Sample records for information visualization applications

  1. Information Virtulization in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Virtual Environments provide a natural setting for a wide range of information visualization applications, particularly wlieit the information to be visualized is defined on a three-dimensional domain (Bryson, 1996). This chapter provides an overview of the issues that arise when designing and implementing an information visualization application in a virtual environment. Many design issues that arise, such as, e.g., issues of display, user tracking are common to any application of virtual environments. In this chapter we focus on those issues that are special to information visualization applications, as issues of wider concern are addressed elsewhere in this book.

  2. Bandwidth Optimization On Design Of Visual Display Information System Based Networking At Politeknik Negeri Bali

    NASA Astrophysics Data System (ADS)

    Sudiartha, IKG; Catur Bawa, IGNB

    2018-01-01

    Information can not be separated from the social life of the community, especially in the world of education. One of the information fields is academic calendar information, activity agenda, announcement and campus activity news. In line with technological developments, text-based information is becoming obsolete. For that need creativity to present information more quickly, accurately and interesting by exploiting the development of digital technology and internet. In this paper will be developed applications for the provision of information in the form of visual display, applied to computer network system with multimedia applications. Network-based applications provide ease in updating data through internet services, attractive presentations with multimedia support. The application “Networking Visual Display Information Unit” can be used as a medium that provides information services for students and academic employee more interesting and ease in updating information than the bulletin board. The information presented in the form of Running Text, Latest Information, Agenda, Academic Calendar and Video provide an interesting presentation and in line with technological developments at the Politeknik Negeri Bali. Through this research is expected to create software “Networking Visual Display Information Unit” with optimal bandwidth usage by combining local data sources and data through the network. This research produces visual display design with optimal bandwidth usage and application in the form of supporting software.

  3. Application of Frameworks in the Analysis and (Re)design of Interactive Visual Learning Tools

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2009-01-01

    Interactive visual learning tools (IVLTs) are software environments that encode and display information visually and allow learners to interact with the visual information. This article examines the application and utility of frameworks in the analysis and design of IVLTs at the micro level. Frameworks play an important role in any design. They…

  4. A Notation for Rapid Specification of Information Visualization

    ERIC Educational Resources Information Center

    Lee, Sang Yun

    2013-01-01

    This thesis describes a notation for rapid specification of information visualization, which can be used as a theoretical framework of integrating various types of information visualization, and its applications at a conceptual level. The notation is devised to codify the major characteristics of data/visual structures in conventionally-used…

  5. Information Technology and Transcription of Reading Materials for the Visually Impaired Persons in Nigeria

    ERIC Educational Resources Information Center

    Nkiko, Christopher; Atinmo, Morayo I.; Michael-Onuoha, Happiness Chijioke; Ilogho, Julie E.; Fagbohun, Michael O.; Ifeakachuku, Osinulu; Adetomiwa, Basiru; Usman, Kazeem Omeiza

    2018-01-01

    Studies have shown inadequate reading materials for the visually impaired in Nigeria. Information technology has greatly advanced the provision of information to the visually impaired in other industrialized climes. This study investigated the extent of application of information technology to the transcription of reading materials for the…

  6. Cognitive approaches for patterns analysis and security applications

    NASA Astrophysics Data System (ADS)

    Ogiela, Marek R.; Ogiela, Lidia

    2017-08-01

    In this paper will be presented new opportunities for developing innovative solutions for semantic pattern classification and visual cryptography, which will base on cognitive and bio-inspired approaches. Such techniques can be used for evaluation of the meaning of analyzed patterns or encrypted information, and allow to involve such meaning into the classification task or encryption process. It also allows using some crypto-biometric solutions to extend personalized cryptography methodologies based on visual pattern analysis. In particular application of cognitive information systems for semantic analysis of different patterns will be presented, and also a novel application of such systems for visual secret sharing will be described. Visual shares for divided information can be created based on threshold procedure, which may be dependent on personal abilities to recognize some image details visible on divided images.

  7. Real-time scalable visual analysis on mobile devices

    NASA Astrophysics Data System (ADS)

    Pattath, Avin; Ebert, David S.; May, Richard A.; Collins, Timothy F.; Pike, William

    2008-02-01

    Interactive visual presentation of information can help an analyst gain faster and better insight from data. When combined with situational or context information, visualization on mobile devices is invaluable to in-field responders and investigators. However, several challenges are posed by the form-factor of mobile devices in developing such systems. In this paper, we classify these challenges into two broad categories - issues in general mobile computing and issues specific to visual analysis on mobile devices. Using NetworkVis and Infostar as example systems, we illustrate some of the techniques that we employed to overcome many of the identified challenges. NetworkVis is an OpenVG-based real-time network monitoring and visualization system developed for Windows Mobile devices. Infostar is a flash-based interactive, real-time visualization application intended to provide attendees access to conference information. Linked time-synchronous visualization, stylus/button-based interactivity, vector graphics, overview-context techniques, details-on-demand and statistical information display are some of the highlights of these applications.

  8. Forecasting and visualization of wildfires in a 3D geographical information system

    NASA Astrophysics Data System (ADS)

    Castrillón, M.; Jorge, P. A.; López, I. J.; Macías, A.; Martín, D.; Nebot, R. J.; Sabbagh, I.; Quintana, F. M.; Sánchez, J.; Sánchez, A. J.; Suárez, J. P.; Trujillo, A.

    2011-03-01

    This paper describes a wildfire forecasting application based on a 3D virtual environment and a fire simulation engine. A novel open-source framework is presented for the development of 3D graphics applications over large geographic areas, offering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems (GIS) community. The application includes a remote module that allows simultaneous connections of several users for monitoring a real wildfire event. The system is able to make a realistic composition of what is really happening in the area of the wildfire with dynamic 3D objects and location of human and material resources in real time, providing a new perspective to analyze the wildfire information. The user is enabled to simulate and visualize the propagation of a fire on the terrain integrating at the same time spatial information on topography and vegetation types with weather and wind data. The application communicates with a remote web service that is in charge of the simulation task. The user may specify several parameters through a friendly interface before the application sends the information to the remote server responsible of carrying out the wildfire forecasting using the FARSITE simulation model. During the process, the server connects to different external resources to obtain up-to-date meteorological data. The client application implements a realistic 3D visualization of the fire evolution on the landscape. A Level Of Detail (LOD) strategy contributes to improve the performance of the visualization system.

  9. The Hype over Hyperbolic Browsers.

    ERIC Educational Resources Information Center

    Allen, Maryellen Mott

    2002-01-01

    Considers complaints about the usability in the human-computer interaction aspect of information retrieval and discusses information visualization, the Online Library of Information Visualization Environments, hyperbolic information structure, subject searching, real-world applications, relational databases and hyperbolic trees, and the future of…

  10. Modeling and visualizing borehole information on virtual globes using KML

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Wang, Xi-feng; Zhang, Bing

    2014-01-01

    Advances in virtual globes and Keyhole Markup Language (KML) are providing the Earth scientists with the universal platforms to manage, visualize, integrate and disseminate geospatial information. In order to use KML to represent and disseminate subsurface geological information on virtual globes, we present an automatic method for modeling and visualizing a large volume of borehole information. Based on a standard form of borehole database, the method first creates a variety of borehole models with different levels of detail (LODs), including point placemarks representing drilling locations, scatter dots representing contacts and tube models representing strata. Subsequently, the level-of-detail based (LOD-based) multi-scale representation is constructed to enhance the efficiency of visualizing large numbers of boreholes. Finally, the modeling result can be loaded into a virtual globe application for 3D visualization. An implementation program, termed Borehole2KML, is developed to automatically convert borehole data into KML documents. A case study of using Borehole2KML to create borehole models in Shanghai shows that the modeling method is applicable to visualize, integrate and disseminate borehole information on the Internet. The method we have developed has potential use in societal service of geological information.

  11. Design and application of BIM based digital sand table for construction management

    NASA Astrophysics Data System (ADS)

    Fuquan, JI; Jianqiang, LI; Weijia, LIU

    2018-05-01

    This paper explores the design and application of BIM based digital sand table for construction management. Aiming at the demands and features of construction management plan for bridge and tunnel engineering, the key functional features of digital sand table should include three-dimensional GIS, model navigation, virtual simulation, information layers, and data exchange, etc. That involving the technology of 3D visualization and 4D virtual simulation of BIM, breakdown structure of BIM model and project data, multi-dimensional information layers, and multi-source data acquisition and interaction. Totally, the digital sand table is a visual and virtual engineering information integrated terminal, under the unified data standard system. Also, the applications shall contain visual constructing scheme, virtual constructing schedule, and monitoring of construction, etc. Finally, the applicability of several basic software to the digital sand table is analyzed.

  12. Profiling Oman education data using data visualization technique

    NASA Astrophysics Data System (ADS)

    Alalawi, Sultan Juma Sultan; Shaharanee, Izwan Nizal Mohd; Jamil, Jastini Mohd

    2016-10-01

    This research works presents an innovative data visualization technique to understand and visualize the information of Oman's education data generated from the Ministry of Education Oman "Educational Portal". The Ministry of Education in Sultanate of Oman have huge databases contains massive information. The volume of data in the database increase yearly as many students, teachers and employees enter into the database. The task for discovering and analyzing these vast volumes of data becomes increasingly difficult. Information visualization and data mining offer a better ways in dealing with large volume of information. In this paper, an innovative information visualization technique is developed to visualize the complex multidimensional educational data. Microsoft Excel Dashboard, Visual Basic Application (VBA) and Pivot Table are utilized to visualize the data. Findings from the summarization of the data are presented, and it is argued that information visualization can help related stakeholders to become aware of hidden and interesting information from large amount of data drowning in their educational portal.

  13. Introduction to Information Visualization (InfoVis) Techniques for Model-Based Systems Engineering

    NASA Technical Reports Server (NTRS)

    Sindiy, Oleg; Litomisky, Krystof; Davidoff, Scott; Dekens, Frank

    2013-01-01

    This paper presents insights that conform to numerous system modeling languages/representation standards. The insights are drawn from best practices of Information Visualization as applied to aerospace-based applications.

  14. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2009-09-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  15. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  16. 75 FR 23761 - Notice of Public Information Collections Being Reviewed by the Federal Communications Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ...: Section 79.2, Accessibility of Programming Providing Emergency Information. Form Number: Not applicable... hearing and visual disabilities have access to the critical details of emergency information. The... Report and Order in MM Docket No. 95-176.The Commission modified the rules to assist persons with visual...

  17. Comparing the quality of accessing medical literature using content-based visual and textual information retrieval

    NASA Astrophysics Data System (ADS)

    Müller, Henning; Kalpathy-Cramer, Jayashree; Kahn, Charles E., Jr.; Hersh, William

    2009-02-01

    Content-based visual information (or image) retrieval (CBIR) has been an extremely active research domain within medical imaging over the past ten years, with the goal of improving the management of visual medical information. Many technical solutions have been proposed, and application scenarios for image retrieval as well as image classification have been set up. However, in contrast to medical information retrieval using textual methods, visual retrieval has only rarely been applied in clinical practice. This is despite the large amount and variety of visual information produced in hospitals every day. This information overload imposes a significant burden upon clinicians, and CBIR technologies have the potential to help the situation. However, in order for CBIR to become an accepted clinical tool, it must demonstrate a higher level of technical maturity than it has to date. Since 2004, the ImageCLEF benchmark has included a task for the comparison of visual information retrieval algorithms for medical applications. In 2005, a task for medical image classification was introduced and both tasks have been run successfully for the past four years. These benchmarks allow an annual comparison of visual retrieval techniques based on the same data sets and the same query tasks, enabling the meaningful comparison of various retrieval techniques. The datasets used from 2004-2007 contained images and annotations from medical teaching files. In 2008, however, the dataset used was made up of 67,000 images (along with their associated figure captions and the full text of their corresponding articles) from two Radiological Society of North America (RSNA) scientific journals. This article describes the results of the medical image retrieval task of the ImageCLEF 2008 evaluation campaign. We compare the retrieval results of both visual and textual information retrieval systems from 15 research groups on the aforementioned data set. The results show clearly that, currently, visual retrieval alone does not achieve the performance necessary for real-world clinical applications. Most of the common visual retrieval techniques have a MAP (Mean Average Precision) of around 2-3%, which is much lower than that achieved using textual retrieval (MAP=29%). Advanced machine learning techniques, together with good training data, have been shown to improve the performance of visual retrieval systems in the past. Multimodal retrieval (basing retrieval on both visual and textual information) can achieve better results than purely visual, but only when carefully applied. In many cases, multimodal retrieval systems performed even worse than purely textual retrieval systems. On the other hand, some multimodal retrieval systems demonstrated significantly increased early precision, which has been shown to be a desirable behavior in real-world systems.

  18. Parallel Visualization Co-Processing of Overnight CFD Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Edwards, David E.; Haimes, Robert

    1999-01-01

    An interactive visualization system pV3 is being developed for the investigation of advanced computational methodologies employing visualization and parallel processing for the extraction of information contained in large-scale transient engineering simulations. Visual techniques for extracting information from the data in terms of cutting planes, iso-surfaces, particle tracing and vector fields are included in this system. This paper discusses improvements to the pV3 system developed under NASA's Affordable High Performance Computing project.

  19. The shaping of information by visual metaphors.

    PubMed

    Ziemkiewicz, Caroline; Kosara, Robert

    2008-01-01

    The nature of an information visualization can be considered to lie in the visual metaphors it uses to structure information. The process of understanding a visualization therefore involves an interaction between these external visual metaphors and the user's internal knowledge representations. To investigate this claim, we conducted an experiment to test the effects of visual metaphor and verbal metaphor on the understanding of tree visualizations. Participants answered simple data comprehension questions while viewing either a treemap or a node-link diagram. Questions were worded to reflect a verbal metaphor that was either compatible or incompatible with the visualization a participant was using. The results (based on correctness and response time) suggest that the visual metaphor indeed affects how a user derives information from a visualization. Additionally, we found that the degree to which a user is affected by the metaphor is strongly correlated with the user's ability to answer task questions correctly. These findings are a first step towards illuminating how visual metaphors shape user understanding, and have significant implications for the evaluation, application, and theory of visualization.

  20. Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.

    PubMed

    Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu

    2017-05-23

    This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.

  1. Illustrative visualization of 3D city models

    NASA Astrophysics Data System (ADS)

    Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian

    2005-03-01

    This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.

  2. VisPort: Web-Based Access to Community-Specific Visualization Functionality [Shedding New Light on Exploding Stars: Visualization for TeraScale Simulation of Neutrino-Driven Supernovae (Final Technical Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, M Pauline

    2007-06-30

    The VisPort visualization portal is an experiment in providing Web-based access to visualization functionality from any place and at any time. VisPort adopts a service-oriented architecture to encapsulate visualization functionality and to support remote access. Users employ browser-based client applications to choose data and services, set parameters, and launch visualization jobs. Visualization products typically images or movies are viewed in the user's standard Web browser. VisPort emphasizes visualization solutions customized for specific application communities. Finally, VisPort relies heavily on XML, and introduces the notion of visualization informatics - the formalization and specialization of information related to the process and productsmore » of visualization.« less

  3. Visualization rhetoric: framing effects in narrative visualization.

    PubMed

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation. © 2011 IEEE

  4. Domain Visualization Using VxInsight[R] for Science and Technology Management.

    ERIC Educational Resources Information Center

    Boyack, Kevin W.; Wylie, Brian N.; Davidson, George S.

    2002-01-01

    Presents the application of a knowledge visualization tool, VxInsight[R], to enable domain analysis for science and technology management. Uses data mining from sources of bibliographic information to define subsets of relevant information and discusses citation mapping, text mapping, and journal mapping. (Author/LRW)

  5. Using Visual Information to Determine the Subjective Valuation of Public Space for Transportation : Application to Subway Crowding Costs in NYC

    DOT National Transportation Integrated Search

    2017-11-30

    The objective of this project is to explore the role of visual information in determining the users subjective valuation of multidimensional trip attributes that are relevant in decision-making, but are neglected in standard travel demand models. ...

  6. 47 CFR 73.6026 - Broadcast regulations applicable to Class A television stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Service on the Vertical Blanking Interval and in the Visual Signal. § 73.653Operation of TV aural and visual transmitters. § 73.658Affiliation agreements and network program practice; territorial exclusivity... informational programming for children. § 73.673Public information initiatives regarding educational and...

  7. 47 CFR 73.6026 - Broadcast regulations applicable to Class A television stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Service on the Vertical Blanking Interval and in the Visual Signal. § 73.653Operation of TV aural and visual transmitters. § 73.658Affiliation agreements and network program practice; territorial exclusivity... informational programming for children. § 73.673Public information initiatives regarding educational and...

  8. Visualization and dissemination of global crustal models on virtual globes

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Pan, Xin; Sun, Jian-zhong

    2016-05-01

    Global crustal models, such as CRUST 5.1 and its descendants, are very useful in a broad range of geoscience applications. The current method for representing the existing global crustal models relies heavily on dedicated computer programs to read and work with those models. Therefore, it is not suited to visualize and disseminate global crustal information to non-geological users. This shortcoming is becoming obvious as more and more people from both academic and non-academic institutions are interested in understanding the structure and composition of the crust. There is a pressing need to provide a modern, universal and user-friendly method to represent and visualize the existing global crustal models. In this paper, we present a systematic framework to easily visualize and disseminate the global crustal structure on virtual globes. Based on crustal information exported from the existing global crustal models, we first create a variety of KML-formatted crustal models with different levels of detail (LODs). And then the KML-formatted models can be loaded into a virtual globe for 3D visualization and model dissemination. A Keyhole Markup Language (KML) generator (Crust2KML) is developed to automatically convert crustal information obtained from the CRUST 1.0 model into KML-formatted global crustal models, and a web application (VisualCrust) is designed to disseminate and visualize those models over the Internet. The presented framework and associated implementations can be conveniently exported to other applications to support visualizing and analyzing the Earth's internal structure on both regional and global scales in a 3D virtual-globe environment.

  9. Depth reversals in stereoscopic displays driven by apparent size

    NASA Astrophysics Data System (ADS)

    Sacher, Gunnar; Hayes, Amy; Thornton, Ian M.; Sereno, Margaret E.; Malony, Allen D.

    1998-04-01

    In visual scenes, depth information is derived from a variety of monocular and binocular cues. When in conflict, a monocular cue is sometimes able to override the binocular information. We examined the accuracy of relative depth judgments in orthographic, stereoscopic displays and found that perceived relative size can override binocular disparity as a depth cue in a situation where the relative size information is itself generated from disparity information, not from retinal size difference. A size discrimination task confirmed the assumption that disparity information was perceived and used to generate apparent size differences. The tendency for the apparent size cue to override disparity information can be modulated by varying the strength of the apparent size cue. In addition, an analysis of reaction times provides supporting evidence for this novel depth reversal effect. We believe that human perception must be regarded as an important component of stereoscopic applications. Hence, if applications are to be effective and accurate, it is necessary to take into account the richness and complexity of the human visual perceptual system that interacts with them. We discuss implications of this and similar research for human performance in virtual environments, the design of visual presentations for virtual worlds, and the design of visualization tools.

  10. Visual servoing in medical robotics: a survey. Part I: endoscopic and direct vision imaging - techniques and applications.

    PubMed

    Azizian, Mahdi; Khoshnam, Mahta; Najmaei, Nima; Patel, Rajni V

    2014-09-01

    Intra-operative imaging is widely used to provide visual feedback to a clinician when he/she performs a procedure. In visual servoing, surgical instruments and parts of tissue/body are tracked by processing the acquired images. This information is then used within a control loop to manoeuvre a robotic manipulator during a procedure. A comprehensive search of electronic databases was completed for the period 2000-2013 to provide a survey of the visual servoing applications in medical robotics. The focus is on medical applications where image-based tracking is used for closed-loop control of a robotic system. Detailed classification and comparative study of various contributions in visual servoing using endoscopic or direct visual images are presented and summarized in tables and diagrams. The main challenges in using visual servoing for medical robotic applications are identified and potential future directions are suggested. 'Supervised automation of medical robotics' is found to be a major trend in this field. Copyright © 2013 John Wiley & Sons, Ltd.

  11. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications

    PubMed Central

    Costa, Daniel G.; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-01

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field. PMID:28067777

  12. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications.

    PubMed

    Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-05

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.

  13. Organic light emitting board for dynamic interactive display

    PubMed Central

    Kim, Eui Hyuk; Cho, Sung Hwan; Lee, Ju Han; Jeong, Beomjin; Kim, Richard Hahnkee; Yu, Seunggun; Lee, Tae-Woo; Shim, Wooyoung; Park, Cheolmin

    2017-01-01

    Interactive displays involve the interfacing of a stimuli-responsive sensor with a visual human-readable response. Here, we describe a polymeric electroluminescence-based stimuli-responsive display method that simultaneously detects external stimuli and visualizes the stimulant object. This organic light-emitting board is capable of both sensing and direct visualization of a variety of conductive information. Simultaneous sensing and visualization of the conductive substance is achieved when the conductive object is coupled with the light emissive material layer on application of alternating current. A variety of conductive materials can be detected regardless of their work functions, and thus information written by a conductive pen is clearly visualized, as is a human fingerprint with natural conductivity. Furthermore, we demonstrate that integration of the organic light-emitting board with a fluidic channel readily allows for dynamic monitoring of metallic liquid flow through the channel, which may be suitable for biological detection and imaging applications. PMID:28406151

  14. Organic light emitting board for dynamic interactive display

    NASA Astrophysics Data System (ADS)

    Kim, Eui Hyuk; Cho, Sung Hwan; Lee, Ju Han; Jeong, Beomjin; Kim, Richard Hahnkee; Yu, Seunggun; Lee, Tae-Woo; Shim, Wooyoung; Park, Cheolmin

    2017-04-01

    Interactive displays involve the interfacing of a stimuli-responsive sensor with a visual human-readable response. Here, we describe a polymeric electroluminescence-based stimuli-responsive display method that simultaneously detects external stimuli and visualizes the stimulant object. This organic light-emitting board is capable of both sensing and direct visualization of a variety of conductive information. Simultaneous sensing and visualization of the conductive substance is achieved when the conductive object is coupled with the light emissive material layer on application of alternating current. A variety of conductive materials can be detected regardless of their work functions, and thus information written by a conductive pen is clearly visualized, as is a human fingerprint with natural conductivity. Furthermore, we demonstrate that integration of the organic light-emitting board with a fluidic channel readily allows for dynamic monitoring of metallic liquid flow through the channel, which may be suitable for biological detection and imaging applications.

  15. A medical application integrating remote 3D visualization tools to access picture archiving and communication system on mobile devices.

    PubMed

    He, Longjun; Ming, Xing; Liu, Qian

    2014-04-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.

  16. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data

    PubMed Central

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-01-01

    Background Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. Results We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: . Conclusion MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine. PMID:17937818

  17. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data.

    PubMed

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-10-15

    Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: http://sig.biostr.washington.edu/projects/MindSeer. MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine.

  18. Using the PyMOL Application to Reinforce Visual Understanding of Protein Structure

    ERIC Educational Resources Information Center

    Rigsby, Rachel E.; Parker, Alison B.

    2016-01-01

    Visualization of chemical concepts can be challenging for many students. This is arguably a critical skill for beginning students of biochemistry to develop, since new information is often presented visually in the form of textbook figures. It is recommended that visual literacy be explicitly taught in the classroom rather than assuming that…

  19. Human factors guidelines for applications of 3D perspectives: a literature review

    NASA Astrophysics Data System (ADS)

    Dixon, Sharon; Fitzhugh, Elisabeth; Aleva, Denise

    2009-05-01

    Once considered too processing-intense for general utility, application of the third dimension to convey complex information is facilitated by the recent proliferation of technological advancements in computer processing, 3D displays, and 3D perspective (2.5D) renderings within a 2D medium. The profusion of complex and rapidly-changing dynamic information being conveyed in operational environments has elevated interest in possible military applications of 3D technologies. 3D can be a powerful mechanism for clearer information portrayal, facilitating rapid and accurate identification of key elements essential to mission performance and operator safety. However, implementation of 3D within legacy systems can be costly, making integration prohibitive. Therefore, identifying which tasks may benefit from 3D or 2.5D versus simple 2D visualizations is critical. Unfortunately, there is no "bible" of human factors guidelines for usability optimization of 2D, 2.5D, or 3D visualizations nor for determining which display best serves a particular application. Establishing such guidelines would provide an invaluable tool for designers and operators. Defining issues common to each will enhance design effectiveness. This paper presents the results of an extensive review of open source literature addressing 3D information displays, with particular emphasis on comparison of true 3D with 2D and 2.5D representations and their utility for military tasks. Seventy-five papers are summarized, highlighting militarily relevant applications of 3D visualizations and 2.5D perspective renderings. Based on these findings, human factors guidelines for when and how to use these visualizations, along with recommendations for further research are discussed.

  20. Astronaut Office Scheduling System Software

    NASA Technical Reports Server (NTRS)

    Brown, Estevancio

    2010-01-01

    AOSS is a highly efficient scheduling application that uses various tools to schedule astronauts weekly appointment information. This program represents an integration of many technologies into a single application to facilitate schedule sharing and management. It is a Windows-based application developed in Visual Basic. Because the NASA standard office automation load environment is Microsoft-based, Visual Basic provides AO SS developers with the ability to interact with Windows collaboration components by accessing objects models from applications like Outlook and Excel. This also gives developers the ability to create newly customizable components that perform specialized tasks pertaining to scheduling reporting inside the application. With this capability, AOSS can perform various asynchronous tasks, such as gathering/ sending/ managing astronauts schedule information directly to their Outlook calendars at any time.

  1. D Web Visualization of Environmental Information - Integration of Heterogeneous Data Sources when Providing Navigation and Interaction

    NASA Astrophysics Data System (ADS)

    Herman, L.; Řezník, T.

    2015-08-01

    3D information is essential for a number of applications used daily in various domains such as crisis management, energy management, urban planning, and cultural heritage, as well as pollution and noise mapping, etc. This paper is devoted to the issue of 3D modelling from the levels of buildings to cities. The theoretical sections comprise an analysis of cartographic principles for the 3D visualization of spatial data as well as a review of technologies and data formats used in the visualization of 3D models. Emphasis was placed on the verification of available web technologies; for example, X3DOM library was chosen for the implementation of a proof-of-concept web application. The created web application displays a 3D model of the city district of Nový Lískovec in Brno, the Czech Republic. The developed 3D visualization shows a terrain model, 3D buildings, noise pollution, and other related information. Attention was paid to the areas important for handling heterogeneous input data, the design of interactive functionality, and navigation assistants. The advantages, limitations, and future development of the proposed concept are discussed in the conclusions.

  2. Data visualisation in surveillance for injury prevention and control: conceptual bases and case studies

    PubMed Central

    Martinez, Ramon; Ordunez, Pedro; Soliz, Patricia N; Ballesteros, Michael F

    2016-01-01

    Background The complexity of current injury-related health issues demands the usage of diverse and massive data sets for comprehensive analyses, and application of novel methods to communicate data effectively to the public health community, decision-makers and the public. Recent advances in information visualisation, availability of new visual analytic methods and tools, and progress on information technology provide an opportunity for shaping the next generation of injury surveillance. Objective To introduce data visualisation conceptual bases, and propose a visual analytic and visualisation platform in public health surveillance for injury prevention and control. Methods The paper introduces data visualisation conceptual bases, describes a visual analytic and visualisation platform, and presents two real-world case studies illustrating their application in public health surveillance for injury prevention and control. Results Application of visual analytic and visualisation platform is presented as solution for improved access to heterogeneous data sources, enhance data exploration and analysis, communicate data effectively, and support decision-making. Conclusions Applications of data visualisation concepts and visual analytic platform could play a key role to shape the next generation of injury surveillance. Visual analytic and visualisation platform could improve data use, the analytic capacity, and ability to effectively communicate findings and key messages. The public health surveillance community is encouraged to identify opportunities to develop and expand its use in injury prevention and control. PMID:26728006

  3. The social computing room: a multi-purpose collaborative visualization environment

    NASA Astrophysics Data System (ADS)

    Borland, David; Conway, Michael; Coposky, Jason; Ginn, Warren; Idaszak, Ray

    2010-01-01

    The Social Computing Room (SCR) is a novel collaborative visualization environment for viewing and interacting with large amounts of visual data. The SCR consists of a square room with 12 projectors (3 per wall) used to display a single 360-degree desktop environment that provides a large physical real estate for arranging visual information. The SCR was designed to be cost-effective, collaborative, configurable, widely applicable, and approachable for naive users. Because the SCR displays a single desktop, a wide range of applications is easily supported, making it possible for a variety of disciplines to take advantage of the room. We provide a technical overview of the room and highlight its application to scientific visualization, arts and humanities projects, research group meetings, and virtual worlds, among other uses.

  4. Experiences using Visualization Techniques to Present Requirements, Risks to Them, and Options for Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Cornford, Steven L.; Kiper, James D.; Menzies, Tim

    2006-01-01

    For several years we have been employing a risk-based decision process to guide development and application of advanced technologies, and for research and technology portfolio planning. The process is supported by custom software, in which visualization plays an important role. During requirements gathering, visualization is used to help scrutinize the status (completeness, extent) of the information. During decision making based on the gathered information, visualization is used to help decisionmakers understand the space of options and their consequences. In this paper we summarize the visualization capabilities that we have employed, indicating when and how they have proven useful.

  5. Open Source Web-Based Solutions for Disseminating and Analyzing Flood Hazard Information at the Community Level

    NASA Astrophysics Data System (ADS)

    Santillan, M. M.-M.; Santillan, J. R.; Morales, E. M. O.

    2017-09-01

    We discuss in this paper the development, including the features and functionalities, of an open source web-based flood hazard information dissemination and analytical system called "Flood EViDEns". Flood EViDEns is short for "Flood Event Visualization and Damage Estimations", an application that was developed by the Caraga State University to address the needs of local disaster managers in the Caraga Region in Mindanao, Philippines in accessing timely and relevant flood hazard information before, during and after the occurrence of flood disasters at the community (i.e., barangay and household) level. The web application made use of various free/open source web mapping and visualization technologies (GeoServer, GeoDjango, OpenLayers, Bootstrap), various geospatial datasets including LiDAR-derived elevation and information products, hydro-meteorological data, and flood simulation models to visualize various scenarios of flooding and its associated damages to infrastructures. The Flood EViDEns application facilitates the release and utilization of this flood-related information through a user-friendly front end interface consisting of web map and tables. A public version of the application can be accessed at http://121.97.192.11:8082/. The application is currently expanded to cover additional sites in Mindanao, Philippines through the "Geo-informatics for the Systematic Assessment of Flood Effects and Risks for a Resilient Mindanao" or the "Geo-SAFER Mindanao" Program.

  6. Video as a technology for interpersonal communications: a new perspective

    NASA Astrophysics Data System (ADS)

    Whittaker, Steve

    1995-03-01

    Some of the most challenging multimedia applications have involved real- time conferencing, using audio and video to support interpersonal communication. Here we re-examine assumptions about the role, importance and implementation of video information in such systems. Rather than focussing on novel technologies, we present evaluation data relevant to both the classes of real-time multimedia applications we should develop and their design and implementation. Evaluations of videoconferencing systems show that previous work has overestimated the importance of video at the expense of audio. This has strong implications for the implementation of bandwidth allocation and synchronization. Furthermore our recent studies of workplace interaction show that prior work has neglected another potentially vital function of visual information: in assessing the communication availability of others. In this new class of application, rather than providing a supplement to audio information, visual information is used to promote the opportunistic communications that are prevalent in face-to-face settings. We discuss early experiments with such connection applications and identify outstanding design and implementation issues. Finally we examine a different class of application 'video-as-data', where the video image is used to transmit information about the work objects themselves, rather than information about interactants.

  7. An annotation system for 3D fluid flow visualization

    NASA Technical Reports Server (NTRS)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  8. A risk-based coverage model for video surveillance camera control optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Hongzhou; Du, Zhiguo; Zhao, Xingtao; Li, Peiyue; Li, Dehua

    2015-12-01

    Visual surveillance system for law enforcement or police case investigation is different from traditional application, for it is designed to monitor pedestrians, vehicles or potential accidents. Visual surveillance risk is defined as uncertainty of visual information of targets and events monitored in present work and risk entropy is introduced to modeling the requirement of police surveillance task on quality and quantity of vide information. the prosed coverage model is applied to calculate the preset FoV position of PTZ camera.

  9. Nebhydro: Sharing Geospatial Data to Supportwater Management in Nebraska

    NASA Astrophysics Data System (ADS)

    Kamble, B.; Irmak, A.; Hubbard, K.; Deogun, J.; Dvorak, B.

    2012-12-01

    Recent advances in web-enabled geographical technologies have the potential to make a dramatic impact on development of highly interactive spatial applications on the web for visualization of large-scale geospatial data by water resources and irrigation scientists. Spatial and point scale water resources data visualization are an emerging and challenging application domain. Query based visual explorations of geospatial hydrological data can play an important role in stimulating scientific hypotheses and seeking causal relationships among hydro variables. The Nebraska Hydrological Information System (NebHydro) utilizes ESRI's ArcGIS server technology to increase technological awareness among farmers, irrigation managers and policy makers. Web-based geospatial applications are an effective way to expose scientific hydrological datasets to the research community and the public. NebHydro uses Adobe Flex technology to offer an online visualization and data analysis system for presentation of social and economic data. Internet mapping services is an integrated product of GIS and Internet technologies; it is a favored solution to achieve the interoperability of GIS. The development of Internet based GIS services in the state of Nebraska showcases the benefits of sharing geospatial hydrological data among agencies, resource managers and policy makers. Geospatial hydrological Information (Evapotranspiration from Remote Sensing, vegetation indices (NDVI), USGS Stream gauge data, Climatic data etc.) is generally generated through model simulation (METRIC, SWAP, Linux, Python based scripting etc). Information is compiled into and stored within object oriented relational spatial databases using a geodatabase information model that supports the key data types needed by applications including features, relationships, networks, imagery, terrains, maps and layers. The system provides online access, querying, visualization, and analysis of the hydrological data from several sources at one place. The study indicates that internet GIS, developed using advanced technologies, provides valuable education potential to users in hydrology and irrigation engineering and suggests that such a system can support advanced hydrological data access and analysis tools to improve utility of data in operations. Keywords: Hydrological Information System, NebHydro, Water Management, data sharing, data visualization, ArcGIS server.

  10. Multi-scale image segmentation method with visual saliency constraints and its application

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yu, Jie; Sun, Kaimin

    2018-03-01

    Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.

  11. The Sound and Feel of Titrations: A Smartphone Aid for Color-Blind and Visually Impaired Students

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Rathod, Balraj B.

    2017-01-01

    An Android-based application has been developed to provide color-blind and visually impaired students a multisensory perception of color change observed in a titration. The application records and converts the color information into beep sounds and vibration pulses, which are generated by the smartphone. It uses a range threshold of hue and…

  12. Visual Communications and Image Processing

    NASA Astrophysics Data System (ADS)

    Hsing, T. Russell

    1987-07-01

    This special issue of Optical Engineering is concerned with visual communications and image processing. The increase in communication of visual information over the past several decades has resulted in many new image processing and visual communication systems being put into service. The growth of this field has been rapid in both commercial and military applications. The objective of this special issue is to intermix advent technology in visual communications and image processing with ideas generated from industry, universities, and users through both invited and contributed papers. The 15 papers of this issue are organized into four different categories: image compression and transmission, image enhancement, image analysis and pattern recognition, and image processing in medical applications.

  13. Text Stream Trend Analysis using Multiscale Visual Analytics with Applications to Social Media Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Beaver, Justin M; BogenII, Paul L.

    In this paper, we introduce a new visual analytics system, called Matisse, that allows exploration of global trends in textual information streams with specific application to social media platforms. Despite the potential for real-time situational awareness using these services, interactive analysis of such semi-structured textual information is a challenge due to the high-throughput and high-velocity properties. Matisse addresses these challenges through the following contributions: (1) robust stream data management, (2) automated sen- timent/emotion analytics, (3) inferential temporal, geospatial, and term-frequency visualizations, and (4) a flexible drill-down interaction scheme that progresses from macroscale to microscale views. In addition to describing thesemore » contributions, our work-in-progress paper concludes with a practical case study focused on the analysis of Twitter 1% sample stream information captured during the week of the Boston Marathon bombings.« less

  14. Robotic Attention Processing And Its Application To Visual Guidance

    NASA Astrophysics Data System (ADS)

    Barth, Matthew; Inoue, Hirochika

    1988-03-01

    This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.

  15. Data visualisation in surveillance for injury prevention and control: conceptual bases and case studies.

    PubMed

    Martinez, Ramon; Ordunez, Pedro; Soliz, Patricia N; Ballesteros, Michael F

    2016-04-01

    The complexity of current injury-related health issues demands the usage of diverse and massive data sets for comprehensive analyses, and application of novel methods to communicate data effectively to the public health community, decision-makers and the public. Recent advances in information visualisation, availability of new visual analytic methods and tools, and progress on information technology provide an opportunity for shaping the next generation of injury surveillance. To introduce data visualisation conceptual bases, and propose a visual analytic and visualisation platform in public health surveillance for injury prevention and control. The paper introduces data visualisation conceptual bases, describes a visual analytic and visualisation platform, and presents two real-world case studies illustrating their application in public health surveillance for injury prevention and control. Application of visual analytic and visualisation platform is presented as solution for improved access to heterogeneous data sources, enhance data exploration and analysis, communicate data effectively, and support decision-making. Applications of data visualisation concepts and visual analytic platform could play a key role to shape the next generation of injury surveillance. Visual analytic and visualisation platform could improve data use, the analytic capacity, and ability to effectively communicate findings and key messages. The public health surveillance community is encouraged to identify opportunities to develop and expand its use in injury prevention and control. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Toward the establishment of design guidelines for effective 3D perspective interfaces

    NASA Astrophysics Data System (ADS)

    Fitzhugh, Elisabeth; Dixon, Sharon; Aleva, Denise; Smith, Eric; Ghrayeb, Joseph; Douglas, Lisa

    2009-05-01

    The propagation of information operation technologies, with correspondingly vast amounts of complex network information to be conveyed, significantly impacts operator workload. Information management research is rife with efforts to develop schemes to aid operators to identify, review, organize, and retrieve the wealth of available data. Data may take on such distinct forms as intelligence libraries, logistics databases, operational environment models, or network topologies. Increased use of taxonomies and semantic technologies opens opportunities to employ network visualization as a display mechanism for diverse information aggregations. The broad applicability of network visualizations is still being tested, but in current usage, the complexity of densely populated abstract networks suggests the potential utility of 3D. Employment of 2.5D in network visualization, using classic perceptual cues, creates a 3D experience within a 2D medium. It is anticipated that use of 3D perspective (2.5D) will enhance user ability to visually inspect large, complex, multidimensional networks. Current research for 2.5D visualizations demonstrates that display attributes, including color, shape, size, lighting, atmospheric effects, and shadows, significantly impact operator experience. However, guidelines for utilization of attributes in display design are limited. This paper discusses pilot experimentation intended to identify potential problem areas arising from these cues and determine how best to optimize perceptual cue settings. Development of optimized design guidelines will ensure that future experiments, comparing network displays with other visualizations, are not confounded or impeded by suboptimal attribute characterization. Current experimentation is anticipated to support development of cost-effective, visually effective methods to implement 3D in military applications.

  17. Making sense of personal health information: challenges for information visualization.

    PubMed

    Faisal, Sarah; Blandford, Ann; Potts, Henry W W

    2013-09-01

    This article presents a systematic review of the literature on information visualization for making sense of personal health information. Based on this review, five application themes were identified: treatment planning, examination of patients' medical records, representation of pedigrees and family history, communication and shared decision making, and life management and health monitoring. While there are recognized design challenges associated with each of these themes, such as how best to represent data visually and integrate qualitative and quantitative information, other challenges and opportunities have received little attention to date. In this article, we highlight, in particular, the opportunities for supporting people in better understanding their own illnesses and making sense of their health conditions in order to manage them more effectively.

  18. Localization Using Visual Odometry and a Single Downward-Pointing Camera

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.

    2012-01-01

    Stereo imaging is a technique commonly employed for vision-based navigation. For such applications, two images are acquired from different vantage points and then compared using transformations to extract depth information. The technique is commonly used in robotics for obstacle avoidance or for Simultaneous Localization And Mapping, (SLAM). Yet, the process requires a number of image processing steps and therefore tends to be CPU-intensive, which limits the real-time data rate and use in power-limited applications. Evaluated here is a technique where a monocular camera is used for vision-based odometry. In this work, an optical flow technique with feature recognition is performed to generate odometry measurements. The visual odometry sensor measurements are intended to be used as control inputs or measurements in a sensor fusion algorithm using low-cost MEMS based inertial sensors to provide improved localization information. Presented here are visual odometry results which demonstrate the challenges associated with using ground-pointing cameras for visual odometry. The focus is for rover-based robotic applications for localization within GPS-denied environments.

  19. A Selected Bibliography of On-Line Visual Displays and Their Applications.

    ERIC Educational Resources Information Center

    Braidwood, J.

    Contained in this bibliography are 312 references as they related to general principles and problems of information display, man-computer interaction, present and possible future display equipment, ergonomic aspects of display design, and current and potential applications, especially to information processing. (Author/MM)

  20. Development of a geographic visualization and communications systems (GVCS) for monitoring remote vehicles

    DOT National Transportation Integrated Search

    1998-03-30

    The purpose of this project is to integrate a variety of geographic information systems : capabilities and telecommunication technologies for potential use in geographic network and : visualization applications. The specific technical goals of the pr...

  1. Assistive technology applied to education of students with visual impairment.

    PubMed

    Alves, Cássia Cristiane de Freitas; Monteiro, Gelse Beatriz Martins; Rabello, Suzana; Gasparetto, Maria Elisabete Rodrigues Freire; de Carvalho, Keila Monteiro

    2009-08-01

    Verify the application of assistive technology, especially information technology in the education of blind and low-vision students from the perceptions of their teachers. Descriptive survey study in public schools in three municipalities of the state of São Paulo, Brazil. The sample comprised 134 teachers. According to the teachers' opinions, there are differences in the specificities and applicability of assistive technology for blind and low-vision students, for whom specific computer programs are important. Information technology enhances reading and writing skills, as well as communication with the world on an equal basis, thereby improving quality of life and facilitating the learning process. The main reason for not using information technology is the lack of planning courses. The main requirements for the use of information technology in schools are enough computers for all students, advisers to help teachers, and pedagogical support. Assistive technology is applied to education of students with visual impairment; however, teachers indicate the need for infrastructure and pedagogical support. Information technology is an important tool in the inclusion process and can promote independence and autonomy of students with visual impairment.

  2. Augmented Virtuality: A Real-time Process for Presenting Real-world Visual Sensory Information in an Immersive Virtual Environment for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    McFadden, D.; Tavakkoli, A.; Regenbrecht, J.; Wilson, B.

    2017-12-01

    Virtual Reality (VR) and Augmented Reality (AR) applications have recently seen an impressive growth, thanks to the advent of commercial Head Mounted Displays (HMDs). This new visualization era has opened the possibility of presenting researchers from multiple disciplines with data visualization techniques not possible via traditional 2D screens. In a purely VR environment researchers are presented with the visual data in a virtual environment, whereas in a purely AR application, a piece of virtual object is projected into the real world with which researchers could interact. There are several limitations to the purely VR or AR application when taken within the context of remote planetary exploration. For example, in a purely VR environment, contents of the planet surface (e.g. rocks, terrain, or other features) should be created off-line from a multitude of images using image processing techniques to generate 3D mesh data that will populate the virtual surface of the planet. This process usually takes a tremendous amount of computational resources and cannot be delivered in real-time. As an alternative, video frames may be superimposed on the virtual environment to save processing time. However, such rendered video frames will lack 3D visual information -i.e. depth information. In this paper, we present a technique to utilize a remotely situated robot's stereoscopic cameras to provide a live visual feed from the real world into the virtual environment in which planetary scientists are immersed. Moreover, the proposed technique will blend the virtual environment with the real world in such a way as to preserve both the depth and visual information from the real world while allowing for the sensation of immersion when the entire sequence is viewed via an HMD such as Oculus Rift. The figure shows the virtual environment with an overlay of the real-world stereoscopic video being presented in real-time into the virtual environment. Notice the preservation of the object's shape, shadows, and depth information. The distortions shown in the image are due to the rendering of the stereoscopic data into a 2D image for the purposes of taking screenshots.

  3. Improved CORF model of simple cell combined with non-classical receptive field and its application on edge detection

    NASA Astrophysics Data System (ADS)

    Sun, Xiao; Chai, Guobei; Liu, Wei; Bao, Wenzhuo; Zhao, Xiaoning; Ming, Delie

    2018-02-01

    Simple cells in primary visual cortex are believed to extract local edge information from a visual scene. In this paper, inspired by different receptive field properties and visual information flow paths of neurons, an improved Combination of Receptive Fields (CORF) model combined with non-classical receptive fields was proposed to simulate the responses of simple cell's receptive fields. Compared to the classical model, the proposed model is able to better imitate simple cell's physiologic structure with consideration of facilitation and suppression of non-classical receptive fields. And on this base, an edge detection algorithm as an application of the improved CORF model was proposed. Experimental results validate the robustness of the proposed algorithm to noise and background interference.

  4. Arctic Research Mapping Application (ARMAP): visualize project-level information for U.S. funded research in the Arctic

    NASA Astrophysics Data System (ADS)

    Kassin, A.; Cody, R. P.; Barba, M.; Escarzaga, S. M.; Score, R.; Dover, M.; Gaylord, A. G.; Manley, W. F.; Habermann, T.; Tweedie, C. E.

    2015-12-01

    The Arctic Research Mapping Application (ARMAP; http://armap.org/) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. In collaboration with 17 research agencies, project locations are displayed in a visually enhanced web mapping application. Key information about each project is presented along with links to web pages that provide additional information. The mapping application includes new reference data layers and an updated ship tracks layer. Visual enhancements are achieved by redeveloping the front-end from FLEX to HTML5 and JavaScript, which now provide access to mobile users utilizing tablets and cell phone devices. New tools have been added that allow users to navigate, select, draw, measure, print, use a time slider, and more. Other module additions include a back-end Apache SOLR search platform that provides users with the capability to perform advance searches throughout the ARMAP database. Furthermore, a new query builder interface has been developed in order to provide more intuitive controls to generate complex queries. These improvements have been made to increase awareness of projects funded by numerous entities in the Arctic, enhance coordination for logistics support, help identify geographic gaps in research efforts and potentially foster more collaboration amongst researchers working in the region. Additionally, ARMAP can be used to demonstrate past, present, and future research efforts supported by the U.S. Government.

  5. 77 FR 70970 - Accessible Emergency Information, and Apparatus Requirements for Emergency Information and Video...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... Emergency Information, and Apparatus Requirements for Emergency Information and Video Description... blind and visually disabled and that television apparatus are able to make available video description... of the Apparatus Emergency Information and Video Description Requirements. Form No.: Not applicable...

  6. SCSODC: Integrating Ocean Data for Visualization Sharing and Application

    NASA Astrophysics Data System (ADS)

    Xu, C.; Li, S.; Wang, D.; Xie, Q.

    2014-02-01

    The South China Sea Ocean Data Center (SCSODC) was founded in 2010 in order to improve collecting and managing of ocean data of the South China Sea Institute of Oceanology (SCSIO). The mission of SCSODC is to ensure the long term scientific stewardship of ocean data, information and products - collected through research groups, monitoring stations and observation cruises - and to facilitate the efficient use and distribution to possible users. However, data sharing and applications were limited due to the characteristics of distribution and heterogeneity that made it difficult to integrate the data. To surmount those difficulties, the Data Sharing System has been developed by the SCSODC using the most appropriate information management and information technology. The Data Sharing System uses open standards and tools to promote the capability to integrate ocean data and to interact with other data portals or users and includes a full range of processes such as data discovery, evaluation and access combining C/S and B/S mode. It provides a visualized management interface for the data managers and a transparent and seamless data access and application environment for users. Users are allowed to access data using the client software and to access interactive visualization application interface via a web browser. The architecture, key technologies and functionality of the system are discussed briefly in this paper. It is shown that the system of SCSODC is able to implement web visualization sharing and seamless access to ocean data in a distributed and heterogeneous environment.

  7. Summer 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza, Paul Michael

    2016-08-31

    The project goals seek to develop applications in order to automate MCNP criticality benchmark execution; create a dataset containing static benchmark information; combine MCNP output with benchmark information; and fit and visually represent data.

  8. Camouflage target detection via hyperspectral imaging plus information divergence measurement

    NASA Astrophysics Data System (ADS)

    Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin

    2016-01-01

    Target detection is one of most important applications in remote sensing. Nowadays accurate camouflage target distinction is often resorted to spectral imaging technique due to its high-resolution spectral/spatial information acquisition ability as well as plenty of data processing methods. In this paper, hyper-spectral imaging technique together with spectral information divergence measure method is used to solve camouflage target detection problem. A self-developed visual-band hyper-spectral imaging device is adopted to collect data cubes of certain experimental scene before spectral information divergences are worked out so as to discriminate target camouflage and anomaly. Full-band information divergences are measured to evaluate target detection effect visually and quantitatively. Information divergence measurement is proved to be a low-cost and effective tool for target detection task and can be further developed to other target detection applications beyond spectral imaging technique.

  9. Effective color design for displays

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.

    2002-06-01

    Visual communication is a key aspect of human-computer interaction, which contributes to the satisfaction of user and application needs. For effective design of presentations on computer displays, color should be used in conjunction with the other visual variables. The general needs of graphic user interfaces are discussed, followed by five specific tasks with differing criteria for display color specification - advertising, text, information, visualization and imaging.

  10. Availability Issues in Wireless Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  11. Development of a Graphical User Interface to Visualize Surface Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.L.

    1998-07-13

    Thousands of worldwide observing stations provide meteorological information near the earth's surface as often as once each hour. This surface data may be plotted on geographical maps to provide the meteorologist useful information regarding weather patterns for a region of interest. This report describes the components and applications of a graphical user interface which have been developed to visualize surface observations at any global location and time of interest.

  12. Monitoring Global Crop Condition Indicators Using a Web-Based Visualization Tool

    Treesearch

    Bob Tetrault; Bob Baldwin

    2006-01-01

    Global crop condition information for major agricultural regions in the world can be monitored using the web-based application called Crop Explorer. With this application, U.S. and international producers, traders, researchers, and the public can access remote sensing information used by agricultural economists and scientists who predict crop production worldwide. For...

  13. A comparative study of multi-focus image fusion validation metrics

    NASA Astrophysics Data System (ADS)

    Giansiracusa, Michael; Lutz, Adam; Messer, Neal; Ezekiel, Soundararajan; Alford, Mark; Blasch, Erik; Bubalo, Adnan; Manno, Michael

    2016-05-01

    Fusion of visual information from multiple sources is relevant for applications security, transportation, and safety applications. One way that image fusion can be particularly useful is when fusing imagery data from multiple levels of focus. Different focus levels can create different visual qualities for different regions in the imagery, which can provide much more visual information to analysts when fused. Multi-focus image fusion would benefit a user through automation, which requires the evaluation of the fused images to determine whether they have properly fused the focused regions of each image. Many no-reference metrics, such as information theory based, image feature based and structural similarity-based have been developed to accomplish comparisons. However, it is hard to scale an accurate assessment of visual quality which requires the validation of these metrics for different types of applications. In order to do this, human perception based validation methods have been developed, particularly dealing with the use of receiver operating characteristics (ROC) curves and the area under them (AUC). Our study uses these to analyze the effectiveness of no-reference image fusion metrics applied to multi-resolution fusion methods in order to determine which should be used when dealing with multi-focus data. Preliminary results show that the Tsallis, SF, and spatial frequency metrics are consistent with the image quality and peak signal to noise ratio (PSNR).

  14. Teaching Biology to Visually Handicapped Students. Resource Manual.

    ERIC Educational Resources Information Center

    Ricker, Kenneth S.

    This resource manual presents numerous techniques for adapting science activities to the visually handicapped student, applicable to introductory biology courses in which microscopes are used extensively in the laboratory. Chapters include information on the following: alternative microscopic viewing techniques, physical models, tactile diagrams,…

  15. Interactive visualization and analysis of multimodal datasets for surgical applications.

    PubMed

    Kirmizibayrak, Can; Yim, Yeny; Wakid, Mike; Hahn, James

    2012-12-01

    Surgeons use information from multiple sources when making surgical decisions. These include volumetric datasets (such as CT, PET, MRI, and their variants), 2D datasets (such as endoscopic videos), and vector-valued datasets (such as computer simulations). Presenting all the information to the user in an effective manner is a challenging problem. In this paper, we present a visualization approach that displays the information from various sources in a single coherent view. The system allows the user to explore and manipulate volumetric datasets, display analysis of dataset values in local regions, combine 2D and 3D imaging modalities and display results of vector-based computer simulations. Several interaction methods are discussed: in addition to traditional interfaces including mouse and trackers, gesture-based natural interaction methods are shown to control these visualizations with real-time performance. An example of a medical application (medialization laryngoplasty) is presented to demonstrate how the combination of different modalities can be used in a surgical setting with our approach.

  16. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, GIOVANNI

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Acker, J. G.; Kempler, S. J.

    2016-12-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to research scientists, applications scientists, applications users, and students around the world. The GES DISC is the home (archive) of NASA Precipitation and Hydrology, as well as Atmospheric Composition and Dynamics remote sensing data and information. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI, http://giovanni.gsfc.nasa.gov/) allows users to explore satellite-based data using sophisticated analyses and visualizations without downloading data and software, which is particularly suitable for novices to use NASA datasets in STEM activities. In this presentation, we will briefly introduce GIOVANNI and recommend datasets for STEM. Examples of using these datasets in STEM activities will be presented as well.

  17. CRAVE: a database, middleware and visualization system for phenotype ontologies.

    PubMed

    Gkoutos, Georgios V; Green, Eain C J; Greenaway, Simon; Blake, Andrew; Mallon, Ann-Marie; Hancock, John M

    2005-04-01

    A major challenge in modern biology is to link genome sequence information to organismal function. In many organisms this is being done by characterizing phenotypes resulting from mutations. Efficiently expressing phenotypic information requires combinatorial use of ontologies. However tools are not currently available to visualize combinations of ontologies. Here we describe CRAVE (Concept Relation Assay Value Explorer), a package allowing storage, active updating and visualization of multiple ontologies. CRAVE is a web-accessible JAVA application that accesses an underlying MySQL database of ontologies via a JAVA persistent middleware layer (Chameleon). This maps the database tables into discrete JAVA classes and creates memory resident, interlinked objects corresponding to the ontology data. These JAVA objects are accessed via calls through the middleware's application programming interface. CRAVE allows simultaneous display and linking of multiple ontologies and searching using Boolean and advanced searches.

