA Astrophysics Data System (ADS)

    Jun, An Won

    2006-01-01

    We implement a first practical holographic security system using electrical biometrics that combines optical encryption and digital holographic memory technologies. Optical information for identification includes a picture of face, a name, and a fingerprint, which has been spatially multiplexed by random phase mask used for a decryption key. For decryption in our biometric security system, a bit-error-detection method that compares the digital bit of live fingerprint with of fingerprint information extracted from hologram is used.

  8. Investigating the performance of LiDAR-derived biomass information in hydromechanic slope stability modelling

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar; Steger, Stefan; Bogaard, Thom; Van Beek, Rens; Glade, Thomas

    2017-04-01

    Hydromechanic slope stability models are often used to assess the landslide susceptibility of hillslopes. Some of these models are able to account for vegetation related effects when assessing slope stability. However, spatial information of required vegetation parameters (especially of woodland) that are defined by land cover type, tree species and stand density are mostly underrepresented compared to hydropedological and geomechanical parameters. The aim of this study is to assess how LiDAR-derived biomass information can help to distinguish distinct tree stand-immanent properties (e.g. stand density and diversity) and further improve the performance of hydromechanic slope stability models. We used spatial vegetation data produced from sophisticated algorithms that are able to separate single trees within a stand based on LiDAR point clouds and thus allow an extraordinary detailed determination of the aboveground biomass. Further, this information is used to estimate the species- and stand-related distribution of the subsurface biomass using an innovative approach to approximate root system architecture and development. The hydrological tree-soil interactions and their impact on the geotechnical stability of the soil mantle are then reproduced in the dynamic and spatially distributed slope stability model STARWARS/PROBSTAB. This study highlights first advances in the approximation of biomechanical reinforcement potential of tree root systems in tree stands. Based on our findings, we address the advantages and limitations of highly detailed biomass information in hydromechanic modelling and physically based slope failure prediction.

  9. Complementarity of Historic Building Information Modelling and Geographic Information Systems

    NASA Astrophysics Data System (ADS)

    Yang, X.; Koehl, M.; Grussenmeyer, P.; Macher, H.

    2016-06-01

    In this paper, we discuss the potential of integrating both semantically rich models from Building Information Modelling (BIM) and Geographical Information Systems (GIS) to build the detailed 3D historic model. BIM contributes to the creation of a digital representation having all physical and functional building characteristics in several dimensions, as e.g. XYZ (3D), time and non-architectural information that are necessary for construction and management of buildings. GIS has potential in handling and managing spatial data especially exploring spatial relationships and is widely used in urban modelling. However, when considering heritage modelling, the specificity of irregular historical components makes it problematic to create the enriched model according to its complex architectural elements obtained from point clouds. Therefore, some open issues limiting the historic building 3D modelling will be discussed in this paper: how to deal with the complex elements composing historic buildings in BIM and GIS environment, how to build the enriched historic model, and why to construct different levels of details? By solving these problems, conceptualization, documentation and analysis of enriched Historic Building Information Modelling are developed and compared to traditional 3D models aimed primarily for visualization.

  10. Visualization and interaction tools for aerial photograph mosaics

    NASA Astrophysics Data System (ADS)

    Fernandes, João Pedro; Fonseca, Alexandra; Pereira, Luís; Faria, Adriano; Figueira, Helder; Henriques, Inês; Garção, Rita; Câmara, António

    1997-05-01

    This paper describes the development of a digital spatial library based on mosaics of digital orthophotos, called Interactive Portugal, that will enable users both to retrieve geospatial information existing in the Portuguese National System for Geographic Information World Wide Web server, and to develop local databases connected to the main system. A set of navigation, interaction, and visualization tools are proposed and discussed. They include sketching, dynamic sketching, and navigation capabilities over the digital orthophotos mosaics. Main applications of this digital spatial library are pointed out and discussed, namely for education, professional, and tourism markets. Future developments are considered. These developments are related to user reactions, technological advancements, and projects that also aim at delivering and exploring digital imagery on the World Wide Web. Future capabilities for site selection and change detection are also considered.

  11. A spatial analysis of the Burrowing Owl (Speotyto cunicularia) population in Santa Clara County, California, using a geographic information system

    Treesearch

    Janice Taylor Buchanan

    1997-01-01

    A small population of Burrowing Owls (Speotyto cunicularia) is found in the San Francisco Bay Area, particularly in Santa Clara County. These owls utilize habitat that is dispersed throughout this heavily urbanized region. In an effort to establish a conservation plan for Burrowing Owls in Santa Clara County, a spatial analysis of owl distribution...

  12. Pallet use in grocery distribution affects forest resource consumption location: a spatial model of grocery pallet use

    Treesearch

    R. Bruce Anderson; R. Bruce Anderson

    1991-01-01

    To assess the impact of grocery pallet production on future hardwood resources, better information is needed on the current use of reusable pallets by the grocery and related products industry. A spatial model of pallet use in the grocery distribution system that identifies the locational aspects of grocery pallet production and distribution, determines how these...

  13. Array processing for RFID tag localization exploiting multi-frequency signals

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin; Li, Xin; Amin, Moeness G.

    2009-05-01

    RFID is an increasingly valuable business and technology tool for electronically identifying, locating, and tracking products, assets, and personnel. As a result, precise positioning and tracking of RFID tags and readers have received considerable attention from both academic and industrial communities. Finding the position of RFID tags is considered an important task in various real-time locating systems (RTLS). As such, numerous RFID localization products have been developed for various applications. The majority of RFID positioning systems is based on the fusion of pieces of relevant information, such as the range and the direction-of-arrival (DOA). For example, trilateration can determine the tag position by using the range information of the tag estimated from three or more spatially separated reader antennas. Triangulation is another method to locate RFID tags that use the direction-of-arrival (DOA) information estimated at multiple spatially separated locations. The RFID tag positions can also be determined through hybrid techniques that combine the range and DOA information. The focus of this paper to study the design and performance of the localization of passive RFID tags using array processing techniques in a multipath environment, and exploiting multi-frequency CW signals. The latter are used to decorrelate the coherent multipath signals for effective DOA estimation and for the purpose of accurate range estimation. Accordingly, the spatial and frequency dimensionalities are fully utilized for robust and accurate positioning of RFID tags.

