Sample records for information-based feature selection

  1. Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation

    PubMed Central

    Siraj, Maheyzah Md; Zainal, Anazida; Elshoush, Huwaida Tagelsir; Elhaj, Fatin

    2016-01-01

    Grouping and clustering alerts for intrusion detection based on the similarity of features is referred to as structurally base alert correlation and can discover a list of attack steps. Previous researchers selected different features and data sources manually based on their knowledge and experience, which lead to the less accurate identification of attack steps and inconsistent performance of clustering accuracy. Furthermore, the existing alert correlation systems deal with a huge amount of data that contains null values, incomplete information, and irrelevant features causing the analysis of the alerts to be tedious, time-consuming and error-prone. Therefore, this paper focuses on selecting accurate and significant features of alerts that are appropriate to represent the attack steps, thus, enhancing the structural-based alert correlation model. A two-tier feature selection method is proposed to obtain the significant features. The first tier aims at ranking the subset of features based on high information gain entropy in decreasing order. The‏ second tier extends additional features with a better discriminative ability than the initially ranked features. Performance analysis results show the significance of the selected features in terms of the clustering accuracy using 2000 DARPA intrusion detection scenario-specific dataset. PMID:27893821

  2. Mutual information criterion for feature selection with application to classification of breast microcalcifications

    NASA Astrophysics Data System (ADS)

    Diamant, Idit; Shalhon, Moran; Goldberger, Jacob; Greenspan, Hayit

    2016-03-01

    Classification of clustered breast microcalcifications into benign and malignant categories is an extremely challenging task for computerized algorithms and expert radiologists alike. In this paper we present a novel method for feature selection based on mutual information (MI) criterion for automatic classification of microcalcifications. We explored the MI based feature selection for various texture features. The proposed method was evaluated on a standardized digital database for screening mammography (DDSM). Experimental results demonstrate the effectiveness and the advantage of using the MI-based feature selection to obtain the most relevant features for the task and thus to provide for improved performance as compared to using all features.

  3. Improving Classification of Protein Interaction Articles Using Context Similarity-Based Feature Selection.

    PubMed

    Chen, Yifei; Sun, Yuxing; Han, Bing-Qing

    2015-01-01

    Protein interaction article classification is a text classification task in the biological domain to determine which articles describe protein-protein interactions. Since the feature space in text classification is high-dimensional, feature selection is widely used for reducing the dimensionality of features to speed up computation without sacrificing classification performance. Many existing feature selection methods are based on the statistical measure of document frequency and term frequency. One potential drawback of these methods is that they treat features separately. Hence, first we design a similarity measure between the context information to take word cooccurrences and phrase chunks around the features into account. Then we introduce the similarity of context information to the importance measure of the features to substitute the document and term frequency. Hence we propose new context similarity-based feature selection methods. Their performance is evaluated on two protein interaction article collections and compared against the frequency-based methods. The experimental results reveal that the context similarity-based methods perform better in terms of the F1 measure and the dimension reduction rate. Benefiting from the context information surrounding the features, the proposed methods can select distinctive features effectively for protein interaction article classification.

  4. IMMAN: free software for information theory-based chemometric analysis.

    PubMed

    Urias, Ricardo W Pino; Barigye, Stephen J; Marrero-Ponce, Yovani; García-Jacas, César R; Valdes-Martiní, José R; Perez-Gimenez, Facundo

    2015-05-01

    The features and theoretical background of a new and free computational program for chemometric analysis denominated IMMAN (acronym for Information theory-based CheMoMetrics ANalysis) are presented. This is multi-platform software developed in the Java programming language, designed with a remarkably user-friendly graphical interface for the computation of a collection of information-theoretic functions adapted for rank-based unsupervised and supervised feature selection tasks. A total of 20 feature selection parameters are presented, with the unsupervised and supervised frameworks represented by 10 approaches in each case. Several information-theoretic parameters traditionally used as molecular descriptors (MDs) are adapted for use as unsupervised rank-based feature selection methods. On the other hand, a generalization scheme for the previously defined differential Shannon's entropy is discussed, as well as the introduction of Jeffreys information measure for supervised feature selection. Moreover, well-known information-theoretic feature selection parameters, such as information gain, gain ratio, and symmetrical uncertainty are incorporated to the IMMAN software ( http://mobiosd-hub.com/imman-soft/ ), following an equal-interval discretization approach. IMMAN offers data pre-processing functionalities, such as missing values processing, dataset partitioning, and browsing. Moreover, single parameter or ensemble (multi-criteria) ranking options are provided. Consequently, this software is suitable for tasks like dimensionality reduction, feature ranking, as well as comparative diversity analysis of data matrices. Simple examples of applications performed with this program are presented. A comparative study between IMMAN and WEKA feature selection tools using the Arcene dataset was performed, demonstrating similar behavior. In addition, it is revealed that the use of IMMAN unsupervised feature selection methods improves the performance of both IMMAN and WEKA supervised algorithms. Graphic representation for Shannon's distribution of MD calculating software.

  5. Feature engineering for drug name recognition in biomedical texts: feature conjunction and feature selection.

    PubMed

    Liu, Shengyu; Tang, Buzhou; Chen, Qingcai; Wang, Xiaolong; Fan, Xiaoming

    2015-01-01

    Drug name recognition (DNR) is a critical step for drug information extraction. Machine learning-based methods have been widely used for DNR with various types of features such as part-of-speech, word shape, and dictionary feature. Features used in current machine learning-based methods are usually singleton features which may be due to explosive features and a large number of noisy features when singleton features are combined into conjunction features. However, singleton features that can only capture one linguistic characteristic of a word are not sufficient to describe the information for DNR when multiple characteristics should be considered. In this study, we explore feature conjunction and feature selection for DNR, which have never been reported. We intuitively select 8 types of singleton features and combine them into conjunction features in two ways. Then, Chi-square, mutual information, and information gain are used to mine effective features. Experimental results show that feature conjunction and feature selection can improve the performance of the DNR system with a moderate number of features and our DNR system significantly outperforms the best system in the DDIExtraction 2013 challenge.

  6. A feature selection approach towards progressive vector transmission over the Internet

    NASA Astrophysics Data System (ADS)

    Miao, Ru; Song, Jia; Feng, Min

    2017-09-01

    WebGIS has been applied for visualizing and sharing geospatial information popularly over the Internet. In order to improve the efficiency of the client applications, the web-based progressive vector transmission approach is proposed. Important features should be selected and transferred firstly, and the methods for measuring the importance of features should be further considered in the progressive transmission. However, studies on progressive transmission for large-volume vector data have mostly focused on map generalization in the field of cartography, but rarely discussed on the selection of geographic features quantitatively. This paper applies information theory for measuring the feature importance of vector maps. A measurement model for the amount of information of vector features is defined based upon the amount of information for dealing with feature selection issues. The measurement model involves geometry factor, spatial distribution factor and thematic attribute factor. Moreover, a real-time transport protocol (RTP)-based progressive transmission method is then presented to improve the transmission of vector data. To clearly demonstrate the essential methodology and key techniques, a prototype for web-based progressive vector transmission is presented, and an experiment of progressive selection and transmission for vector features is conducted. The experimental results indicate that our approach clearly improves the performance and end-user experience of delivering and manipulating large vector data over the Internet.

  7. McTwo: a two-step feature selection algorithm based on maximal information coefficient.

    PubMed

    Ge, Ruiquan; Zhou, Manli; Luo, Youxi; Meng, Qinghan; Mai, Guoqin; Ma, Dongli; Wang, Guoqing; Zhou, Fengfeng

    2016-03-23

    High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This "large p, small n" paradigm in the area of biomedical "big data" may be at least partly solved by feature selection algorithms, which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem. Due to the exponentially increased time requirement for finding the globally optimal solution, all the existing feature selection algorithms employ heuristic rules to find locally optimal solutions, and their solutions achieve different performances on different datasets. This work describes a feature selection algorithm based on a recently published correlation measurement, Maximal Information Coefficient (MIC). The proposed algorithm, McTwo, aims to select features associated with phenotypes, independently of each other, and achieving high classification performance of the nearest neighbor algorithm. Based on the comparative study of 17 datasets, McTwo performs about as well as or better than existing algorithms, with significantly reduced numbers of selected features. The features selected by McTwo also appear to have particular biomedical relevance to the phenotypes from the literature. McTwo selects a feature subset with very good classification performance, as well as a small feature number. So McTwo may represent a complementary feature selection algorithm for the high-dimensional biomedical datasets.

  8. Classification of early-stage non-small cell lung cancer by weighing gene expression profiles with connectivity information.

    PubMed

    Zhang, Ao; Tian, Suyan

    2018-05-01

    Pathway-based feature selection algorithms, which utilize biological information contained in pathways to guide which features/genes should be selected, have evolved quickly and become widespread in the field of bioinformatics. Based on how the pathway information is incorporated, we classify pathway-based feature selection algorithms into three major categories-penalty, stepwise forward, and weighting. Compared to the first two categories, the weighting methods have been underutilized even though they are usually the simplest ones. In this article, we constructed three different genes' connectivity information-based weights for each gene and then conducted feature selection upon the resulting weighted gene expression profiles. Using both simulations and a real-world application, we have demonstrated that when the data-driven connectivity information constructed from the data of specific disease under study is considered, the resulting weighted gene expression profiles slightly outperform the original expression profiles. In summary, a big challenge faced by the weighting method is how to estimate pathway knowledge-based weights more accurately and precisely. Only until the issue is conquered successfully will wide utilization of the weighting methods be impossible. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A stereo remote sensing feature selection method based on artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi

    2014-05-01

    To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.

  10. An ant colony optimization based feature selection for web page classification.

    PubMed

    Saraç, Esra; Özel, Selma Ayşe

    2014-01-01

    The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods.

  11. Integrated feature extraction and selection for neuroimage classification

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shen, Dinggang

    2009-02-01

    Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.

  12. Feature Selection in Classification of Eye Movements Using Electrooculography for Activity Recognition

    PubMed Central

    Mala, S.; Latha, K.

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185

  13. Feature selection in classification of eye movements using electrooculography for activity recognition.

    PubMed

    Mala, S; Latha, K

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.

  14. An Ant Colony Optimization Based Feature Selection for Web Page Classification

    PubMed Central

    2014-01-01

    The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods. PMID:25136678

  15. Hypergraph Based Feature Selection Technique for Medical Diagnosis.

    PubMed

    Somu, Nivethitha; Raman, M R Gauthama; Kirthivasan, Kannan; Sriram, V S Shankar

    2016-11-01

    The impact of internet and information systems across various domains have resulted in substantial generation of multidimensional datasets. The use of data mining and knowledge discovery techniques to extract the original information contained in the multidimensional datasets play a significant role in the exploitation of complete benefit provided by them. The presence of large number of features in the high dimensional datasets incurs high computational cost in terms of computing power and time. Hence, feature selection technique has been commonly used to build robust machine learning models to select a subset of relevant features which projects the maximal information content of the original dataset. In this paper, a novel Rough Set based K - Helly feature selection technique (RSKHT) which hybridize Rough Set Theory (RST) and K - Helly property of hypergraph representation had been designed to identify the optimal feature subset or reduct for medical diagnostic applications. Experiments carried out using the medical datasets from the UCI repository proves the dominance of the RSKHT over other feature selection techniques with respect to the reduct size, classification accuracy and time complexity. The performance of the RSKHT had been validated using WEKA tool, which shows that RSKHT had been computationally attractive and flexible over massive datasets.

  16. An effective biometric discretization approach to extract highly discriminative, informative, and privacy-protective binary representation

    NASA Astrophysics Data System (ADS)

    Lim, Meng-Hui; Teoh, Andrew Beng Jin

    2011-12-01

    Biometric discretization derives a binary string for each user based on an ordered set of biometric features. This representative string ought to be discriminative, informative, and privacy protective when it is employed as a cryptographic key in various security applications upon error correction. However, it is commonly believed that satisfying the first and the second criteria simultaneously is not feasible, and a tradeoff between them is always definite. In this article, we propose an effective fixed bit allocation-based discretization approach which involves discriminative feature extraction, discriminative feature selection, unsupervised quantization (quantization that does not utilize class information), and linearly separable subcode (LSSC)-based encoding to fulfill all the ideal properties of a binary representation extracted for cryptographic applications. In addition, we examine a number of discriminative feature-selection measures for discretization and identify the proper way of setting an important feature-selection parameter. Encouraging experimental results vindicate the feasibility of our approach.

  17. A Feature Selection Method Based on Fisher's Discriminant Ratio for Text Sentiment Classification

    NASA Astrophysics Data System (ADS)

    Wang, Suge; Li, Deyu; Wei, Yingjie; Li, Hongxia

    With the rapid growth of e-commerce, product reviews on the Web have become an important information source for customers' decision making when they intend to buy some product. As the reviews are often too many for customers to go through, how to automatically classify them into different sentiment orientation categories (i.e. positive/negative) has become a research problem. In this paper, based on Fisher's discriminant ratio, an effective feature selection method is proposed for product review text sentiment classification. In order to validate the validity of the proposed method, we compared it with other methods respectively based on information gain and mutual information while support vector machine is adopted as the classifier. In this paper, 6 subexperiments are conducted by combining different feature selection methods with 2 kinds of candidate feature sets. Under 1006 review documents of cars, the experimental results indicate that the Fisher's discriminant ratio based on word frequency estimation has the best performance with F value 83.3% while the candidate features are the words which appear in both positive and negative texts.

  18. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information.

    PubMed

    Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko

    2017-12-28

    Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.

  19. A method for fast selecting feature wavelengths from the spectral information of crop nitrogen

    USDA-ARS?s Scientific Manuscript database

    Research on a method for fast selecting feature wavelengths from the nitrogen spectral information is necessary, which can determine the nitrogen content of crops. Based on the uniformity of uniform design, this paper proposed an improved particle swarm optimization (PSO) method. The method can ch...

  20. Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex.

    PubMed

    Downer, Joshua D; Rapone, Brittany; Verhein, Jessica; O'Connor, Kevin N; Sutter, Mitchell L

    2017-05-24

    Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept. How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant features. We measured noise correlations ( r noise ) within small neural populations in primary auditory cortex while rhesus macaques performed a novel feature-selective attention task. We found that the effect of feature-selective attention on r noise depended not only on the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in r noise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments. SIGNIFICANCE STATEMENT Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations ( r noise ) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on r noise depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning to the distractor feature as well. We suggest that these effects represent an efficient process by which sensory cortex simultaneously enhances relevant information and suppresses irrelevant information. Copyright © 2017 the authors 0270-6474/17/375378-15$15.00/0.

  1. Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex

    PubMed Central

    2017-01-01

    Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept. How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant features. We measured noise correlations (rnoise) within small neural populations in primary auditory cortex while rhesus macaques performed a novel feature-selective attention task. We found that the effect of feature-selective attention on rnoise depended not only on the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in rnoise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments. SIGNIFICANCE STATEMENT Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations (rnoise) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on rnoise depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning to the distractor feature as well. We suggest that these effects represent an efficient process by which sensory cortex simultaneously enhances relevant information and suppresses irrelevant information. PMID:28432139

  2. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness.

    PubMed

    Balcarras, Matthew; Ardid, Salva; Kaping, Daniel; Everling, Stefan; Womelsdorf, Thilo

    2016-02-01

    Attention includes processes that evaluate stimuli relevance, select the most relevant stimulus against less relevant stimuli, and bias choice behavior toward the selected information. It is not clear how these processes interact. Here, we captured these processes in a reinforcement learning framework applied to a feature-based attention task that required macaques to learn and update the value of stimulus features while ignoring nonrelevant sensory features, locations, and action plans. We found that value-based reinforcement learning mechanisms could account for feature-based attentional selection and choice behavior but required a value-independent stickiness selection process to explain selection errors while at asymptotic behavior. By comparing different reinforcement learning schemes, we found that trial-by-trial selections were best predicted by a model that only represents expected values for the task-relevant feature dimension, with nonrelevant stimulus features and action plans having only a marginal influence on covert selections. These findings show that attentional control subprocesses can be described by (1) the reinforcement learning of feature values within a restricted feature space that excludes irrelevant feature dimensions, (2) a stochastic selection process on feature-specific value representations, and (3) value-independent stickiness toward previous feature selections akin to perseveration in the motor domain. We speculate that these three mechanisms are implemented by distinct but interacting brain circuits and that the proposed formal account of feature-based stimulus selection will be important to understand how attentional subprocesses are implemented in primate brain networks.

  3. Multiband tangent space mapping and feature selection for classification of EEG during motor imagery.

    PubMed

    Islam, Md Rabiul; Tanaka, Toshihisa; Molla, Md Khademul Islam

    2018-05-08

    When designing multiclass motor imagery-based brain-computer interface (MI-BCI), a so-called tangent space mapping (TSM) method utilizing the geometric structure of covariance matrices is an effective technique. This paper aims to introduce a method using TSM for finding accurate operational frequency bands related brain activities associated with MI tasks. A multichannel electroencephalogram (EEG) signal is decomposed into multiple subbands, and tangent features are then estimated on each subband. A mutual information analysis-based effective algorithm is implemented to select subbands containing features capable of improving motor imagery classification accuracy. Thus obtained features of selected subbands are combined to get feature space. A principal component analysis-based approach is employed to reduce the features dimension and then the classification is accomplished by a support vector machine (SVM). Offline analysis demonstrates the proposed multiband tangent space mapping with subband selection (MTSMS) approach outperforms state-of-the-art methods. It acheives the highest average classification accuracy for all datasets (BCI competition dataset 2a, IIIa, IIIb, and dataset JK-HH1). The increased classification accuracy of MI tasks with the proposed MTSMS approach can yield effective implementation of BCI. The mutual information-based subband selection method is implemented to tune operation frequency bands to represent actual motor imagery tasks.

  4. Cluster analysis based on dimensional information with applications to feature selection and classification

    NASA Technical Reports Server (NTRS)

    Eigen, D. J.; Fromm, F. R.; Northouse, R. A.

    1974-01-01

    A new clustering algorithm is presented that is based on dimensional information. The algorithm includes an inherent feature selection criterion, which is discussed. Further, a heuristic method for choosing the proper number of intervals for a frequency distribution histogram, a feature necessary for the algorithm, is presented. The algorithm, although usable as a stand-alone clustering technique, is then utilized as a global approximator. Local clustering techniques and configuration of a global-local scheme are discussed, and finally the complete global-local and feature selector configuration is shown in application to a real-time adaptive classification scheme for the analysis of remote sensed multispectral scanner data.

  5. Neural mechanisms of selective attention in the somatosensory system.

    PubMed

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. Copyright © 2016 the American Physiological Society.

  6. Neural mechanisms of selective attention in the somatosensory system

    PubMed Central

    Hysaj, Kristjana; Niebur, Ernst

    2016-01-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. PMID:27334956

  7. Feature-based and spatial attentional selection in visual working memory.

    PubMed

    Heuer, Anna; Schubö, Anna

    2016-05-01

    The contents of visual working memory (VWM) can be modulated by spatial cues presented during the maintenance interval ("retrocues"). Here, we examined whether attentional selection of representations in VWM can also be based on features. In addition, we investigated whether the mechanisms of feature-based and spatial attention in VWM differ with respect to parallel access to noncontiguous locations. In two experiments, we tested the efficacy of valid retrocues relying on different kinds of information. Specifically, participants were presented with a typical spatial retrocue pointing to two locations, a symbolic spatial retrocue (numbers mapping onto two locations), and two feature-based retrocues: a color retrocue (a blob of the same color as two of the items) and a shape retrocue (an outline of the shape of two of the items). The two cued items were presented at either contiguous or noncontiguous locations. Overall retrocueing benefits, as compared to a neutral condition, were observed for all retrocue types. Whereas feature-based retrocues yielded benefits for cued items presented at both contiguous and noncontiguous locations, spatial retrocues were only effective when the cued items had been presented at contiguous locations. These findings demonstrate that attentional selection and updating in VWM can operate on different kinds of information, allowing for a flexible and efficient use of this limited system. The observation that the representations of items presented at noncontiguous locations could only be reliably selected with feature-based retrocues suggests that feature-based and spatial attentional selection in VWM rely on different mechanisms, as has been shown for attentional orienting in the external world.

  8. A comparative analysis of swarm intelligence techniques for feature selection in cancer classification.

    PubMed

    Gunavathi, Chellamuthu; Premalatha, Kandasamy

    2014-01-01

    Feature selection in cancer classification is a central area of research in the field of bioinformatics and used to select the informative genes from thousands of genes of the microarray. The genes are ranked based on T-statistics, signal-to-noise ratio (SNR), and F-test values. The swarm intelligence (SI) technique finds the informative genes from the top-m ranked genes. These selected genes are used for classification. In this paper the shuffled frog leaping with Lévy flight (SFLLF) is proposed for feature selection. In SFLLF, the Lévy flight is included to avoid premature convergence of shuffled frog leaping (SFL) algorithm. The SI techniques such as particle swarm optimization (PSO), cuckoo search (CS), SFL, and SFLLF are used for feature selection which identifies informative genes for classification. The k-nearest neighbour (k-NN) technique is used to classify the samples. The proposed work is applied on 10 different benchmark datasets and examined with SI techniques. The experimental results show that the results obtained from k-NN classifier through SFLLF feature selection method outperform PSO, CS, and SFL.

  9. Relevance popularity: A term event model based feature selection scheme for text classification.

    PubMed

    Feng, Guozhong; An, Baiguo; Yang, Fengqin; Wang, Han; Zhang, Libiao

    2017-01-01

    Feature selection is a practical approach for improving the performance of text classification methods by optimizing the feature subsets input to classifiers. In traditional feature selection methods such as information gain and chi-square, the number of documents that contain a particular term (i.e. the document frequency) is often used. However, the frequency of a given term appearing in each document has not been fully investigated, even though it is a promising feature to produce accurate classifications. In this paper, we propose a new feature selection scheme based on a term event Multinomial naive Bayes probabilistic model. According to the model assumptions, the matching score function, which is based on the prediction probability ratio, can be factorized. Finally, we derive a feature selection measurement for each term after replacing inner parameters by their estimators. On a benchmark English text datasets (20 Newsgroups) and a Chinese text dataset (MPH-20), our numerical experiment results obtained from using two widely used text classifiers (naive Bayes and support vector machine) demonstrate that our method outperformed the representative feature selection methods.

  10. Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen

    2018-01-01

    Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.

  11. A malware detection scheme based on mining format information.

    PubMed

    Bai, Jinrong; Wang, Junfeng; Zou, Guozhong

    2014-01-01

    Malware has become one of the most serious threats to computer information system and the current malware detection technology still has very significant limitations. In this paper, we proposed a malware detection approach by mining format information of PE (portable executable) files. Based on in-depth analysis of the static format information of the PE files, we extracted 197 features from format information of PE files and applied feature selection methods to reduce the dimensionality of the features and achieve acceptable high performance. When the selected features were trained using classification algorithms, the results of our experiments indicate that the accuracy of the top classification algorithm is 99.1% and the value of the AUC is 0.998. We designed three experiments to evaluate the performance of our detection scheme and the ability of detecting unknown and new malware. Although the experimental results of identifying new malware are not perfect, our method is still able to identify 97.6% of new malware with 1.3% false positive rates.