  18. Helmet-mounted display systems for flight simulation

    NASA Technical Reports Server (NTRS)

    Haworth, Loren A.; Bucher, Nancy M.

    1989-01-01

    Simulation scientists are continually improving simulation technology with the goal of more closely replicating the physical environment of the real world. The presentation or display of visual information is one area in which recent technical improvements have been made that are fundamental to conducting simulated operations close to the terrain. Detailed and appropriate visual information is especially critical for nap-of-the-earth helicopter flight simulation where the pilot maintains an 'eyes-out' orientation to avoid obstructions and terrain. This paper describes visually coupled wide field of view helmet-mounted display (WFOVHMD) system technology as a viable visual presentation system for helicopter simulation. Tradeoffs associated with this mode of presentation as well as research and training applications are discussed.

  19. Tile-based parallel coordinates and its application in financial visualization

    NASA Astrophysics Data System (ADS)

    Alsakran, Jamal; Zhao, Ye; Zhao, Xinlei

    2010-01-01

    Parallel coordinates technique has been widely used in information visualization applications and it has achieved great success in visualizing multivariate data and perceiving their trends. Nevertheless, visual clutter usually weakens or even diminishes its ability when the data size increases. In this paper, we first propose a tile-based parallel coordinates, where the plotting area is divided into rectangular tiles. Each tile stores an intersection density that counts the total number of polylines intersecting with that tile. Consequently, the intersection density is mapped to optical attributes, such as color and opacity, by interactive transfer functions. The method visualizes the polylines efficiently and informatively in accordance with the density distribution, and thus, reduces visual cluttering and promotes knowledge discovery. The interactivity of our method allows the user to instantaneously manipulate the tiles distribution and the transfer functions. Specifically, the classic parallel coordinates rendering is a special case of our method when each tile represents only one pixel. A case study on a real world data set, U.S. stock mutual fund data of year 2006, is presented to show the capability of our method in visually analyzing financial data. The presented visual analysis is conducted by an expert in the domain of finance. Our method gains the support from professionals in the finance field, they embrace it as a potential investment analysis tool for mutual fund managers, financial planners, and investors.

  20. Assessing FAÇADE Visibility in 3d City Models for City Marketing

    NASA Astrophysics Data System (ADS)

    Albrecht, F.; Moser, J.; Hijazi, I.

    2013-08-01

    In city marketing, different applications require the evaluation of the visual impression of displays in the urban environment on people that visit the city. Therefore, this research focuses on the way how visual displays on façades for movie performances are perceived during a cultural event triggered by city marketing. We describe the different visibility analysis methods that are applicable to the analysis of façades. The methods advanced from the domains of Geographic Information Science, architecture and computer graphics. A detailed scenario is described in order to perform a requirements analysis for identifying the requirements to visibility information. This visibility information needs to describe the visual perception of displays on façades adequately. The requirements are compared to the visibility information that can be provided by the visibility methods. A discussion of the comparison summarizes the advantages and disadvantages of existing visibility analysis methods for describing the visibility of façades. The results show that part of the researched approaches is able to support the requirements to visibility information. But they also show that for a complete support of the entire analysis workflow, there remain unsolved workflow integration issues.

  1. Influence of audio triggered emotional attention on video perception

    NASA Astrophysics Data System (ADS)

    Torres, Freddy; Kalva, Hari

    2014-02-01

    Perceptual video coding methods attempt to improve compression efficiency by discarding visual information not perceived by end users. Most of the current approaches for perceptual video coding only use visual features ignoring the auditory component. Many psychophysical studies have demonstrated that auditory stimuli affects our visual perception. In this paper we present our study of audio triggered emotional attention and it's applicability to perceptual video coding. Experiments with movie clips show that the reaction time to detect video compression artifacts was longer when video was presented with the audio information. The results reported are statistically significant with p=0.024.

  2. Applications of aerospace technology in industry: A technology transfer profile. Visual display systems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The growth of common as well as emerging visual display technologies are surveyed. The major inference is that contemporary society is rapidly growing evermore reliant on visual display for a variety of purposes. Because of its unique mission requirements, the National Aeronautics and Space Administration has contributed in an important and specific way to the growth of visual display technology. These contributions are characterized by the use of computer-driven visual displays to provide an enormous amount of information concisely, rapidly and accurately.

  3. Robot Evolutionary Localization Based on Attentive Visual Short-Term Memory

    PubMed Central

    Vega, Julio; Perdices, Eduardo; Cañas, José M.

    2013-01-01

    Cameras are one of the most relevant sensors in autonomous robots. However, two of their challenges are to extract useful information from captured images, and to manage the small field of view of regular cameras. This paper proposes implementing a dynamic visual memory to store the information gathered from a moving camera on board a robot, followed by an attention system to choose where to look with this mobile camera, and a visual localization algorithm that incorporates this visual memory. The visual memory is a collection of relevant task-oriented objects and 3D segments, and its scope is wider than the current camera field of view. The attention module takes into account the need to reobserve objects in the visual memory and the need to explore new areas. The visual memory is useful also in localization tasks, as it provides more information about robot surroundings than the current instantaneous image. This visual system is intended as underlying technology for service robot applications in real people's homes. Several experiments have been carried out, both with simulated and real Pioneer and Nao robots, to validate the system and each of its components in office scenarios. PMID:23337333

  4. The Arctic Research Mapping Application (ARMAP): a Geoportal for Visualizing Project-level Information About U.S. Funded Research in the Arctic

    NASA Astrophysics Data System (ADS)

    Kassin, A.; Cody, R. P.; Barba, M.; Gaylord, A. G.; Manley, W. F.; Score, R.; Escarzaga, S. M.; Tweedie, C. E.

    2016-12-01

    The Arctic Research Mapping Application (ARMAP; http://armap.org/) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. In collaboration with 17 research agencies, project locations are displayed in a visually enhanced web mapping application. Key information about each project is presented along with links to web pages that provide additional information, including links to data where possible. The latest ARMAP iteration has i) reworked the search user interface (UI) to enable multiple filters to be applied in user-driven queries and ii) implemented ArcGIS Javascript API 4.0 to allow for deployment of 3D maps directly into a users web-browser and enhanced customization of popups. Module additions include i) a dashboard UI powered by a back-end Apache SOLR engine to visualize data in intuitive and interactive charts; and ii) a printing module that allows users to customize maps and export these to different formats (pdf, ppt, gif and jpg). New reference layers and an updated ship tracks layer have also been added. These improvements have been made to improve discoverability, enhance logistics coordination, identify geographic gaps in research/observation effort, and foster enhanced collaboration among the research community. Additionally, ARMAP can be used to demonstrate past, present, and future research effort supported by the U.S. Government.

  5. CasCADe: A Novel 4D Visualization System for Virtual Construction Planning.

    PubMed

    Ivson, Paulo; Nascimento, Daniel; Celes, Waldemar; Barbosa, Simone Dj

    2018-01-01

    Building Information Modeling (BIM) provides an integrated 3D environment to manage large-scale engineering projects. The Architecture, Engineering and Construction (AEC) industry explores 4D visualizations over these datasets for virtual construction planning. However, existing solutions lack adequate visual mechanisms to inspect the underlying schedule and make inconsistencies readily apparent. The goal of this paper is to apply best practices of information visualization to improve 4D analysis of construction plans. We first present a review of previous work that identifies common use cases and limitations. We then consulted with AEC professionals to specify the main design requirements for such applications. These guided the development of CasCADe, a novel 4D visualization system where task sequencing and spatio-temporal simultaneity are immediately apparent. This unique framework enables the combination of diverse analytical features to create an information-rich analysis environment. We also describe how engineering collaborators used CasCADe to review the real-world construction plans of an Oil & Gas process plant. The system made evident schedule uncertainties, identified work-space conflicts and helped analyze other constructability issues. The results and contributions of this paper suggest new avenues for future research in information visualization for the AEC industry.

  6. 22 CFR 61.9 - General information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false General information. 61.9 Section 61.9 Foreign Relations DEPARTMENT OF STATE PUBLIC DIPLOMACY AND EXCHANGES WORLD-WIDE FREE FLOW OF AUDIO-VISUAL MATERIALS § 61.9 General information. General information and application forms may be obtained by writing to the...

  7. 22 CFR 61.9 - General information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false General information. 61.9 Section 61.9 Foreign Relations DEPARTMENT OF STATE PUBLIC DIPLOMACY AND EXCHANGES WORLD-WIDE FREE FLOW OF AUDIO-VISUAL MATERIALS § 61.9 General information. General information and application forms may be obtained by writing to the...

  8. 22 CFR 61.9 - General information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false General information. 61.9 Section 61.9 Foreign Relations DEPARTMENT OF STATE PUBLIC DIPLOMACY AND EXCHANGES WORLD-WIDE FREE FLOW OF AUDIO-VISUAL MATERIALS § 61.9 General information. General information and application forms may be obtained by writing to the...

  9. Information Architecture and the Comic Arts: Knowledge Structure and Access

    ERIC Educational Resources Information Center

    Farmer, Lesley S. J.

    2015-01-01

    This article explains information architecture, focusing on comic arts' features for representing and structuring knowledge. Then it details information design theory and information behaviors relative to this format, also noting visual literacy. Next , applications of comic arts in education are listed. With this background, several research…

  10. 22 CFR 61.9 - General information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false General information. 61.9 Section 61.9 Foreign Relations DEPARTMENT OF STATE PUBLIC DIPLOMACY AND EXCHANGES WORLD-WIDE FREE FLOW OF AUDIO-VISUAL MATERIALS § 61.9 General information. General information and application forms may be obtained by writing to the...

  11. 22 CFR 61.9 - General information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false General information. 61.9 Section 61.9 Foreign Relations DEPARTMENT OF STATE PUBLIC DIPLOMACY AND EXCHANGES WORLD-WIDE FREE FLOW OF AUDIO-VISUAL MATERIALS § 61.9 General information. General information and application forms may be obtained by writing to the...

  12. Quantification of visual clutter using a computation model of human perception : an application for head-up displays

    DOT National Transportation Integrated Search

    2004-03-20

    A means of quantifying the cluttering effects of symbols is needed to evaluate the impact of displaying an increasing volume of information on aviation displays such as head-up displays. Human visual perception has been successfully modeled by algori...

  13. Sight Version 0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronevetsky, G.

    2014-09-01

    Enables applications to emit log information into an output file and produced a structured visual summary of the log data, as well as various statistical analyses of it. This makes it easier for developers to understand the behavior of their applications.

  14. Color visual simulation applications at the Defense Mapping Agency

    NASA Astrophysics Data System (ADS)

    Simley, J. D.

    1984-09-01

    The Defense Mapping Agency (DMA) produces the Digital Landmass System data base to provide culture and terrain data in support of numerous aircraft simulators. In order to conduct data base and simulation quality control and requirements analysis, DMA has developed the Sensor Image Simulator which can rapidly generate visual and radar static scene digital simulations. The use of color in visual simulation allows the clear portrayal of both landcover and terrain data, whereas the initial black and white capabilities were restricted in this role and thus found limited use. Color visual simulation has many uses in analysis to help determine the applicability of current and prototype data structures to better meet user requirements. Color visual simulation is also significant in quality control since anomalies can be more easily detected in natural appearing forms of the data. The realism and efficiency possible with advanced processing and display technology, along with accurate data, make color visual simulation a highly effective medium in the presentation of geographic information. As a result, digital visual simulation is finding increased potential as a special purpose cartographic product. These applications are discussed and related simulation examples are presented.

  15. Matching multiple rigid domain decompositions of proteins

    PubMed Central

    Flynn, Emily; Streinu, Ileana

    2017-01-01

    We describe efficient methods for consistently coloring and visualizing collections of rigid cluster decompositions obtained from variations of a protein structure, and lay the foundation for more complex setups that may involve different computational and experimental methods. The focus here is on three biological applications: the conceptually simpler problems of visualizing results of dilution and mutation analyses, and the more complex task of matching decompositions of multiple NMR models of the same protein. Implemented into the KINARI web server application, the improved visualization techniques give useful information about protein folding cores, help examining the effect of mutations on protein flexibility and function, and provide insights into the structural motions of PDB proteins solved with solution NMR. These tools have been developed with the goal of improving and validating rigidity analysis as a credible coarse-grained model capturing essential information about a protein’s slow motions near the native state. PMID:28141528

  16. Visualization and Analytics Software Tools for Peregrine System |

    Science.gov Websites

    R is a language and environment for statistical computing and graphics. Go to the R web site for System Visualization and Analytics Software Tools for Peregrine System Learn about the available visualization for OpenGL-based applications. For more information, please go to the FastX page. ParaView An open

  17. Visual communication - Information and fidelity. [of images

    NASA Technical Reports Server (NTRS)

    Huck, Freidrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur; Reichenbach, Stephen E.

    1993-01-01

    This assessment of visual communication deals with image gathering, coding, and restoration as a whole rather than as separate and independent tasks. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image. Past applications of these criteria to the assessment of image coding and restoration have been limited to the link that connects the output of the image-gathering device to the input of the image-display device. By contrast, the approach presented in this paper explicitly includes the critical limiting factors that constrain image gathering and display. This extension leads to an end-to-end assessment theory of visual communication that combines optical design with digital processing.

  18. Bio-inspired display of polarization information using selected visual cues

    NASA Astrophysics Data System (ADS)

    Yemelyanov, Konstantin M.; Lin, Shih-Schon; Luis, William Q.; Pugh, Edward N., Jr.; Engheta, Nader

    2003-12-01

    For imaging systems the polarization of electromagnetic waves carries much potentially useful information about such features of the world as the surface shape, material contents, local curvature of objects, as well as about the relative locations of the source, object and imaging system. The imaging system of the human eye however, is "polarization-blind", and cannot utilize the polarization of light without the aid of an artificial, polarization-sensitive instrument. Therefore, polarization information captured by a man-made polarimetric imaging system must be displayed to a human observer in the form of visual cues that are naturally processed by the human visual system, while essentially preserving the other important non-polarization information (such as spectral and intensity information) in an image. In other words, some forms of sensory substitution are needed for representing polarization "signals" without affecting other visual information such as color and brightness. We are investigating several bio-inspired representational methodologies for mapping polarization information into visual cues readily perceived by the human visual system, and determining which mappings are most suitable for specific applications such as object detection, navigation, sensing, scene classifications, and surface deformation. The visual cues and strategies we are exploring are the use of coherently moving dots superimposed on image to represent various range of polarization signals, overlaying textures with spatial and/or temporal signatures to segregate regions of image with differing polarization, modulating luminance and/or color contrast of scenes in terms of certain aspects of polarization values, and fusing polarization images into intensity-only images. In this talk, we will present samples of our findings in this area.

  19. Usability and Visual Communication for Southern California Tsunami Evacuation Information: The importance of information design in disaster risk management

    NASA Astrophysics Data System (ADS)

    Jaenichen, C.; Schandler, S.; Wells, M.; Danielsen, T.

    2015-12-01

    Evacuation behavior, including participation and response, is rarely an individual and isolated process and the outcomes are usually systemic. Ineffective evacuation information can easily attribute to delayed evacuation response. Delays increase demands on already extended emergency personal, increase the likelihood of traffic congestion, and can cause harm to self and property. From an information design perspective, addressing issues in cognitive recall and emergency psychology, this case study examines evacuation messaging including written, audio, and visual presentation of information, and describes the application of design principles and role of visual communication for Southern California tsunami evacuation outreach. The niche of this project is the inclusion of cognitive processing as the driving influence when making formal design decisions and measurable data from a 4-year cognitive recall study to support the solution. Image included shows a tsunami evacaution map before and after the redesign.

  20. Visualizing blood vessel trees in three dimensions: clinical applications

    NASA Astrophysics Data System (ADS)

    Bullitt, Elizabeth; Aylward, Stephen

    2005-04-01

    A connected network of blood vessels surrounds and permeates almost every organ of the human body. The ability to define detailed blood vessel trees enables a variety of clinical applications. This paper discusses four such applications and some of the visualization challenges inherent to each. Guidance of endovascular surgery: 3D vessel trees offer important information unavailable by traditional x-ray projection views. How best to combine the 2- and 3D image information is unknown. Planning/guidance of tumor surgery: During tumor resection it is critical to know which blood vessels can be interrupted safely and which cannot. Providing efficient, clear information to the surgeon together with measures of uncertainty in both segmentation and registration can be a complex problem. Vessel-based registration: Vessel-based registration allows pre-and intraoperative images to be registered rapidly. The approach both provides a potential solution to a difficult clinical dilemma and offers a variety of visualization opportunities. Diagnosis/staging of disease: Almost every disease affects blood vessel morphology. The statistical analysis of vessel shape may thus prove to be an important tool in the noninvasive analysis of disease. A plethora of information is available that must be presented meaningfully to the clinician. As medical image analysis methods increase in sophistication, an increasing amount of useful information of varying types will become available to the clinician. New methods must be developed to present a potentially bewildering amount of complex data to individuals who are often accustomed to viewing only tissue slices or flat projection views.

  1. A survey on sensor coverage and visual data capturing/processing/transmission in wireless visual sensor networks.

    PubMed

    Yap, Florence G H; Yen, Hong-Hsu

    2014-02-20

    Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/ transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/ processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs.

  2. A Survey on Sensor Coverage and Visual Data Capturing/Processing/Transmission in Wireless Visual Sensor Networks

    PubMed Central

    Yap, Florence G. H.; Yen, Hong-Hsu

    2014-01-01

    Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs. PMID:24561401

  3. Generating descriptive visual words and visual phrases for large-scale image applications.

    PubMed

    Zhang, Shiliang; Tian, Qi; Hua, Gang; Huang, Qingming; Gao, Wen

    2011-09-01

    Bag-of-visual Words (BoWs) representation has been applied for various problems in the fields of multimedia and computer vision. The basic idea is to represent images as visual documents composed of repeatable and distinctive visual elements, which are comparable to the text words. Notwithstanding its great success and wide adoption, visual vocabulary created from single-image local descriptors is often shown to be not as effective as desired. In this paper, descriptive visual words (DVWs) and descriptive visual phrases (DVPs) are proposed as the visual correspondences to text words and phrases, where visual phrases refer to the frequently co-occurring visual word pairs. Since images are the carriers of visual objects and scenes, a descriptive visual element set can be composed by the visual words and their combinations which are effective in representing certain visual objects or scenes. Based on this idea, a general framework is proposed for generating DVWs and DVPs for image applications. In a large-scale image database containing 1506 object and scene categories, the visual words and visual word pairs descriptive to certain objects or scenes are identified and collected as the DVWs and DVPs. Experiments show that the DVWs and DVPs are informative and descriptive and, thus, are more comparable with the text words than the classic visual words. We apply the identified DVWs and DVPs in several applications including large-scale near-duplicated image retrieval, image search re-ranking, and object recognition. The combination of DVW and DVP performs better than the state of the art in large-scale near-duplicated image retrieval in terms of accuracy, efficiency and memory consumption. The proposed image search re-ranking algorithm: DWPRank outperforms the state-of-the-art algorithm by 12.4% in mean average precision and about 11 times faster in efficiency.

  4. Enhancing radiological volumes with symbolic anatomy using image fusion and collaborative virtual reality.

    PubMed

    Silverstein, Jonathan C; Dech, Fred; Kouchoukos, Philip L

    2004-01-01

    Radiological volumes are typically reviewed by surgeons using cross-sections and iso-surface reconstructions. Applications that combine collaborative stereo volume visualization with symbolic anatomic information and data fusions would expand surgeons' capabilities in interpretation of data and in planning treatment. Such an application has not been seen clinically. We are developing methods to systematically combine symbolic anatomy (term hierarchies and iso-surface atlases) with patient data using data fusion. We describe our progress toward integrating these methods into our collaborative virtual reality application. The fully combined application will be a feature-rich stereo collaborative volume visualization environment for use by surgeons in which DICOM datasets will self-report underlying anatomy with visual feedback. Using hierarchical navigation of SNOMED-CT anatomic terms integrated with our existing Tele-immersive DICOM-based volumetric rendering application, we will display polygonal representations of anatomic systems on the fly from menus that query a database. The methods and tools involved in this application development are SNOMED-CT, DICOM, VISIBLE HUMAN, volumetric fusion and C++ on a Tele-immersive platform. This application will allow us to identify structures and display polygonal representations from atlas data overlaid with the volume rendering. First, atlas data is automatically translated, rotated, and scaled to the patient data during loading using a public domain volumetric fusion algorithm. This generates a modified symbolic representation of the underlying canonical anatomy. Then, through the use of collision detection or intersection testing of various transparent polygonal representations, the polygonal structures are highlighted into the volumetric representation while the SNOMED names are displayed. Thus, structural names and polygonal models are associated with the visualized DICOM data. This novel juxtaposition of information promises to expand surgeons' abilities to interpret images and plan treatment.

  5. Designing human centered GeoVisualization application--the SanaViz--for telehealth users: a case study.

    PubMed

    Joshi, Ashish; de Araujo Novaes, Magdala; Machiavelli, Josiane; Iyengar, Sriram; Vogler, Robert; Johnson, Craig; Zhang, Jiajie; Hsu, Chiehwen E

    2012-01-01

    Public health data is typically organized by geospatial unit. GeoVisualization (GeoVis) allows users to see information visually on a map. Examine telehealth users' perceptions towards existing public health GeoVis applications and obtains users' feedback about features important for the design and development of Human Centered GeoVis application "the SanaViz". We employed a cross sectional study design using mixed methods approach for this pilot study. Twenty users involved with the NUTES telehealth center at Federal University of Pernambuco (UFPE), Recife, Brazil were enrolled. Open and closed ended questionnaires were used to gather data. We performed audio recording for the interviews. Information gathered included socio-demographics, prior spatial skills and perception towards use of GeoVis to evaluate telehealth services. Card sorting and sketching methods were employed. Univariate analysis was performed for the continuous and categorical variables. Qualitative analysis was performed for open ended questions. Existing Public Health GeoVis applications were difficult to use. Results found interaction features zooming, linking and brushing and representation features Google maps, tables and bar chart as most preferred GeoVis features. Early involvement of users is essential to identify features necessary to be part of the human centered GeoVis application "the SanaViz".

  6. A visual analysis of multi-attribute data using pixel matrix displays

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel; Schreck, Tobias

    2007-01-01

    Charts and tables are commonly used to visually analyze data. These graphics are simple and easy to understand, but charts show only highly aggregated data and present only a limited number of data values while tables often show too many data values. As a consequence, these graphics may either lose or obscure important information, so different techniques are required to monitor complex datasets. Users need more powerful visualization techniques to digest and compare detailed multi-attribute data to analyze the health of their business. This paper proposes an innovative solution based on the use of pixel-matrix displays to represent transaction-level information. With pixelmatrices, users can visualize areas of importance at a glance, a capability not provided by common charting techniques. We present our solutions to use colored pixel-matrices in (1) charts for visualizing data patterns and discovering exceptions, (2) tables for visualizing correlations and finding root-causes, and (3) time series for visualizing the evolution of long-running transactions. The solutions have been applied with success to product sales, Internet network performance analysis, and service contract applications demonstrating the benefits of our method over conventional graphics. The method is especially useful when detailed information is a key part of the analysis.

  7. Artificial Intelligence Applications to Videodisc Technology

    PubMed Central

    Vries, John K.; Banks, Gordon; McLinden, Sean; Moossy, John; Brown, Melanie

    1985-01-01

    Much of medical information is visual in nature. Since it is not easy to describe pictorial information in linguistic terms, it has been difficult to store and retrieve this type of information. Coupling videodisc technology with artificial intelligence programming techniques may provide a means for solving this problem.

  8. Regional information guidance system based on hypermedia concept

    NASA Astrophysics Data System (ADS)

    Matoba, Hiroshi; Hara, Yoshinori; Kasahara, Yutako

    1990-08-01

    A regional information guidance system has been developed on an image workstation. Two main features of this system are hypermedia data structure and friendly visual interface realized by the full-color frame memory system. As the hypermedia data structure manages regional information such as maps, pictures and explanations of points of interest, users can retrieve those information one by one, next to next according to their interest change. For example, users can retrieve explanation of a picture through the link between pictures and text explanations. Users can also traverse from one document to another by using keywords as cross reference indices. The second feature is to utilize a full-color, high resolution and wide space frame memory for visual interface design. This frame memory system enables real-time operation of image data and natural scene representation. The system also provides half tone representing function which enables fade-in/out presentations. This fade-in/out functions used in displaying and erasing menu and image data, makes visual interface soft for human eyes. The system we have developed is a typical example of multimedia applications. We expect the image workstation will play an important role as a platform for multimedia applications.

  9. CyBy(2): a structure-based data management tool for chemical and biological data.

    PubMed

    Höck, Stefan; Riedl, Rainer

    2012-01-01

    We report the development of a powerful data management tool for chemical and biological data: CyBy(2). CyBy(2) is a structure-based information management tool used to store and visualize structural data alongside additional information such as project assignment, physical information, spectroscopic data, biological activity, functional data and synthetic procedures. The application consists of a database, an application server, used to query and update the database, and a client application with a rich graphical user interface (GUI) used to interact with the server.

  10. Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain

    PubMed Central

    Garcia, Gabriel J.; Corrales, Juan A.; Pomares, Jorge; Torres, Fernando

    2009-01-01

    Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors. PMID:22303146

  11. GIS Application System Design Applied to Information Monitoring

    NASA Astrophysics Data System (ADS)

    Qun, Zhou; Yujin, Yuan; Yuena, Kang

    Natural environment information management system involves on-line instrument monitoring, data communications, database establishment, information management software development and so on. Its core lies in collecting effective and reliable environmental information, increasing utilization rate and sharing degree of environment information by advanced information technology, and maximizingly providing timely and scientific foundation for environmental monitoring and management. This thesis adopts C# plug-in application development and uses a set of complete embedded GIS component libraries and tools libraries provided by GIS Engine to finish the core of plug-in GIS application framework, namely, the design and implementation of framework host program and each functional plug-in, as well as the design and implementation of plug-in GIS application framework platform. This thesis adopts the advantages of development technique of dynamic plug-in loading configuration, quickly establishes GIS application by visualized component collaborative modeling and realizes GIS application integration. The developed platform is applicable to any application integration related to GIS application (ESRI platform) and can be as basis development platform of GIS application development.

  12. Augmented reality three-dimensional object visualization and recognition with axially distributed sensing.

    PubMed

    Markman, Adam; Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-01-15

    An augmented reality (AR) smartglass display combines real-world scenes with digital information enabling the rapid growth of AR-based applications. We present an augmented reality-based approach for three-dimensional (3D) optical visualization and object recognition using axially distributed sensing (ADS). For object recognition, the 3D scene is reconstructed, and feature extraction is performed by calculating the histogram of oriented gradients (HOG) of a sliding window. A support vector machine (SVM) is then used for classification. Once an object has been identified, the 3D reconstructed scene with the detected object is optically displayed in the smartglasses allowing the user to see the object, remove partial occlusions of the object, and provide critical information about the object such as 3D coordinates, which are not possible with conventional AR devices. To the best of our knowledge, this is the first report on combining axially distributed sensing with 3D object visualization and recognition for applications to augmented reality. The proposed approach can have benefits for many applications, including medical, military, transportation, and manufacturing.

  13. A Tool for the Analysis of Motion Picture Film or Video Tape.

    ERIC Educational Resources Information Center

    Ekman, Paul; Friesen, Wallace V.

    1969-01-01

    A visual information display and retrieval system (VID-R) is described for application to visual records. VID-R searches and retrieves events by time address (location) or by previously stored ovservations or measurements. Fields are labeled by writing discriminable binary addresses on the horizontal lines outside the normal viewing area. The…

  14. Application of a water/ecosystem model, VELMA, to inform environmental management decision-making in the watersheds of Keene and Kingsbury Creeks

    EPA Science Inventory

    VELMA (Visualizing Ecosystem Land Management Assessments) is an eco-hydrological model that produces visual simulations of many hydrologic and ecological processes over time periods from hours to days to years. The purpose thus far has been used for predicting effectiveness of g...

  15. External Visual Representations in Science Learning: The Case of Relations among System Components

    ERIC Educational Resources Information Center

    Eilam, Billie; Poyas, Yael

    2010-01-01

    How do external visual representations (e.g., graph, diagram) promote or constrain students' ability to identify system components and their interrelations, to reinforce a systemic view through the application of the STS approach? University students (N = 150) received information cards describing cellphones' communication system and its subsystem…

  16. Monitoring an Online Course with the GISMO Tool: A Case Study

    ERIC Educational Resources Information Center

    Mazza, Riccardo; Botturi, Luca

    2007-01-01

    This article presents GISMO, a novel, open source, graphic student-tracking tool integrated into Moodle. GISMO represents a further step in information visualization applied to education, and also a novelty in the field of learning management systems applications. The visualizations of the tool, its uses and the benefits it can bring are…

  17. Basic Visual Disciplines in Heritage Conservation: Outline of Selected Perspectives in Teaching and Learning

    NASA Astrophysics Data System (ADS)

    Lobovikov-Katz, A.

    2017-08-01

    Acknowledgement of the value of a basic freehand sketch by the information and communication community of researchers and developers brought about the advanced developments for the use of sketches as free input to complicated processes of computerized visualization, so as to make them more widely accessible. However, a sharp reduction and even exclusion of this and other basic visual disciplines from education in sciences, technology, engineering and architecture dramatically reduces the number of future users of such applications. The unique needs of conservation of cultural heritage pose specific challenges as well as encourage the formulation of innovative development tasks in related areas of information and communication technologies (ICT). This paper claims that the introduction of basic visual disciplines to both communities is essential to the effectiveness of integration of heritage conservation needs and the advanced ICT development of conservation value, and beyond. It provides an insight into the challenges and advantages of introducing these subjects in a relevant educational context, presents some examples of their teaching and learning in the modern environment, including e-learning, and sketches perspectives to their application.

  18. Making data matter: Voxel printing for the digital fabrication of data across scales and domains.

    PubMed

    Bader, Christoph; Kolb, Dominik; Weaver, James C; Sharma, Sunanda; Hosny, Ahmed; Costa, João; Oxman, Neri

    2018-05-01

    We present a multimaterial voxel-printing method that enables the physical visualization of data sets commonly associated with scientific imaging. Leveraging voxel-based control of multimaterial three-dimensional (3D) printing, our method enables additive manufacturing of discontinuous data types such as point cloud data, curve and graph data, image-based data, and volumetric data. By converting data sets into dithered material deposition descriptions, through modifications to rasterization processes, we demonstrate that data sets frequently visualized on screen can be converted into physical, materially heterogeneous objects. Our approach alleviates the need to postprocess data sets to boundary representations, preventing alteration of data and loss of information in the produced physicalizations. Therefore, it bridges the gap between digital information representation and physical material composition. We evaluate the visual characteristics and features of our method, assess its relevance and applicability in the production of physical visualizations, and detail the conversion of data sets for multimaterial 3D printing. We conclude with exemplary 3D-printed data sets produced by our method pointing toward potential applications across scales, disciplines, and problem domains.

  19. 47 CFR 73.1635 - Special temporary authorizations (STA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Visual modulation monitoring; § 73.1250, Broadcasting emergency information; § 73.1350, Transmission... Section 73.1635 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES..., Application for Emergency Authorization. See also § 73.1250, Broadcasting Emergency Information. [50 FR 30948...

  20. Industrial Inspection with Open Eyes: Advance with Machine Vision Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zheng; Ukida, H.; Niel, Kurt

    Machine vision systems have evolved significantly with the technology advances to tackle the challenges from modern manufacturing industry. A wide range of industrial inspection applications for quality control are benefiting from visual information captured by different types of cameras variously configured in a machine vision system. This chapter screens the state of the art in machine vision technologies in the light of hardware, software tools, and major algorithm advances for industrial inspection. The inspection beyond visual spectrum offers a significant complementary to the visual inspection. The combination with multiple technologies makes it possible for the inspection to achieve a bettermore » performance and efficiency in varied applications. The diversity of the applications demonstrates the great potential of machine vision systems for industry.« less

  1. Visual guidance of mobile platforms

    NASA Astrophysics Data System (ADS)

    Blissett, Rodney J.

    1993-12-01

    Two systems are described and results presented demonstrating aspects of real-time visual guidance of autonomous mobile platforms. The first approach incorporates prior knowledge in the form of rigid geometrical models linking visual references within the environment. The second approach is based on a continuous synthesis of information extracted from image tokens to generate a coarse-grained world model, from which potential obstacles are inferred. The use of these techniques in workplace applications is discussed.

  2. Technical parameters for specifying imagery requirements

    NASA Technical Reports Server (NTRS)

    Coan, Paul P.; Dunnette, Sheri J.

    1994-01-01

    Providing visual information acquired from remote events to various operators, researchers, and practitioners has become progressively more important as the application of special skills in alien or hazardous situations increases. To provide an understanding of the technical parameters required to specify imagery, we have identified, defined, and discussed seven salient characteristics of images: spatial resolution, linearity, luminance resolution, spectral discrimination, temporal discrimination, edge definition, and signal-to-noise ratio. We then describe a generalizing imaging system and identified how various parts of the system affect the image data. To emphasize the different applications of imagery, we have constrasted the common television system with the significant parameters of a televisual imaging system for technical applications. Finally, we have established a method by which the required visual information can be specified by describing certain technical parameters which are directly related to the information content of the imagery. This method requires the user to complete a form listing all pertinent data requirements for the imagery.

  3. Mobile cosmetics advisor: an imaging based mobile service

    NASA Astrophysics Data System (ADS)

    Bhatti, Nina; Baker, Harlyn; Chao, Hui; Clearwater, Scott; Harville, Mike; Jain, Jhilmil; Lyons, Nic; Marguier, Joanna; Schettino, John; Süsstrunk, Sabine

    2010-01-01

    Selecting cosmetics requires visual information and often benefits from the assessments of a cosmetics expert. In this paper we present a unique mobile imaging application that enables women to use their cell phones to get immediate expert advice when selecting personal cosmetic products. We derive the visual information from analysis of camera phone images, and provide the judgment of the cosmetics specialist through use of an expert system. The result is a new paradigm for mobile interactions-image-based information services exploiting the ubiquity of camera phones. The application is designed to work with any handset over any cellular carrier using commonly available MMS and SMS features. Targeted at the unsophisticated consumer, it must be quick and easy to use, not requiring download capabilities or preplanning. Thus, all application processing occurs in the back-end system and not on the handset itself. We present the imaging pipeline technology and a comparison of the services' accuracy with respect to human experts.

  4. Mapping scientific frontiers : the quest for knowledge visualization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyack, Kevin W.

    Visualization of scientific frontiers is a relatively new field, yet it has a long history and many predecessors. The application of science to science itself has been undertaken for decades with notable early contributions by Derek Price, Thomas Kuhn, Diana Crane, Eugene Garfield, and many others. What is new is the field of information visualization and application of its techniques to help us understand the process of science in the making. In his new book, Chaomei Chen takes us on a journey through this history, touching on predecessors, and then leading us firmly into the new world of Mapping Scientificmore » Frontiers. Building on the foundation of his earlier book, Information Visualization and Virtual Environments, Chen's new offering is much less a tutorial in how to do information visualization, and much more a conceptual exploration of why and how the visualization of science can change the way we do science, amplified by real examples. Chen's stated intents for the book are: (1) to focus on principles of visual thinking that enable the identification of scientific frontiers; (2) to introduce a way to systematize the identification of scientific frontiers (or paradigms) through visualization techniques; and (3) to stimulate interdisciplinary research between information visualization and information science researchers. On all these counts, he succeeds. Chen's book can be broken into two parts which focus on the first two purposes stated above. The first, consisting of the initial four chapters, covers history and predecessors. Kuhn's theory of normal science punctuated by periods of revolution, now commonly known as paradigm shifts, motivates the work. Relevant predecessors outside the traditional field of information science such as cartography (both terrestrial and celestial), mapping the mind, and principles of visual association and communication, are given ample coverage. Chen also describes enabling techniques known to information scientists, such as multi-dimensional scaling, advanced dimensional reduction, social network analysis, Pathfinder network scaling, and landscape visualizations. No algorithms are given here; rather, these techniques are described from the point of view of enabling 'visual thinking'. The Generalized Similarity Analysis (GSA) technique used by Chen in his recent published papers is also introduced here. Information and computer science professionals would be wise not to skip through these early chapters. Although principles of gestalt psychology, cartography, thematic maps, and association techniques may be outside their technology comfort zone, or interest, these predecessors lay a groundwork for the 'visual thinking' that is required to create effective visualizations. Indeed, the great challenge in information visualization is to transform the abstract and intangible into something visible, concrete, and meaningful to the user. The second part of the book, covering the final three chapters, extends the mapping metaphor into the realm of scientific discovery through the structuring of literatures in a way that enables us to see scientific frontiers or paradigms. Case studies are used extensively to show the logical progression that has been made in recent years to get us to this point. Homage is paid to giants of the last 20 years including Michel Callon for co-word mapping, Henry Small for document co-citation analysis and specialty narratives (charting a path linking the different sciences), and Kate McCain for author co-citation analysis, whose work has led to the current state-of-the-art. The last two chapters finally answer the question - 'What does a scientific paradigm look like?' The visual answer given is specific to the GSA technique used by Chen, but does satisfy the intent of the book - to introduce a way to visually identify scientific frontiers. A variety of case studies, mostly from Chen's previously published work - supermassive black holes, cross-domain applications of Pathfinder networks, mass extinction debates, impact of Don Swanson's work, and mad cow disease and vCJD in humans - succeed in explaining how visualization can be used to show the development of, competition between, and eventual acceptance (or replacement) of scientific paradigms. Although not addressed specifically, Chen's work nonetheless makes the persuasive argument that visual maps alone are not sufficient to explain 'the making of science' to a non-expert in a particular field. Rather, expert knowledge is still required to interpret these maps and to explain the paradigms. This combination of visual maps and expert knowledge, used jointly to good effect in the book, becomes a potent means for explaining progress in science to the expert and non-expert alike. Work to extend the GSA technique to explore latent domain knowledge (important work that falls below the citation thresholds typically used in GSA) is also explored here.« less

  5. Toward interactive search in remote sensing imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Reid B; Hush, Do; Harvey, Neal

    2010-01-01

    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new designmore » criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.« less

  6. Data Discretization for Novel Relationship Discovery in Information Retrieval.

    ERIC Educational Resources Information Center

    Benoit, G.

    2002-01-01

    Describes an information retrieval, visualization, and manipulation model which offers the user multiple ways to exploit the retrieval set, based on weighted query terms, via an interactive interface. Outlines the mathematical model and describes an information retrieval application built on the model to search structured and full-text files.…

  7. The ICARDA agro-climate tool

    USDA-ARS?s Scientific Manuscript database

    A Visual Basic agro-climate application by climatologists at the International Center for Agricultural Research in the Dry Areas and the U.S. Department of Agriculture is described here. The database from which the application derives climate information consists of weather generator parameters der...

  8. The ICARDA Agro-Climate Tool

    USDA-ARS?s Scientific Manuscript database

    A Visual Basic agro-climate application developed by climatologists at the International Center for Agricultural Research in the Dry Areas and the U.S. Department of Agriculture is described here. The database from which the application derives climate information consists of weather generator param...

  9. Information theoretical assessment of visual communication with wavelet coding

    NASA Astrophysics Data System (ADS)

    Rahman, Zia-ur

    1995-06-01

    A visual communication channel can be characterized by the efficiency with which it conveys information, and the quality of the images restored from the transmitted data. Efficient data representation requires the use of constraints of the visual communication channel. Our information theoretic analysis combines the design of the wavelet compression algorithm with the design of the visual communication channel. Shannon's communication theory, Wiener's restoration filter, and the critical design factors of image gathering and display are combined to provide metrics for measuring the efficiency of data transmission, and for quantitatively assessing the visual quality of the restored image. These metrics are: a) the mutual information (Eta) between the radiance the radiance field and the restored image, and b) the efficiency of the channel which can be roughly measured by as the ratio (Eta) /H, where H is the average number of bits being used to transmit the data. Huck, et al. (Journal of Visual Communication and Image Representation, Vol. 4, No. 2, 1993) have shown that channels desinged to maximize (Eta) , also maximize. Our assessment provides a framework for designing channels which provide the highest possible visual quality for a given amount of data under the critical design limitations of the image gathering and display devices. Results show that a trade-off exists between the maximum realizable information of the channel and its efficiency: an increase in one leads to a decrease in the other. The final selection of which of these quantities to maximize is, of course, application dependent.

  10. Development of image processing techniques for applications in flow visualization and analysis

    NASA Technical Reports Server (NTRS)

    Disimile, Peter J.; Shoe, Bridget; Toy, Norman; Savory, Eric; Tahouri, Bahman

    1991-01-01

    A comparison between two flow visualization studies of an axi-symmetric circular jet issuing into still fluid, using two different experimental techniques, is described. In the first case laser induced fluorescence is used to visualize the flow structure, whilst smoke is utilized in the second. Quantitative information was obtained from these visualized flow regimes using two different digital imaging systems. Results are presented of the rate at which the jet expands in the downstream direction and these compare favorably with the more established data.

  11. Natural language processing-based COTS software and related technologies survey.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stickland, Michael G.; Conrad, Gregory N.; Eaton, Shelley M.

    Natural language processing-based knowledge management software, traditionally developed for security organizations, is now becoming commercially available. An informal survey was conducted to discover and examine current NLP and related technologies and potential applications for information retrieval, information extraction, summarization, categorization, terminology management, link analysis, and visualization for possible implementation at Sandia National Laboratories. This report documents our current understanding of the technologies, lists software vendors and their products, and identifies potential applications of these technologies.

  12. Interactive 3D visualization of structural changes in the brain of a person with corticobasal syndrome

    PubMed Central

    Hänel, Claudia; Pieperhoff, Peter; Hentschel, Bernd; Amunts, Katrin; Kuhlen, Torsten

    2014-01-01

    The visualization of the progression of brain tissue loss in neurodegenerative diseases like corticobasal syndrome (CBS) can provide not only information about the localization and distribution of the volume loss, but also helps to understand the course and the causes of this neurodegenerative disorder. The visualization of such medical imaging data is often based on 2D sections, because they show both internal and external structures in one image. Spatial information, however, is lost. 3D visualization of imaging data is capable to solve this problem, but it faces the difficulty that more internally located structures may be occluded by structures near the surface. Here, we present an application with two designs for the 3D visualization of the human brain to address these challenges. In the first design, brain anatomy is displayed semi-transparently; it is supplemented by an anatomical section and cortical areas for spatial orientation, and the volumetric data of volume loss. The second design is guided by the principle of importance-driven volume rendering: A direct line-of-sight to the relevant structures in the deeper parts of the brain is provided by cutting out a frustum-like piece of brain tissue. The application was developed to run in both, standard desktop environments and in immersive virtual reality environments with stereoscopic viewing for improving the depth perception. We conclude, that the presented application facilitates the perception of the extent of brain degeneration with respect to its localization and affected regions. PMID:24847243

  13. Data management in Oceanography at SOCIB

    NASA Astrophysics Data System (ADS)

    Joaquin, Tintoré; March, David; Lora, Sebastian; Sebastian, Kristian; Frontera, Biel; Gómara, Sonia; Pau Beltran, Joan

    2014-05-01

    SOCIB, the Balearic Islands Coastal Ocean Observing and Forecasting System (http://www.socib.es), is a Marine Research Infrastructure, a multiplatform distributed and integrated system, a facility of facilities that extends from the nearshore to the open sea and provides free, open and quality control data. SOCIB is a facility o facilities and has three major infrastructure components: (1) a distributed multiplatform observing system, (2) a numerical forecasting system, and (3) a data management and visualization system. We present the spatial data infrastructure and applications developed at SOCIB. One of the major goals of the SOCIB Data Centre is to provide users with a system to locate and download the data of interest (near real-time and delayed mode) and to visualize and manage the information. Following SOCIB principles, data need to be (1) discoverable and accessible, (2) freely available, and (3) interoperable and standardized. In consequence, SOCIB Data Centre Facility is implementing a general data management system to guarantee international standards, quality assurance and interoperability. The combination of different sources and types of information requires appropriate methods to ingest, catalogue, display, and distribute this information. SOCIB Data Centre is responsible for directing the different stages of data management, ranging from data acquisition to its distribution and visualization through web applications. The system implemented relies on open source solutions. In other words, the data life cycle relies in the following stages: • Acquisition: The data managed by SOCIB mostly come from its own observation platforms, numerical models or information generated from the activities in the SIAS Division. • Processing: Applications developed at SOCIB to deal with all collected platform data performing data calibration, derivation, quality control and standardization. • Archival: Storage in netCDF and spatial databases. • Distribution: Data web services using Thredds, Geoserver and RESTful own services. • Catalogue: Metadata is provided through the ncISO plugin in Thredds and Geonetwork. • Visualization: web and mobile applications to present SOCIB data to different user profiles. SOCIB data services and applications have been developed to provide response to science and society needs (eg. European initiatives such as Emodnet or Copernicus), by targeting different user profiles (eg. researchers, technicians, policy and decision makers, educators, students, and society in general). For example, SOCIB has developed applications to: 1) allow researchers and technicians to access oceanographic information; 2) provide decision support for oil spills response; 3) disseminate information about the coastal state for tourists and recreational users; 4) present coastal research in educational programs; and 5) offer easy and fast access to marine information through mobile devices. In conclusion, the organizational and conceptual structure of SOCIB's Data Centre and the components developed provide an example of marine information systems within the framework of new ocean observatories and/or marine research infrastructures.

  14. Novel Web-based Education Platforms for Information Communication utilizing Gamification, Virtual and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2015-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.

  15. Filling-in visual motion with sounds.

    PubMed

    Väljamäe, A; Soto-Faraco, S

    2008-10-01

    Information about the motion of objects can be extracted by multiple sensory modalities, and, as a consequence, object motion perception typically involves the integration of multi-sensory information. Often, in naturalistic settings, the flow of such information can be rather discontinuous (e.g. a cat racing through the furniture in a cluttered room is partly seen and partly heard). This study addressed audio-visual interactions in the perception of time-sampled object motion by measuring adaptation after-effects. We found significant auditory after-effects following adaptation to unisensory auditory and visual motion in depth, sampled at 12.5 Hz. The visually induced (cross-modal) auditory motion after-effect was eliminated if visual adaptors flashed at half of the rate (6.25 Hz). Remarkably, the addition of the high-rate acoustic flutter (12.5 Hz) to this ineffective, sparsely time-sampled, visual adaptor restored the auditory after-effect to a level comparable to what was seen with high-rate bimodal adaptors (flashes and beeps). Our results suggest that this auditory-induced reinstatement of the motion after-effect from the poor visual signals resulted from the occurrence of sound-induced illusory flashes. This effect was found to be dependent both on the directional congruency between modalities and on the rate of auditory flutter. The auditory filling-in of time-sampled visual motion supports the feasibility of using reduced frame rate visual content in multisensory broadcasting and virtual reality applications.

  16. MRI segmentation by active contours model, 3D reconstruction, and visualization

    NASA Astrophysics Data System (ADS)

    Lopez-Hernandez, Juan M.; Velasquez-Aguilar, J. Guadalupe

    2005-02-01

    The advances in 3D data modelling methods are becoming increasingly popular in the areas of biology, chemistry and medical applications. The Nuclear Magnetic Resonance Imaging (NMRI) technique has progressed at a spectacular rate over the past few years, its uses have been spread over many applications throughout the body in both anatomical and functional investigations. In this paper we present the application of Zernike polynomials for 3D mesh model of the head using the contour acquired of cross-sectional slices by active contour model extraction and we propose the visualization with OpenGL 3D Graphics of the 2D-3D (slice-surface) information for the diagnostic aid in medical applications.

  17. Multimodal Virtual Environments: MAGIC Toolkit and Visual-Haptic Interaction Paradigms

    DTIC Science & Technology

    1998-01-01

    2.7.3 Load/Save Options ..... 2.7.4 Information Display .... 2.8 Library Files. 2.9 Evaluation .............. 3 Visual-Haptic Interactions 3.1...Northwestern University[ Colgate , 1994]. It is possible for a user to touch one side of a thin object and be propelled out the opposite side, because...when there is a high correlation in motion and force between the visual and haptic realms. * Chapter 7 concludes with an evaluation of the application

  18. Effects of Temporal Integration on the Shape of Visual Backward Masking Functions

    ERIC Educational Resources Information Center

    Francis, Gregory; Cho, Yang Seok

    2008-01-01

    Many studies of cognition and perception use a visual mask to explore the dynamics of information processing of a target. Especially important in these applications is the time between the target and mask stimuli. A plot of some measure of target visibility against stimulus onset asynchrony is called a masking function, which can sometimes be…

  19. Image gathering and restoration - Information and visual quality

    NASA Technical Reports Server (NTRS)

    Mccormick, Judith A.; Alter-Gartenberg, Rachel; Huck, Friedrich O.

    1989-01-01

    A method is investigated for optimizing the end-to-end performance of image gathering and restoration for visual quality. To achieve this objective, one must inevitably confront the problems that the visual quality of restored images depends on perceptual rather than mathematical considerations and that these considerations vary with the target, the application, and the observer. The method adopted in this paper is to optimize image gathering informationally and to restore images interactively to obtain the visually preferred trade-off among fidelity resolution, sharpness, and clarity. The results demonstrate that this method leads to significant improvements in the visual quality obtained by the traditional digital processing methods. These traditional methods allow a significant loss of visual quality to occur because they treat the design of the image-gathering system and the formulation of the image-restoration algorithm as two separate tasks and fail to account for the transformations between the continuous and the discrete representations in image gathering and reconstruction.

  20. Evaluation of the 3d Urban Modelling Capabilities in Geographical Information Systems

    NASA Astrophysics Data System (ADS)

    Dogru, A. O.; Seker, D. Z.

    2010-12-01

    Geographical Information System (GIS) Technology, which provides successful solutions to basic spatial problems, is currently widely used in 3 dimensional (3D) modeling of physical reality with its developing visualization tools. The modeling of large and complicated phenomenon is a challenging problem in terms of computer graphics currently in use. However, it is possible to visualize that phenomenon in 3D by using computer systems. 3D models are used in developing computer games, military training, urban planning, tourism and etc. The use of 3D models for planning and management of urban areas is very popular issue of city administrations. In this context, 3D City models are produced and used for various purposes. However the requirements of the models vary depending on the type and scope of the application. While a high level visualization, where photorealistic visualization techniques are widely used, is required for touristy and recreational purposes, an abstract visualization of the physical reality is generally sufficient for the communication of the thematic information. The visual variables, which are the principle components of cartographic visualization, such as: color, shape, pattern, orientation, size, position, and saturation are used for communicating the thematic information. These kinds of 3D city models are called as abstract models. Standardization of technologies used for 3D modeling is now available by the use of CityGML. CityGML implements several novel concepts to support interoperability, consistency and functionality. For example it supports different Levels-of-Detail (LoD), which may arise from independent data collection processes and are used for efficient visualization and efficient data analysis. In one CityGML data set, the same object may be represented in different LoD simultaneously, enabling the analysis and visualization of the same object with regard to different degrees of resolution. Furthermore, two CityGML data sets containing the same object in different LoD may be combined and integrated. In this study GIS tools used for 3D modeling issues were examined. In this context, the availability of the GIS tools for obtaining different LoDs of CityGML standard. Additionally a 3D GIS application that covers a small part of the city of Istanbul was implemented for communicating the thematic information rather than photorealistic visualization by using 3D model. An abstract model was created by using a commercial GIS software modeling tools and the results of the implementation were also presented in the study.

  1. Developing a Value of Information (VoI) Enabled System from Collection to Analysis

    DTIC Science & Technology

    2016-11-01

    Information, Android, smartphone , information dissemination, visual analytic 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...List of Figures Fig. 1 Spot report main screen .........................................................................2 Fig. 2 Smartphone app...included the creation of 2 Android smartphone applications (apps) and the enhancement of an existing tool (Contour). Prior work with Android

  2. Visiting Scholars Program Application | FNLCR Staging

    Cancer.gov

    Below are scientific areas and programs that the Frederick National Labisactively seeking scholars to participate: Data Science and Information Technology (including Bioinformatics, Visualization, etc) Advanced Preclinical Researc

  3. KEGGtranslator: visualizing and converting the KEGG PATHWAY database to various formats.

    PubMed

    Wrzodek, Clemens; Dräger, Andreas; Zell, Andreas

    2011-08-15

    The KEGG PATHWAY database provides a widely used service for metabolic and nonmetabolic pathways. It contains manually drawn pathway maps with information about the genes, reactions and relations contained therein. To store these pathways, KEGG uses KGML, a proprietary XML-format. Parsers and translators are needed to process the pathway maps for usage in other applications and algorithms. We have developed KEGGtranslator, an easy-to-use stand-alone application that can visualize and convert KGML formatted XML-files into multiple output formats. Unlike other translators, KEGGtranslator supports a plethora of output formats, is able to augment the information in translated documents (e.g. MIRIAM annotations) beyond the scope of the KGML document, and amends missing components to fragmentary reactions within the pathway to allow simulations on those. KEGGtranslator is freely available as a Java(™) Web Start application and for download at http://www.cogsys.cs.uni-tuebingen.de/software/KEGGtranslator/. KGML files can be downloaded from within the application. clemens.wrzodek@uni-tuebingen.de Supplementary data are available at Bioinformatics online.

  4. Web-Based Visual Analytics for Social Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, Daniel M.; Bruce, Joseph R.; Dowson, Scott T.