  14. Violence in public transportation: an approach based on spatial analysis.

    PubMed

    Sousa, Daiane Castro Bittencourt de; Pitombo, Cira Souza; Rocha, Samille Santos; Salgueiro, Ana Rita; Delgado, Juan Pedro Moreno

    2017-12-11

    To carry out a spatial analysis of the occurrence of acts of violence (specifically robberies) in public transportation, identifying the regions of greater incidence, using geostatistics, and possible causes with the aid of a multicriteria analysis in the Geographic Information System. The unit of analysis is the traffic analysis zone of the survey named Origem-Destino, carried out in Salvador, state of Bahia, in 2013. The robberies recorded by the Department of Public Security of Bahia in 2013 were located and made compatible with the limits of the traffic analysis zones and, later, associated with the respective centroids. After determining the regions with the highest probability of robbery, we carried out a geographic analysis of the possible causes in the region with the highest robbery potential, considering the factors analyzed using a multicriteria analysis in a Geographic Information System environment. The execution of the two steps of this study allowed us to identify areas corresponding to the greater probability of occurrence of robberies in public transportation. In addition, the three most vulnerable road sections (Estrada da Liberdade, Rua Pero Vaz, and Avenida General San Martin) were identified in these areas. In these sections, the factors that most contribute with the potential for robbery in buses are: F1 - proximity to places that facilitate escape, F3 - great movement of persons, and F2 - absence of policing, respectively. Indicator Kriging (geostatistical estimation) can be used to construct a spatial probability surface, which can be a useful tool for the implementation of public policies. The multicriteria analysis in the Geographic Information System environment allowed us to understand the spatial factors related to the phenomenon under analysis.

  15. Violence in public transportation: an approach based on spatial analysis

    PubMed Central

    de Sousa, Daiane Castro Bittencourt; Pitombo, Cira Souza; Rocha, Samille Santos; Salgueiro, Ana Rita; Delgado, Juan Pedro Moreno

    2017-01-01

    ABSTRACT OBJECTIVE To carry out a spatial analysis of the occurrence of acts of violence (specifically robberies) in public transportation, identifying the regions of greater incidence, using geostatistics, and possible causes with the aid of a multicriteria analysis in the Geographic Information System. METHODS The unit of analysis is the traffic analysis zone of the survey named Origem-Destino, carried out in Salvador, state of Bahia, in 2013. The robberies recorded by the Department of Public Security of Bahia in 2013 were located and made compatible with the limits of the traffic analysis zones and, later, associated with the respective centroids. After determining the regions with the highest probability of robbery, we carried out a geographic analysis of the possible causes in the region with the highest robbery potential, considering the factors analyzed using a multicriteria analysis in a Geographic Information System environment. RESULTS The execution of the two steps of this study allowed us to identify areas corresponding to the greater probability of occurrence of robberies in public transportation. In addition, the three most vulnerable road sections (Estrada da Liberdade, Rua Pero Vaz, and Avenida General San Martin) were identified in these areas. In these sections, the factors that most contribute with the potential for robbery in buses are: F1 - proximity to places that facilitate escape, F3 - great movement of persons, and F2 - absence of policing, respectively. CONCLUSIONS Indicator Kriging (geostatistical estimation) can be used to construct a spatial probability surface, which can be a useful tool for the implementation of public policies. The multicriteria analysis in the Geographic Information System environment allowed us to understand the spatial factors related to the phenomenon under analysis. PMID:29236883

  16. Data on strategically located land and spatially integrated urban human settlements in South Africa.

    PubMed

    Musakwa, Walter

    2017-12-01

    In developing countries like South Africa processed geographic information systems (GIS) data on land suitability, is often not available for land use management. Data in this article is based on a published article "The strategically located land index support system for humans settlements land reform in South Africa" (Musakwa et al., 2017) [1]. This article utilities data from Musakwa et al. (2017) [1] and it goes on a step further by presenting the top 25th percentile of areas in the country that are strategically located and suited to develop spatially integrated human settlements. Furthermore the least 25th percentile of the country that are not strategically located and spatially integrated to establish human settlements are also presented. The article also presents the processed spatial datasets that where used to develop the strategically located land index as supplementary material. The data presented is meant to stir debate on spatially integrated human settlements in South Africa.

  17. Nature as a model for biomimetic sensors

    NASA Astrophysics Data System (ADS)

    Bleckmann, H.

    2012-04-01

    Mammals, like humans, rely mainly on acoustic, visual and olfactory information. In addition, most also use tactile and thermal cues for object identification and spatial orientation. Most non-mammalian animals also possess a visual, acoustic and olfactory system. However, besides these systems they have developed a large variety of highly specialized sensors. For instance, pyrophilous insects use infrared organs for the detection of forest fires while boas, pythons and pit vipers sense the infrared radiation emitted by prey animals. All cartilaginous and bony fishes as well as some amphibians have a mechnaosensory lateral line. It is used for the detection of weak water motions and pressure gradients. For object detection and spatial orientation many species of nocturnal fish employ active electrolocation. This review describes certain aspects of the detection and processing of infrared, mechano- and electrosensory information. It will be shown that the study of these seemingly exotic sensory systems can lead to discoveries that are useful for the construction of technical sensors and artificial control systems.

  18. Incorporation of Monitoring Systems to Model Irrigated Cotton at a Landscape Level

    USDA-ARS?s Scientific Manuscript database

    Advances in computer speed, industry IT core capabilities, and available soils and weather information have resulted in the need for “cropping system models” that address in detail the spatial and temporal water, energy and carbon balance of the system at a landscape scale. Many of these models have...

  19. ARCHITECTURE AS PEDAGOGY: INTERDISCIPLINARY DESIGN AND CREATION OF A CARBON NEUTRAL IDAHO ENVIRONMENTAL LEARNING CENTER AT THE UNIVERSITY OF IDAHO MCCALL FIELD CAMPUS

    EPA Science Inventory

    Output 1. (short-term) Design a carbon neutral field campus with the following design components: structural systems, building envelope, environmental systems, site construction, building materials, information technology, spatial systems and integration ...