  12. A Malware Detection Scheme Based on Mining Format Information

    PubMed Central

    Bai, Jinrong; Wang, Junfeng; Zou, Guozhong

    2014-01-01

    Malware has become one of the most serious threats to computer information system and the current malware detection technology still has very significant limitations. In this paper, we proposed a malware detection approach by mining format information of PE (portable executable) files. Based on in-depth analysis of the static format information of the PE files, we extracted 197 features from format information of PE files and applied feature selection methods to reduce the dimensionality of the features and achieve acceptable high performance. When the selected features were trained using classification algorithms, the results of our experiments indicate that the accuracy of the top classification algorithm is 99.1% and the value of the AUC is 0.998. We designed three experiments to evaluate the performance of our detection scheme and the ability of detecting unknown and new malware. Although the experimental results of identifying new malware are not perfect, our method is still able to identify 97.6% of new malware with 1.3% false positive rates. PMID:24991639

  13. Object-based selection from spatially-invariant representations: evidence from a feature-report task.

    PubMed

    Matsukura, Michi; Vecera, Shaun P

    2011-02-01

    Attention selects objects as well as locations. When attention selects an object's features, observers identify two features from a single object more accurately than two features from two different objects (object-based effect of attention; e.g., Duncan, Journal of Experimental Psychology: General, 113, 501-517, 1984). Several studies have demonstrated that object-based attention can operate at a late visual processing stage that is independent of objects' spatial information (Awh, Dhaliwal, Christensen, & Matsukura, Psychological Science, 12, 329-334, 2001; Matsukura & Vecera, Psychonomic Bulletin & Review, 16, 529-536, 2009; Vecera, Journal of Experimental Psychology: General, 126, 14-18, 1997; Vecera & Farah, Journal of Experimental Psychology: General, 123, 146-160, 1994). In the present study, we asked two questions regarding this late object-based selection mechanism. In Part I, we investigated how observers' foreknowledge of to-be-reported features allows attention to select objects, as opposed to individual features. Using a feature-report task, a significant object-based effect was observed when to-be-reported features were known in advance but not when this advance knowledge was absent. In Part II, we examined what drives attention to select objects rather than individual features in the absence of observers' foreknowledge of to-be-reported features. Results suggested that, when there was no opportunity for observers to direct their attention to objects that possess to-be-reported features at the time of stimulus presentation, these stimuli must retain strong perceptual cues to establish themselves as separate objects.

  14. An audiovisual emotion recognition system

    NASA Astrophysics Data System (ADS)

    Han, Yi; Wang, Guoyin; Yang, Yong; He, Kun

    2007-12-01

    Human emotions could be expressed by many bio-symbols. Speech and facial expression are two of them. They are both regarded as emotional information which is playing an important role in human-computer interaction. Based on our previous studies on emotion recognition, an audiovisual emotion recognition system is developed and represented in this paper. The system is designed for real-time practice, and is guaranteed by some integrated modules. These modules include speech enhancement for eliminating noises, rapid face detection for locating face from background image, example based shape learning for facial feature alignment, and optical flow based tracking algorithm for facial feature tracking. It is known that irrelevant features and high dimensionality of the data can hurt the performance of classifier. Rough set-based feature selection is a good method for dimension reduction. So 13 speech features out of 37 ones and 10 facial features out of 33 ones are selected to represent emotional information, and 52 audiovisual features are selected due to the synchronization when speech and video fused together. The experiment results have demonstrated that this system performs well in real-time practice and has high recognition rate. Our results also show that the work in multimodules fused recognition will become the trend of emotion recognition in the future.

  15. Multi-level gene/MiRNA feature selection using deep belief nets and active learning.

    PubMed

    Ibrahim, Rania; Yousri, Noha A; Ismail, Mohamed A; El-Makky, Nagwa M

    2014-01-01

    Selecting the most discriminative genes/miRNAs has been raised as an important task in bioinformatics to enhance disease classifiers and to mitigate the dimensionality curse problem. Original feature selection methods choose genes/miRNAs based on their individual features regardless of how they perform together. Considering group features instead of individual ones provides a better view for selecting the most informative genes/miRNAs. Recently, deep learning has proven its ability in representing the data in multiple levels of abstraction, allowing for better discrimination between different classes. However, the idea of using deep learning for feature selection is not widely used in the bioinformatics field yet. In this paper, a novel multi-level feature selection approach named MLFS is proposed for selecting genes/miRNAs based on expression profiles. The approach is based on both deep and active learning. Moreover, an extension to use the technique for miRNAs is presented by considering the biological relation between miRNAs and genes. Experimental results show that the approach was able to outperform classical feature selection methods in hepatocellular carcinoma (HCC) by 9%, lung cancer by 6% and breast cancer by around 10% in F1-measure. Results also show the enhancement in F1-measure of our approach over recently related work in [1] and [2].

  16. A feature-based approach to modeling protein-protein interaction hot spots.

    PubMed

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-05-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions.

  17. Natural image classification driven by human brain activity

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  18. Informal Names for Features on Pluto Moon Charon

    NASA Image and Video Library

    2015-07-29

    This image contains the initial, informal names being used by NASA's New Horizons team for the features on Pluto's largest moon, Charon. Names were selected based on the input the team received from the Our Pluto naming campaign. Names have not yet been approved by the International Astronomical Union (IAU). For more information on the maps and feature naming, visit http://www.ourpluto.org/maps. http://photojournal.jpl.nasa.gov/catalog/PIA19864

  19. Informal Names for Features on Pluto Sputnik Planum

    NASA Image and Video Library

    2015-07-29

    This image contains the initial, informal names being used by NASA's New Horizons team for the features on Pluto's Sputnik Planum (plain). Names were selected based on the input the team received from the Our Pluto naming campaign. Names have not yet been approved by the International Astronomical Union (IAU). For more information on the maps and feature naming, visit http://www.ourpluto.org/maps. http://photojournal.jpl.nasa.gov/catalog/PIA19865

  20. Informal Names for Features on Pluto

    NASA Image and Video Library

    2015-07-29

    This image contains the initial, informal names being used by NASA's New Horizons team for the features and regions on the surface of Pluto. Names were selected based on the input the team received from the Our Pluto naming campaign. Names have not yet been approved by the International Astronomical Union (IAU). For more information on the maps and feature naming, visit http://www.ourpluto.org/maps. http://photojournal.jpl.nasa.gov/catalog/PIA19863

  1. Feature Selection for Chemical Sensor Arrays Using Mutual Information

    PubMed Central

    Wang, X. Rosalind; Lizier, Joseph T.; Nowotny, Thomas; Berna, Amalia Z.; Prokopenko, Mikhail; Trowell, Stephen C.

    2014-01-01

    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays. PMID:24595058

  2. Object-based attentional selection modulates anticipatory alpha oscillations

    PubMed Central

    Knakker, Balázs; Weiss, Béla; Vidnyánszky, Zoltán

    2015-01-01

    Visual cortical alpha oscillations are involved in attentional gating of incoming visual information. It has been shown that spatial and feature-based attentional selection result in increased alpha oscillations over the cortical regions representing sensory input originating from the unattended visual field and task-irrelevant visual features, respectively. However, whether attentional gating in the case of object based selection is also associated with alpha oscillations has not been investigated before. Here we measured anticipatory electroencephalography (EEG) alpha oscillations while participants were cued to attend to foveal face or word stimuli, the processing of which is known to have right and left hemispheric lateralization, respectively. The results revealed that in the case of simultaneously displayed, overlapping face and word stimuli, attending to the words led to increased power of parieto-occipital alpha oscillations over the right hemisphere as compared to when faces were attended. This object category-specific modulation of the hemispheric lateralization of anticipatory alpha oscillations was maintained during sustained attentional selection of sequentially presented face and word stimuli. These results imply that in the case of object-based attentional selection—similarly to spatial and feature-based attention—gating of visual information processing might involve visual cortical alpha oscillations. PMID:25628554

  3. Mutual information-based feature selection for radiomics

    NASA Astrophysics Data System (ADS)

    Oubel, Estanislao; Beaumont, Hubert; Iannessi, Antoine

    2016-03-01

    Background The extraction and analysis of image features (radiomics) is a promising field in the precision medicine era, with applications to prognosis, prediction, and response to treatment quantification. In this work, we present a mutual information - based method for quantifying reproducibility of features, a necessary step for qualification before their inclusion in big data systems. Materials and Methods Ten patients with Non-Small Cell Lung Cancer (NSCLC) lesions were followed over time (7 time points in average) with Computed Tomography (CT). Five observers segmented lesions by using a semi-automatic method and 27 features describing shape and intensity distribution were extracted. Inter-observer reproducibility was assessed by computing the multi-information (MI) of feature changes over time, and the variability of global extrema. Results The highest MI values were obtained for volume-based features (VBF). The lesion mass (M), surface to volume ratio (SVR) and volume (V) presented statistically significant higher values of MI than the rest of features. Within the same VBF group, SVR showed also the lowest variability of extrema. The correlation coefficient (CC) of feature values was unable to make a difference between features. Conclusions MI allowed to discriminate three features (M, SVR, and V) from the rest in a statistically significant manner. This result is consistent with the order obtained when sorting features by increasing values of extrema variability. MI is a promising alternative for selecting features to be considered as surrogate biomarkers in a precision medicine context.

  4. Manifold Regularized Multitask Feature Learning for Multimodality Disease Classification

    PubMed Central

    Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang

    2015-01-01

    Multimodality based methods have shown great advantages in classification of Alzheimer’s disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis. PMID:25277605

  5. A feature-based approach to modeling protein–protein interaction hot spots

    PubMed Central

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-01-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to π–related interactions, especially π · · · π interactions. PMID:19273533

  6. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    PubMed

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  7. A universal deep learning approach for modeling the flow of patients under different severities.

    PubMed

    Jiang, Shancheng; Chin, Kwai-Sang; Tsui, Kwok L

    2018-02-01

    The Accident and Emergency Department (A&ED) is the frontline for providing emergency care in hospitals. Unfortunately, relative A&ED resources have failed to keep up with continuously increasing demand in recent years, which leads to overcrowding in A&ED. Knowing the fluctuation of patient arrival volume in advance is a significant premise to relieve this pressure. Based on this motivation, the objective of this study is to explore an integrated framework with high accuracy for predicting A&ED patient flow under different triage levels, by combining a novel feature selection process with deep neural networks. Administrative data is collected from an actual A&ED and categorized into five groups based on different triage levels. A genetic algorithm (GA)-based feature selection algorithm is improved and implemented as a pre-processing step for this time-series prediction problem, in order to explore key features affecting patient flow. In our improved GA, a fitness-based crossover is proposed to maintain the joint information of multiple features during iterative process, instead of traditional point-based crossover. Deep neural networks (DNN) is employed as the prediction model to utilize their universal adaptability and high flexibility. In the model-training process, the learning algorithm is well-configured based on a parallel stochastic gradient descent algorithm. Two effective regularization strategies are integrated in one DNN framework to avoid overfitting. All introduced hyper-parameters are optimized efficiently by grid-search in one pass. As for feature selection, our improved GA-based feature selection algorithm has outperformed a typical GA and four state-of-the-art feature selection algorithms (mRMR, SAFS, VIFR, and CFR). As for the prediction accuracy of proposed integrated framework, compared with other frequently used statistical models (GLM, seasonal-ARIMA, ARIMAX, and ANN) and modern machine models (SVM-RBF, SVM-linear, RF, and R-LASSO), the proposed integrated "DNN-I-GA" framework achieves higher prediction accuracy on both MAPE and RMSE metrics in pairwise comparisons. The contribution of our study is two-fold. Theoretically, the traditional GA-based feature selection process is improved to have less hyper-parameters and higher efficiency, and the joint information of multiple features is maintained by fitness-based crossover operator. The universal property of DNN is further enhanced by merging different regularization strategies. Practically, features selected by our improved GA can be used to acquire an underlying relationship between patient flows and input features. Predictive values are significant indicators of patients' demand and can be used by A&ED managers to make resource planning and allocation. High accuracy achieved by the present framework in different cases enhances the reliability of downstream decision makings. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Unsupervised Feature Selection Based on the Morisita Index for Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Golay, Jean; Kanevski, Mikhail

    2017-04-01

    Hyperspectral sensors are capable of acquiring images with hundreds of narrow and contiguous spectral bands. Compared with traditional multispectral imagery, the use of hyperspectral images allows better performance in discriminating between land-cover classes, but it also results in large redundancy and high computational data processing. To alleviate such issues, unsupervised feature selection techniques for redundancy minimization can be implemented. Their goal is to select the smallest subset of features (or bands) in such a way that all the information content of a data set is preserved as much as possible. The present research deals with the application to hyperspectral images of a recently introduced technique of unsupervised feature selection: the Morisita-Based filter for Redundancy Minimization (MBRM). MBRM is based on the (multipoint) Morisita index of clustering and on the Morisita estimator of Intrinsic Dimension (ID). The fundamental idea of the technique is to retain only the bands which contribute to increasing the ID of an image. In this way, redundant bands are disregarded, since they have no impact on the ID. Besides, MBRM has several advantages over benchmark techniques: in addition to its ability to deal with large data sets, it can capture highly-nonlinear dependences and its implementation is straightforward in any programming environment. Experimental results on freely available hyperspectral images show the good effectiveness of MBRM in remote sensing data processing. Comparisons with benchmark techniques are carried out and random forests are used to assess the performance of MBRM in reducing the data dimensionality without loss of relevant information. References [1] C. Traina Jr., A.J.M. Traina, L. Wu, C. Faloutsos, Fast feature selection using fractal dimension, in: Proceedings of the XV Brazilian Symposium on Databases, SBBD, pp. 158-171, 2000. [2] J. Golay, M. Kanevski, A new estimator of intrinsic dimension based on the multipoint Morisita index, Pattern Recognition 48(12), pp. 4070-4081, 2015. [3] J. Golay, M. Kanevski, Unsupervised feature selection based on the Morisita estimator of intrinsic dimension, arXiv:1608.05581, 2016.

  9. What automated age estimation of hand and wrist MRI data tells us about skeletal maturation in male adolescents.

    PubMed

    Urschler, Martin; Grassegger, Sabine; Štern, Darko

    2015-01-01

    Age estimation of individuals is important in human biology and has various medical and forensic applications. Recent interest in MR-based methods aims to investigate alternatives for established methods involving ionising radiation. Automatic, software-based methods additionally promise improved estimation objectivity. To investigate how informative automatically selected image features are regarding their ability to discriminate age, by exploring a recently proposed software-based age estimation method for MR images of the left hand and wrist. One hundred and two MR datasets of left hand images are used to evaluate age estimation performance, consisting of bone and epiphyseal gap volume localisation, computation of one age regression model per bone mapping image features to age and fusion of individual bone age predictions to a final age estimate. Quantitative results of the software-based method show an age estimation performance with a mean absolute difference of 0.85 years (SD = 0.58 years) to chronological age, as determined by a cross-validation experiment. Qualitatively, it is demonstrated how feature selection works and which image features of skeletal maturation are automatically chosen to model the non-linear regression function. Feasibility of automatic age estimation based on MRI data is shown and selected image features are found to be informative for describing anatomical changes during physical maturation in male adolescents.

  10. Support Vector Feature Selection for Early Detection of Anastomosis Leakage From Bag-of-Words in Electronic Health Records.

    PubMed

    Soguero-Ruiz, Cristina; Hindberg, Kristian; Rojo-Alvarez, Jose Luis; Skrovseth, Stein Olav; Godtliebsen, Fred; Mortensen, Kim; Revhaug, Arthur; Lindsetmo, Rolv-Ole; Augestad, Knut Magne; Jenssen, Robert

    2016-09-01

    The free text in electronic health records (EHRs) conveys a huge amount of clinical information about health state and patient history. Despite a rapidly growing literature on the use of machine learning techniques for extracting this information, little effort has been invested toward feature selection and the features' corresponding medical interpretation. In this study, we focus on the task of early detection of anastomosis leakage (AL), a severe complication after elective surgery for colorectal cancer (CRC) surgery, using free text extracted from EHRs. We use a bag-of-words model to investigate the potential for feature selection strategies. The purpose is earlier detection of AL and prediction of AL with data generated in the EHR before the actual complication occur. Due to the high dimensionality of the data, we derive feature selection strategies using the robust support vector machine linear maximum margin classifier, by investigating: 1) a simple statistical criterion (leave-one-out-based test); 2) an intensive-computation statistical criterion (Bootstrap resampling); and 3) an advanced statistical criterion (kernel entropy). Results reveal a discriminatory power for early detection of complications after CRC (sensitivity 100%; specificity 72%). These results can be used to develop prediction models, based on EHR data, that can support surgeons and patients in the preoperative decision making phase.

  11. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients.

    PubMed

    Capela, Nicole A; Lemaire, Edward D; Baddour, Natalie

    2015-01-01

    Human activity recognition (HAR), using wearable sensors, is a growing area with the potential to provide valuable information on patient mobility to rehabilitation specialists. Smartphones with accelerometer and gyroscope sensors are a convenient, minimally invasive, and low cost approach for mobility monitoring. HAR systems typically pre-process raw signals, segment the signals, and then extract features to be used in a classifier. Feature selection is a crucial step in the process to reduce potentially large data dimensionality and provide viable parameters to enable activity classification. Most HAR systems are customized to an individual research group, including a unique data set, classes, algorithms, and signal features. These data sets are obtained predominantly from able-bodied participants. In this paper, smartphone accelerometer and gyroscope sensor data were collected from populations that can benefit from human activity recognition: able-bodied, elderly, and stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks) were collected for a total of 44 participants. Seventy-six signal features were calculated and subsets of these features were selected using three filter-based, classifier-independent, feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation Based Filter). The feature subsets were then evaluated using three generic classifiers (Naïve Bayes, Support Vector Machine, j48 Decision Tree). Common features were identified for all three populations, although the stroke population subset had some differences from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the feature subsets produced similar or better accuracies than classification with the entire feature set. Therefore, since these feature subsets are classifier-independent, they should be useful for developing and improving HAR systems across and within populations.

  12. Feature Selection for Wearable Smartphone-Based Human Activity Recognition with Able bodied, Elderly, and Stroke Patients

    PubMed Central

    2015-01-01

    Human activity recognition (HAR), using wearable sensors, is a growing area with the potential to provide valuable information on patient mobility to rehabilitation specialists. Smartphones with accelerometer and gyroscope sensors are a convenient, minimally invasive, and low cost approach for mobility monitoring. HAR systems typically pre-process raw signals, segment the signals, and then extract features to be used in a classifier. Feature selection is a crucial step in the process to reduce potentially large data dimensionality and provide viable parameters to enable activity classification. Most HAR systems are customized to an individual research group, including a unique data set, classes, algorithms, and signal features. These data sets are obtained predominantly from able-bodied participants. In this paper, smartphone accelerometer and gyroscope sensor data were collected from populations that can benefit from human activity recognition: able-bodied, elderly, and stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks) were collected for a total of 44 participants. Seventy-six signal features were calculated and subsets of these features were selected using three filter-based, classifier-independent, feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation Based Filter). The feature subsets were then evaluated using three generic classifiers (Naïve Bayes, Support Vector Machine, j48 Decision Tree). Common features were identified for all three populations, although the stroke population subset had some differences from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the feature subsets produced similar or better accuracies than classification with the entire feature set. Therefore, since these feature subsets are classifier-independent, they should be useful for developing and improving HAR systems across and within populations. PMID:25885272

  13. Prediction and Informative Risk Factor Selection of Bone Diseases.

    PubMed

    Li, Hui; Li, Xiaoyi; Ramanathan, Murali; Zhang, Aidong

    2015-01-01

    With the booming of healthcare industry and the overwhelming amount of electronic health records (EHRs) shared by healthcare institutions and practitioners, we take advantage of EHR data to develop an effective disease risk management model that not only models the progression of the disease, but also predicts the risk of the disease for early disease control or prevention. Existing models for answering these questions usually fall into two categories: the expert knowledge based model or the handcrafted feature set based model. To fully utilize the whole EHR data, we will build a framework to construct an integrated representation of features from all available risk factors in the EHR data and use these integrated features to effectively predict osteoporosis and bone fractures. We will also develop a framework for informative risk factor selection of bone diseases. A pair of models for two contrast cohorts (e.g., diseased patients versus non-diseased patients) will be established to discriminate their characteristics and find the most informative risk factors. Several empirical results on a real bone disease data set show that the proposed framework can successfully predict bone diseases and select informative risk factors that are beneficial and useful to guide clinical decisions.

  14. Toward better public health reporting using existing off the shelf approaches: A comparison of alternative cancer detection approaches using plaintext medical data and non-dictionary based feature selection.

    PubMed

    Kasthurirathne, Suranga N; Dixon, Brian E; Gichoya, Judy; Xu, Huiping; Xia, Yuni; Mamlin, Burke; Grannis, Shaun J

    2016-04-01

    Increased adoption of electronic health records has resulted in increased availability of free text clinical data for secondary use. A variety of approaches to obtain actionable information from unstructured free text data exist. These approaches are resource intensive, inherently complex and rely on structured clinical data and dictionary-based approaches. We sought to evaluate the potential to obtain actionable information from free text pathology reports using routinely available tools and approaches that do not depend on dictionary-based approaches. We obtained pathology reports from a large health information exchange and evaluated the capacity to detect cancer cases from these reports using 3 non-dictionary feature selection approaches, 4 feature subset sizes, and 5 clinical decision models: simple logistic regression, naïve bayes, k-nearest neighbor, random forest, and J48 decision tree. The performance of each decision model was evaluated using sensitivity, specificity, accuracy, positive predictive value, and area under the receiver operating characteristics (ROC) curve. Decision models parameterized using automated, informed, and manual feature selection approaches yielded similar results. Furthermore, non-dictionary classification approaches identified cancer cases present in free text reports with evaluation measures approaching and exceeding 80-90% for most metrics. Our methods are feasible and practical approaches for extracting substantial information value from free text medical data, and the results suggest that these methods can perform on par, if not better, than existing dictionary-based approaches. Given that public health agencies are often under-resourced and lack the technical capacity for more complex methodologies, these results represent potentially significant value to the public health field. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    PubMed

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  16. Feature Selection Methods for Robust Decoding of Finger Movements in a Non-human Primate

    PubMed Central

    Padmanaban, Subash; Baker, Justin; Greger, Bradley

    2018-01-01

    Objective: The performance of machine learning algorithms used for neural decoding of dexterous tasks may be impeded due to problems arising when dealing with high-dimensional data. The objective of feature selection algorithms is to choose a near-optimal subset of features from the original feature space to improve the performance of the decoding algorithm. The aim of our study was to compare the effects of four feature selection techniques, Wilcoxon signed-rank test, Relative Importance, Principal Component Analysis (PCA), and Mutual Information Maximization on SVM classification performance for a dexterous decoding task. Approach: A nonhuman primate (NHP) was trained to perform small coordinated movements—similar to typing. An array of microelectrodes was implanted in the hand area of the motor cortex of the NHP and used to record action potentials (AP) during finger movements. A Support Vector Machine (SVM) was used to classify which finger movement the NHP was making based upon AP firing rates. We used the SVM classification to examine the functional parameters of (i) robustness to simulated failure and (ii) longevity of classification. We also compared the effect of using isolated-neuron and multi-unit firing rates as the feature vector supplied to the SVM. Main results: The average decoding accuracy for multi-unit features and single-unit features using Mutual Information Maximization (MIM) across 47 sessions was 96.74 ± 3.5% and 97.65 ± 3.36% respectively. The reduction in decoding accuracy between using 100% of the features and 10% of features based on MIM was 45.56% (from 93.7 to 51.09%) and 4.75% (from 95.32 to 90.79%) for multi-unit and single-unit features respectively. MIM had best performance compared to other feature selection methods. Significance: These results suggest improved decoding performance can be achieved by using optimally selected features. The results based on clinically relevant performance metrics also suggest that the decoding algorithm can be made robust by using optimal features and feature selection algorithms. We believe that even a few percent increase in performance is important and improves the decoding accuracy of the machine learning algorithm potentially increasing the ease of use of a brain machine interface. PMID:29467602

  17. Discriminative analysis of lip motion features for speaker identification and speech-reading.

    PubMed

    Cetingül, H Ertan; Yemez, Yücel; Erzin, Engin; Tekalp, A Murat

    2006-10-01

    There have been several studies that jointly use audio, lip intensity, and lip geometry information for speaker identification and speech-reading applications. This paper proposes using explicit lip motion information, instead of or in addition to lip intensity and/or geometry information, for speaker identification and speech-reading within a unified feature selection and discrimination analysis framework, and addresses two important issues: 1) Is using explicit lip motion information useful, and, 2) if so, what are the best lip motion features for these two applications? The best lip motion features for speaker identification are considered to be those that result in the highest discrimination of individual speakers in a population, whereas for speech-reading, the best features are those providing the highest phoneme/word/phrase recognition rate. Several lip motion feature candidates have been considered including dense motion features within a bounding box about the lip, lip contour motion features, and combination of these with lip shape features. Furthermore, a novel two-stage, spatial, and temporal discrimination analysis is introduced to select the best lip motion features for speaker identification and speech-reading applications. Experimental results using an hidden-Markov-model-based recognition system indicate that using explicit lip motion information provides additional performance gains in both applications, and lip motion features prove more valuable in the case of speech-reading application.