    Social media provides a rich source of data that reflects current trends and public opinion on a multitude of topics. The data can be harvested from Twitter, Facebook, Blogs, and other social applications. The high rate of adoption of social media has created a domain that has an ever expanding volume of data that make it difficult to use the raw data for analysis. Information visual analytics is key in drawing out features of interest in social media. The Scalable Reasoning System is an application that couples a back end server performing analysis algorithms and an intuitive front end visualizationmore » to allow for investigation. We provide a componentized system that can be rapidly adapted to customer needs such that the information they are most interested in is brought to their attention through the application. To this end, we have developed a social media application for use by emergency operations for the city of Seattle to show current weather and traffic trends which is important for their tasks.« less

  5. An automated approach for tone mapping operator parameter adjustment in security applications

    NASA Astrophysics Data System (ADS)

    Krasula, LukáÅ.¡; Narwaria, Manish; Le Callet, Patrick

    2014-05-01

    High Dynamic Range (HDR) imaging has been gaining popularity in recent years. Different from the traditional low dynamic range (LDR), HDR content tends to be visually more appealing and realistic as it can represent the dynamic range of the visual stimuli present in the real world. As a result, more scene details can be faithfully reproduced. As a direct consequence, the visual quality tends to improve. HDR can be also directly exploited for new applications such as video surveillance and other security tasks. Since more scene details are available in HDR, it can help in identifying/tracking visual information which otherwise might be difficult with typical LDR content due to factors such as lack/excess of illumination, extreme contrast in the scene, etc. On the other hand, with HDR, there might be issues related to increased privacy intrusion. To display the HDR content on the regular screen, tone-mapping operators (TMO) are used. In this paper, we present the universal method for TMO parameters tuning, in order to maintain as many details as possible, which is desirable in security applications. The method's performance is verified on several TMOs by comparing the outcomes from tone-mapping with default and optimized parameters. The results suggest that the proposed approach preserves more information which could be of advantage for security surveillance but, on the other hand, makes us consider possible increase in privacy intrusion.

  6. What can neuromorphic event-driven precise timing add to spike-based pattern recognition?

    PubMed

    Akolkar, Himanshu; Meyer, Cedric; Clady, Zavier; Marre, Olivier; Bartolozzi, Chiara; Panzeri, Stefano; Benosman, Ryad

    2015-03-01

    This letter introduces a study to precisely measure what an increase in spike timing precision can add to spike-driven pattern recognition algorithms. The concept of generating spikes from images by converting gray levels into spike timings is currently at the basis of almost every spike-based modeling of biological visual systems. The use of images naturally leads to generating incorrect artificial and redundant spike timings and, more important, also contradicts biological findings indicating that visual processing is massively parallel, asynchronous with high temporal resolution. A new concept for acquiring visual information through pixel-individual asynchronous level-crossing sampling has been proposed in a recent generation of asynchronous neuromorphic visual sensors. Unlike conventional cameras, these sensors acquire data not at fixed points in time for the entire array but at fixed amplitude changes of their input, resulting optimally sparse in space and time-pixel individually and precisely timed only if new, (previously unknown) information is available (event based). This letter uses the high temporal resolution spiking output of neuromorphic event-based visual sensors to show that lowering time precision degrades performance on several recognition tasks specifically when reaching the conventional range of machine vision acquisition frequencies (30-60 Hz). The use of information theory to characterize separability between classes for each temporal resolution shows that high temporal acquisition provides up to 70% more information that conventional spikes generated from frame-based acquisition as used in standard artificial vision, thus drastically increasing the separability between classes of objects. Experiments on real data show that the amount of information loss is correlated with temporal precision. Our information-theoretic study highlights the potentials of neuromorphic asynchronous visual sensors for both practical applications and theoretical investigations. Moreover, it suggests that representing visual information as a precise sequence of spike times as reported in the retina offers considerable advantages for neuro-inspired visual computations.

  7. Information visualisation based on graph models

    NASA Astrophysics Data System (ADS)

    Kasyanov, V. N.; Kasyanova, E. V.

    2013-05-01

    Information visualisation is a key component of support tools for many applications in science and engineering. A graph is an abstract structure that is widely used to model information for its visualisation. In this paper, we consider practical and general graph formalism called hierarchical graphs and present the Higres and Visual Graph systems aimed at supporting information visualisation on the base of hierarchical graph models.

  8. pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis.

    PubMed

    Giannakopoulos, Theodoros

    2015-01-01

    Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library.

  9. pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis

    PubMed Central

    Giannakopoulos, Theodoros

    2015-01-01

    Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library. PMID:26656189

  10. Analyzing and Visualizing Precipitation and Soil Moisture in ArcGIS

    NASA Technical Reports Server (NTRS)

    Yang, Wenli; Pham, Long; Zhao, Peisheng; Kempler, Steve; Wei, Jennifer

    2016-01-01

    Precipitation and soil moisture are among the most important parameters in many land GIS (Geographic Information System) research and applications. These data are available globally from NASA GES DISC (Goddard Earth Science Data and Information Services Center) in GIS-ready format at 10-kilometer spatial resolution and 24-hour or less temporal resolutions. In this presentation, well demonstrate how rainfall and soil moisture data are used in ArcGIS to analyze and visualize spatiotemporal patterns of droughts and their impacts on natural vegetation and agriculture in different parts of the world.

  11. Visualization of Electrostatic Dipoles in Molecular Dynamics of Metal Oxides.

    PubMed

    Grottel, S; Beck, P; Muller, C; Reina, G; Roth, J; Trebin, H-R; Ertl, T

    2012-12-01

    Metal oxides are important for many technical applications. For example alumina (aluminum oxide) is the most commonly-used ceramic in microelectronic devices thanks to its excellent properties. Experimental studies of these materials are increasingly supplemented with computer simulations. Molecular dynamics (MD) simulations can reproduce the material behavior very well and are now reaching time scales relevant for interesting processes like crack propagation. In this work we focus on the visualization of induced electric dipole moments on oxygen atoms in crack propagation simulations. The straightforward visualization using glyphs for the individual atoms, simple shapes like spheres or arrows, is insufficient for providing information about the data set as a whole. As our contribution we show for the first time that fractional anisotropy values computed from the local neighborhood of individual atoms of MD simulation data depict important information about relevant properties of the field of induced electric dipole moments. Iso surfaces in the field of fractional anisotropy as well as adjustments of the glyph representation allow the user to identify regions of correlated orientation. We present novel and relevant findings for the application domain resulting from these visualizations, like the influence of mechanical forces on the electrostatic properties.

  12. Perspectives on Imaging: Advanced Applications. Introduction and Overview.

    ERIC Educational Resources Information Center

    Lynch, Clifford A.; Lunin, Lois F.

    1991-01-01

    Provides an overview of six articles that address relationships between electronic imaging technology and information science. Articles discuss the areas of technology; applications in the fields of visual arts, medicine, and textile history; conceptual foundations; and future visions, including work in virtual reality and cyberspace. (LRW)

  13. 77 FR 11499 - Applications for New Awards; Technology and Media Services for Individuals With Disabilities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... media for students who are blind, visually impaired, and print disabled and enrolled in elementary... DEPARTMENT OF EDUCATION Applications for New Awards; Technology and Media Services for Individuals... Education. ACTION: Notice. Overview Information Technology and Media Services for Individuals With...

  14. 47 CFR 2.1400 - Application for advance approval under part 73.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... 2.1400 Section 2.1400 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY... standards specified in part 73 of the Rules. The application must include information to show that the... of the encoded aural and visual baseband and transmitted signals and of the encoding equipment used...

  15. The Case for Open Source Software: The Interactional Discourse Lab

    ERIC Educational Resources Information Center

    Choi, Seongsook

    2016-01-01

    Computational techniques and software applications for the quantitative content analysis of texts are now well established, and many qualitative data software applications enable the manipulation of input variables and the visualization of complex relations between them via interactive and informative graphical interfaces. Although advances in…

  16. A web-application for visualizing uncertainty in numerical ensemble models

    NASA Astrophysics Data System (ADS)

    Alberti, Koko; Hiemstra, Paul; de Jong, Kor; Karssenberg, Derek

    2013-04-01

    Numerical ensemble models are used in the analysis and forecasting of a wide range of environmental processes. Common use cases include assessing the consequences of nuclear accidents, pollution releases into the ocean or atmosphere, forest fires, volcanic eruptions, or identifying areas at risk from such hazards. In addition to the increased use of scenario analyses and model forecasts, the availability of supplementary data describing errors and model uncertainties is increasingly commonplace. Unfortunately most current visualization routines are not capable of properly representing uncertain information. As a result, uncertainty information is not provided at all, not readily accessible, or it is not communicated effectively to model users such as domain experts, decision makers, policy makers, or even novice users. In an attempt to address these issues a lightweight and interactive web-application has been developed. It makes clear and concise uncertainty visualizations available in a web-based mapping and visualization environment, incorporating aggregation (upscaling) techniques to adjust uncertainty information to the zooming level. The application has been built on a web mapping stack of open source software, and can quantify and visualize uncertainties in numerical ensemble models in such a way that both expert and novice users can investigate uncertainties present in a simple ensemble dataset. As a test case, a dataset was used which forecasts the spread of an airborne tracer across Western Europe. Extrinsic uncertainty representations are used in which dynamic circular glyphs are overlaid on model attribute maps to convey various uncertainty concepts. It supports both basic uncertainty metrics such as standard deviation, standard error, width of the 95% confidence interval and interquartile range, as well as more experimental ones aimed at novice users. Ranges of attribute values can be specified, and the circular glyphs dynamically change size to represent the probability of the attribute value falling within the specified interval. For more advanced users graphs of the cumulative probability density function, histograms, and time series plume charts are available. To avoid risking a cognitive overload and crowding of glyphs on the map pane, the support of the data used for generating the glyphs is linked dynamically to the zoom level. Zooming in and out respectively decreases and increases the underlying support size of data used for generating the glyphs, thereby making uncertainty information of the original data upscaled to the resolution of the visualization accessible to the user. This feature also ensures that the glyphs are neatly spaced in a regular grid regardless of the zoom level. Finally, the web-application has been presented to groups of test users of varying degrees of expertise in order to evaluate the usability of the interface and the effectiveness of uncertainty visualizations based on circular glyphs.

  17. Information technology aided exploration of system design spaces

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Kiper, James D.; Kalafat, Selcuk

    2004-01-01

    We report on a practical application of information technology techniques to aid system engineers effectively explore large design spaces. We make use of heuristic search, visualization and data mining, the combination of which we have implemented wtihin a risk management tool in use at JPL and NASA.

  18. A study of the laminar separation bubble on an airfoil at low Reynolds numbers using flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Schmidt, Gordon S.; Mueller, Thomas J.

    1987-01-01

    The use of flow visualization to study separation bubbles is evaluated. The wind tunnel, two NACA 66(3)-018 airfoil models, and kerosene vapor, titanium tetrachloride, and surface flow visualizations techniques are described. The application of the three visualization techniques to the two airfoil models reveals that the smoke and vapor techniques provide data on the location of laminar separation and the onset of transition, and the surface method produces information about the location of turbulent boundary layer separation. The data obtained with the three flow visualization techniques are compared to pressure distribution data and good correlation is detected. It is noted that flow visualization is an effective technique for examining separation bubbles.

  19. Multispectral image analysis for object recognition and classification

    NASA Astrophysics Data System (ADS)

    Viau, C. R.; Payeur, P.; Cretu, A.-M.

    2016-05-01

    Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.

  20. Emerging applications of eye-tracking technology in dermatology.

    PubMed

    John, Kevin K; Jensen, Jakob D; King, Andy J; Pokharel, Manusheela; Grossman, Douglas

    2018-04-06

    Eye-tracking technology has been used within a multitude of disciplines to provide data linking eye movements to visual processing of various stimuli (i.e., x-rays, situational positioning, printed information, and warnings). Despite the benefits provided by eye-tracking in allowing for the identification and quantification of visual attention, the discipline of dermatology has yet to see broad application of the technology. Notwithstanding dermatologists' heavy reliance upon visual patterns and cues to discriminate between benign and atypical nevi, literature that applies eye-tracking to the study of dermatology is sparse; and literature specific to patient-initiated behaviors, such as skin self-examination (SSE), is largely non-existent. The current article provides a review of eye-tracking research in various medical fields, culminating in a discussion of current applications and advantages of eye-tracking for dermatology research. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  1. An interactive web application for the dissemination of human systems immunology data.

    PubMed

    Speake, Cate; Presnell, Scott; Domico, Kelly; Zeitner, Brad; Bjork, Anna; Anderson, David; Mason, Michael J; Whalen, Elizabeth; Vargas, Olivia; Popov, Dimitry; Rinchai, Darawan; Jourde-Chiche, Noemie; Chiche, Laurent; Quinn, Charlie; Chaussabel, Damien

    2015-06-19

    Systems immunology approaches have proven invaluable in translational research settings. The current rate at which large-scale datasets are generated presents unique challenges and opportunities. Mining aggregates of these datasets could accelerate the pace of discovery, but new solutions are needed to integrate the heterogeneous data types with the contextual information that is necessary for interpretation. In addition, enabling tools and technologies facilitating investigators' interaction with large-scale datasets must be developed in order to promote insight and foster knowledge discovery. State of the art application programming was employed to develop an interactive web application for browsing and visualizing large and complex datasets. A collection of human immune transcriptome datasets were loaded alongside contextual information about the samples. We provide a resource enabling interactive query and navigation of transcriptome datasets relevant to human immunology research. Detailed information about studies and samples are displayed dynamically; if desired the associated data can be downloaded. Custom interactive visualizations of the data can be shared via email or social media. This application can be used to browse context-rich systems-scale data within and across systems immunology studies. This resource is publicly available online at [Gene Expression Browser Landing Page ( https://gxb.benaroyaresearch.org/dm3/landing.gsp )]. The source code is also available openly [Gene Expression Browser Source Code ( https://github.com/BenaroyaResearch/gxbrowser )]. We have developed a data browsing and visualization application capable of navigating increasingly large and complex datasets generated in the context of immunological studies. This intuitive tool ensures that, whether taken individually or as a whole, such datasets generated at great effort and expense remain interpretable and a ready source of insight for years to come.

  2. 3D Visualization Development of SIUE Campus

    NASA Astrophysics Data System (ADS)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  3. Visual Data Comm: A Tool for Visualizing Data Communication in the Multi Sector Planner Study

    NASA Technical Reports Server (NTRS)

    Lee, Hwasoo Eric

    2010-01-01

    Data comm is a new technology proposed in future air transport system as a potential tool to provide comprehensive data connectivity. It is a key enabler to manage 4D trajectory digitally, potentially resulting in improved flight times and increased throughput. Future concepts with data comm integration have been tested in a number of human-in-the-loop studies but analyzing the results has proven to be particularly challenging because future traffic environment in which data comm is fully enabled has assumed high traffic density, resulting in data set with large amount of information. This paper describes the motivation, design, current and potential future application of Visual Data Comm (VDC), a tool for visualizing data developed in Java using Processing library which is a tool package designed for interactive visualization programming. This paper includes an example of an application of VDC on data pertaining to the most recent Multi Sector Planner study, conducted at NASA s Airspace Operations Laboratory in 2009, in which VDC was used to visualize and interpret data comm activities

  4. Enhancing online timeline visualizations with events and images

    NASA Astrophysics Data System (ADS)

    Pandya, Abhishek; Mulye, Aniket; Teoh, Soon Tee

    2011-01-01

    The use of timeline to visualize time-series data is one of the most intuitive and commonly used methods, and is used for widely-used applications such as stock market data visualization, and tracking of poll data of election candidates over time. While useful, these timeline visualizations are lacking in contextual information of events which are related or cause changes in the data. We have developed a system that enhances timeline visualization with display of relevant news events and their corresponding images, so that users can not only see the changes in the data, but also understand the reasons behind the changes. We have also conducted a user study to test the effectiveness of our ideas.

  5. Visiting Scholars Program Application | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Below are scientific areas and programs that the Frederick National Labisactively seeking scholars to participate: Data Science and Information Technology (including Bioinformatics, Visualization, etc) Advanced Preclinical Researc

  6. Classification of cognitive systems dedicated to data sharing

    NASA Astrophysics Data System (ADS)

    Ogiela, Lidia; Ogiela, Marek R.

    2017-08-01

    In this paper will be presented classification of new cognitive information systems dedicated to cryptographic data splitting and sharing processes. Cognitive processes of semantic data analysis and interpretation, will be used to describe new classes of intelligent information and vision systems. In addition, cryptographic data splitting algorithms and cryptographic threshold schemes will be used to improve processes of secure and efficient information management with application of such cognitive systems. The utility of the proposed cognitive sharing procedures and distributed data sharing algorithms will be also presented. A few possible application of cognitive approaches for visual information management and encryption will be also described.

  7. An amodal shared resource model of language-mediated visual attention

    PubMed Central

    Smith, Alastair C.; Monaghan, Padraic; Huettig, Falk

    2013-01-01

    Language-mediated visual attention describes the interaction of two fundamental components of the human cognitive system, language and vision. Within this paper we present an amodal shared resource model of language-mediated visual attention that offers a description of the information and processes involved in this complex multimodal behavior and a potential explanation for how this ability is acquired. We demonstrate that the model is not only sufficient to account for the experimental effects of Visual World Paradigm studies but also that these effects are emergent properties of the architecture of the model itself, rather than requiring separate information processing channels or modular processing systems. The model provides an explicit description of the connection between the modality-specific input from language and vision and the distribution of eye gaze in language-mediated visual attention. The paper concludes by discussing future applications for the model, specifically its potential for investigating the factors driving observed individual differences in language-mediated eye gaze. PMID:23966967

  8. High speed digital holographic interferometry for hypersonic flow visualization

    NASA Astrophysics Data System (ADS)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  9. An Analysis of Machine- and Human-Analytics in Classification.

    PubMed

    Tam, Gary K L; Kothari, Vivek; Chen, Min

    2017-01-01

    In this work, we present a study that traces the technical and cognitive processes in two visual analytics applications to a common theoretic model of soft knowledge that may be added into a visual analytics process for constructing a decision-tree model. Both case studies involved the development of classification models based on the "bag of features" approach. Both compared a visual analytics approach using parallel coordinates with a machine-learning approach using information theory. Both found that the visual analytics approach had some advantages over the machine learning approach, especially when sparse datasets were used as the ground truth. We examine various possible factors that may have contributed to such advantages, and collect empirical evidence for supporting the observation and reasoning of these factors. We propose an information-theoretic model as a common theoretic basis to explain the phenomena exhibited in these two case studies. Together we provide interconnected empirical and theoretical evidence to support the usefulness of visual analytics.

  10. Geographic Information System (GIS) Applications at a Multi-Site Community College.

    ERIC Educational Resources Information Center

    Pottle, Laura

    This report presents the Front Range Community College (FRCC) (Colorado) Office of Institutional Research's recent expansion of its data analysis and reporting capabilities to include a geographic information system (GIS). Utilizing ArcView GIS software, the college is better able to visualize institutional and environmental data. They have…

  11. Task Specificity and the Influence of Memory on Visual Search: Comment on Vo and Wolfe (2012)

    ERIC Educational Resources Information Center

    Hollingworth, Andrew

    2012-01-01

    Recent results from Vo and Wolfe (2012b) suggest that the application of memory to visual search may be task specific: Previous experience searching for an object facilitated later search for that object, but object information acquired during a different task did not appear to transfer to search. The latter inference depended on evidence that a…

  12. MemAxes Visualization Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardware advancements such as Intel's PEBS and AMD's IBS, as well as software developments such as the perf_event API in Linux have made available the acquisition of memory access samples with performance information. MemAxes is a visualization and analysis tool for memory access sample data. By mapping the samples to their associated code, variables, node topology, and application dataset, MemAxes provides intuitive views of the data.

  13. Design and application of pulse information acquisition and analysis system with dynamic recognition in traditional Chinese medicine.

    PubMed

    Zhang, Jian; Niu, Xin; Yang, Xue-zhi; Zhu, Qing-wen; Li, Hai-yan; Wang, Xuan; Zhang, Zhi-guo; Sha, Hong

    2014-09-01

    To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse. To use some flexible sensors to catch the radial artery pressure pulse wave and utilize the high frequency B mode ultrasound scanning technology to synchronously obtain the information of radial extension and axial movement, by the way of dynamic images, then the gathered information was analyzed and processed together with ECG. Finally, the pulse information acquisition and analysis system was established which has the features of visualization and dynamic recognition, and it was applied to serve for ten healthy adults. The new system overcome the disadvantage of one-dimensional pulse information acquisition and process method which was common used in current research area of pulse diagnosis in traditional Chinese Medicine, initiated a new way of pulse diagnosis which has the new features of dynamic recognition, two-dimensional information acquisition, multiplex signals combination and deep data mining. The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel.

  14. Image gathering, coding, and processing: End-to-end optimization for efficient and robust acquisition of visual information

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.

    1990-01-01

    Researchers are concerned with the end-to-end performance of image gathering, coding, and processing. The applications range from high-resolution television to vision-based robotics, wherever the resolution, efficiency and robustness of visual information acquisition and processing are critical. For the presentation at this workshop, it is convenient to divide research activities into the following two overlapping areas: The first is the development of focal-plane processing techniques and technology to effectively combine image gathering with coding, with an emphasis on low-level vision processing akin to the retinal processing in human vision. The approach includes the familiar Laplacian pyramid, the new intensity-dependent spatial summation, and parallel sensing/processing networks. Three-dimensional image gathering is attained by combining laser ranging with sensor-array imaging. The second is the rigorous extension of information theory and optimal filtering to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing.

  15. ActiviTree: interactive visual exploration of sequences in event-based data using graph similarity.

    PubMed

    Vrotsou, Katerina; Johansson, Jimmy; Cooper, Matthew

    2009-01-01

    The identification of significant sequences in large and complex event-based temporal data is a challenging problem with applications in many areas of today's information intensive society. Pure visual representations can be used for the analysis, but are constrained to small data sets. Algorithmic search mechanisms used for larger data sets become expensive as the data size increases and typically focus on frequency of occurrence to reduce the computational complexity, often overlooking important infrequent sequences and outliers. In this paper we introduce an interactive visual data mining approach based on an adaptation of techniques developed for web searching, combined with an intuitive visual interface, to facilitate user-centred exploration of the data and identification of sequences significant to that user. The search algorithm used in the exploration executes in negligible time, even for large data, and so no pre-processing of the selected data is required, making this a completely interactive experience for the user. Our particular application area is social science diary data but the technique is applicable across many other disciplines.

  16. Employing WebGL to develop interactive stereoscopic 3D content for use in biomedical visualization

    NASA Astrophysics Data System (ADS)

    Johnston, Semay; Renambot, Luc; Sauter, Daniel

    2013-03-01

    Web Graphics Library (WebGL), the forthcoming web standard for rendering native 3D graphics in a browser, represents an important addition to the biomedical visualization toolset. It is projected to become a mainstream method of delivering 3D online content due to shrinking support for third-party plug-ins. Additionally, it provides a virtual reality (VR) experience to web users accommodated by the growing availability of stereoscopic displays (3D TV, desktop, and mobile). WebGL's value in biomedical visualization has been demonstrated by applications for interactive anatomical models, chemical and molecular visualization, and web-based volume rendering. However, a lack of instructional literature specific to the field prevents many from utilizing this technology. This project defines a WebGL design methodology for a target audience of biomedical artists with a basic understanding of web languages and 3D graphics. The methodology was informed by the development of an interactive web application depicting the anatomy and various pathologies of the human eye. The application supports several modes of stereoscopic displays for a better understanding of 3D anatomical structures.

  17. Web-Based Geographic Information System Tool for Accessing Hanford Site Environmental Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triplett, Mark B.; Seiple, Timothy E.; Watson, David J.

    Data volume, complexity, and access issues pose severe challenges for analysts, regulators and stakeholders attempting to efficiently use legacy data to support decision making at the U.S. Department of Energy’s (DOE) Hanford Site. DOE has partnered with the Pacific Northwest National Laboratory (PNNL) on the PHOENIX (PNNL-Hanford Online Environmental Information System) project, which seeks to address data access, transparency, and integration challenges at Hanford to provide effective decision support. PHOENIX is a family of spatially-enabled web applications providing quick access to decades of valuable scientific data and insight through intuitive query, visualization, and analysis tools. PHOENIX realizes broad, public accessibilitymore » by relying only on ubiquitous web-browsers, eliminating the need for specialized software. It accommodates a wide range of users with intuitive user interfaces that require little or no training to quickly obtain and visualize data. Currently, PHOENIX is actively hosting three applications focused on groundwater monitoring, groundwater clean-up performance reporting, and in-tank monitoring. PHOENIX-based applications are being used to streamline investigative and analytical processes at Hanford, saving time and money. But more importantly, by integrating previously isolated datasets and developing relevant visualization and analysis tools, PHOENIX applications are enabling DOE to discover new correlations hidden in legacy data, allowing them to more effectively address complex issues at Hanford.« less

  18. Content-based image retrieval by matching hierarchical attributed region adjacency graphs

    NASA Astrophysics Data System (ADS)

    Fischer, Benedikt; Thies, Christian J.; Guld, Mark O.; Lehmann, Thomas M.

    2004-05-01

    Content-based image retrieval requires a formal description of visual information. In medical applications, all relevant biological objects have to be represented by this description. Although color as the primary feature has proven successful in publicly available retrieval systems of general purpose, this description is not applicable to most medical images. Additionally, it has been shown that global features characterizing the whole image do not lead to acceptable results in the medical context or that they are only suitable for specific applications. For a general purpose content-based comparison of medical images, local, i.e. regional features that are collected on multiple scales must be used. A hierarchical attributed region adjacency graph (HARAG) provides such a representation and transfers image comparison to graph matching. However, building a HARAG from an image requires a restriction in size to be computationally feasible while at the same time all visually plausible information must be preserved. For this purpose, mechanisms for the reduction of the graph size are presented. Even with a reduced graph, the problem of graph matching remains NP-complete. In this paper, the Similarity Flooding approach and Hopfield-style neural networks are adapted from the graph matching community to the needs of HARAG comparison. Based on synthetic image material build from simple geometric objects, all visually similar regions were matched accordingly showing the framework's general applicability to content-based image retrieval of medical images.

  19. Water tunnel flow visualization using a laser

    NASA Technical Reports Server (NTRS)

    Beckner, C.; Curry, R. E.

    1985-01-01

    Laser systems for flow visualization in water tunnels (similar to the vapor screen technique used in wind tunnels) can provide two-dimensional cross-sectional views of complex flow fields. This parametric study documents the practical application of the laser-enhanced visualization (LEV) technique to water tunnel testing. Aspects of the study include laser power levels, flow seeding (using flourescent dyes and embedded particulates), model preparation, and photographic techniques. The results of this study are discussed to provide potential users with basic information to aid in the design and setup of an LEV system.

  20. Innovative Ways of Visualising Meta Data in 4D Using Open Source Libaries

    NASA Astrophysics Data System (ADS)

    Balhar, Jakub; Valach, Pavel; Veselka, Jonas; Voumard, Yann

    2016-08-01

    There are more and more data being measured by different Earth Observation satellites around the world. Ever increasing amount of these data present new challenges and opportunities for their visualization.In this paper we propose how to visualize the amount, distribution and the structure of the data in a transparent way, which will take into account time-dimensions as well. Our approach allows us to get a global overview as well detailed regional information about distribution of the products from EO observation missions.We focus on introducing our mobile-friendly and easy- to-use web mapping application for 4D visualization of the data. Apart from that we also present the Java application which can read and process the data from various data sources.

  1. A new visual identity for the National Health Service.

    PubMed

    England, P

    2000-03-01

    The following article gives a brief overview of the new visual identity being adopted by the National Health Service in England. It looks at the thinking behind the identity, the identity's component parts and provides sources for obtaining further information on the identity's application. It is compiled from a presentation by Stephanie Hood from the corporate identity team of the NHS Executive communications unit given on 22nd October 1999 at the National Designers in Health Network seminar, Time-out '99, Sheffield. Supporting information was obtained from the NHS Communications website http:¿nww.doh.nhsweb.uk/commsnet.

  2. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO.

    PubMed

    Hernandez-Vicen, Juan; Martinez, Santiago; Garcia-Haro, Juan Miguel; Balaguer, Carlos

    2018-03-25

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid.

  3. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO

    PubMed Central

    2018-01-01

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid. PMID:29587392

  4. Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1993-01-01

    Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.

  5. Application of Information Visualization Techniques in Representing Patients' Temporal Personal History Data

    NASA Astrophysics Data System (ADS)

    Noah, Shahrul Azman; Yaakob, Suraya; Shahar, Suzana

    The anthropometries and nutrients records of patients are usually vast in quantity, complex and exhibit temporal features. Therefore, the information acceptance among users will become blur and give cognitive burden if such data is not displayed using effective techniques. The aim of this study is to apply, use and evaluate Information Visualization (IV) techniques for displaying the Personal History Data (PHD) of patients for dietitians during counseling sessions. Since PHD values change consistently with the counseling session, our implementation mainly focused on quantitative temporal data such as Body Mass Index (BMI), blood pressure and blood glucose readings. This data is mapped into orientation circle type of visual representation, whereas data about medicinal and supplement intake are mapped into timeline segment which is based on the thickness of lines as well as the colors. A usability testing has been conducted among dietitians at Faculty of Allied Health Sciences, UKM. The result of the testing has shown that the use of visual representations capable of summarising complex data which ease the dietitian task of checking the PHD.

  6. Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment.

    PubMed

    Zanbaka, Catherine A; Lok, Benjamin C; Babu, Sabarish V; Ulinski, Amy C; Hodges, Larry F

    2005-01-01

    We describe a between-subjects experiment that compared four different methods of travel and their effect on cognition and paths taken in an immersive virtual environment (IVE). Participants answered a set of questions based on Crook's condensation of Bloom's taxonomy that assessed their cognition of the IVE with respect to knowledge, understanding and application, and higher mental processes. Participants also drew a sketch map of the IVE and the objects within it. The users' sense of presence was measured using the Steed-Usoh-Slater Presence Questionnaire. The participants' position and head orientation were automatically logged during their exposure to the virtual environment. These logs were later used to create visualizations of the paths taken. Path analysis, such as exploring the overlaid path visualizations and dwell data information, revealed further differences among the travel techniques. Our results suggest that, for applications where problem solving and evaluation of information is important or where opportunity to train is minimal, then having a large tracked space so that the participant can walk around the virtual environment provides benefits over common virtual travel techniques.

  7. Visual mining business service using pixel bar charts

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Dayal, Umeshwar; Casati, Fabio

    2004-06-01

    Basic bar charts have been commonly available, but they only show highly aggregated data. Finding the valuable information hidden in the data is essential to the success of business. We describe a new visualization technique called pixel bar charts, which are derived from regular bar charts. The basic idea of a pixel bar chart is to present all data values directly instead of aggregating them into a few data values. Pixel bar charts provide data distribution and exceptions besides aggregated data. The approach is to represent each data item (e.g. a business transaction) by a single pixel in the bar chart. The attribute of each data item is encoded into the pixel color and can be accessed and drilled down to the detail information as needed. Different color mappings are used to represent multiple attributes. This technique has been prototyped in three business service applications-Business Operation Analysis, Sales Analysis, and Service Level Agreement Analysis at Hewlett Packard Laboratories. Our applications show the wide applicability and usefulness of this new idea.

  8. Innovative Visualization Techniques applied to a Flood Scenario

    NASA Astrophysics Data System (ADS)

    Falcão, António; Ho, Quan; Lopes, Pedro; Malamud, Bruce D.; Ribeiro, Rita; Jern, Mikael

    2013-04-01

    The large and ever-increasing amounts of multi-dimensional, time-varying and geospatial digital information from multiple sources represent a major challenge for today's analysts. We present a set of visualization techniques that can be used for the interactive analysis of geo-referenced and time sampled data sets, providing an integrated mechanism and that aids the user to collaboratively explore, present and communicate visually complex and dynamic data. Here we present these concepts in the context of a 4 hour flood scenario from Lisbon in 2010, with data that includes measures of water column (flood height) every 10 minutes at a 4.5 m x 4.5 m resolution, topography, building damage, building information, and online base maps. Techniques we use include web-based linked views, multiple charts, map layers and storytelling. We explain two of these in more detail that are not currently in common use for visualization of data: storytelling and web-based linked views. Visual storytelling is a method for providing a guided but interactive process of visualizing data, allowing more engaging data exploration through interactive web-enabled visualizations. Within storytelling, a snapshot mechanism helps the author of a story to highlight data views of particular interest and subsequently share or guide others within the data analysis process. This allows a particular person to select relevant attributes for a snapshot, such as highlighted regions for comparisons, time step, class values for colour legend, etc. and provide a snapshot of the current application state, which can then be provided as a hyperlink and recreated by someone else. Since data can be embedded within this snapshot, it is possible to interactively visualize and manipulate it. The second technique, web-based linked views, includes multiple windows which interactively respond to the user selections, so that when selecting an object and changing it one window, it will automatically update in all the other windows. These concepts can be part of a collaborative platform, where multiple people share and work together on the data, via online access, which also allows its remote usage from a mobile platform. Storytelling augments analysis and decision-making capabilities allowing to assimilate complex situations and reach informed decisions, in addition to helping the public visualize information. In our visualization scenario, developed in the context of the VA-4D project for the European Space Agency (see http://www.ca3-uninova.org/project_va4d), we make use of the GAV (GeoAnalytics Visualization) framework, a web-oriented visual analytics application based on multiple interactive views. The final visualization that we produce includes multiple interactive views, including a dynamic multi-layer map surrounded by other visualizations such as bar charts, time graphs and scatter plots. The map provides flood and building information, on top of a base city map (street maps and/or satellite imagery provided by online map services such as Google Maps, Bing Maps etc.). Damage over time for selected buildings, damage for all buildings at a chosen time period, correlation between damage and water depth can be analysed in the other views. This interactive web-based visualization that incorporates the ideas of storytelling, web-based linked views, and other visualization techniques, for a 4 hour flood event in Lisbon in 2010, can be found online at http://www.ncomva.se/flash/projects/esa/flooding/.

  9. Latency in Visionic Systems: Test Methods and Requirements

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Arthur, J. J., III; Williams, Steven P.; Kramer, Lynda J.

    2005-01-01

    A visionics device creates a pictorial representation of the external scene for the pilot. The ultimate objective of these systems may be to electronically generate a form of Visual Meteorological Conditions (VMC) to eliminate weather or time-of-day as an operational constraint and provide enhancement over actual visual conditions where eye-limiting resolution may be a limiting factor. Empirical evidence has shown that the total system delays or latencies including the imaging sensors and display systems, can critically degrade their utility, usability, and acceptability. Definitions and measurement techniques are offered herein as common test and evaluation methods for latency testing in visionics device applications. Based upon available data, very different latency requirements are indicated based upon the piloting task, the role in which the visionics device is used in this task, and the characteristics of the visionics cockpit display device including its resolution, field-of-regard, and field-of-view. The least stringent latency requirements will involve Head-Up Display (HUD) applications, where the visionics imagery provides situational information as a supplement to symbology guidance and command information. Conversely, the visionics system latency requirement for a large field-of-view Head-Worn Display application, providing a Virtual-VMC capability from which the pilot will derive visual guidance, will be the most stringent, having a value as low as 20 msec.

  10. LCD-based digital eyeglass for modulating spatial-angular information.

    PubMed

    Bian, Zichao; Liao, Jun; Guo, Kaikai; Heng, Xin; Zheng, Guoan

    2015-05-04

    Using programmable aperture to modulate spatial-angular information of light field is well-known in computational photography and microscopy. Inspired by this concept, we report a digital eyeglass design that adaptively modulates light field entering human eyes. The main hardware includes a transparent liquid crystal display (LCD) and a mini-camera. The device analyzes the spatial-angular information of the camera image in real time and subsequently sends a command to form a certain pattern on the LCD. We show that, the eyeglass prototype can adaptively reduce light transmission from bright sources by ~80% and retain transparency to other dim objects meanwhile. One application of the reported device is to reduce discomforting glare caused by vehicle headlamps. To this end, we report the preliminary result of using the reported device in a road test. The reported device may also find applications in military operations (sniper scope), laser counter measure, STEM education, and enhancing visual contrast for visually impaired patients and elderly people with low vision.

  11. Improving Aviation Safety with information Visualization: A Flight Simulation Study

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Hearst, Marti

    2005-01-01

    Many aircraft accidents each year are caused by encounters with invisible airflow hazards. Recent advances in aviation sensor technology offer the potential for aircraft-based sensors that can gather large amounts of airflow velocity data in real-time. With this influx of data comes the need to study how best to present it to the pilot - a cognitively overloaded user focused on a primary task other than that of information visualization. In this paper, we present the results of a usability study of an airflow hazard visualization system that significantly reduced the crash rate among experienced helicopter pilots flying a high fidelity, aerodynamically realistic fixed-base rotorcraft flight simulator into hazardous conditions. We focus on one particular aviation application, but the results may be relevant to user interfaces in other operationally stressful environments.

  12. Tech-Based Approaches to Supporting and Engaging Diverse Learners: Visual Strategies for Success

    ERIC Educational Resources Information Center

    Bryans-Bongey, Sarah E.

    2018-01-01

    This paper explores teaching and learning applications at the intersection between Universal Design for Learning, Assistive Technology, and mainstream educational technology. Informed by the SETT framework in which the technology choice is informed by student, environment, and task (Dell, Newton, & Petroff, 2017; Zabala, 2005), this paper is…

  13. Image Location Estimation by Salient Region Matching.

    PubMed

    Qian, Xueming; Zhao, Yisi; Han, Junwei

    2015-11-01

    Nowadays, locations of images have been widely used in many application scenarios for large geo-tagged image corpora. As to images which are not geographically tagged, we estimate their locations with the help of the large geo-tagged image set by content-based image retrieval. In this paper, we exploit spatial information of useful visual words to improve image location estimation (or content-based image retrieval performances). We proposed to generate visual word groups by mean-shift clustering. To improve the retrieval performance, spatial constraint is utilized to code the relative position of visual words. We proposed to generate a position descriptor for each visual word and build fast indexing structure for visual word groups. Experiments show the effectiveness of our proposed approach.

  14. Complete scanpaths analysis toolbox.

    PubMed

    Augustyniak, Piotr; Mikrut, Zbigniew

    2006-01-01

    This paper presents a complete open software environment for control, data processing and assessment of visual experiments. Visual experiments are widely used in research on human perception physiology and the results are applicable to various visual information-based man-machine interfacing, human-emulated automatic visual systems or scanpath-based learning of perceptual habits. The toolbox is designed for Matlab platform and supports infra-red reflection-based eyetracker in calibration and scanpath analysis modes. Toolbox procedures are organized in three layers: the lower one, communicating with the eyetracker output file, the middle detecting scanpath events on a physiological background and the one upper consisting of experiment schedule scripts, statistics and summaries. Several examples of visual experiments carried out with use of the presented toolbox complete the paper.

  15. Visualization of Traffic Accidents

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  16. Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Aritra; Arendt, Dustin L.; Franklin, Lyndsey

    State-of-the-art visual analytics models and frameworks mostly assume a static snapshot of the data, while in many cases it is a stream with constant updates and changes. Exploration of streaming data poses unique challenges as machine-level computations and abstractions need to be synchronized with the visual representation of the data and the temporally evolving human insights. In the visual analytics literature, we lack a thorough characterization of streaming data and analysis of the challenges associated with task abstraction, visualization design, and adaptation of the role of human-in-the-loop for exploration of data streams. We aim to fill this gap by conductingmore » a survey of the state-of-the-art in visual analytics of streaming data for systematically describing the contributions and shortcomings of current techniques and analyzing the research gaps that need to be addressed in the future. Our contributions are: i) problem characterization for identifying challenges that are unique to streaming data analysis tasks, ii) a survey and analysis of the state-of-the-art in streaming data visualization research with a focus on the visualization design space for dynamic data and the role of the human-in-the-loop, and iii) reflections on the design-trade-offs for streaming visual analytics techniques and their practical applicability in real-world application scenarios.« less

  17. An Intracranial Electroencephalography (iEEG) Brain Function Mapping Tool with an Application to Epilepsy Surgery Evaluation.

    PubMed

    Wang, Yinghua; Yan, Jiaqing; Wen, Jianbin; Yu, Tao; Li, Xiaoli

    2016-01-01

    Before epilepsy surgeries, intracranial electroencephalography (iEEG) is often employed in function mapping and epileptogenic foci localization. Although the implanted electrodes provide crucial information for epileptogenic zone resection, a convenient clinical tool for electrode position registration and Brain Function Mapping (BFM) visualization is still lacking. In this study, we developed a BFM Tool, which facilitates electrode position registration and BFM visualization, with an application to epilepsy surgeries. The BFM Tool mainly utilizes electrode location registration and function mapping based on pre-defined brain models from other software. In addition, the electrode node and mapping properties, such as the node size/color, edge color/thickness, mapping method, can be adjusted easily using the setting panel. Moreover, users may manually import/export location and connectivity data to generate figures for further application. The role of this software is demonstrated by a clinical study of language area localization. The BFM Tool helps clinical doctors and researchers visualize implanted electrodes and brain functions in an easy, quick and flexible manner. Our tool provides convenient electrode registration, easy brain function visualization, and has good performance. It is clinical-oriented and is easy to deploy and use. The BFM tool is suitable for epilepsy and other clinical iEEG applications.

  18. An Intracranial Electroencephalography (iEEG) Brain Function Mapping Tool with an Application to Epilepsy Surgery Evaluation

    PubMed Central

    Wang, Yinghua; Yan, Jiaqing; Wen, Jianbin; Yu, Tao; Li, Xiaoli

    2016-01-01

    Objects: Before epilepsy surgeries, intracranial electroencephalography (iEEG) is often employed in function mapping and epileptogenic foci localization. Although the implanted electrodes provide crucial information for epileptogenic zone resection, a convenient clinical tool for electrode position registration and Brain Function Mapping (BFM) visualization is still lacking. In this study, we developed a BFM Tool, which facilitates electrode position registration and BFM visualization, with an application to epilepsy surgeries. Methods: The BFM Tool mainly utilizes electrode location registration and function mapping based on pre-defined brain models from other software. In addition, the electrode node and mapping properties, such as the node size/color, edge color/thickness, mapping method, can be adjusted easily using the setting panel. Moreover, users may manually import/export location and connectivity data to generate figures for further application. The role of this software is demonstrated by a clinical study of language area localization. Results: The BFM Tool helps clinical doctors and researchers visualize implanted electrodes and brain functions in an easy, quick and flexible manner. Conclusions: Our tool provides convenient electrode registration, easy brain function visualization, and has good performance. It is clinical-oriented and is easy to deploy and use. The BFM tool is suitable for epilepsy and other clinical iEEG applications. PMID:27199729

  19. Visual Sensing for Urban Flood Monitoring

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201

  20. General visual robot controller networks via artificial evolution

    NASA Astrophysics Data System (ADS)

    Cliff, David; Harvey, Inman; Husbands, Philip

    1993-08-01

    We discuss recent results from our ongoing research concerning the application of artificial evolution techniques (i.e., an extended form of genetic algorithm) to the problem of developing `neural' network controllers for visually guided robots. The robot is a small autonomous vehicle with extremely low-resolution vision, employing visual sensors which could readily be constructed from discrete analog components. In addition to visual sensing, the robot is equipped with a small number of mechanical tactile sensors. Activity from the sensors is fed to a recurrent dynamical artificial `neural' network, which acts as the robot controller, providing signals to motors governing the robot's motion. Prior to presentation of new results, this paper summarizes our rationale and past work, which has demonstrated that visually guided control networks can arise without any explicit specification that visual processing should be employed: the evolutionary process opportunistically makes use of visual information if it is available.

  1. Visualizing Cloud Properties and Satellite Imagery: A Tool for Visualization and Information Integration

    NASA Astrophysics Data System (ADS)

    Chee, T.; Nguyen, L.; Smith, W. L., Jr.; Spangenberg, D.; Palikonda, R.; Bedka, K. M.; Minnis, P.; Thieman, M. M.; Nordeen, M.

    2017-12-01

    Providing public access to research products including cloud macro and microphysical properties and satellite imagery are a key concern for the NASA Langley Research Center Cloud and Radiation Group. This work describes a web based visualization tool and API that allows end users to easily create customized cloud product and satellite imagery, ground site data and satellite ground track information that is generated dynamically. The tool has two uses, one to visualize the dynamically created imagery and the other to provide access to the dynamically generated imagery directly at a later time. Internally, we leverage our practical experience with large, scalable application practices to develop a system that has the largest potential for scalability as well as the ability to be deployed on the cloud to accommodate scalability issues. We build upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite cloud product information, satellite imagery, ground site data and satellite track information accessible and easily searchable. This tool is the culmination of our prior experience with dynamic imagery generation and provides a way to build a "mash-up" of dynamically generated imagery and related kinds of information that are visualized together to add value to disparate but related information. In support of NASA strategic goals, our group aims to make as much scientific knowledge, observations and products available to the citizen science, research and interested communities as well as for automated systems to acquire the same information for data mining or other analytic purposes. This tool and the underlying API's provide a valuable research tool to a wide audience both as a standalone research tool and also as an easily accessed data source that can easily be mined or used with existing tools.

  2. Image gathering and coding for digital restoration: Information efficiency and visual quality

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; John, Sarah; Mccormick, Judith A.; Narayanswamy, Ramkumar

    1989-01-01

    Image gathering and coding are commonly treated as tasks separate from each other and from the digital processing used to restore and enhance the images. The goal is to develop a method that allows us to assess quantitatively the combined performance of image gathering and coding for the digital restoration of images with high visual quality. Digital restoration is often interactive because visual quality depends on perceptual rather than mathematical considerations, and these considerations vary with the target, the application, and the observer. The approach is based on the theoretical treatment of image gathering as a communication channel (J. Opt. Soc. Am. A2, 1644(1985);5,285(1988). Initial results suggest that the practical upper limit of the information contained in the acquired image data range typically from approximately 2 to 4 binary information units (bifs) per sample, depending on the design of the image-gathering system. The associated information efficiency of the transmitted data (i.e., the ratio of information over data) ranges typically from approximately 0.3 to 0.5 bif per bit without coding to approximately 0.5 to 0.9 bif per bit with lossless predictive compression and Huffman coding. The visual quality that can be attained with interactive image restoration improves perceptibly as the available information increases to approximately 3 bifs per sample. However, the perceptual improvements that can be attained with further increases in information are very subtle and depend on the target and the desired enhancement.

  3. Assessment and Therapeutic Application of the Expressive Therapies Continuum: Implications for Brain Structures and Functions

    ERIC Educational Resources Information Center

    Lusebrink, Vija B.

    2010-01-01

    The Expressive Therapies Continuum (ETC) provides a theoretical model for art-based assessments and applications of media in art therapy. The three levels of the ETC (Kinesthetic/Sensory, Perceptual/Affective, and Cognitive/Symbolic) appear to reflect different functions and structures in the brain that process visual and affective information.…

  4. Visualization in hydrological and atmospheric modeling and observation

    NASA Astrophysics Data System (ADS)

    Helbig, C.; Rink, K.; Kolditz, O.

    2013-12-01

    In recent years, visualization of geoscientific and climate data has become increasingly important due to challenges such as climate change, flood prediction or the development of water management schemes for arid and semi-arid regions. Models for simulations based on such data often have a large number of heterogeneous input data sets, ranging from remote sensing data and geometric information (such as GPS data) to sensor data from specific observations sites. Data integration using such information is not straightforward and a large number of potential problems may occur due to artifacts, inconsistencies between data sets or errors based on incorrectly calibrated or stained measurement devices. Algorithms to automatically detect various of such problems are often numerically expensive or difficult to parameterize. In contrast, combined visualization of various data sets is often a surprisingly efficient means for an expert to detect artifacts or inconsistencies as well as to discuss properties of the data. Therefore, the development of general visualization strategies for atmospheric or hydrological data will often support researchers during assessment and preprocessing of the data for model setup. When investigating specific phenomena, visualization is vital for assessing the progress of the ongoing simulation during runtime as well as evaluating the plausibility of the results. We propose a number of such strategies based on established visualization methods that - are applicable to a large range of different types of data sets, - are computationally inexpensive to allow application for time-dependent data - can be easily parameterized based on the specific focus of the research. Examples include the highlighting of certain aspects of complex data sets using, for example, an application-dependent parameterization of glyphs, iso-surfaces or streamlines. In addition, we employ basic rendering techniques allowing affine transformations, changes in opacity as well as variation of transfer functions. We found that similar strategies can be applied for hydrological and atmospheric data such as the use of streamlines for visualization of wind or fluid flow or iso-surfaces as indicators of groundwater recharge levels in the subsurface or levels of humidity in the atmosphere. We applied these strategies for a wide range of hydrological and climate applications such as groundwater flow, distribution of chemicals in water bodies, development of convection cells in the atmosphere or heat flux on the earth's surface. Results have been evaluated in discussions with experts from hydrogeology and meteorology.

  5. Plasticity and stability of visual field maps in adult primary visual cortex

    PubMed Central

    Wandell, Brian A.; Smirnakis, Stelios M.

    2010-01-01

    Preface It is important to understand the balance between cortical plasticity and stability in various systems and spatial scales in the adult brain. We review measurements of adult plasticity in primary visual cortex (V1), a structure that has a key role in distributing visual information. There are claims of plasticity at multiple spatial scales in adult V1, but many inconsistencies in the data raise questions about the extent and nature of such plasticity. Understanding is further limited by a lack of quantitative models to guide the interpretation of the data. These problems limit efforts to translate research findings about adult cortical plasticity into significant clinical, educational and policy applications. PMID:19904279

  6. Overview of long-term field experiments in Germany - metadata visualization

    NASA Astrophysics Data System (ADS)

    Muqit Zoarder, Md Abdul; Heinrich, Uwe; Svoboda, Nikolai; Grosse, Meike; Hierold, Wilfried

    2017-04-01

    BonaRes ("soil as a sustainable resource for the bioeconomy") is conducting to collect data and metadata of agricultural long-term field experiments (LTFE) of Germany. It is funded by the German Federal Ministry of Education and Research (BMBF) under the umbrella of the National Research Strategy BioEconomy 2030. BonaRes consists of ten interdisciplinary research project consortia and the 'BonaRes - Centre for Soil Research'. BonaRes Data Centre is responsible for collecting all LTFE data and regarding metadata into an enterprise database upon higher level of security and visualization of the data and metadata through data portal. In the frame of the BonaRes project, we are compiling an overview of long-term field experiments in Germany that is based on a literature review, the results of the online survey and direct contacts with LTFE operators. Information about research topic, contact person, website, experiment setup and analyzed parameters are collected. Based on the collected LTFE data, an enterprise geodatabase is developed and a GIS-based web-information system about LTFE in Germany is also settled. Various aspects of the LTFE, like experiment type, land-use type, agricultural category and duration of experiment, are presented in thematic maps. This information system is dynamically linked to the database, which means changes in the data directly affect the presentation. An easy data searching option using LTFE name, -location or -operators and the dynamic layer selection ensure a user-friendly web application. Dispersion and visualization of the overlapping LTFE points on the overview map are also challenging and we make it automatized at very zoom level which is also a consistent part of this application. The application provides both, spatial location and meta-information of LTFEs, which is backed-up by an enterprise geodatabase, GIS server for hosting map services and Java script API for web application development.

  7. Automatic Dependent Surveillance Broadcast (ADS-B) System for Ownership and Traffic Situational Awareness

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo A. (Inventor)

    2016-01-01

    The present invention proposes an automatic dependent surveillance broadcast (ADS-B) architecture and process, in which priority aircraft and ADS-B IN traffic information are included in the transmission of data through the telemetry communications to a remote ground control station. The present invention further proposes methods for displaying general aviation traffic information in three and/or four dimension trajectories using an industry standard Earth browser for increased situation awareness and enhanced visual acquisition of traffic for conflict detection. The present invention enable the applications of enhanced visual acquisition of traffic, traffic alerts, and en-route and terminal surveillance used to augment pilot situational awareness through ADS-B IN display and information in three or four dimensions for self-separation awareness.

  8. [Development and application of emergency medical information management system].

    PubMed

    Wang, Fang; Zhu, Baofeng; Chen, Jianrong; Wang, Jian; Gu, Chaoli; Liu, Buyun

    2011-03-01

    To meet the needs of clinical practice of rescuing critical illness and develop the information management system of the emergency medicine. Microsoft Visual FoxPro, which is one of Microsoft's visual programming tool, is used to develop computer-aided system included the information management system of the emergency medicine. The system mainly consists of the module of statistic analysis, the module of quality control of emergency rescue, the module of flow path of emergency rescue, the module of nursing care in emergency rescue, and the module of rescue training. It can realize the system management of emergency medicine and,process and analyze the emergency statistical data. This system is practical. It can optimize emergency clinical pathway, and meet the needs of clinical rescue.

  9. GFFview: A Web Server for Parsing and Visualizing Annotation Information of Eukaryotic Genome.

    PubMed

    Deng, Feilong; Chen, Shi-Yi; Wu, Zhou-Lin; Hu, Yongsong; Jia, Xianbo; Lai, Song-Jia

    2017-10-01

    Owing to wide application of RNA sequencing (RNA-seq) technology, more and more eukaryotic genomes have been extensively annotated, such as the gene structure, alternative splicing, and noncoding loci. Annotation information of genome is prevalently stored as plain text in General Feature Format (GFF), which could be hundreds or thousands Mb in size. Therefore, it is a challenge for manipulating GFF file for biologists who have no bioinformatic skill. In this study, we provide a web server (GFFview) for parsing the annotation information of eukaryotic genome and then generating statistical description of six indices for visualization. GFFview is very useful for investigating quality and difference of the de novo assembled transcriptome in RNA-seq studies.

  10. RGB-D SLAM Combining Visual Odometry and Extended Information Filter

    PubMed Central

    Zhang, Heng; Liu, Yanli; Tan, Jindong; Xiong, Naixue

    2015-01-01

    In this paper, we present a novel RGB-D SLAM system based on visual odometry and an extended information filter, which does not require any other sensors or odometry. In contrast to the graph optimization approaches, this is more suitable for online applications. A visual dead reckoning algorithm based on visual residuals is devised, which is used to estimate motion control input. In addition, we use a novel descriptor called binary robust appearance and normals descriptor (BRAND) to extract features from the RGB-D frame and use them as landmarks. Furthermore, considering both the 3D positions and the BRAND descriptors of the landmarks, our observation model avoids explicit data association between the observations and the map by marginalizing the observation likelihood over all possible associations. Experimental validation is provided, which compares the proposed RGB-D SLAM algorithm with just RGB-D visual odometry and a graph-based RGB-D SLAM algorithm using the publicly-available RGB-D dataset. The results of the experiments demonstrate that our system is quicker than the graph-based RGB-D SLAM algorithm. PMID:26263990

  11. Attraction of posture and motion-trajectory elements of conspecific biological motion in medaka fish.

    PubMed

    Shibai, Atsushi; Arimoto, Tsunehiro; Yoshinaga, Tsukasa; Tsuchizawa, Yuta; Khureltulga, Dashdavaa; Brown, Zuben P; Kakizuka, Taishi; Hosoda, Kazufumi

    2018-06-05

    Visual recognition of conspecifics is necessary for a wide range of social behaviours in many animals. Medaka (Japanese rice fish), a commonly used model organism, are known to be attracted by the biological motion of conspecifics. However, biological motion is a composite of both body-shape motion and entire-field motion trajectory (i.e., posture or motion-trajectory elements, respectively), and it has not been revealed which element mediates the attractiveness. Here, we show that either posture or motion-trajectory elements alone can attract medaka. We decomposed biological motion of the medaka into the two elements and synthesized visual stimuli that contain both, either, or none of the two elements. We found that medaka were attracted by visual stimuli that contain at least one of the two elements. In the context of other known static visual information regarding the medaka, the potential multiplicity of information regarding conspecific recognition has further accumulated. Our strategy of decomposing biological motion into these partial elements is applicable to other animals, and further studies using this technique will enhance the basic understanding of visual recognition of conspecifics.