  20. Spatial confidentiality and GIS: re-engineering mortality locations from published maps about Hurricane Katrina.

    PubMed

    Curtis, Andrew J; Mills, Jacqueline W; Leitner, Michael

    2006-10-10

    Geographic Information Systems (GIS) can provide valuable insight into patterns of human activity. Online spatial display applications, such as Google Earth, can democratise this information by disseminating it to the general public. Although this is a generally positive advance for society, there is a legitimate concern involving the disclosure of confidential information through spatial display. Although guidelines exist for aggregated data, little has been written concerning the display of point level information. The concern is that a map containing points representing cases of cancer or an infectious disease, could be re-engineered back to identify an actual residence. This risk is investigated using point mortality locations from Hurricane Katrina re-engineered from a map published in the Baton Rouge Advocate newspaper, and a field team validating these residences using search and rescue building markings. We show that the residence of an individual, visualized as a generalized point covering approximately one and half city blocks on a map, can be re-engineered back to identify the actual house location, or at least a close neighbour, even if the map contains little spatial reference information. The degree of re-engineering success is also shown to depend on the urban characteristic of the neighborhood. The results in this paper suggest a need to re-evaluate current guidelines for the display of point (address level) data. Examples of other point maps displaying health data extracted from the academic literature are presented where a similar re-engineering approach might cause concern with respect to violating confidentiality. More research is also needed into the role urban structure plays in the accuracy of re-engineering. We suggest that health and spatial scientists should be proactive and suggest a series of point level spatial confidentiality guidelines before governmental decisions are made which may be reactionary toward the threat of revealing confidential information, thereby imposing draconian limits on research using a GIS.

  1. Spatial confidentiality and GIS: re-engineering mortality locations from published maps about Hurricane Katrina

    PubMed Central

    Curtis, Andrew J; Mills, Jacqueline W; Leitner, Michael

    2006-01-01

    Background Geographic Information Systems (GIS) can provide valuable insight into patterns of human activity. Online spatial display applications, such as Google Earth, can democratise this information by disseminating it to the general public. Although this is a generally positive advance for society, there is a legitimate concern involving the disclosure of confidential information through spatial display. Although guidelines exist for aggregated data, little has been written concerning the display of point level information. The concern is that a map containing points representing cases of cancer or an infectious disease, could be re-engineered back to identify an actual residence. This risk is investigated using point mortality locations from Hurricane Katrina re-engineered from a map published in the Baton Rouge Advocate newspaper, and a field team validating these residences using search and rescue building markings. Results We show that the residence of an individual, visualized as a generalized point covering approximately one and half city blocks on a map, can be re-engineered back to identify the actual house location, or at least a close neighbour, even if the map contains little spatial reference information. The degree of re-engineering success is also shown to depend on the urban characteristic of the neighborhood. Conclusion The results in this paper suggest a need to re-evaluate current guidelines for the display of point (address level) data. Examples of other point maps displaying health data extracted from the academic literature are presented where a similar re-engineering approach might cause concern with respect to violating confidentiality. More research is also needed into the role urban structure plays in the accuracy of re-engineering. We suggest that health and spatial scientists should be proactive and suggest a series of point level spatial confidentiality guidelines before governmental decisions are made which may be reactionary toward the threat of revealing confidential information, thereby imposing draconian limits on research using a GIS. PMID:17032448

  2. Spatial Analysis of Phytophthora infestans Genotypes and Late Blight Severity on Tomato and Potato in the Del Fuerte Valley Using Geostatistics and Geographic Information Systems.

    PubMed

    Jaime-Garcia, R; Orum, T V; Felix-Gastelum, R; Trinidad-Correa, R; Vanetten, H D; Nelson, M R

    2001-12-01

    ABSTRACT Genetic structure of Phytophthora infestans, the causal agent of potato and tomato late blight, was analyzed spatially in a mixed potato and tomato production area in the Del Fuerte Valley, Sinaloa, Mexico. Isolates of P. infestans were characterized by mating type, allozyme analysis at the glucose-6-phosphate isomerase and peptidase loci, restriction fragment length polymorphism with probe RG57, metalaxyl sensitivity, and aggressiveness to tomato and potato. Spatial patterns of P. infestans genotypes were analyzed by geographical information systems and geo-statistics during the seasons of 1994-95, 1995-96, and 1996-97. Spatial analysis of the genetic structure of P. infestans indicates that geographic substructuring of this pathogen occurs in this area. Maps displaying the probabilities of occurrence of mating types and genotypes of P. infestans, and of disease severity at a regional scale, were presented. Some genotypes that exhibited differences in epidemiologically important features such as metalaxyl sensitivity and aggressiveness to tomato and potato had a restricted spread and were localized in isolated areas. Analysis of late blight severity showed recurring patterns, such as the earliest onset of the disease in the area where both potato and tomato were growing, strengthening the hypothesis that infected potato tubers are the main source of primary inoculum. The information that geostatistical analysis provides might help improve management programs for late blight in the Del Fuerte Valley.

  3. Origin of life. Primordial genetics: Information transfer in a pre-RNA world based on self-replicating beta-sheet amyloid conformers.

    PubMed

    Maury, Carl Peter J

    2015-10-07

    The question of the origin of life on Earth can largely be reduced to the question of what was the first molecular replicator system that was able to replicate and evolve under the presumably very harsh conditions on the early Earth. It is unlikely that a functional RNA could have existed under such conditions and it is generally assumed that some other kind of information system preceded the RNA world. Here, I present an informational molecular system that is stable, self-replicative, environmentally responsive, and evolvable under conditions characterized by high temperatures, ultraviolet and cosmic radiation. This postulated pregenetic system is based on the amyloid fold, a functionally unique polypeptide fold characterized by a cross beta-sheet structure in which the beta strands are arranged perpendicular to the fiber axis. Beside an extraordinary structural robustness, the amyloid fold possesses a unique ability to transmit information by a three-dimensional templating mechanism. In amyloidogenesis short peptide monomers are added one by one to the growing end of the fiber. From the same monomeric subunits several structural variants of amyloid may be formed. Then, in a self-replicative mode, a specific amyloid conformer can act as a template and confer its spatially encoded information to daughter molecular entities in a repetitive way. In this process, the specific conformational information, the spatially changed organization, is transmitted; the coding element is the steric zipper structure, and recognition occurs by amino acid side chain complementarity. The amyloid information system fulfills several basic requirements of a primordial evolvable replicator system: (i) it is stable under the presumed primitive Earth conditions, (ii) the monomeric building blocks of the informational polymer can be formed from available prebiotic compounds, (iii) the system is self-assembling and self-replicative and (iv) it is adaptive to changes in the environment and evolvable. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  4. City of Flagstaff Project: Ground Water Resource Evaluation, Remote Sensing Component

    USGS Publications Warehouse

    Chavez, Pat S.; Velasco, Miguel G.; Bowell, Jo-Ann; Sides, Stuart C.; Gonzalez, Rosendo R.; Soltesz, Deborah L.