  18. Image search engine with selective filtering and feature-element-based classification

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhang, Yujin; Dai, Shengyang

    2001-12-01

    With the growth of Internet and storage capability in recent years, image has become a widespread information format in World Wide Web. However, it has become increasingly harder to search for images of interest, and effective image search engine for the WWW needs to be developed. We propose in this paper a selective filtering process and a novel approach for image classification based on feature element in the image search engine we developed for the WWW. First a selective filtering process is embedded in a general web crawler to filter out the meaningless images with GIF format. Two parameters that can be obtained easily are used in the filtering process. Our classification approach first extract feature elements from images instead of feature vectors. Compared with feature vectors, feature elements can better capture visual meanings of the image according to subjective perception of human beings. Different from traditional image classification method, our classification approach based on feature element doesn't calculate the distance between two vectors in the feature space, while trying to find associations between feature element and class attribute of the image. Experiments are presented to show the efficiency of the proposed approach.

  19. Mutual information-based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Hazar, Mliki; Hammami, Mohamed; Hanêne, Ben-Abdallah

    2013-12-01

    This paper introduces a novel low-computation discriminative regions representation for expression analysis task. The proposed approach relies on interesting studies in psychology which show that most of the descriptive and responsible regions for facial expression are located around some face parts. The contributions of this work lie in the proposition of new approach which supports automatic facial expression recognition based on automatic regions selection. The regions selection step aims to select the descriptive regions responsible or facial expression and was performed using Mutual Information (MI) technique. For facial feature extraction, we have applied Local Binary Patterns Pattern (LBP) on Gradient image to encode salient micro-patterns of facial expressions. Experimental studies have shown that using discriminative regions provide better results than using the whole face regions whilst reducing features vector dimension.

  20. A Discriminant Distance Based Composite Vector Selection Method for Odor Classification

    PubMed Central

    Choi, Sang-Il; Jeong, Gu-Min

    2014-01-01

    We present a composite vector selection method for an effective electronic nose system that performs well even in noisy environments. Each composite vector generated from a electronic nose data sample is evaluated by computing the discriminant distance. By quantitatively measuring the amount of discriminative information in each composite vector, composite vectors containing informative variables can be distinguished and the final composite features for odor classification are extracted using the selected composite vectors. Using the only informative composite vectors can be also helpful to extract better composite features instead of using all the generated composite vectors. Experimental results with different volatile organic compound data show that the proposed system has good classification performance even in a noisy environment compared to other methods. PMID:24747735

  1. PrAS: Prediction of amidation sites using multiple feature extraction.

    PubMed

    Wang, Tong; Zheng, Wei; Wuyun, Qiqige; Wu, Zhenfeng; Ruan, Jishou; Hu, Gang; Gao, Jianzhao

    2017-02-01

    Amidation plays an important role in a variety of pathological processes and serious diseases like neural dysfunction and hypertension. However, identification of protein amidation sites through traditional experimental methods is time consuming and expensive. In this paper, we proposed a novel predictor for Prediction of Amidation Sites (PrAS), which is the first software package for academic users. The method incorporated four representative feature types, which are position-based features, physicochemical and biochemical properties features, predicted structure-based features and evolutionary information features. A novel feature selection method, positive contribution feature selection was proposed to optimize features. PrAS achieved AUC of 0.96, accuracy of 92.1%, sensitivity of 81.2%, specificity of 94.9% and MCC of 0.76 on the independent test set. PrAS is freely available at https://sourceforge.net/p/praspkg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Multi-level basis selection of wavelet packet decomposition tree for heart sound classification.

    PubMed

    Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Abdullah Ramaiah, Asri Ranga

    2013-10-01

    Wavelet packet transform decomposes a signal into a set of orthonormal bases (nodes) and provides opportunities to select an appropriate set of these bases for feature extraction. In this paper, multi-level basis selection (MLBS) is proposed to preserve the most informative bases of a wavelet packet decomposition tree through removing less informative bases by applying three exclusion criteria: frequency range, noise frequency, and energy threshold. MLBS achieved an accuracy of 97.56% for classifying normal heart sound, aortic stenosis, mitral regurgitation, and aortic regurgitation. MLBS is a promising basis selection to be suggested for signals with a small range of frequencies. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection

    NASA Astrophysics Data System (ADS)

    Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.

    2015-04-01

    SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.

  4. A New Direction of Cancer Classification: Positive Effect of Low-Ranking MicroRNAs.

    PubMed

    Li, Feifei; Piao, Minghao; Piao, Yongjun; Li, Meijing; Ryu, Keun Ho

    2014-10-01

    Many studies based on microRNA (miRNA) expression profiles showed a new aspect of cancer classification. Because one characteristic of miRNA expression data is the high dimensionality, feature selection methods have been used to facilitate dimensionality reduction. The feature selection methods have one shortcoming thus far: they just consider the problem of where feature to class is 1:1 or n:1. However, because one miRNA may influence more than one type of cancer, human miRNA is considered to be ranked low in traditional feature selection methods and are removed most of the time. In view of the limitation of the miRNA number, low-ranking miRNAs are also important to cancer classification. We considered both high- and low-ranking features to cover all problems (1:1, n:1, 1:n, and m:n) in cancer classification. First, we used the correlation-based feature selection method to select the high-ranking miRNAs, and chose the support vector machine, Bayes network, decision tree, k-nearest-neighbor, and logistic classifier to construct cancer classification. Then, we chose Chi-square test, information gain, gain ratio, and Pearson's correlation feature selection methods to build the m:n feature subset, and used the selected miRNAs to determine cancer classification. The low-ranking miRNA expression profiles achieved higher classification accuracy compared with just using high-ranking miRNAs in traditional feature selection methods. Our results demonstrate that the m:n feature subset made a positive impression of low-ranking miRNAs in cancer classification.

  5. A comprehensive analysis of earthquake damage patterns using high dimensional model representation feature selection

    NASA Astrophysics Data System (ADS)

    Taşkin Kaya, Gülşen

    2013-10-01

    Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input-output relationships in high-dimensional systems for many problems in science and engineering. The HDMR method is developed to improve the efficiency of the deducing high dimensional behaviors. The method is formed by a particular organization of low dimensional component functions, in which each function is the contribution of one or more input variables to the output variables.

  6. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention

    PubMed Central

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-01

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193

  7. On the use of feature selection to improve the detection of sea oil spills in SAR images

    NASA Astrophysics Data System (ADS)

    Mera, David; Bolon-Canedo, Veronica; Cotos, J. M.; Alonso-Betanzos, Amparo

    2017-03-01

    Fast and effective oil spill detection systems are crucial to ensure a proper response to environmental emergencies caused by hydrocarbon pollution on the ocean's surface. Typically, these systems uncover not only oil spills, but also a high number of look-alikes. The feature extraction is a critical and computationally intensive phase where each detected dark spot is independently examined. Traditionally, detection systems use an arbitrary set of features to discriminate between oil spills and look-alikes phenomena. However, Feature Selection (FS) methods based on Machine Learning (ML) have proved to be very useful in real domains for enhancing the generalization capabilities of the classifiers, while discarding the existing irrelevant features. In this work, we present a generic and systematic approach, based on FS methods, for choosing a concise and relevant set of features to improve the oil spill detection systems. We have compared five FS methods: Correlation-based feature selection (CFS), Consistency-based filter, Information Gain, ReliefF and Recursive Feature Elimination for Support Vector Machine (SVM-RFE). They were applied on a 141-input vector composed of features from a collection of outstanding studies. Selected features were validated via a Support Vector Machine (SVM) classifier and the results were compared with previous works. Test experiments revealed that the classifier trained with the 6-input feature vector proposed by SVM-RFE achieved the best accuracy and Cohen's kappa coefficient (87.1% and 74.06% respectively). This is a smaller feature combination with similar or even better classification accuracy than previous works. The presented finding allows to speed up the feature extraction phase without reducing the classifier accuracy. Experiments also confirmed the significance of the geometrical features since 75.0% of the different features selected by the applied FS methods as well as 66.67% of the proposed 6-input feature vector belong to this category.

  8. Multiclass feature selection for improved pediatric brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Ahmed, Shaheen; Iftekharuddin, Khan M.

    2012-03-01

    In our previous work, we showed that fractal-based texture features are effective in detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. We exploited an information theoretic approach such as Kullback-Leibler Divergence (KLD) for feature selection and ranking different texture features. We further incorporated the feature selection technique with segmentation method such as Expectation Maximization (EM) for segmentation of tumor T and non tumor (NT) tissues. In this work, we extend the two class KLD technique to multiclass for effectively selecting the best features for brain tumor (T), cyst (C) and non tumor (NT). We further obtain segmentation robustness for each tissue types by computing Bay's posterior probabilities and corresponding number of pixels for each tissue segments in MRI patient images. We evaluate improved tumor segmentation robustness using different similarity metric for 5 patients in T1, T2 and FLAIR modalities.

  9. Informative Feature Selection for Object Recognition via Sparse PCA

    DTIC Science & Technology

    2011-04-07

    constraint on images collected from low-power camera net- works instead of high-end photography is that establishing wide-baseline feature correspondence of...variable selection tool for selecting informative features in the object images captured from low-resolution cam- era sensor networks. Firstly, we...More examples can be found in Figure 4 later. 3. Identifying Informative Features Classical PCA is a well established tool for the analysis of high

  10. A Novel Image Recuperation Approach for Diagnosing and Ranking Retinopathy Disease Level Using Diabetic Fundus Image

    PubMed Central

    2015-01-01

    Retinal fundus images are widely used in diagnosing and providing treatment for several eye diseases. Prior works using retinal fundus images detected the presence of exudation with the aid of publicly available dataset using extensive segmentation process. Though it was proved to be computationally efficient, it failed to create a diabetic retinopathy feature selection system for transparently diagnosing the disease state. Also the diagnosis of diseases did not employ machine learning methods to categorize candidate fundus images into true positive and true negative ratio. Several candidate fundus images did not include more detailed feature selection technique for diabetic retinopathy. To apply machine learning methods and classify the candidate fundus images on the basis of sliding window a method called, Diabetic Fundus Image Recuperation (DFIR) is designed in this paper. The initial phase of DFIR method select the feature of optic cup in digital retinal fundus images based on Sliding Window Approach. With this, the disease state for diabetic retinopathy is assessed. The feature selection in DFIR method uses collection of sliding windows to obtain the features based on the histogram value. The histogram based feature selection with the aid of Group Sparsity Non-overlapping function provides more detailed information of features. Using Support Vector Model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy diseases. The ranking of disease level for each candidate set provides a much promising result for developing practically automated diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, specificity rate, ranking efficiency and feature selection time. PMID:25974230

  11. Mining Feature of Data Fusion in the Classification of Beer Flavor Information Using E-Tongue and E-Nose

    PubMed Central

    Men, Hong; Shi, Yan; Fu, Songlin; Jiao, Yanan; Qiao, Yu; Liu, Jingjing

    2017-01-01

    Multi-sensor data fusion can provide more comprehensive and more accurate analysis results. However, it also brings some redundant information, which is an important issue with respect to finding a feature-mining method for intuitive and efficient analysis. This paper demonstrates a feature-mining method based on variable accumulation to find the best expression form and variables’ behavior affecting beer flavor. First, e-tongue and e-nose were used to gather the taste and olfactory information of beer, respectively. Second, principal component analysis (PCA), genetic algorithm-partial least squares (GA-PLS), and variable importance of projection (VIP) scores were applied to select feature variables of the original fusion set. Finally, the classification models based on support vector machine (SVM), random forests (RF), and extreme learning machine (ELM) were established to evaluate the efficiency of the feature-mining method. The result shows that the feature-mining method based on variable accumulation obtains the main feature affecting beer flavor information, and the best classification performance for the SVM, RF, and ELM models with 96.67%, 94.44%, and 98.33% prediction accuracy, respectively. PMID:28753917

  12. Information Theory for Gabor Feature Selection for Face Recognition

    NASA Astrophysics Data System (ADS)

    Shen, Linlin; Bai, Li

    2006-12-01

    A discriminative and robust feature—kernel enhanced informative Gabor feature—is proposed in this paper for face recognition. Mutual information is applied to select a set of informative and nonredundant Gabor features, which are then further enhanced by kernel methods for recognition. Compared with one of the top performing methods in the 2004 Face Verification Competition (FVC2004), our methods demonstrate a clear advantage over existing methods in accuracy, computation efficiency, and memory cost. The proposed method has been fully tested on the FERET database using the FERET evaluation protocol. Significant improvements on three of the test data sets are observed. Compared with the classical Gabor wavelet-based approaches using a huge number of features, our method requires less than 4 milliseconds to retrieve a few hundreds of features. Due to the substantially reduced feature dimension, only 4 seconds are required to recognize 200 face images. The paper also unified different Gabor filter definitions and proposed a training sample generation algorithm to reduce the effects caused by unbalanced number of samples available in different classes.

  13. Mutual information based feature selection for medical image retrieval

    NASA Astrophysics Data System (ADS)

    Zhi, Lijia; Zhang, Shaomin; Li, Yan

    2018-04-01

    In this paper, authors propose a mutual information based method for lung CT image retrieval. This method is designed to adapt to different datasets and different retrieval task. For practical applying consideration, this method avoids using a large amount of training data. Instead, with a well-designed training process and robust fundamental features and measurements, the method in this paper can get promising performance and maintain economic training computation. Experimental results show that the method has potential practical values for clinical routine application.

  14. Adaptive feature selection using v-shaped binary particle swarm optimization.

    PubMed

    Teng, Xuyang; Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.

  15. Adaptive feature selection using v-shaped binary particle swarm optimization

    PubMed Central

    Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers. PMID:28358850

  16. Facial recognition using multisensor images based on localized kernel eigen spaces.

    PubMed

    Gundimada, Satyanadh; Asari, Vijayan K

    2009-06-01

    A feature selection technique along with an information fusion procedure for improving the recognition accuracy of a visual and thermal image-based facial recognition system is presented in this paper. A novel modular kernel eigenspaces approach is developed and implemented on the phase congruency feature maps extracted from the visual and thermal images individually. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The proposed localized nonlinear feature selection procedure helps to overcome the bottlenecks of illumination variations, partial occlusions, expression variations and variations due to temperature changes that affect the visual and thermal face recognition techniques. AR and Equinox databases are used for experimentation and evaluation of the proposed technique. The proposed feature selection procedure has greatly improved the recognition accuracy for both the visual and thermal images when compared to conventional techniques. Also, a decision level fusion methodology is presented which along with the feature selection procedure has outperformed various other face recognition techniques in terms of recognition accuracy.

  17. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines

    PubMed Central

    2010-01-01

    Background Protein-protein interaction (PPI) plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI) is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. Results In this paper, we propose a computational method to predict DDI using support vector machines (SVMs), based on domains represented as interaction profile hidden Markov models (ipHMM) where interacting residues in domains are explicitly modeled according to the three dimensional structural information available at the Protein Data Bank (PDB). Features about the domains are extracted first as the Fisher scores derived from the ipHMM and then selected using singular value decomposition (SVD). Domain pairs are represented by concatenating their selected feature vectors, and classified by a support vector machine trained on these feature vectors. The method is tested by leave-one-out cross validation experiments with a set of interacting protein pairs adopted from the 3DID database. The prediction accuracy has shown significant improvement as compared to InterPreTS (Interaction Prediction through Tertiary Structure), an existing method for PPI prediction that also uses the sequences and complexes of known 3D structure. Conclusions We show that domain-domain interaction prediction can be significantly enhanced by exploiting information inherent in the domain profiles via feature selection based on Fisher scores, singular value decomposition and supervised learning based on support vector machines. Datasets and source code are freely available on the web at http://liao.cis.udel.edu/pub/svdsvm. Implemented in Matlab and supported on Linux and MS Windows. PMID:21034480

  18. AHIMSA - Ad hoc histogram information measure sensing algorithm for feature selection in the context of histogram inspired clustering techniques

    NASA Technical Reports Server (NTRS)

    Dasarathy, B. V.

    1976-01-01

    An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng

    An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classificationmore » rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.« less

  20. SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.

    PubMed

    Xu, Wenxuan; Zhang, Li; Lu, Yaping

    2016-06-01

    The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Automatic ICD-10 multi-class classification of cause of death from plaintext autopsy reports through expert-driven feature selection.

    PubMed

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali

    2017-01-01

    Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports.

  2. Automatic ICD-10 multi-class classification of cause of death from plaintext autopsy reports through expert-driven feature selection

    PubMed Central

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali

    2017-01-01

    Objectives Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. Methods Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. Results Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. Conclusion The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports. PMID:28166263

  3. Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics.

    PubMed

    Lin, Xiaohui; Li, Chao; Zhang, Yanhui; Su, Benzhe; Fan, Meng; Wei, Hai

    2017-12-26

    Feature selection is an important topic in bioinformatics. Defining informative features from complex high dimensional biological data is critical in disease study, drug development, etc. Support vector machine-recursive feature elimination (SVM-RFE) is an efficient feature selection technique that has shown its power in many applications. It ranks the features according to the recursive feature deletion sequence based on SVM. In this study, we propose a method, SVM-RFE-OA, which combines the classification accuracy rate and the average overlapping ratio of the samples to determine the number of features to be selected from the feature rank of SVM-RFE. Meanwhile, to measure the feature weights more accurately, we propose a modified SVM-RFE-OA (M-SVM-RFE-OA) algorithm that temporally screens out the samples lying in a heavy overlapping area in each iteration. The experiments on the eight public biological datasets show that the discriminative ability of the feature subset could be measured more accurately by combining the classification accuracy rate with the average overlapping degree of the samples compared with using the classification accuracy rate alone, and shielding the samples in the overlapping area made the calculation of the feature weights more stable and accurate. The methods proposed in this study can also be used with other RFE techniques to define potential biomarkers from big biological data.

  4. Computing symmetrical strength of N-grams: a two pass filtering approach in automatic classification of text documents.

    PubMed

    Agnihotri, Deepak; Verma, Kesari; Tripathi, Priyanka

    2016-01-01

    The contiguous sequences of the terms (N-grams) in the documents are symmetrically distributed among different classes. The symmetrical distribution of the N-Grams raises uncertainty in the belongings of the N-Grams towards the class. In this paper, we focused on the selection of most discriminating N-Grams by reducing the effects of symmetrical distribution. In this context, a new text feature selection method named as the symmetrical strength of the N-Grams (SSNG) is proposed using a two pass filtering based feature selection (TPF) approach. Initially, in the first pass of the TPF, the SSNG method chooses various informative N-Grams from the entire extracted N-Grams of the corpus. Subsequently, in the second pass the well-known Chi Square (χ(2)) method is being used to select few most informative N-Grams. Further, to classify the documents the two standard classifiers Multinomial Naive Bayes and Linear Support Vector Machine have been applied on the ten standard text data sets. In most of the datasets, the experimental results state the performance and success rate of SSNG method using TPF approach is superior to the state-of-the-art methods viz. Mutual Information, Information Gain, Odds Ratio, Discriminating Feature Selection and χ(2).

  5. Parts-based stereoscopic image assessment by learning binocular manifold color visual properties

    NASA Astrophysics Data System (ADS)

    Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi

    2016-11-01

    Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.

  6. Recursive feature selection with significant variables of support vectors.

    PubMed

    Tsai, Chen-An; Huang, Chien-Hsun; Chang, Ching-Wei; Chen, Chun-Houh

    2012-01-01

    The development of DNA microarray makes researchers screen thousands of genes simultaneously and it also helps determine high- and low-expression level genes in normal and disease tissues. Selecting relevant genes for cancer classification is an important issue. Most of the gene selection methods use univariate ranking criteria and arbitrarily choose a threshold to choose genes. However, the parameter setting may not be compatible to the selected classification algorithms. In this paper, we propose a new gene selection method (SVM-t) based on the use of t-statistics embedded in support vector machine. We compared the performance to two similar SVM-based methods: SVM recursive feature elimination (SVMRFE) and recursive support vector machine (RSVM). The three methods were compared based on extensive simulation experiments and analyses of two published microarray datasets. In the simulation experiments, we found that the proposed method is more robust in selecting informative genes than SVMRFE and RSVM and capable to attain good classification performance when the variations of informative and noninformative genes are different. In the analysis of two microarray datasets, the proposed method yields better performance in identifying fewer genes with good prediction accuracy, compared to SVMRFE and RSVM.

  7. An ensemble method for extracting adverse drug events from social media.

    PubMed

    Liu, Jing; Zhao, Songzheng; Zhang, Xiaodi

    2016-06-01

    Because adverse drug events (ADEs) are a serious health problem and a leading cause of death, it is of vital importance to identify them correctly and in a timely manner. With the development of Web 2.0, social media has become a large data source for information on ADEs. The objective of this study is to develop a relation extraction system that uses natural language processing techniques to effectively distinguish between ADEs and non-ADEs in informal text on social media. We develop a feature-based approach that utilizes various lexical, syntactic, and semantic features. Information-gain-based feature selection is performed to address high-dimensional features. Then, we evaluate the effectiveness of four well-known kernel-based approaches (i.e., subset tree kernel, tree kernel, shortest dependency path kernel, and all-paths graph kernel) and several ensembles that are generated by adopting different combination methods (i.e., majority voting, weighted averaging, and stacked generalization). All of the approaches are tested using three data sets: two health-related discussion forums and one general social networking site (i.e., Twitter). When investigating the contribution of each feature subset, the feature-based approach attains the best area under the receiver operating characteristics curve (AUC) values, which are 78.6%, 72.2%, and 79.2% on the three data sets. When individual methods are used, we attain the best AUC values of 82.1%, 73.2%, and 77.0% using the subset tree kernel, shortest dependency path kernel, and feature-based approach on the three data sets, respectively. When using classifier ensembles, we achieve the best AUC values of 84.5%, 77.3%, and 84.5% on the three data sets, outperforming the baselines. Our experimental results indicate that ADE extraction from social media can benefit from feature selection. With respect to the effectiveness of different feature subsets, lexical features and semantic features can enhance the ADE extraction capability. Kernel-based approaches, which can stay away from the feature sparsity issue, are qualified to address the ADE extraction problem. Combining different individual classifiers using suitable combination methods can further enhance the ADE extraction effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model

    PubMed Central

    Tan, Maxine; Pu, Jiantao; Zheng, Bin

    2014-01-01

    Purpose: Improving radiologists’ performance in classification between malignant and benign breast lesions is important to increase cancer detection sensitivity and reduce false-positive recalls. For this purpose, developing computer-aided diagnosis (CAD) schemes has been attracting research interest in recent years. In this study, we investigated a new feature selection method for the task of breast mass classification. Methods: We initially computed 181 image features based on mass shape, spiculation, contrast, presence of fat or calcifications, texture, isodensity, and other morphological features. From this large image feature pool, we used a sequential forward floating selection (SFFS)-based feature selection method to select relevant features, and analyzed their performance using a support vector machine (SVM) model trained for the classification task. On a database of 600 benign and 600 malignant mass regions of interest (ROIs), we performed the study using a ten-fold cross-validation method. Feature selection and optimization of the SVM parameters were conducted on the training subsets only. Results: The area under the receiver operating characteristic curve (AUC) = 0.805±0.012 was obtained for the classification task. The results also showed that the most frequently-selected features by the SFFS-based algorithm in 10-fold iterations were those related to mass shape, isodensity and presence of fat, which are consistent with the image features frequently used by radiologists in the clinical environment for mass classification. The study also indicated that accurately computing mass spiculation features from the projection mammograms was difficult, and failed to perform well for the mass classification task due to tissue overlap within the benign mass regions. Conclusions: In conclusion, this comprehensive feature analysis study provided new and valuable information for optimizing computerized mass classification schemes that may have potential to be useful as a “second reader” in future clinical practice. PMID:24664267

  9. A combination of feature extraction methods with an ensemble of different classifiers for protein structural class prediction problem.