  12. A new metaphor for projection-based visual analysis and data exploration

    NASA Astrophysics Data System (ADS)

    Schreck, Tobias; Panse, Christian

    2007-01-01

    In many important application domains such as Business and Finance, Process Monitoring, and Security, huge and quickly increasing volumes of complex data are collected. Strong efforts are underway developing automatic and interactive analysis tools for mining useful information from these data repositories. Many data analysis algorithms require an appropriate definition of similarity (or distance) between data instances to allow meaningful clustering, classification, and retrieval, among other analysis tasks. Projection-based data visualization is highly interesting (a) for visual discrimination analysis of a data set within a given similarity definition, and (b) for comparative analysis of similarity characteristics of a given data set represented by different similarity definitions. We introduce an intuitive and effective novel approach for projection-based similarity visualization for interactive discrimination analysis, data exploration, and visual evaluation of metric space effectiveness. The approach is based on the convex hull metaphor for visually aggregating sets of points in projected space, and it can be used with a variety of different projection techniques. The effectiveness of the approach is demonstrated by application on two well-known data sets. Statistical evidence supporting the validity of the hull metaphor is presented. We advocate the hull-based approach over the standard symbol-based approach to projection visualization, as it allows a more effective perception of similarity relationships and class distribution characteristics.

  13. Applicability of Deep-Learning Technology for Relative Object-Based Navigation

    DTIC Science & Technology

    2017-09-01

    burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing...possible selections for navigating an unmanned ground vehicle (UGV) is through real- time visual odometry. To navigate in such an environment, the UGV...UGV) is through real- time visual odometry. To navigate in such an environment, the UGV needs to be able to detect, identify, and relate the static

  14. Visualizing Time-Varying Distribution Data in EOS Application

    NASA Technical Reports Server (NTRS)

    Shen, Han-Wei

    2004-01-01

    In this research, we have developed several novel visualization methods for spatial probability density function data. Our focus has been on 2D spatial datasets, where each pixel is a random variable, and has multiple samples which are the results of experiments on that random variable. We developed novel clustering algorithms as a means to reduce the information contained in these datasets; and investigated different ways of interpreting and clustering the data.

  15. Implementation of dictionary pair learning algorithm for image quality improvement

    NASA Astrophysics Data System (ADS)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    This paper proposes an image denoising on dictionary pair learning algorithm. Visual information is transmitted in the form of digital images is becoming a major method of communication in the modern age, but the image obtained after transmissions is often corrupted with noise. The received image needs processing before it can be used in applications. Image denoising involves the manipulation of the image data to produce a visually high quality image.

  16. Visual Modelling of Data Warehousing Flows with UML Profiles

    NASA Astrophysics Data System (ADS)

    Pardillo, Jesús; Golfarelli, Matteo; Rizzi, Stefano; Trujillo, Juan

    Data warehousing involves complex processes that transform source data through several stages to deliver suitable information ready to be analysed. Though many techniques for visual modelling of data warehouses from the static point of view have been devised, only few attempts have been made to model the data flows involved in a data warehousing process. Besides, each attempt was mainly aimed at a specific application, such as ETL, OLAP, what-if analysis, data mining. Data flows are typically very complex in this domain; for this reason, we argue, designers would greatly benefit from a technique for uniformly modelling data warehousing flows for all applications. In this paper, we propose an integrated visual modelling technique for data cubes and data flows. This technique is based on UML profiling; its feasibility is evaluated by means of a prototype implementation.

  17. Plugin free remote visualization in the browser

    NASA Astrophysics Data System (ADS)

    Tamm, Georg; Slusallek, Philipp

    2015-01-01

    Today, users access information and rich media from anywhere using the web browser on their desktop computers, tablets or smartphones. But the web evolves beyond media delivery. Interactive graphics applications like visualization or gaming become feasible as browsers advance in the functionality they provide. However, to deliver large-scale visualization to thin clients like mobile devices, a dedicated server component is necessary. Ideally, the client runs directly within the browser the user is accustomed to, requiring no installation of a plugin or native application. In this paper, we present the state-of-the-art of technologies which enable plugin free remote rendering in the browser. Further, we describe a remote visualization system unifying these technologies. The system transfers rendering results to the client as images or as a video stream. We utilize the upcoming World Wide Web Consortium (W3C) conform Web Real-Time Communication (WebRTC) standard, and the Native Client (NaCl) technology built into Chrome, to deliver video with low latency.

  18. Engineering Data Compendium. Human Perception and Performance, Volume 1

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product an R and D program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 1, which contains sections on Visual Acquisition of Information, Auditory Acquisition of Information, and Acquisition of Information by Other Senses.

  19. [Intermodal timing cues for audio-visual speech recognition].

    PubMed

    Hashimoto, Masahiro; Kumashiro, Masaharu

    2004-06-01

    The purpose of this study was to investigate the limitations of lip-reading advantages for Japanese young adults by desynchronizing visual and auditory information in speech. In the experiment, audio-visual speech stimuli were presented under the six test conditions: audio-alone, and audio-visually with either 0, 60, 120, 240 or 480 ms of audio delay. The stimuli were the video recordings of a face of a female Japanese speaking long and short Japanese sentences. The intelligibility of the audio-visual stimuli was measured as a function of audio delays in sixteen untrained young subjects. Speech intelligibility under the audio-delay condition of less than 120 ms was significantly better than that under the audio-alone condition. On the other hand, the delay of 120 ms corresponded to the mean mora duration measured for the audio stimuli. The results implied that audio delays of up to 120 ms would not disrupt lip-reading advantage, because visual and auditory information in speech seemed to be integrated on a syllabic time scale. Potential applications of this research include noisy workplace in which a worker must extract relevant speech from all the other competing noises.

  20. Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts

    NASA Astrophysics Data System (ADS)

    Si, Juanning; Zhang, Xin; Li, Yuejun; Zhang, Yujin; Zuo, Nianming; Jiang, Tianzi

    2016-09-01

    Brain functional activity involves complex cellular, metabolic, and vascular chain reactions, making it difficult to comprehend. Electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) have been combined into a multimodal neuroimaging method that captures both electrophysiological and hemodynamic information to explore the spatiotemporal characteristics of brain activity. Because of the significance of visually evoked functional activity in clinical applications, numerous studies have explored the amplitude of the visual evoked potential (VEP) to clarify its relationship with the hemodynamic response. However, relatively few studies have investigated the influence of latency, which has been frequently used to diagnose visual diseases, on the hemodynamic response. Moreover, because the latency and the amplitude of VEPs have different roles in coding visual information, investigating the relationship between latency and the hemodynamic response should be helpful. In this study, checkerboard reversal tasks with graded contrasts were used to evoke visual functional activity. Both EEG and fNIRS were employed to investigate the relationship between neuronal electrophysiological activities and the hemodynamic responses. The VEP amplitudes were linearly correlated with the hemodynamic response, but the VEP latency showed a negative linear correlation with the hemodynamic response.

  1. Solid object visualization of 3D ultrasound data

    NASA Astrophysics Data System (ADS)

    Nelson, Thomas R.; Bailey, Michael J.

    2000-04-01

    Visualization of volumetric medical data is challenging. Rapid-prototyping (RP) equipment producing solid object prototype models of computer generated structures is directly applicable to visualization of medical anatomic data. The purpose of this study was to develop methods for transferring 3D Ultrasound (3DUS) data to RP equipment for visualization of patient anatomy. 3DUS data were acquired using research and clinical scanning systems. Scaling information was preserved and the data were segmented using threshold and local operators to extract features of interest, converted from voxel raster coordinate format to a set of polygons representing an iso-surface and transferred to the RP machine to create a solid 3D object. Fabrication required 30 to 60 minutes depending on object size and complexity. After creation the model could be touched and viewed. A '3D visualization hardcopy device' has advantages for conveying spatial relations compared to visualization using computer display systems. The hardcopy model may be used for teaching or therapy planning. Objects may be produced at the exact dimension of the original object or scaled up (or down) to facilitate matching the viewers reference frame more optimally. RP models represent a useful means of communicating important information in a tangible fashion to patients and physicians.

  2. The application of the unified modeling language in object-oriented analysis of healthcare information systems.

    PubMed

    Aggarwal, Vinod

    2002-10-01

    This paper concerns itself with the beneficial effects of the Unified Modeling Language (UML), a nonproprietary object modeling standard, in specifying, visualizing, constructing, documenting, and communicating the model of a healthcare information system from the user's perspective. The author outlines the process of object-oriented analysis (OOA) using the UML and illustrates this with healthcare examples to demonstrate the practicality of application of the UML by healthcare personnel to real-world information system problems. The UML will accelerate advanced uses of object-orientation such as reuse technology, resulting in significantly higher software productivity. The UML is also applicable in the context of a component paradigm that promises to enhance the capabilities of healthcare information systems and simplify their management and maintenance.

  3. Rethinking Visual Analytics for Streaming Data Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris

    In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between themore » two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive, complex, incomplete, and uncertain in scenarios requiring human judgment.« less

  4. An Earthquake Information Service with Free and Open Source Tools

    NASA Astrophysics Data System (ADS)

    Schroeder, M.; Stender, V.; Jüngling, S.

    2015-12-01

    At the GFZ German Research Centre for Geosciences in Potsdam, the working group Earthquakes and Volcano Physics examines the spatiotemporal behavior of earthquakes. In this context also the hazards of volcanic eruptions and tsunamis are explored. The aim is to collect related information after the occurrence of such extreme event and make them available for science and partly to the public as quickly as possible. However, the overall objective of this research is to reduce the geological risks that emanate from such natural hazards. In order to meet the stated objectives and to get a quick overview about the seismicity of a particular region and to compare the situation to historical events, a comprehensive visualization was desired. Based on the web-accessible data from the famous GFZ GEOFON network a user-friendly web mapping application was realized. Further, this web service integrates historical and current earthquake information from the USGS earthquake database, and more historical events from various other catalogues like Pacheco, International Seismological Centre (ISC) and more. This compilation of sources is unique in Earth sciences. Additionally, information about historical and current occurrences of volcanic eruptions and tsunamis are also retrievable. Another special feature in the application is the containment of times via a time shifting tool. Users can interactively vary the visualization by moving the time slider. Furthermore, the application was realized by using the newest JavaScript libraries which enables the application to run in all sizes of displays and devices. Our contribution will present the making of, the architecture behind, and few examples of the look and feel of this application.

  5. SpectralNET – an application for spectral graph analysis and visualization

    PubMed Central

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-01-01

    Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from . Source code is available upon request. PMID:16236170

  6. SpectralNET--an application for spectral graph analysis and visualization.

    PubMed

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-10-19

    Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is available upon request.

  7. Stream specificity and asymmetries in feature binding and content-addressable access in visual encoding and memory.

    PubMed

    Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk

    2015-01-01

    Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.

  8. Visual Information Processing for Television and Telerobotics

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Park, Stephen K. (Editor)

    1989-01-01

    This publication is a compilation of the papers presented at the NASA conference on Visual Information Processing for Television and Telerobotics. The conference was held at the Williamsburg Hilton, Williamsburg, Virginia on May 10 to 12, 1989. The conference was sponsored jointly by NASA Offices of Aeronautics and Space Technology (OAST) and Space Science and Applications (OSSA) and the NASA Langley Research Center. The presentations were grouped into three sessions: Image Gathering, Coding, and Advanced Concepts; Systems; and Technologies. The program was organized to provide a forum in which researchers from industry, universities, and government could be brought together to discuss the state of knowledge in image gathering, coding, and processing methods.

  9. A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2011-01-01

    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks. PMID:22163908

  10. MarsSI: Martian surface data processing information system

    NASA Astrophysics Data System (ADS)

    Quantin-Nataf, C.; Lozac'h, L.; Thollot, P.; Loizeau, D.; Bultel, B.; Fernando, J.; Allemand, P.; Dubuffet, F.; Poulet, F.; Ody, A.; Clenet, H.; Leyrat, C.; Harrisson, S.

    2018-01-01

    MarsSI (Acronym for Mars System of Information, https://emars.univ-lyon1.fr/MarsSI/, is a web Geographic Information System application which helps managing and processing martian orbital data. The MarsSI facility is part of the web portal called PSUP (Planetary SUrface Portal) developed by the Observatories of Paris Sud (OSUPS) and Lyon (OSUL) to provide users with efficient and easy access to data products dedicated to the martian surface. The portal proposes 1) the management and processing of data thanks to MarsSI and 2) the visualization and merging of high level (imagery, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu). The portal PSUP as well as the facility MarsVisu is detailed in a companion paper (Poulet et al., 2018). The purpose of this paper is to describe the facility MarsSI. From this application, users are able to easily and rapidly select observations, process raw data via automatic pipelines, and get back final products which can be visualized under Geographic Information Systems. Moreover, MarsSI also contains an automatic stereo-restitution pipeline in order to produce Digital Terrain Models (DTM) on demand from HiRISE (High Resolution Imaging Science Experiment) or CTX (Context Camera) pair-images. This application is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) (ERC project eMars, No. 280168) and has been developed in the scope of Mars, but the design is applicable to any other planetary body of the solar system.

  11. Knowledge Interaction Design for Creative Knowledge Work

    NASA Astrophysics Data System (ADS)

    Nakakoji, Kumiyo; Yamamoto, Yasuhiro

    This paper describes our approach for the development of application systems for creative knowledge work, particularly for early stages of information design tasks. Being a cognitive tool serving as a means of externalization, an application system affects how the user is engaged in the creative process through its visual interaction design. Knowledge interaction design described in this paper is a framework where a set of application systems for different information design domains are developed based on an interaction model, which is designed for a particular model of a thinking process. We have developed two sets of application systems using the knowledge interaction design framework: one includes systems for linear information design, such as writing, movie-editing, and video-analysis; the other includes systems for network information design, such as file-system navigation and hypertext authoring. Our experience shows that the resulting systems encourage users to follow a certain cognitive path through graceful user experience.

  12. Virtual Environments in Scientific Visualization

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Lisinski, T. A. (Technical Monitor)

    1994-01-01

    Virtual environment technology is a new way of approaching the interface between computers and humans. Emphasizing display and user control that conforms to the user's natural ways of perceiving and thinking about space, virtual environment technologies enhance the ability to perceive and interact with computer generated graphic information. This enhancement potentially has a major effect on the field of scientific visualization. Current examples of this technology include the Virtual Windtunnel being developed at NASA Ames Research Center. Other major institutions such as the National Center for Supercomputing Applications and SRI International are also exploring this technology. This talk will be describe several implementations of virtual environments for use in scientific visualization. Examples include the visualization of unsteady fluid flows (the virtual windtunnel), the visualization of geodesics in curved spacetime, surface manipulation, and examples developed at various laboratories.

  13. Indoor space 3D visual reconstruction using mobile cart with laser scanner and cameras

    NASA Astrophysics Data System (ADS)

    Gashongore, Prince Dukundane; Kawasue, Kikuhito; Yoshida, Kumiko; Aoki, Ryota

    2017-02-01

    Indoor space 3D visual reconstruction has many applications and, once done accurately, it enables people to conduct different indoor activities in an efficient manner. For example, an effective and efficient emergency rescue response can be accomplished in a fire disaster situation by using 3D visual information of a destroyed building. Therefore, an accurate Indoor Space 3D visual reconstruction system which can be operated in any given environment without GPS has been developed using a Human-Operated mobile cart equipped with a laser scanner, CCD camera, omnidirectional camera and a computer. By using the system, accurate indoor 3D Visual Data is reconstructed automatically. The obtained 3D data can be used for rescue operations, guiding blind or partially sighted persons and so forth.

  14. Examining the Use of a Visual Analytics System for Sensemaking Tasks: Case Studies with Domain Experts.

    PubMed

    Kang, Youn-Ah; Stasko, J

    2012-12-01

    While the formal evaluation of systems in visual analytics is still relatively uncommon, particularly rare are case studies of prolonged system use by domain analysts working with their own data. Conducting case studies can be challenging, but it can be a particularly effective way to examine whether visual analytics systems are truly helping expert users to accomplish their goals. We studied the use of a visual analytics system for sensemaking tasks on documents by six analysts from a variety of domains. We describe their application of the system along with the benefits, issues, and problems that we uncovered. Findings from the studies identify features that visual analytics systems should emphasize as well as missing capabilities that should be addressed. These findings inform design implications for future systems.

  15. #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media.

    PubMed

    Zhao, Jian; Cao, Nan; Wen, Zhen; Song, Yale; Lin, Yu-Ru; Collins, Christopher

    2014-12-01

    We present FluxFlow, an interactive visual analysis system for revealing and analyzing anomalous information spreading in social media. Everyday, millions of messages are created, commented, and shared by people on social media websites, such as Twitter and Facebook. This provides valuable data for researchers and practitioners in many application domains, such as marketing, to inform decision-making. Distilling valuable social signals from the huge crowd's messages, however, is challenging, due to the heterogeneous and dynamic crowd behaviors. The challenge is rooted in data analysts' capability of discerning the anomalous information behaviors, such as the spreading of rumors or misinformation, from the rest that are more conventional patterns, such as popular topics and newsworthy events, in a timely fashion. FluxFlow incorporates advanced machine learning algorithms to detect anomalies, and offers a set of novel visualization designs for presenting the detected threads for deeper analysis. We evaluated FluxFlow with real datasets containing the Twitter feeds captured during significant events such as Hurricane Sandy. Through quantitative measurements of the algorithmic performance and qualitative interviews with domain experts, the results show that the back-end anomaly detection model is effective in identifying anomalous retweeting threads, and its front-end interactive visualizations are intuitive and useful for analysts to discover insights in data and comprehend the underlying analytical model.

  16. Information-Driven Active Audio-Visual Source Localization

    PubMed Central

    Schult, Niclas; Reineking, Thomas; Kluss, Thorsten; Zetzsche, Christoph

    2015-01-01

    We present a system for sensorimotor audio-visual source localization on a mobile robot. We utilize a particle filter for the combination of audio-visual information and for the temporal integration of consecutive measurements. Although the system only measures the current direction of the source, the position of the source can be estimated because the robot is able to move and can therefore obtain measurements from different directions. These actions by the robot successively reduce uncertainty about the source’s position. An information gain mechanism is used for selecting the most informative actions in order to minimize the number of actions required to achieve accurate and precise position estimates in azimuth and distance. We show that this mechanism is an efficient solution to the action selection problem for source localization, and that it is able to produce precise position estimates despite simplified unisensory preprocessing. Because of the robot’s mobility, this approach is suitable for use in complex and cluttered environments. We present qualitative and quantitative results of the system’s performance and discuss possible areas of application. PMID:26327619

  17. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel

    PubMed Central

    Grapov, Dmitry; Newman, John W.

    2012-01-01

    Summary: Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Availability and implementation: Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010). Contact: John.Newman@ars.usda.gov Supplementary Information: Installation instructions, tutorials and users manual are available at http://sourceforge.net/projects/imdev/. PMID:22815358

  18. Welcome to health information science and systems.

    PubMed

    Zhang, Yanchun

    2013-01-01

    Health Information Science and Systems is an exciting, new, multidisciplinary journal that aims to use technologies in computer science to assist in disease diagnoses, treatment, prediction and monitoring through the modeling, design, development, visualization, integration and management of health related information. These computer-science technologies include such as information systems, web technologies, data mining, image processing, user interaction and interface, sensors and wireless networking and are applicable to a wide range of health related information including medical data, biomedical data, bioinformatics data, public health data.

  19. Photogrammetry for Archaeology: Collecting Pieces Together

    NASA Astrophysics Data System (ADS)

    Chibunichev, A. G.; Knyaz, V. A.; Zhuravlev, D. V.; Kurkov, V. M.

    2018-05-01

    The complexity of retrieving and understanding the archaeological data requires to apply different techniques, tools and sensors for information gathering, processing and documenting. Archaeological research now has the interdisciplinary nature involving technologies based on different physical principles for retrieving information about archaeological findings. The important part of archaeological data is visual and spatial information which allows reconstructing the appearance of the findings and relation between them. Photogrammetry has a great potential for accurate acquiring of spatial and visual data of different scale and resolution allowing to create archaeological documents of new type and quality. The aim of the presented study is to develop an approach for creating new forms of archaeological documents, a pipeline for their producing and collecting in one holistic model, describing an archaeological site. A set of techniques is developed for acquiring and integration of spatial and visual data of different level of details. The application of the developed techniques is demonstrated for documenting of Bosporus archaeological expedition of Russian State Historical Museum.

  20. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity.

    PubMed

    Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P

    2018-01-01

    Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.

  1. Treelink: data integration, clustering and visualization of phylogenetic trees.

    PubMed

    Allende, Christian; Sohn, Erik; Little, Cedric

    2015-12-29

    Phylogenetic trees are central to a wide range of biological studies. In many of these studies, tree nodes need to be associated with a variety of attributes. For example, in studies concerned with viral relationships, tree nodes are associated with epidemiological information, such as location, age and subtype. Gene trees used in comparative genomics are usually linked with taxonomic information, such as functional annotations and events. A wide variety of tree visualization and annotation tools have been developed in the past, however none of them are intended for an integrative and comparative analysis. Treelink is a platform-independent software for linking datasets and sequence files to phylogenetic trees. The application allows an automated integration of datasets to trees for operations such as classifying a tree based on a field or showing the distribution of selected data attributes in branches and leafs. Genomic and proteonomic sequences can also be linked to the tree and extracted from internal and external nodes. A novel clustering algorithm to simplify trees and display the most divergent clades was also developed, where validation can be achieved using the data integration and classification function. Integrated geographical information allows ancestral character reconstruction for phylogeographic plotting based on parsimony and likelihood algorithms. Our software can successfully integrate phylogenetic trees with different data sources, and perform operations to differentiate and visualize those differences within a tree. File support includes the most popular formats such as newick and csv. Exporting visualizations as images, cluster outputs and genomic sequences is supported. Treelink is available as a web and desktop application at http://www.treelinkapp.com .

  2. Promoting Visualization Skills through Deconstruction Using Physical Models and a Visualization Activity Intervention

    NASA Astrophysics Data System (ADS)

    Schiltz, Holly Kristine

    Visualization skills are important in learning chemistry, as these skills have been shown to correlate to high ability in problem solving. Students' understanding of visual information and their problem-solving processes may only ever be accessed indirectly: verbalization, gestures, drawings, etc. In this research, deconstruction of complex visual concepts was aligned with the promotion of students' verbalization of visualized ideas to teach students to solve complex visual tasks independently. All instructional tools and teaching methods were developed in accordance with the principles of the theoretical framework, the Modeling Theory of Learning: deconstruction of visual representations into model components, comparisons to reality, and recognition of students' their problemsolving strategies. Three physical model systems were designed to provide students with visual and tangible representations of chemical concepts. The Permanent Reflection Plane Demonstration provided visual indicators that students used to support or invalidate the presence of a reflection plane. The 3-D Coordinate Axis system provided an environment that allowed students to visualize and physically enact symmetry operations in a relevant molecular context. The Proper Rotation Axis system was designed to provide a physical and visual frame of reference to showcase multiple symmetry elements that students must identify in a molecular model. Focus groups of students taking Inorganic chemistry working with the physical model systems demonstrated difficulty documenting and verbalizing processes and descriptions of visual concepts. Frequently asked student questions were classified, but students also interacted with visual information through gestures and model manipulations. In an effort to characterize how much students used visualization during lecture or recitation, we developed observation rubrics to gather information about students' visualization artifacts and examined the effect instructors' modeled visualization artifacts had on students. No patterns emerged from the passive observation of visualization artifacts in lecture or recitation, but the need to elicit visual information from students was made clear. Deconstruction proved to be a valuable method for instruction and assessment of visual information. Three strategies for using deconstruction in teaching were distilled from the lessons and observations of the student focus groups: begin with observations of what is given in an image and what it's composed of, identify the relationships between components to find additional operations in different environments about the molecule, and deconstructing steps of challenging questions can reveal mistakes. An intervention was developed to teach students to use deconstruction and verbalization to analyze complex visualization tasks and employ the principles of the theoretical framework. The activities were scaffolded to introduce increasingly challenging concepts to students, but also support them as they learned visually demanding chemistry concepts. Several themes were observed in the analysis of the visualization activities. Students used deconstruction by documenting which parts of the images were useful for interpretation of the visual. Students identified valid patterns and rules within the images, which signified understanding of arrangement of information presented in the representation. Successful strategy communication was identified when students documented personal strategies that allowed them to complete the activity tasks. Finally, students demonstrated the ability to extend symmetry skills to advanced applications they had not previously seen. This work shows how the use of deconstruction and verbalization may have a great impact on how students master difficult topics and combined, they offer students a powerful strategy to approach visually demanding chemistry problems and to the instructor a unique insight to mentally constructed strategies.

  3. Wyoming greater sage-grouse habitat prioritization: A collection of multi-scale seasonal models and geographic information systems land management tools

    USGS Publications Warehouse

    O'Donnell, Michael S.; Aldridge, Cameron L.; Doherty, Kevin E.; Fedy, Bradley C.

    2015-01-01

    We deliver all products described herein as online geographic information system data for visualization and downloading. We outline the data properties for each model and their data inputs, describe the process of selecting appropriate data products for multifarious applications, describe all data products and software, provide newly derived model composites, and discuss how land managers may use the models to inform future sage-grouse studies and potentially refine conservation efforts. The models, software tools, and associated opportunities for novel applications of these products should provide a suite of additional, but not exclusive, tools for assessing Wyoming Greater Sage-grouse habitats, which land managers, conservationists, and scientists can apply to myriad applications.

  4. A Visual Analytics Approach to Structured Data Analysis to Enhance Nonproliferation and Arms Control Verification Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, David S.

    Analysis activities for Nonproliferation and Arms Control verification require the use of many types of data. Tabular structured data, such as Excel spreadsheets and relational databases, have traditionally been used for data mining activities, where specific queries are issued against data to look for matching results. The application of visual analytics tools to structured data enables further exploration of datasets to promote discovery of previously unknown results. This paper discusses the application of a specific visual analytics tool to datasets related to the field of Arms Control and Nonproliferation to promote the use of visual analytics more broadly in thismore » domain. Visual analytics focuses on analytical reasoning facilitated by interactive visual interfaces (Wong and Thomas 2004). It promotes exploratory analysis of data, and complements data mining technologies where known patterns can be mined for. Also with a human in the loop, they can bring in domain knowledge and subject matter expertise. Visual analytics has not widely been applied to this domain. In this paper, we will focus on one type of data: structured data, and show the results of applying a specific visual analytics tool to answer questions in the Arms Control and Nonproliferation domain. We chose to use the T.Rex tool, a visual analytics tool developed at PNNL, which uses a variety of visual exploration patterns to discover relationships in structured datasets, including a facet view, graph view, matrix view, and timeline view. The facet view enables discovery of relationships between categorical information, such as countries and locations. The graph tool visualizes node-link relationship patterns, such as the flow of materials being shipped between parties. The matrix visualization shows highly correlated categories of information. The timeline view shows temporal patterns in data. In this paper, we will use T.Rex with two different datasets to demonstrate how interactive exploration of the data can aid an analyst with arms control and nonproliferation verification activities. Using a dataset from PIERS (PIERS 2014), we will show how container shipment imports and exports can aid an analyst in understanding the shipping patterns between two countries. We will also use T.Rex to examine a collection of research publications from the IAEA International Nuclear Information System (IAEA 2014) to discover collaborations of concern. We hope this paper will encourage the use of visual analytics structured data analytics in the field of nonproliferation and arms control verification. Our paper outlines some of the challenges that exist before broad adoption of these kinds of tools can occur and offers next steps to overcome these challenges.« less

  5. Acoustic Tactile Representation of Visual Information

    NASA Astrophysics Data System (ADS)

    Silva, Pubudu Madhawa

    Our goal is to explore the use of hearing and touch to convey graphical and pictorial information to visually impaired people. Our focus is on dynamic, interactive display of visual information using existing, widely available devices, such as smart phones and tablets with touch sensitive screens. We propose a new approach for acoustic-tactile representation of visual signals that can be implemented on a touch screen and allows the user to actively explore a two-dimensional layout consisting of one or more objects with a finger or a stylus while listening to auditory feedback via stereo headphones. The proposed approach is acoustic-tactile because sound is used as the primary source of information for object localization and identification, while touch is used for pointing and kinesthetic feedback. A static overlay of raised-dot tactile patterns can also be added. A key distinguishing feature of the proposed approach is the use of spatial sound (directional and distance cues) to facilitate the active exploration of the layout. We consider a variety of configurations for acoustic-tactile rendering of object size, shape, identity, and location, as well as for the overall perception of simple layouts and scenes. While our primary goal is to explore the fundamental capabilities and limitations of representing visual information in acoustic-tactile form, we also consider a number of relatively simple configurations that can be tied to specific applications. In particular, we consider a simple scene layout consisting of objects in a linear arrangement, each with a distinct tapping sound, which we compare to a ''virtual cane.'' We will also present a configuration that can convey a ''Venn diagram.'' We present systematic subjective experiments to evaluate the effectiveness of the proposed display for shape perception, object identification and localization, and 2-D layout perception, as well as the applications. Our experiments were conducted with visually blocked subjects. The results are evaluated in terms of accuracy and speed, and they demonstrate the advantages of spatial sound for guiding the scanning finger or pointer in shape perception, object localization, and layout exploration. We show that these advantages increase with the amount of detail (smaller object size) in the display. Our experimental results show that the proposed system outperforms the state of the art in shape perception, including variable friction displays. We also demonstrate that, even though they are currently available only as static overlays, raised dot patterns provide the best shape rendition in terms of both the accuracy and speed. Our experiments with layout rendering and perception demonstrate that simultaneous representation of objects, using the most effective approaches for directionality and distance rendering, approaches the optimal performance level provided by visual layout perception. Finally, experiments with the virtual cane and Venn diagram configurations demonstrate that the proposed techniques can be used effectively in simple but nontrivial real-world applications. One of the most important conclusions of our experiments is that there is a clear performance gap between experienced and inexperienced subjects, which indicates that there is a lot of room for improvement with appropriate and extensive training. By exploring a wide variety of design alternatives and focusing on different aspects of the acoustic-tactile interfaces, our results offer many valuable insights and great promise for the design of future systematic tests visually impaired and visually blocked subjects, utilizing the most effective configurations.

  6. MaROS: Web Visualization of Mars Orbiting and Landed Assets

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Hy, Franklin H.

    2011-01-01

    Mars Relay operations currently involve several e-mails and phone calls between lander and orbiter teams in order to settle on an agreed time for performing a communication pass between the landed asset (i.e. rover or lander) and orbiter, then back to Earth. This new application aims to reduce this complexity by presenting a visualization of the overpass time ranges and elevation angle, as well as other information. The user is able to select a specific overflight opportunity to receive further information about that particular pass. This software presents a unified view of the potential communication passes available between orbiting and landed assets on Mars. Each asset is presented to the user in a graphical view showing overpass opportunities, elevation angle, requested and acknowledged communication windows, forward and back latencies, warnings, conflicts, relative planetary times, ACE Schedules, and DSN information. This software is unique in that it is the first of its kind to visually display the information regarding communication opportunities between landed and orbiting Mars assets. The software is written using ActionScript/FLEX, a Web language, meaning that this information may be accessed over the Internet from anywhere in the world.

  7. [Telemedicine in otorhinolaryngology. Basic principles and possible applications].

    PubMed

    Plinkert, P K; Plinkert, B; Zenner, H P

    2000-09-01

    Telemedicine includes all medical activities involved in diagnosis, therapeutics or social medicine undertaken by an electronic transfer medium. This technique requires the transmission of visual and acoustic information over long distances and does not require the specialist to be personally present at the requested consultation. In the last few years, the digital data transmission, e.g., ISDN (ISDN (Integrated Service Digital Network), has become available and has facilitated the use of telecommunication. Recently, the real-time transmission of acoustic and visual signals will be improved by use of asynchronous transfer mode (ATM). Advanced telecommunication applications in minimally invasive ENT surgery are experimental in most cases. We can distinguish three different telesurgical developments: surgical teleconsultation, surgical teleassistance, and surgical telemanipulation. The different applications and transmission media are explained and discussed.

  8. Visual attention in a complex search task differs between honeybees and bumblebees.

    PubMed

    Morawetz, Linde; Spaethe, Johannes

    2012-07-15

    Mechanisms of spatial attention are used when the amount of gathered information exceeds processing capacity. Such mechanisms have been proposed in bees, but have not yet been experimentally demonstrated. We provide evidence that selective attention influences the foraging performance of two social bee species, the honeybee Apis mellifera and the bumblebee Bombus terrestris. Visual search tasks, originally developed for application in human psychology, were adapted for behavioural experiments on bees. We examined the impact of distracting visual information on search performance, which we measured as error rate and decision time. We found that bumblebees were significantly less affected by distracting objects than honeybees. Based on the results, we conclude that the search mechanism in honeybees is serial like, whereas in bumblebees it shows the characteristics of a restricted parallel-like search. Furthermore, the bees differed in their strategy to solve the speed-accuracy trade-off. Whereas bumblebees displayed slow but correct decision-making, honeybees exhibited fast and inaccurate decision-making. We propose two neuronal mechanisms of visual information processing that account for the different responses between honeybees and bumblebees, and we correlate species-specific features of the search behaviour to differences in habitat and life history.

  9. Data Lakes and Data Visualization: An Innovative Approach to Address the Challenges of Access to Health Care in Mississippi.

    PubMed

    Krause, Denise D

    2015-01-01

    There are a variety of challenges to developing strategies to improve access to health care, but access to data is critical for effective evidence-based decision-making. Many agencies and organizations throughout Mississippi have been collecting quality health data for many years. However, those data have historically resided in data silos and have not been readily shared. A strategy was developed to build and coordinate infrastructure, capacity, tools, and resources to facilitate health workforce and population health planning throughout the state. Realizing data as the foundation upon which to build, the primary objective was to develop the capacity to collect, store, maintain, visualize, and analyze data from a variety of disparate sources -- with the ultimate goal of improving access to health care. Specific aims were to: 1) build a centralized data repository and scalable informatics platform, 2) develop a data management solution for this platform and then, 3) derive value from this platform by facilitating data visualization and analysis. A managed data lake was designed and constructed for health data from disparate sources throughout the state of Mississippi. A data management application was developed to log and track all data sources, maps and geographies, and data marts. With this informatics platform as a foundation, a variety of tools are used to visualize and analyze data. To illustrate, a web mapping application was developed to examine the health workforce geographically and attractive data visualizations and dynamic dashboards were created to facilitate health planning and research. Samples of data visualizations that aim to inform health planners and policymakers are presented. Many agencies and organizations throughout the state benefit from this platform. The overarching goal is that by providing timely, reliable information to stakeholders, Mississippians in general will experience improved access to quality care.

  10. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    USGS Publications Warehouse

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  11. FIRE-CAT - An application for mobile devices for first response after natural disasters

    NASA Astrophysics Data System (ADS)

    Eggert, S.; Schmid, S.

    2011-12-01

    The FIRE-CAT application uses the technology of an easy to use mobile application that works independently from any phone system and applies it to the field of near real-time disaster management. The application allows the user to report about structural or human damages to the operation's head quarter. Requirements are a mobile phone or tablet based on the WebOS system and equipped with a GPS receiver. Starting the application, the user can tag a damage to the actual position he is. He can distinguish between different classes of damage, from "visually intact building" to "completely collapsed building" and add any further information concerning human losses or comments. This information will then be sent to a geographical information system in the head quarter. Information can also be updated, corrected or completed with comments. The damage map created by these reports from victims directly in the affected areas can then be a base for the disaster management to decide where to send rescue teams first.

  12. Exploring U.S Cropland - A Web Service based Cropland Data Layer Visualization, Dissemination and Querying System (Invited)

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Han, W.; di, L.

    2010-12-01

    The National Agricultural Statistics Service (NASS) of the USDA produces the Cropland Data Layer (CDL) product, which is a raster-formatted, geo-referenced, U.S. crop specific land cover classification. These digital data layers are widely used for a variety of applications by universities, research institutions, government agencies, and private industry in climate change studies, environmental ecosystem studies, bioenergy production & transportation planning, environmental health research and agricultural production decision making. The CDL is also used internally by NASS for crop acreage and yield estimation. Like most geospatial data products, the CDL product is only available by CD/DVD delivery or online bulk file downloading via the National Research Conservation Research (NRCS) Geospatial Data Gateway (external users) or in a printed paper map format. There is no online geospatial information access and dissemination, no crop visualization & browsing, no geospatial query capability, nor online analytics. To facilitate the application of this data layer and to help disseminating the data, a web-service based CDL interactive map visualization, dissemination, querying system is proposed. It uses Web service based service oriented architecture, adopts open standard geospatial information science technology and OGC specifications and standards, and re-uses functions/algorithms from GeoBrain Technology (George Mason University developed). This system provides capabilities of on-line geospatial crop information access, query and on-line analytics via interactive maps. It disseminates all data to the decision makers and users via real time retrieval, processing and publishing over the web through standards-based geospatial web services. A CDL region of interest can also be exported directly to Google Earth for mashup or downloaded for use with other desktop application. This web service based system greatly improves equal-accessibility, interoperability, usability, and data visualization, facilitates crop geospatial information usage, and enables US cropland online exploring capability without any client-side software installation. It also greatly reduces the need for paper map and analysis report printing and media usages, and thus enhances low-carbon Agro-geoinformation dissemination for decision support.

  13. WEB-GIS Decision Support System for CO2 storage

    NASA Astrophysics Data System (ADS)

    Gaitanaru, Dragos; Leonard, Anghel; Radu Gogu, Constantin; Le Guen, Yvi; Scradeanu, Daniel; Pagnejer, Mihaela

    2013-04-01

    Environmental decision support systems (DSS) paradigm evolves and changes as more knowledge and technology become available to the environmental community. Geographic Information Systems (GIS) can be used to extract, assess and disseminate some types of information, which are otherwise difficult to access by traditional methods. In the same time, with the help of the Internet and accompanying tools, creating and publishing online interactive maps has become easier and rich with options. The Decision Support System (MDSS) developed for the MUSTANG (A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe) project is a user friendly web based application that uses the GIS capabilities. MDSS can be exploited by the experts for CO2 injection and storage in deep saline aquifers. The main objective of the MDSS is to help the experts to take decisions based large structured types of data and information. In order to achieve this objective the MDSS has a geospatial objected-orientated database structure for a wide variety of data and information. The entire application is based on several principles leading to a series of capabilities and specific characteristics: (i) Open-Source - the entire platform (MDSS) is based on open-source technologies - (1) database engine, (2) application server, (3) geospatial server, (4) user interfaces, (5) add-ons, etc. (ii) Multiple database connections - MDSS is capable to connect to different databases that are located on different server machines. (iii)Desktop user experience - MDSS architecture and design follows the structure of a desktop software. (iv)Communication - the server side and the desktop are bound together by series functions that allows the user to upload, use, modify and download data within the application. The architecture of the system involves one database and a modular application composed by: (1) a visualization module, (2) an analysis module, (3) a guidelines module, and (4) a risk assessment module. The Database component is build by using the PostgreSQL and PostGIS open source technology. The visualization module allows the user to view data of CO2 injection sites in different ways: (1) geospatial visualization, (2) table view, (3) 3D visualization. The analysis module will allow the user to perform certain analysis like Injectivity, Containment and Capacity analysis. The Risk Assessment module focus on the site risk matrix approach. The Guidelines module contains the methodologies of CO2 injection and storage into deep saline aquifers guidelines.

  14. Assessing Information Needs for a Personal Multiple Sclerosis Application.

    PubMed

    Tonheim, Aleksander Nygård; Babic, Ankica

    2018-01-01

    This paper presents a prototype of a mobile application for patient self-management within the field of Multiple Sclerosis (MS). Five study subjects provided information needs by suggesting functionalities and evaluating three existing MS applications. Prominent functionalities were to collect data about symptoms, physical activities, mood and goals in a form of a mobile diary. Collected data would be visually presented in a graph to support self-management and motivation. A low-fidelity prototype relies in first hand on four selected modules, two Diary modules, one Visualisation module and a Physical activity module. A high-fidelity prototype is being implemented and will be further evaluated by the experts.

  15. Assessment & Commitment Tracking System (ACTS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, Robert A.; Childs, Teresa A.; Miller, Michael A.

    2004-12-20

    The ACTS computer code provides a centralized tool for planning and scheduling assessments, tracking and managing actions associated with assessments or that result from an event or condition, and "mining" data for reporting and analyzing information for improving performance. The ACTS application is designed to work with the MS SQL database management system. All database interfaces are written in SQL. The following software is used to develop and support the ACTS application: Cold Fusion HTML JavaScript Quest TOAD Microsoft Visual Source Safe (VSS) HTML Mailer for sending email Microsoft SQL Microsoft Internet Information Server

  16. A knowledge based system for scientific data visualization

    NASA Technical Reports Server (NTRS)

    Senay, Hikmet; Ignatius, Eve

    1992-01-01

    A knowledge-based system, called visualization tool assistant (VISTA), which was developed to assist scientists in the design of scientific data visualization techniques, is described. The system derives its knowledge from several sources which provide information about data characteristics, visualization primitives, and effective visual perception. The design methodology employed by the system is based on a sequence of transformations which decomposes a data set into a set of data partitions, maps this set of partitions to visualization primitives, and combines these primitives into a composite visualization technique design. Although the primary function of the system is to generate an effective visualization technique design for a given data set by using principles of visual perception the system also allows users to interactively modify the design, and renders the resulting image using a variety of rendering algorithms. The current version of the system primarily supports visualization techniques having applicability in earth and space sciences, although it may easily be extended to include other techniques useful in other disciplines such as computational fluid dynamics, finite-element analysis and medical imaging.

  17. Neural dynamics of grouping and segmentation explain properties of visual crowding.

    PubMed

    Francis, Gregory; Manassi, Mauro; Herzog, Michael H

    2017-07-01

    Investigations of visual crowding, where a target is difficult to identify because of flanking elements, has largely used a theoretical perspective based on local interactions where flanking elements pool with or substitute for properties of the target. This successful theoretical approach has motivated a wide variety of empirical investigations to identify mechanisms that cause crowding, and it has suggested practical applications to mitigate crowding effects. However, this theoretical approach has been unable to account for a parallel set of findings that crowding is influenced by long-range perceptual grouping effects. When the target and flankers are perceived as part of separate visual groups, crowding tends to be quite weak. Here, we describe how theoretical mechanisms for grouping and segmentation in cortical neural circuits can account for a wide variety of these long-range grouping effects. Building on previous work, we explain how crowding occurs in the model and explain how grouping in the model involves connected boundary signals that represent a key aspect of visual information. We then introduce new circuits that allow nonspecific top-down selection signals to flow along connected boundaries or within a surface contained by boundaries and thereby induce a segmentation that can separate the visual information corresponding to the flankers from the visual information corresponding to the target. When such segmentation occurs, crowding is shown to be weak. We compare the model's behavior to 5 sets of experimental findings on visual crowding and show that the model does a good job explaining the key empirical findings. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Application of MPEG-7 descriptors for content-based indexing of sports videos

    NASA Astrophysics Data System (ADS)

    Hoeynck, Michael; Auweiler, Thorsten; Ohm, Jens-Rainer

    2003-06-01

    The amount of multimedia data available worldwide is increasing every day. There is a vital need to annotate multimedia data in order to allow universal content access and to provide content-based search-and-retrieval functionalities. Since supervised video annotation can be time consuming, an automatic solution is appreciated. We review recent approaches to content-based indexing and annotation of videos for different kind of sports, and present our application for the automatic annotation of equestrian sports videos. Thereby, we especially concentrate on MPEG-7 based feature extraction and content description. We apply different visual descriptors for cut detection. Further, we extract the temporal positions of single obstacles on the course by analyzing MPEG-7 edge information and taking specific domain knowledge into account. Having determined single shot positions as well as the visual highlights, the information is jointly stored together with additional textual information in an MPEG-7 description scheme. Using this information, we generate content summaries which can be utilized in a user front-end in order to provide content-based access to the video stream, but further content-based queries and navigation on a video-on-demand streaming server.

  19. Laser optical method of visualizing cutaneous blood vessels and its applications in biometry and photomedicine

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.; Asimov, R. M.; Rubinov, A. N.

    2011-05-01

    We propose and examine a new approach to visualizing a local network of cutaneous blood vessels using laser optical methods for applications in biometry and photomedicine. Various optical schemes of the formation of biometrical information on the architecture of blood vessels of skin tissue are analyzed. We developed an optical model of the interaction of the laser radiation with the biological tissue and a mathematical algorithm of processing of measurement results. We show that, in medicine, the visualization of blood vessels makes it possible to calculate and determine regions of disturbance of blood microcirculation and to control tissue hypoxia, as well as to maintain the local concentration of oxygen at a level necessary for the normal cellular metabolism. We propose noninvasive optical methods for modern photomedicine and biometry for diagnostics and elimination of tissue hypoxia and for personality identification and verification via the pattern of cutaneous blood vessels.

  20. The theoretical cognitive process of visualization for science education.

    PubMed

    Mnguni, Lindelani E

    2014-01-01

    The use of visual models such as pictures, diagrams and animations in science education is increasing. This is because of the complex nature associated with the concepts in the field. Students, especially entrant students, often report misconceptions and learning difficulties associated with various concepts especially those that exist at a microscopic level, such as DNA, the gene and meiosis as well as those that exist in relatively large time scales such as evolution. However the role of visual literacy in the construction of knowledge in science education has not been investigated much. This article explores the theoretical process of visualization answering the question "how can visual literacy be understood based on the theoretical cognitive process of visualization in order to inform the understanding, teaching and studying of visual literacy in science education?" Based on various theories on cognitive processes during learning for science and general education the author argues that the theoretical process of visualization consists of three stages, namely, Internalization of Visual Models, Conceptualization of Visual Models and Externalization of Visual Models. The application of this theoretical cognitive process of visualization and the stages of visualization in science education are discussed.

  1. Analysis, Mining and Visualization Service at NCSA

    NASA Astrophysics Data System (ADS)

    Wilhelmson, R.; Cox, D.; Welge, M.

    2004-12-01

    NCSA's goal is to create a balanced system that fully supports high-end computing as well as: 1) high-end data management and analysis; 2) visualization of massive, highly complex data collections; 3) large databases; 4) geographically distributed Grid computing; and 5) collaboratories, all based on a secure computational environment and driven with workflow-based services. To this end NCSA has defined a new technology path that includes the integration and provision of cyberservices in support of data analysis, mining, and visualization. NCSA has begun to develop and apply a data mining system-NCSA Data-to-Knowledge (D2K)-in conjunction with both the application and research communities. NCSA D2K will enable the formation of model-based application workflows and visual programming interfaces for rapid data analysis. The Java-based D2K framework, which integrates analytical data mining methods with data management, data transformation, and information visualization tools, will be configurable from the cyberservices (web and grid services, tools, ..) viewpoint to solve a wide range of important data mining problems. This effort will use modules, such as a new classification methods for the detection of high-risk geoscience events, and existing D2K data management, machine learning, and information visualization modules. A D2K cyberservices interface will be developed to seamlessly connect client applications with remote back-end D2K servers, providing computational resources for data mining and integration with local or remote data stores. This work is being coordinated with SDSC's data and services efforts. The new NCSA Visualization embedded workflow environment (NVIEW) will be integrated with D2K functionality to tightly couple informatics and scientific visualization with the data analysis and management services. Visualization services will access and filter disparate data sources, simplifying tasks such as fusing related data from distinct sources into a coherent visual representation. This approach enables collaboration among geographically dispersed researchers via portals and front-end clients, and the coupling with data management services enables recording associations among datasets and building annotation systems into visualization tools and portals, giving scientists a persistent, shareable, virtual lab notebook. To facilitate provision of these cyberservices to the national community, NCSA will be providing a computational environment for large-scale data assimilation, analysis, mining, and visualization. This will be initially implemented on the new 512 processor shared memory SGI's recently purchased by NCSA. In addition to standard batch capabilities, NCSA will provide on-demand capabilities for those projects requiring rapid response (e.g., development of severe weather, earthquake events) for decision makers. It will also be used for non-sequential interactive analysis of data sets where it is important have access to large data volumes over space and time.

  2. USL NASA/RECON project presentations at the 1985 ACM Computer Science Conference: Abstracts and visuals

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Chum, Frank Y.; Gallagher, Suzy; Granier, Martin; Hall, Philip P.; Moreau, Dennis R.; Triantafyllopoulos, Spiros

    1985-01-01

    This Working Paper Series entry represents the abstracts and visuals associated with presentations delivered by six USL NASA/RECON research team members at the above named conference. The presentations highlight various aspects of NASA contract activities pursued by the participants as they relate to individual research projects. The titles of the six presentations are as follows: (1) The Specification and Design of a Distributed Workstation; (2) An Innovative, Multidisciplinary Educational Program in Interactive Information Storage and Retrieval; (3) Critical Comparative Analysis of the Major Commercial IS and R Systems; (4) Design Criteria for a PC-Based Common User Interface to Remote Information Systems; (5) The Design of an Object-Oriented Graphics Interface; and (6) Knowledge-Based Information Retrieval: Techniques and Applications.

  3. Psycho-physiological effects of head-mounted displays in ubiquitous use

    NASA Astrophysics Data System (ADS)

    Kawai, Takashi; Häkkinen, Jukka; Oshima, Keisuke; Saito, Hiroko; Yamazoe, Takashi; Morikawa, Hiroyuki; Nyman, Göte

    2011-02-01

    In this study, two experiments were conducted to evaluate the psycho-physiological effects by practical use of monocular head-mounted display (HMD) in a real-world environment, based on the assumption of consumer-level applications as viewing video content and receiving navigation information while walking. In the experiment 1, the workload was examined for different types of presenting stimuli using an HMD (monocular or binocular, see-through or non-see-through). The experiment 2 focused on the relationship between the real-world environment and the visual information presented using a monocular HMD. The workload was compared between a case where participants walked while viewing video content without relation to the real-world environment, and a case where participants walked while viewing visual information to augment the real-world environment as navigations.

  4. Visualizing Forensic Publication Impacts and Collaborations: Presenting at a Scientific Venue Leads to Increased Collaborations between Researchers and Information Professionals

    PubMed Central

    Makar, Susan; Malanowski, Amanda; Rapp, Katie

    2016-01-01

    The Information Services Office (ISO) of the National Institute of Standards and Technology (NIST) proactively sought out an opportunity to present the findings of a study that showed the impact of NIST’s forensic research output to its internal customers and outside researchers. ISO analyzed the impact of NIST’s contributions to the peer-reviewed forensic journal literature through citation analysis and network visualizations. The findings of this study were compiled into a poster that was presented during the Forensics@NIST Symposium in December 2014. ISO’s study informed the forensic research community where NIST has had some of the greatest scholarly impact. This paper describes the methodology used to assess the impact of NIST’s forensic publications and shares the results, outcomes, and impacts of ISO’s study and poster presentation. This methodology is adaptable and applicable to other research fields and to other libraries. It has improved the recognition of ISO’s capabilities within NIST and resulted in application of the methodology to additional scientific disciplines. PMID:27956754

  5. Information theoretic analysis of canny edge detection in visual communication

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Rahman, Zia-ur

    2011-06-01

    In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.

  6. Teaching Abstract Concepts: Keys to the World of Ideas.

    ERIC Educational Resources Information Center

    Flatley, Joannis K.; Gittinger, Dennis J.

    1990-01-01

    Specific teaching strategies to help hearing-impaired secondary students comprehend abstract concepts include (1) pinpointing facts and fallacies, (2) organizing information visually, (3) categorizing ideas, and (4) reinforcing new vocabulary and concepts. Figures provide examples of strategy applications. (DB)

  7. PRISM, a Novel Visual Metaphor Measuring Personally Salient Appraisals, Attitudes and Decision-Making: Qualitative Evidence Synthesis.

    PubMed

    Sensky, Tom; Büchi, Stefan

    2016-01-01

    PRISM (the Pictorial Representation of Illness and Self Measure) is a novel, simple visual instrument. Its utility was initially discovered serendipitously, but has been validated as a quantitative measure of suffering. Recently, new applications for different purposes, even in non-health settings, have encouraged further exploration of how PRISM works, and how it might be applied. This review will summarise the results to date from applications of PRISM and propose a generic conceptualisation of how PRISM works which is consistent with all these applications. A systematic review, in the form of a qualitative evidence synthesis, was carried out of all available published data on PRISM. Fifty-two publications were identified, with a total of 8254 participants. Facilitated by simple instructions, PRISM has been used with patient groups in a variety of settings and cultures. As a measure of suffering, PRISM has, with few exceptions, behaved as expected according to Eric Cassell's seminal conceptualisation of suffering. PRISM has also been used to assess beliefs about or attitudes to stressful working conditions, interpersonal relations, alcohol consumption, and suicide, amongst others. This review supports PRISM behaving as a visual metaphor of the relationship of objects (eg 'my illness') to a subject (eg 'myself') in a defined context (eg 'my life at the moment'). As a visual metaphor, it is quick to complete and yields personally salient information. PRISM is likely to have wide applications in assessing beliefs, attitudes, and decision-making, because of its properties, and because it yields both quantitative and qualitative data. In medicine, it can serve as a generic patient-reported outcome measure. It can serve as a tool for representational guidance, can be applied to developing strategies visually, and is likely to have applications in coaching, psychological assessment and therapeutic interventions.

  8. Applications of multiphoton microscopy in the field of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Li, Lianhuang; Zhu, Xiaoqin; Zheng, Liqin; Zhuo, Shuangmu; Chen, Jianxin

    2018-06-01

    Multiphoton microscopy (MPM) is a powerful tool for visualizing cellular and subcellular details within living tissue by its unique advantages of being label-free, its intrinsic optical sectioning ability, near-infrared excitation for deep penetration depth into tissue, reduced photobleaching and phototoxicity in the out-of-focus regions, and being capable of providing quantitative information. In this review, we focus on applications of MPM in the field of colorectal cancer, including monitoring cancer progression, detecting tumor metastasis and microenvironment, evaluating the cancer therapy response, and visualizing and ablating pre-invasive cancer cells. We also present one of the major challenges and the future research direction to exploit a colorectal multiphoton endoscope.