    1996-01-01

    Many regions, cities, and towns in the Western United States need new or expanded water resources because of both population growth and increased development. Any tools or data that can help in the evaluation of an area's potential water resources must be considered for this increasingly critical need. Remotely sensed satellite images and subsequent digital image processing have been under-utilized in ground water resource evaluation and exploration. Satellite images can be helpful in detecting and mapping an area's regional structural patterns, including major fracture and fault systems, two important geologic settings for an area's surface to ground water relations. Within the United States Geological Survey's (USGS) Flagstaff Field Center, expertise and capabilities in remote sensing and digital image processing have been developed over the past 25 years through various programs. For the City of Flagstaff project, this expertise and these capabilities were combined with traditional geologic field mapping to help evaluate ground water resources in the Flagstaff area. Various enhancement and manipulation procedures were applied to the digital satellite images; the results, in both digital and hardcopy format, were used for field mapping and analyzing the regional structure. Relative to surface sampling, remotely sensed satellite and airborne images have improved spatial coverage that can help study, map, and monitor the earth surface at local and/or regional scales. Advantages offered by remotely sensed satellite image data include: 1. a synoptic/regional view compared to both aerial photographs and ground sampling, 2. cost effectiveness, 3. high spatial resolution and coverage compared to ground sampling, and 4. relatively high temporal coverage on a long term basis. Remotely sensed images contain both spectral and spatial information. The spectral information provides various properties and characteristics about the surface cover at a given location or pixel (that is, vegetation and/or soil type). The spatial information gives the distribution, variation, and topographic relief of the cover types from pixel to pixel. Therefore, the main characteristics that determine a pixel's brightness/reflectance and, consequently, the digital number (DN) assigned to the pixel, are the physical properties of the surface and near surface, the cover type, and the topographic slope. In this application, the ability to detect and map lineaments, especially those related to fractures and faults, is critical. Therefore, the extraction of spatial information from the digital images was of prime interest in this project. The spatial information varies among the different spectral bands available; in particular, a near infrared spectral band is better than a visible band when extracting spatial information in highly vegetated areas. In this study, both visible and near infrared bands were analyzed and used to extract the desired spatial information from the images. The wide swath coverage of remotely sensed satellite digital images makes them ideal for regional analysis and mapping. Since locating and mapping highly fractured and faulted areas is a major requirement for ground water resource evaluation and exploration this aspect of satellite images was considered critical; it allowed us to stand back (actually up about 440 miles), look at, and map the regional structural setting of the area. The main focus of the remote sensing and digital image processing component of this project was to use both remotely sensed digital satellite images and a Digital Elevation Model (DEM) to extract spatial information related to the structural and topographic patterns in the area. The data types used were digital satellite images collected by the United States' Landsat Thematic Mapper (TM) and French Systeme Probatoire d'Observation de laTerre (SPOT) imaging systems, along with a DEM of the Flagstaff region. The USGS Mini Image Processing Sy

  5. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation.

    PubMed

    Qin, Changbo; Jia, Yangwen; Su, Z; Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-07-29

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.

  6. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

    PubMed Central

    Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-01-01

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946

  7. Spatial Designation of Critical Habitats for Endangered and Threatened Species in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuttle, Mark A; Singh, Nagendra; Sabesan, Aarthy

    Establishing biological reserves or "hot spots" for endangered and threatened species is critical to support real-world species regulatory and management problems. Geographic data on the distribution of endangered and threatened species can be used to improve ongoing efforts for species conservation in the United States. At present no spatial database exists which maps out the location endangered species for the US. However, spatial descriptions do exists for the habitat associated with all endangered species, but in a form not readily suitable to use in a geographic information system (GIS). In our study, the principal challenge was extracting spatial data describingmore » these critical habitats for 472 species from over 1000 pages of the federal register. In addition, an appropriate database schema was designed to accommodate the different tiers of information associated with the species along with the confidence of designation; the interpreted location data was geo-referenced to the county enumeration unit producing a spatial database of endangered species for the whole of US. The significance of these critical habitat designations, database scheme and methodologies will be discussed.« less

  8. Measuring high-density built environment for public health research: Uncertainty with respect to data, indicator design and spatial scale.

    PubMed

    Sun, Guibo; Webster, Chris; Ni, Michael Y; Zhang, Xiaohu

    2018-05-07

    Uncertainty with respect to built environment (BE) data collection, measure conceptualization and spatial scales is evident in urban health research, but most findings are from relatively lowdensity contexts. We selected Hong Kong, an iconic high-density city, as the study area as limited research has been conducted on uncertainty in such areas. We used geocoded home addresses (n=5732) from a large population-based cohort in Hong Kong to extract BE measures for the participants' place of residence based on an internationally recognized BE framework. Variability of the measures was mapped and Spearman's rank correlation calculated to assess how well the relationships among indicators are preserved across variables and spatial scales. We found extreme variations and uncertainties for the 180 measures collected using comprehensive data and advanced geographic information systems modelling techniques. We highlight the implications of methodological selection and spatial scales of the measures. The results suggest that more robust information regarding urban health research in high-density city would emerge if greater consideration were given to BE data, design methods and spatial scales of the BE measures.

  9. Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.

    PubMed

    Revina, Yulia; Petro, Lucy S; Muckli, Lars

    2017-09-22

    Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.

    PubMed

    Stone, Scott A; Tata, Matthew S

    2017-01-01

    Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.

  11. Multipoint entanglement in disordered systems

    NASA Astrophysics Data System (ADS)

    Magán, Javier M.; Paganelli, Simone; Oganesyan, Vadim

    2017-02-01

    We develop an approach to characterize excited states of disordered many-body systems using spatially resolved structures of entanglement. We show that the behavior of the mutual information (MI) between two parties of a many-body system can signal a qualitative difference between thermal and localized phases - MI is finite in insulators while it approaches zero in the thermodynamic limit in the ergodic phase. Related quantities, such as the recently introduced Codification Volume (CV), are shown to be suitable to quantify the correlation length of the system. These ideas are illustrated using prototypical non-interacting wavefunctions of localized and extended particles and then applied to characterize states of strongly excited interacting spin chains. We especially focus on evolution of spatial structure of quantum information between high temperature diffusive and many-body localized (MBL) phases believed to exist in these models. We study MI as a function of disorder strength both averaged over the eigenstates and in time-evolved product states drawn from continuously deformed family of initial states realizable experimentally. As expected, spectral and time-evolved averages coincide inside the ergodic phase and differ significantly outside. We also highlight dispersion among the initial states within the localized phase - some of these show considerable generation and delocalization of quantum information.

  12. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality

    PubMed Central

    Tata, Matthew S.

    2017-01-01

    Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible. PMID:28792518

  13. Remodeling census population with spatial information from Landsat TM imagery

    USGS Publications Warehouse

    Yuan, Y.; Smith, R.M.; Limp, W.F.