    PubMed

    Dehzangi, Abdollah; Paliwal, Kuldip; Sharma, Alok; Dehzangi, Omid; Sattar, Abdul

    2013-01-01

    Better understanding of structural class of a given protein reveals important information about its overall folding type and its domain. It can also be directly used to provide critical information on general tertiary structure of a protein which has a profound impact on protein function determination and drug design. Despite tremendous enhancements made by pattern recognition-based approaches to solve this problem, it still remains as an unsolved issue for bioinformatics that demands more attention and exploration. In this study, we propose a novel feature extraction model that incorporates physicochemical and evolutionary-based information simultaneously. We also propose overlapped segmented distribution and autocorrelation-based feature extraction methods to provide more local and global discriminatory information. The proposed feature extraction methods are explored for 15 most promising attributes that are selected from a wide range of physicochemical-based attributes. Finally, by applying an ensemble of different classifiers namely, Adaboost.M1, LogitBoost, naive Bayes, multilayer perceptron (MLP), and support vector machine (SVM) we show enhancement of the protein structural class prediction accuracy for four popular benchmarks.

  10. Prediction of lysine ubiquitylation with ensemble classifier and feature selection.

    PubMed

    Zhao, Xiaowei; Li, Xiangtao; Ma, Zhiqiang; Yin, Minghao

    2011-01-01

    Ubiquitylation is an important process of post-translational modification. Correct identification of protein lysine ubiquitylation sites is of fundamental importance to understand the molecular mechanism of lysine ubiquitylation in biological systems. This paper develops a novel computational method to effectively identify the lysine ubiquitylation sites based on the ensemble approach. In the proposed method, 468 ubiquitylation sites from 323 proteins retrieved from the Swiss-Prot database were encoded into feature vectors by using four kinds of protein sequences information. An effective feature selection method was then applied to extract informative feature subsets. After different feature subsets were obtained by setting different starting points in the search procedure, they were used to train multiple random forests classifiers and then aggregated into a consensus classifier by majority voting. Evaluated by jackknife tests and independent tests respectively, the accuracy of the proposed predictor reached 76.82% for the training dataset and 79.16% for the test dataset, indicating that this predictor is a useful tool to predict lysine ubiquitylation sites. Furthermore, site-specific feature analysis was performed and it was shown that ubiquitylation is intimately correlated with the features of its surrounding sites in addition to features derived from the lysine site itself. The feature selection method is available upon request.

  11. The relationship between visual working memory and attention: retention of precise colour information in the absence of effects on perceptual selection.

    PubMed

    Hollingworth, Andrew; Hwang, Seongmin

    2013-10-19

    We examined the conditions under which a feature value in visual working memory (VWM) recruits visual attention to matching stimuli. Previous work has suggested that VWM supports two qualitatively different states of representation: an active state that interacts with perceptual selection and a passive (or accessory) state that does not. An alternative hypothesis is that VWM supports a single form of representation, with the precision of feature memory controlling whether or not the representation interacts with perceptual selection. The results of three experiments supported the dual-state hypothesis. We established conditions under which participants retained a relatively precise representation of a parcticular colour. If the colour was immediately task relevant, it reliably recruited attention to matching stimuli. However, if the colour was not immediately task relevant, it failed to interact with perceptual selection. Feature maintenance in VWM is not necessarily equivalent with feature-based attentional selection.

  12. Feature-based attention and conflict monitoring in criminal offenders: interactive relations of psychopathy with anxiety and externalizing.

    PubMed

    Zeier, Joshua D; Newman, Joseph P

    2013-08-01

    As predicted by the response modulation model, psychopathic offenders are insensitive to potentially important inhibitory information when it is peripheral to their primary focus of attention. To date, the clearest tests of this hypothesis have manipulated spatial attention to cue the location of goal-relevant versus inhibitory information. However, the theory predicts a more general abnormality in selective attention. In the current study, male prisoners performed a conflict-monitoring task, which included a feature-based manipulation (i.e., color) that biased selective attention toward goal-relevant stimuli and away from inhibitory distracters on some trials but not others. Paralleling results for spatial cuing, feature-based cuing resulted in less distracter interference, particularly for participants with primary psychopathy (i.e., low anxiety). This study also investigated the moderating effect of externalizing on psychopathy. Participants high in psychopathy but low in externalizing performed similarly to primary psychopathic individuals. These results demonstrate that the abnormal selective attention associated with primary psychopathy is not limited to spatial attention but, instead, applies to diverse methods for establishing attentional focus. Furthermore, they demonstrate a novel method of investigating psychopathic subtypes using continuous analyses. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. Diffusion Tensor Image Registration Using Hybrid Connectivity and Tensor Features

    PubMed Central

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2014-01-01

    Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. PMID:24293159

  14. A multicriteria decision making model for assessment and selection of an ERP in a logistics context

    NASA Astrophysics Data System (ADS)

    Pereira, Teresa; Ferreira, Fernanda A.

    2017-07-01

    The aim of this work is to apply a methodology of decision support based on a multicriteria decision analyses (MCDA) model that allows the assessment and selection of an Enterprise Resource Planning (ERP) in a Portuguese logistics company by Group Decision Maker (GDM). A Decision Support system (DSS) that implements a MCDA - Multicriteria Methodology for the Assessment and Selection of Information Systems / Information Technologies (MMASSI / IT) is used based on its features and facility to change and adapt the model to a given scope. Using this DSS it was obtained the information system that best suited to the decisional context, being this result evaluated through a sensitivity and robustness analysis.

  15. Fatigue level estimation of monetary bills based on frequency band acoustic signals with feature selection by supervised SOM

    NASA Astrophysics Data System (ADS)

    Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa

    Fatigued monetary bills adversely affect the daily operation of automated teller machines (ATMs). In order to make the classification of fatigued bills more efficient, the development of an automatic fatigued monetary bill classification method is desirable. We propose a new method by which to estimate the fatigue level of monetary bills from the feature-selected frequency band acoustic energy pattern of banking machines. By using a supervised self-organizing map (SOM), we effectively estimate the fatigue level using only the feature-selected frequency band acoustic energy pattern. Furthermore, the feature-selected frequency band acoustic energy pattern improves the estimation accuracy of the fatigue level of monetary bills by adding frequency domain information to the acoustic energy pattern. The experimental results with real monetary bill samples reveal the effectiveness of the proposed method.

  16. Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection.

    PubMed

    Ma, Xin; Guo, Jing; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from amino acid sequences using random forests with the minimum redundancy maximum relevance (mRMR) method, followed by incremental feature selection (IFS). We incorporated features of conjoint triad features and three novel features: binding propensity (BP), nonbinding propensity (NBP), and evolutionary information combined with physicochemical properties (EIPP). The results showed that these novel features have important roles in improving the performance of the predictor. Using the mRMR-IFS method, our predictor achieved the best performance (86.62% accuracy and 0.737 Matthews correlation coefficient). High prediction accuracy and successful prediction performance suggested that our method can be a useful approach to identify RNA-binding proteins from sequence information.

  17. Reducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection

    PubMed Central

    Moomen, Abdelniser; Ali, Abdulbaset; Ramahi, Omar M.

    2016-01-01

    Nondestructive Testing (NDT) assessment of materials’ health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave testing. Reducing complexity and expenses associated with current diagnostic practices of microwave NDT of structural health requires an effective and intelligent approach based on feature selection and classification techniques of machine learning. Current microwave NDT methods in general based on measuring variation in the S-matrix over the entire operating frequency ranges of the sensors. For instance, assessing the health of metallic structures using a microwave sensor depends on the reflection or/and transmission coefficient measurements as a function of the sweeping frequencies of the operating band. The aim of this work is reducing sweeping frequencies using machine learning feature selection techniques. By treating sweeping frequencies as features, the number of top important features can be identified, then only the most influential features (frequencies) are considered when building the microwave NDT equipment. The proposed method of reducing sweeping frequencies was validated experimentally using a waveguide sensor and a metallic plate with different cracks. Among the investigated feature selection techniques are information gain, gain ratio, relief, chi-squared. The effectiveness of the selected features were validated through performance evaluations of various classification models; namely, Nearest Neighbor, Neural Networks, Random Forest, and Support Vector Machine. Results showed good crack classification accuracy rates after employing feature selection algorithms. PMID:27104533

  18. A bootstrap based Neyman-Pearson test for identifying variable importance.

    PubMed

    Ditzler, Gregory; Polikar, Robi; Rosen, Gail

    2015-04-01

    Selection of most informative features that leads to a small loss on future data are arguably one of the most important steps in classification, data analysis and model selection. Several feature selection (FS) algorithms are available; however, due to noise present in any data set, FS algorithms are typically accompanied by an appropriate cross-validation scheme. In this brief, we propose a statistical hypothesis test derived from the Neyman-Pearson lemma for determining if a feature is statistically relevant. The proposed approach can be applied as a wrapper to any FS algorithm, regardless of the FS criteria used by that algorithm, to determine whether a feature belongs in the relevant set. Perhaps more importantly, this procedure efficiently determines the number of relevant features given an initial starting point. We provide freely available software implementations of the proposed methodology.

  19. Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.

    PubMed

    Attallah, Omneya; Karthikesalingam, Alan; Holt, Peter Je; Thompson, Matthew M; Sayers, Rob; Bown, Matthew J; Choke, Eddie C; Ma, Xianghong

    2017-11-01

    Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan.

  20. Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification.

    PubMed

    Wang, Yubo; Veluvolu, Kalyana C

    2017-01-01

    The most BCI systems that rely on EEG signals employ Fourier based methods for time-frequency decomposition for feature extraction. The band-limited multiple Fourier linear combiner is well-suited for such band-limited signals due to its real-time applicability. Despite the improved performance of these techniques in two channel settings, its application in multiple-channel EEG is not straightforward and challenging. As more channels are available, a spatial filter will be required to eliminate the noise and preserve the required useful information. Moreover, multiple-channel EEG also adds the high dimensionality to the frequency feature space. Feature selection will be required to stabilize the performance of the classifier. In this paper, we develop a new method based on Evolutionary Algorithm (EA) to solve these two problems simultaneously. The real-valued EA encodes both the spatial filter estimates and the feature selection into its solution and optimizes it with respect to the classification error. Three Fourier based designs are tested in this paper. Our results show that the combination of Fourier based method with covariance matrix adaptation evolution strategy (CMA-ES) has the best overall performance.

  1. Face recognition algorithm based on Gabor wavelet and locality preserving projections

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojie; Shen, Lin; Fan, Honghui

    2017-07-01

    In order to solve the effects of illumination changes and differences of personal features on the face recognition rate, this paper presents a new face recognition algorithm based on Gabor wavelet and Locality Preserving Projections (LPP). The problem of the Gabor filter banks with high dimensions was solved effectively, and also the shortcoming of the LPP on the light illumination changes was overcome. Firstly, the features of global image information were achieved, which used the good spatial locality and orientation selectivity of Gabor wavelet filters. Then the dimensions were reduced by utilizing the LPP, which well-preserved the local information of the image. The experimental results shown that this algorithm can effectively extract the features relating to facial expressions, attitude and other information. Besides, it can reduce influence of the illumination changes and the differences in personal features effectively, which improves the face recognition rate to 99.2%.

  2. A recurrent neural model for proto-object based contour integration and figure-ground segregation.

    PubMed

    Hu, Brian; Niebur, Ernst

    2017-12-01

    Visual processing of objects makes use of both feedforward and feedback streams of information. However, the nature of feedback signals is largely unknown, as is the identity of the neuronal populations in lower visual areas that receive them. Here, we develop a recurrent neural model to address these questions in the context of contour integration and figure-ground segregation. A key feature of our model is the use of grouping neurons whose activity represents tentative objects ("proto-objects") based on the integration of local feature information. Grouping neurons receive input from an organized set of local feature neurons, and project modulatory feedback to those same neurons. Additionally, inhibition at both the local feature level and the object representation level biases the interpretation of the visual scene in agreement with principles from Gestalt psychology. Our model explains several sets of neurophysiological results (Zhou et al. Journal of Neuroscience, 20(17), 6594-6611 2000; Qiu et al. Nature Neuroscience, 10(11), 1492-1499 2007; Chen et al. Neuron, 82(3), 682-694 2014), and makes testable predictions about the influence of neuronal feedback and attentional selection on neural responses across different visual areas. Our model also provides a framework for understanding how object-based attention is able to select both objects and the features associated with them.

  3. Thin Cloud Detection Method by Linear Combination Model of Cloud Image

    NASA Astrophysics Data System (ADS)

    Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.

    2018-04-01

    The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.

  4. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  5. Facial expression reconstruction on the basis of selected vertices of triangle mesh

    NASA Astrophysics Data System (ADS)

    Peszor, Damian; Wojciechowska, Marzena

    2016-06-01

    Facial expression reconstruction is an important issue in the field of computer graphics. While it is relatively easy to create an animation based on meshes constructed through video recordings, this kind of high-quality data is often not transferred to another model because of lack of intermediary, anthropometry-based way to do so. However, if a high-quality mesh is sampled with sufficient density, it is possible to use obtained feature points to encode the shape of surrounding vertices in a way that can be easily transferred to another mesh with corresponding feature points. In this paper we present a method used for obtaining information for the purpose of reconstructing changes in facial surface on the basis of selected feature points.

  6. An automatic optimum number of well-distributed ground control lines selection procedure based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yavari, Somayeh; Valadan Zoej, Mohammad Javad; Salehi, Bahram

    2018-05-01

    The procedure of selecting an optimum number and best distribution of ground control information is important in order to reach accurate and robust registration results. This paper proposes a new general procedure based on Genetic Algorithm (GA) which is applicable for all kinds of features (point, line, and areal features). However, linear features due to their unique characteristics are of interest in this investigation. This method is called Optimum number of Well-Distributed ground control Information Selection (OWDIS) procedure. Using this method, a population of binary chromosomes is randomly initialized. The ones indicate the presence of a pair of conjugate lines as a GCL and zeros specify the absence. The chromosome length is considered equal to the number of all conjugate lines. For each chromosome, the unknown parameters of a proper mathematical model can be calculated using the selected GCLs (ones in each chromosome). Then, a limited number of Check Points (CPs) are used to evaluate the Root Mean Square Error (RMSE) of each chromosome as its fitness value. The procedure continues until reaching a stopping criterion. The number and position of ones in the best chromosome indicate the selected GCLs among all conjugate lines. To evaluate the proposed method, a GeoEye and an Ikonos Images are used over different areas of Iran. Comparing the obtained results by the proposed method in a traditional RFM with conventional methods that use all conjugate lines as GCLs shows five times the accuracy improvement (pixel level accuracy) as well as the strength of the proposed method. To prevent an over-parametrization error in a traditional RFM due to the selection of a high number of improper correlated terms, an optimized line-based RFM is also proposed. The results show the superiority of the combination of the proposed OWDIS method with an optimized line-based RFM in terms of increasing the accuracy to better than 0.7 pixel, reliability, and reducing systematic errors. These results also demonstrate the high potential of linear features as reliable control features to reach sub-pixel accuracy in registration applications.

  7. Feature selection and classification of multiparametric medical images using bagging and SVM

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Resnick, Susan M.; Davatzikos, Christos

    2008-03-01

    This paper presents a framework for brain classification based on multi-parametric medical images. This method takes advantage of multi-parametric imaging to provide a set of discriminative features for classifier construction by using a regional feature extraction method which takes into account joint correlations among different image parameters; in the experiments herein, MRI and PET images of the brain are used. Support vector machine classifiers are then trained based on the most discriminative features selected from the feature set. To facilitate robust classification and optimal selection of parameters involved in classification, in view of the well-known "curse of dimensionality", base classifiers are constructed in a bagging (bootstrap aggregating) framework for building an ensemble classifier and the classification parameters of these base classifiers are optimized by means of maximizing the area under the ROC (receiver operating characteristic) curve estimated from their prediction performance on left-out samples of bootstrap sampling. This classification system is tested on a sex classification problem, where it yields over 90% classification rates for unseen subjects. The proposed classification method is also compared with other commonly used classification algorithms, with favorable results. These results illustrate that the methods built upon information jointly extracted from multi-parametric images have the potential to perform individual classification with high sensitivity and specificity.

  8. Attracting Views and Going Viral: How Message Features and News-Sharing Channels Affect Health News Diffusion

    PubMed Central

    Kim, Hyun Suk

    2015-01-01

    This study examined how intrinsic as well as perceived message features affect the extent to which online health news stories prompt audience selections and social retransmissions, and how news-sharing channels (e-mail vs. social media) shape what goes viral. The study analyzed actual behavioral data on audience viewing and sharing of New York Times health news articles, and associated article content and context data. News articles with high informational utility and positive sentiment invited more frequent selections and retransmissions. Articles were also more frequently selected when they presented controversial, emotionally evocative, and familiar content. Informational utility and novelty had stronger positive associations with e-mail-specific virality, while emotional evocativeness, content familiarity, and exemplification played a larger role in triggering social media-based retransmissions. PMID:26441472

  9. Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy.

    PubMed

    Welikala, R A; Fraz, M M; Dehmeshki, J; Hoppe, A; Tah, V; Mann, S; Williamson, T H; Barman, S A

    2015-07-01

    Proliferative diabetic retinopathy (PDR) is a condition that carries a high risk of severe visual impairment. The hallmark of PDR is the growth of abnormal new vessels. In this paper, an automated method for the detection of new vessels from retinal images is presented. This method is based on a dual classification approach. Two vessel segmentation approaches are applied to create two separate binary vessel map which each hold vital information. Local morphology features are measured from each binary vessel map to produce two separate 4-D feature vectors. Independent classification is performed for each feature vector using a support vector machine (SVM) classifier. The system then combines these individual outcomes to produce a final decision. This is followed by the creation of additional features to generate 21-D feature vectors, which feed into a genetic algorithm based feature selection approach with the objective of finding feature subsets that improve the performance of the classification. Sensitivity and specificity results using a dataset of 60 images are 0.9138 and 0.9600, respectively, on a per patch basis and 1.000 and 0.975, respectively, on a per image basis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. FIFS: A data mining method for informative marker selection in high dimensional population genomic data.

    PubMed

    Kavakiotis, Ioannis; Samaras, Patroklos; Triantafyllidis, Alexandros; Vlahavas, Ioannis

    2017-11-01

    Single Nucleotide Polymorphism (SNPs) are, nowadays, becoming the marker of choice for biological analyses involving a wide range of applications with great medical, biological, economic and environmental interest. Classification tasks i.e. the assignment of individuals to groups of origin based on their (multi-locus) genotypes, are performed in many fields such as forensic investigations, discrimination between wild and/or farmed populations and others. Τhese tasks, should be performed with a small number of loci, for computational as well as biological reasons. Thus, feature selection should precede classification tasks, especially for Single Nucleotide Polymorphism (SNP) datasets, where the number of features can amount to hundreds of thousands or millions. In this paper, we present a novel data mining approach, called FIFS - Frequent Item Feature Selection, based on the use of frequent items for selection of the most informative markers from population genomic data. It is a modular method, consisting of two main components. The first one identifies the most frequent and unique genotypes for each sampled population. The second one selects the most appropriate among them, in order to create the informative SNP subsets to be returned. The proposed method (FIFS) was tested on a real dataset, which comprised of a comprehensive coverage of pig breed types present in Britain. This dataset consisted of 446 individuals divided in 14 sub-populations, genotyped at 59,436 SNPs. Our method outperforms the state-of-the-art and baseline methods in every case. More specifically, our method surpassed the assignment accuracy threshold of 95% needing only half the number of SNPs selected by other methods (FIFS: 28 SNPs, Delta: 70 SNPs Pairwise FST: 70 SNPs, In: 100 SNPs.) CONCLUSION: Our approach successfully deals with the problem of informative marker selection in high dimensional genomic datasets. It offers better results compared to existing approaches and can aid biologists in selecting the most informative markers with maximum discrimination power for optimization of cost-effective panels with applications related to e.g. species identification, wildlife management, and forensics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Histogram of gradient and binarized statistical image features of wavelet subband-based palmprint features extraction

    NASA Astrophysics Data System (ADS)

    Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab

    2017-11-01

    Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.

  12. The relationship between visual working memory and attention: retention of precise colour information in the absence of effects on perceptual selection

    PubMed Central

    Hollingworth, Andrew; Hwang, Seongmin

    2013-01-01

    We examined the conditions under which a feature value in visual working memory (VWM) recruits visual attention to matching stimuli. Previous work has suggested that VWM supports two qualitatively different states of representation: an active state that interacts with perceptual selection and a passive (or accessory) state that does not. An alternative hypothesis is that VWM supports a single form of representation, with the precision of feature memory controlling whether or not the representation interacts with perceptual selection. The results of three experiments supported the dual-state hypothesis. We established conditions under which participants retained a relatively precise representation of a parcticular colour. If the colour was immediately task relevant, it reliably recruited attention to matching stimuli. However, if the colour was not immediately task relevant, it failed to interact with perceptual selection. Feature maintenance in VWM is not necessarily equivalent with feature-based attentional selection. PMID:24018723

  13. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification

    PubMed Central

    Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC2), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible. PMID:29666661

  14. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    PubMed

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  15. Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method

    PubMed Central

    Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang

    2017-01-01

    Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions. PMID:28588470

  16. Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method.

    PubMed

    Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang

    2017-01-01

    Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions.

  17. The influence of physical factors on recognizing blood cells in the computer microscopy systems of acute leukemia diagnosis

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.; Pronichev, A. N.; Polyakov, E. V.; Dmitrieva, V. V.; Tupitsyn, N. N.; Frenkel, M. A.; Mozhenkova, A. V.

    2017-01-01

    The work investigated the effect of the choice of color space component on blood cell detection based on the calculation of texture attributes of blood cells nuclei in bone marrow. The study identified the most informative color space and texture characteristics of blood cells, designed for components of these spaces. Significance ratio was introduced to assess the quality of features. We offered features that have enabled to divide lymphocytes from lymphoblasts. The selection of the features was based on the results of the data analysis.

  18. Personalised news filtering and recommendation system using Chi-square statistics-based K-nearest neighbour (χ2SB-KNN) model

    NASA Astrophysics Data System (ADS)

    Adeniyi, D. A.; Wei, Z.; Yang, Y.

    2017-10-01

    Recommendation problem has been extensively studied by researchers in the field of data mining, database and information retrieval. This study presents the design and realisation of an automated, personalised news recommendations system based on Chi-square statistics-based K-nearest neighbour (χ2SB-KNN) model. The proposed χ2SB-KNN model has the potential to overcome computational complexity and information overloading problems, reduces runtime and speeds up execution process through the use of critical value of χ2 distribution. The proposed recommendation engine can alleviate scalability challenges through combined online pattern discovery and pattern matching for real-time recommendations. This work also showcases the development of a novel method of feature selection referred to as Data Discretisation-Based feature selection method. This is used for selecting the best features for the proposed χ2SB-KNN algorithm at the preprocessing stage of the classification procedures. The implementation of the proposed χ2SB-KNN model is achieved through the use of a developed in-house Java program on an experimental website called OUC newsreaders' website. Finally, we compared the performance of our system with two baseline methods which are traditional Euclidean distance K-nearest neighbour and Naive Bayesian techniques. The result shows a significant improvement of our method over the baseline methods studied.

  19. Combined rule extraction and feature elimination in supervised classification.

    PubMed

    Liu, Sheng; Patel, Ronak Y; Daga, Pankaj R; Liu, Haining; Fu, Gang; Doerksen, Robert J; Chen, Yixin; Wilkins, Dawn E

    2012-09-01

    There are a vast number of biology related research problems involving a combination of multiple sources of data to achieve a better understanding of the underlying problems. It is important to select and interpret the most important information from these sources. Thus it will be beneficial to have a good algorithm to simultaneously extract rules and select features for better interpretation of the predictive model. We propose an efficient algorithm, Combined Rule Extraction and Feature Elimination (CRF), based on 1-norm regularized random forests. CRF simultaneously extracts a small number of rules generated by random forests and selects important features. We applied CRF to several drug activity prediction and microarray data sets. CRF is capable of producing performance comparable with state-of-the-art prediction algorithms using a small number of decision rules. Some of the decision rules are biologically significant.

  20. Fukunaga-Koontz transform based dimensionality reduction for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ochilov, S.; Alam, M. S.; Bal, A.