  9. [Application of Ocular Trauma Score in Mechanical Ocular Injury in Forensic Medicine].

    PubMed

    Xiang, Jian; Guo, Zhao-ming; Wang, Xu; Yu, Li-li; Liu, Hui

    2015-10-01

    To evaluate the application value for the prognosis of mechanical ocular injury cases using ocular trauma score (OTS). Four hundred and eleven cases of mechanical ocular trauma were retrospectively reviewed. Of the 449 eyes, there were 317 closed globe injury and 132 open globe injury. OTS variables included numerical values as initial visual acuity, rupture, endophthalmitis, perforat- ing or penetrating injury, retinal detachment and relative afferent pupillary block. The differences be- tween the distribution of the final visual acuity and the probability of standard final visual acuity were compared to analyze the correlation between OTS category and final visual acuity. The different types of ocular trauma were compared. Compared with the distribution of final visual acuity in standard OTS score, the ratio in OTS-3 category was statistically different in present study, and no differences were found in other categories. Final visual acuity showed a great linear correlation with OTS category (r = 0.71) and total score (r = 0.73). Compared with closed globe injury, open globe injury was generally associated with lower total score and poorer prognosis. Rupture injury had poorer prognosis compared with penetrating injury. The use of OTS for the patients with ocular trauma can provide re- liable information for the evaluation of prognosis in forensic medicine.

  10. Evidence flowers: An innovative, visual method of presenting "best evidence" summaries to health professional and lay audiences.

    PubMed

    Babatunde, O O; Tan, V; Jordan, J L; Dziedzic, K; Chew-Graham, C A; Jinks, C; Protheroe, J; van der Windt, D A

    2018-06-01

    Barriers to dissemination and engagement with evidence pose a threat to implementing evidence-based medicine. Understanding, retention, and recall can be enhanced by visual presentation of information. The aim of this exploratory research was to develop and evaluate the accessibility and acceptability of visual summaries for presenting evidence syntheses with multiple exposures or outcomes to professional and lay audiences. "Evidence flowers" were developed as a visual method of presenting data from 4 case scenarios: 2 complex evidence syntheses with multiple outcomes, Cochrane reviews, and clinical guidelines. Petals of evidence flowers were coloured according to the GRADE evidence rating system to display key findings and recommendations from the evidence summaries. Application of evidence flowers was observed during stakeholder workshops. Evaluation and feedback were conducted via questionnaires and informal interviews. Feedback from stakeholders on the evidence flowers collected from workshops, questionnaires, and interviews was encouraging and helpful for refining the design of the flowers. Comments were made on the content and design of the flowers, as well as the usability and potential for displaying different types of evidence. Evidence flowers are a novel and visually stimulating method for presenting research evidence from evidence syntheses with multiple exposures or outcomes, Cochrane reviews, and clinical guidelines. To promote access and engagement with research evidence, evidence flowers may be used in conjunction with other evidence synthesis products, such as (lay) summaries, evidence inventories, rapid reviews, and clinical guidelines. Additional research on potential adaptations and applications of the evidence flowers may further bridge the gap between research evidence and clinical practice. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Novel Scientific Visualization Interfaces for Interactive Information Visualization and Sharing

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2012-12-01

    As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools in the Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS. 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods.

  12. Vibrotactile Feedbacks System for Assisting the Physically Impaired Persons for Easy Navigation

    NASA Astrophysics Data System (ADS)

    Safa, M.; Geetha, G.; Elakkiya, U.; Saranya, D.

    2018-04-01

    NAYAN architecture is for a visually impaired person to help for navigation. As well known, all visually impaired people desperately requires special requirements even to access services like the public transportation. This prototype system is a portable device; it is so easy to carry in any conduction to travel through a familiar and unfamiliar environment. The system consists of GPS receiver and it can get NEMA data through the satellite and it is provided to user's Smartphone through Arduino board. This application uses two vibrotactile feedbacks that will be placed in the left and right shoulder for vibration feedback, which gives information about the current location. The ultrasonic sensor is used for obstacle detection which is found in front of the visually impaired person. The Bluetooth modules connected with Arduino board is to send information to the user's mobile phone which it receives from GPS.

  13. Application of Data Provenance in Healthcare Analytics Software: Information Visualisation of User Activities

    PubMed Central

    Xu, Shen; Rogers, Toby; Fairweather, Elliot; Glenn, Anthony; Curran, James; Curcin, Vasa

    2018-01-01

    Data provenance is a technique that describes the history of digital objects. In health data settings, it can be used to deliver auditability and transparency, and to achieve trust in a software system. However, implementing data provenance in analytics software at an enterprise level presents a different set of challenges from the research environments where data provenance was originally devised. In this paper, the challenges of reporting provenance information to the user is presented. Provenance captured from analytics software can be large and complex and visualizing a series of tasks over a long period can be overwhelming even for a domain expert, requiring visual aggregation mechanisms that fit with complex human cognitive activities involved in the process. This research studied how provenance-based reporting can be integrated into a health data analytics software, using the example of Atmolytics visual reporting tool. PMID:29888084

  14. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies.

    PubMed

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-02-02

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.

  15. WetDATA Hub: Democratizing Access to Water Data to Accelerate Innovation through Data Visualization, Predictive Analytics and Artificial Intelligence Applications

    NASA Astrophysics Data System (ADS)

    Sarni, W.

    2017-12-01

    Water scarcity and poor quality impacts economic development, business growth, and social well-being. Water has become, in our generation, the foremost critical local, regional, and global issue of our time. Despite these needs, there is no water hub or water technology accelerator solely dedicated to water data and tools. There is a need by the public and private sectors for vastly improved data management and visualization tools. This is the WetDATA opportunity - to develop a water data tech hub dedicated to water data acquisition, analytics, and visualization tools for informed policy and business decisions. WetDATA's tools will help incubate disruptive water data technologies and accelerate adoption of current water data solutions. WetDATA is a Colorado-based (501c3), global hub for water data analytics and technology innovation. WetDATA's vision is to be a global leader in water information, data technology innovation and collaborate with other US and global water technology hubs. ROADMAP * Portal (www.wetdata.org) to provide stakeholders with tools/resources to understand related water risks. * The initial activities will provide education, awareness and tools to stakeholders to support the implementation of the Colorado State Water Plan. * Leverage the Western States Water Council Water Data Exchange database. * Development of visualization, predictive analytics and AI tools to engage with stakeholders and provide actionable data and information. TOOLS Education: Provide information on water issues and risks at the local, state, national and global scale. Visualizations: Development of data analytics and visualization tools based upon the 2030 Water Resources Group methodology to support the implementation of the Colorado State Water Plan. Predictive Analytics: Accessing publically available water databases and using machine learning to develop water availability forecasting tools, and time lapse images to support city / urban planning.

  16. CheS-Mapper 2.0 for visual validation of (Q)SAR models

    PubMed Central

    2014-01-01

    Background Sound statistical validation is important to evaluate and compare the overall performance of (Q)SAR models. However, classical validation does not support the user in better understanding the properties of the model or the underlying data. Even though, a number of visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allow the investigation of model validation results are still lacking. Results We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. The approach applies the 3D viewer CheS-Mapper, an open-source application for the exploration of small molecules in virtual 3D space. The present work describes the new functionalities in CheS-Mapper 2.0, that facilitate the analysis of (Q)SAR information and allows the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. The approach is generic: It is model-independent and can handle physico-chemical and structural input features as well as quantitative and qualitative endpoints. Conclusions Visual validation with CheS-Mapper enables analyzing (Q)SAR information in the data and indicates how this information is employed by the (Q)SAR model. It reveals, if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org. Graphical abstract Comparing actual and predicted activity values with CheS-Mapper.

  17. Basic examination of a technique to visualize space filled with dense smoke using millimeter-wave radar

    NASA Astrophysics Data System (ADS)

    Omine, Yukio; Sakai, Masaki; Aoki, Yoshimitsu; Takagi, Mikio

    2004-10-01

    In recent years, crisis management in response to terrorist attacks and natural disasters, as well as accelerating rescue operations has become an important issue. Rescue operations greatly influence human lives, and require the ability to accurately and swiftly communicate information as well as assess the status of the site. Currently, considerable amount of research is being conducted for assisting rescue operations, with the application of various engineering techniques such as information technology and radar technology. In the present research, we believe that assessing the status of the site is most crucial in rescue and firefighting operations at a fire disaster site, and aim to visualize the space that is smothered with dense smoke. In a space filled with dense smoke, where visual or infrared sensing techniques are not feasible, three-dimensional measurements can be realized using a compact millimeter wave radar device combined with directional information from a gyro sensor. Using these techniques, we construct a system that can build and visualize a three-dimensional geometric model of the space. The final objective is to implement such a system on a wearable computer, which will improve the firefighters' spatial perception, assisting them in the baseline assessment and the decision-making process. In the present paper, we report the results of the basic experiments on three-dimensional measurement and visualization of a space that is smoke free, using a millimeter wave radar.

  18. Texture characterization for joint compression and classification based on human perception in the wavelet domain.

    PubMed

    Fahmy, Gamal; Black, John; Panchanathan, Sethuraman

    2006-06-01

    Today's multimedia applications demand sophisticated compression and classification techniques in order to store, transmit, and retrieve audio-visual information efficiently. Over the last decade, perceptually based image compression methods have been gaining importance. These methods take into account the abilities (and the limitations) of human visual perception (HVP) when performing compression. The upcoming MPEG 7 standard also addresses the need for succinct classification and indexing of visual content for efficient retrieval. However, there has been no research that has attempted to exploit the characteristics of the human visual system to perform both compression and classification jointly. One area of HVP that has unexplored potential for joint compression and classification is spatial frequency perception. Spatial frequency content that is perceived by humans can be characterized in terms of three parameters, which are: 1) magnitude; 2) phase; and 3) orientation. While the magnitude of spatial frequency content has been exploited in several existing image compression techniques, the novel contribution of this paper is its focus on the use of phase coherence for joint compression and classification in the wavelet domain. Specifically, this paper describes a human visual system-based method for measuring the degree to which an image contains coherent (perceptible) phase information, and then exploits that information to provide joint compression and classification. Simulation results that demonstrate the efficiency of this method are presented.

  19. Design of a Braille Learning Application for Visually Impaired Students in Bangladesh.

    PubMed

    Nahar, Lutfun; Jaafar, Azizah; Ahamed, Eistiak; Kaish, A B M A

    2015-01-01

    Visually impaired students (VIS) are unable to get visual information, which has made their learning process complicated. This paper discusses the overall situation of VIS in Bangladesh and identifies major challenges that they are facing in getting education. The Braille system is followed to educate blind students in Bangladesh. However, lack of Braille based educational resources and technological solutions have made the learning process lengthy and complicated for VIS. As a developing country, Bangladesh cannot afford for the costly Braille related technological tools for VIS. Therefore, a mobile phone based Braille application, "mBRAILLE", for Android platform is designed to provide an easy Braille learning technology for VIS in Bangladesh. The proposed design is evaluated by experts in assistive technology for students with disabilities, and advanced learners of Braille. The application aims to provide a Bangla and English Braille learning platform for VIS. In this paper, we depict iterative (participatory) design of the application along with a preliminary evaluation with 5 blind subjects, and 1 sighted and 2 blind experts. The results show that the design scored an overall satisfaction level of 4.53 out of 5 by all respondents, indicating that our design is ready for the next step of development.

  20. Extract and visualize geolocation from any text file

    NASA Astrophysics Data System (ADS)

    Boustani, M.

    2015-12-01

    There are variety of text file formats such as PDF, HTML and more which contains words about locations(countries, cities, regions and more). GeoParser developed as one of sub-projects under DARPA Memex to help finding any geolocation information crawled website data. It is a web application benefiting from Apache Tika to extract locations from any text file format and visualize geolocations on the map. https://github.com/MBoustani/GeoParserhttps://github.com/chrismattmann/tika-pythonhttp://www.darpa.mil/program/memex

  1. Applying open source data visualization tools to standard based medical data.

    PubMed

    Kopanitsa, Georgy; Taranik, Maxim

    2014-01-01

    Presentation of medical data in personal health records (PHRs) requires flexible platform independent tools to ensure easy access to the information. Different backgrounds of the patients, especially elder people require simple graphical presentation of the data. Data in PHRs can be collected from heterogeneous sources. Application of standard based medical data allows development of generic visualization methods. Focusing on the deployment of Open Source Tools, in this paper we applied Java Script libraries to create data presentations for standard based medical data.

  2. Visual Power Data Files for Equal Employment Opportunity (EEO)

    EPA Pesticide Factsheets

    The Visual Powerfiles for EEO is an information management and reporting system designed to meet Federal requirements for the agency's Equal Employment Opportunity (EEO) function in accordance with several civil rights laws and regulations. EPA OCR is responsible for monitoring and evaluating the effectiveness of affirmative programs, conducting workforce ad hoc anlysis and summaries for data related to applicant flow, new hires, promotions, awards, training, disciplinary actions, and selection procedures., and developing plans and actions for an annual Management Directive 715.

  3. Positive visualization of implanted devices with susceptibility gradient mapping using the original resolution.

    PubMed

    Varma, Gopal; Clough, Rachel E; Acher, Peter; Sénégas, Julien; Dahnke, Hannes; Keevil, Stephen F; Schaeffter, Tobias

    2011-05-01

    In magnetic resonance imaging, implantable devices are usually visualized with a negative contrast. Recently, positive contrast techniques have been proposed, such as susceptibility gradient mapping (SGM). However, SGM reduces the spatial resolution making positive visualization of small structures difficult. Here, a development of SGM using the original resolution (SUMO) is presented. For this, a filter is applied in k-space and the signal amplitude is analyzed in the image domain to determine quantitatively the susceptibility gradient for each pixel. It is shown in simulations and experiments that SUMO results in a better visualization of small structures in comparison to SGM. SUMO is applied to patient datasets for visualization of stent and prostate brachytherapy seeds. In addition, SUMO also provides quantitative information about the number of prostate brachytherapy seeds. The method might be extended to application for visualization of other interventional devices, and, like SGM, it might also be used to visualize magnetically labelled cells. Copyright © 2010 Wiley-Liss, Inc.

  4. Color-Space-Based Visual-MIMO for V2X Communication †

    PubMed Central

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603

  5. Color-Space-Based Visual-MIMO for V2X Communication.

    PubMed

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-04-23

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  6. Web mapping system for complex processing and visualization of environmental geospatial datasets

    NASA Astrophysics Data System (ADS)

    Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor

    2016-04-01

    Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial metadata, task XML object, and WMS/WFS cartographical services interconnects metadata and GUI tiers. The methods include such procedures as JSON metadata downloading and update, launching and tracking of the calculation task running on the remote servers as well as working with WMS/WFS cartographical services including: obtaining the list of available layers, visualizing layers on the map, exporting layers in graphical (PNG, JPG, GeoTIFF), vector (KML, GML, Shape) and digital (NetCDF) formats. Graphical user interface tier is based on the bundle of JavaScript libraries (OpenLayers, GeoExt and ExtJS) and represents a set of software components implementing web mapping application business logic (complex menus, toolbars, wizards, event handlers, etc.). GUI provides two basic capabilities for the end user: configuring the task XML object functionality and cartographical information visualizing. The web interface developed is similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Web mapping system developed has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical form. The work is supported by SB RAS Basic Program Projects VIII.80.2.1 and IV.38.1.7.

  7. Visualizing Subject Access for 21st Century Information Resources. Papers Presented at the Clinic on Library Applications of Data Processing (34th, Urbana, Illinois, March 2-4, 1997).

    ERIC Educational Resources Information Center

    Cochrane, Pauline Atherton, Ed.; Johnson, Eric H., Ed.

    This proceedings represents and documents in part the 16 presentations made at the 34th Annual Clinic on Library Applications of Data Processing. World Wide Web URLs that provide insight into each presentation are included. Presentations include: (1) "Hypostatizing Data Collections, Especially Bibliographic: Abstractions, Representations,…

  8. Mobile medical image retrieval

    NASA Astrophysics Data System (ADS)

    Duc, Samuel; Depeursinge, Adrien; Eggel, Ivan; Müller, Henning

    2011-03-01

    Images are an integral part of medical practice for diagnosis, treatment planning and teaching. Image retrieval has gained in importance mainly as a research domain over the past 20 years. Both textual and visual retrieval of images are essential. In the process of mobile devices becoming reliable and having a functionality equaling that of formerly desktop clients, mobile computing has gained ground and many applications have been explored. This creates a new field of mobile information search & access and in this context images can play an important role as they often allow understanding complex scenarios much quicker and easier than free text. Mobile information retrieval in general has skyrocketed over the past year with many new applications and tools being developed and all sorts of interfaces being adapted to mobile clients. This article describes constraints of an information retrieval system including visual and textual information retrieval from the medical literature of BioMedCentral and of the RSNA journals Radiology and Radiographics. Solutions for mobile data access with an example on an iPhone in a web-based environment are presented as iPhones are frequently used and the operating system is bound to become the most frequent smartphone operating system in 2011. A web-based scenario was chosen to allow for a use by other smart phone platforms such as Android as well. Constraints of small screens and navigation with touch screens are taken into account in the development of the application. A hybrid choice had to be taken to allow for taking pictures with the cell phone camera and upload them for visual similarity search as most producers of smart phones block this functionality to web applications. Mobile information access and in particular access to images can be surprisingly efficient and effective on smaller screens. Images can be read on screen much faster and relevance of documents can be identified quickly through the use of images contained in the text. Problems with the many, often incompatible mobile platforms were discovered and are listed in the text. Mobile information access is a quickly growing domain and the constraints of mobile access also need to be taken into account for image retrieval. The demonstrated access to the medical literature is most relevant as the medical literature and their images are clearly the largest knowledge source in the medical field.

  9. Visualization and Analytics Tools for Infectious Disease Epidemiology: A Systematic Review

    PubMed Central

    Carroll, Lauren N.; Au, Alan P.; Detwiler, Landon Todd; Fu, Tsung-chieh; Painter, Ian S.; Abernethy, Neil F.

    2014-01-01

    Background A myriad of new tools and algorithms have been developed to help public health professionals analyze and visualize the complex data used in infectious disease control. To better understand approaches to meet these users' information needs, we conducted a systematic literature review focused on the landscape of infectious disease visualization tools for public health professionals, with a special emphasis on geographic information systems (GIS), molecular epidemiology, and social network analysis. The objectives of this review are to: (1) Identify public health user needs and preferences for infectious disease information visualization tools; (2) Identify existing infectious disease information visualization tools and characterize their architecture and features; (3) Identify commonalities among approaches applied to different data types; and (4) Describe tool usability evaluation efforts and barriers to the adoption of such tools. Methods We identified articles published in English from January 1, 1980 to June 30, 2013 from five bibliographic databases. Articles with a primary focus on infectious disease visualization tools, needs of public health users, or usability of information visualizations were included in the review. Results A total of 88 articles met our inclusion criteria. Users were found to have diverse needs, preferences and uses for infectious disease visualization tools, and the existing tools are correspondingly diverse. The architecture of the tools was inconsistently described, and few tools in the review discussed the incorporation of usability studies or plans for dissemination. Many studies identified concerns regarding data sharing, confidentiality and quality. Existing tools offer a range of features and functions that allow users to explore, analyze, and visualize their data, but the tools are often for siloed applications. Commonly cited barriers to widespread adoption included lack of organizational support, access issues, and misconceptions about tool use. Discussion and Conclusion As the volume and complexity of infectious disease data increases, public health professionals must synthesize highly disparate data to facilitate communication with the public and inform decisions regarding measures to protect the public's health. Our review identified several themes: consideration of users' needs, preferences, and computer literacy; integration of tools into routine workflow; complications associated with understanding and use of visualizations; and the role of user trust and organizational support in the adoption of these tools. Interoperability also emerged as a prominent theme, highlighting challenges associated with the increasingly collaborative and interdisciplinary nature of infectious disease control and prevention. Future work should address methods for representing uncertainty and missing data to avoid misleading users as well as strategies to minimize cognitive overload. PMID:24747356

  10. Visualization and analytics tools for infectious disease epidemiology: a systematic review.

    PubMed

    Carroll, Lauren N; Au, Alan P; Detwiler, Landon Todd; Fu, Tsung-Chieh; Painter, Ian S; Abernethy, Neil F

    2014-10-01

    A myriad of new tools and algorithms have been developed to help public health professionals analyze and visualize the complex data used in infectious disease control. To better understand approaches to meet these users' information needs, we conducted a systematic literature review focused on the landscape of infectious disease visualization tools for public health professionals, with a special emphasis on geographic information systems (GIS), molecular epidemiology, and social network analysis. The objectives of this review are to: (1) identify public health user needs and preferences for infectious disease information visualization tools; (2) identify existing infectious disease information visualization tools and characterize their architecture and features; (3) identify commonalities among approaches applied to different data types; and (4) describe tool usability evaluation efforts and barriers to the adoption of such tools. We identified articles published in English from January 1, 1980 to June 30, 2013 from five bibliographic databases. Articles with a primary focus on infectious disease visualization tools, needs of public health users, or usability of information visualizations were included in the review. A total of 88 articles met our inclusion criteria. Users were found to have diverse needs, preferences and uses for infectious disease visualization tools, and the existing tools are correspondingly diverse. The architecture of the tools was inconsistently described, and few tools in the review discussed the incorporation of usability studies or plans for dissemination. Many studies identified concerns regarding data sharing, confidentiality and quality. Existing tools offer a range of features and functions that allow users to explore, analyze, and visualize their data, but the tools are often for siloed applications. Commonly cited barriers to widespread adoption included lack of organizational support, access issues, and misconceptions about tool use. As the volume and complexity of infectious disease data increases, public health professionals must synthesize highly disparate data to facilitate communication with the public and inform decisions regarding measures to protect the public's health. Our review identified several themes: consideration of users' needs, preferences, and computer literacy; integration of tools into routine workflow; complications associated with understanding and use of visualizations; and the role of user trust and organizational support in the adoption of these tools. Interoperability also emerged as a prominent theme, highlighting challenges associated with the increasingly collaborative and interdisciplinary nature of infectious disease control and prevention. Future work should address methods for representing uncertainty and missing data to avoid misleading users as well as strategies to minimize cognitive overload. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Guidelines for the Use of Color in ATC Displays

    DOT National Transportation Integrated Search

    1999-06-01

    Color is probably the most effective, compelling, and attractive method available for coding visual information on a display. However, caution must be used in the application of color to displays for air traffic control (ATC), because it is easy to d...

  12. Jan Tschichold and the Language of Modernism.

    ERIC Educational Resources Information Center

    Storkerson, Peter

    1996-01-01

    States that in "The New Typography," Jan Tschichold explicates a functionalist and information-based theory of typographic design and demonstrates its application in numerous typographic examples of varied genres. Outlines Tschichold's typographic position; analyzes his style of visual communication; and considers subsequent developments…

  13. Case study of visualizing global user download patterns using Google Earth and NASA World Wind

    NASA Astrophysics Data System (ADS)

    Zong, Ziliang; Job, Joshua; Zhang, Xuesong; Nijim, Mais; Qin, Xiao

    2012-01-01

    Geo-visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data are generated every day. On the other hand, these data are not well utilized due to the lack of free and easily used data-visualization tools. This becomes even worse when most of the spatial data remains in the form of plain text such as log files. This paper describes a way of visualizing massive plain-text spatial data at no cost by utilizing Google Earth and NASA World Wind. We illustrate our methods by visualizing over 170,000 global download requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). Our visualization results identify the most popular satellite images around the world and discover the global user download patterns. The benefits of this research are: 1. assisting in improving the satellite image downloading services provided by USGS, and 2. providing a proxy for analyzing the "hot spot" areas of research. Most importantly, our methods demonstrate an easy way to geo-visualize massive textual spatial data, which is highly applicable to mining spatially referenced data and information on a wide variety of research domains (e.g., hydrology, agriculture, atmospheric science, natural hazard, and global climate change).

  14. Image Analysis via Soft Computing: Prototype Applications at NASA KSC and Product Commercialization

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steve

    2011-01-01

    This slide presentation reviews the use of "soft computing" which differs from "hard computing" in that it is more tolerant of imprecision, partial truth, uncertainty, and approximation and its use in image analysis. Soft computing provides flexible information processing to handle real life ambiguous situations and achieve tractability, robustness low solution cost, and a closer resemblance to human decision making. Several systems are or have been developed: Fuzzy Reasoning Edge Detection (FRED), Fuzzy Reasoning Adaptive Thresholding (FRAT), Image enhancement techniques, and visual/pattern recognition. These systems are compared with examples that show the effectiveness of each. NASA applications that are reviewed are: Real-Time (RT) Anomaly Detection, Real-Time (RT) Moving Debris Detection and the Columbia Investigation. The RT anomaly detection reviewed the case of a damaged cable for the emergency egress system. The use of these techniques is further illustrated in the Columbia investigation with the location and detection of Foam debris. There are several applications in commercial usage: image enhancement, human screening and privacy protection, visual inspection, 3D heart visualization, tumor detections and x ray image enhancement.

  15. GeneXplorer: an interactive web application for microarray data visualization and analysis.

    PubMed

    Rees, Christian A; Demeter, Janos; Matese, John C; Botstein, David; Sherlock, Gavin

    2004-10-01

    When publishing large-scale microarray datasets, it is of great value to create supplemental websites where either the full data, or selected subsets corresponding to figures within the paper, can be browsed. We set out to create a CGI application containing many of the features of some of the existing standalone software for the visualization of clustered microarray data. We present GeneXplorer, a web application for interactive microarray data visualization and analysis in a web environment. GeneXplorer allows users to browse a microarray dataset in an intuitive fashion. It provides simple access to microarray data over the Internet and uses only HTML and JavaScript to display graphic and annotation information. It provides radar and zoom views of the data, allows display of the nearest neighbors to a gene expression vector based on their Pearson correlations and provides the ability to search gene annotation fields. The software is released under the permissive MIT Open Source license, and the complete documentation and the entire source code are freely available for download from CPAN http://search.cpan.org/dist/Microarray-GeneXplorer/.

  16. The NAS Computational Aerosciences Archive

    NASA Technical Reports Server (NTRS)

    Miceli, Kristina D.; Globus, Al; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    In order to further the state-of-the-art in computational aerosciences (CAS) technology, researchers must be able to gather and understand existing work in the field. One aspect of this information gathering is studying published work available in scientific journals and conference proceedings. However, current scientific publications are very limited in the type and amount of information that they can disseminate. Information is typically restricted to text, a few images, and a bibliography list. Additional information that might be useful to the researcher, such as additional visual results, referenced papers, and datasets, are not available. New forms of electronic publication, such as the World Wide Web (WWW), limit publication size only by available disk space and data transmission bandwidth, both of which are improving rapidly. The Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center is in the process of creating an archive of CAS information on the WWW. This archive will be based on the large amount of information produced by researchers associated with the NAS facility. The archive will contain technical summaries and reports of research performed on NAS supercomputers, visual results (images, animations, visualization system scripts), datasets, and any other supporting meta-information. This information will be available via the WWW through the NAS homepage, located at http://www.nas.nasa.gov/, fully indexed for searching. The main components of the archive are technical summaries and reports, visual results, and datasets. Technical summaries are gathered every year by researchers who have been allotted resources on NAS supercomputers. These summaries, together with supporting visual results and references, are browsable by interested researchers. Referenced papers made available by researchers can be accessed through hypertext links. Technical reports are in-depth accounts of tools and applications research projects performed by NAS staff members and collaborators. Visual results, which may be available in the form of images, animations, and/or visualization scripts, are generated by researchers with respect to a certain research project, depicting dataset features that were determined important by the investigating researcher. For example, script files for visualization systems (e.g. FAST, PLOT3D, AVS) are provided to create visualizations on the user's local workstation to elucidate the key points of the numerical study. Users can then interact with the data starting where the investigator left off. Datasets are intended to give researchers an opportunity to understand previous work, 'mine' solutions for new information (for example, have you ever read a paper thinking "I wonder what the helicity density looks like?"), compare new techniques with older results, collaborate with remote colleagues, and perform validation. Supporting meta-information associated with the research projects is also important to provide additional context for research projects. This may include information such as the software used in the simulation (e.g. grid generators, flow solvers, visualization). In addition to serving the CAS research community, the information archive will also be helpful to students, visualization system developers and researchers, and management. Students (of any age) can use the data to study fluid dynamics, compare results from different flow solvers, learn about meshing techniques, etc., leading to better informed individuals. For these users it is particularly important that visualization be integrated into dataset archives. Visualization researchers can use dataset archives to test algorithms and techniques, leading to better visualization systems, Management can use the data to figure what is really going on behind the viewgraphs. All users will benefit from fast, easy, and convenient access to CFD datasets. The CAS information archive hopes to serve as a useful resource to those interested in computational sciences. At present, only information that may be distributed internationally is made available via the archive. Studies are underway to determine security requirements and solutions to make additional information available. By providing access to the archive via the WWW, the process of information gathering can be more productive and fruitful due to ease of access and ability to manage many different types of information. As the archive grows, additional resources from outside NAS will be added, providing a dynamic source of research results.

  17. (Computer) Vision without Sight

    PubMed Central

    Manduchi, Roberto; Coughlan, James

    2012-01-01

    Computer vision holds great promise for helping persons with blindness or visual impairments (VI) to interpret and explore the visual world. To this end, it is worthwhile to assess the situation critically by understanding the actual needs of the VI population and which of these needs might be addressed by computer vision. This article reviews the types of assistive technology application areas that have already been developed for VI, and the possible roles that computer vision can play in facilitating these applications. We discuss how appropriate user interfaces are designed to translate the output of computer vision algorithms into information that the user can quickly and safely act upon, and how system-level characteristics affect the overall usability of an assistive technology. Finally, we conclude by highlighting a few novel and intriguing areas of application of computer vision to assistive technology. PMID:22815563

  18. The Theory-based Influence of Map Features on Risk Beliefs: Self-reports of What is Seen and Understood for Maps Depicting an Environmental Health Hazard

    PubMed Central

    Vatovec, Christine

    2013-01-01

    Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. We report results from thirteen cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed three formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (pre-attentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared to abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: pre-attentive “incremental risk” meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals. PMID:22715919

  19. The theory-based influence of map features on risk beliefs: self-reports of what is seen and understood for maps depicting an environmental health hazard.

    PubMed

    Severtson, Dolores J; Vatovec, Christine

    2012-08-01

    Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. The authors report results from 13 cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed 3 formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (preattentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared with abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: preattentive "incremental risk" meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals.

  20. Interactive Classification of Construction Materials: Feedback Driven Framework for Annotation and Analysis of 3d Point Clouds

    NASA Astrophysics Data System (ADS)

    Hess, M. R.; Petrovic, V.; Kuester, F.

    2017-08-01

    Digital documentation of cultural heritage structures is increasingly more common through the application of different imaging techniques. Many works have focused on the application of laser scanning and photogrammetry techniques for the acquisition of threedimensional (3D) geometry detailing cultural heritage sites and structures. With an abundance of these 3D data assets, there must be a digital environment where these data can be visualized and analyzed. Presented here is a feedback driven visualization framework that seamlessly enables interactive exploration and manipulation of massive point cloud data. The focus of this work is on the classification of different building materials with the goal of building more accurate as-built information models of historical structures. User defined functions have been tested within the interactive point cloud visualization framework to evaluate automated and semi-automated classification of 3D point data. These functions include decisions based on observed color, laser intensity, normal vector or local surface geometry. Multiple case studies are presented here to demonstrate the flexibility and utility of the presented point cloud visualization framework to achieve classification objectives.

  1. 3D-Monitoring Big Geo Data on a seaport infrastructure based on FIWARE

    NASA Astrophysics Data System (ADS)

    Fernández, Pablo; Suárez, José Pablo; Trujillo, Agustín; Domínguez, Conrado; Santana, José Miguel

    2018-04-01

    Many organizations of all kinds are using new technologies to assist the acquisition and analysis of data. Seaports are a good example of this trend. Seaports generate data regarding the management of marine traffic and other elements, as well as environmental conditions given by meteorological sensors and buoys. However, this enormous amount of data, also known as Big Data, is useless without a proper system to organize, analyze and visualize it. SmartPort is an online platform for the visualization and management of a seaport data that has been built as a GIS application. This work offers a Rich Internet Application that allows the user to visualize and manage the different sources of information produced in a port environment. The Big Data management is based on the FIWARE platform, as well as "The Internet of Things" solutions for the data acquisition. At the same time, Glob3 Mobile (G3M) framework has been used for the development of map requirements. In this way, SmartPort supports 3D visualization of the ports scenery and its data sources.

  2. 3D-Monitoring Big Geo Data on a seaport infrastructure based on FIWARE

    NASA Astrophysics Data System (ADS)

    Fernández, Pablo; Suárez, José Pablo; Trujillo, Agustín; Domínguez, Conrado; Santana, José Miguel

    2018-03-01

    Many organizations of all kinds are using new technologies to assist the acquisition and analysis of data. Seaports are a good example of this trend. Seaports generate data regarding the management of marine traffic and other elements, as well as environmental conditions given by meteorological sensors and buoys. However, this enormous amount of data, also known as Big Data, is useless without a proper system to organize, analyze and visualize it. SmartPort is an online platform for the visualization and management of a seaport data that has been built as a GIS application. This work offers a Rich Internet Application that allows the user to visualize and manage the different sources of information produced in a port environment. The Big Data management is based on the FIWARE platform, as well as "The Internet of Things" solutions for the data acquisition. At the same time, Glob3 Mobile (G3M) framework has been used for the development of map requirements. In this way, SmartPort supports 3D visualization of the ports scenery and its data sources.

  3. Orthoscape: a cytoscape application for grouping and visualization KEGG based gene networks by taxonomy and homology principles.

    PubMed

    Mustafin, Zakhar Sergeevich; Lashin, Sergey Alexandrovich; Matushkin, Yury Georgievich; Gunbin, Konstantin Vladimirovich; Afonnikov, Dmitry Arkadievich

    2017-01-27

    There are many available software tools for visualization and analysis of biological networks. Among them, Cytoscape ( http://cytoscape.org/ ) is one of the most comprehensive packages, with many plugins and applications which extends its functionality by providing analysis of protein-protein interaction, gene regulatory and gene co-expression networks, metabolic, signaling, neural as well as ecological-type networks including food webs, communities networks etc. Nevertheless, only three plugins tagged 'network evolution' found in Cytoscape official app store and in literature. We have developed a new Cytoscape 3.0 application Orthoscape aimed to facilitate evolutionary analysis of gene networks and visualize the results. Orthoscape aids in analysis of evolutionary information available for gene sets and networks by highlighting: (1) the orthology relationships between genes; (2) the evolutionary origin of gene network components; (3) the evolutionary pressure mode (diversifying or stabilizing, negative or positive selection) of orthologous groups in general and/or branch-oriented mode. The distinctive feature of Orthoscape is the ability to control all data analysis steps via user-friendly interface. Orthoscape allows its users to analyze gene networks or separated gene sets in the context of evolution. At each step of data analysis, Orthoscape also provides for convenient visualization and data manipulation.

  4. Exploiting the User: Adapting Personas for Use in Security Visualization Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoll, Jennifer C.; McColgin, David W.; Gregory, Michelle L.

    It has long been noted that visual representations of complex information can facilitate rapid understanding of data {citation], even with respect to ComSec applications {citation]. Recognizing that visualizations can increase usability in ComSec applications, [Zurko, Sasse] have argued that there is a need to create more usable security visualizations. (VisSec) However, usability of applications generally fall into the domain of Human Computer Interaction (HCI), which generally relies on heavy-weight user-centered design (UCD) processes. For example, the UCD process can involve many prototype iterations, or an ethnographic field study that can take months to complete. The problem is that VisSec projectsmore » generally do not have the resources to perform ethnographic field studies, or to employ complex UCD methods. They often are running on tight deadlines and budgets that can not afford standard UCD methods. In order to help resolve the conflict of needing more usable designs in ComSec, but not having the resources to employ complex UCD methods, in this paper we offer a stripped-down lighter weight version of a UCD process which can help with capturing user requirements. The approach we use is personas which a user requirements capturing method arising out of the Participatory Design philosophy [Grudin02].« less

  5. A GeoWall with Physics and Astronomy Applications

    NASA Astrophysics Data System (ADS)

    Dukes, Phillip; Bruton, Dan

    2008-03-01

    A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.

  6. Impact of color hard copy on instructional technology applications

    NASA Astrophysics Data System (ADS)

    Lantz, Christopher J.

    1995-04-01

    Hard copy is still preeminent in the form of textbooks or lab manuals in most training environments despite inroads made by microcomputer delivery. Cost per copy is still a major factor but one that is offset by convenience and the capability of including a small number of crucial color illustrations for low run laboratory manuals. Overhead transparencies and color displays are other major educational applications in which electronically generated color hardcopy is just starting to make an impact. Color hardcopy has been perceived as out of reach to the average educator because of probatively high costs in the recent past. Another reason for the underutilization of color in instruction is research that suggests that color distracts instead of directing attention among learners. Much of this research compares visuals which are designed to convey simple visual information, and in this case complexity does often get in the way of comprehension. Color can also act as an advanced organizer that directs visual perception and comprehension to specific instructional objectives. Color can elicit emotional responses from viewers which will assist them in remembering visual detail. Not unlike any other instructional tool, color can add or distract from instructional objectives. Now that color is more accessible in the hard copy format, there are many new ways it can be utilized to benefit the public or corporate educator. In the sections that follow color hard copy is considered in its present areas of application, in context to the suitability of visuals for instruction, as a important component of visual literacy and lastly in the development of measures of picture readability.

  7. Color coding of control room displays: the psychocartography of visual layering effects.

    PubMed

    Van Laar, Darren; Deshe, Ofer

    2007-06-01

    To evaluate which of three color coding methods (monochrome, maximally discriminable, and visual layering) used to code four types of control room display format (bars, tables, trend, mimic) was superior in two classes of task (search, compare). It has recently been shown that color coding of visual layers, as used in cartography, may be used to color code any type of information display, but this has yet to be fully evaluated. Twenty-four people took part in a 2 (task) x 3 (coding method) x 4 (format) wholly repeated measures design. The dependent variables assessed were target location reaction time, error rates, workload, and subjective feedback. Overall, the visual layers coding method produced significantly faster reaction times than did the maximally discriminable and the monochrome methods for both the search and compare tasks. No significant difference in errors was observed between conditions for either task type. Significantly less perceived workload was experienced with the visual layers coding method, which was also rated more highly than the other coding methods on a 14-item visual display quality questionnaire. The visual layers coding method is superior to other color coding methods for control room displays when the method supports the user's task. The visual layers color coding method has wide applicability to the design of all complex information displays utilizing color coding, from the most maplike (e.g., air traffic control) to the most abstract (e.g., abstracted ecological display).

  8. A mobile application to support collection and analytics of real-time critical care data.

    PubMed

    Vankipuram, Akshay; Vankipuram, Mithra; Ghaemmaghami, Vafa; Patel, Vimla L

    2017-11-01

    Data collection, in high intensity environments, poses several challenges including the ability to observe multiple streams of information. These problems are especially evident in critical care, where monitoring of the Advanced Trauma Life Support (ATLS) protocol provides an excellent opportunity to study the efficacy of applications that allow for the rapid capture of event information, providing theoretically-driven feedback using the data. Our goal was, (a) to design and implement a way to capture data on deviation from the standard practice based on the theoretical foundation of error classification from our past research, (b) to provide a means to meaningfully visualize the collected data, and (c) to provide a proof-of-concept for this implementation, using some understanding of user experience in clinical practice. We present the design and development of a web application designed to be used primarily on mobile devices and a summary data viewer to allow clinicians to, (a) track their activities, (b) provide real-time feedback of deviations from guidelines and protocols, and (c) provide summary feedback highlighting decisions made. We used a framework previously developed to classify activities in trauma as the theoretical foundation of the rules designed to do the same algorithmically, in our application. Attending physicians at a Level 1 trauma center used the application in the clinical setting and provided feedback for iterative development. Informal interviews and surveys were used to gain some deeper understanding of the user experience using this application in-situ. Activity visualizations were created highlighting decisions made during a trauma code as well as classification of tasks per the theoretical framework. The attendings reviewed the efficacy of the data visualizations as part of their interviews. We also conducted a proof-of-concept evaluation by way of usability questionnaire. Two attendings rated 4 out of the usability 6 categories highly (inter-rater reliability: R = 0.87; weighted kappa = 0.59). This could be attributed to the fact that they were able to fit the use of the application into their regular workflow during a trauma code relatively seamlessly. A deeper evaluation is required to answer explain this further. Our application can be used to capture and present data to provide an accurate reflection of work activities in real-time in complex critical care environments, without any significant interruptions to workflow. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Attentional models of multitask pilot performance using advanced display technology.

    PubMed

    Wickens, Christopher D; Goh, Juliana; Helleberg, John; Horrey, William J; Talleur, Donald A

    2003-01-01

    In the first part of the reported research, 12 instrument-rated pilots flew a high-fidelity simulation, in which air traffic control presentation of auditory (voice) information regarding traffic and flight parameters was compared with advanced display technology presentation of equivalent information regarding traffic (cockpit display of traffic information) and flight parameters (data link display). Redundant combinations were also examined while pilots flew the aircraft simulation, monitored for outside traffic, and read back communications messages. The data suggested a modest cost for visual presentation over auditory presentation, a cost mediated by head-down visual scanning, and no benefit for redundant presentation. The effects in Part 1 were modeled by multiple-resource and preemption models of divided attention. In the second part of the research, visual scanning in all conditions was fit by an expected value model of selective attention derived from a previous experiment. This model accounted for 94% of the variance in the scanning data and 90% of the variance in a second validation experiment. Actual or potential applications of this research include guidance on choosing the appropriate modality for presenting in-cockpit information and understanding task strategies induced by introducing new aviation technology.

  10. Urban photogrammetric data base for multi-purpose cadastral-based information systems: the Riyadh city case

    NASA Astrophysics Data System (ADS)

    Al-garni, Abdullah M.

    Urban information systems are economic resources that can benefit decision makers in the planning, development, and management of urban projects and resources. In this research, a conceptual model-based prototype Urban Geographic Information System (UGIS) is developed. The base maps used in developing the system and acquiring visual attributes are obtained from aerial photographs. The system is a multi-purpose parcel-based one that can serve many urban applications such as public utilities, health centres, schools, population estimation, road engineering and maintenance, and many others. A modern region in the capital city of Saudi Arabia is used for the study. The developed model is operational for one urban application (population estimation) and is tested for that particular application. The results showed that the system has a satisfactory accuracy and that it may well be promising for other similar urban applications in countries with similar demographic and social characteristics.

  11. Semantic Enrichment of Movement Behavior with Foursquare--A Visual Analytics Approach.

    PubMed

    Krueger, Robert; Thom, Dennis; Ertl, Thomas

    2015-08-01

    In recent years, many approaches have been developed that efficiently and effectively visualize movement data, e.g., by providing suitable aggregation strategies to reduce visual clutter. Analysts can use them to identify distinct movement patterns, such as trajectories with similar direction, form, length, and speed. However, less effort has been spent on finding the semantics behind movements, i.e. why somebody or something is moving. This can be of great value for different applications, such as product usage and consumer analysis, to better understand urban dynamics, and to improve situational awareness. Unfortunately, semantic information often gets lost when data is recorded. Thus, we suggest to enrich trajectory data with POI information using social media services and show how semantic insights can be gained. Furthermore, we show how to handle semantic uncertainties in time and space, which result from noisy, unprecise, and missing data, by introducing a POI decision model in combination with highly interactive visualizations. Finally, we evaluate our approach with two case studies on a large electric scooter data set and test our model on data with known ground truth.

  12. A web-based 3D geological information visualization system

    NASA Astrophysics Data System (ADS)

    Song, Renbo; Jiang, Nan

    2013-03-01

    Construction of 3D geological visualization system has attracted much more concern in GIS, computer modeling, simulation and visualization fields. It not only can effectively help geological interpretation and analysis work, but also can it can help leveling up geosciences professional education. In this paper, an applet-based method was introduced for developing a web-based 3D geological information visualization system. The main aims of this paper are to explore a rapid and low-cost development method for constructing a web-based 3D geological system. First, the borehole data stored in Excel spreadsheets was extracted and then stored in SQLSERVER database of a web server. Second, the JDBC data access component was utilized for providing the capability of access the database. Third, the user interface was implemented with applet component embedded in JSP page and the 3D viewing and querying functions were implemented with PickCanvas of Java3D. Last, the borehole data acquired from geological survey were used for test the system, and the test results has shown that related methods of this paper have a certain application values.

  13. Dynamic visual attention: motion direction versus motion magnitude

    NASA Astrophysics Data System (ADS)

    Bur, A.; Wurtz, P.; Müri, R. M.; Hügli, H.

    2008-02-01

    Defined as an attentive process in the context of visual sequences, dynamic visual attention refers to the selection of the most informative parts of video sequence. This paper investigates the contribution of motion in dynamic visual attention, and specifically compares computer models designed with the motion component expressed either as the speed magnitude or as the speed vector. Several computer models, including static features (color, intensity and orientation) and motion features (magnitude and vector) are considered. Qualitative and quantitative evaluations are performed by comparing the computer model output with human saliency maps obtained experimentally from eye movement recordings. The model suitability is evaluated in various situations (synthetic and real sequences, acquired with fixed and moving camera perspective), showing advantages and inconveniences of each method as well as preferred domain of application.

  14. State Health Mapper: An Interactive, Web-Based Tool for Physician Workforce Planning, Recruitment, and Health Services Research.

    PubMed

    Krause, Denise D

    2015-11-01

    Health rankings in Mississippi are abysmal. Mississippi also has fewer physicians to serve its population compared with all other states. Many residents of this predominately rural state do not have access to healthcare providers. To better understand the demographics and distribution of the current health workforce in Mississippi, the main objective of the study was to design a Web-based, spatial, interactive application to visualize and explore the physician workforce. A Web application was designed to assist in health workforce planning. Secondary datasets of licensure and population information were obtained, and live feeds from licensure systems are being established. Several technologies were used to develop an intuitive, user-friendly application. Custom programming was completed in JavaScript so the application could run on most platforms, including mobile devices. The application allows users to identify and query geographic locations of individual or aggregated physicians based on attributes included in the licensure data, to perform drive time or buffer analyses, and to explore sociodemographic population data by geographic area of choice. This Web-based application with analytical tools visually represents the physician workforce licensed in Mississippi and its attributes, and provides access to much-needed information for statewide health workforce planning and research. The success of the application is not only based on the practicality of the tool but also on its ease of use. Feedback has been positive and has come from a wide variety of organizations across the state.

  15. Using Openstreetmap Data to Generate Building Models with Their Inner Structures for 3d Maps

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Zipf, A.

    2017-09-01

    With the development of Web 2.0, more and more data related to indoor environments has been collected within the volunteered geographic information (VGI) framework, which creates a need for construction of indoor environments from VGI. In this study, we focus on generating 3D building models from OpenStreetMap (OSM) data, and provide an approach to support construction and visualization of indoor environments on 3D maps. In this paper, we present an algorithm which can extract building information from OSM data, and can construct building structures as well as inner building components (e.g., doors, rooms, and windows). A web application is built to support the processing and visualization of the building models on a 3D map. We test our approach with an indoor dataset collected from the field. The results show the feasibility of our approach and its potentials to provide support for a wide range of applications, such as indoor and outdoor navigation, urban planning, and incident management.

  16. Visual tracking strategies for intelligent vehicle highway systems

    NASA Astrophysics Data System (ADS)

    Smith, Christopher E.; Papanikolopoulos, Nikolaos P.; Brandt, Scott A.; Richards, Charles

    1995-01-01

    The complexity and congestion of current transportation systems often produce traffic situations that jeopardize the safety of the people involved. These situations vary from maintaining a safe distance behind a leading vehicle to safely allowing a pedestrian to cross a busy street. Environmental sensing plays a critical role in virtually all of these situations. Of the sensors available, vision sensors provide information that is richer and more complete than other sensors, making them a logical choice for a multisensor transportation system. In this paper we present robust techniques for intelligent vehicle-highway applications where computer vision plays a crucial role. In particular, we demonstrate that the controlled active vision framework can be utilized to provide a visual sensing modality to a traffic advisory system in order to increase the overall safety margin in a variety of common traffic situations. We have selected two application examples, vehicle tracking and pedestrian tracking, to demonstrate that the framework can provide precisely the type of information required to effectively manage the given situation.

  17. Icarus: visualizer for de novo assembly evaluation.

    PubMed

    Mikheenko, Alla; Valin, Gleb; Prjibelski, Andrey; Saveliev, Vladislav; Gurevich, Alexey

    2016-11-01

    : Data visualization plays an increasingly important role in NGS data analysis. With advances in both sequencing and computational technologies, it has become a new bottleneck in genomics studies. Indeed, evaluation of de novo genome assemblies is one of the areas that can benefit from the visualization. However, even though multiple quality assessment methods are now available, existing visualization tools are hardly suitable for this purpose. Here, we present Icarus-a novel genome visualizer for accurate assessment and analysis of genomic draft assemblies, which is based on the tool QUAST. Icarus can be used in studies where a related reference genome is available, as well as for non-model organisms. The tool is available online and as a standalone application. http://cab.spbu.ru/software/icarus CONTACT: aleksey.gurevich@spbu.ruSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Using BIM Technology to Optimize the Traditional Interior Design Work Mode

    NASA Astrophysics Data System (ADS)

    Zhu, Ning Ke

    2018-06-01

    the development of BIM technology and application in the field of architecture design has produced results, but BIM technology and application in the field of interior design is still immaturity because of construction and decoration engineering separation. The article analyzes the problems that BIM technology lead to the interior design work mode optimization, from the 3D visualization work environment, real-time collaborative design mode, physical analysis design mode, information integration design mode state the application in interior design.

  19. Visual perception of fatigued lifting actions.

    PubMed

    Fischer, Steven L; Albert, Wayne J; McGarry, Tim

    2012-12-01

    Fatigue-related changes in lifting kinematics may expose workers to undue injury risks. Early detection of accumulating fatigue offers the prospect of intervention strategies to mitigate such fatigue-related risks. In a first step towards this objective, this study investigated whether fatigue detection was accessible to visual perception and, if so, what was the key visual information required for successful fatigue discrimination. Eighteen participants were tasked with identifying fatigued lifts when viewing 24 trials presented using both video and point-light representations. Each trial comprised a pair of lifting actions containing a fresh and a fatigued lift from the same individual presented in counter-balanced sequence. Confidence intervals demonstrated that the frequency of correct responses for both sexes exceeded chance expectations (50%) for both video (68%±12%) and point-light representations (67%±10%), demonstrating that fatigued lifting kinematics are open to visual perception. There were no significant differences between sexes or viewing condition, the latter result indicating kinematic dynamics as providing sufficient information for successful fatigue discrimination. Moreover, results from single viewer investigation reported fatigue detection (75%) from point-light information describing only the kinematics of the box lifted. These preliminary findings may have important workplace applications if fatigue discrimination rates can be improved upon through future research. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  1. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  2. The use of ambient audio to increase safety and immersion in location-based games

    NASA Astrophysics Data System (ADS)

    Kurczak, John Jason

    The purpose of this thesis is to propose an alternative type of interface for mobile software being used while walking or running. Our work addresses the problem of visual user interfaces for mobile software be- ing potentially unsafe for pedestrians, and not being very immersive when used for location-based games. In addition, location-based games and applications can be dif- ficult to develop when directly interfacing with the sensors used to track the user's location. These problems need to be addressed because portable computing devices are be- coming a popular tool for navigation, playing games, and accessing the internet while walking. This poses a safety problem for mobile users, who may be paying too much attention to their device to notice and react to hazards in their environment. The difficulty of developing location-based games and other location-aware applications may significantly hinder the prevalence of applications that explore new interaction techniques for ubiquitous computing. We created the TREC toolkit to address the issues with tracking sensors while developing location-based games and applications. We have developed functional location-based applications with TREC to demonstrate the amount of work that can be saved by using this toolkit. In order to have a safer and more immersive alternative to visual interfaces, we have developed ambient audio interfaces for use with mobile applications. Ambient audio uses continuous streams of sound over headphones to present information to mobile users without distracting them from walking safely. In order to test the effectiveness of ambient audio, we ran a study to compare ambient audio with handheld visual interfaces in a location-based game. We compared players' ability to safely navigate the environment, their sense of immersion in the game, and their performance at the in-game tasks. We found that ambient audio was able to significantly increase players' safety and sense of immersion compared to a visual interface, while players performed signifi- cantly better at the game tasks when using the visual interface. This makes ambient audio a legitimate alternative to visual interfaces for mobile users when safety and immersion are a priority.

  3. Excel Spreadsheet Tools for Analyzing Groundwater Level Records and Displaying Information in ArcMap

    USGS Publications Warehouse

    Tillman, Fred D.

    2009-01-01

    When beginning hydrologic investigations, a first action is often to gather existing sources of well information, compile this information into a single dataset, and visualize this information in a geographic information system (GIS) environment. This report presents tools (macros) developed using Visual Basic for Applications (VBA) for Microsoft Excel 2007 to assist in these tasks. One tool combines multiple datasets into a single worksheet and formats the resulting data for use by the other tools. A second tool produces summary information about the dataset, such as a list of unique site identification numbers, the number of water-level observations for each, and a table of the number of sites with a listed number of water-level observations. A third tool creates subsets of the original dataset based on user-specified options and produces a worksheet with water-level information for each well in the subset, including the average and standard deviation of water-level observations and maximum decline and rise in water levels between any two observations, among other information. This water-level information worksheet can be imported directly into ESRI ArcMap as an 'XY Data' file, and each of the fields of summary well information can be used for custom display. A separate set of VBA tools distributed in an additional Excel workbook creates hydrograph charts of each of the wells in the data subset produced by the aforementioned tools and produces portable document format (PDF) versions of the hydrograph charts. These PDF hydrographs can be hyperlinked to well locations in ArcMap or other GIS applications.