    1997-01-01

    In geographic information systems (GIS) studies there has been some difficulty integrating socioeconomic and physiogeographic data. One important type of socioeconomic data, census data, offers a wide range of socioeconomic information, but is aggregated within arbitrary enumeration districts (EDs). Values reflect either raw counts or, when standardized, the mean densities in the EDs. On the other hand, remote sensing imagery, an important type of physiogeographic data, provides large quantities of information with more spatial details than census data. Based on the dasymetric mapping principle, this study applies multivariable regression to examine the correlation between population counts from census and land cover types. The land cover map is classified from LandSat TM imagery. The correlation is high. Census population counts are remodeled to a GIS raster layer based on the discovered correlations coupled with scaling techniques, which offset influences from other than land cover types. The GIS raster layer depicts the population distribution with much more spatial detail than census data offer. The resulting GIS raster layer is ready to be analyzed or integrated with other GIS data. ?? 1998 Elsevier Science Ltd. All rights reserved.

  14. Rural Veteran Access to Healthcare Services: Investigating the Role of Information and Communication Technologies in Overcoming Spatial Barriers

    PubMed Central

    Schooley, Benjamin L; Horan, Thomas A; Lee, Pamela W; West, Priscilla A

    2010-01-01

    This multimethod pilot study examined patient and practitioner perspectives on the influence of spatial barriers to healthcare access and the role of health information technology in overcoming these barriers. The study included a survey administered to patients attending a Department of Veterans Affairs (VA) health visit, and a focus group with VA care providers. Descriptive results and focus group findings are presented. Spatial distance is a significant factor for many rural veterans when seeking healthcare. For this sample of rural veterans, a range of telephone, computer, and Internet technologies may become more important for accessing care as Internet access becomes more ubiquitous and as younger veterans begin using the VA health system. The focus group highlighted the negative impact of distance, economic considerations, geographic barriers, and specific medical conditions on access to care. Lack of adequate technology infrastructure was seen as an obstacle to utilization. This study discusses the need to consider distance, travel modes, age, and information technology infrastructure and adoption when designing health information technology to care for rural patients. PMID:20697468

  15. Digital disaster evaluation and its application to 2015 Ms 8.1 Nepal Earthquake

    NASA Astrophysics Data System (ADS)

    WANG, Xiaoqing; LV, Jinxia; DING, Xiang; DOU, Aixia

    2016-11-01

    The purpose of the article is to probe the technique resolution of disaster information extraction and evaluation from the digital RS images based on the internet environment and aided by the social and geographic information. The solution is composed with such methods that the fast post-disaster assessment system will assess automatically the disaster area and grade, the multi-phase satellite and airborne high resolution digital RS images will provide the basis to extract the disaster areas or spots, assisted by the fast position of potential serious damage risk targets according to the geographic, administrative, population, buildings and other information in the estimated disaster region, the 2D digital map system or 3D digital earth system will provide platforms to interpret cooperatively the damage information in the internet environment, and further to estimate the spatial distribution of damage index or intensity, casualties or economic losses, which are very useful for the decision-making of emergency rescue and disaster relief, resettlement and reconstruction. The spatial seismic damage distribution of 2015 Ms 8.1 Nepal earthquake, as an example of the above solution, is evaluated by using the high resolution digital RS images, auxiliary geographic information and ground survey. The results are compared with the statistical disaster information issued by the ground truth by field surveying, and show good consistency.

  16. The relation between working memory and language comprehension in signers and speakers.

    PubMed

    Emmorey, Karen; Giezen, Marcel R; Petrich, Jennifer A F; Spurgeon, Erin; O'Grady Farnady, Lucinda

    2017-06-01

    This study investigated the relation between linguistic and spatial working memory (WM) resources and language comprehension for signed compared to spoken language. Sign languages are both linguistic and visual-spatial, and therefore provide a unique window on modality-specific versus modality-independent contributions of WM resources to language processing. Deaf users of American Sign Language (ASL), hearing monolingual English speakers, and hearing ASL-English bilinguals completed several spatial and linguistic serial recall tasks. Additionally, their comprehension of spatial and non-spatial information in ASL and spoken English narratives was assessed. Results from the linguistic serial recall tasks revealed that the often reported advantage for speakers on linguistic short-term memory tasks does not extend to complex WM tasks with a serial recall component. For English, linguistic WM predicted retention of non-spatial information, and both linguistic and spatial WM predicted retention of spatial information. For ASL, spatial WM predicted retention of spatial (but not non-spatial) information, and linguistic WM did not predict retention of either spatial or non-spatial information. Overall, our findings argue against strong assumptions of independent domain-specific subsystems for the storage and processing of linguistic and spatial information and furthermore suggest a less important role for serial encoding in signed than spoken language comprehension. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Vector data structure conversion at the EROS Data Center

    USGS Publications Warehouse

    van Roessel, Jan W.; Doescher, S.W.

    1986-01-01

    With the increasing prevalence of GIS systems and the processing of spatial data, conversion of data from one system to another has become a more serious problem. This report describes the approach taken to arrive at a solution at the EROS Data Center. The report consists of a main section and a number of appendices. The methodology is described in the main section, while the appendices have system specific descriptions. The overall approach is based on a central conversion hub consisting of a relational database manager and associated tools, with a standard data structure for the transfer of spatial data. This approach is the best compromise between the two goals of reducing the overall interfacing effort and producing efficient system interfaces, while the tools can be used to arrive at a progression of interface sophistication ranging from toolbench to smooth flow. The appendices provide detailed information on a number of spatial data handling systems and data structures and existing interfaces as well as interfaces developed with the described methodology.

  18. A spatial data handling system for retrieval of images by unrestricted regions of user interest

    NASA Technical Reports Server (NTRS)

    Dorfman, Erik; Cromp, Robert F.

    1992-01-01

    The Intelligent Data Management (IDM) project at NASA/Goddard Space Flight Center has prototyped an Intelligent Information Fusion System (IIFS), which automatically ingests metadata from remote sensor observations into a large catalog which is directly queryable by end-users. The greatest challenge in the implementation of this catalog was supporting spatially-driven searches, where the user has a possible complex region of interest and wishes to recover those images that overlap all or simply a part of that region. A spatial data management system is described, which is capable of storing and retrieving records of image data regardless of their source. This system was designed and implemented as part of the IIFS catalog. A new data structure, called a hypercylinder, is central to the design. The hypercylinder is specifically tailored for data distributed over the surface of a sphere, such as satellite observations of the Earth or space. Operations on the hypercylinder are regulated by two expert systems. The first governs the ingest of new metadata records, and maintains the efficiency of the data structure as it grows. The second translates, plans, and executes users' spatial queries, performing incremental optimization as partial query results are returned.