    2006-05-01

    Fukunaga-Koontz Transform based technique offers some attractive properties for desired class oriented dimensionality reduction in hyperspectral imagery. In FKT, feature selection is performed by transforming into a new space where feature classes have complimentary eigenvectors. Dimensionality reduction technique based on these complimentary eigenvector analysis can be described under two classes, desired class and background clutter, such that each basis function best represent one class while carrying the least amount of information from the second class. By selecting a few eigenvectors which are most relevant to desired class, one can reduce the dimension of hyperspectral cube. Since the FKT based technique reduces data size, it provides significant advantages for near real time detection applications in hyperspectral imagery. Furthermore, the eigenvector selection approach significantly reduces computation burden via the dimensionality reduction processes. The performance of the proposed dimensionality reduction algorithm has been tested using real-world hyperspectral dataset.

  1. Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns

    PubMed Central

    Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German

    2017-01-01

    We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897

  2. Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Liang, Xihui; Lin, Jianhui; Chen, Yuejian; Liu, Jianxin

    2018-02-01

    This paper presents a novel signal processing scheme, feature selection based multi-scale morphological filter (MMF), for train axle bearing fault detection. In this scheme, more than 30 feature indicators of vibration signals are calculated for axle bearings with different conditions and the features which can reflect fault characteristics more effectively and representatively are selected using the max-relevance and min-redundancy principle. Then, a filtering scale selection approach for MMF based on feature selection and grey relational analysis is proposed. The feature selection based MMF method is tested on diagnosis of artificially created damages of rolling bearings of railway trains. Experimental results show that the proposed method has a superior performance in extracting fault features of defective train axle bearings. In addition, comparisons are performed with the kurtosis criterion based MMF and the spectral kurtosis criterion based MMF. The proposed feature selection based MMF method outperforms these two methods in detection of train axle bearing faults.

  3. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells

    NASA Astrophysics Data System (ADS)

    Giana, Fabián Eduardo; Bonetto, Fabián José; Bellotti, Mariela Inés

    2018-03-01

    In this work we present an assay to discriminate between normal and cancerous cells. The method is based on the measurement of electrical impedance spectra of in vitro cell cultures. We developed a protocol consisting on four consecutive measurement phases, each of them designed to obtain different information about the cell cultures. Through the analysis of the measured data, 26 characteristic features were obtained for both cell types. From the complete set of features, we selected the most relevant in terms of their discriminant capacity by means of conventional statistical tests. A linear discriminant analysis was then carried out on the selected features, allowing the classification of the samples in normal or cancerous with 4.5% of false positives and no false negatives.

  4. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells.

    PubMed

    Giana, Fabián Eduardo; Bonetto, Fabián José; Bellotti, Mariela Inés

    2018-03-01

    In this work we present an assay to discriminate between normal and cancerous cells. The method is based on the measurement of electrical impedance spectra of in vitro cell cultures. We developed a protocol consisting on four consecutive measurement phases, each of them designed to obtain different information about the cell cultures. Through the analysis of the measured data, 26 characteristic features were obtained for both cell types. From the complete set of features, we selected the most relevant in terms of their discriminant capacity by means of conventional statistical tests. A linear discriminant analysis was then carried out on the selected features, allowing the classification of the samples in normal or cancerous with 4.5% of false positives and no false negatives.

  5. Web-Enabled Distributed Health-Care Framework for Automated Malaria Parasite Classification: an E-Health Approach.

    PubMed

    Maity, Maitreya; Dhane, Dhiraj; Mungle, Tushar; Maiti, A K; Chakraborty, Chandan

    2017-10-26

    Web-enabled e-healthcare system or computer assisted disease diagnosis has a potential to improve the quality and service of conventional healthcare delivery approach. The article describes the design and development of a web-based distributed healthcare management system for medical information and quantitative evaluation of microscopic images using machine learning approach for malaria. In the proposed study, all the health-care centres are connected in a distributed computer network. Each peripheral centre manages its' own health-care service independently and communicates with the central server for remote assistance. The proposed methodology for automated evaluation of parasites includes pre-processing of blood smear microscopic images followed by erythrocytes segmentation. To differentiate between different parasites; a total of 138 quantitative features characterising colour, morphology, and texture are extracted from segmented erythrocytes. An integrated pattern classification framework is designed where four feature selection methods viz. Correlation-based Feature Selection (CFS), Chi-square, Information Gain, and RELIEF are employed with three different classifiers i.e. Naive Bayes', C4.5, and Instance-Based Learning (IB1) individually. Optimal features subset with the best classifier is selected for achieving maximum diagnostic precision. It is seen that the proposed method achieved with 99.2% sensitivity and 99.6% specificity by combining CFS and C4.5 in comparison with other methods. Moreover, the web-based tool is entirely designed using open standards like Java for a web application, ImageJ for image processing, and WEKA for data mining considering its feasibility in rural places with minimal health care facilities.

  6. The effect of visual salience on memory-based choices.

    PubMed

    Pooresmaeili, Arezoo; Bach, Dominik R; Dolan, Raymond J

    2014-02-01

    Deciding whether a stimulus is the "same" or "different" from a previous presented one involves integrating among the incoming sensory information, working memory, and perceptual decision making. Visual selective attention plays a crucial role in selecting the relevant information that informs a subsequent course of action. Previous studies have mainly investigated the role of visual attention during the encoding phase of working memory tasks. In this study, we investigate whether manipulation of bottom-up attention by changing stimulus visual salience impacts on later stages of memory-based decisions. In two experiments, we asked subjects to identify whether a stimulus had either the same or a different feature to that of a memorized sample. We manipulated visual salience of the test stimuli by varying a task-irrelevant feature contrast. Subjects chose a visually salient item more often when they looked for matching features and less often so when they looked for a nonmatch. This pattern of results indicates that salient items are more likely to be identified as a match. We interpret the findings in terms of capacity limitations at a comparison stage where a visually salient item is more likely to exhaust resources leading it to be prematurely parsed as a match.

  7. Integration trumps selection in object recognition.

    PubMed

    Saarela, Toni P; Landy, Michael S

    2015-03-30

    Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue invariance by responding to a given shape independent of the visual cue defining it [5-8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10, 11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11, 12], imaging [13-16], and single-cell and neural population recordings [17, 18]. Besides single features, attention can select whole objects [19-21]. Objects are among the suggested "units" of attention because attention to a single feature of an object causes the selection of all of its features [19-21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Integration trumps selection in object recognition

    PubMed Central

    Saarela, Toni P.; Landy, Michael S.

    2015-01-01

    Summary Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several “cues” (color, luminance, texture etc.), and humans can integrate sensory cues to improve detection and recognition [1–3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue-invariance by responding to a given shape independent of the visual cue defining it [5–8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10,11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11,12], imaging [13–16], and single-cell and neural population recordings [17,18]. Besides single features, attention can select whole objects [19–21]. Objects are among the suggested “units” of attention because attention to a single feature of an object causes the selection of all of its features [19–21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near-optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. PMID:25802154

  9. Dimensionality Reduction Through Classifier Ensembles

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)

    1999-01-01

    In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.

  10. Cancer survival classification using integrated data sets and intermediate information.

    PubMed

    Kim, Shinuk; Park, Taesung; Kon, Mark

    2014-09-01

    Although numerous studies related to cancer survival have been published, increasing the prediction accuracy of survival classes still remains a challenge. Integration of different data sets, such as microRNA (miRNA) and mRNA, might increase the accuracy of survival class prediction. Therefore, we suggested a machine learning (ML) approach to integrate different data sets, and developed a novel method based on feature selection with Cox proportional hazard regression model (FSCOX) to improve the prediction of cancer survival time. FSCOX provides us with intermediate survival information, which is usually discarded when separating survival into 2 groups (short- and long-term), and allows us to perform survival analysis. We used an ML-based protocol for feature selection, integrating information from miRNA and mRNA expression profiles at the feature level. To predict survival phenotypes, we used the following classifiers, first, existing ML methods, support vector machine (SVM) and random forest (RF), second, a new median-based classifier using FSCOX (FSCOX_median), and third, an SVM classifier using FSCOX (FSCOX_SVM). We compared these methods using 3 types of cancer tissue data sets: (i) miRNA expression, (ii) mRNA expression, and (iii) combined miRNA and mRNA expression. The latter data set included features selected either from the combined miRNA/mRNA profile or independently from miRNAs and mRNAs profiles (IFS). In the ovarian data set, the accuracy of survival classification using the combined miRNA/mRNA profiles with IFS was 75% using RF, 86.36% using SVM, 84.09% using FSCOX_median, and 88.64% using FSCOX_SVM with a balanced 22 short-term and 22 long-term survivor data set. These accuracies are higher than those using miRNA alone (70.45%, RF; 75%, SVM; 75%, FSCOX_median; and 75%, FSCOX_SVM) or mRNA alone (65.91%, RF; 63.64%, SVM; 72.73%, FSCOX_median; and 70.45%, FSCOX_SVM). Similarly in the glioblastoma multiforme data, the accuracy of miRNA/mRNA using IFS was 75.51% (RF), 87.76% (SVM) 85.71% (FSCOX_median), 85.71% (FSCOX_SVM). These results are higher than the results of using miRNA expression and mRNA expression alone. In addition we predict 16 hsa-miR-23b and hsa-miR-27b target genes in ovarian cancer data sets, obtained by SVM-based feature selection through integration of sequence information and gene expression profiles. Among the approaches used, the integrated miRNA and mRNA data set yielded better results than the individual data sets. The best performance was achieved using the FSCOX_SVM method with independent feature selection, which uses intermediate survival information between short-term and long-term survival time and the combination of the 2 different data sets. The results obtained using the combined data set suggest that there are some strong interactions between miRNA and mRNA features that are not detectable in the individual analyses. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Assessing the performance of multiple spectral-spatial features of a hyperspectral image for classification of urban land cover classes using support vector machines and artificial neural network

    NASA Astrophysics Data System (ADS)

    Pullanagari, Reddy; Kereszturi, Gábor; Yule, Ian J.; Ghamisi, Pedram

    2017-04-01

    Accurate and spatially detailed mapping of complex urban environments is essential for land managers. Classifying high spectral and spatial resolution hyperspectral images is a challenging task because of its data abundance and computational complexity. Approaches with a combination of spectral and spatial information in a single classification framework have attracted special attention because of their potential to improve the classification accuracy. We extracted multiple features from spectral and spatial domains of hyperspectral images and evaluated them with two supervised classification algorithms; support vector machines (SVM) and an artificial neural network. The spatial features considered are produced by a gray level co-occurrence matrix and extended multiattribute profiles. All of these features were stacked, and the most informative features were selected using a genetic algorithm-based SVM. After selecting the most informative features, the classification model was integrated with a segmentation map derived using a hidden Markov random field. We tested the proposed method on a real application of a hyperspectral image acquired from AisaFENIX and on widely used hyperspectral images. From the results, it can be concluded that the proposed framework significantly improves the results with different spectral and spatial resolutions over different instrumentation.

  12. Computer-aided diagnosis of melanoma using border and wavelet-based texture analysis.

    PubMed

    Garnavi, Rahil; Aldeen, Mohammad; Bailey, James

    2012-11-01

    This paper presents a novel computer-aided diagnosis system for melanoma. The novelty lies in the optimised selection and integration of features derived from textural, borderbased and geometrical properties of the melanoma lesion. The texture features are derived from using wavelet-decomposition, the border features are derived from constructing a boundaryseries model of the lesion border and analysing it in spatial and frequency domains, and the geometry features are derived from shape indexes. The optimised selection of features is achieved by using the Gain-Ratio method, which is shown to be computationally efficient for melanoma diagnosis application. Classification is done through the use of four classifiers; namely, Support Vector Machine, Random Forest, Logistic Model Tree and Hidden Naive Bayes. The proposed diagnostic system is applied on a set of 289 dermoscopy images (114 malignant, 175 benign) partitioned into train, validation and test image sets. The system achieves and accuracy of 91.26% and AUC value of 0.937, when 23 features are used. Other important findings include (i) the clear advantage gained in complementing texture with border and geometry features, compared to using texture information only, and (ii) higher contribution of texture features than border-based features in the optimised feature set.

  13. Wrapper-based selection of genetic features in genome-wide association studies through fast matrix operations

    PubMed Central

    2012-01-01

    Background Through the wealth of information contained within them, genome-wide association studies (GWAS) have the potential to provide researchers with a systematic means of associating genetic variants with a wide variety of disease phenotypes. Due to the limitations of approaches that have analyzed single variants one at a time, it has been proposed that the genetic basis of these disorders could be determined through detailed analysis of the genetic variants themselves and in conjunction with one another. The construction of models that account for these subsets of variants requires methodologies that generate predictions based on the total risk of a particular group of polymorphisms. However, due to the excessive number of variants, constructing these types of models has so far been computationally infeasible. Results We have implemented an algorithm, known as greedy RLS, that we use to perform the first known wrapper-based feature selection on the genome-wide level. The running time of greedy RLS grows linearly in the number of training examples, the number of features in the original data set, and the number of selected features. This speed is achieved through computational short-cuts based on matrix calculus. Since the memory consumption in present-day computers can form an even tighter bottleneck than running time, we also developed a space efficient variation of greedy RLS which trades running time for memory. These approaches are then compared to traditional wrapper-based feature selection implementations based on support vector machines (SVM) to reveal the relative speed-up and to assess the feasibility of the new algorithm. As a proof of concept, we apply greedy RLS to the Hypertension – UK National Blood Service WTCCC dataset and select the most predictive variants using 3-fold external cross-validation in less than 26 minutes on a high-end desktop. On this dataset, we also show that greedy RLS has a better classification performance on independent test data than a classifier trained using features selected by a statistical p-value-based filter, which is currently the most popular approach for constructing predictive models in GWAS. Conclusions Greedy RLS is the first known implementation of a machine learning based method with the capability to conduct a wrapper-based feature selection on an entire GWAS containing several thousand examples and over 400,000 variants. In our experiments, greedy RLS selected a highly predictive subset of genetic variants in a fraction of the time spent by wrapper-based selection methods used together with SVM classifiers. The proposed algorithms are freely available as part of the RLScore software library at http://users.utu.fi/aatapa/RLScore/. PMID:22551170

  14. An Automatic Prediction of Epileptic Seizures Using Cloud Computing and Wireless Sensor Networks.

    PubMed

    Sareen, Sanjay; Sood, Sandeep K; Gupta, Sunil Kumar

    2016-11-01

    Epilepsy is one of the most common neurological disorders which is characterized by the spontaneous and unforeseeable occurrence of seizures. An automatic prediction of seizure can protect the patients from accidents and save their life. In this article, we proposed a mobile-based framework that automatically predict seizures using the information contained in electroencephalography (EEG) signals. The wireless sensor technology is used to capture the EEG signals of patients. The cloud-based services are used to collect and analyze the EEG data from the patient's mobile phone. The features from the EEG signal are extracted using the fast Walsh-Hadamard transform (FWHT). The Higher Order Spectral Analysis (HOSA) is applied to FWHT coefficients in order to select the features set relevant to normal, preictal and ictal states of seizure. We subsequently exploit the selected features as input to a k-means classifier to detect epileptic seizure states in a reasonable time. The performance of the proposed model is tested on Amazon EC2 cloud and compared in terms of execution time and accuracy. The findings show that with selected HOS based features, we were able to achieve a classification accuracy of 94.6 %.

  15. Feature-Based Memory-Driven Attentional Capture: Visual Working Memory Content Affects Visual Attention

    ERIC Educational Resources Information Center

    Olivers, Christian N. L.; Meijer, Frank; Theeuwes, Jan

    2006-01-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by…

  16. Targeted Feature Detection for Data-Dependent Shotgun Proteomics

    PubMed Central

    2017-01-01

    Label-free quantification of shotgun LC–MS/MS data is the prevailing approach in quantitative proteomics but remains computationally nontrivial. The central data analysis step is the detection of peptide-specific signal patterns, called features. Peptide quantification is facilitated by associating signal intensities in features with peptide sequences derived from MS2 spectra; however, missing values due to imperfect feature detection are a common problem. A feature detection approach that directly targets identified peptides (minimizing missing values) but also offers robustness against false-positive features (by assigning meaningful confidence scores) would thus be highly desirable. We developed a new feature detection algorithm within the OpenMS software framework, leveraging ideas and algorithms from the OpenSWATH toolset for DIA/SRM data analysis. Our software, FeatureFinderIdentification (“FFId”), implements a targeted approach to feature detection based on information from identified peptides. This information is encoded in an MS1 assay library, based on which ion chromatogram extraction and detection of feature candidates are carried out. Significantly, when analyzing data from experiments comprising multiple samples, our approach distinguishes between “internal” and “external” (inferred) peptide identifications (IDs) for each sample. On the basis of internal IDs, two sets of positive (true) and negative (decoy) feature candidates are defined. A support vector machine (SVM) classifier is then trained to discriminate between the sets and is subsequently applied to the “uncertain” feature candidates from external IDs, facilitating selection and confidence scoring of the best feature candidate for each peptide. This approach also enables our algorithm to estimate the false discovery rate (FDR) of the feature selection step. We validated FFId based on a public benchmark data set, comprising a yeast cell lysate spiked with protein standards that provide a known ground-truth. The algorithm reached almost complete (>99%) quantification coverage for the full set of peptides identified at 1% FDR (PSM level). Compared with other software solutions for label-free quantification, this is an outstanding result, which was achieved at competitive quantification accuracy and reproducibility across replicates. The FDR for the feature selection was estimated at a low 1.5% on average per sample (3% for features inferred from external peptide IDs). The FFId software is open-source and freely available as part of OpenMS (www.openms.org). PMID:28673088

  17. Targeted Feature Detection for Data-Dependent Shotgun Proteomics.

    PubMed

    Weisser, Hendrik; Choudhary, Jyoti S

    2017-08-04

    Label-free quantification of shotgun LC-MS/MS data is the prevailing approach in quantitative proteomics but remains computationally nontrivial. The central data analysis step is the detection of peptide-specific signal patterns, called features. Peptide quantification is facilitated by associating signal intensities in features with peptide sequences derived from MS2 spectra; however, missing values due to imperfect feature detection are a common problem. A feature detection approach that directly targets identified peptides (minimizing missing values) but also offers robustness against false-positive features (by assigning meaningful confidence scores) would thus be highly desirable. We developed a new feature detection algorithm within the OpenMS software framework, leveraging ideas and algorithms from the OpenSWATH toolset for DIA/SRM data analysis. Our software, FeatureFinderIdentification ("FFId"), implements a targeted approach to feature detection based on information from identified peptides. This information is encoded in an MS1 assay library, based on which ion chromatogram extraction and detection of feature candidates are carried out. Significantly, when analyzing data from experiments comprising multiple samples, our approach distinguishes between "internal" and "external" (inferred) peptide identifications (IDs) for each sample. On the basis of internal IDs, two sets of positive (true) and negative (decoy) feature candidates are defined. A support vector machine (SVM) classifier is then trained to discriminate between the sets and is subsequently applied to the "uncertain" feature candidates from external IDs, facilitating selection and confidence scoring of the best feature candidate for each peptide. This approach also enables our algorithm to estimate the false discovery rate (FDR) of the feature selection step. We validated FFId based on a public benchmark data set, comprising a yeast cell lysate spiked with protein standards that provide a known ground-truth. The algorithm reached almost complete (>99%) quantification coverage for the full set of peptides identified at 1% FDR (PSM level). Compared with other software solutions for label-free quantification, this is an outstanding result, which was achieved at competitive quantification accuracy and reproducibility across replicates. The FDR for the feature selection was estimated at a low 1.5% on average per sample (3% for features inferred from external peptide IDs). The FFId software is open-source and freely available as part of OpenMS ( www.openms.org ).

  18. Detrended fluctuation analysis for major depressive disorder.

    PubMed

    Mumtaz, Wajid; Malik, Aamir Saeed; Ali, Syed Saad Azhar; Yasin, Mohd Azhar Mohd; Amin, Hafeezullah

    2015-01-01

    Clinical utility of Electroencephalography (EEG) based diagnostic studies is less clear for major depressive disorder (MDD). In this paper, a novel machine learning (ML) scheme was presented to discriminate the MDD patients and healthy controls. The proposed method inherently involved feature extraction, selection, classification and validation. The EEG data acquisition involved eyes closed (EC) and eyes open (EO) conditions. At feature extraction stage, the de-trended fluctuation analysis (DFA) was performed, based on the EEG data, to achieve scaling exponents. The DFA was performed to analyzes the presence or absence of long-range temporal correlations (LRTC) in the recorded EEG data. The scaling exponents were used as input features to our proposed system. At feature selection stage, 3 different techniques were used for comparison purposes. Logistic regression (LR) classifier was employed. The method was validated by a 10-fold cross-validation. As results, we have observed that the effect of 3 different reference montages on the computed features. The proposed method employed 3 different types of feature selection techniques for comparison purposes as well. The results show that the DFA analysis performed better in LE data compared with the IR and AR data. In addition, during Wilcoxon ranking, the AR performed better than LE and IR. Based on the results, it was concluded that the DFA provided useful information to discriminate the MDD patients and with further validation can be employed in clinics for diagnosis of MDD.

  19. Bearing diagnostics: A method based on differential geometry

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wang, Zili; Lu, Chen; Wang, Zhipeng

    2016-12-01

    The structures around bearings are complex, and the working environment is variable. These conditions cause the collected vibration signals to become nonlinear, non-stationary, and chaotic characteristics that make noise reduction, feature extraction, fault diagnosis, and health assessment significantly challenging. Thus, a set of differential geometry-based methods with superiorities in nonlinear analysis is presented in this study. For noise reduction, the Local Projection method is modified by both selecting the neighborhood radius based on empirical mode decomposition and determining noise subspace constrained by neighborhood distribution information. For feature extraction, Hessian locally linear embedding is introduced to acquire manifold features from the manifold topological structures, and singular values of eigenmatrices as well as several specific frequency amplitudes in spectrograms are extracted subsequently to reduce the complexity of the manifold features. For fault diagnosis, information geometry-based support vector machine is applied to classify the fault states. For health assessment, the manifold distance is employed to represent the health information; the Gaussian mixture model is utilized to calculate the confidence values, which directly reflect the health status. Case studies on Lorenz signals and vibration datasets of bearings demonstrate the effectiveness of the proposed methods.

  20. Advances in feature selection methods for hyperspectral image processing in food industry applications: a review.

    PubMed

    Dai, Qiong; Cheng, Jun-Hu; Sun, Da-Wen; Zeng, Xin-An

    2015-01-01

    There is an increased interest in the applications of hyperspectral imaging (HSI) for assessing food quality, safety, and authenticity. HSI provides abundance of spatial and spectral information from foods by combining both spectroscopy and imaging, resulting in hundreds of contiguous wavebands for each spatial position of food samples, also known as the curse of dimensionality. It is desirable to employ feature selection algorithms for decreasing computation burden and increasing predicting accuracy, which are especially relevant in the development of online applications. Recently, a variety of feature selection algorithms have been proposed that can be categorized into three groups based on the searching strategy namely complete search, heuristic search and random search. This review mainly introduced the fundamental of each algorithm, illustrated its applications in hyperspectral data analysis in the food field, and discussed the advantages and disadvantages of these algorithms. It is hoped that this review should provide a guideline for feature selections and data processing in the future development of hyperspectral imaging technique in foods.