  4. Visual Data Exploration and Analysis - Report on the Visualization Breakout Session of the SCaLeS Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E. Wes; Frank, Randy; Fulcomer, Sam

    Scientific visualization is the transformation of abstract information into images, and it plays an integral role in the scientific process by facilitating insight into observed or simulated phenomena. Visualization as a discipline spans many research areas from computer science, cognitive psychology and even art. Yet the most successful visualization applications are created when close synergistic interactions with domain scientists are part of the algorithmic design and implementation process, leading to visual representations with clear scientific meaning. Visualization is used to explore, to debug, to gain understanding, and as an analysis tool. Visualization is literally everywhere--images are present in this report,more » on television, on the web, in books and magazines--the common theme is the ability to present information visually that is rapidly assimilated by human observers, and transformed into understanding or insight. As an indispensable part a modern science laboratory, visualization is akin to the biologist's microscope or the electrical engineer's oscilloscope. Whereas the microscope is limited to small specimens or use of optics to focus light, the power of scientific visualization is virtually limitless: visualization provides the means to examine data that can be at galactic or atomic scales, or at any size in between. Unlike the traditional scientific tools for visual inspection, visualization offers the means to ''see the unseeable.'' Trends in demographics or changes in levels of atmospheric CO{sub 2} as a function of greenhouse gas emissions are familiar examples of such unseeable phenomena. Over time, visualization techniques evolve in response to scientific need. Each scientific discipline has its ''own language,'' verbal and visual, used for communication. The visual language for depicting electrical circuits is much different than the visual language for depicting theoretical molecules or trends in the stock market. There is no ''one visualization too'' that can serve as a panacea for all science disciplines. Instead, visualization researchers work hand in hand with domain scientists as part of the scientific research process to define, create, adapt and refine software that ''speaks the visual language'' of each scientific domain.« less

  5. The visual white matter: The application of diffusion MRI and fiber tractography to vision science

    PubMed Central

    Rokem, Ariel; Takemura, Hiromasa; Bock, Andrew S.; Scherf, K. Suzanne; Behrmann, Marlene; Wandell, Brian A.; Fine, Ione; Bridge, Holly; Pestilli, Franco

    2017-01-01

    Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data. PMID:28196374

  6. Large-Scale Partial-Duplicate Image Retrieval and Its Applications

    DTIC Science & Technology

    2016-04-23

    SECURITY CLASSIFICATION OF: The explosive growth of Internet Media (partial-duplicate/similar images, 3D objects, 3D models, etc.) sheds bright...light on many promising applications in forensics, surveillance, 3D animation, mobile visual search, and 3D model/object search. Compared with the...and stable spatial configuration. Compared with the general 2D objects, 3D models/objects consist of 3D data information (typically a list of

  7. Visual Display of 5p-arm and 3p-arm miRNA Expression with a Mobile Application.

    PubMed

    Pan, Chao-Yu; Kuo, Wei-Ting; Chiu, Chien-Yuan; Lin, Wen-Chang

    2017-01-01

    MicroRNAs (miRNAs) play important roles in human cancers. In previous studies, we have demonstrated that both 5p-arm and 3p-arm of mature miRNAs could be expressed from the same precursor and we further interrogated the 5p-arm and 3p-arm miRNA expression with a comprehensive arm feature annotation list. To assist biologists to visualize the differential 5p-arm and 3p-arm miRNA expression patterns, we utilized a user-friendly mobile App to display. The Cancer Genome Atlas (TCGA) miRNA-Seq expression information. We have collected over 4,500 miRNA-Seq datasets from 15 TCGA cancer types and further processed them with the 5p-arm and 3p-arm annotation analysis pipeline. In order to be displayed with the RNA-Seq Viewer App, annotated 5p-arm and 3p-arm miRNA expression information and miRNA gene loci information were converted into SQLite tables. In this distinct application, for any given miRNA gene, 5p-arm miRNA is illustrated on the top of chromosome ideogram and 3p-arm miRNA is illustrated on the bottom of chromosome ideogram. Users can then easily interrogate the differentially 5p-arm/3p-arm expressed miRNAs with their mobile devices. This study demonstrates the feasibility and utility of RNA-Seq Viewer App in addition to mRNA-Seq data visualization.

  8. What You Don't Notice Can Harm You: Age-Related Differences in Detecting Concurrent Visual, Auditory, and Tactile Cues.

    PubMed

    Pitts, Brandon J; Sarter, Nadine

    2018-06-01

    Objective This research sought to determine whether people can perceive and process three nonredundant (and unrelated) signals in vision, hearing, and touch at the same time and how aging and concurrent task demands affect this ability. Background Multimodal displays have been shown to improve multitasking and attention management; however, their potential limitations are not well understood. The majority of studies on multimodal information presentation have focused on the processing of only two concurrent and, most often, redundant cues by younger participants. Method Two experiments were conducted in which younger and older adults detected and responded to a series of singles, pairs, and triplets of visual, auditory, and tactile cues in the absence (Experiment 1) and presence (Experiment 2) of an ongoing simulated driving task. Detection rates, response times, and driving task performance were measured. Results Compared to younger participants, older adults showed longer response times and higher error rates in response to cues/cue combinations. Older participants often missed the tactile cue when three cues were combined. They sometimes falsely reported the presence of a visual cue when presented with a pair of auditory and tactile signals. Driving performance suffered most in the presence of cue triplets. Conclusion People are more likely to miss information if more than two concurrent nonredundant signals are presented to different sensory channels. Application The findings from this work help inform the design of multimodal displays and ensure their usefulness across different age groups and in various application domains.

  9. Trans3D: a free tool for dynamical visualization of EEG activity transmission in the brain.

    PubMed

    Blinowski, Grzegorz; Kamiński, Maciej; Wawer, Dariusz

    2014-08-01

    The problem of functional connectivity in the brain is in the focus of attention nowadays, since it is crucial for understanding information processing in the brain. A large repertoire of measures of connectivity have been devised, some of them being capable of estimating time-varying directed connectivity. Hence, there is a need for a dedicated software tool for visualizing the propagation of electrical activity in the brain. To this aim, the Trans3D application was developed. It is an open access tool based on widely available libraries and supporting both Windows XP/Vista/7(™), Linux and Mac environments. Trans3D can create animations of activity propagation between electrodes/sensors, which can be placed by the user on the scalp/cortex of a 3D model of the head. Various interactive graphic functions for manipulating and visualizing components of the 3D model and input data are available. An application of the Trans3D tool has helped to elucidate the dynamics of the phenomena of information processing in motor and cognitive tasks, which otherwise would have been very difficult to observe. Trans3D is available at: http://www.eeg.pl/. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. An Integrated Tone Mapping for High Dynamic Range Image Visualization

    NASA Astrophysics Data System (ADS)

    Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun

    2018-01-01

    There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.

  11. ATS displays: A reasoning visualization tool for expert systems

    NASA Technical Reports Server (NTRS)

    Selig, William John; Johannes, James D.

    1990-01-01

    Reasoning visualization is a useful tool that can help users better understand the inherently non-sequential logic of an expert system. While this is desirable in most all expert system applications, it is especially so for such critical systems as those destined for space-based operations. A hierarchical view of the expert system reasoning process and some characteristics of these various levels is presented. Also presented are Abstract Time Slice (ATS) displays, a tool to visualize the plethora of interrelated information available at the host inferencing language level of reasoning. The usefulness of this tool is illustrated with some examples from a prototype potable water expert system for possible use aboard Space Station Freedom.

  12. NASA GES DISC Aerosol analysis and visualization services

    NASA Astrophysics Data System (ADS)

    Wei, J. C.; Ichoku, C. M.; Petrenko, M.; Yang, W.; Albayrak, A.; Zhao, P.; Johnson, J. E.; Kempler, S.

    2015-12-01

    Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite-borne sensors routinely measure aerosols. There is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. Such misunderstanding may be avoided by providing satellite data with accurate pixel-level (Level 2) information, including pixel coverage area delineation and science team recommended quality screening for individual geophysical parameters. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) have developed multiple MAPSS applications as a part of Giovanni (Geospatial Interactive Online Visualization and Analysis Interface) data visualization and analysis tool - Giovanni-MAPSS and Giovanni-MAPSS_Explorer since 2007. The MAPSS database provides spatio-temporal statistics for multiple spatial spaceborne Level 2 aerosol products (MODIS Terra, MODIS Aqua, MISR, POLDER, OMI, CALIOP, SeaWiFS Deep Blue, and VIIRS) sampled over AERONET ground stations. In this presentation, I will demonstrate the improved features from Giovanni-MAPSS and introduce a new visualization service (Giovanni VizMAP) supporting various visualization and data accessing capabilities from satellite Level 2 data (non-aggregated and un-gridded) at high spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting.

  13. [Development and application of information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province].

    PubMed

    Mao, Yuan-Hua; Li, Dong; Ning, An; Qiu, Ling; Xiong, Ji-Jie

    2011-04-01

    To develop the information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province. Based on Access 2003, the system was programmed by Visual Basic 6.0 and packaged by Setup Factory 8.0. In the system, advanced schistosomiasis data were able to be input, printed, indexed, and statistically analyzed. The system could be operated and maintained easily and timely. The information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province is successfully developed.

  14. Applicability of Visual Analytics to Defence and Security Operations

    DTIC Science & Technology

    2011-06-01

    It shows the events importance in the news over time. Topics are extracted from fused video, audio and closed captions. Since viewing video...Detection of Anomalous Maritime Behavior, In Banissi, E. et al. (Eds.) Proceedings of the 12th IEEE International Conference on Information Visualisation

  15. Data, Data Everywhere!

    ERIC Educational Resources Information Center

    Busby, Joe R.; Ernst, Jeremy V.; Varnado, Terri E.

    2009-01-01

    Data acquisition and analysis are cornerstones for informed decision making about the environment. Facts and figures are vital to the practical application of systems and products. These data are collected through various means and organized into useful forms (i.e., visual imagery, datasets, and sounds). Whether collected by persons or obtained…

  16. A prototype system based on visual interactive SDM called VGC

    NASA Astrophysics Data System (ADS)

    Jia, Zelu; Liu, Yaolin; Liu, Yanfang

    2009-10-01

    In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. For spatial data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today's computers. Visual spatial data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the information and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper a visual interactive spatial data mining prototype system (visual geo-classify) based on VC++6.0 and MapObject2.0 are designed and developed, the basic algorithms of the spatial data mining is used decision tree and Bayesian networks, and data classify are used training and learning and the integration of the two to realize. The result indicates it's a practical and extensible visual interactive spatial data mining tool.

  17. Artificial organs: recent progress in artificial hearing and vision.

    PubMed

    Ifukube, Tohru

    2009-01-01

    Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas.

  18. Content-Based Medical Image Retrieval

    NASA Astrophysics Data System (ADS)

    Müller, Henning; Deserno, Thomas M.

    This chapter details the necessity for alternative access concepts to the currently mainly text-based methods in medical information retrieval. This need is partly due to the large amount of visual data produced, the increasing variety of medical imaging data and changing user patterns. The stored visual data contain large amounts of unused information that, if well exploited, can help diagnosis, teaching and research. The chapter briefly reviews the history of image retrieval and its general methods before technologies that have been developed in the medical domain are focussed. We also discuss evaluation of medical content-based image retrieval (CBIR) systems and conclude with pointing out their strengths, gaps, and further developments. As examples, the MedGIFT project and the Image Retrieval in Medical Applications (IRMA) framework are presented.

  19. Image analysis in modern ophthalmology: from acquisition to computer assisted diagnosis and telemedicine

    NASA Astrophysics Data System (ADS)

    Marrugo, Andrés G.; Millán, María S.; Cristóbal, Gabriel; Gabarda, Salvador; Sorel, Michal; Sroubek, Filip

    2012-06-01

    Medical digital imaging has become a key element of modern health care procedures. It provides visual documentation and a permanent record for the patients, and most important the ability to extract information about many diseases. Modern ophthalmology thrives and develops on the advances in digital imaging and computing power. In this work we present an overview of recent image processing techniques proposed by the authors in the area of digital eye fundus photography. Our applications range from retinal image quality assessment to image restoration via blind deconvolution and visualization of structural changes in time between patient visits. All proposed within a framework for improving and assisting the medical practice and the forthcoming scenario of the information chain in telemedicine.

  20. Engaging older adults in the visualization of sensor data facilitated by an open platform for connected devices.

    PubMed

    Bock, Christian; Demiris, George; Choi, Yong; Le, Thai; Thompson, Hilaire J; Samuel, Arjmand; Huang, Danny

    2016-03-11

    The use of smart home sensor systems is growing primarily due to the appeal of unobtrusively monitoring older adult health and wellness. However, integrating large-scale sensor systems within residential settings can be challenging when deployment takes place across multiple environments, requiring customization of applications, connection across various devices and effective visualization of complex longitudinal data. The objective of the study was to demonstrate the implementation of a smart home system using an open, extensible platform in a real-world setting and develop an application to visualize data real time. We deployed the open source Lab of Things platform in a house of 11 residents as a demonstration of feasibility over the course of 3 months. The system consisted of Aeon Labs Z-wave Door/Window sensors and an Aeon Labs Multi-sensor that collected data on motion, temperature, luminosity, and humidity. We applied a Rapid Iterative Testing and Evaluation approach towards designing a visualization interface engaging gerontological experts. We then conducted a survey with 19 older adult and caregiver stakeholders to inform further design revisions. Our initial visualization mockups consisted of a bar chart representing activity level over time. Family members felt comfortable using the application. Older adults however, indicated it would be difficult to learn to use the application, and had trouble identifying utility. A key for older adults was ensuring that the data collected could be utilized by their family members, physicians, or caregivers. The approach described in this work is generalizable towards future smart home deployments and can be a valuable guide for researchers to scale a study across multiple homes and connected devices, and to create personalized interfaces for end users.

  1. Integration of Geographical Information Systems and Geophysical Applications with Distributed Computing Technologies.

    NASA Astrophysics Data System (ADS)

    Pierce, M. E.; Aktas, M. S.; Aydin, G.; Fox, G. C.; Gadgil, H.; Sayar, A.

    2005-12-01

    We examine the application of Web Service Architectures and Grid-based distributed computing technologies to geophysics and geo-informatics. We are particularly interested in the integration of Geographical Information System (GIS) services with distributed data mining applications. GIS services provide the general purpose framework for building archival data services, real time streaming data services, and map-based visualization services that may be integrated with data mining and other applications through the use of distributed messaging systems and Web Service orchestration tools. Building upon on our previous work in these areas, we present our current research efforts. These include fundamental investigations into increasing XML-based Web service performance, supporting real time data streams, and integrating GIS mapping tools with audio/video collaboration systems for shared display and annotation.

  2. Advanced boundary layer transition measurement methods for flight applications

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.

    1986-01-01

    In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.

  3. Intelligent visual localization of wireless capsule endoscopes enhanced by color information.

    PubMed

    Dimas, George; Spyrou, Evaggelos; Iakovidis, Dimitris K; Koulaouzidis, Anastasios

    2017-10-01

    Wireless capsule endoscopy (WCE) is performed with a miniature swallowable endoscope enabling the visualization of the whole gastrointestinal (GI) tract. One of the most challenging problems in WCE is the localization of the capsule endoscope (CE) within the GI lumen. Contemporary, radiation-free localization approaches are mainly based on the use of external sensors and transit time estimation techniques, with practically low localization accuracy. Latest advances for the solution of this problem include localization approaches based solely on visual information from the CE camera. In this paper we present a novel visual localization approach based on an intelligent, artificial neural network, architecture which implements a generic visual odometry (VO) framework capable of estimating the motion of the CE in physical units. Unlike the conventional, geometric, VO approaches, the proposed one is adaptive to the geometric model of the CE used; therefore, it does not require any prior knowledge about and its intrinsic parameters. Furthermore, it exploits color as a cue to increase localization accuracy and robustness. Experiments were performed using a robotic-assisted setup providing ground truth information about the actual location of the CE. The lowest average localization error achieved is 2.70 ± 1.62 cm, which is significantly lower than the error obtained with the geometric approach. This result constitutes a promising step towards the in-vivo application of VO, which will open new horizons for accurate local treatment, including drug infusion and surgical interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. OpenEIS. Developer Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutes, Robert G.; Neubauer, Casey C.; Haack, Jereme N.

    2015-03-31

    The Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of an open-source software tool for analyzing building energy and operational data: OpenEIS (open energy information system). This tool addresses the problems of both owners of building data and developers of tools to analyze this data. Building owners and managers have data but lack the tools to analyze it while tool developers lack data in a common format to ease development of reusable data analysis tools. This document is intended for developers of applications and explains the mechanisms for building analysis applications, accessing data, and displaying datamore » using a visualization from the included library. A brief introduction to the visualizations can be used as a jumping off point for developers familiar with JavaScript to produce their own. Several example applications are included which can be used along with this document to implement algorithms for performing energy data analysis.« less

  5. Hyperspectral imaging for non-contact analysis of forensic traces.

    PubMed

    Edelman, G J; Gaston, E; van Leeuwen, T G; Cullen, P J; Aalders, M C G

    2012-11-30

    Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy, to obtain both spatial and spectral information from a specimen. This technique enables investigators to analyze the chemical composition of traces and simultaneously visualize their spatial distribution. HSI offers significant potential for the detection, visualization, identification and age estimation of forensic traces. The rapid, non-destructive and non-contact features of HSI mark its suitability as an analytical tool for forensic science. This paper provides an overview of the principles, instrumentation and analytical techniques involved in hyperspectral imaging. We describe recent advances in HSI technology motivating forensic science applications, e.g. the development of portable and fast image acquisition systems. Reported forensic science applications are reviewed. Challenges are addressed, such as the analysis of traces on backgrounds encountered in casework, concluded by a summary of possible future applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology.

    PubMed

    Koeva, Mila; Luleva, Mila; Maldjanski, Plamen

    2017-04-11

    Development and virtual representation of 3D models of Cultural Heritage (CH) objects has triggered great interest over the past decade. The main reason for this is the rapid development in the fields of photogrammetry and remote sensing, laser scanning, and computer vision. The advantages of using 3D models for restoration, preservation, and documentation of valuable historical and architectural objects have been numerously demonstrated by scientists in the field. Moreover, 3D model visualization in virtual reality has been recognized as an efficient, fast, and easy way of representing a variety of objects worldwide for present-day users, who have stringent requirements and high expectations. However, the main focus of recent research is the visual, geometric, and textural characteristics of a single concrete object, while integration of large numbers of models with additional information-such as historical overview, detailed description, and location-are missing. Such integrated information can be beneficial, not only for tourism but also for accurate documentation. For that reason, we demonstrate in this paper an integration of high-resolution spherical panoramas, a variety of maps, GNSS, sound, video, and text information for representation of numerous cultural heritage objects. These are then displayed in a web-based portal with an intuitive interface. The users have the opportunity to choose freely from the provided information, and decide for themselves what is interesting to visit. Based on the created web application, we provide suggestions and guidelines for similar studies. We selected objects, which are located in Bulgaria-a country with thousands of years of history and cultural heritage dating back to ancient civilizations. The methods used in this research are applicable for any type of spherical or cylindrical images and can be easily followed and applied in various domains. After a visual and metric assessment of the panoramas and the evaluation of the web-portal, we conclude that this novel approach is a very effective, fast, informative, and accurate way to present, disseminate, and document cultural heritage objects.

  7. Overview: The Design, Adoption, and Analysis of a Visual Document Mining Tool for Investigative Journalists.

    PubMed

    Brehmer, Matthew; Ingram, Stephen; Stray, Jonathan; Munzner, Tamara

    2014-12-01

    For an investigative journalist, a large collection of documents obtained from a Freedom of Information Act request or a leak is both a blessing and a curse: such material may contain multiple newsworthy stories, but it can be difficult and time consuming to find relevant documents. Standard text search is useful, but even if the search target is known it may not be possible to formulate an effective query. In addition, summarization is an important non-search task. We present Overview, an application for the systematic analysis of large document collections based on document clustering, visualization, and tagging. This work contributes to the small set of design studies which evaluate a visualization system "in the wild", and we report on six case studies where Overview was voluntarily used by self-initiated journalists to produce published stories. We find that the frequently-used language of "exploring" a document collection is both too vague and too narrow to capture how journalists actually used our application. Our iterative process, including multiple rounds of deployment and observations of real world usage, led to a much more specific characterization of tasks. We analyze and justify the visual encoding and interaction techniques used in Overview's design with respect to our final task abstractions, and propose generalizable lessons for visualization design methodology.

  8. Visualization of risk structures for interactive planning of image guided radiofrequency ablation of liver tumors

    NASA Astrophysics Data System (ADS)

    Rieder, Christian; Schwier, Michael; Weihusen, Andreas; Zidowitz, Stephan; Peitgen, Heinz-Otto

    2009-02-01

    Image guided radiofrequency ablation (RFA) is becoming a standard procedure as a minimally invasive method for tumor treatment in the clinical routine. The visualization of pathological tissue and potential risk structures like vessels or important organs gives essential support in image guided pre-interventional RFA planning. In this work our aim is to present novel visualization techniques for interactive RFA planning to support the physician with spatial information of pathological structures as well as the finding of trajectories without harming vitally important tissue. Furthermore, we illustrate three-dimensional applicator models of different manufactures combined with corresponding ablation areas in homogenous tissue, as specified by the manufacturers, to enhance the estimated amount of cell destruction caused by ablation. The visualization techniques are embedded in a workflow oriented application, designed for the use in the clinical routine. To allow a high-quality volume rendering we integrated a visualization method using the fuzzy c-means algorithm. This method automatically defines a transfer function for volume visualization of vessels without the need of a segmentation mask. However, insufficient visualization results of the displayed vessels caused by low data quality can be improved using local vessel segmentation in the vicinity of the lesion. We also provide an interactive segmentation technique of liver tumors for the volumetric measurement and for the visualization of pathological tissue combined with anatomical structures. In order to support coagulation estimation with respect to the heat-sink effect of the cooling blood flow which decreases thermal ablation, a numerical simulation of the heat distribution is provided.

  9. People-oriented Information Visualization Design

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyong; Zhang, Bolun

    2018-04-01

    In the 21st century with rapid development, in the wake of the continuous progress of science and technology, human society enters the information era and the era of big data, and the lifestyle and aesthetic system also change accordingly, so the emerging field of information visualization is increasingly popular. Information visualization design is the process of visualizing all kinds of tedious information data, so as to quickly accept information and save time-cost. Along with the development of the process of information visualization, information design, also becomes hotter and hotter, and emotional design, people-oriented design is an indispensable part of in the design of information. This paper probes information visualization design through emotional analysis of information design based on the social context of people-oriented experience from the perspective of art design. Based on the three levels of emotional information design: instinct level, behavior level and reflective level research, to explore and discuss information visualization design.

  10. Automatic speech recognition in air-ground data link

    NASA Technical Reports Server (NTRS)

    Armstrong, Herbert B.

    1989-01-01

    In the present air traffic system, information presented to the transport aircraft cockpit crew may originate from a variety of sources and may be presented to the crew in visual or aural form, either through cockpit instrument displays or, most often, through voice communication. Voice radio communications are the most error prone method for air-ground data link. Voice messages can be misstated or misunderstood and radio frequency congestion can delay or obscure important messages. To prevent proliferation, a multiplexed data link display can be designed to present information from multiple data link sources on a shared cockpit display unit (CDU) or multi-function display (MFD) or some future combination of flight management and data link information. An aural data link which incorporates an automatic speech recognition (ASR) system for crew response offers several advantages over visual displays. The possibility of applying ASR to the air-ground data link was investigated. The first step was to review current efforts in ASR applications in the cockpit and in air traffic control and evaluated their possible data line application. Next, a series of preliminary research questions is to be developed for possible future collaboration.

  11. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies

    PubMed Central

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-01-01

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications. PMID:29393887

  12. The contribution of visual and vestibular information to spatial orientation by 6- to 14-month-old infants and adults.

    PubMed

    Bremner, J Gavin; Hatton, Fran; Foster, Kirsty A; Mason, Uschi

    2011-09-01

    Although there is much research on infants' ability to orient in space, little is known regarding the information they use to do so. This research uses a rotating room to evaluate the relative contribution of visual and vestibular information to location of a target following bodily rotation. Adults responded precisely on the basis of visual flow information. Seven-month-olds responded mostly on the basis of visual flow, whereas 9-month-olds responded mostly on the basis of vestibular information, and 12-month-olds responded mostly on the basis of visual information. Unlike adults, infants of all ages showed partial influence by both modalities. Additionally, 7-month-olds were capable of using vestibular information when there was no visual information for movement or stability, and 9-month-olds still relied on vestibular information when visual information was enhanced. These results are discussed in the context of neuroscientific evidence regarding visual-vestibular interaction, and in relation to possible changes in reliance on visual and vestibular information following acquisition of locomotion. © 2011 Blackwell Publishing Ltd.

  13. Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebel, Oliver; Keranen, Soile V.E.; Biggin, Mark

    Three-dimensional gene expression PointCloud data generated by the Berkeley Drosophila Transcription Network Project (BDTNP) provides quantitative information about the spatial and temporal expression of genes in early Drosophila embryos at cellular resolution. The BDTNP team visualizes and analyzes Point-Cloud data using the software application PointCloudXplore (PCX). To maximize the impact of novel, complex data sets, such as PointClouds, the data needs to be accessible to biologists and comprehensible to developers of analysis functions. We address this challenge by linking PCX and Matlab via a dedicated interface, thereby providing biologists seamless access to advanced data analysis functions and giving bioinformatics researchersmore » the opportunity to integrate their analysis directly into the visualization application. To demonstrate the usefulness of this approach, we computationally model parts of the expression pattern of the gene even skipped using a genetic algorithm implemented in Matlab and integrated into PCX via our Matlab interface.« less

  14. Dynamic Evaluation of the Multimedia Interface in Computer Supported Learning

    ERIC Educational Resources Information Center

    Zaidel, Mark

    2007-01-01

    As information technology applications become widespread in education, new innovations in computer systems and communication technologies stimulate changes in students' visual preferences. In a university environment each new cohort of students is more comfortable in the digital world, expecting that new technology will enhance teaching and…

  15. What Have the Feds Done for Landscape Ecology Lately? Ecosystem Services, Data and Tools

    EPA Science Inventory

    Over recent decades the government has made a wealth of information publically available as part of the Federal Open Data Policy. The research, web and mobile applications, data, and visualization tools are all aimed at helping decision makers such as businesses, non-profit organ...

  16. Enhancing Science Kits with the Driving Question Board

    ERIC Educational Resources Information Center

    Nordine, Jeff; Torres, Ruben

    2013-01-01

    This article describes the driving question board (DQB), a visual organizer that supports inquiry-based instruction through the use of guiding questions. The DQB is a teaching aid designed to increase student engagement alongside science kits. Information is provided on its application to a lesson on buoyancy, highlighting how it improved…

  17. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    ERIC Educational Resources Information Center

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  18. Application of hyperspectral imaging for characterization of intramuscular fat distribution in beef

    USDA-ARS?s Scientific Manuscript database

    In this study, a hyperspectral imaging system in the spectral region of 400–1000 nm was used for visualization and determination of intramuscular fat concentration in beef samples. Hyperspectral images were acquired for beef samples, and spectral information was then extracted from each single sampl...

  19. Aesthetics, Usefulness and Performance in User--Search-Engine Interaction

    ERIC Educational Resources Information Center

    Katz, Adi

    2010-01-01

    Issues of visual appeal have become an integral part of designing interactive systems. Interface aesthetics may form users' attitudes towards computer applications and information technology. Aesthetics can affect user satisfaction, and influence their willingness to buy or adopt a system. This study follows previous studies that found that users…

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zong, Ziliang; Job, Joshua; Zhang, Xuesong

    Geo-visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data are generated every day. On the other hand, these data are not well utilized due to the lack of free and easily used data-visualization tools. This becomes even worse when most of the spatial data remains in the form of plain text such as log files. This paper describes a way of visualizing massive plain-text spatial data at no cost by utilizing Google Earth and NASAWorld Wind. We illustrate our methods by visualizing over 170,000 global downloadmore » requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). Our visualization results identify the most popular satellite images around the world and discover the global user download patterns. The benefits of this research are: 1. assisting in improving the satellite image downloading services provided by USGS, and 2. providing a proxy for analyzing the hot spot areas of research. Most importantly, our methods demonstrate an easy way to geovisualize massive textual spatial data, which is highly applicable to mining spatially referenced data and information on a wide variety of research domains (e.g., hydrology, agriculture, atmospheric science, natural hazard, and global climate change).« less

  1. RIAD visual imaging branch assessment

    NASA Technical Reports Server (NTRS)

    Beam, Sherilee F.

    1993-01-01

    Every year the demand to visualize research efforts increases. The visualization provides the means to effectively analyze data and present the results. The technology support for visualization is constantly changing, improving, and being made available to users everywhere. As such, many researchers are entering into the practice of doing their own visualization in house - sometimes successfully, sometimes not. In an effort to keep pace with the visualization needs of researchers, the Visual Imaging Branch of the Research, Information, and Applications Division at NASA Langley Research Center has conducted an investigation into the current status of imaging technology and imaging production throughout the various research branches at the center. This investigation will allow the branch to evaluate its current resources and personnel in an effort to identify future directions for meeting the needs of the researchers at the center. The investigation team, which consisted of the ASEE fellow, the head of the video section, and the head of the photo section, developed an interview format that could be accomplished during a short interview period with researchers, and yet still provide adequate statistics about items such as in-house equipment and usage.

  2. Data Lakes and Data Visualization: An Innovative Approach to Address the Challenges of Access to Health Care in Mississippi

    PubMed Central

    Krause, Denise D.

    2015-01-01

    Background: There are a variety of challenges to developing strategies to improve access to health care, but access to data is critical for effective evidence-based decision-making. Many agencies and organizations throughout Mississippi have been collecting quality health data for many years. However, those data have historically resided in data silos and have not been readily shared. A strategy was developed to build and coordinate infrastructure, capacity, tools, and resources to facilitate health workforce and population health planning throughout the state. Objective: Realizing data as the foundation upon which to build, the primary objective was to develop the capacity to collect, store, maintain, visualize, and analyze data from a variety of disparate sources -- with the ultimate goal of improving access to health care. Specific aims were to: 1) build a centralized data repository and scalable informatics platform, 2) develop a data management solution for this platform and then, 3) derive value from this platform by facilitating data visualization and analysis. Methods: A managed data lake was designed and constructed for health data from disparate sources throughout the state of Mississippi. A data management application was developed to log and track all data sources, maps and geographies, and data marts. With this informatics platform as a foundation, a variety of tools are used to visualize and analyze data. To illustrate, a web mapping application was developed to examine the health workforce geographically and attractive data visualizations and dynamic dashboards were created to facilitate health planning and research. Results: Samples of data visualizations that aim to inform health planners and policymakers are presented. Many agencies and organizations throughout the state benefit from this platform. Conclusion: The overarching goal is that by providing timely, reliable information to stakeholders, Mississippians in general will experience improved access to quality care. PMID:26834938

  3. Discussing State-of-the-Art Spatial Visualization Techniques Applicable for the Epidemiological Surveillance Data on the Example of Campylobacter spp. in Raw Chicken Meat.

    PubMed

    Plaza-Rodríguez, C; Appel, B; Kaesbohrer, A; Filter, M

    2016-08-01

    Within the European activities for the 'Monitoring and Collection of Information on Zoonoses', annually EFSA publishes a European report, including information related to the prevalence of Campylobacter spp. in Germany. Spatial epidemiology becomes here a fundamental tool for the generation of these reports, including the representation of prevalence as an essential element. Until now, choropleth maps are the default visualization technique applied in epidemiological monitoring and surveillance reports made by EFSA and German authorities. However, due to its limitations, it seems to be reasonable to explore alternative chart type. Four maps including choropleth, cartogram, graduated symbols and dot-density maps were created to visualize real-world sample data on the prevalence of Campylobacter spp. in raw chicken meat samples in Germany in 2011. In addition, adjacent and coincident maps were created to visualize also the associated uncertainty. As an outcome, we found that there is not a single data visualization technique that encompasses all the necessary features to visualize prevalence data alone or prevalence data together with their associated uncertainty. All the visualization techniques contemplated in this study demonstrated to have both advantages and disadvantages. To determine which visualization technique should be used for future reports, we recommend to create a dialogue between end-users and epidemiologists on the basis of sample data and charts. The final decision should also consider the knowledge and experience of end-users as well as the specific objective to be achieved with the charts. © 2015 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  4. ATLAS Eventlndex monitoring system using the Kibana analytics and visualization platform

    NASA Astrophysics Data System (ADS)

    Barberis, D.; Cárdenas Zárate, S. E.; Favareto, A.; Fernandez Casani, A.; Gallas, E. J.; Garcia Montoro, C.; Gonzalez de la Hoz, S.; Hrivnac, J.; Malon, D.; Prokoshin, F.; Salt, J.; Sanchez, J.; Toebbicke, R.; Yuan, R.; ATLAS Collaboration

    2016-10-01

    The ATLAS EventIndex is a data catalogue system that stores event-related metadata for all (real and simulated) ATLAS events, on all processing stages. As it consists of different components that depend on other applications (such as distributed storage, and different sources of information) we need to monitor the conditions of many heterogeneous subsystems, to make sure everything is working correctly. This paper describes how we gather information about the EventIndex components and related subsystems: the Producer-Consumer architecture for data collection, health parameters from the servers that run EventIndex components, EventIndex web interface status, and the Hadoop infrastructure that stores EventIndex data. This information is collected, processed, and then displayed using CERN service monitoring software based on the Kibana analytic and visualization package, provided by CERN IT Department. EventIndex monitoring is used both by the EventIndex team and ATLAS Distributed Computing shifts crew.

  5. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, Giovanni

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Acker, J.; Kempler, S.

    2016-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to users around the world including research and application scientists, students, citizen scientists, etc. The GESDISC is the home (archive) of remote sensing datasets for NASA Precipitation and Hydrology, Atmospheric Composition and Dynamics, etc. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels in different countries. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, http:giovanni.gsfc.nasa.gov) allows users to explore satellite-based datasets using sophisticated analyses and visualization without downloading data and software, which is particularly suitable for novices (such as students) to use NASA datasets in STEM (science, technology, engineering and mathematics) activities. In this presentation, we will briefly introduce Giovanni along with examples for STEM activities.

  6. The influence of selective attention to auditory and visual speech on the integration of audiovisual speech information.

    PubMed

    Buchan, Julie N; Munhall, Kevin G

    2011-01-01

    Conflicting visual speech information can influence the perception of acoustic speech, causing an illusory percept of a sound not present in the actual acoustic speech (the McGurk effect). We examined whether participants can voluntarily selectively attend to either the auditory or visual modality by instructing participants to pay attention to the information in one modality and to ignore competing information from the other modality. We also examined how performance under these instructions was affected by weakening the influence of the visual information by manipulating the temporal offset between the audio and video channels (experiment 1), and the spatial frequency information present in the video (experiment 2). Gaze behaviour was also monitored to examine whether attentional instructions influenced the gathering of visual information. While task instructions did have an influence on the observed integration of auditory and visual speech information, participants were unable to completely ignore conflicting information, particularly information from the visual stream. Manipulating temporal offset had a more pronounced interaction with task instructions than manipulating the amount of visual information. Participants' gaze behaviour suggests that the attended modality influences the gathering of visual information in audiovisual speech perception.

  7. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters

    NASA Astrophysics Data System (ADS)

    Oby, Emily R.; Perel, Sagi; Sadtler, Patrick T.; Ruff, Douglas A.; Mischel, Jessica L.; Montez, David F.; Cohen, Marlene R.; Batista, Aaron P.; Chase, Steven M.

    2016-06-01

    Objective. A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach. We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.

  8. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters

    PubMed Central

    Oby, Emily R; Perel, Sagi; Sadtler, Patrick T; Ruff, Douglas A; Mischel, Jessica L; Montez, David F; Cohen, Marlene R; Batista, Aaron P; Chase, Steven M

    2018-01-01

    Objective A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain–computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue. PMID:27097901

  9. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters.

    PubMed

    Oby, Emily R; Perel, Sagi; Sadtler, Patrick T; Ruff, Douglas A; Mischel, Jessica L; Montez, David F; Cohen, Marlene R; Batista, Aaron P; Chase, Steven M

    2016-06-01

    A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.

  10. Audio-visual presentation of information for informed consent for participation in clinical trials.

    PubMed

    Synnot, Anneliese; Ryan, Rebecca; Prictor, Megan; Fetherstonhaugh, Deirdre; Parker, Barbara

    2014-05-09

    Informed consent is a critical component of clinical research. Different methods of presenting information to potential participants of clinical trials may improve the informed consent process. Audio-visual interventions (presented, for example, on the Internet or on DVD) are one such method. We updated a 2008 review of the effects of these interventions for informed consent for trial participation. To assess the effects of audio-visual information interventions regarding informed consent compared with standard information or placebo audio-visual interventions regarding informed consent for potential clinical trial participants, in terms of their understanding, satisfaction, willingness to participate, and anxiety or other psychological distress. We searched: the Cochrane Central Register of Controlled Trials (CENTRAL), The Cochrane Library, issue 6, 2012; MEDLINE (OvidSP) (1946 to 13 June 2012); EMBASE (OvidSP) (1947 to 12 June 2012); PsycINFO (OvidSP) (1806 to June week 1 2012); CINAHL (EbscoHOST) (1981 to 27 June 2012); Current Contents (OvidSP) (1993 Week 27 to 2012 Week 26); and ERIC (Proquest) (searched 27 June 2012). We also searched reference lists of included studies and relevant review articles, and contacted study authors and experts. There were no language restrictions. We included randomised and quasi-randomised controlled trials comparing audio-visual information alone, or in conjunction with standard forms of information provision (such as written or verbal information), with standard forms of information provision or placebo audio-visual information, in the informed consent process for clinical trials. Trials involved individuals or their guardians asked to consider participating in a real or hypothetical clinical study. (In the earlier version of this review we only included studies evaluating informed consent interventions for real studies). Two authors independently assessed studies for inclusion and extracted data. We synthesised the findings using meta-analysis, where possible, and narrative synthesis of results. We assessed the risk of bias of individual studies and considered the impact of the quality of the overall evidence on the strength of the results. We included 16 studies involving data from 1884 participants. Nine studies included participants considering real clinical trials, and eight included participants considering hypothetical clinical trials, with one including both. All studies were conducted in high-income countries.There is still much uncertainty about the effect of audio-visual informed consent interventions on a range of patient outcomes. However, when considered across comparisons, we found low to very low quality evidence that such interventions may slightly improve knowledge or understanding of the parent trial, but may make little or no difference to rate of participation or willingness to participate. Audio-visual presentation of informed consent may improve participant satisfaction with the consent information provided. However its effect on satisfaction with other aspects of the process is not clear. There is insufficient evidence to draw conclusions about anxiety arising from audio-visual informed consent. We found conflicting, very low quality evidence about whether audio-visual interventions took more or less time to administer. No study measured researcher satisfaction with the informed consent process, nor ease of use.The evidence from real clinical trials was rated as low quality for most outcomes, and for hypothetical studies, very low. We note, however, that this was in large part due to poor study reporting, the hypothetical nature of some studies and low participant numbers, rather than inconsistent results between studies or confirmed poor trial quality. We do not believe that any studies were funded by organisations with a vested interest in the results. The value of audio-visual interventions as a tool for helping to enhance the informed consent process for people considering participating in clinical trials remains largely unclear, although trends are emerging with regard to improvements in knowledge and satisfaction. Many relevant outcomes have not been evaluated in randomised trials. Triallists should continue to explore innovative methods of providing information to potential trial participants during the informed consent process, mindful of the range of outcomes that the intervention should be designed to achieve, and balancing the resource implications of intervention development and delivery against the purported benefits of any intervention.More trials, adhering to CONSORT standards, and conducted in settings and populations underserved in this review, i.e. low- and middle-income countries and people with low literacy, would strengthen the results of this review and broaden its applicability. Assessing process measures, such as time taken to administer the intervention and researcher satisfaction, would inform the implementation of audio-visual consent materials.

  11. PRISM, a Novel Visual Metaphor Measuring Personally Salient Appraisals, Attitudes and Decision-Making: Qualitative Evidence Synthesis

    PubMed Central

    Sensky, Tom; Büchi, Stefan

    2016-01-01

    Background PRISM (the Pictorial Representation of Illness and Self Measure) is a novel, simple visual instrument. Its utility was initially discovered serendipitously, but has been validated as a quantitative measure of suffering. Recently, new applications for different purposes, even in non-health settings, have encouraged further exploration of how PRISM works, and how it might be applied. This review will summarise the results to date from applications of PRISM and propose a generic conceptualisation of how PRISM works which is consistent with all these applications. Methods A systematic review, in the form of a qualitative evidence synthesis, was carried out of all available published data on PRISM. Results Fifty-two publications were identified, with a total of 8254 participants. Facilitated by simple instructions, PRISM has been used with patient groups in a variety of settings and cultures. As a measure of suffering, PRISM has, with few exceptions, behaved as expected according to Eric Cassell’s seminal conceptualisation of suffering. PRISM has also been used to assess beliefs about or attitudes to stressful working conditions, interpersonal relations, alcohol consumption, and suicide, amongst others. Discussion This review supports PRISM behaving as a visual metaphor of the relationship of objects (eg ‘my illness’) to a subject (eg ‘myself’) in a defined context (eg ‘my life at the moment’). As a visual metaphor, it is quick to complete and yields personally salient information. PRISM is likely to have wide applications in assessing beliefs, attitudes, and decision-making, because of its properties, and because it yields both quantitative and qualitative data. In medicine, it can serve as a generic patient-reported outcome measure. It can serve as a tool for representational guidance, can be applied to developing strategies visually, and is likely to have applications in coaching, psychological assessment and therapeutic interventions. PMID:27214024

  12. HERA: A dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios

    NASA Astrophysics Data System (ADS)

    Jones, Jeanne M.; Henry, Kevin; Wood, Nathan; Ng, Peter; Jamieson, Matthew

    2017-12-01

    The Hazard Exposure Reporting and Analytics (HERA) dynamic web application was created to provide a platform that makes research on community exposure to coastal-flooding hazards influenced by sea level rise accessible to planners, decision makers, and the public in a manner that is both easy to use and easily accessible. HERA allows users to (a) choose flood-hazard scenarios based on sea level rise and storm assumptions, (b) appreciate the modeling uncertainty behind a chosen hazard zone, (c) select one or several communities to examine exposure, (d) select the category of population or societal asset, and (e) choose how to look at results. The application is designed to highlight comparisons between (a) varying levels of sea level rise and coastal storms, (b) communities, (c) societal asset categories, and (d) spatial scales. Through a combination of spatial and graphical visualizations, HERA aims to help individuals and organizations to craft more informed mitigation and adaptation strategies for climate-driven coastal hazards. This paper summarizes the technologies used to maximize the user experience, in terms of interface design, visualization approaches, and data processing.

  13. Image processing and applications based on visualizing navigation service

    NASA Astrophysics Data System (ADS)

    Hwang, Chyi-Wen

    2015-07-01

    When facing the "overabundant" of semantic web information, in this paper, the researcher proposes the hierarchical classification and visualizing RIA (Rich Internet Application) navigation system: Concept Map (CM) + Semantic Structure (SS) + the Knowledge on Demand (KOD) service. The aim of the Multimedia processing and empirical applications testing, was to investigating the utility and usability of this visualizing navigation strategy in web communication design, into whether it enables the user to retrieve and construct their personal knowledge or not. Furthermore, based on the segment markets theory in the Marketing model, to propose a User Interface (UI) classification strategy and formulate a set of hypermedia design principles for further UI strategy and e-learning resources in semantic web communication. These research findings: (1) Irrespective of whether the simple declarative knowledge or the complex declarative knowledge model is used, the "CM + SS + KOD navigation system" has a better cognition effect than the "Non CM + SS + KOD navigation system". However, for the" No web design experience user", the navigation system does not have an obvious cognition effect. (2) The essential of classification in semantic web communication design: Different groups of user have a diversity of preference needs and different cognitive styles in the CM + SS + KOD navigation system.

  14. HERA: A dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios

    USGS Publications Warehouse

    Jones, Jeanne M.; Henry, Kevin; Wood, Nathan J.; Ng, Peter; Jamieson, Matthew

    2017-01-01

    The Hazard Exposure Reporting and Analytics (HERA) dynamic web application was created to provide a platform that makes research on community exposure to coastal-flooding hazards influenced by sea level rise accessible to planners, decision makers, and the public in a manner that is both easy to use and easily accessible. HERA allows users to (a) choose flood-hazard scenarios based on sea level rise and storm assumptions, (b) appreciate the modeling uncertainty behind a chosen hazard zone, (c) select one or several communities to examine exposure, (d) select the category of population or societal asset, and (e) choose how to look at results. The application is designed to highlight comparisons between (a) varying levels of sea level rise and coastal storms, (b) communities, (c) societal asset categories, and (d) spatial scales. Through a combination of spatial and graphical visualizations, HERA aims to help individuals and organizations to craft more informed mitigation and adaptation strategies for climate-driven coastal hazards. This paper summarizes the technologies used to maximize the user experience, in terms of interface design, visualization approaches, and data processing.

  15. ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models.

    PubMed

    Marvel, Skylar W; To, Kimberly; Grimm, Fabian A; Wright, Fred A; Rusyn, Ivan; Reif, David M

    2018-03-05

    Drawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates. We detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output. We present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org .

  16. ChemMaps: Towards an approach for visualizing the chemical space based on adaptive satellite compounds

    PubMed Central

    Naveja, J. Jesús; Medina-Franco, José L.

    2017-01-01

    We present a novel approach called ChemMaps for visualizing chemical space based on the similarity matrix of compound datasets generated with molecular fingerprints’ similarity. The method uses a ‘satellites’ approach, where satellites are, in principle, molecules whose similarity to the rest of the molecules in the database provides sufficient information for generating a visualization of the chemical space. Such an approach could help make chemical space visualizations more efficient. We hereby describe a proof-of-principle application of the method to various databases that have different diversity measures. Unsurprisingly, we found the method works better with databases that have low 2D diversity. 3D diversity played a secondary role, although it seems to be more relevant as 2D diversity increases. For less diverse datasets, taking as few as 25% satellites seems to be sufficient for a fair depiction of the chemical space. We propose to iteratively increase the satellites number by a factor of 5% relative to the whole database, and stop when the new and the prior chemical space correlate highly. This Research Note represents a first exploratory step, prior to the full application of this method for several datasets. PMID:28794856

  17. ChemMaps: Towards an approach for visualizing the chemical space based on adaptive satellite compounds.

    PubMed

    Naveja, J Jesús; Medina-Franco, José L

    2017-01-01

    We present a novel approach called ChemMaps for visualizing chemical space based on the similarity matrix of compound datasets generated with molecular fingerprints' similarity. The method uses a 'satellites' approach, where satellites are, in principle, molecules whose similarity to the rest of the molecules in the database provides sufficient information for generating a visualization of the chemical space. Such an approach could help make chemical space visualizations more efficient. We hereby describe a proof-of-principle application of the method to various databases that have different diversity measures. Unsurprisingly, we found the method works better with databases that have low 2D diversity. 3D diversity played a secondary role, although it seems to be more relevant as 2D diversity increases. For less diverse datasets, taking as few as 25% satellites seems to be sufficient for a fair depiction of the chemical space. We propose to iteratively increase the satellites number by a factor of 5% relative to the whole database, and stop when the new and the prior chemical space correlate highly. This Research Note represents a first exploratory step, prior to the full application of this method for several datasets.

  18. Big data for space situation awareness

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Pugh, Mark; Sheaff, Carolyn; Raquepas, Joe; Rocci, Peter

    2017-05-01

    Recent advances in big data (BD) have focused research on the volume, velocity, veracity, and variety of data. These developments enable new opportunities in information management, visualization, machine learning, and information fusion that have potential implications for space situational awareness (SSA). In this paper, we explore some of these BD trends as applicable for SSA towards enhancing the space operating picture. The BD developments could increase in measures of performance and measures of effectiveness for future management of the space environment. The global SSA influences include resident space object (RSO) tracking and characterization, cyber protection, remote sensing, and information management. The local satellite awareness can benefit from space weather, health monitoring, and spectrum management for situation space understanding. One area in big data of importance to SSA is value - getting the correct data/information at the right time, which corresponds to SSA visualization for the operator. A SSA big data example is presented supporting disaster relief for space situation awareness, assessment, and understanding.

  19. Windows to the soul: vision science as a tool for studying biological mechanisms of information processing deficits in schizophrenia.

    PubMed

    Yoon, Jong H; Sheremata, Summer L; Rokem, Ariel; Silver, Michael A

    2013-10-31

    Cognitive and information processing deficits are core features and important sources of disability in schizophrenia. Our understanding of the neural substrates of these deficits remains incomplete, in large part because the complexity of impairments in schizophrenia makes the identification of specific deficits very challenging. Vision science presents unique opportunities in this regard: many years of basic research have led to detailed characterization of relationships between structure and function in the early visual system and have produced sophisticated methods to quantify visual perception and characterize its neural substrates. We present a selective review of research that illustrates the opportunities for discovery provided by visual studies in schizophrenia. We highlight work that has been particularly effective in applying vision science methods to identify specific neural abnormalities underlying information processing deficits in schizophrenia. In addition, we describe studies that have utilized psychophysical experimental designs that mitigate generalized deficit confounds, thereby revealing specific visual impairments in schizophrenia. These studies contribute to accumulating evidence that early visual cortex is a useful experimental system for the study of local cortical circuit abnormalities in schizophrenia. The high degree of similarity across neocortical areas of neuronal subtypes and their patterns of connectivity suggests that insights obtained from the study of early visual cortex may be applicable to other brain regions. We conclude with a discussion of future studies that combine vision science and neuroimaging methods. These studies have the potential to address pressing questions in schizophrenia, including the dissociation of local circuit deficits vs. impairments in feedback modulation by cognitive processes such as spatial attention and working memory, and the relative contributions of glutamatergic and GABAergic deficits.

  20. Visualising probabilistic flood forecast information: expert preferences and perceptions of best practice in uncertainty communication

    NASA Astrophysics Data System (ADS)

    Pappenberger, F.; Stephens, E. M.; Thielen, J.; Salomon, P.; Demeritt, D.; van Andel, S.; Wetterhall, F.; Alfieri, L.

    2011-12-01

    The aim of this paper is to understand and to contribute to improved communication of the probabilistic flood forecasts generated by Hydrological Ensemble Prediction Systems (HEPS) with particular focus on the inter expert communication. Different users are likely to require different kinds of information from HEPS and thus different visualizations. The perceptions of this expert group are important both because they are the designers and primary users of existing HEPS. Nevertheless, they have sometimes resisted the release of uncertainty information to the general public because of doubts about whether it can be successfully communicated in ways that would be readily understood to non-experts. In this paper we explore the strengths and weaknesses of existing HEPS visualization methods and thereby formulate some wider recommendations about best practice for HEPS visualization and communication. We suggest that specific training on probabilistic forecasting would foster use of probabilistic forecasts with a wider range of applications. The result of a case study exercise showed that there is no overarching agreement between experts on how to display probabilistic forecasts and what they consider essential information that should accompany plots and diagrams. In this paper we propose a list of minimum properties that, if consistently displayed with probabilistic forecasts, would make the products more easily understandable.

  1. A far-field-viewing sensor for making analytical measurements in remote locations.

    PubMed

    Michael, K L; Taylor, L C; Walt, D R

    1999-07-15

    We demonstrate a far-field-viewing GRINscope sensor for making analytical measurements in remote locations. The GRINscope was fabricated by permanently affixing a micro-Gradient index (GRIN) lens on the distal face of a 350-micron-diameter optical imaging fiber. The GRINscope can obtain both chemical and visual information. In one application, a thin, pH-sensitive polymer layer was immobilized on the distal end of the GRINscope. The ability of the GRINscope to visually image its far-field surroundings and concurrently detect pH changes in a flowing stream was demonstrated. In a different application, the GRINscope was used to image pH- and O2-sensitive particles on a remote substrate and simultaneously measure their fluorescence intensity in response to pH or pO2 changes.

  2. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  3. A human centered GeoVisualization framework to facilitate visual exploration of telehealth data: a case study.

    PubMed

    Joshi, Ashish; de Araujo Novaes, Magdala; Machiavelli, Josiane; Iyengar, Sriram; Vogler, Robert; Johnson, Craig; Zhang, Jiajie; Hsu, Chiehwen E

    2012-01-01

    Public health data is typically organized by geospatial units. Routine geographic monitoring of health data enables an understanding of the spatial patterns of events in terms of causes and controls. GeoVisualization (GeoVis) allows users to see information hidden both visually and explicitly on a map. Despite the applicability of GeoVis in public health, it is still underused for visualizing public health data. The objective of this study is to examine the perception of telehealth users' to utilize GeoVis as a proof of concept to facilitate visual exploration of telehealth data in Brazil using principles of human centered approach and cognitive fit theory. A mixed methods approach combining qualitative and quantitative assessments was utilized in this cross sectional study conducted at the Telehealth Center of the Federal University of Pernambuco (NUTE-UFPE), Recife, Brazil. A convenient sample of 20 participants currently involved in NUTES was drawn during a period of Sep-Oct 2011. Data was gathered using previously tested questionnaire surveys and in-person interviews. Socio-demographic Information such as age, gender, prior education, familiarity with the use of computer and GeoVis was gathered. Other information gathered included participants' prior spatial analysis skills, level of motivation and use of GeoVis in telehealth. Audio recording was done for all interviews conducted in both English and Portuguese, and transcription of the audio content to English was done by a certified translator. Univariate analysis was performed and means and standard deviations were reported for the continuous variables and frequency distributions for the categorical variables. For the open-ended questions, we utilized a grounded theory to identify themes and their relationship as they emerge from the data. Analysis of the quantitative data was performed using SAS V9.1 and qualitative data was performed using NVivo9. The average age of participants was 28 years (SD=7), a majority of them were females and 100% were professionals with graduate degrees. The users had diverse backgrounds including nursing, computer science, biomedical informatics, statistics, dentistry, administration and engineering. The users had varied roles and responsibilities, used computers frequently but only 5% of them were familiar with GeoVis. Google maps were the most common GeoVis application that the users were familiar with. Despite having minimal spatial skills, there was a strong motivation and relevance among the telehealth users to use GeoVis to facilitate visual exploration of telehealth data for better informed decision making. Results also showed that of the 60% participants with no GeoVis familiarity; 33% had moderate to large data exploratory role, 83% had no spatial skills but 58% preferred analyzing both spatial and temporal dimensions of the data. Majority of the participants agreed to have maps as the first choice to represent the data as it will be able to display the events both in place and time. The results demonstrate a potentially growing need for the use of GeoVis applications to evaluate telehealth data. Understanding of user needs is essential to ensure that the technology is appropriately functional and will be useful to complete the tasks.