  19. Application of GIS in foreign direct investment decision support system

    NASA Astrophysics Data System (ADS)

    Zhou, Jianlan; Sun, Koumei

    2007-06-01

    It is important to make decisions on how to attract foreign direct investment (FDI) to China and know how the inequality of FDI introduction by locational different provinces. Following background descriptions on China's FDI economic environments and FDI-related policies, this paper demonstrates the uses of geographical information system (GIS) and multi-criterion decision-making (MCDM) framework in solving a spatial multi-objective problem of evaluating and ranking China's provinces for FDI introduction. It implements a foreign direct investment decision support system, which reveals the main determinants of FDI in China and gives some results of regional geographical analysis over spatial data.

  20. Comparison of environmental and socio-economic domains of vulnerability to flood hazards

    NASA Astrophysics Data System (ADS)

    Leidel, M.; Kienberger, S.; Lang, S.; Zeil, P.

    2009-04-01

    Socio-economic and environmental based vulnerability models have been developed within the research context of the FP6 project BRAHMATWINN. The conceptualisation of vulnerability has been defined in the project and is characterised as a function of sensitivity and adaptive capacity, where sensitivity is used to refer to systems that are susceptible to the impacts of environmental stress. Adaptive capacity is used to refer to systems or resources available to communities that could help them adapt or cope with the adverse consequences of environmental stresses in the recovery phase. In a wider context the approach reflects the wider objective and conceptualizations of the IPCC (Intergovernmental Panel on Climate Change) framework, where vulnerability is characterized as a component of overall risk. A methodology has been developed which delineates spatial units of vulnerability (VULNUS). These units share a specific common characteristic and allow the independent spatial modelling of a complex phenomena independent from administrative units and raster based approaches. An increasing detail of spatial data and complex decision problems require flexible means for scaled spatial representations, for mapping the dynamics and constant changes, and delivering the crucial information. Automated techniques of object-based image analysis (OBIA, Lang & Blaschke, 2006), capable of integrating a virtually unlimited set of spatial data sets, try to match the information extraction with our world view. To account for that, a flexible concept of manageable units is required. The term geon was proposed by Lang (2008) to describe generic spatial objects that are homogenous in terms of a varying spatial phenomena under the influence of, and partly controlled by, policy actions. The geon concept acts as a framework for the regionalization of continuous spatial information according to defined parameters of homogeneity. It is flexible in terms of a certain perception of a problem (specific policy realm, specific hazard domain, etc.). In this study, vulnerability units have been derived as a specific instance of a geon set within an area exposed to flood risk. Using geons, we are capable of transforming singular domains of information on specific systemic components to policy-relevant, conditioned information (Kienberger et al., 2008; Tiede & Lang, 2007). According to the work programme socio-economic vulnerabilities have been modelled for the Salzach catchment. A specific set of indicators has been developed with a strong stakeholder orientation. Next to that, and to allow an easier integration within the aimed development of Water Resource Response Units (WRRUs) the environmental domain of vulnerability has additionally been modelled. We present the results of the socio-economic and environmental based approach to model vulnerability. The research methodology utilises census as well as land use/land cover data to derive and assess vulnerability. As a result, spatial units have been identified which represent common characteristics of socio-economic environmental vulnerability. The results show the spatially explicit vulnerability and its underlying components sensitivity and adaptive capacity for socio-economic and environmental domains and discuss differences. Within the test area, the Salzach River catchment in Austria, primarily urban areas adjacent to water courses are highly vulnerable. It can be stated that the delineation of vulnerability units that integrates all dimensions of sustainability are a prerequisite for a holistic and thus adaptive integrated water management approach. Indeed, such units constitute the basis for future dynamic vulnerability assessments, and thus for the assessment of uncertainties due to climate change. Kienberger, S., S. Lang & D. Tiede (2008): Socio-economic vulnerability units - modelling meaningful spatial units. In: Proceedings of the GIS Research UK 16th Annual conference GISRUK 2008, Manchester. Lang, S. (2008): Object-based image analysis for remote sensing applications: modeling reality - dealing with complexity. In: Blaschke, T., S. Lang & G. Hay (eds.): Object-Based Image Analysis - Spatial concepts for knowledge-driven remote sensing applications. New York: Springer, 3-28. Lang, S. & T. Blaschke (2006) Bridging remote sensing and GIS - what are the most supportive pillars? In: S: Lang & T. Blaschke (eds.): International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences vol. XXXVI-4/C42. CD-ROM and online at www.isprs.org. Tiede D. & S .Lang (2007): Analytical 3D views and virtual globes - putting analytical results into spatial context. ISPRS, ICA, DGfK - Joint Workshop: Visualization and Exploration of Geospatial Data, Stuttgart

  1. Basin Assessment Spatial Planning Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The tool is intended to facilitate hydropower development and water resource planning by improving synthesis and interpretation of disparate spatial datasets that are considered in development actions (e.g., hydrological characteristics, environmentally and culturally sensitive areas, existing or proposed water power resources, climate-informed forecasts). The tool enables this capability by providing a unique framework for assimilating, relating, summarizing, and visualizing disparate spatial data through the use of spatial aggregation techniques, relational geodatabase platforms, and an interactive web-based Geographic Information Systems (GIS). Data are aggregated and related based on shared intersections with a common spatial unit; in this case, industry-standard hydrologic drainagemore » areas for the U.S. (National Hydrography Dataset) are used as the spatial unit to associate planning data. This process is performed using all available scalar delineations of drainage areas (i.e., region, sub-region, basin, sub-basin, watershed, sub-watershed, catchment) to create spatially hierarchical relationships among planning data and drainages. These entity-relationships are stored in a relational geodatabase that provides back-end structure to the web GIS and its widgets. The full technology stack was built using all open-source software in modern programming languages. Interactive widgets that function within the viewport are also compatible with all modern browsers.« less

  2. Cortical Transformation of Spatial Processing for Solving the Cocktail Party Problem: A Computational Model123

    PubMed Central

    Dong, Junzi; Colburn, H. Steven

    2016-01-01

    In multisource, “cocktail party” sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem. PMID:26866056

  3. Cortical Transformation of Spatial Processing for Solving the Cocktail Party Problem: A Computational Model(1,2,3).

    PubMed

    Dong, Junzi; Colburn, H Steven; Sen, Kamal

    2016-01-01

    In multisource, "cocktail party" sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem.