  1. COMPENDEX/TEXT-PAC: RETROSPECTIVE SEARCH.

    ERIC Educational Resources Information Center

    Standera, Oldrich

    The Text-Pac System is capable of generating indexes and bulletins to provide a current information service without the selectivity feature. Indexes of the accumulated data base may also be used as a basis for manual retrospective searching. The manual search involves searching computer-prepared indexes from a machine readable data base produced…

  2. Feature weight estimation for gene selection: a local hyperlinear learning approach

    PubMed Central

    2014-01-01

    Background Modeling high-dimensional data involving thousands of variables is particularly important for gene expression profiling experiments, nevertheless,it remains a challenging task. One of the challenges is to implement an effective method for selecting a small set of relevant genes, buried in high-dimensional irrelevant noises. RELIEF is a popular and widely used approach for feature selection owing to its low computational cost and high accuracy. However, RELIEF based methods suffer from instability, especially in the presence of noisy and/or high-dimensional outliers. Results We propose an innovative feature weighting algorithm, called LHR, to select informative genes from highly noisy data. LHR is based on RELIEF for feature weighting using classical margin maximization. The key idea of LHR is to estimate the feature weights through local approximation rather than global measurement, which is typically used in existing methods. The weights obtained by our method are very robust in terms of degradation of noisy features, even those with vast dimensions. To demonstrate the performance of our method, extensive experiments involving classification tests have been carried out on both synthetic and real microarray benchmark datasets by combining the proposed technique with standard classifiers, including the support vector machine (SVM), k-nearest neighbor (KNN), hyperplane k-nearest neighbor (HKNN), linear discriminant analysis (LDA) and naive Bayes (NB). Conclusion Experiments on both synthetic and real-world datasets demonstrate the superior performance of the proposed feature selection method combined with supervised learning in three aspects: 1) high classification accuracy, 2) excellent robustness to noise and 3) good stability using to various classification algorithms. PMID:24625071

  3. Quantum-enhanced feature selection with forward selection and backward elimination

    NASA Astrophysics Data System (ADS)

    He, Zhimin; Li, Lvzhou; Huang, Zhiming; Situ, Haozhen

    2018-07-01

    Feature selection is a well-known preprocessing technique in machine learning, which can remove irrelevant features to improve the generalization capability of a classifier and reduce training and inference time. However, feature selection is time-consuming, particularly for the applications those have thousands of features, such as image retrieval, text mining and microarray data analysis. It is crucial to accelerate the feature selection process. We propose a quantum version of wrapper-based feature selection, which converts a classical feature selection to its quantum counterpart. It is valuable for machine learning on quantum computer. In this paper, we focus on two popular kinds of feature selection methods, i.e., wrapper-based forward selection and backward elimination. The proposed feature selection algorithm can quadratically accelerate the classical one.

  4. EHR based Genetic Testing Knowledge Base (iGTKB) Development

    PubMed Central

    2015-01-01

    Background The gap between a large growing number of genetic tests and a suboptimal clinical workflow of incorporating these tests into regular clinical practice poses barriers to effective reliance on advanced genetic technologies to improve quality of healthcare. A promising solution to fill this gap is to develop an intelligent genetic test recommendation system that not only can provide a comprehensive view of genetic tests as education resources, but also can recommend the most appropriate genetic tests to patients based on clinical evidence. In this study, we developed an EHR based Genetic Testing Knowledge Base for Individualized Medicine (iGTKB). Methods We extracted genetic testing information and patient medical records from EHR systems at Mayo Clinic. Clinical features have been semi-automatically annotated from the clinical notes by applying a Natural Language Processing (NLP) tool, MedTagger suite. To prioritize clinical features for each genetic test, we compared odds ratio across four population groups. Genetic tests, genetic disorders and clinical features with their odds ratios have been applied to establish iGTKB, which is to be integrated into the Genetic Testing Ontology (GTO). Results Overall, there are five genetic tests operated with sample size greater than 100 in 2013 at Mayo Clinic. A total of 1,450 patients who was tested by one of the five genetic tests have been selected. We assembled 243 clinical features from the Human Phenotype Ontology (HPO) for these five genetic tests. There are 60 clinical features with at least one mention in clinical notes of patients taking the test. Twenty-eight clinical features with high odds ratio (greater than 1) have been selected as dominant features and deposited into iGTKB with their associated information about genetic tests and genetic disorders. Conclusions In this study, we developed an EHR based genetic testing knowledge base, iGTKB. iGTKB will be integrated into the GTO by providing relevant clinical evidence, and ultimately to support development of genetic testing recommendation system, iGenetics. PMID:26606281

  5. EHR based Genetic Testing Knowledge Base (iGTKB) Development.

    PubMed

    Zhu, Qian; Liu, Hongfang; Chute, Christopher G; Ferber, Matthew

    2015-01-01

    The gap between a large growing number of genetic tests and a suboptimal clinical workflow of incorporating these tests into regular clinical practice poses barriers to effective reliance on advanced genetic technologies to improve quality of healthcare. A promising solution to fill this gap is to develop an intelligent genetic test recommendation system that not only can provide a comprehensive view of genetic tests as education resources, but also can recommend the most appropriate genetic tests to patients based on clinical evidence. In this study, we developed an EHR based Genetic Testing Knowledge Base for Individualized Medicine (iGTKB). We extracted genetic testing information and patient medical records from EHR systems at Mayo Clinic. Clinical features have been semi-automatically annotated from the clinical notes by applying a Natural Language Processing (NLP) tool, MedTagger suite. To prioritize clinical features for each genetic test, we compared odds ratio across four population groups. Genetic tests, genetic disorders and clinical features with their odds ratios have been applied to establish iGTKB, which is to be integrated into the Genetic Testing Ontology (GTO). Overall, there are five genetic tests operated with sample size greater than 100 in 2013 at Mayo Clinic. A total of 1,450 patients who was tested by one of the five genetic tests have been selected. We assembled 243 clinical features from the Human Phenotype Ontology (HPO) for these five genetic tests. There are 60 clinical features with at least one mention in clinical notes of patients taking the test. Twenty-eight clinical features with high odds ratio (greater than 1) have been selected as dominant features and deposited into iGTKB with their associated information about genetic tests and genetic disorders. In this study, we developed an EHR based genetic testing knowledge base, iGTKB. iGTKB will be integrated into the GTO by providing relevant clinical evidence, and ultimately to support development of genetic testing recommendation system, iGenetics.

  6. FSR: feature set reduction for scalable and accurate multi-class cancer subtype classification based on copy number.

    PubMed

    Wong, Gerard; Leckie, Christopher; Kowalczyk, Adam

    2012-01-15

    Feature selection is a key concept in machine learning for microarray datasets, where features represented by probesets are typically several orders of magnitude larger than the available sample size. Computational tractability is a key challenge for feature selection algorithms in handling very high-dimensional datasets beyond a hundred thousand features, such as in datasets produced on single nucleotide polymorphism microarrays. In this article, we present a novel feature set reduction approach that enables scalable feature selection on datasets with hundreds of thousands of features and beyond. Our approach enables more efficient handling of higher resolution datasets to achieve better disease subtype classification of samples for potentially more accurate diagnosis and prognosis, which allows clinicians to make more informed decisions in regards to patient treatment options. We applied our feature set reduction approach to several publicly available cancer single nucleotide polymorphism (SNP) array datasets and evaluated its performance in terms of its multiclass predictive classification accuracy over different cancer subtypes, its speedup in execution as well as its scalability with respect to sample size and array resolution. Feature Set Reduction (FSR) was able to reduce the dimensions of an SNP array dataset by more than two orders of magnitude while achieving at least equal, and in most cases superior predictive classification performance over that achieved on features selected by existing feature selection methods alone. An examination of the biological relevance of frequently selected features from FSR-reduced feature sets revealed strong enrichment in association with cancer. FSR was implemented in MATLAB R2010b and is available at http://ww2.cs.mu.oz.au/~gwong/FSR.

  7. Ensemble Feature Learning of Genomic Data Using Support Vector Machine

    PubMed Central

    Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R.; Braytee, Ali; Kennedy, Paul J.

    2016-01-01

    The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data. PMID:27304923

  8. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    PubMed

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  9. Developing a new case based computer-aided detection scheme and an adaptive cueing method to improve performance in detecting mammographic lesions

    PubMed Central

    Tan, Maxine; Aghaei, Faranak; Wang, Yunzhi; Zheng, Bin

    2017-01-01

    The purpose of this study is to evaluate a new method to improve performance of computer-aided detection (CAD) schemes of screening mammograms with two approaches. In the first approach, we developed a new case based CAD scheme using a set of optimally selected global mammographic density, texture, spiculation, and structural similarity features computed from all four full-field digital mammography (FFDM) images of the craniocaudal (CC) and mediolateral oblique (MLO) views by using a modified fast and accurate sequential floating forward selection feature selection algorithm. Selected features were then applied to a “scoring fusion” artificial neural network (ANN) classification scheme to produce a final case based risk score. In the second approach, we combined the case based risk score with the conventional lesion based scores of a conventional lesion based CAD scheme using a new adaptive cueing method that is integrated with the case based risk scores. We evaluated our methods using a ten-fold cross-validation scheme on 924 cases (476 cancer and 448 recalled or negative), whereby each case had all four images from the CC and MLO views. The area under the receiver operating characteristic curve was AUC = 0.793±0.015 and the odds ratio monotonically increased from 1 to 37.21 as CAD-generated case based detection scores increased. Using the new adaptive cueing method, the region based and case based sensitivities of the conventional CAD scheme at a false positive rate of 0.71 per image increased by 2.4% and 0.8%, respectively. The study demonstrated that supplementary information can be derived by computing global mammographic density image features to improve CAD-cueing performance on the suspicious mammographic lesions. PMID:27997380

  10. Natural image statistics and low-complexity feature selection.

    PubMed

    Vasconcelos, Manuela; Vasconcelos, Nuno

    2009-02-01

    Low-complexity feature selection is analyzed in the context of visual recognition. It is hypothesized that high-order dependences of bandpass features contain little information for discrimination of natural images. This hypothesis is characterized formally by the introduction of the concepts of conjunctive interference and decomposability order of a feature set. Necessary and sufficient conditions for the feasibility of low-complexity feature selection are then derived in terms of these concepts. It is shown that the intrinsic complexity of feature selection is determined by the decomposability order of the feature set and not its dimension. Feature selection algorithms are then derived for all levels of complexity and are shown to be approximated by existing information-theoretic methods, which they consistently outperform. The new algorithms are also used to objectively test the hypothesis of low decomposability order through comparison of classification performance. It is shown that, for image classification, the gain of modeling feature dependencies has strongly diminishing returns: best results are obtained under the assumption of decomposability order 1. This suggests a generic law for bandpass features extracted from natural images: that the effect, on the dependence of any two features, of observing any other feature is constant across image classes.

  11. Automated system for characterization and classification of malaria-infected stages using light microscopic images of thin blood smears.

    PubMed

    Das, D K; Maiti, A K; Chakraborty, C

    2015-03-01

    In this paper, we propose a comprehensive image characterization cum classification framework for malaria-infected stage detection using microscopic images of thin blood smears. The methodology mainly includes microscopic imaging of Leishman stained blood slides, noise reduction and illumination correction, erythrocyte segmentation, feature selection followed by machine classification. Amongst three-image segmentation algorithms (namely, rule-based, Chan-Vese-based and marker-controlled watershed methods), marker-controlled watershed technique provides better boundary detection of erythrocytes specially in overlapping situations. Microscopic features at intensity, texture and morphology levels are extracted to discriminate infected and noninfected erythrocytes. In order to achieve subgroup of potential features, feature selection techniques, namely, F-statistic and information gain criteria are considered here for ranking. Finally, five different classifiers, namely, Naive Bayes, multilayer perceptron neural network, logistic regression, classification and regression tree (CART), RBF neural network have been trained and tested by 888 erythrocytes (infected and noninfected) for each features' subset. Performance evaluation of the proposed methodology shows that multilayer perceptron network provides higher accuracy for malaria-infected erythrocytes recognition and infected stage classification. Results show that top 90 features ranked by F-statistic (specificity: 98.64%, sensitivity: 100%, PPV: 99.73% and overall accuracy: 96.84%) and top 60 features ranked by information gain provides better results (specificity: 97.29%, sensitivity: 100%, PPV: 99.46% and overall accuracy: 96.73%) for malaria-infected stage classification. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  12. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    NASA Astrophysics Data System (ADS)

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods.

  13. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    PubMed Central

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods. PMID:28120883

  14. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties

    PubMed Central

    2011-01-01

    Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der Waals volume, pK (pK-C, pK-N, pK-COOH and pK-a(RCOOH)), etc. Conclusions The proposed approach Auto-IDPCPs would help designers to investigate informative physicochemical and biochemical properties by considering both prediction accuracy and analysis of binding mechanism simultaneously. The approach Auto-IDPCPs can be also applicable to predict and analyze other protein functions from sequences. PMID:21342579

  15. Development of a fuzzy logic expert system for pile selection. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulshafer, M.L.

    1989-01-01

    This thesis documents the development of prototype expert system for pile selection for use on microcomputers. It concerns the initial selection of a pile foundation taking into account the parameters such as soil condition, pile length, loading scenario, material availability, contractor experience, and noise or vibration constraints. The prototype expert system called Pile Selection, version 1 (PS1) was developed using an expert system shell FLOPS. FLOPS is a shell based on the AI language OPS5 with many unique features. The system PS1 utilizes all of these unique features. Among the features used are approximate reasoning with fuzzy set theory, themore » blackboard architecture, and the emulated parallel processing of fuzzy production rules. A comprehensive review of the parameters used in selecting a pile was made, and the effects of the uncertainties associated with the vagueness of these parameters was examined in detail. Fuzzy set theory was utilized to deal with such uncertainties and provides the basis for developing a method for determining the best possible choice of piles for a given situation. Details of the development of PS1, including documenting and collating pile information for use in the expert knowledge data bases, are discussed.« less

  16. Activity in human visual and parietal cortex reveals object-based attention in working memory.

    PubMed

    Peters, Benjamin; Kaiser, Jochen; Rahm, Benjamin; Bledowski, Christoph

    2015-02-25

    Visual attention enables observers to select behaviorally relevant information based on spatial locations, features, or objects. Attentional selection is not limited to physically present visual information, but can also operate on internal representations maintained in working memory (WM) in service of higher-order cognition. However, only little is known about whether attention to WM contents follows the same principles as attention to sensory stimuli. To address this question, we investigated in humans whether the typically observed effects of object-based attention in perception are also evident for object-based attentional selection of internal object representations in WM. In full accordance with effects in visual perception, the key behavioral and neuronal characteristics of object-based attention were observed in WM. Specifically, we found that reaction times were shorter when shifting attention to memory positions located on the currently attended object compared with equidistant positions on a different object. Furthermore, functional magnetic resonance imaging and multivariate pattern analysis of visuotopic activity in visual (areas V1-V4) and parietal cortex revealed that directing attention to one position of an object held in WM also enhanced brain activation for other positions on the same object, suggesting that attentional selection in WM activates the entire object. This study demonstrated that all characteristic features of object-based attention are present in WM and thus follows the same principles as in perception. Copyright © 2015 the authors 0270-6474/15/353360-10$15.00/0.

  17. Hyperspectral image classification based on local binary patterns and PCANet

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Gao, Feng; Dong, Junyu; Yang, Yang

    2018-04-01

    Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern (LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the effectiveness of the proposed method.

  18. Autonomous mental development with selective attention, object perception, and knowledge representation

    NASA Astrophysics Data System (ADS)

    Ban, Sang-Woo; Lee, Minho

    2008-04-01

    Knowledge-based clustering and autonomous mental development remains a high priority research topic, among which the learning techniques of neural networks are used to achieve optimal performance. In this paper, we present a new framework that can automatically generate a relevance map from sensory data that can represent knowledge regarding objects and infer new knowledge about novel objects. The proposed model is based on understating of the visual what pathway in our brain. A stereo saliency map model can selectively decide salient object areas by additionally considering local symmetry feature. The incremental object perception model makes clusters for the construction of an ontology map in the color and form domains in order to perceive an arbitrary object, which is implemented by the growing fuzzy topology adaptive resonant theory (GFTART) network. Log-polar transformed color and form features for a selected object are used as inputs of the GFTART. The clustered information is relevant to describe specific objects, and the proposed model can automatically infer an unknown object by using the learned information. Experimental results with real data have demonstrated the validity of this approach.

  19. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    PubMed Central

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  20. Selecting for memory? The influence of selective attention on the mnemonic binding of contextual information

    PubMed Central

    Uncapher, Melina R.; Rugg, Michael D.

    2009-01-01

    Not all of what is experienced is remembered later. Behavioral evidence suggests that the manner in which an event is processed influences which aspects of the event will later be remembered. The present experiment investigated the neural correlates of ‘selective encoding’, or the mechanisms that support the encoding of some elements of an event in preference to others. Event-related functional magnetic resonance imaging (fMRI) data were acquired while volunteers selectively attended to one of two different contextual features of study items (color or location). A surprise memory test for the items and both contextual features was subsequently administered to determine the influence of selective attention on the neural correlates of contextual encoding. Activity in several cortical regions indexed later memory success selectively for color or location information, and this encoding-related activity was enhanced by selective attention to the relevant feature. Critically, a region in the hippocampus responded selectively to attended source information (whether color or location), demonstrating encoding-related activity for attended but not for nonattended source features. Together, the findings suggest that selective attention modulates the magnitude of activity in cortical regions engaged by different aspects of an event, and hippocampal encoding mechanisms seem to be sensitive to this modulation. Thus, the information that is encoded into a memory representation is biased by selective attention, and this bias is mediated by cortico-hippocampal interactions. PMID:19553466

  1. Selecting for memory? The influence of selective attention on the mnemonic binding of contextual information.

    PubMed

    Uncapher, Melina R; Rugg, Michael D

    2009-06-24

    Not all of what is experienced is remembered later. Behavioral evidence suggests that the manner in which an event is processed influences which aspects of the event will later be remembered. The present experiment investigated the neural correlates of "selective encoding," or the mechanisms that support the encoding of some elements of an event in preference to others. Event-related MRI data were acquired while volunteers selectively attended to one of two different contextual features of study items (color or location). A surprise memory test for the items and both contextual features was subsequently administered to determine the influence of selective attention on the neural correlates of contextual encoding. Activity in several cortical regions indexed later memory success selectively for color or location information, and this encoding-related activity was enhanced by selective attention to the relevant feature. Critically, a region in the hippocampus responded selectively to attended source information (whether color or location), demonstrating encoding-related activity for attended but not for nonattended source features. Together, the findings suggest that selective attention modulates the magnitude of activity in cortical regions engaged by different aspects of an event, and hippocampal encoding mechanisms seem to be sensitive to this modulation. Thus, the information that is encoded into a memory representation is biased by selective attention, and this bias is mediated by cortical-hippocampal interactions.

  2. Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.

    PubMed

    Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao

    2015-04-01

    Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Stabilizing l1-norm prediction models by supervised feature grouping.

    PubMed

    Kamkar, Iman; Gupta, Sunil Kumar; Phung, Dinh; Venkatesh, Svetha

    2016-02-01

    Emerging Electronic Medical Records (EMRs) have reformed the modern healthcare. These records have great potential to be used for building clinical prediction models. However, a problem in using them is their high dimensionality. Since a lot of information may not be relevant for prediction, the underlying complexity of the prediction models may not be high. A popular way to deal with this problem is to employ feature selection. Lasso and l1-norm based feature selection methods have shown promising results. But, in presence of correlated features, these methods select features that change considerably with small changes in data. This prevents clinicians to obtain a stable feature set, which is crucial for clinical decision making. Grouping correlated variables together can improve the stability of feature selection, however, such grouping is usually not known and needs to be estimated for optimal performance. Addressing this problem, we propose a new model that can simultaneously learn the grouping of correlated features and perform stable feature selection. We formulate the model as a constrained optimization problem and provide an efficient solution with guaranteed convergence. Our experiments with both synthetic and real-world datasets show that the proposed model is significantly more stable than Lasso and many existing state-of-the-art shrinkage and classification methods. We further show that in terms of prediction performance, the proposed method consistently outperforms Lasso and other baselines. Our model can be used for selecting stable risk factors for a variety of healthcare problems, so it can assist clinicians toward accurate decision making. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Feasibility of feature-based indexing, clustering, and search of clinical trials: A case study of breast cancer trials from ClinicalTrials.gov

    PubMed Central

    Boland, Mary Regina; Miotto, Riccardo; Gao, Junfeng; Weng, Chunhua

    2013-01-01

    Summary Background When standard therapies fail, clinical trials provide experimental treatment opportunities for patients with drug-resistant illnesses or terminal diseases. Clinical Trials can also provide free treatment and education for individuals who otherwise may not have access to such care. To find relevant clinical trials, patients often search online; however, they often encounter a significant barrier due to the large number of trials and in-effective indexing methods for reducing the trial search space. Objectives This study explores the feasibility of feature-based indexing, clustering, and search of clinical trials and informs designs to automate these processes. Methods We decomposed 80 randomly selected stage III breast cancer clinical trials into a vector of eligibility features, which were organized into a hierarchy. We clustered trials based on their eligibility feature similarities. In a simulated search process, manually selected features were used to generate specific eligibility questions to filter trials iteratively. Results We extracted 1,437 distinct eligibility features and achieved an inter-rater agreement of 0.73 for feature extraction for 37 frequent features occurring in more than 20 trials. Using all the 1,437 features we stratified the 80 trials into six clusters containing trials recruiting similar patients by patient-characteristic features, five clusters by disease-characteristic features, and two clusters by mixed features. Most of the features were mapped to one or more Unified Medical Language System (UMLS) concepts, demonstrating the utility of named entity recognition prior to mapping with the UMLS for automatic feature extraction. Conclusions It is feasible to develop feature-based indexing and clustering methods for clinical trials to identify trials with similar target populations and to improve trial search efficiency. PMID:23666475

  5. Feasibility of feature-based indexing, clustering, and search of clinical trials. A case study of breast cancer trials from ClinicalTrials.gov.

    PubMed

    Boland, M R; Miotto, R; Gao, J; Weng, C

    2013-01-01

    When standard therapies fail, clinical trials provide experimental treatment opportunities for patients with drug-resistant illnesses or terminal diseases. Clinical Trials can also provide free treatment and education for individuals who otherwise may not have access to such care. To find relevant clinical trials, patients often search online; however, they often encounter a significant barrier due to the large number of trials and in-effective indexing methods for reducing the trial search space. This study explores the feasibility of feature-based indexing, clustering, and search of clinical trials and informs designs to automate these processes. We decomposed 80 randomly selected stage III breast cancer clinical trials into a vector of eligibility features, which were organized into a hierarchy. We clustered trials based on their eligibility feature similarities. In a simulated search process, manually selected features were used to generate specific eligibility questions to filter trials iteratively. We extracted 1,437 distinct eligibility features and achieved an inter-rater agreement of 0.73 for feature extraction for 37 frequent features occurring in more than 20 trials. Using all the 1,437 features we stratified the 80 trials into six clusters containing trials recruiting similar patients by patient-characteristic features, five clusters by disease-characteristic features, and two clusters by mixed features. Most of the features were mapped to one or more Unified Medical Language System (UMLS) concepts, demonstrating the utility of named entity recognition prior to mapping with the UMLS for automatic feature extraction. It is feasible to develop feature-based indexing and clustering methods for clinical trials to identify trials with similar target populations and to improve trial search efficiency.

  6. Cross-Service Investigation of Geographical Information Systems

    DTIC Science & Technology

    2004-03-01

    Figure 8 illustrates the combined layers. Information for the layers is stored in a database format. The two types of storage are vector and...raster models. In a vector model, the image and information are stored as geometric objects such as points, lines, or polygons. In a raster model...DNCs are a vector -based digital database with selected maritime significant physical features from hydrographic charts. Layers within the DNC are data

  7. A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer’s Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    An, Le; Adeli, Ehsan; Liu, Mingxia; Zhang, Jun; Lee, Seong-Whan; Shen, Dinggang

    2017-03-01

    Classification is one of the most important tasks in machine learning. Due to feature redundancy or outliers in samples, using all available data for training a classifier may be suboptimal. For example, the Alzheimer’s disease (AD) is correlated with certain brain regions or single nucleotide polymorphisms (SNPs), and identification of relevant features is critical for computer-aided diagnosis. Many existing methods first select features from structural magnetic resonance imaging (MRI) or SNPs and then use those features to build the classifier. However, with the presence of many redundant features, the most discriminative features are difficult to be identified in a single step. Thus, we formulate a hierarchical feature and sample selection framework to gradually select informative features and discard ambiguous samples in multiple steps for improved classifier learning. To positively guide the data manifold preservation process, we utilize both labeled and unlabeled data during training, making our method semi-supervised. For validation, we conduct experiments on AD diagnosis by selecting mutually informative features from both MRI and SNP, and using the most discriminative samples for training. The superior classification results demonstrate the effectiveness of our approach, as compared with the rivals.

  8. [Lithology feature extraction of CASI hyperspectral data based on fractal signal algorithm].