  4. Spatio-Temporal Process Simulation of Dam-Break Flood Based on SPH

    NASA Astrophysics Data System (ADS)

    Wang, H.; Ye, F.; Ouyang, S.; Li, Z.

    2018-04-01

    On the basis of introducing the SPH (Smooth Particle Hydrodynamics) simulation method, the key research problems were given solutions in this paper, which ere the spatial scale and temporal scale adapting to the GIS(Geographical Information System) application, the boundary condition equations combined with the underlying surface, and the kernel function and parameters applicable to dam-break flood simulation. In this regards, a calculation method of spatio-temporal process emulation with elaborate particles for dam-break flood was proposed. Moreover the spatio-temporal process was dynamic simulated by using GIS modelling and visualization. The results show that the method gets more information, objectiveness and real situations.

  5. Field Markup Language: biological field representation in XML.

    PubMed

    Chang, David; Lovell, Nigel H; Dokos, Socrates

    2007-01-01

    With an ever increasing number of biological models available on the internet, a standardized modeling framework is required to allow information to be accessed or visualized. Based on the Physiome Modeling Framework, the Field Markup Language (FML) is being developed to describe and exchange field information for biological models. In this paper, we describe the basic features of FML, its supporting application framework and its ability to incorporate CellML models to construct tissue-scale biological models. As a typical application example, we present a spatially-heterogeneous cardiac pacemaker model which utilizes both FML and CellML to describe and solve the underlying equations of electrical activation and propagation.

  6. Adaptive Kalman filtering for real-time mapping of the visual field

    PubMed Central

    Ward, B. Douglas; Janik, John; Mazaheri, Yousef; Ma, Yan; DeYoe, Edgar A.

    2013-01-01

    This paper demonstrates the feasibility of real-time mapping of the visual field for clinical applications. Specifically, three aspects of this problem were considered: (1) experimental design, (2) statistical analysis, and (3) display of results. Proper experimental design is essential to achieving a successful outcome, particularly for real-time applications. A random-block experimental design was shown to have less sensitivity to measurement noise, as well as greater robustness to error in modeling of the hemodynamic impulse response function (IRF) and greater flexibility than common alternatives. In addition, random encoding of the visual field allows for the detection of voxels that are responsive to multiple, not necessarily contiguous, regions of the visual field. Due to its recursive nature, the Kalman filter is ideally suited for real-time statistical analysis of visual field mapping data. An important feature of the Kalman filter is that it can be used for nonstationary time series analysis. The capability of the Kalman filter to adapt, in real time, to abrupt changes in the baseline arising from subject motion inside the scanner and other external system disturbances is important for the success of clinical applications. The clinician needs real-time information to evaluate the success or failure of the imaging run and to decide whether to extend, modify, or terminate the run. Accordingly, the analytical software provides real-time displays of (1) brain activation maps for each stimulus segment, (2) voxel-wise spatial tuning profiles, (3) time plots of the variability of response parameters, and (4) time plots of activated volume. PMID:22100663

  7. Visual-vestibular cue integration for heading perception: applications of optimal cue integration theory.

    PubMed

    Fetsch, Christopher R; Deangelis, Gregory C; Angelaki, Dora E

    2010-05-01

    The perception of self-motion is crucial for navigation, spatial orientation and motor control. In particular, estimation of one's direction of translation, or heading, relies heavily on multisensory integration in most natural situations. Visual and nonvisual (e.g., vestibular) information can be used to judge heading, but each modality alone is often insufficient for accurate performance. It is not surprising, then, that visual and vestibular signals converge frequently in the nervous system, and that these signals interact in powerful ways at the level of behavior and perception. Early behavioral studies of visual-vestibular interactions consisted mainly of descriptive accounts of perceptual illusions and qualitative estimation tasks, often with conflicting results. In contrast, cue integration research in other modalities has benefited from the application of rigorous psychophysical techniques, guided by normative models that rest on the foundation of ideal-observer analysis and Bayesian decision theory. Here we review recent experiments that have attempted to harness these so-called optimal cue integration models for the study of self-motion perception. Some of these studies used nonhuman primate subjects, enabling direct comparisons between behavioral performance and simultaneously recorded neuronal activity. The results indicate that humans and monkeys can integrate visual and vestibular heading cues in a manner consistent with optimal integration theory, and that single neurons in the dorsal medial superior temporal area show striking correlates of the behavioral effects. This line of research and other applications of normative cue combination models should continue to shed light on mechanisms of self-motion perception and the neuronal basis of multisensory integration.

  8. Cal-Adapt: California's Climate Data Resource and Interactive Toolkit

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Mukhtyar, S.; Wilhelm, S.; Galey, B.; Lehmer, E.

    2016-12-01

    Cal-Adapt is a web-based application that provides an interactive toolkit and information clearinghouse to help agencies, communities, local planners, resource managers, and the public understand climate change risks and impacts at the local level. The website offers interactive, visually compelling, and useful data visualization tools that show how climate change might affect California using downscaled continental climate data. Cal-Adapt is supporting California's Fourth Climate Change Assessment through providing access to the wealth of modeled and observed data and adaption-related information produced by California's scientific community. The site has been developed by UC Berkeley's Geospatial Innovation Facility (GIF) in collaboration with the California Energy Commission's (CEC) Research Program. The Cal-Adapt website allows decision makers, scientists and residents of California to turn research results and climate projections into effective adaptation decisions and policies. Since its release to the public in June 2011, Cal-Adapt has been visited by more than 94,000 unique visitors from over 180 countries, all 50 U.S. states, and 689 California localities. We will present several key visualizations that have been employed by Cal-Adapt's users to support their efforts to understand local impacts of climate change, indicate the breadth of data available, and delineate specific use cases. Recently, CEC and GIF have been developing and releasing Cal-Adapt 2.0, which includes updates and enhancements that are increasing its ease of use, information value, visualization tools, and data accessibility. We showcase how Cal-Adapt is evolving in response to feedback from a variety of sources to present finer-resolution downscaled data, and offer an open API that allows other organization to access Cal-Adapt climate data and build domain specific visualization and planning tools. Through a combination of locally relevant information, visualization tools, and access to primary data, Cal-Adapt allows users to investigate how the climate is projected to change in their areas of interest.

  9. Efficient transmission of compressed data for remote volume visualization.

    PubMed

    Krishnan, Karthik; Marcellin, Michael W; Bilgin, Ali; Nadar, Mariappan S

    2006-09-01

    One of the goals of telemedicine is to enable remote visualization and browsing of medical volumes. There is a need to employ scalable compression schemes and efficient client-server models to obtain interactivity and an enhanced viewing experience. First, we present a scheme that uses JPEG2000 and JPIP (JPEG2000 Interactive Protocol) to transmit data in a multi-resolution and progressive fashion. The server exploits the spatial locality offered by the wavelet transform and packet indexing information to transmit, in so far as possible, compressed volume data relevant to the clients query. Once the client identifies its volume of interest (VOI), the volume is refined progressively within the VOI from an initial lossy to a final lossless representation. Contextual background information can also be made available having quality fading away from the VOI. Second, we present a prioritization that enables the client to progressively visualize scene content from a compressed file. In our specific example, the client is able to make requests to progressively receive data corresponding to any tissue type. The server is now capable of reordering the same compressed data file on the fly to serve data packets prioritized as per the client's request. Lastly, we describe the effect of compression parameters on compression ratio, decoding times and interactivity. We also present suggestions for optimizing JPEG2000 for remote volume visualization and volume browsing applications. The resulting system is ideally suited for client-server applications with the server maintaining the compressed volume data, to be browsed by a client with a low bandwidth constraint.

  10. Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring

    NASA Astrophysics Data System (ADS)

    Stocklöw, Carsten; Kamieth, Felix

    In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.

  11. Learning-based saliency model with depth information.

    PubMed

    Ma, Chih-Yao; Hang, Hsueh-Ming

    2015-01-01

    Most previous studies on visual saliency focused on two-dimensional (2D) scenes. Due to the rapidly growing three-dimensional (3D) video applications, it is very desirable to know how depth information affects human visual attention. In this study, we first conducted eye-fixation experiments on 3D images. Our fixation data set comprises 475 3D images and 16 subjects. We used a Tobii TX300 eye tracker (Tobii, Stockholm, Sweden) to track the eye movement of each subject. In addition, this database contains 475 computed depth maps. Due to the scarcity of public-domain 3D fixation data, this data set should be useful to the 3D visual attention research community. Then, a learning-based visual attention model was designed to predict human attention. In addition to the popular 2D features, we included the depth map and its derived features. The results indicate that the extra depth information can enhance the saliency estimation accuracy specifically for close-up objects hidden in a complex-texture background. In addition, we examined the effectiveness of various low-, mid-, and high-level features on saliency prediction. Compared with both 2D and 3D state-of-the-art saliency estimation models, our methods show better performance on the 3D test images. The eye-tracking database and the MATLAB source codes for the proposed saliency model and evaluation methods are available on our website.

  12. The contribution of visual information to the perception of speech in noise with and without informative temporal fine structure

    PubMed Central

    Stacey, Paula C.; Kitterick, Pádraig T.; Morris, Saffron D.; Sumner, Christian J.

    2017-01-01

    Understanding what is said in demanding listening situations is assisted greatly by looking at the face of a talker. Previous studies have observed that normal-hearing listeners can benefit from this visual information when a talker's voice is presented in background noise. These benefits have also been observed in quiet listening conditions in cochlear-implant users, whose device does not convey the informative temporal fine structure cues in speech, and when normal-hearing individuals listen to speech processed to remove these informative temporal fine structure cues. The current study (1) characterised the benefits of visual information when listening in background noise; and (2) used sine-wave vocoding to compare the size of the visual benefit when speech is presented with or without informative temporal fine structure. The accuracy with which normal-hearing individuals reported words in spoken sentences was assessed across three experiments. The availability of visual information and informative temporal fine structure cues was varied within and across the experiments. The results showed that visual benefit was observed using open- and closed-set tests of speech perception. The size of the benefit increased when informative temporal fine structure cues were removed. This finding suggests that visual information may play an important role in the ability of cochlear-implant users to understand speech in many everyday situations. Models of audio-visual integration were able to account for the additional benefit of visual information when speech was degraded and suggested that auditory and visual information was being integrated in a similar way in all conditions. The modelling results were consistent with the notion that audio-visual benefit is derived from the optimal combination of auditory and visual sensory cues. PMID:27085797

  13. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface.

    PubMed

    Xie, Jun; Xu, Guanghua; Luo, Ailing; Li, Min; Zhang, Sicong; Han, Chengcheng; Yan, Wenqiang

    2017-08-14

    As a spatial selective attention-based brain-computer interface (BCI) paradigm, steady-state visual evoked potential (SSVEP) BCI has the advantages of high information transfer rate, high tolerance to artifacts, and robust performance across users. However, its benefits come at the cost of mental load and fatigue occurring in the concentration on the visual stimuli. Noise, as a ubiquitous random perturbation with the power of randomness, may be exploited by the human visual system to enhance higher-level brain functions. In this study, a novel steady-state motion visual evoked potential (SSMVEP, i.e., one kind of SSVEP)-based BCI paradigm with spatiotemporal visual noise was used to investigate the influence of noise on the compensation of mental load and fatigue deterioration during prolonged attention tasks. Changes in α , θ , θ + α powers, θ / α ratio, and electroencephalography (EEG) properties of amplitude, signal-to-noise ratio (SNR), and online accuracy, were used to evaluate mental load and fatigue. We showed that presenting a moderate visual noise to participants could reliably alleviate the mental load and fatigue during online operation of visual BCI that places demands on the attentional processes. This demonstrated that noise could provide a superior solution to the implementation of visual attention controlling-based BCI applications.

  14. Learning and recognition of on-premise signs from weakly labeled street view images.

    PubMed

    Tsai, Tsung-Hung; Cheng, Wen-Huang; You, Chuang-Wen; Hu, Min-Chun; Tsui, Arvin Wen; Chi, Heng-Yu

    2014-03-01

    Camera-enabled mobile devices are commonly used as interaction platforms for linking the user's virtual and physical worlds in numerous research and commercial applications, such as serving an augmented reality interface for mobile information retrieval. The various application scenarios give rise to a key technique of daily life visual object recognition. On-premise signs (OPSs), a popular form of commercial advertising, are widely used in our living life. The OPSs often exhibit great visual diversity (e.g., appearing in arbitrary size), accompanied with complex environmental conditions (e.g., foreground and background clutter). Observing that such real-world characteristics are lacking in most of the existing image data sets, in this paper, we first proposed an OPS data set, namely OPS-62, in which totally 4649 OPS images of 62 different businesses are collected from Google's Street View. Further, for addressing the problem of real-world OPS learning and recognition, we developed a probabilistic framework based on the distributional clustering, in which we proposed to exploit the distributional information of each visual feature (the distribution of its associated OPS labels) as a reliable selection criterion for building discriminative OPS models. Experiments on the OPS-62 data set demonstrated the outperformance of our approach over the state-of-the-art probabilistic latent semantic analysis models for more accurate recognitions and less false alarms, with a significant 151.28% relative improvement in the average recognition rate. Meanwhile, our approach is simple, linear, and can be executed in a parallel fashion, making it practical and scalable for large-scale multimedia applications.

  15. MEVA--An Interactive Visualization Application for Validation of Multifaceted Meteorological Data with Multiple 3D Devices.

    PubMed

    Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf

    2015-01-01

    To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data uncertainty and differences between simulation runs. In an iterative development process, our easy-to-use application was developed in close cooperation with meteorologists and visualization experts. The usability of the application has been validated with user tests. We report on how this application supports the users to prove and disprove existing hypotheses and discover new insights. In addition, the application has been used at public events to communicate research results.

  16. MEVA - An Interactive Visualization Application for Validation of Multifaceted Meteorological Data with Multiple 3D Devices

    PubMed Central

    Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf

    2015-01-01

    Background To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Methods and Results Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data uncertainty and differences between simulation runs. In an iterative development process, our easy-to-use application was developed in close cooperation with meteorologists and visualization experts. The usability of the application has been validated with user tests. We report on how this application supports the users to prove and disprove existing hypotheses and discover new insights. In addition, the application has been used at public events to communicate research results. PMID:25915061

  17. Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop.

    PubMed

    Legg, Philip A; Chung, David H S; Parry, Matthew L; Bown, Rhodri; Jones, Mark W; Griffiths, Iwan W; Chen, Min

    2013-12-01

    Traditional sketch-based image or video search systems rely on machine learning concepts as their core technology. However, in many applications, machine learning alone is impractical since videos may not be semantically annotated sufficiently, there may be a lack of suitable training data, and the search requirements of the user may frequently change for different tasks. In this work, we develop a visual analytics systems that overcomes the shortcomings of the traditional approach. We make use of a sketch-based interface to enable users to specify search requirement in a flexible manner without depending on semantic annotation. We employ active machine learning to train different analytical models for different types of search requirements. We use visualization to facilitate knowledge discovery at the different stages of visual analytics. This includes visualizing the parameter space of the trained model, visualizing the search space to support interactive browsing, visualizing candidature search results to support rapid interaction for active learning while minimizing watching videos, and visualizing aggregated information of the search results. We demonstrate the system for searching spatiotemporal attributes from sports video to identify key instances of the team and player performance.

  18. VISTILES: Coordinating and Combining Co-located Mobile Devices for Visual Data Exploration.

    PubMed

    Langner, Ricardo; Horak, Tom; Dachselt, Raimund

    2017-08-29

    We present VISTILES, a conceptual framework that uses a set of mobile devices to distribute and coordinate visualization views for the exploration of multivariate data. In contrast to desktop-based interfaces for information visualization, mobile devices offer the potential to provide a dynamic and user-defined interface supporting co-located collaborative data exploration with different individual workflows. As part of our framework, we contribute concepts that enable users to interact with coordinated & multiple views (CMV) that are distributed across several mobile devices. The major components of the framework are: (i) dynamic and flexible layouts for CMV focusing on the distribution of views and (ii) an interaction concept for smart adaptations and combinations of visualizations utilizing explicit side-by-side arrangements of devices. As a result, users can benefit from the possibility to combine devices and organize them in meaningful spatial layouts. Furthermore, we present a web-based prototype implementation as a specific instance of our concepts. This implementation provides a practical application case enabling users to explore a multivariate data collection. We also illustrate the design process including feedback from a preliminary user study, which informed the design of both the concepts and the final prototype.

  19. GWVis: A Tool for Comparative Ground-Water Data Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, Daniel M.; Lewis, Robert R.

    2010-11-01

    The Ground-Water Visualization application (GWVis) presents ground-water data visually in order to educate the public on ground-water issues. It is also intended for presentations to government and other funding agencies. Current three dimensional models of ground-water are overly complex, while the two dimensional representations (i.e., on paper) are neither comprehensive, nor engaging. At present, GWVis operates on water head elevation data over a given time span, together with a matching (fixed) underlying geography. Two elevation scenarios are compared with each other, typically a control data set (actual field data) and a simulation. Scenario comparison can be animated for the timemore » span provided. We developed GWVis using the Python programming language, associated libraries, and pyOpenGL extension packages to improve performance and control of attributes of the mode (such as color, positioning, scale, and interpolation). GWVis bridges the gap between two dimensional and dynamic three dimensional research visualizations by providing an intuitive, interactive design that allows participants to view the model from different perspectives and to infer information about scenarios. By incorporating scientific data in an environment that can be easily understood, GWVis allows the information to be presented to a large audience base.« less

  20. Visualization and interaction tools for aerial photograph mosaics

    NASA Astrophysics Data System (ADS)

    Fernandes, João Pedro; Fonseca, Alexandra; Pereira, Luís; Faria, Adriano; Figueira, Helder; Henriques, Inês; Garção, Rita; Câmara, António

    1997-05-01

    This paper describes the development of a digital spatial library based on mosaics of digital orthophotos, called Interactive Portugal, that will enable users both to retrieve geospatial information existing in the Portuguese National System for Geographic Information World Wide Web server, and to develop local databases connected to the main system. A set of navigation, interaction, and visualization tools are proposed and discussed. They include sketching, dynamic sketching, and navigation capabilities over the digital orthophotos mosaics. Main applications of this digital spatial library are pointed out and discussed, namely for education, professional, and tourism markets. Future developments are considered. These developments are related to user reactions, technological advancements, and projects that also aim at delivering and exploring digital imagery on the World Wide Web. Future capabilities for site selection and change detection are also considered.

  1. 3D Virtual Environment Used to Support Lighting System Management in a Building

    NASA Astrophysics Data System (ADS)

    Sampaio, A. Z.; Ferreira, M. M.; Rosário, D. P.

    The main aim of the research project, which is in progress at the UTL, is to develop a virtual interactive model as a tool to support decision-making in the planning of construction maintenance and facilities management. The virtual model gives the capacity to allow the user to transmit, visually and interactively, information related to the components of a building, defined as a function of the time variable. In addition, the analysis of solutions for repair work/substitution and inherent cost are predicted, the results being obtained interactively and visualized in the virtual environment itself. The first component of the virtual prototype concerns the management of lamps in a lighting system. It was applied in a study case. The interactive application allows the examination of the physical model, visualizing, for each element modeled in 3D and linked to a database, the corresponding technical information concerned with the use of the material, calculated for different points in time during their life. The control of a lamp stock, the constant updating of lifetime information and the planning of periodical local inspections are attended on the prototype. This is an important mean of cooperation between collaborators involved in the building management.

  2. Gauging the Impact of Gender Grammaticization in Different Languages: Application of a Linguistic-Visual Paradigm

    PubMed Central

    Sato, Sayaka; Gygax, Pascal M.; Gabriel, Ute

    2016-01-01

    Employing a linguistic-visual paradigm, we investigated whether the grammaticization of gender information impacts readers’ gender representations. French and German were taken as comparative languages, taking into account the male gender bias associated to both languages, as well as the comparative gender biases associated to their plural determiners (French: les [generic] vs. German: die [morphologically feminine]). Bilingual speakers of French and German had to judge whether a pair of facial images representing two men or a man and a woman could represent a gender stereotypical role noun prime (e.g., nurses). The prime was presented in the masculine plural form with or without a plural determiner. Results indicated that the overt grammaticization of the male gender in the masculine form dominated the representation of the role nouns (though interpretable as generic). However, the effect of the determiner was not found, indicating that only gender information associated to a human reference role noun had impacted readers’ representations. The results, discussed in the framework of the thinking-for-speaking hypothesis, demonstrated that linguistic-visual paradigms are well-suited to gauge the impact of both stereotype information and grammaticization when processing role nouns. PMID:26941663

  3. Research on the framework and key technologies of panoramic visualization for smart distribution network

    NASA Astrophysics Data System (ADS)

    Du, Jian; Sheng, Wanxing; Lin, Tao; Lv, Guangxian

    2018-05-01

    Nowadays, the smart distribution network has made tremendous progress, and the business visualization becomes even more significant and indispensable. Based on the summarization of traditional visualization technologies and demands of smart distribution network, a panoramic visualization application is proposed in this paper. The overall architecture, integrated architecture and service architecture of panoramic visualization application is firstly presented. Then, the architecture design and main functions of panoramic visualization system are elaborated in depth. In addition, the key technologies related to the application is discussed briefly. At last, two typical visualization scenarios in smart distribution network, which are risk warning and fault self-healing, proves that the panoramic visualization application is valuable for the operation and maintenance of the distribution network.

  4. Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models

    NASA Astrophysics Data System (ADS)

    Wellmann, J. Florian; Regenauer-Lieb, Klaus

    2012-03-01

    Analyzing, visualizing and communicating uncertainties are important issues as geological models can never be fully determined. To date, there exists no general approach to quantify uncertainties in geological modeling. We propose here to use information entropy as an objective measure to compare and evaluate model and observational results. Information entropy was introduced in the 50s and defines a scalar value at every location in the model for predictability. We show that this method not only provides a quantitative insight into model uncertainties but, due to the underlying concept of information entropy, can be related to questions of data integration (i.e. how is the model quality interconnected with the used input data) and model evolution (i.e. does new data - or a changed geological hypothesis - optimize the model). In other words information entropy is a powerful measure to be used for data assimilation and inversion. As a first test of feasibility, we present the application of the new method to the visualization of uncertainties in geological models, here understood as structural representations of the subsurface. Applying the concept of information entropy on a suite of simulated models, we can clearly identify (a) uncertain regions within the model, even for complex geometries; (b) the overall uncertainty of a geological unit, which is, for example, of great relevance in any type of resource estimation; (c) a mean entropy for the whole model, important to track model changes with one overall measure. These results cannot easily be obtained with existing standard methods. The results suggest that information entropy is a powerful method to visualize uncertainties in geological models, and to classify the indefiniteness of single units and the mean entropy of a model quantitatively. Due to the relationship of this measure to the missing information, we expect the method to have a great potential in many types of geoscientific data assimilation problems — beyond pure visualization.

  5. Automatic segmentation of the lateral geniculate nucleus: Application to control and glaucoma patients.

    PubMed

    Wang, Jieqiong; Miao, Wen; Li, Jing; Li, Meng; Zhen, Zonglei; Sabel, Bernhard; Xian, Junfang; He, Huiguang

    2015-11-30

    The lateral geniculate nucleus (LGN) is a key relay center of the visual system. Because the LGN morphology is affected by different diseases, it is of interest to analyze its morphology by segmentation. However, existing LGN segmentation methods are non-automatic, inefficient and prone to experimenters' bias. To address these problems, we proposed an automatic LGN segmentation algorithm based on T1-weighted imaging. First, the prior information of LGN was used to create a prior mask. Then region growing was applied to delineate LGN. We evaluated this automatic LGN segmentation method by (1) comparison with manually segmented LGN, (2) anatomically locating LGN in the visual system via LGN-based tractography, (3) application to control and glaucoma patients. The similarity coefficients of automatic segmented LGN and manually segmented one are 0.72 (0.06) for the left LGN and 0.77 (0.07) for the right LGN. LGN-based tractography shows the subcortical pathway seeding from LGN passes the optic tract and also reaches V1 through the optic radiation, which is consistent with the LGN location in the visual system. In addition, LGN asymmetry as well as LGN atrophy along with age is observed in normal controls. The investigation of glaucoma effects on LGN volumes demonstrates that the bilateral LGN volumes shrink in patients. The automatic LGN segmentation is objective, efficient, valid and applicable. Experiment results proved the validity and applicability of the algorithm. Our method will speed up the research on visual system and greatly enhance studies of different vision-related diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Increasing information accessibility for patients in obstetrics-gynecology domain.

    PubMed

    Crişan-Vida, Mihaela; Stoicu-Tivadar, Lăcrămioara

    2014-01-01

    It is important for the patient to have access to personal medical information in order to manage information for increased quality of medical care and life. The paper presents a module added to an Obstetrics-Gynaecology Department information system (OGD IS) supporting patient empowerment. The patient is accessing the system easily using laptops or mobile devices. The application accessed by the patient is web-based, implemented in Visual Studio. NET, using ASP.NET pages and C# language, and the application is published in the Windows Azure cloud. The solution is user friendly using familiar devices and is ubiquitous using the cloud solution. A module for translating medical terms in colloquial ones is integrated in the system. For certain situations the patient will get information related to life style influencing health status as how and what to eat or what type of exercise it is recommended.

  7. A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings

    PubMed Central

    Magri, Cesare; Whittingstall, Kevin; Singh, Vanessa; Logothetis, Nikos K; Panzeri, Stefano

    2009-01-01

    Background Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses. Results Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies. Conclusion The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code. PMID:19607698

  8. A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings.

    PubMed

    Magri, Cesare; Whittingstall, Kevin; Singh, Vanessa; Logothetis, Nikos K; Panzeri, Stefano

    2009-07-16

    Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses. Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies. The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code.

  9. The computer treatment of remotely sensed data: An introduction to techniques which have geologic applications. [image enhancement and thematic classification in Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Paradella, W. R.; Vitorello, I.

    1982-01-01

    Several aspects of computer-assisted analysis techniques for image enhancement and thematic classification by which LANDSAT MSS imagery may be treated quantitatively are explained. On geological applications, computer processing of digital data allows, possibly, the fullest use of LANDSAT data, by displaying enhanced and corrected data for visual analysis and by evaluating and assigning each spectral pixel information to a given class.

  10. Integration of spectral domain optical coherence tomography with microperimetry generates unique datasets for the simultaneous identification of visual function and retinal structure in ophthalmological applications

    NASA Astrophysics Data System (ADS)

    Koulen, Peter; Gallimore, Gary; Vincent, Ryan D.; Sabates, Nelson R.; Sabates, Felix N.

    2011-06-01

    Conventional perimeters are used routinely in various eye disease states to evaluate the central visual field and to quantitatively map sensitivity. However, standard automated perimetry proves difficult for retina and specifically macular disease due to the need for central and steady fixation. Advances in instrumentation have led to microperimetry, which incorporates eye tracking for placement of macular sensitivity values onto an image of the macular fundus thus enabling a precise functional and anatomical mapping of the central visual field. Functional sensitivity of the retina can be compared with the observed structural parameters that are acquired with high-resolution spectral domain optical coherence tomography and by integration of scanning laser ophthalmoscope-driven imaging. Findings of the present study generate a basis for age-matched comparison of sensitivity values in patients with macular pathology. Microperimetry registered with detailed structural data performed before and after intervention treatments provides valuable information about macular function, disease progression and treatment success. This approach also allows for the detection of disease or treatment related changes in retinal sensitivity when visual acuity is not affected and can drive the decision making process in choosing different treatment regimens and guiding visual rehabilitation. This has immediate relevance for applications in central retinal vein occlusion, central serous choroidopathy, age-related macular degeneration, familial macular dystrophy and several other forms of retina related visual disability.

  11. Mobile device geo-localization and object visualization in sensor networks

    NASA Astrophysics Data System (ADS)

    Lemaire, Simon; Bodensteiner, Christoph; Arens, Michael

    2014-10-01

    In this paper we present a method to visualize geo-referenced objects on modern smartphones using a multi- functional application design. The application applies different localization and visualization methods including the smartphone camera image. The presented application copes well with different scenarios. A generic application work flow and augmented reality visualization techniques are described. The feasibility of the approach is experimentally validated using an online desktop selection application in a network with a modern of-the-shelf smartphone. Applications are widespread and include for instance crisis and disaster management or military applications.

  12. Designing a Culturally Appropriate Visually Enhanced Low-Text Mobile Health App Promoting Physical Activity for Latinos: A Qualitative Study.

    PubMed

    Bender, Melinda S; Martinez, Suzanna; Kennedy, Christine

    2016-07-01

    Rapid proliferation of smartphone ownership and use among Latinos offers a unique opportunity to employ innovative visually enhanced low-text (VELT) mobile health applications (mHealth app) to promote health behavior change for Latinos at risk for lifestyle-related diseases. Using focus groups and in-depth interviews with 16 promotores and 5 health care providers recruited from California clinics, this qualitative study explored perceptions of visuals for a VELT mHealth app promoting physical activity (PA) and limiting sedentary behavior (SB) for Latinos. In this Phase 1 study, participants endorsed visuals portraying PA guidelines and recommended visuals depicting family and socially oriented PA. Overall, participants supported a VELT mHealth app as an alternative to text-based education. Findings will inform the future Phase 2 study development of a culturally appropriate VELT mHealth app to promote PA for Latinos, improve health literacy, and provide an alternative to traditional clinic text-based health education materials. © The Author(s) 2015.

  13. In situ visualization and data analysis for turbidity currents simulation

    NASA Astrophysics Data System (ADS)

    Camata, Jose J.; Silva, Vítor; Valduriez, Patrick; Mattoso, Marta; Coutinho, Alvaro L. G. A.

    2018-01-01

    Turbidity currents are underflows responsible for sediment deposits that generate geological formations of interest for the oil and gas industry. LibMesh-sedimentation is an application built upon the libMesh library to simulate turbidity currents. In this work, we present the integration of libMesh-sedimentation with in situ visualization and in transit data analysis tools. DfAnalyzer is a solution based on provenance data to extract and relate strategic simulation data in transit from multiple data for online queries. We integrate libMesh-sedimentation and ParaView Catalyst to perform in situ data analysis and visualization. We present a parallel performance analysis for two turbidity currents simulations showing that the overhead for both in situ visualization and in transit data analysis is negligible. We show that our tools enable monitoring the sediments appearance at runtime and steer the simulation based on the solver convergence and visual information on the sediment deposits, thus enhancing the analytical power of turbidity currents simulations.

  14. Communicating headings and preview sentences in text and speech.

    PubMed

    Lorch, Robert F; Chen, Hung-Tao; Lemarié, Julie

    2012-09-01

    Two experiments tested the effects of preview sentences and headings on the quality of college students' outlines of informational texts. Experiment 1 found that performance was much better in the preview sentences condition than in a no-signals condition for both printed text and text-to-speech (TTS) audio rendering of the printed text. In contrast, performance in the headings condition was good for the printed text but poor for the auditory presentation because the TTS software failed to communicate nonverbal information carried by the visual headings. Experiment 2 compared outlining performance for five headings conditions during TTS presentation. Using a theoretical framework, "signaling available, relevant, accessible" (SARA) information, to provide an analysis of the information content of headings in the printed text, the manipulation of the headings systematically restored information that was omitted by the TTS application in Experiment 1. The result was that outlining performance improved to levels similar to the visual headings condition of Experiment 1. It is argued that SARA is a useful framework for guiding future development of TTS software for a wide variety of text signaling devices, not just headings.

  15. Natural language processing and visualization in the molecular imaging domain.

    PubMed

    Tulipano, P Karina; Tao, Ying; Millar, William S; Zanzonico, Pat; Kolbert, Katherine; Xu, Hua; Yu, Hong; Chen, Lifeng; Lussier, Yves A; Friedman, Carol

    2007-06-01

    Molecular imaging is at the crossroads of genomic sciences and medical imaging. Information within the molecular imaging literature could be used to link to genomic and imaging information resources and to organize and index images in a way that is potentially useful to researchers. A number of natural language processing (NLP) systems are available to automatically extract information from genomic literature. One existing NLP system, known as BioMedLEE, automatically extracts biological information consisting of biomolecular substances and phenotypic data. This paper focuses on the adaptation, evaluation, and application of BioMedLEE to the molecular imaging domain. In order to adapt BioMedLEE for this domain, we extend an existing molecular imaging terminology and incorporate it into BioMedLEE. BioMedLEE's performance is assessed with a formal evaluation study. The system's performance, measured as recall and precision, is 0.74 (95% CI: [.70-.76]) and 0.70 (95% CI [.63-.76]), respectively. We adapt a JAVA viewer known as PGviewer for the simultaneous visualization of images with NLP extracted information.

  16. Engines. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This manual on engines is one of a series of power mechanics texts and visual aids for training in servicing of farm and industrial machinery. (Automotive, truck, and bus applications are often covered as well.) Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen.…

  17. Hospital Information Systems for Clinical and Research Applications: A Survey of the Issues

    DTIC Science & Technology

    1983-06-01

    potentials for auditory and visual nervous system activity) is being used intensively in the field of neurophysiology (27, 108, 109). In addition, the high...user group: this provides a community of enlightened users who can share ideas and experiences. (NOTE: NCHSR support ended January 1, 1983.) .Masor

  18. NED-2: A decision support system for integrated forest ecosystem management

    Treesearch

    Mark J. Twery; Peter D. Knopp; Scott A. Thomasma; H. Michael Rauscher; Donald E. Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mayukh Dass; Hajime Uchiyama; Astrid Glende; Robin E. Hoffman

    2005-01-01

    NED-2 is a Windows-based system designed to improve project-level planning and decision making by providing useful and scientifically sound information to natural resource managers. Resources currently addressed include visual quality, ecology, forest health, timber, water, and wildlife. NED-2 expands on previous versions of NED applications by integrating treatment...

  19. NED-2: a decision support system for integrated forest ecosystem management

    Treesearch

    Mark J. Twery; Peter D. Knopp; Scott A. Thomasma; H. Michael Rauscher; Donald E. Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mayukh Dass; Hajime Uchiyama; Astrid Glende; Robin E. Hoffman

    2005-01-01

    NED-2 is a Windows-based system designed to improve project-level planning and decision making by providing useful and scientifically sound information to natural resource managers. Resources currently addressed include visual quality, ecology, forest health, timber, water, and wildlife. NED-2 expands on previous versions of NED applications by integrating treatment...

  20. DB4US: A Decision Support System for Laboratory Information Management.

    PubMed

    Carmona-Cejudo, José M; Hortas, Maria Luisa; Baena-García, Manuel; Lana-Linati, Jorge; González, Carlos; Redondo, Maximino; Morales-Bueno, Rafael

    2012-11-14

    Until recently, laboratory automation has focused primarily on improving hardware. Future advances are concentrated on intelligent software since laboratories performing clinical diagnostic testing require improved information systems to address their data processing needs. In this paper, we propose DB4US, an application that automates information related to laboratory quality indicators information. Currently, there is a lack of ready-to-use management quality measures. This application addresses this deficiency through the extraction, consolidation, statistical analysis, and visualization of data related to the use of demographics, reagents, and turn-around times. The design and implementation issues, as well as the technologies used for the implementation of this system, are discussed in this paper. To develop a general methodology that integrates the computation of ready-to-use management quality measures and a dashboard to easily analyze the overall performance of a laboratory, as well as automatically detect anomalies or errors. The novelty of our approach lies in the application of integrated web-based dashboards as an information management system in hospital laboratories. We propose a new methodology for laboratory information management based on the extraction, consolidation, statistical analysis, and visualization of data related to demographics, reagents, and turn-around times, offering a dashboard-like user web interface to the laboratory manager. The methodology comprises a unified data warehouse that stores and consolidates multidimensional data from different data sources. The methodology is illustrated through the implementation and validation of DB4US, a novel web application based on this methodology that constructs an interface to obtain ready-to-use indicators, and offers the possibility to drill down from high-level metrics to more detailed summaries. The offered indicators are calculated beforehand so that they are ready to use when the user needs them. The design is based on a set of different parallel processes to precalculate indicators. The application displays information related to tests, requests, samples, and turn-around times. The dashboard is designed to show the set of indicators on a single screen. DB4US was deployed for the first time in the Hospital Costa del Sol in 2008. In our evaluation we show the positive impact of this methodology for laboratory professionals, since the use of our application has reduced the time needed for the elaboration of the different statistical indicators and has also provided information that has been used to optimize the usage of laboratory resources by the discovery of anomalies in the indicators. DB4US users benefit from Internet-based communication of results, since this information is available from any computer without having to install any additional software. The proposed methodology and the accompanying web application, DB4US, automates the processing of information related to laboratory quality indicators and offers a novel approach for managing laboratory-related information, benefiting from an Internet-based communication mechanism. The application of this methodology has been shown to improve the usage of time, as well as other laboratory resources.

  1. Gene Graphics: a genomic neighborhood data visualization web application.

    PubMed

    Harrison, Katherine J; Crécy-Lagard, Valérie de; Zallot, Rémi

    2018-04-15

    The examination of gene neighborhood is an integral part of comparative genomics but no tools to produce publication quality graphics of gene clusters are available. Gene Graphics is a straightforward web application for creating such visuals. Supported inputs include National Center for Biotechnology Information gene and protein identifiers with automatic fetching of neighboring information, GenBank files and data extracted from the SEED database. Gene representations can be customized for many parameters including gene and genome names, colors and sizes. Gene attributes can be copied and pasted for rapid and user-friendly customization of homologous genes between species. In addition to Portable Network Graphics and Scalable Vector Graphics, produced representations can be exported as Tagged Image File Format or Encapsulated PostScript, formats that are standard for publication. Hands-on tutorials with real life examples inspired from publications are available for training. Gene Graphics is freely available at https://katlabs.cc/genegraphics/ and source code is hosted at https://github.com/katlabs/genegraphics. katherinejh@ufl.edu or remizallot@ufl.edu. Supplementary data are available at Bioinformatics online.

  2. ToxPi GUI: an interactive visualization tool for transparent integration of data from diverse sources of evidence.

    PubMed

    Reif, David M; Sypa, Myroslav; Lock, Eric F; Wright, Fred A; Wilson, Ander; Cathey, Tommy; Judson, Richard R; Rusyn, Ivan

    2013-02-01

    Scientists and regulators are often faced with complex decisions, where use of scarce resources must be prioritized using collections of diverse information. The Toxicological Prioritization Index (ToxPi™) was developed to enable integration of multiple sources of evidence on exposure and/or safety, transformed into transparent visual rankings to facilitate decision making. The rankings and associated graphical profiles can be used to prioritize resources in various decision contexts, such as testing chemical toxicity or assessing similarity of predicted compound bioactivity profiles. The amount and types of information available to decision makers are increasing exponentially, while the complex decisions must rely on specialized domain knowledge across multiple criteria of varying importance. Thus, the ToxPi bridges a gap, combining rigorous aggregation of evidence with ease of communication to stakeholders. An interactive ToxPi graphical user interface (GUI) application has been implemented to allow straightforward decision support across a variety of decision-making contexts in environmental health. The GUI allows users to easily import and recombine data, then analyze, visualize, highlight, export and communicate ToxPi results. It also provides a statistical metric of stability for both individual ToxPi scores and relative prioritized ranks. The ToxPi GUI application, complete user manual and example data files are freely available from http://comptox.unc.edu/toxpi.php.

  3. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion Laboratory in the joint development of a Tropical Cyclone Integrated Data Exchange and Analysis System (TC IDEAS) which will serve as a web portal for access to tropical cyclone data, visualizations and model output.

  4. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel.

    PubMed

    Grapov, Dmitry; Newman, John W

    2012-09-01

    Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010).

  5. A computational visual saliency model based on statistics and machine learning.

    PubMed

    Lin, Ru-Je; Lin, Wei-Song

    2014-08-01

    Identifying the type of stimuli that attracts human visual attention has been an appealing topic for scientists for many years. In particular, marking the salient regions in images is useful for both psychologists and many computer vision applications. In this paper, we propose a computational approach for producing saliency maps using statistics and machine learning methods. Based on four assumptions, three properties (Feature-Prior, Position-Prior, and Feature-Distribution) can be derived and combined by a simple intersection operation to obtain a saliency map. These properties are implemented by a similarity computation, support vector regression (SVR) technique, statistical analysis of training samples, and information theory using low-level features. This technique is able to learn the preferences of human visual behavior while simultaneously considering feature uniqueness. Experimental results show that our approach performs better in predicting human visual attention regions than 12 other models in two test databases. © 2014 ARVO.

  6. Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  7. Visualization of Documents and Concepts in Neuroinformatics with the 3D-SE Viewer

    PubMed Central

    Naud, Antoine; Usui, Shiro; Ueda, Naonori; Taniguchi, Tatsuki

    2007-01-01

    A new interactive visualization tool is proposed for mining text data from various fields of neuroscience. Applications to several text datasets are presented to demonstrate the capability of the proposed interactive tool to visualize complex relationships between pairs of lexical entities (with some semantic contents) such as terms, keywords, posters, or papers' abstracts. Implemented as a Java applet, this tool is based on the spherical embedding (SE) algorithm, which was designed for the visualization of bipartite graphs. Items such as words and documents are linked on the basis of occurrence relationships, which can be represented in a bipartite graph. These items are visualized by embedding the vertices of the bipartite graph on spheres in a three-dimensional (3-D) space. The main advantage of the proposed visualization tool is that 3-D layouts can convey more information than planar or linear displays of items or graphs. Different kinds of information extracted from texts, such as keywords, indexing terms, or topics are visualized, allowing interactive browsing of various fields of research featured by keywords, topics, or research teams. A typical use of the 3D-SE viewer is quick browsing of topics displayed on a sphere, then selecting one or several item(s) displays links to related terms on another sphere representing, e.g., documents or abstracts, and provides direct online access to the document source in a database, such as the Visiome Platform or the SfN Annual Meeting. Developed as a Java applet, it operates as a tool on top of existing resources. PMID:18974802

  8. Visualization of Documents and Concepts in Neuroinformatics with the 3D-SE Viewer.

    PubMed

    Naud, Antoine; Usui, Shiro; Ueda, Naonori; Taniguchi, Tatsuki

    2007-01-01

    A new interactive visualization tool is proposed for mining text data from various fields of neuroscience. Applications to several text datasets are presented to demonstrate the capability of the proposed interactive tool to visualize complex relationships between pairs of lexical entities (with some semantic contents) such as terms, keywords, posters, or papers' abstracts. Implemented as a Java applet, this tool is based on the spherical embedding (SE) algorithm, which was designed for the visualization of bipartite graphs. Items such as words and documents are linked on the basis of occurrence relationships, which can be represented in a bipartite graph. These items are visualized by embedding the vertices of the bipartite graph on spheres in a three-dimensional (3-D) space. The main advantage of the proposed visualization tool is that 3-D layouts can convey more information than planar or linear displays of items or graphs. Different kinds of information extracted from texts, such as keywords, indexing terms, or topics are visualized, allowing interactive browsing of various fields of research featured by keywords, topics, or research teams. A typical use of the 3D-SE viewer is quick browsing of topics displayed on a sphere, then selecting one or several item(s) displays links to related terms on another sphere representing, e.g., documents or abstracts, and provides direct online access to the document source in a database, such as the Visiome Platform or the SfN Annual Meeting. Developed as a Java applet, it operates as a tool on top of existing resources.

  9. Fast Tracking Data to Informed Decisions: An Advanced Information System to Improve Environmental Understanding and Management (Invited)

    NASA Astrophysics Data System (ADS)

    Minsker, B. S.; Myers, J.; Liu, Y.; Bajcsy, P.

    2010-12-01

    Emerging sensing and information technology are rapidly creating a new paradigm for environmental research and management, in which data from multiple sensors and information sources can guide real-time adaptive observation and decision making. This talk will provide an overview of emerging cyberinfrastructure and three case studies that illustrate their potential: combined sewer overflows in Chicago, hypoxia in Corpus Christi Bay, Texas, and sustainable agriculture in Illinois. An advanced information system for real-time decision making and visual geospatial analytics will be presented as an example of cyberinfrastructure that enables easier implementation of numerous real-time applications.

  10. 32 CFR 811.8 - Forms prescribed and availability of publications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FORCE SALES AND SERVICES RELEASE, DISSEMINATION, AND SALE OF VISUAL INFORMATION MATERIALS § 811.8 Forms prescribed and availability of publications. (a) AF Form 833, Visual Information Request, AF Form 1340, Visual Information Support Center Workload Report, DD Form 1995, Visual Information (VI) Production...

  11. Visual discomfort in stereoscopic displays: a review

    NASA Astrophysics Data System (ADS)

    Lambooij, Marc T. M.; IJsselsteijn, Wijnand A.; Heynderickx, Ingrid

    2007-02-01

    Visual discomfort has been the subject of considerable research in relation to stereoscopic and autostereoscopic displays, but remains an ambiguous concept used to denote a variety of subjective symptoms potentially related to different underlying processes. In this paper we clarify the importance of various causes and aspects of visual comfort. Classical causative factors such as excessive binocular parallax and accommodation-convergence conflict appear to be of minor importance when disparity values do not surpass one degree limit of visual angle, which still provides sufficient range to allow for satisfactory depth perception in consumer applications, such as stereoscopic television. Visual discomfort, however, may still occur within this limit and we believe the following factors to be the most pertinent in contributing to this: (1) excessive demand of accommodation-convergence linkage, e.g., by fast motion in depth, viewed at short distances, (2) 3D artefacts resulting from insufficient depth information in the incoming data signal yielding spatial and temporal inconsistencies, and (3) unnatural amounts of blur. In order to adequately characterize and understand visual discomfort, multiple types of measurements, both objective and subjective, are needed.

  12. Integrated Web-Based Access to and use of Satellite Remote Sensing Data for Improved Decision Making in Hydrologic Applications

    NASA Astrophysics Data System (ADS)

    Teng, W.; Chiu, L.; Kempler, S.; Liu, Z.; Nadeau, D.; Rui, H.

    2006-12-01

    Using NASA satellite remote sensing data from multiple sources for hydrologic applications can be a daunting task and requires a detailed understanding of the data's internal structure and physical implementation. Gaining this understanding and applying it to data reduction is a time-consuming task that must be undertaken before the core investigation can begin. In order to facilitate such investigations, the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has developed the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure or "Giovanni," which supports a family of Web interfaces (instances) that allow users to perform interactive visualization and analysis online without downloading any data. Two such Giovanni instances are particularly relevant to hydrologic applications: the Tropical Rainfall Measuring Mission (TRMM) Online Visualization and Analysis System (TOVAS) and the Agricultural Online Visualization and Analysis System (AOVAS), both highly popular and widely used for a variety of applications, including those related to several NASA Applications of National Priority, such as Agricultural Efficiency, Disaster Management, Ecological Forecasting, Homeland Security, and Public Health. Dynamic, context- sensitive Web services provided by TOVAS and AOVAS enable users to seamlessly access NASA data from within, and deeply integrate the data into, their local client environments. One example is between TOVAS and Florida International University's TerraFly, a Web-enabled system that serves a broad segment of the research and applications community, by facilitating access to various textual, remotely sensed, and vector data. Another example is between AOVAS and the U.S. Department of Agriculture Foreign Agricultural Service (USDA FAS)'s Crop Explorer, the primary decision support tool used by FAS to monitor the production, supply, and demand of agricultural commodities worldwide. AOVAS is also part of GES DISC's Agricultural Information System (AIS), which can operationally provide satellite remote sensing data products (e.g., near- real-time rainfall) and analysis services to agricultural users. AIS enables the remote, interoperable access to distributed data, by using the GrADS-Data Server (GDS) and the Open Geospatial Consortium (OGC)- compliant MapServer. The latter allows the access of AIS data from any OGC-compliant client, such as the Earth-Sun System Gateway (ESG) or Google Earth. The Giovanni system is evolving towards a Service- Oriented Architecture and is highly customizable (e.g., adding new products or services), thus availing the hydrologic applications user community of Giovanni's simple-to-use and powerful capabilities to improve decision-making.

  13. Integrated visualization of remote sensing data using Google Earth

    NASA Astrophysics Data System (ADS)

    Castella, M.; Rigo, T.; Argemi, O.; Bech, J.; Pineda, N.; Vilaclara, E.

    2009-09-01

    The need for advanced visualization tools for meteorological data has lead in the last years to the development of sophisticated software packages either by observing systems manufacturers or by third-party solution providers. For example, manufacturers of remote sensing systems such as weather radars or lightning detection systems include zoom, product selection, archive access capabilities, as well as quantitative tools for data analysis, as standard features which are highly appreciated in weather surveillance or post-event case study analysis. However, the fact that each manufacturer has its own visualization system and data formats hampers the usability and integration of different data sources. In this context, Google Earth (GE) offers the possibility of combining several graphical information types in a unique visualization system which can be easily accessed by users. The Meteorological Service of Catalonia (SMC) has been evaluating the use of GE as a visualization platform for surveillance tasks in adverse weather events. First experiences are related to the integration in real-time of remote sensing data: radar, lightning, and satellite. The tool shows the animation of the combined products in the last hour, giving a good picture of the meteorological situation. One of the main advantages of this product is that is easy to be installed in many computers and does not need high computational requirements. Besides this, the capability of GE provides information about the most affected areas by heavy rain or other weather phenomena. On the opposite, the main disadvantage is that the product offers only qualitative information, and quantitative data is only available though the graphical display (i.e. trough color scales but not associated to physical values that can be accessed by users easily). The procedure developed to run in real time is divided in three parts. First of all, a crontab file launches different applications, depending on the data type (satellite, radar, or lightning) to be treated. For each type of data, the time of launching is different, and goes from 5 (satellite and lightning) to 6 minutes (radar). The second part is the use of IDL and ENVI programs, which search in each archive file the last images in one hour. In the case of lightning data, the files are generated for the procedure, while for the others the procedure searches for existing imagery. Finally, the procedure generates metadata information required by GE, kml files, and sends them to the internal server. At the same time, in the local computer where GE is running, there exists kml files which update the information referring to the server ones. Another application that has been evaluated is the analysis of past events. In this sense, further work is devoted to develop access procedures to archived data via cgi scripts in order to retrieve and convert the information in a format suitable for GE. The presentation includes examples of the evaluation of the use of GE, and a brief comparison with other existing visualization systems available within the SMC.

  14. GIS-based interactive tool to map the advent of world conquerors

    NASA Astrophysics Data System (ADS)

    Lakkaraju, Mahesh

    The objective of this thesis is to show the scale and extent of some of the greatest empires the world has ever seen. This is a hybrid project between the GIS based interactive tool and the web-based JavaScript tool. This approach lets the students learn effectively about the emperors themselves while understanding how long and far their empires spread. In the GIS based tool, a map is displayed with various points on it, and when a user clicks on one point, the relevant information of what happened at that particular place is displayed. Apart from this information, users can also select the interactive animation button and can walk through a set of battles in chronological order. As mentioned, this uses Java as the main programming language, and MOJO (Map Objects Java Objects) provided by ESRI. MOJO is very effective as its GIS related features can be included in the application itself. This app. is a simple tool and has been developed for university or high school level students. D3.js is an interactive animation and visualization platform built on the Javascript framework. Though HTML5, CSS3, Javascript and SVG animations can be used to derive custom animations, this tool can help bring out results with less effort and more ease of use. Hence, it has become the most sought after visualization tool for multiple applications. D3.js has provided a map-based visualization feature so that we can easily display text-based data in a map-based interface. To draw the map and the points on it, D3.js uses data rendered in TOPO JSON format. The latitudes and longitudes can be provided, which are interpolated into the Map svg. One of the main advantages of doing it this way is that more information is retained when we use a visual medium.

  15. ATLAS Distributed Computing Monitoring tools during the LHC Run I

    NASA Astrophysics Data System (ADS)

    Schovancová, J.; Campana, S.; Di Girolamo, A.; Jézéquel, S.; Ueda, I.; Wenaus, T.; Atlas Collaboration

    2014-06-01

    This contribution summarizes evolution of the ATLAS Distributed Computing (ADC) Monitoring project during the LHC Run I. The ADC Monitoring targets at the three groups of customers: ADC Operations team to early identify malfunctions and escalate issues to an activity or a service expert, ATLAS national contacts and sites for the real-time monitoring and long-term measurement of the performance of the provided computing resources, and the ATLAS Management for long-term trends and accounting information about the ATLAS Distributed Computing resources. During the LHC Run I a significant development effort has been invested in standardization of the monitoring and accounting applications in order to provide extensive monitoring and accounting suite. ADC Monitoring applications separate the data layer and the visualization layer. The data layer exposes data in a predefined format. The visualization layer is designed bearing in mind visual identity of the provided graphical elements, and re-usability of the visualization bits across the different tools. A rich family of various filtering and searching options enhancing available user interfaces comes naturally with the data and visualization layer separation. With a variety of reliable monitoring data accessible through standardized interfaces, the possibility of automating actions under well defined conditions correlating multiple data sources has become feasible. In this contribution we discuss also about the automated exclusion of degraded resources and their automated recovery in various activities.

  16. Visual speech discrimination and identification of natural and synthetic consonant stimuli

    PubMed Central

    Files, Benjamin T.; Tjan, Bosco S.; Jiang, Jintao; Bernstein, Lynne E.

    2015-01-01

    From phonetic features to connected discourse, every level of psycholinguistic structure including prosody can be perceived through viewing the talking face. Yet a longstanding notion in the literature is that visual speech perceptual categories comprise groups of phonemes (referred to as visemes), such as /p, b, m/ and /f, v/, whose internal structure is not informative to the visual speech perceiver. This conclusion has not to our knowledge been evaluated using a psychophysical discrimination paradigm. We hypothesized that perceivers can discriminate the phonemes within typical viseme groups, and that discrimination measured with d-prime (d’) and response latency is related to visual stimulus dissimilarities between consonant segments. In Experiment 1, participants performed speeded discrimination for pairs of consonant-vowel spoken nonsense syllables that were predicted to be same, near, or far in their perceptual distances, and that were presented as natural or synthesized video. Near pairs were within-viseme consonants. Natural within-viseme stimulus pairs were discriminated significantly above chance (except for /k/-/h/). Sensitivity (d’) increased and response times decreased with distance. Discrimination and identification were superior with natural stimuli, which comprised more phonetic information. We suggest that the notion of the viseme as a unitary perceptual category is incorrect. Experiment 2 probed the perceptual basis for visual speech discrimination by inverting the stimuli. Overall reductions in d’ with inverted stimuli but a persistent pattern of larger d’ for far than for near stimulus pairs are interpreted as evidence that visual speech is represented by both its motion and configural attributes. The methods and results of this investigation open up avenues for understanding the neural and perceptual bases for visual and audiovisual speech perception and for development of practical applications such as visual lipreading/speechreading speech synthesis. PMID:26217249

  17. Students' Understanding of Salt Dissolution: Visualizing Animation in the Chemistry Classroom

    NASA Astrophysics Data System (ADS)

    Malkoc, Ummuhan

    The present study explored the effect of animation implementation in learning a chemistry topic. 135 high school students taking chemistry class were selected for this study (quasi-experimental groups = 67 and control groups = 68). Independent samples t-tests were run to compare animation and control groups between and within the schools. The over-arching finding of this research indicated that when science teachers used animations while teaching salt dissolution phenomena, students will benefit the application of animations. In addition, the findings informed the TPACK framework on the idea that visual tools are important in students' understanding of salt dissolution concepts.