  4. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    NASA Astrophysics Data System (ADS)

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-01

    We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.

  5. Study on GIS-based sport-games information system

    NASA Astrophysics Data System (ADS)

    Peng, Hongzhi; Yang, Lingbin; Deng, Meirong; Han, Yongshun

    2008-10-01

    With the development of internet and such info-technologies as, Information Superhighway, Computer Technology, Remote Sensing(RS), Global Positioning System(GPS), Digital Communication and National Information Network(NIN),etc. Geographic Information System (GIS) becomes more and more popular in fields of science and industries. It is not only feasible but also necessary to apply GIS to large-scale sport games. This paper firstly discussed GIS technology and its application, then elaborated on the frame and content of Sport-Games Geography Information System(SG-GIS) with the function of gathering, storing, processing, sharing, exchanging and utilizing all kind of spatial-temporal information about sport games, and lastly designed and developed a public service GIS for the 6th Asian Winter Games in Changchun, China(CAWGIS). The application of CAWGIS showed that the established SG-GIS was feasible and GIS-based sport games information system was able to effectively process a large amount of sport-games information and provide the real-time sport games service for governors, athletes and the public.

  6. Analysis and integration of spatial data for transportation planning.

    DOT National Transportation Integrated Search

    2009-06-01

    Transportation planning requires substantial amounts of data and cooperation among transportation planning : agencies. Advances in computer technology and the increasing availability of geographic information : systems (GIS) are giving transportation...

  7. Application of Remote Sensing and GIS in Landfill (waste Disposal) Site Selection and Environmental Impacts Assessment around Mysore City, Karnataka, India

    NASA Astrophysics Data System (ADS)

    Basavarajappa, T. H.

    2012-07-01

    Landfill site selection is a complex process involving geological, hydrological, environmental and technical parameters as well as government regulations. As such, it requires the processing of a good amount of geospatial data. Landfill site selection techniques have been analyzed for identifying their suitability. Application of Geographic Information System (GIS) is suitable to find best locations for such installations which use multiple criteria analysis. The use of Artificial intelligence methods, such as expert systems, can also be very helpful in solid waste planning and management. The waste disposal and its pollution around major cities in Karnataka are important problems affecting the environment. The Mysore is one of the major cities in Karnataka. The landfill site selection is the best way to control of pollution from any region. The main aim is to develop geographic information system to study the Landuse/ Landcover, natural drainage system, water bodies, and extents of villages around Mysore city, transportation, topography, geomorphology, lithology, structures, vegetation and forest information for landfill site selection. GIS combines spatial data (maps, aerial photographs, and satellite images) with quantitative, qualitative, and descriptive information database, which can support a wide range of spatial queries. For the Site Selection of an industrial waste and normal daily urban waste of a city town or a village, combining GIS with Analytical Hierarchy Process (AHP) will be more appropriate. This method is innovative because it establishes general indices to quantify overall environmental impact as well as individual indices for specific environmental components (i.e. surface water, groundwater, atmosphere, soil and human health). Since this method requires processing large quantities of spatial data. To automate the processes of establishing composite evaluation criteria, performing multiple criteria analysis and carrying out spatial clustering a suitable methodology was developed. The feasibility of site selection in the study area based on different criteria was used to obtain the layered data by integrating Remote Sensing and GIS. This methodology is suitable for all practical applications in other cities, also.

  8. Groundwater Levels for Selected Wells in the Chehalis River Basin, Washington

    USGS Publications Warehouse

    Fasser, E.T.; Julich, R.J.

    2010-01-01

    Groundwater levels for selected wells in the Chehalis River basin, Washington, are presented on an interactive web-based map to document the spatial distribution of groundwater levels in the study area during late summer 2009. Groundwater level data and well information were collected by the U.S. Geological Survey using standard techniques. The data are stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  9. An Updating System for the Gridded Population Database of China Based on Remote Sensing, GIS and Spatial Database Technologies.

    PubMed

    Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui

    2009-01-01

    The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.

  10. Sensitivity to the Sampling Process Emerges From the Principle of Efficiency.

    PubMed

    Jara-Ettinger, Julian; Sun, Felix; Schulz, Laura; Tenenbaum, Joshua B

    2018-05-01

    Humans can seamlessly infer other people's preferences, based on what they do. Broadly, two types of accounts have been proposed to explain different aspects of this ability. The first account focuses on spatial information: Agents' efficient navigation in space reveals what they like. The second account focuses on statistical information: Uncommon choices reveal stronger preferences. Together, these two lines of research suggest that we have two distinct capacities for inferring preferences. Here we propose that this is not the case, and that spatial-based and statistical-based preference inferences can be explained by the assumption that agents are efficient alone. We show that people's sensitivity to spatial and statistical information when they infer preferences is best predicted by a computational model of the principle of efficiency, and that this model outperforms dual-system models, even when the latter are fit to participant judgments. Our results suggest that, as adults, a unified understanding of agency under the principle of efficiency underlies our ability to infer preferences. Copyright © 2018 Cognitive Science Society, Inc.

  11. Monitoring the expansion of built-up areas in Seberang Perai region, Penang State, Malaysia

    NASA Astrophysics Data System (ADS)

    Samat, N.

    2014-02-01

    Rapid urbanization has caused land use transformation and encroachment of built environment into arable agriculture land. Uncontrolled expansion could bring negative impacts to society, space and the environment. Therefore, information on expansion and future spatial pattern of built-up areas would be useful for planners and decision makers in formulating policies towards managing and planning for sustainable urban development. This study demonstrates the usage of Geographic Information System in monitoring the expansion of built-up area in Seberang Perai region, Penang State, Malaysia. Built-up area has increased by approximately 20% between 1990 and 2001 and further increased by 12% between 2001 and 2007. New development is expected to continue encroach into existing open space and agriculture area since those are the only available land in this study area. The information on statistics of the expansion of built-up area and future spatial pattern of urban expansion were useful in planning and managing urban spatial growth.