    PubMed

    Tang, Chao; Chen, Jian-Ping; Cui, Jing; Wen, Bo-Tao

    2014-05-01

    Hyperspectral data is characterized by combination of image and spectrum and large data volume dimension reduction is the main research direction. Band selection and feature extraction is the primary method used for this objective. In the present article, the authors tested methods applied for the lithology feature extraction from hyperspectral data. Based on the self-similarity of hyperspectral data, the authors explored the application of fractal algorithm to lithology feature extraction from CASI hyperspectral data. The "carpet method" was corrected and then applied to calculate the fractal value of every pixel in the hyperspectral data. The results show that fractal information highlights the exposed bedrock lithology better than the original hyperspectral data The fractal signal and characterized scale are influenced by the spectral curve shape, the initial scale selection and iteration step. At present, research on the fractal signal of spectral curve is rare, implying the necessity of further quantitative analysis and investigation of its physical implications.

  9. The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.

    PubMed

    Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli

    2009-11-18

    We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.

  10. Differential evolution enhanced with multiobjective sorting-based mutation operators.

    PubMed

    Wang, Jiahai; Liao, Jianjun; Zhou, Ying; Cai, Yiqiao

    2014-12-01

    Differential evolution (DE) is a simple and powerful population-based evolutionary algorithm. The salient feature of DE lies in its mutation mechanism. Generally, the parents in the mutation operator of DE are randomly selected from the population. Hence, all vectors are equally likely to be selected as parents without selective pressure at all. Additionally, the diversity information is always ignored. In order to fully exploit the fitness and diversity information of the population, this paper presents a DE framework with multiobjective sorting-based mutation operator. In the proposed mutation operator, individuals in the current population are firstly sorted according to their fitness and diversity contribution by nondominated sorting. Then parents in the mutation operators are proportionally selected according to their rankings based on fitness and diversity, thus, the promising individuals with better fitness and diversity have more opportunity to be selected as parents. Since fitness and diversity information is simultaneously considered for parent selection, a good balance between exploration and exploitation can be achieved. The proposed operator is applied to original DE algorithms, as well as several advanced DE variants. Experimental results on 48 benchmark functions and 12 real-world application problems show that the proposed operator is an effective approach to enhance the performance of most DE algorithms studied.

  11. Comparison of Genetic Algorithm, Particle Swarm Optimization and Biogeography-based Optimization for Feature Selection to Classify Clusters of Microcalcifications

    NASA Astrophysics Data System (ADS)

    Khehra, Baljit Singh; Pharwaha, Amar Partap Singh

    2017-04-01

    Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.

  12. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition.

    PubMed

    Zhang, Yifan; Gao, Xunzhang; Peng, Xuan; Ye, Jiaqi; Li, Xiang

    2018-05-16

    The High Resolution Range Profile (HRRP) recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR). However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM) is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  13. Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI

    NASA Astrophysics Data System (ADS)

    Niaf, Emilie; Rouvière, Olivier; Mège-Lechevallier, Florence; Bratan, Flavie; Lartizien, Carole

    2012-06-01

    This study evaluated a computer-assisted diagnosis (CADx) system for determining a likelihood measure of prostate cancer presence in the peripheral zone (PZ) based on multiparametric magnetic resonance (MR) imaging, including T2-weighted, diffusion-weighted and dynamic contrast-enhanced MRI at 1.5 T. Based on a feature set derived from grey-level images, including first-order statistics, Haralick features, gradient features, semi-quantitative and quantitative (pharmacokinetic modelling) dynamic parameters, four kinds of classifiers were trained and compared : nonlinear support vector machine (SVM), linear discriminant analysis, k-nearest neighbours and naïve Bayes classifiers. A set of feature selection methods based on t-test, mutual information and minimum-redundancy-maximum-relevancy criteria were also compared. The aim was to discriminate between the relevant features as well as to create an efficient classifier using these features. The diagnostic performances of these different CADx schemes were evaluated based on a receiver operating characteristic (ROC) curve analysis. The evaluation database consisted of 30 sets of multiparametric MR images acquired from radical prostatectomy patients. Using histologic sections as the gold standard, both cancer and nonmalignant (but suspicious) tissues were annotated in consensus on all MR images by two radiologists, a histopathologist and a researcher. Benign tissue regions of interest (ROIs) were also delineated in the remaining prostate PZ. This resulted in a series of 42 cancer ROIs, 49 benign but suspicious ROIs and 124 nonsuspicious benign ROIs. From the outputs of all evaluated feature selection methods on the test bench, a restrictive set of about 15 highly informative features coming from all MR sequences was discriminated, thus confirming the validity of the multiparametric approach. Quantitative evaluation of the diagnostic performance yielded a maximal area under the ROC curve (AUC) of 0.89 (0.81-0.94) for the discrimination of the malignant versus nonmalignant tissues and 0.82 (0.73-0.90) for the discrimination of the malignant versus suspicious tissues when combining the t-test feature selection approach with a SVM classifier. A preliminary comparison showed that the optimal CADx scheme mimicked, in terms of AUC, the human experts in differentiating malignant from suspicious tissues, thus demonstrating its potential for assisting cancer identification in the PZ.

  14. Low-Complexity Discriminative Feature Selection From EEG Before and After Short-Term Memory Task.

    PubMed

    Behzadfar, Neda; Firoozabadi, S Mohammad P; Badie, Kambiz

    2016-10-01

    A reliable and unobtrusive quantification of changes in cortical activity during short-term memory task can be used to evaluate the efficacy of interfaces and to provide real-time user-state information. In this article, we investigate changes in electroencephalogram signals in short-term memory with respect to the baseline activity. The electroencephalogram signals have been analyzed using 9 linear and nonlinear/dynamic measures. We applied statistical Wilcoxon examination and Davis-Bouldian criterion to select optimal discriminative features. The results show that among the features, the permutation entropy significantly increased in frontal lobe and the occipital second lower alpha band activity decreased during memory task. These 2 features reflect the same mental task; however, their correlation with memory task varies in different intervals. In conclusion, it is suggested that the combination of the 2 features would improve the performance of memory based neurofeedback systems. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  15. The role of similarity in updating numerical information in working memory: decomposing the numerical distance effect.

    PubMed

    Lendínez, Cristina; Pelegrina, Santiago; Lechuga, M Teresa

    2014-01-01

    The present study investigates the process of updating representations in working memory (WM) and how similarity between the information involved influences this process. In WM updating tasks, the similarity in terms of numerical distance between the number to be substituted and the new one facilitates the updating process. We aimed to disentangle the possible effect of two dimensions of similarity that may contribute to this numerical effect: numerical distance itself and common digits shared between the numbers involved. Three experiments were conducted in which different ranges of distances and the coincidence between the digits of the two numbers involved in updating were manipulated. Results showed that the two dimensions of similarity had an effect on updating times. The greater the similarity between the information maintained in memory and the new information that substituted it, the faster the updating. This is consistent both with the idea of distributed representations based on features, and with a selective updating process based on a feature overwriting mechanism. Thus, updating in WM can be understood as a selective substitution process influenced by similarity in which only certain parts of the representation stored in memory are changed.

  16. Image steganalysis using Artificial Bee Colony algorithm

    NASA Astrophysics Data System (ADS)

    Sajedi, Hedieh

    2017-09-01

    Steganography is the science of secure communication where the presence of the communication cannot be detected while steganalysis is the art of discovering the existence of the secret communication. Processing a huge amount of information takes extensive execution time and computational sources most of the time. As a result, it is needed to employ a phase of preprocessing, which can moderate the execution time and computational sources. In this paper, we propose a new feature-based blind steganalysis method for detecting stego images from the cover (clean) images with JPEG format. In this regard, we present a feature selection technique based on an improved Artificial Bee Colony (ABC). ABC algorithm is inspired by honeybees' social behaviour in their search for perfect food sources. In the proposed method, classifier performance and the dimension of the selected feature vector depend on using wrapper-based methods. The experiments are performed using two large data-sets of JPEG images. Experimental results demonstrate the effectiveness of the proposed steganalysis technique compared to the other existing techniques.

  17. Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform.

    PubMed

    Barbosa, Daniel J C; Ramos, Jaime; Lima, Carlos S

    2008-01-01

    Capsule endoscopy is an important tool to diagnose tumor lesions in the small bowel. The capsule endoscopic images possess vital information expressed by color and texture. This paper presents an approach based in the textural analysis of the different color channels, using the wavelet transform to select the bands with the most significant texture information. A new image is then synthesized from the selected wavelet bands, trough the inverse wavelet transform. The features of each image are based on second-order textural information, and they are used in a classification scheme using a multilayer perceptron neural network. The proposed methodology has been applied in real data taken from capsule endoscopic exams and reached 98.7% sensibility and 96.6% specificity. These results support the feasibility of the proposed algorithm.

  18. Max-AUC Feature Selection in Computer-Aided Detection of Polyps in CT Colonography

    PubMed Central

    Xu, Jian-Wu; Suzuki, Kenji

    2014-01-01

    We propose a feature selection method based on a sequential forward floating selection (SFFS) procedure to improve the performance of a classifier in computerized detection of polyps in CT colonography (CTC). The feature selection method is coupled with a nonlinear support vector machine (SVM) classifier. Unlike the conventional linear method based on Wilks' lambda, the proposed method selected the most relevant features that would maximize the area under the receiver operating characteristic curve (AUC), which directly maximizes classification performance, evaluated based on AUC value, in the computer-aided detection (CADe) scheme. We presented two variants of the proposed method with different stopping criteria used in the SFFS procedure. The first variant searched all feature combinations allowed in the SFFS procedure and selected the subsets that maximize the AUC values. The second variant performed a statistical test at each step during the SFFS procedure, and it was terminated if the increase in the AUC value was not statistically significant. The advantage of the second variant is its lower computational cost. To test the performance of the proposed method, we compared it against the popular stepwise feature selection method based on Wilks' lambda for a colonic-polyp database (25 polyps and 2624 nonpolyps). We extracted 75 morphologic, gray-level-based, and texture features from the segmented lesion candidate regions. The two variants of the proposed feature selection method chose 29 and 7 features, respectively. Two SVM classifiers trained with these selected features yielded a 96% by-polyp sensitivity at false-positive (FP) rates of 4.1 and 6.5 per patient, respectively. Experiments showed a significant improvement in the performance of the classifier with the proposed feature selection method over that with the popular stepwise feature selection based on Wilks' lambda that yielded 18.0 FPs per patient at the same sensitivity level. PMID:24608058

  19. Max-AUC feature selection in computer-aided detection of polyps in CT colonography.

    PubMed

    Xu, Jian-Wu; Suzuki, Kenji

    2014-03-01

    We propose a feature selection method based on a sequential forward floating selection (SFFS) procedure to improve the performance of a classifier in computerized detection of polyps in CT colonography (CTC). The feature selection method is coupled with a nonlinear support vector machine (SVM) classifier. Unlike the conventional linear method based on Wilks' lambda, the proposed method selected the most relevant features that would maximize the area under the receiver operating characteristic curve (AUC), which directly maximizes classification performance, evaluated based on AUC value, in the computer-aided detection (CADe) scheme. We presented two variants of the proposed method with different stopping criteria used in the SFFS procedure. The first variant searched all feature combinations allowed in the SFFS procedure and selected the subsets that maximize the AUC values. The second variant performed a statistical test at each step during the SFFS procedure, and it was terminated if the increase in the AUC value was not statistically significant. The advantage of the second variant is its lower computational cost. To test the performance of the proposed method, we compared it against the popular stepwise feature selection method based on Wilks' lambda for a colonic-polyp database (25 polyps and 2624 nonpolyps). We extracted 75 morphologic, gray-level-based, and texture features from the segmented lesion candidate regions. The two variants of the proposed feature selection method chose 29 and 7 features, respectively. Two SVM classifiers trained with these selected features yielded a 96% by-polyp sensitivity at false-positive (FP) rates of 4.1 and 6.5 per patient, respectively. Experiments showed a significant improvement in the performance of the classifier with the proposed feature selection method over that with the popular stepwise feature selection based on Wilks' lambda that yielded 18.0 FPs per patient at the same sensitivity level.

  20. Event-related brain potentials and cognitive processes related to perceptual-motor information transmission.

    PubMed

    Kopp, Bruno; Wessel, Karl

    2010-05-01

    In the present study, event-related potentials (ERPs) were recorded to investigate cognitive processes related to the partial transmission of information from stimulus recognition to response preparation. Participants classified two-dimensional visual stimuli with dimensions size and form. One feature combination was designated as the go-target, whereas the other three feature combinations served as no-go distractors. Size discriminability was manipulated across three experimental conditions. N2c and P3a amplitudes were enhanced in response to those distractors that shared the feature from the faster dimension with the target. Moreover, N2c and P3a amplitudes showed a crossover effect: Size distractors evoked more pronounced ERPs under high size discriminability, but form distractors elicited enhanced ERPs under low size discriminability. These results suggest that partial perceptual-motor transmission of information is accompanied by acts of cognitive control and by shifts of attention between the sources of conflicting information. Selection negativity findings imply adaptive allocation of visual feature-based attention across the two stimulus dimensions.

  1. A novel feature ranking method for prediction of cancer stages using proteomics data

    PubMed Central

    Saghapour, Ehsan; Sehhati, Mohammadreza

    2017-01-01

    Proteomic analysis of cancers' stages has provided new opportunities for the development of novel, highly sensitive diagnostic tools which helps early detection of cancer. This paper introduces a new feature ranking approach called FRMT. FRMT is based on the Technique for Order of Preference by Similarity to Ideal Solution method (TOPSIS) which select the most discriminative proteins from proteomics data for cancer staging. In this approach, outcomes of 10 feature selection techniques were combined by TOPSIS method, to select the final discriminative proteins from seven different proteomic databases of protein expression profiles. In the proposed workflow, feature selection methods and protein expressions have been considered as criteria and alternatives in TOPSIS, respectively. The proposed method is tested on seven various classifier models in a 10-fold cross validation procedure that repeated 30 times on the seven cancer datasets. The obtained results proved the higher stability and superior classification performance of method in comparison with other methods, and it is less sensitive to the applied classifier. Moreover, the final introduced proteins are informative and have the potential for application in the real medical practice. PMID:28934234

  2. Feature Selection for Nonstationary Data: Application to Human Recognition Using Medical Biometrics.

    PubMed

    Komeili, Majid; Louis, Wael; Armanfard, Narges; Hatzinakos, Dimitrios

    2018-05-01

    Electrocardiogram (ECG) and transient evoked otoacoustic emission (TEOAE) are among the physiological signals that have attracted significant interest in biometric community due to their inherent robustness to replay and falsification attacks. However, they are time-dependent signals and this makes them hard to deal with in across-session human recognition scenario where only one session is available for enrollment. This paper presents a novel feature selection method to address this issue. It is based on an auxiliary dataset with multiple sessions where it selects a subset of features that are more persistent across different sessions. It uses local information in terms of sample margins while enforcing an across-session measure. This makes it a perfect fit for aforementioned biometric recognition problem. Comprehensive experiments on ECG and TEOAE variability due to time lapse and body posture are done. Performance of the proposed method is compared against seven state-of-the-art feature selection algorithms as well as another six approaches in the area of ECG and TEOAE biometric recognition. Experimental results demonstrate that the proposed method performs noticeably better than other algorithms.

  3. Attention improves encoding of task-relevant features in the human visual cortex

    PubMed Central

    Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank

    2011-01-01

    When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942

  4. Attention improves encoding of task-relevant features in the human visual cortex.

    PubMed

    Jehee, Janneke F M; Brady, Devin K; Tong, Frank

    2011-06-01

    When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.

  5. Classification of clinically useful sentences in clinical evidence resources.

    PubMed

    Morid, Mohammad Amin; Fiszman, Marcelo; Raja, Kalpana; Jonnalagadda, Siddhartha R; Del Fiol, Guilherme

    2016-04-01

    Most patient care questions raised by clinicians can be answered by online clinical knowledge resources. However, important barriers still challenge the use of these resources at the point of care. To design and assess a method for extracting clinically useful sentences from synthesized online clinical resources that represent the most clinically useful information for directly answering clinicians' information needs. We developed a Kernel-based Bayesian Network classification model based on different domain-specific feature types extracted from sentences in a gold standard composed of 18 UpToDate documents. These features included UMLS concepts and their semantic groups, semantic predications extracted by SemRep, patient population identified by a pattern-based natural language processing (NLP) algorithm, and cue words extracted by a feature selection technique. Algorithm performance was measured in terms of precision, recall, and F-measure. The feature-rich approach yielded an F-measure of 74% versus 37% for a feature co-occurrence method (p<0.001). Excluding predication, population, semantic concept or text-based features reduced the F-measure to 62%, 66%, 58% and 69% respectively (p<0.01). The classifier applied to Medline sentences reached an F-measure of 73%, which is equivalent to the performance of the classifier on UpToDate sentences (p=0.62). The feature-rich approach significantly outperformed general baseline methods. This approach significantly outperformed classifiers based on a single type of feature. Different types of semantic features provided a unique contribution to overall classification performance. The classifier's model and features used for UpToDate generalized well to Medline abstracts. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. High-order graph matching based feature selection for Alzheimer's disease identification.

    PubMed

    Liu, Feng; Suk, Heung-Il; Wee, Chong-Yaw; Chen, Huafu; Shen, Dinggang

    2013-01-01

    One of the main limitations of l1-norm feature selection is that it focuses on estimating the target vector for each sample individually without considering relations with other samples. However, it's believed that the geometrical relation among target vectors in the training set may provide useful information, and it would be natural to expect that the predicted vectors have similar geometric relations as the target vectors. To overcome these limitations, we formulate this as a graph-matching feature selection problem between a predicted graph and a target graph. In the predicted graph a node is represented by predicted vector that may describe regional gray matter volume or cortical thickness features, and in the target graph a node is represented by target vector that include class label and clinical scores. In particular, we devise new regularization terms in sparse representation to impose high-order graph matching between the target vectors and the predicted ones. Finally, the selected regional gray matter volume and cortical thickness features are fused in kernel space for classification. Using the ADNI dataset, we evaluate the effectiveness of the proposed method and obtain the accuracies of 92.17% and 81.57% in AD and MCI classification, respectively.

  7. Dynamic adaptive learning for decision-making supporting systems

    NASA Astrophysics Data System (ADS)

    He, Haibo; Cao, Yuan; Chen, Sheng; Desai, Sachi; Hohil, Myron E.

    2008-03-01

    This paper proposes a novel adaptive learning method for data mining in support of decision-making systems. Due to the inherent characteristics of information ambiguity/uncertainty, high dimensionality and noisy in many homeland security and defense applications, such as surveillances, monitoring, net-centric battlefield, and others, it is critical to develop autonomous learning methods to efficiently learn useful information from raw data to help the decision making process. The proposed method is based on a dynamic learning principle in the feature spaces. Generally speaking, conventional approaches of learning from high dimensional data sets include various feature extraction (principal component analysis, wavelet transform, and others) and feature selection (embedded approach, wrapper approach, filter approach, and others) methods. However, very limited understandings of adaptive learning from different feature spaces have been achieved. We propose an integrative approach that takes advantages of feature selection and hypothesis ensemble techniques to achieve our goal. Based on the training data distributions, a feature score function is used to provide a measurement of the importance of different features for learning purpose. Then multiple hypotheses are iteratively developed in different feature spaces according to their learning capabilities. Unlike the pre-set iteration steps in many of the existing ensemble learning approaches, such as adaptive boosting (AdaBoost) method, the iterative learning process will automatically stop when the intelligent system can not provide a better understanding than a random guess in that particular subset of feature spaces. Finally, a voting algorithm is used to combine all the decisions from different hypotheses to provide the final prediction results. Simulation analyses of the proposed method on classification of different US military aircraft databases show the effectiveness of this method.

  8. Gene/protein name recognition based on support vector machine using dictionary as features.

    PubMed

    Mitsumori, Tomohiro; Fation, Sevrani; Murata, Masaki; Doi, Kouichi; Doi, Hirohumi

    2005-01-01

    Automated information extraction from biomedical literature is important because a vast amount of biomedical literature has been published. Recognition of the biomedical named entities is the first step in information extraction. We developed an automated recognition system based on the SVM algorithm and evaluated it in Task 1.A of BioCreAtIvE, a competition for automated gene/protein name recognition. In the work presented here, our recognition system uses the feature set of the word, the part-of-speech (POS), the orthography, the prefix, the suffix, and the preceding class. We call these features "internal resource features", i.e., features that can be found in the training data. Additionally, we consider the features of matching against dictionaries to be external resource features. We investigated and evaluated the effect of these features as well as the effect of tuning the parameters of the SVM algorithm. We found that the dictionary matching features contributed slightly to the improvement in the performance of the f-score. We attribute this to the possibility that the dictionary matching features might overlap with other features in the current multiple feature setting. During SVM learning, each feature alone had a marginally positive effect on system performance. This supports the fact that the SVM algorithm is robust on the high dimensionality of the feature vector space and means that feature selection is not required.

  9. Rough sets and Laplacian score based cost-sensitive feature selection

    PubMed Central

    Yu, Shenglong

    2018-01-01

    Cost-sensitive feature selection learning is an important preprocessing step in machine learning and data mining. Recently, most existing cost-sensitive feature selection algorithms are heuristic algorithms, which evaluate the importance of each feature individually and select features one by one. Obviously, these algorithms do not consider the relationship among features. In this paper, we propose a new algorithm for minimal cost feature selection called the rough sets and Laplacian score based cost-sensitive feature selection. The importance of each feature is evaluated by both rough sets and Laplacian score. Compared with heuristic algorithms, the proposed algorithm takes into consideration the relationship among features with locality preservation of Laplacian score. We select a feature subset with maximal feature importance and minimal cost when cost is undertaken in parallel, where the cost is given by three different distributions to simulate different applications. Different from existing cost-sensitive feature selection algorithms, our algorithm simultaneously selects out a predetermined number of “good” features. Extensive experimental results show that the approach is efficient and able to effectively obtain the minimum cost subset. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms. PMID:29912884

  10. Rough sets and Laplacian score based cost-sensitive feature selection.

    PubMed

    Yu, Shenglong; Zhao, Hong

    2018-01-01

    Cost-sensitive feature selection learning is an important preprocessing step in machine learning and data mining. Recently, most existing cost-sensitive feature selection algorithms are heuristic algorithms, which evaluate the importance of each feature individually and select features one by one. Obviously, these algorithms do not consider the relationship among features. In this paper, we propose a new algorithm for minimal cost feature selection called the rough sets and Laplacian score based cost-sensitive feature selection. The importance of each feature is evaluated by both rough sets and Laplacian score. Compared with heuristic algorithms, the proposed algorithm takes into consideration the relationship among features with locality preservation of Laplacian score. We select a feature subset with maximal feature importance and minimal cost when cost is undertaken in parallel, where the cost is given by three different distributions to simulate different applications. Different from existing cost-sensitive feature selection algorithms, our algorithm simultaneously selects out a predetermined number of "good" features. Extensive experimental results show that the approach is efficient and able to effectively obtain the minimum cost subset. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms.

  11. Toward a clarification of the taxonomy of "bias" in epidemiology textbooks.

    PubMed

    Schwartz, Sharon; Campbell, Ulka B; Gatto, Nicolle M; Gordon, Kirsha

    2015-03-01

    Epidemiology textbooks typically divide biases into 3 general categories-confounding, selection bias, and information bias. Despite the ubiquity of this categorization, authors often use these terms to mean different things. This hinders communication among epidemiologists and confuses students who are just learning about the field. To understand the sources of this problem, we reviewed current general epidemiology textbooks to examine how the authors defined and categorized biases. We found that much of the confusion arises from different definitions of "validity" and from a mixing of 3 overlapping organizational features in defining and differentiating among confounding, selection bias, and information bias: consequence, the result of the problem; cause, the processes that give rise to the problem; and cure, how these biases can be addressed once they occur. By contrast, a consistent taxonomy would provide (1) a clear and consistent definition of what unites confounding, selection bias, and information bias and (2) a clear articulation and consistent application of the feature that distinguishes these categories. Based on a distillation of these textbook discussions, we provide an example of a taxonomy that we think meets these criteria.

  12. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.

    PubMed

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.

  13. Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model

    PubMed Central

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726

  14. Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaojia; Mao Qirong; Zhan Yongzhao

    There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions.more » The experiments show that this method can improve the recognition rate and the time of feature extraction.« less

  15. Systematic review of the information and communication technology features of web- and mobile-based psychoeducational interventions for depression.