  18. A fuzzy measure approach to motion frame analysis for scene detection. M.S. Thesis - Houston Univ.

    NASA Technical Reports Server (NTRS)

    Leigh, Albert B.; Pal, Sankar K.

    1992-01-01

    This paper addresses a solution to the problem of scene estimation of motion video data in the fuzzy set theoretic framework. Using fuzzy image feature extractors, a new algorithm is developed to compute the change of information in each of two successive frames to classify scenes. This classification process of raw input visual data can be used to establish structure for correlation. The algorithm attempts to fulfill the need for nonlinear, frame-accurate access to video data for applications such as video editing and visual document archival/retrieval systems in multimedia environments.

  19. Visualizing biological reaction intermediates with DNA curtains

    NASA Astrophysics Data System (ADS)

    Zhao, Yiling; Jiang, Yanzhou; Qi, Zhi

    2017-04-01

    Single-molecule approaches have tremendous potential analyzing dynamic biological reaction with heterogeneity that cannot be effectively accessed via traditional ensemble-level biochemical approaches. The approach of deoxyribonucleic acid (DNA) curtains developed by Dr Eric Greene and his research team at Columbia University is a high-throughput single-molecule technique that utilizes fluorescent imaging to visualize protein-DNA interactions directly and allows the acquisition of statistically relevant information from hundreds or even thousands of individual reactions. This review aims to summarize the past, present, and future of DNA curtains, with an emphasis on its applications to solve important biological questions.

  20. [Application of electronic fence technology based on GIS in Oncomelania hupensis snail monitoring].

    PubMed

    Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang

    2017-07-27

    To study the application of Geographic Information System (GIS) electronic fence technique in Oncomelania hupensis snail monitoring. The electronic fence was set around the history and existing snail environments in the electronic map, the information about snail monitoring and controlling was linked to the electronic fence, and the snail monitoring information system was established on these bases. The monitoring information was input through the computer and smart phone. The electronic fence around the history and existing snail environments was set in the electronic map (Baidu map), and the snail monitoring information system and smart phone APP were established. The monitoring information was input and upload real-time, and the snail monitoring information was demonstrated in real time on Baidu map. By using the electronic fence technology based on GIS, the unique "environment electronic archives" for each snail monitoring environment can be established in the electronic map, and real-time, dynamic monitoring and visual management can be realized.

  1. OCULUS fire: a command and control system for fire management with crowd sourcing and social media interconnectivity

    NASA Astrophysics Data System (ADS)

    Thomopoulos, Stelios C. A.; Kyriazanos, Dimitris M.; Astyakopoulos, Alkiviadis; Dimitros, Kostantinos; Margonis, Christos; Thanos, Giorgos Konstantinos; Skroumpelou, Katerina

    2016-05-01

    AF3 (Advanced Forest Fire Fighting2) is a European FP7 research project that intends to improve the efficiency of current fire-fighting operations and the protection of human lives, the environment and property by developing innovative technologies to ensure the integration between existing and new systems. To reach this objective, the AF3 project focuses on innovative active and passive countermeasures, early detection and monitoring, integrated crisis management and advanced public information channels. OCULUS Fire is the innovative control and command system developed within AF3 as a monitoring, GIS and Knowledge Extraction System and Visualization Tool. OCULUS Fire includes (a) an interface for real-time updating and reconstructing of maps to enable rerouting based on estimated hazards and risks, (b) processing of GIS dynamic re-construction and mission re-routing, based on the fusion of airborne, satellite, ground and ancillary geolocation data, (c) visualization components for the C2 monitoring system, displaying and managing information arriving from a variety of sources and (d) mission and situational awareness module for OCULUS Fire ground monitoring system being part of an Integrated Crisis Management Information System for ground and ancillary sensors. OCULUS Fire will also process and visualise information from public information channels, social media and also mobile applications by helpful citizens and volunteers. Social networking, community building and crowdsourcing features will enable a higher reliability and less false alarm rates when using such data in the context of safety and security applications.

  2. Information efficiency in visual communication

    NASA Astrophysics Data System (ADS)

    Alter-Gartenberg, Rachel; Rahman, Zia-ur

    1993-08-01

    This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.

  3. Information efficiency in visual communication

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1993-01-01

    This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.

  4. Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology

    PubMed Central

    Koeva, Mila; Luleva, Mila; Maldjanski, Plamen

    2017-01-01

    Development and virtual representation of 3D models of Cultural Heritage (CH) objects has triggered great interest over the past decade. The main reason for this is the rapid development in the fields of photogrammetry and remote sensing, laser scanning, and computer vision. The advantages of using 3D models for restoration, preservation, and documentation of valuable historical and architectural objects have been numerously demonstrated by scientists in the field. Moreover, 3D model visualization in virtual reality has been recognized as an efficient, fast, and easy way of representing a variety of objects worldwide for present-day users, who have stringent requirements and high expectations. However, the main focus of recent research is the visual, geometric, and textural characteristics of a single concrete object, while integration of large numbers of models with additional information—such as historical overview, detailed description, and location—are missing. Such integrated information can be beneficial, not only for tourism but also for accurate documentation. For that reason, we demonstrate in this paper an integration of high-resolution spherical panoramas, a variety of maps, GNSS, sound, video, and text information for representation of numerous cultural heritage objects. These are then displayed in a web-based portal with an intuitive interface. The users have the opportunity to choose freely from the provided information, and decide for themselves what is interesting to visit. Based on the created web application, we provide suggestions and guidelines for similar studies. We selected objects, which are located in Bulgaria—a country with thousands of years of history and cultural heritage dating back to ancient civilizations. The methods used in this research are applicable for any type of spherical or cylindrical images and can be easily followed and applied in various domains. After a visual and metric assessment of the panoramas and the evaluation of the web-portal, we conclude that this novel approach is a very effective, fast, informative, and accurate way to present, disseminate, and document cultural heritage objects. PMID:28398230

  5. Monitoring Global Precipitation through UCI CHRS's RainMapper App on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Nguyen, P.; Huynh, P.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.

    2014-12-01

    The Water and Development Information for Arid Lands-a Global Network (G-WADI) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System (PERSIANN-CCS) GeoServer has been developed through a collaboration between the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) and the UNESCO's International Hydrological Program (IHP). G-WADI PERSIANN-CCS GeoServer provides near real-time high resolution (0.04o, approx 4km) global (60oN - 60oS) satellite precipitation estimated by the PERSIANN-CCS algorithm developed by the scientists at CHRS. The G-WADI PERSIANN-CCS GeoServer utilizes the open-source MapServer software from the University of Minnesota to provide a user-friendly web-based mapping and visualization of satellite precipitation data. Recent efforts have been made by the scientists at CHRS to provide free on-the-go access to the PERSIANN-CCS precipitation data through an application named RainMapper for mobile devices. RainMapper provides visualization of global satellite precipitation of the most recent 3, 6, 12, 24, 48 and 72-hour periods overlaid with various basemaps. RainMapper uses the Google maps application programing interface (API) and embedded global positioning system (GPS) access to better monitor the global precipitation data on mobile devices. Functionalities include using geographical searching with voice recognition technologies make it easy for the user to explore near real-time precipitation in a certain location. RainMapper also allows for conveniently sharing the precipitation information and visualizations with the public through social networks such as Facebook and Twitter. RainMapper is available for iOS and Android devices and can be downloaded (free) from the App Store and Google Play. The usefulness of RainMapper was demonstrated through an application in tracking the evolution of the recent Rammasun Typhoon over the Philippines in mid July 2014.

  6. 32 CFR 811.3 - Official requests for visual information productions or materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THE AIR FORCE SALES AND SERVICES RELEASE, DISSEMINATION, AND SALE OF VISUAL INFORMATION MATERIALS § 811.3 Official requests for visual information productions or materials. (a) Send official Air Force... 32 National Defense 6 2010-07-01 2010-07-01 false Official requests for visual information...

  7. 32 CFR 811.4 - Selling visual information materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SERVICES RELEASE, DISSEMINATION, AND SALE OF VISUAL INFORMATION MATERIALS § 811.4 Selling visual information materials. (a) Air Force VI activities cannot sell materials. (b) HQ AFCIC/ITSM may approve the... 32 National Defense 6 2010-07-01 2010-07-01 false Selling visual information materials. 811.4...

  8. High-fidelity video and still-image communication based on spectral information: natural vision system and its applications

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masahiro; Haneishi, Hideaki; Fukuda, Hiroyuki; Kishimoto, Junko; Kanazawa, Hiroshi; Tsuchida, Masaru; Iwama, Ryo; Ohyama, Nagaaki

    2006-01-01

    In addition to the great advancement of high-resolution and large-screen imaging technology, the issue of color is now receiving considerable attention as another aspect than the image resolution. It is difficult to reproduce the original color of subject in conventional imaging systems, and that obstructs the applications of visual communication systems in telemedicine, electronic commerce, and digital museum. To breakthrough the limitation of conventional RGB 3-primary systems, "Natural Vision" project aims at an innovative video and still-image communication technology with high-fidelity color reproduction capability, based on spectral information. This paper summarizes the results of NV project including the development of multispectral and multiprimary imaging technologies and the experimental investigations on the applications to medicine, digital archives, electronic commerce, and computer graphics.

  9. Ground Penetrating Radar as a Contextual Sensor for Multi-Sensor Radiological Characterisation

    PubMed Central

    Ukaegbu, Ikechukwu K.; Gamage, Kelum A. A.

    2017-01-01

    Radioactive sources exist in environments or contexts that influence how they are detected and localised. For instance, the context of a moving source is different from a stationary source because of the effects of motion. The need to incorporate this contextual information in the radiation detection and localisation process has necessitated the integration of radiological and contextual sensors. The benefits of the successful integration of both types of sensors is well known and widely reported in fields such as medical imaging. However, the integration of both types of sensors has also led to innovative solutions to challenges in characterising radioactive sources in non-medical applications. This paper presents a review of such recent applications. It also identifies that these applications mostly use visual sensors as contextual sensors for characterising radiation sources. However, visual sensors cannot retrieve contextual information about radioactive wastes located in opaque environments encountered at nuclear sites, e.g., underground contamination. Consequently, this paper also examines ground-penetrating radar (GPR) as a contextual sensor for characterising this category of wastes and proposes several ways of integrating data from GPR and radiological sensors. Finally, it demonstrates combined GPR and radiation imaging for three-dimensional localisation of contamination in underground pipes using radiation transport and GPR simulations. PMID:28387706

  10. An android application for crime analysis in San Diego

    NASA Astrophysics Data System (ADS)

    Gonchikara, Likhita

    Over the past few years, smartphone adoption has increased worldwide. In this era of smartphones, one of the easiest ways to make this information available to many users is through smartphone applications. Smartphone applications can provide requested information in a readable and user friendly format. Information related to data such as real estate, property, post offices, crime locations and many others can be very useful. Such information helps city planners, residents, students and commuters to identify and communicate trends and patterns about places. ESRI`s ARCGIS provides various services and tools which help visualize real-world features, discover patterns, obtain information, and communicate that information to others. When these services work in conjunction with GPS based location services in smartphones, they create new avenues for applications. This thesis implements an Android smartphone application with features to analyze location based crime data. The user of this application can view crime data in a region and filter different crime types. The application allows the user to query and analyze crimes that have occurred near his location or at a location of interest. The application includes features to measure distance between crime spots and also measure area on the map. The user can also switch the base-map from street map to NatGeo map. Powered with this information, renters and home buyers can ensure that their new home is in a safe location. Real estate agents can buy or sell property in safer locations. Commuters can find routes which avoid crime spots. Tourists can find accommodation in safer places. Students can be aware of the high crime rate areas around the school campus. This application uses ArcGIS feature service by ESRI to render all data on the map.

  11. Investigating the capabilities of semantic enrichment of 3D CityEngine data

    NASA Astrophysics Data System (ADS)

    Solou, Dimitra; Dimopoulou, Efi

    2016-08-01

    In recent years the development of technology and the lifting of several technical limitations, has brought the third dimension to the fore. The complexity of urban environments and the strong need for land administration, intensify the need of using a three-dimensional cadastral system. Despite the progress in the field of geographic information systems and 3D modeling techniques, there is no fully digital 3D cadastre. The existing geographic information systems and the different methods of three-dimensional modeling allow for better management, visualization and dissemination of information. Nevertheless, these opportunities cannot be totally exploited because of deficiencies in standardization and interoperability in these systems. Within this context, CityGML was developed as an international standard of the Open Geospatial Consortium (OGC) for 3D city models' representation and exchange. CityGML defines geometry and topology for city modeling, also focusing on semantic aspects of 3D city information. The scope of CityGML is to reach common terminology, also addressing the imperative need for interoperability and data integration, taking into account the number of available geographic information systems and modeling techniques. The aim of this paper is to develop an application for managing semantic information of a model generated based on procedural modeling. The model was initially implemented in CityEngine ESRI's software, and then imported to ArcGIS environment. Final goal was the original model's semantic enrichment and then its conversion to CityGML format. Semantic information management and interoperability seemed to be feasible by the use of the 3DCities Project ESRI tools, since its database structure ensures adding semantic information to the CityEngine model and therefore automatically convert to CityGML for advanced analysis and visualization in different application areas.

  12. Real-time 3D visualization of volumetric video motion sensor data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.; Stansfield, S.; Shawver, D.

    1996-11-01

    This paper addresses the problem of improving detection, assessment, and response capabilities of security systems. Our approach combines two state-of-the-art technologies: volumetric video motion detection (VVMD) and virtual reality (VR). This work capitalizes on the ability of VVMD technology to provide three-dimensional (3D) information about the position, shape, and size of intruders within a protected volume. The 3D information is obtained by fusing motion detection data from multiple video sensors. The second component involves the application of VR technology to display information relating to the sensors and the sensor environment. VR technology enables an operator, or security guard, to bemore » immersed in a 3D graphical representation of the remote site. VVMD data is transmitted from the remote site via ordinary telephone lines. There are several benefits to displaying VVMD information in this way. Because the VVMD system provides 3D information and because the sensor environment is a physical 3D space, it seems natural to display this information in 3D. Also, the 3D graphical representation depicts essential details within and around the protected volume in a natural way for human perception. Sensor information can also be more easily interpreted when the operator can `move` through the virtual environment and explore the relationships between the sensor data, objects and other visual cues present in the virtual environment. By exploiting the powerful ability of humans to understand and interpret 3D information, we expect to improve the means for visualizing and interpreting sensor information, allow a human operator to assess a potential threat more quickly and accurately, and enable a more effective response. This paper will detail both the VVMD and VR technologies and will discuss a prototype system based upon their integration.« less

  13. The use of haptic interfaces and web services in crystallography: an application for a `screen to beam' interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Andrew E.; Soares, Alexei S.; Owen, Robin L.

    Haptic interfaces have become common in consumer electronics. They enable easy interaction and information entry without the use of a mouse or keyboard. Our work illustrates the application of a haptic interface to crystallization screening in order to provide a natural means for visualizing and selecting results. By linking this to a cloud-based database and web-based application program interface, the same application shifts the approach from `point and click' to `touch and share', where results can be selected, annotated and discussed collaboratively. Furthermore, in the crystallographic application, given a suitable crystallization plate, beamline and robotic end effector, the resulting informationmore » can be used to close the loop between screening and X-ray analysis, allowing a direct and efficient `screen to beam' approach. The application is not limited to the area of crystallization screening; `touch and share' can be used by any information-rich scientific analysis and geographically distributed collaboration.« less

  14. The use of haptic interfaces and web services in crystallography: an application for a `screen to beam' interface

    DOE PAGES

    Bruno, Andrew E.; Soares, Alexei S.; Owen, Robin L.; ...

    2016-11-11

    Haptic interfaces have become common in consumer electronics. They enable easy interaction and information entry without the use of a mouse or keyboard. Our work illustrates the application of a haptic interface to crystallization screening in order to provide a natural means for visualizing and selecting results. By linking this to a cloud-based database and web-based application program interface, the same application shifts the approach from `point and click' to `touch and share', where results can be selected, annotated and discussed collaboratively. Furthermore, in the crystallographic application, given a suitable crystallization plate, beamline and robotic end effector, the resulting informationmore » can be used to close the loop between screening and X-ray analysis, allowing a direct and efficient `screen to beam' approach. The application is not limited to the area of crystallization screening; `touch and share' can be used by any information-rich scientific analysis and geographically distributed collaboration.« less

  15. Spatial Information Processing: Standards-Based Open Source Visualization Technology

    NASA Astrophysics Data System (ADS)

    Hogan, P.

    2009-12-01

    . Spatial information intelligence is a global issue that will increasingly affect our ability to survive as a species. Collectively we must better appreciate the complex relationships that make life on Earth possible. Providing spatial information in its native context can accelerate our ability to process that information. To maximize this ability to process information, three basic elements are required: data delivery (server technology), data access (client technology), and data processing (information intelligence). NASA World Wind provides open source client and server technologies based on open standards. The possibilities for data processing and data sharing are enhanced by this inclusive infrastructure for geographic information. It is interesting that this open source and open standards approach, unfettered by proprietary constraints, simultaneously provides for entirely proprietary use of this same technology. 1. WHY WORLD WIND? NASA World Wind began as a single program with specific functionality, to deliver NASA content. But as the possibilities for virtual globe technology became more apparent, we found that while enabling a new class of information technology, we were also getting in the way. Researchers, developers and even users expressed their desire for World Wind functionality in ways that would service their specific needs. They want it in their web pages. They want to add their own features. They want to manage their own data. They told us that only with this kind of flexibility, could their objectives and the potential for this technology be truly realized. World Wind client technology is a set of development tools, a software development kit (SDK) that allows a software engineer to create applications requiring geographic visualization technology. 2. MODULAR COMPONENTRY Accelerated evolution of a technology requires that the essential elements of that technology be modular components such that each can advance independent of the other elements. World Wind therefore changed its mission from providing a single information browser to enabling a whole class of 3D geographic applications. Instead of creating a single program, World Wind is a suite of components that can be selectively used in any number of programs. World Wind technology can be a part of any application, or it can be a window in a web page. Or it can be extended with additional functionalities by application and web developers. World Wind makes it possible to include virtual globe visualization and server technology in support of any objective. The world community can continually benefit from advances made in the technology by NASA in concert with the world community. 3. OPEN SOURCE AND OPEN STANDARDS NASA World Wind is NASA Open Source software. This means that the source code is fully accessible for anyone to freely use, even in association with proprietary technology. Imagery and other data provided by the World Wind servers reside in the public domain, including the data server technology itself. This allows others to deliver their own geospatial data and to provide custom solutions based on users specific needs.

  16. Hybrid label-free multiphoton and optoacoustic microscopy (MPOM)

    NASA Astrophysics Data System (ADS)

    Soliman, Dominik; Tserevelakis, George J.; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Many biological applications require a simultaneous observation of different anatomical features. However, unless potentially harmful staining of the specimens is employed, individual microscopy techniques do generally not provide multi-contrast capabilities. We present a hybrid microscope integrating optoacoustic microscopy and multiphoton microscopy, including second-harmonic generation, into a single device. This combined multiphoton and optoacoustic microscope (MPOM) offers visualization of a broad range of structures by employing different contrast mechanisms and at the same time enables pure label-free imaging of biological systems. We investigate the relative performance of the two microscopy modalities and demonstrate their multi-contrast abilities through the label-free imaging of a zebrafish larva ex vivo, simultaneously visualizing muscles and pigments. This hybrid microscopy application bears great potential for developmental biology studies, enabling more comprehensive information to be obtained from biological specimens without the necessity of staining.

  17. Aural mapping of STEM concepts using literature mining

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Venkatesh

    Recent technological applications have made the life of people too much dependent on Science, Technology, Engineering, and Mathematics (STEM) and its applications. Understanding basic level science is a must in order to use and contribute to this technological revolution. Science education in middle and high school levels however depends heavily on visual representations such as models, diagrams, figures, animations and presentations etc. This leaves visually impaired students with very few options to learn science and secure a career in STEM related areas. Recent experiments have shown that small aural clues called Audemes are helpful in understanding and memorization of science concepts among visually impaired students. Audemes are non-verbal sound translations of a science concept. In order to facilitate science concepts as Audemes, for visually impaired students, this thesis presents an automatic system for audeme generation from STEM textbooks. This thesis describes the systematic application of multiple Natural Language Processing tools and techniques, such as dependency parser, POS tagger, Information Retrieval algorithm, Semantic mapping of aural words, machine learning etc., to transform the science concept into a combination of atomic-sounds, thus forming an audeme. We present a rule based classification method for all STEM related concepts. This work also presents a novel way of mapping and extracting most related sounds for the words being used in textbook. Additionally, machine learning methods are used in the system to guarantee the customization of output according to a user's perception. The system being presented is robust, scalable, fully automatic and dynamically adaptable for audeme generation.

  18. VisGets: coordinated visualizations for web-based information exploration and discovery.

    PubMed

    Dörk, Marian; Carpendale, Sheelagh; Collins, Christopher; Williamson, Carey

    2008-01-01

    In common Web-based search interfaces, it can be difficult to formulate queries that simultaneously combine temporal, spatial, and topical data filters. We investigate how coordinated visualizations can enhance search and exploration of information on the World Wide Web by easing the formulation of these types of queries. Drawing from visual information seeking and exploratory search, we introduce VisGets--interactive query visualizations of Web-based information that operate with online information within a Web browser. VisGets provide the information seeker with visual overviews of Web resources and offer a way to visually filter the data. Our goal is to facilitate the construction of dynamic search queries that combine filters from more than one data dimension. We present a prototype information exploration system featuring three linked VisGets (temporal, spatial, and topical), and used it to visually explore news items from online RSS feeds.

  19. Age-equivalent top-down modulation during cross-modal selective attention.

    PubMed

    Guerreiro, Maria J S; Anguera, Joaquin A; Mishra, Jyoti; Van Gerven, Pascal W M; Gazzaley, Adam

    2014-12-01

    Selective attention involves top-down modulation of sensory cortical areas, such that responses to relevant information are enhanced whereas responses to irrelevant information are suppressed. Suppression of irrelevant information, unlike enhancement of relevant information, has been shown to be deficient in aging. Although these attentional mechanisms have been well characterized within the visual modality, little is known about these mechanisms when attention is selectively allocated across sensory modalities. The present EEG study addressed this issue by testing younger and older participants in three different tasks: Participants attended to the visual modality and ignored the auditory modality, attended to the auditory modality and ignored the visual modality, or passively perceived information presented through either modality. We found overall modulation of visual and auditory processing during cross-modal selective attention in both age groups. Top-down modulation of visual processing was observed as a trend toward enhancement of visual information in the setting of auditory distraction, but no significant suppression of visual distraction when auditory information was relevant. Top-down modulation of auditory processing, on the other hand, was observed as suppression of auditory distraction when visual stimuli were relevant, but no significant enhancement of auditory information in the setting of visual distraction. In addition, greater visual enhancement was associated with better recognition of relevant visual information, and greater auditory distractor suppression was associated with a better ability to ignore auditory distraction. There were no age differences in these effects, suggesting that when relevant and irrelevant information are presented through different sensory modalities, selective attention remains intact in older age.

  20. Cyber integrated MEMS microhand for biological applications

    NASA Astrophysics Data System (ADS)

    Weissman, Adam; Frazier, Athena; Pepen, Michael; Lu, Yen-Wen; Yang, Shanchieh Jay

    2009-05-01

    Anthropomorphous robotic hands at microscales have been developed to receive information and perform tasks for biological applications. To emulate a human hand's dexterity, the microhand requires a master-slave interface with a wearable controller, force sensors, and perception displays for tele-manipulation. Recognizing the constraints and complexity imposed in developing feedback interface during miniaturization, this project address the need by creating an integrated cyber environment incorporating sensors with a microhand, haptic/visual display, and object model, to emulates human hands' psychophysical perception at microscale.

  1. Computational cameras for moving iris recognition

    NASA Astrophysics Data System (ADS)

    McCloskey, Scott; Venkatesha, Sharath

    2015-05-01

    Iris-based biometric identification is increasingly used for facility access and other security applications. Like all methods that exploit visual information, however, iris systems are limited by the quality of captured images. Optical defocus due to a small depth of field (DOF) is one such challenge, as is the acquisition of sharply-focused iris images from subjects in motion. This manuscript describes the application of computational motion-deblurring cameras to the problem of moving iris capture, from the underlying theory to system considerations and performance data.

  2. Regional Geology Web Map Application Development: Javascript v2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Glenn

    This is a milestone report for the FY2017 continuation of the Spent Fuel, Storage, and Waste, Technology (SFSWT) program (formerly Used Fuel Disposal (UFD) program) development of the Regional Geology Web Mapping Application by the Idaho National Laboratory Geospatial Science and Engineering group. This application was developed for general public use and is an interactive web-based application built in Javascript to visualize, reference, and analyze US pertinent geological features of the SFSWT program. This tool is a version upgrade from Adobe FLEX technology. It is designed to facilitate informed decision making of the geology of continental US relevant to themore » SFSWT program.« less

  3. Constructing and Reading Visual Information: Visual Literacy for Library and Information Science Education

    ERIC Educational Resources Information Center

    Ma, Yan

    2015-01-01

    This article examines visual literacy education and research for library and information science profession to educate the information professionals who will be able to execute and implement the ACRL (Association of College and Research Libraries) Visual Literacy Competency Standards successfully. It is a continuing call for inclusion of visual…

  4. Data Visualization Using Immersive Virtual Reality Tools

    NASA Astrophysics Data System (ADS)

    Cioc, Alexandru; Djorgovski, S. G.; Donalek, C.; Lawler, E.; Sauer, F.; Longo, G.

    2013-01-01

    The growing complexity of scientific data poses serious challenges for an effective visualization. Data sets, e.g., catalogs of objects detected in sky surveys, can have a very high dimensionality, ~ 100 - 1000. Visualizing such hyper-dimensional data parameter spaces is essentially impossible, but there are ways of visualizing up to ~ 10 dimensions in a pseudo-3D display. We have been experimenting with the emerging technologies of immersive virtual reality (VR) as a platform for a scientific, interactive, collaborative data visualization. Our initial experiments used the virtual world of Second Life, and more recently VR worlds based on its open source code, OpenSimulator. There we can visualize up to ~ 100,000 data points in ~ 7 - 8 dimensions (3 spatial and others encoded as shapes, colors, sizes, etc.), in an immersive virtual space where scientists can interact with their data and with each other. We are now developing a more scalable visualization environment using the popular (practically an emerging standard) Unity 3D Game Engine, coded using C#, JavaScript, and the Unity Scripting Language. This visualization tool can be used through a standard web browser, or a standalone browser of its own. Rather than merely plotting data points, the application creates interactive three-dimensional objects of various shapes, colors, and sizes, and of course the XYZ positions, encoding various dimensions of the parameter space, that can be associated interactively. Multiple users can navigate through this data space simultaneously, either with their own, independent vantage points, or with a shared view. At this stage ~ 100,000 data points can be easily visualized within seconds on a simple laptop. The displayed data points can contain linked information; e.g., upon a clicking on a data point, a webpage with additional information can be rendered within the 3D world. A range of functionalities has been already deployed, and more are being added. We expect to make this visualization tool freely available to the academic community within a few months, on an experimental (beta testing) basis.

  5. Runtime visualization of the human arterial tree.

    PubMed

    Insley, Joseph A; Papka, Michael E; Dong, Suchuan; Karniadakis, George; Karonis, Nicholas T

    2007-01-01

    Large-scale simulation codes typically execute for extended periods of time and often on distributed computational resources. Because these simulations can run for hours, or even days, scientists like to get feedback about the state of the computation and the validity of its results as it runs. It is also important that these capabilities be made available with little impact on the performance and stability of the simulation. Visualizing and exploring data in the early stages of the simulation can help scientists identify problems early, potentially avoiding a situation where a simulation runs for several days, only to discover that an error with an input parameter caused both time and resources to be wasted. We describe an application that aids in the monitoring and analysis of a simulation of the human arterial tree. The application provides researchers with high-level feedback about the state of the ongoing simulation and enables them to investigate particular areas of interest in greater detail. The application also offers monitoring information about the amount of data produced and data transfer performance among the various components of the application.

  6. Enabling Real-time Water Decision Support Services Using Model as a Service

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Minsker, B. S.; Lee, J. S.; Salas, F. R.; Maidment, D. R.; David, C. H.

    2014-12-01

    Through application of computational methods and an integrated information system, data and river modeling services can help researchers and decision makers more rapidly understand river conditions under alternative scenarios. To enable this capability, workflows (i.e., analysis and model steps) are created and published as Web services delivered through an internet browser, including model inputs, a published workflow service, and visualized outputs. The RAPID model, which is a river routing model developed at University of Texas Austin for parallel computation of river discharge, has been implemented as a workflow and published as a Web application. This allows non-technical users to remotely execute the model and visualize results as a service through a simple Web interface. The model service and Web application has been prototyped in the San Antonio and Guadalupe River Basin in Texas, with input from university and agency partners. In the future, optimization model workflows will be developed to link with the RAPID model workflow to provide real-time water allocation decision support services.

  7. Approaches to the Successful Design and Implementation of VR Applications

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The successful design of virtual reality applications involves both "top-down" and "bottom-up" strategies. This talk will broadly outline these strategies: how bottom-up strategies are driven primarily by performance considerations; and how top-down strategies are driven primarily by the application task, the interaction metaphors, and the integration of the virtual environment. How to ensure these two approaches "meet in the middle" through Iterative design processes will be stressed. The discussion will be motivated by examples of both success and failure. The talk contains information bryson presented at SIGGRAPH '93 and Visualization '93, and is a high-level discussion of design principles for virtual reality. There will be essentially no discussion of virtual wind tunnel specific issues or any other matters relating to aerospace, the tutorial is a repeat of the tutorial Bryson and Steve Feiner presented at Visualization '93 In October 1993 in San Jose, CA, and will cite the virtual windtunnel only as an example.

  8. Study of a direct visualization display tool for space applications

    NASA Astrophysics Data System (ADS)

    Pereira do Carmo, J.; Gordo, P. R.; Martins, M.; Rodrigues, F.; Teodoro, P.

    2017-11-01

    The study of a Direct Visualization Display Tool (DVDT) for space applications is reported. The review of novel technologies for a compact display tool is described. Several applications for this tool have been identified with the support of ESA astronauts and are presented. A baseline design is proposed. It consists mainly of OLEDs as image source; a specially designed optical prism as relay optics; a Personal Digital Assistant (PDA), with data acquisition card, as control unit; and voice control and simplified keyboard as interfaces. Optical analysis and the final estimated performance are reported. The system is able to display information (text, pictures or/and video) with SVGA resolution directly to the astronaut using a Field of View (FOV) of 20x14.5 degrees. The image delivery system is a monocular Head Mounted Display (HMD) that weights less than 100g. The HMD optical system has an eye pupil of 7mm and an eye relief distance of 30mm.

  9. Tracking the Dynamic Folding and Unfolding of RNA G-Quadruplexes in Live Cells.

    PubMed

    Chen, Xiu-Cai; Chen, Shuo-Bin; Dai, Jing; Yuan, Jia-Hao; Ou, Tian-Miao; Huang, Zhi-Shu; Tan, Jia-Heng

    2018-04-16

    Because of the absence of methods for tracking RNA G-quadruplex dynamics, especially the folding and unfolding of this attractive structure in live cells, understanding of the biological roles of RNA G-quadruplexes is so far limited. Herein, we report a new red-emitting fluorescent probe, QUMA-1, for the selective, continuous, and real-time visualization of RNA G-quadruplexes in live cells. The applications of QUMA-1 in several previously intractable applications, including live-cell imaging of the dynamic folding, unfolding, and movement of RNA G-quadruplexes and the visualization of the unwinding of RNA G-quadruplexes by RNA helicase have been demonstrated. Notably, our real-time results revealed the complexity of the dynamics of RNA G-quadruplexes in live cells. We anticipate that the further application of QUMA-1 in combination with appropriate biological and imaging methods to explore the dynamics of RNA G-quadruplexes will uncover more information about the biological roles of RNA G-quadruplexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ophthalmic compensation of visual ametropia based on a programmable diffractive lens

    NASA Astrophysics Data System (ADS)

    Millán, Maria S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2013-11-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements (DOEs), particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. In this paper, we explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator (LCoS-SLM) to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of some refractive errors (myopia, hyperopia). The theoretical principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. A series of experiments with artificial eye in optical bench are conducted to analyze the compensation accuracy in terms of optical power and to compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  11. Review of ultraresolution (10-100 megapixel) visualization systems built by tiling commercial display components

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Haralson, David G.; Simpson, Matthew A.; Longo, Sam J.

    2002-08-01

    Ultra-resolution visualization systems are achieved by the technique of tiling many direct or project-view displays. During the past fews years, several such systems have been built from commercial electronics components (displays, computers, image generators, networks, communication links, and software). Civil applications driving this development have independently determined that they require images at 10-100 megapixel (Mpx) resolution to enable state-of-the-art research, engineering, design, stock exchanges, flight simulators, business information and enterprise control centers, education, art and entertainment. Military applications also press the art of the possible to improve the productivity of warfighters and lower the cost of providing for the national defense. The environment in some 80% of defense applications can be addressed by ruggedization of commercial components. This paper reviews the status of ultra-resolution systems based on commercial components and describes a vision for their integration into advanced yet affordable military command centers, simulator/trainers, and, eventually, crew stations in air, land, sea and space systems.

  12. Rapid development of medical imaging tools with open-source libraries.

    PubMed

    Caban, Jesus J; Joshi, Alark; Nagy, Paul

    2007-11-01

    Rapid prototyping is an important element in researching new imaging analysis techniques and developing custom medical applications. In the last ten years, the open source community and the number of open source libraries and freely available frameworks for biomedical research have grown significantly. What they offer are now considered standards in medical image analysis, computer-aided diagnosis, and medical visualization. A cursory review of the peer-reviewed literature in imaging informatics (indeed, in almost any information technology-dependent scientific discipline) indicates the current reliance on open source libraries to accelerate development and validation of processes and techniques. In this survey paper, we review and compare a few of the most successful open source libraries and frameworks for medical application development. Our dual intentions are to provide evidence that these approaches already constitute a vital and essential part of medical image analysis, diagnosis, and visualization and to motivate the reader to use open source libraries and software for rapid prototyping of medical applications and tools.

  13. ATR applications of minimax entropy models of texture and shape

    NASA Astrophysics Data System (ADS)

    Zhu, Song-Chun; Yuille, Alan L.; Lanterman, Aaron D.

    2001-10-01

    Concepts from information theory have recently found favor in both the mainstream computer vision community and the military automatic target recognition community. In the computer vision literature, the principles of minimax entropy learning theory have been used to generate rich probabilitistic models of texture and shape. In addition, the method of types and large deviation theory has permitted the difficulty of various texture and shape recognition tasks to be characterized by 'order parameters' that determine how fundamentally vexing a task is, independent of the particular algorithm used. These information-theoretic techniques have been demonstrated using traditional visual imagery in applications such as simulating cheetah skin textures and such as finding roads in aerial imagery. We discuss their application to problems in the specific application domain of automatic target recognition using infrared imagery. We also review recent theoretical and algorithmic developments which permit learning minimax entropy texture models for infrared textures in reasonable timeframes.

  14. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees.

    PubMed

    Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Hu, Songnian; Chen, Wei-Hua

    2012-07-01

    EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html.

  15. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees

    PubMed Central

    Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J.; Hu, Songnian; Chen, Wei-Hua

    2012-01-01

    EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html. PMID:22695796

  16. Research on robot mobile obstacle avoidance control based on visual information

    NASA Astrophysics Data System (ADS)

    Jin, Jiang

    2018-03-01

    Robots to detect obstacles and control robots to avoid obstacles has been a key research topic of robot control. In this paper, a scheme of visual information acquisition is proposed. By judging visual information, the visual information is transformed into the information source of path processing. In accordance with the established route, in the process of encountering obstacles, the algorithm real-time adjustment trajectory to meet the purpose of intelligent control of mobile robots. Simulation results show that, through the integration of visual sensing information, the obstacle information is fully obtained, while the real-time and accuracy of the robot movement control is guaranteed.

  17. Characterize Aerosols from MODIS/MISR/OMI/MERRA-2: Dynamic Image Browse Perspective

    NASA Astrophysics Data System (ADS)

    Wei, J. C.; Yang, W.; Shen, S.; Zhao, P.; Albayrak, A.; Johnson, J. E.; Kempler, S. J.; Pham, L.

    2016-12-01

    Among the known atmospheric constituents, aerosols still represent the greatest uncertainty in climate research. To understand the uncertainty is to bring altogether of observational (in-situ and remote sensing) and modeling datasets and inter-compare them synergistically for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if these earth science data (satellite and modeling) are well utilized and interpreted. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite-borne sensors routinely measure aerosols. There is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) have developed multiple MAPSS (Multi-sensor Aerosol Products Sampling System) applications as a part of Giovanni (Geospatial Interactive Online Visualization and Analysis Interface) data visualization and analysis tool since 2007. The MAPSS database provides spatio-temporal statistics for multiple spatial spaceborne Level 2 aerosol products (MODIS Terra, MODIS Aqua, MISR, POLDER, OMI, CALIOP, SeaWiFS Deep Blue, and VIIRS) sampled over AERONET ground stations. In this presentation, I will demonstrate a new visualization service (NASA Level 2 Data Quality Visualization, DQViz) supporting various visualization and data accessing capabilities from satellite Level 2 (MODIS/MISR/OMI) and long term assimilated aerosols from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2 displaying at their own native physical-retrieved spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting.

  18. [Imaging Mass Spectrometry in Histopathologic Analysis].

    PubMed

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.

  19. Research on three-dimensional visualization based on virtual reality and Internet

    NASA Astrophysics Data System (ADS)

    Wang, Zongmin; Yang, Haibo; Zhao, Hongling; Li, Jiren; Zhu, Qiang; Zhang, Xiaohong; Sun, Kai

    2007-06-01

    To disclose and display water information, a three-dimensional visualization system based on Virtual Reality (VR) and Internet is researched for demonstrating "digital water conservancy" application and also for routine management of reservoir. To explore and mine in-depth information, after completion of modeling high resolution DEM with reliable quality, topographical analysis, visibility analysis and reservoir volume computation are studied. And also, some parameters including slope, water level and NDVI are selected to classify easy-landslide zone in water-level-fluctuating zone of reservoir area. To establish virtual reservoir scene, two kinds of methods are used respectively for experiencing immersion, interaction and imagination (3I). First virtual scene contains more detailed textures to increase reality on graphical workstation with virtual reality engine Open Scene Graph (OSG). Second virtual scene is for internet users with fewer details for assuring fluent speed.

  20. Demonstration of three gorges archaeological relics based on 3D-visualization technology

    NASA Astrophysics Data System (ADS)

    Xu, Wenli

    2015-12-01

    This paper mainly focuses on the digital demonstration of three gorges archeological relics to exhibit the achievements of the protective measures. A novel and effective method based on 3D-visualization technology, which includes large-scaled landscape reconstruction, virtual studio, and virtual panoramic roaming, etc, is proposed to create a digitized interactive demonstration system. The method contains three stages: pre-processing, 3D modeling and integration. Firstly, abundant archaeological information is classified according to its history and geographical information. Secondly, build up a 3D-model library with the technology of digital images processing and 3D modeling. Thirdly, use virtual reality technology to display the archaeological scenes and cultural relics vividly and realistically. The present work promotes the application of virtual reality to digital projects and enriches the content of digital archaeology.

  1. A VBA Desktop Database for Proposal Processing at National Optical Astronomy Observatories

    NASA Astrophysics Data System (ADS)

    Brown, Christa L.

    National Optical Astronomy Observatories (NOAO) has developed a relational Microsoft Windows desktop database using Microsoft Access and the Microsoft Office programming language, Visual Basic for Applications (VBA). The database is used to track data relating to observing proposals from original receipt through the review process, scheduling, observing, and final statistical reporting. The database has automated proposal processing and distribution of information. It allows NOAO to collect and archive data so as to query and analyze information about our science programs in new ways.

  2. The Current State and TRL Assessment of People Tracking Technology for Video Surveillance Applications

    DTIC Science & Technology

    2014-09-01

    the feature-space used to represent the target. Sometimes we trade off keeping information about one domain of the target in exchange for robustness... Kullback - Leibler distance), can be used as a similarity function between a candidate target and a template. This approach is invariant to changes in scale...basis vectors to adapt to appearance change and learns the visual information that the set of targets have in common, which is used to reduce the

  3. Distributed telemedicine for the National Information Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forslund, D.W.; Lee, Seong H.; Reverbel, F.C.

    1997-08-01

    TeleMed is an advanced system that provides a distributed multimedia electronic medical record available over a wide area network. It uses object-based computing, distributed data repositories, advanced graphical user interfaces, and visualization tools along with innovative concept extraction of image information for storing and accessing medical records developed in a separate project from 1994-5. In 1996, we began the transition to Java, extended the infrastructure, and worked to begin deploying TeleMed-like technologies throughout the nation. Other applications are mentioned.

  4. Development of a Prototype Detailing Management System for the Civil Engineer Corps

    DTIC Science & Technology

    2002-09-01

    73 Figure 30. Associate Members To Billets SQL Statement...American Standard Code for Information Interchange EMPRS Electronic Military Personnel Record System VBA Visual Basic for Applications SDLC...capturing keystrokes or carrying out a series of actions when opening an Access database. In the place of macros, VBA should be used because of its

  5. Information Management System Development for the Investigation, Reporting, and Analysis of Human Error in Naval Aviation Maintenance

    DTIC Science & Technology

    2001-09-01

    of MEIMS was programmed in Microsoft Access 97 using Visual Basic for Applications ( VBA ). This prototype had very little documentation. The FAA...using Acess 2000 as an interface and SQL server as the database engine. Question 1: Did you have any problems accessing the program? Y / N

  6. A Case Study of Student Teachers' Learning and Perceptions When Using Tablet Applications Teaching Physical Education

    ERIC Educational Resources Information Center

    Browne, Tom

    2015-01-01

    Despite developments in information and communications technology (ICT), current research on the use of ICT in physical education (PE) is limited; research has been confined to investigating the use of visual technology, particularly digital cameras. Student teachers (participants) often use each other as learning resources and the purpose of this…

  7. Needs Analysis for Graphic Design Learning Module Based on Technology & Learning Styles of Deaf Students

    ERIC Educational Resources Information Center

    Ibrahim, Zainuddin; Alias, Norlidah; Nordin, Abu Bakar

    2016-01-01

    The field of Information Communication Technology has offered a promising future for deaf students. Web design, animation, and multimedia application design are a branch of graphic design area, which aim to aid their learning visually. However, most of the technical terms cannot be interpreted in Malaysian sign language. Moreover, the development…

  8. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    PubMed

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  9. WHIDE—a web tool for visual data mining colocation patterns in multivariate bioimages

    PubMed Central

    Kölling, Jan; Langenkämper, Daniel; Abouna, Sylvie; Khan, Michael; Nattkemper, Tim W.

    2012-01-01

    Motivation: Bioimaging techniques rapidly develop toward higher resolution and dimension. The increase in dimension is achieved by different techniques such as multitag fluorescence imaging, Matrix Assisted Laser Desorption / Ionization (MALDI) imaging or Raman imaging, which record for each pixel an N-dimensional intensity array, representing local abundances of molecules, residues or interaction patterns. The analysis of such multivariate bioimages (MBIs) calls for new approaches to support users in the analysis of both feature domains: space (i.e. sample morphology) and molecular colocation or interaction. In this article, we present our approach WHIDE (Web-based Hyperbolic Image Data Explorer) that combines principles from computational learning, dimension reduction and visualization in a free web application. Results: We applied WHIDE to a set of MBI recorded using the multitag fluorescence imaging Toponome Imaging System. The MBI show field of view in tissue sections from a colon cancer study and we compare tissue from normal/healthy colon with tissue classified as tumor. Our results show, that WHIDE efficiently reduces the complexity of the data by mapping each of the pixels to a cluster, referred to as Molecular Co-Expression Phenotypes and provides a structural basis for a sophisticated multimodal visualization, which combines topology preserving pseudocoloring with information visualization. The wide range of WHIDE's applicability is demonstrated with examples from toponome imaging, high content screens and MALDI imaging (shown in the Supplementary Material). Availability and implementation: The WHIDE tool can be accessed via the BioIMAX website http://ani.cebitec.uni-bielefeld.de/BioIMAX/; Login: whidetestuser; Password: whidetest. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: tim.nattkemper@uni-bielefeld.de PMID:22390938

  10. Applications of hypermedia systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lennon, J.; Maurer, H.

    1995-05-01

    In this paper, we consider several new aspects of modern hypermedia systems. The applications discussed include: (1) General Information and Communication Systems: Distributed information systems for businesses, schools and universities, museums, libraries, health systems, etc. (2) Electronic orientation and information displays: Electronic guided tours, public information kiosks, and publicity dissemination with archive facilities. (3) Lecturing: A system going beyond the traditional to empower both teachers and learners. (4) Libraries: A further step towards fully electronic library systems. (5) Directories of all kinds: Staff, telephone, and all sorts of generic directories. (6) Administration: A fully integrated system such as the onemore » proposed will mean efficient data processing and valuable statistical data. (7) Research: Material can now be accessed from databases all around the world. The effects of networking and computer-supported collaborative work are discussed, and examples of new scientific visualization programs are quoted. The paper concludes with a section entitled {open_quotes}Future Directions{close_quotes}.« less

  11. The efficacy of a novel mobile phone application for goldmann ptosis visual field interpretation.

    PubMed

    Maamari, Robi N; D'Ambrosio, Michael V; Joseph, Jeffrey M; Tao, Jeremiah P

    2014-01-01

    To evaluate the efficacy of a novel mobile phone application that calculates superior visual field defects on Goldmann visual field charts. Experimental study in which the mobile phone application and 14 oculoplastic surgeons interpreted the superior visual field defect in 10 Goldmann charts. Percent error of the mobile phone application and the oculoplastic surgeons' estimates were calculated compared with computer software computation of the actual defects. Precision and time efficiency of the application were evaluated by processing the same Goldmann visual field chart 10 repeated times. The mobile phone application was associated with a mean percent error of 1.98% (95% confidence interval[CI], 0.87%-3.10%) in superior visual field defect calculation. The average mean percent error of the oculoplastic surgeons' visual estimates was 19.75% (95% CI, 14.39%-25.11%). Oculoplastic surgeons, on average, underestimated the defect in all 10 Goldmann charts. There was high interobserver variance among oculoplastic surgeons. The percent error of the 10 repeated measurements on a single chart was 0.93% (95% CI, 0.40%-1.46%). The average time to process 1 chart was 12.9 seconds (95% CI, 10.9-15.0 seconds). The mobile phone application was highly accurate, precise, and time-efficient in calculating the percent superior visual field defect using Goldmann charts. Oculoplastic surgeon visual interpretations were highly inaccurate, highly variable, and usually underestimated the field vision loss.

  12. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khawli, Toufik Al; Eppelt, Urs; Hermanns, Torsten

    2016-06-08

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part ismore » to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.« less

  13. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    NASA Astrophysics Data System (ADS)

    Khawli, Toufik Al; Gebhardt, Sascha; Eppelt, Urs; Hermanns, Torsten; Kuhlen, Torsten; Schulz, Wolfgang

    2016-06-01

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.

  14. Quantitative Evaluation of Stereo Visual Odometry for Autonomous Vessel Localisation in Inland Waterway Sensing Applications

    PubMed Central

    Kriechbaumer, Thomas; Blackburn, Kim; Breckon, Toby P.; Hamilton, Oliver; Rivas Casado, Monica

    2015-01-01

    Autonomous survey vessels can increase the efficiency and availability of wide-area river environment surveying as a tool for environment protection and conservation. A key challenge is the accurate localisation of the vessel, where bank-side vegetation or urban settlement preclude the conventional use of line-of-sight global navigation satellite systems (GNSS). In this paper, we evaluate unaided visual odometry, via an on-board stereo camera rig attached to the survey vessel, as a novel, low-cost localisation strategy. Feature-based and appearance-based visual odometry algorithms are implemented on a six degrees of freedom platform operating under guided motion, but stochastic variation in yaw, pitch and roll. Evaluation is based on a 663 m-long trajectory (>15,000 image frames) and statistical error analysis against ground truth position from a target tracking tachymeter integrating electronic distance and angular measurements. The position error of the feature-based technique (mean of ±0.067 m) is three times smaller than that of the appearance-based algorithm. From multi-variable statistical regression, we are able to attribute this error to the depth of tracked features from the camera in the scene and variations in platform yaw. Our findings inform effective strategies to enhance stereo visual localisation for the specific application of river monitoring. PMID:26694411

  15. Visual Working Memory Supports the Inhibition of Previously Processed Information: Evidence from Preview Search

    ERIC Educational Resources Information Center

    Al-Aidroos, Naseem; Emrich, Stephen M.; Ferber, Susanne; Pratt, Jay

    2012-01-01

    In four experiments we assessed whether visual working memory (VWM) maintains a record of previously processed visual information, allowing old information to be inhibited, and new information to be prioritized. Specifically, we evaluated whether VWM contributes to the inhibition (i.e., visual marking) of previewed distractors in a preview search.…

  16. 32 CFR 813.1 - Purpose of the visual information documentation (VIDOC) program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Purpose of the visual information documentation (VIDOC) program. 813.1 Section 813.1 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE SALES AND SERVICES VISUAL INFORMATION DOCUMENTATION PROGRAM § 813.1 Purpose of the visual information documentation (VIDOC) program....

  17. Emotional Effects in Visual Information Processing

    DTIC Science & Technology

    2009-10-24

    1 Emotional Effects on Visual Information Processing FA4869-08-0004 AOARD 074018 Report October 24, 2009...TITLE AND SUBTITLE Emotional Effects in Visual Information Processing 5a. CONTRACT NUMBER FA48690810004 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...objective of this research project was to investigate how emotion influences visual information processing and the neural correlates of the effects

  18. The SCHEIE Visual Field Grading System

    PubMed Central

    Sankar, Prithvi S.; O’Keefe, Laura; Choi, Daniel; Salowe, Rebecca; Miller-Ellis, Eydie; Lehman, Amanda; Addis, Victoria; Ramakrishnan, Meera; Natesh, Vikas; Whitehead, Gideon; Khachatryan, Naira; O’Brien, Joan

    2017-01-01

    Objective No method of grading visual field (VF) defects has been widely accepted throughout the glaucoma community. The SCHEIE (Systematic Classification of Humphrey visual fields-Easy Interpretation and Evaluation) grading system for glaucomatous visual fields was created to convey qualitative and quantitative information regarding visual field defects in an objective, reproducible, and easily applicable manner for research purposes. Methods The SCHEIE grading system is composed of a qualitative and quantitative score. The qualitative score consists of designation in one or more of the following categories: normal, central scotoma, paracentral scotoma, paracentral crescent, temporal quadrant, nasal quadrant, peripheral arcuate defect, expansive arcuate, or altitudinal defect. The quantitative component incorporates the Humphrey visual field index (VFI), location of visual defects for superior and inferior hemifields, and blind spot involvement. Accuracy and speed at grading using the qualitative and quantitative components was calculated for non-physician graders. Results Graders had a median accuracy of 96.67% for their qualitative scores and a median accuracy of 98.75% for their quantitative scores. Graders took a mean of 56 seconds per visual field to assign a qualitative score and 20 seconds per visual field to assign a quantitative score. Conclusion The SCHEIE grading system is a reproducible tool that combines qualitative and quantitative measurements to grade glaucomatous visual field defects. The system aims to standardize clinical staging and to make specific visual field defects more easily identifiable. Specific patterns of visual field loss may also be associated with genetic variants in future genetic analysis. PMID:28932621

  19. Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches

    PubMed Central

    Cicmil, Nela; Bridge, Holly; Parker, Andrew J.; Woolrich, Mark W.; Krug, Kristine

    2014-01-01

    Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system should place the sources of early visual activity in known locations in the occipital cortex. We localized sources of retinotopic MEG signals from the human brain with contrasting reconstruction approaches (minimum norm, multiple sparse priors, and beamformer) and compared these to the visual retinotopic map obtained with fMRI in the same individuals. When reconstructing brain responses to visual stimuli that differed by angular position, we found reliable localization to the appropriate retinotopic visual field quadrant by a minimum norm approach and by beamforming. Retinotopic map eccentricity in accordance with the fMRI map could not consistently be localized using an annular stimulus with any reconstruction method, but confining eccentricity stimuli to one visual field quadrant resulted in significant improvement with the minimum norm. These results inform the application of source analysis approaches for future MEG studies of the visual system, and indicate some current limits on localization accuracy of MEG signals. PMID:24904268

  20. [Evolution of the audio-visual technologies of production and diffusion and the conditions of their application in the Third World].

    PubMed

    Lefebvre, M

    1979-01-01

    The present information production techniques are so inefficient that it is out of the question to generalize them. On the other hand audio-visual communication raises a major political problem, especially for developing countries. Audio-visual equipment has gone through adjustment phases; the example of the tape and cassette recorder is given: 2 technological improvements have completely modified its use; the transistors have allowed considerable reduction in volume and weight as well as the energy necessary; the invention of the cassette has simplified its use. Technological research is following 3 major directions: the production of equipment which consumes little energy; the improvement of electronic component production techniques (towards cheaper electronic components); finally, the designing of systems allowing to stock large quantities of information. The communication systems will probably make so much progress in the areas of technology and programming, that they will soon have very different uses than the present ones. The question is whether our civilizations will let themselves be dominated by these new systems, or whether they will succeed to turn them into progress tools.

Top