  12. VLUIS, a land use data product for Victoria, Australia, covering 2006 to 2013

    PubMed Central

    Morse-McNabb, Elizabeth; Sheffield, Kathryn; Clark, Rob; Lewis, Hayden; Robson, Susan; Cherry, Don; Williams, Steve

    2015-01-01

    Land Use Information is a key dataset required to enable an understanding of the changing nature of our landscapes and the associated influences on natural resources and regional communities. The Victorian Land Use Information System (VLUIS) data product has been created within the State Government of Victoria to support land use assessments. The project began in 2007 using stakeholder engagement to establish product requirements such as format, classification, frequency and spatial resolution. Its genesis is significantly different to traditional methods, incorporating data from a range of jurisdictions to develop land use information designed for regular on-going creation and consistency. Covering the entire landmass of Victoria, the dataset separately describes land tenure, land use and land cover. These variables are co-registered to a common spatial base (cadastral parcels) across the state for the period 2006 to 2013; biennially for land tenure and land use, and annually for land cover. Data is produced as a spatial GIS feature class. PMID:26602150

  13. VLUIS, a land use data product for Victoria, Australia, covering 2006 to 2013.

    PubMed

    Morse-McNabb, Elizabeth; Sheffield, Kathryn; Clark, Rob; Lewis, Hayden; Robson, Susan; Cherry, Don; Williams, Steve

    2015-11-24

    Land Use Information is a key dataset required to enable an understanding of the changing nature of our landscapes and the associated influences on natural resources and regional communities. The Victorian Land Use Information System (VLUIS) data product has been created within the State Government of Victoria to support land use assessments. The project began in 2007 using stakeholder engagement to establish product requirements such as format, classification, frequency and spatial resolution. Its genesis is significantly different to traditional methods, incorporating data from a range of jurisdictions to develop land use information designed for regular on-going creation and consistency. Covering the entire landmass of Victoria, the dataset separately describes land tenure, land use and land cover. These variables are co-registered to a common spatial base (cadastral parcels) across the state for the period 2006 to 2013; biennially for land tenure and land use, and annually for land cover. Data is produced as a spatial GIS feature class.

  14. Ecosystem informaties for natural history data - Developing an integrated framework for biological and geographic data

    EPA Science Inventory

    Threats to the ecological integrity of marine and estuarine systems operate over many spatial scales, from nutrient enrichment at watershed/estuarine linkages to invasive species and climate change at regional/global scales. Decision support tools and information systems needed t...

  15. ASSESSING AND PREVENTING THE SPREAD OF CONTAMINANTS IN A DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    Remote monitoring data, field studies, and the modeling software ? EPANET, can be used by drinking water utilities and consulting engineers to predict flow dynamics and information on the spatial distribution and concentration of contaminants in a drinking water system. A field ...

  16. Geospatial Technologies and Higher Education in Argentina

    ERIC Educational Resources Information Center

    Leguizamon, Saturnino

    2010-01-01

    The term "geospatial technologies" encompasses a large area of fields involving cartography, spatial analysis, geographic information system, remote sensing, global positioning systems and many others. These technologies should be expected to be available (as "natural tools") for a country with a large surface and a variety of…

  17. Benchmarking a soil moisture data assimilation system for agricultural drought monitoring

    USDA-ARS?s Scientific Manuscript database

    Agricultural drought is defined as a shortage of moisture in the root zone of plants. Recently available satellite-based remote sensing data have accelerated development of drought early warning system by providing spatially continuous soil moisture information repeatedly at short-term interval. Non...

  18. Constraining Distributed Catchment Models by Incorporating Perceptual Understanding of Spatial Hydrologic Behaviour

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei

    2016-04-01

    Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models tend to contain a large number of poorly defined and spatially varying model parameters which are therefore computationally expensive to calibrate. Insufficient data can result in model parameter and structural equifinality, particularly when calibration is reliant on catchment outlet discharge behaviour alone. Evaluating spatial patterns of internal hydrological behaviour has the potential to reveal simulations that, whilst consistent with measured outlet discharge, are qualitatively dissimilar to our perceptual understanding of how the system should behave. We argue that such understanding, which may be derived from stakeholder knowledge across different catchments for certain process dynamics, is a valuable source of information to help reject non-behavioural models, and therefore identify feasible model structures and parameters. The challenge, however, is to convert different sources of often qualitative and/or semi-qualitative information into robust quantitative constraints of model states and fluxes, and combine these sources of information together to reject models within an efficient calibration framework. Here we present the development of a framework to incorporate different sources of data to efficiently calibrate distributed catchment models. For each source of information, an interval or inequality is used to define the behaviour of the catchment system. These intervals are then combined to produce a hyper-volume in state space, which is used to identify behavioural models. We apply the methodology to calibrate the Penn State Integrated Hydrological Model (PIHM) at the Wye catchment, Plynlimon, UK. Outlet discharge behaviour is successfully simulated when perceptual understanding of relative groundwater levels between lowland peat, upland peat and valley slopes within the catchment are used to identify behavioural models. The process of converting qualitative information into quantitative constraints forces us to evaluate the assumptions behind our perceptual understanding in order to derive robust constraints, and therefore fairly reject models and avoid type II errors. Likewise, consideration needs to be given to the commensurability problem when mapping perceptual understanding to constrain model states.

  19. Modeling spatial patterns of soil respiration in maize fields from vegetation and soil property factors with the use of remote sensing and geographical information system.

    PubMed

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m(-2) s(-1). The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China.

  20. Importance of the spatial data and the sensor web in the ubiquitous computing area

    NASA Astrophysics Data System (ADS)

    Akçit, Nuhcan; Tomur, Emrah; Karslıoǧlu, Mahmut O.

    2014-08-01

    Spatial data has become a critical issue in recent years. In the past years, nearly more than three quarters of databases, were related directly or indirectly to locations referring to physical features, which constitute the relevant aspects. Spatial data is necessary to identify or calculate the relationships between spatial objects when using spatial operators in programs or portals. Originally, calculations were conducted using Geographic Information System (GIS) programs on local computers. Subsequently, through the Internet, they formed a geospatial web, which is integrated into a discoverable collection of geographically related web standards and key features, and constitutes a global network of geospatial data that employs the World Wide Web to process textual data. In addition, the geospatial web is used to gather spatial data producers, resources, and users. Standards also constitute a critical dimension in further globalizing the idea of the geospatial web. The sensor web is an example of the real time service that the geospatial web can provide. Sensors around the world collect numerous types of data. The sensor web is a type of sensor network that is used for visualizing, calculating, and analyzing collected sensor data. Today, people use smart devices and systems more frequently because of the evolution of technology and have more than one mobile device. The considerable number of sensors and different types of data that are positioned around the world have driven the production of interoperable and platform-independent sensor web portals. The focus of such production has been on further developing the idea of an interoperable and interdependent sensor web of all devices that share and collect information. The other pivotal idea consists of encouraging people to use and send data voluntarily for numerous purposes with the some level of credibility. The principal goal is to connect mobile and non-mobile device in the sensor web platform together to operate for serving and collecting information from people.

Top