    PubMed

    Zhao, Danyang; Lustria, Mia Liza A; Hendrickse, Joshua

    2017-06-01

    To examine the information and communication technology (ICT) features of psychoeducational interventions for depression delivered via the Internet or via mobile technology. Web- and mobile-based psychoeducational intervention studies published from 2004 to 2014 were selected and reviewed by two independent coders. A total of 55 unique studies satisfied the selection criteria. The review revealed a diverse range of ICTs used to support the psychoeducational programs. Most interventions used websites as their main mode of delivery and reported greater use of communication tools compared to effective approaches like tailoring or interactive technologies games, videos, and self-monitoring tools. Many of the studies relied on medium levels of clinician involvement and only a few were entirely self-guided. Programs that reported higher levels of clinician involvement also reported using more communication tools, and reported greater compliance to treatment. Future experimental studies may help unpack the effects of technology features and reveal new ways to automate aspects of clinician input. There is a need to further examine ways ICTs can be optimized to reduce the burden on clinicians whilst enhancing the delivery of proven effective therapeutic approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Influence maximization based on partial network structure information: A comparative analysis on seed selection heuristics

    NASA Astrophysics Data System (ADS)

    Erkol, Şirag; Yücel, Gönenç

    In this study, the problem of seed selection is investigated. This problem is mainly treated as an optimization problem, which is proved to be NP-hard. There are several heuristic approaches in the literature which mostly use algorithmic heuristics. These approaches mainly focus on the trade-off between computational complexity and accuracy. Although the accuracy of algorithmic heuristics are high, they also have high computational complexity. Furthermore, in the literature, it is generally assumed that complete information on the structure and features of a network is available, which is not the case in most of the times. For the study, a simulation model is constructed, which is capable of creating networks, performing seed selection heuristics, and simulating diffusion models. Novel metric-based seed selection heuristics that rely only on partial information are proposed and tested using the simulation model. These heuristics use local information available from nodes in the synthetically created networks. The performances of heuristics are comparatively analyzed on three different network types. The results clearly show that the performance of a heuristic depends on the structure of a network. A heuristic to be used should be selected after investigating the properties of the network at hand. More importantly, the approach of partial information provided promising results. In certain cases, selection heuristics that rely only on partial network information perform very close to similar heuristics that require complete network data.

  17. An oil film information retrieval method overcoming the influence of sun glitter, based on AISA+ airborne hyper-spectral image

    NASA Astrophysics Data System (ADS)

    Zhan, Yuanzeng; Mao, Tianming; Gong, Fang; Wang, Difeng; Chen, Jianyu

    2010-10-01

    As an effective survey tool for oil spill detection, the airborne hyper-spectral sensor affords the potentiality for retrieving the quantitative information of oil slick which is useful for the cleanup of spilled oil. But many airborne hyper-spectral images are affected by sun glitter which distorts radiance values and spectral ratios used for oil slick detection. In 2005, there's an oil spill event leaking at oil drilling platform in The South China Sea, and an AISA+ airborne hyper-spectral image recorded this event will be selected for studying in this paper, which is affected by sun glitter terribly. Through a spectrum analysis of the oil and water samples, two features -- "spectral rotation" and "a pair of fixed points" can be found in spectral curves between crude oil film and water. Base on these features, an oil film information retrieval method which can overcome the influence of sun glitter is presented. Firstly, the radiance of the image is converted to normal apparent reflectance (NormAR). Then, based on the features of "spectral rotation" (used for distinguishing oil film and water) and "a pair of fixed points" (used for overcoming the effect of sun glitter), NormAR894/NormAR516 is selected as an indicator of oil film. Finally, by using a threshold combined with the technologies of image filter and mathematic morphology, the distribution and relative thickness of oil film are retrieved.

  18. A Novel Feature Extraction Method with Feature Selection to Identify Golgi-Resident Protein Types from Imbalanced Data

    PubMed Central

    Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina

    2016-01-01

    The Golgi Apparatus (GA) is a major collection and dispatch station for numerous proteins destined for secretion, plasma membranes and lysosomes. The dysfunction of GA proteins can result in neurodegenerative diseases. Therefore, accurate identification of protein subGolgi localizations may assist in drug development and understanding the mechanisms of the GA involved in various cellular processes. In this paper, a new computational method is proposed for identifying cis-Golgi proteins from trans-Golgi proteins. Based on the concept of Common Spatial Patterns (CSP), a novel feature extraction technique is developed to extract evolutionary information from protein sequences. To deal with the imbalanced benchmark dataset, the Synthetic Minority Over-sampling Technique (SMOTE) is adopted. A feature selection method called Random Forest-Recursive Feature Elimination (RF-RFE) is employed to search the optimal features from the CSP based features and g-gap dipeptide composition. Based on the optimal features, a Random Forest (RF) module is used to distinguish cis-Golgi proteins from trans-Golgi proteins. Through the jackknife cross-validation, the proposed method achieves a promising performance with a sensitivity of 0.889, a specificity of 0.880, an accuracy of 0.885, and a Matthew’s Correlation Coefficient (MCC) of 0.765, which remarkably outperforms previous methods. Moreover, when tested on a common independent dataset, our method also achieves a significantly improved performance. These results highlight the promising performance of the proposed method to identify Golgi-resident protein types. Furthermore, the CSP based feature extraction method may provide guidelines for protein function predictions. PMID:26861308

  19. A rapid extraction of landslide disaster information research based on GF-1 image

    NASA Astrophysics Data System (ADS)

    Wang, Sai; Xu, Suning; Peng, Ling; Wang, Zhiyi; Wang, Na

    2015-08-01

    In recent years, the landslide disasters occurred frequently because of the seismic activity. It brings great harm to people's life. It has caused high attention of the state and the extensive concern of society. In the field of geological disaster, landslide information extraction based on remote sensing has been controversial, but high resolution remote sensing image can improve the accuracy of information extraction effectively with its rich texture and geometry information. Therefore, it is feasible to extract the information of earthquake- triggered landslides with serious surface damage and large scale. Taking the Wenchuan county as the study area, this paper uses multi-scale segmentation method to extract the landslide image object through domestic GF-1 images and DEM data, which uses the estimation of scale parameter tool to determine the optimal segmentation scale; After analyzing the characteristics of landslide high-resolution image comprehensively and selecting spectrum feature, texture feature, geometric features and landform characteristics of the image, we can establish the extracting rules to extract landslide disaster information. The extraction results show that there are 20 landslide whose total area is 521279.31 .Compared with visual interpretation results, the extraction accuracy is 72.22%. This study indicates its efficient and feasible to extract earthquake landslide disaster information based on high resolution remote sensing and it provides important technical support for post-disaster emergency investigation and disaster assessment.

  20. An ensemble learning system for a 4-way classification of Alzheimer's disease and mild cognitive impairment.

    PubMed

    Yao, Dongren; Calhoun, Vince D; Fu, Zening; Du, Yuhui; Sui, Jing

    2018-05-15

    Discriminating Alzheimer's disease (AD) from its prodromal form, mild cognitive impairment (MCI), is a significant clinical problem that may facilitate early diagnosis and intervention, in which a more challenging issue is to classify MCI subtypes, i.e., those who eventually convert to AD (cMCI) versus those who do not (MCI). To solve this difficult 4-way classification problem (AD, MCI, cMCI and healthy controls), a competition was hosted by Kaggle to invite the scientific community to apply their machine learning approaches on pre-processed sets of T1-weighted magnetic resonance images (MRI) data and the demographic information from the international Alzheimer's disease neuroimaging initiative (ADNI) database. This paper summarizes our competition results. We first proposed a hierarchical process by turning the 4-way classification into five binary classification problems. A new feature selection technology based on relative importance was also proposed, aiming to identify a more informative and concise subset from 426 sMRI morphometric and 3 demographic features, to ensure each binary classifier to achieve its highest accuracy. As a result, about 2% of the original features were selected to build a new feature space, which can achieve the final four-way classification with a 54.38% accuracy on testing data through hierarchical grouping, higher than several alternative methods in comparison. More importantly, the selected discriminative features such as hippocampal volume, parahippocampal surface area, and medial orbitofrontal thickness, etc. as well as the MMSE score, are reasonable and consistent with those reported in AD/MCI deficits. In summary, the proposed method provides a new framework for multi-way classification using hierarchical grouping and precise feature selection. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Sentiment analysis of feature ranking methods for classification accuracy

    NASA Astrophysics Data System (ADS)

    Joseph, Shashank; Mugauri, Calvin; Sumathy, S.

    2017-11-01

    Text pre-processing and feature selection are important and critical steps in text mining. Text pre-processing of large volumes of datasets is a difficult task as unstructured raw data is converted into structured format. Traditional methods of processing and weighing took much time and were less accurate. To overcome this challenge, feature ranking techniques have been devised. A feature set from text preprocessing is fed as input for feature selection. Feature selection helps improve text classification accuracy. Of the three feature selection categories available, the filter category will be the focus. Five feature ranking methods namely: document frequency, standard deviation information gain, CHI-SQUARE, and weighted-log likelihood -ratio is analyzed.

  2. GeneRIF indexing: sentence selection based on machine learning.

    PubMed

    Jimeno-Yepes, Antonio J; Sticco, J Caitlin; Mork, James G; Aronson, Alan R

    2013-05-31

    A Gene Reference Into Function (GeneRIF) describes novel functionality of genes. GeneRIFs are available from the National Center for Biotechnology Information (NCBI) Gene database. GeneRIF indexing is performed manually, and the intention of our work is to provide methods to support creating the GeneRIF entries. The creation of GeneRIF entries involves the identification of the genes mentioned in MEDLINE®; citations and the sentences describing a novel function. We have compared several learning algorithms and several features extracted or derived from MEDLINE sentences to determine if a sentence should be selected for GeneRIF indexing. Features are derived from the sentences or using mechanisms to augment the information provided by them: assigning a discourse label using a previously trained model, for example. We show that machine learning approaches with specific feature combinations achieve results close to one of the annotators. We have evaluated different feature sets and learning algorithms. In particular, Naïve Bayes achieves better performance with a selection of features similar to one used in related work, which considers the location of the sentence, the discourse of the sentence and the functional terminology in it. The current performance is at a level similar to human annotation and it shows that machine learning can be used to automate the task of sentence selection for GeneRIF annotation. The current experiments are limited to the human species. We would like to see how the methodology can be extended to other species, specifically the normalization of gene mentions in other species.

  3. Feature selection method based on multi-fractal dimension and harmony search algorithm and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Ni, Zhiwei; Ni, Liping; Tang, Na

    2016-10-01

    Feature selection is an important method of data preprocessing in data mining. In this paper, a novel feature selection method based on multi-fractal dimension and harmony search algorithm is proposed. Multi-fractal dimension is adopted as the evaluation criterion of feature subset, which can determine the number of selected features. An improved harmony search algorithm is used as the search strategy to improve the efficiency of feature selection. The performance of the proposed method is compared with that of other feature selection algorithms on UCI data-sets. Besides, the proposed method is also used to predict the daily average concentration of PM2.5 in China. Experimental results show that the proposed method can obtain competitive results in terms of both prediction accuracy and the number of selected features.

  4. Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval.

    PubMed

    Rahman, Md Mahmudur; Antani, Sameer K; Demner-Fushman, Dina; Thoma, George R

    2015-10-01

    This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.

  5. Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval

    PubMed Central

    Rahman, Md. Mahmudur; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.

    2015-01-01

    Abstract. This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term “concept” refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature. PMID:26730398

  6. A systematic approach to prioritize drug targets using machine learning, a molecular descriptor-based classification model, and high-throughput screening of plant derived molecules: a case study in oral cancer.

    PubMed

    Randhawa, Vinay; Kumar Singh, Anil; Acharya, Vishal

    2015-12-01

    Systems-biology inspired identification of drug targets and machine learning-based screening of small molecules which modulate their activity have the potential to revolutionize modern drug discovery by complementing conventional methods. To utilize the effectiveness of such pipelines, we first analyzed the dysregulated gene pairs between control and tumor samples and then implemented an ensemble-based feature selection approach to prioritize targets in oral squamous cell carcinoma (OSCC) for therapeutic exploration. Based on the structural information of known inhibitors of CXCR4-one of the best targets identified in this study-a feature selection was implemented for the identification of optimal structural features (molecular descriptor) based on which a classification model was generated. Furthermore, the CXCR4-centered descriptor-based classification model was finally utilized to screen a repository of plant derived small-molecules to obtain potential inhibitors. The application of our methodology may assist effective selection of the best targets which may have previously been overlooked, that in turn will lead to the development of new oral cancer medications. The small molecules identified in this study can be ideal candidates for trials as potential novel anti-oral cancer agents. Importantly, distinct steps of this whole study may provide reference for the analysis of other complex human diseases.

  7. Spectral characteristics and feature selection of satellite remote sensing data for climate and anthropogenic changes assessment in Bucharest area

    NASA Astrophysics Data System (ADS)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan; Tautan, Marina; Miclos, Sorin; Cristescu, Luminita; Carstea, Elfrida; Baschir, Laurentiu

    2010-05-01

    Urban systems play a vital role in social and economic development in all countries. Their environmental changes can be investigated on different spatial and temporal scales. Urban and peri-urban environment dynamics is of great interest for future planning and decision making as well as in frame of local and regional changes. Changes in urban land cover include changes in biotic diversity, actual and potential primary productivity, soil quality, runoff, and sedimentation rates, and cannot be well understood without the knowledge of land use change that drives them. The study focuses on the assessment of environmental features changes for Bucharest metropolitan area, Romania by satellite remote sensing and in-situ monitoring data. Rational feature selection from the varieties of spectral channels in the optical wavelengths of electromagnetic spectrum (VIS and NIR) is very important for effective analysis and information extraction of remote sensing data. Based on comprehensively analyses of the spectral characteristics of remote sensing data is possibly to derive environmental changes in urban areas. The information quantity contained in a band is an important parameter in evaluating the band. The deviation and entropy are often used to show information amount. Feature selection is one of the most important steps in recognition and classification of remote sensing images. Therefore, it is necessary to select features before classification. The optimal features are those that can be used to distinguish objects easily and correctly. Three factors—the information quantity of bands, the correlation between bands and the spectral characteristic (e.g. absorption specialty) of classified objects in test area Bucharest have been considered in our study. As, the spectral characteristic of an object is influenced by many factors, being difficult to define optimal feature parameters to distinguish all the objects in a whole area, a method of multi-level feature selection was suggested. On the basis of analyzing the information quantity of bands, correlation between different bands, spectral absorption characteristics of objects and object separability in bands, a fundamental method of optimum band selection and feature extraction from remote sensing data was discussed. Spectral signatures of different terrain features have been used to extract structural patterns aiming to separate surface units and to classify the general categories. The synergetic analysis and interpretation of the different satellite images (LANDSAT: TM, ETM; MODIS, IKONOS) acquired over a period of more than 20 years reveals significant aspects regarding impacts of climate and anthropogenic changes on urban/periurban environment. It was delimited residential zones of industrial zones which are very often a source of pollution. An important role has urban green cover assessment. Have been emphasized the particularities of the functional zones from different points of view: architectural, streets and urban surface traffic, some components of urban infrastructure as well as habitat quality. The growth of Bucharest urban area in Romania has been a result of a rapid process of industrialization, and also of the increase of urban population. Information on the spatial pattern and temporal dynamics of land cover and land use of urban areas is critical to address a wide range of practical problems relating to urban regeneration, urban sustainability and rational planning policy.

  8. Aquatic toxicity information retrieval data base (AQUIRE for non-vms) (1600 bpi). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of AQUIRE is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. During 1992 and early 1993, nine data updates were made to the AQUIRE system. AQUIRE now contains 109,338 individual aquatic toxicity test results for 5,159 chemicals, 2,429 organisms, and over 160 endpoints reviewed from 7,517 publications. New features include a data selection option that permits searches that are restricted to data added or modified through any of the eight most recent updates, and a report generation (Full Record Detail) that displays the entire AQUIRE record for each testmore » identified in a search. Selection of the Full Record Detail feature allows the user to peruse all AQUIRE fields for a given test, including the information stored in the remarks section, while the standard AQUIRE output format presents selected data fields in a concise table. The standard report remains an available option for rapid viewing of system output.« less

  9. Aquatic toxicity information retrieval data base (AQUIRE for non-vms) (6250 bpi). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of AQUIRE is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. During 1992 and early 1993, nine data updates were made to the AQUIRE system. AQUIRE now contains 109,338 individual aquatic toxicity test results for 5,159 chemicals, 2,429 organisms, and over 160 endpoints reviewed from 7,517 publications. New features include a data selection option that permits searches that are restricted to data added or modified through any of the eight most recent updates, and a report generation (Full Record Detail) that displays the entire AQUIRE record for each testmore » identified in a search. Selection of the Full Record Detail feature allows the user to peruse all AQUIRE fields for a given test, including the information stored in the remarks section, while the standard AQUIRE output format presents selected data fields in a concise table. The standard report remains an available option for rapid viewing of system output.« less

  10. The effect of feature selection methods on computer-aided detection of masses in mammograms

    NASA Astrophysics Data System (ADS)

    Hupse, Rianne; Karssemeijer, Nico

    2010-05-01

    In computer-aided diagnosis (CAD) research, feature selection methods are often used to improve generalization performance of classifiers and shorten computation times. In an application that detects malignant masses in mammograms, we investigated the effect of using a selection criterion that is similar to the final performance measure we are optimizing, namely the mean sensitivity of the system in a predefined range of the free-response receiver operating characteristics (FROC). To obtain the generalization performance of the selected feature subsets, a cross validation procedure was performed on a dataset containing 351 abnormal and 7879 normal regions, each region providing a set of 71 mass features. The same number of noise features, not containing any information, were added to investigate the ability of the feature selection algorithms to distinguish between useful and non-useful features. It was found that significantly higher performances were obtained using feature sets selected by the general test statistic Wilks' lambda than using feature sets selected by the more specific FROC measure. Feature selection leads to better performance when compared to a system in which all features were used.

  11. Multivariate analysis of full-term neonatal polysomnographic data.

    PubMed

    Gerla, V; Paul, K; Lhotska, L; Krajca, V

    2009-01-01

    Polysomnography (PSG) is one of the most important noninvasive methods for studying maturation of the child brain. Sleep in infants is significantly different from sleep in adults. This paper addresses the problem of computer analysis of neonatal polygraphic signals. We applied methods designed for differentiating three important neonatal behavioral states: quiet sleep, active sleep, and wakefulness. The proportion of these states is a significant indicator of the maturity of the newborn brain in clinical practice. In this study, we used data provided by the Institute for Care of Mother and Child, Prague (12 newborn infants of similar postconceptional age). The data were scored by an experienced physician to four states (wake, quiet sleep, active sleep, movement artifact). For accurate classification, it was necessary to determine the most informative features. We used a method based on power spectral density (PSD) applied to each EEG channel. We also used features derived from electrooculogram (EOG), electromyogram (EMG), ECG, and respiration [pneumogram (PNG)] signals. The most informative feature was the measure of regularity of respiration from the PNG signal. We designed an algorithm for interpreting these characteristics. This algorithm was based on Markov models. The results of automatic detection of sleep states were compared to the "sleep profiles" determined visually. We evaluated both the success rate and the true positive rate of the classification, and statistically significant agreement of the two scorings was found. Two variants, for learning and for testing, were applied, namely learning from the data of all 12 newborns and tenfold cross-validation, and learning from the data of 11 newborns and testing on the data from the 12th newborn. We utilized information obtained from several biological signals (EEG, ECG, PNG, EMG, EOG) for our final classification. We reached the final success rate of 82.5%. The true positive rate was 81.8% and the false positive rate was 6.1%. The most important step in the whole process is feature extraction and feature selection. In this process, we used visualization as an additional tool that helped us to decide which features to select. Proper selection of features may significantly influence the success rate of the classification. We made a visual comparison of the computed features with the manual scoring provided by the expert. A hidden Markov model was used for classification. The advantage of this model is that it determines the future behavior of the process by its present state. In this way, it preserves information about temporal development.

  12. Sex determination based on a thoracic vertebra and ribs evaluation using clinical chest radiography.

    PubMed

    Tsubaki, Shun; Morishita, Junji; Usumoto, Yosuke; Sakaguchi, Kyoko; Matsunobu, Yusuke; Kawazoe, Yusuke; Okumura, Miki; Ikeda, Noriaki

    2017-07-01

    Our aim was to investigate whether sex can be determined from a combination of geometric features obtained from the 10th thoracic vertebra, 6th rib, and 7th rib. Six hundred chest radiographs (300 males and 300 females) were randomly selected to include patients of six age groups (20s, 30s, 40s, 50s, 60s, and 70s). Each group included 100 images (50 males and 50 females). A total of 14 features, including 7 lengths, 5 indices for the vertebra, and 2 types of widths for ribs, were utilized and analyzed for sex determination. Dominant features contributing to sex determination were selected by stepwise discriminant analysis after checking the variance inflation factors for multicollinearity. The accuracy of sex determination using a combination of the vertebra and ribs was evaluated from the selected features by the stepwise discriminant analysis. The accuracies in each age group were also evaluated in this study. The accuracy of sex determination based on a combination of features of the vertebra and ribs was 88.8% (533/600). This performance was superior to that of the vertebra or ribs only. Moreover, sex determination of subjects in their 20s demonstrated the highest accuracy (96.0%, 96/100). The features selected in the stepwise discriminant analysis included some features in both the vertebra and ribs. These results indicate the usefulness of combined information obtained from the vertebra and ribs for sex determination. We conclude that a combination of geometric characteristics obtained from the vertebra and ribs could be useful for determining sex. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Efficient and sparse feature selection for biomedical text classification via the elastic net: Application to ICU risk stratification from nursing notes.

    PubMed

    Marafino, Ben J; Boscardin, W John; Dudley, R Adams

    2015-04-01

    Sparsity is often a desirable property of statistical models, and various feature selection methods exist so as to yield sparser and interpretable models. However, their application to biomedical text classification, particularly to mortality risk stratification among intensive care unit (ICU) patients, has not been thoroughly studied. To develop and characterize sparse classifiers based on the free text of nursing notes in order to predict ICU mortality risk and to discover text features most strongly associated with mortality. We selected nursing notes from the first 24h of ICU admission for 25,826 adult ICU patients from the MIMIC-II database. We then developed a pair of stochastic gradient descent-based classifiers with elastic-net regularization. We also studied the performance-sparsity tradeoffs of both classifiers as their regularization parameters were varied. The best-performing classifier achieved a 10-fold cross-validated AUC of 0.897 under the log loss function and full L2 regularization, while full L1 regularization used just 0.00025% of candidate input features and resulted in an AUC of 0.889. Using the log loss (range of AUCs 0.889-0.897) yielded better performance compared to the hinge loss (0.850-0.876), but the latter yielded even sparser models. Most features selected by both classifiers appear clinically relevant and correspond to predictors already present in existing ICU mortality models. The sparser classifiers were also able to discover a number of informative - albeit nonclinical - features. The elastic-net-regularized classifiers perform reasonably well and are capable of reducing the number of features required by over a thousandfold, with only a modest impact on performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. An online sleep apnea detection method based on recurrence quantification analysis.

    PubMed

    Nguyen, Hoa Dinh; Wilkins, Brek A; Cheng, Qi; Benjamin, Bruce Allen

    2014-07-01

    This paper introduces an online sleep apnea detection method based on heart rate complexity as measured by recurrence quantification analysis (RQA) statistics of heart rate variability (HRV) data. RQA statistics can capture nonlinear dynamics of a complex cardiorespiratory system during obstructive sleep apnea. In order to obtain a more robust measurement of the nonstationarity of the cardiorespiratory system, we use different fixed amount of neighbor thresholdings for recurrence plot calculation. We integrate a feature selection algorithm based on conditional mutual information to select the most informative RQA features for classification, and hence, to speed up the real-time classification process without degrading the performance of the system. Two types of binary classifiers, i.e., support vector machine and neural network, are used to differentiate apnea from normal sleep. A soft decision fusion rule is developed to combine the results of these classifiers in order to improve the classification performance of the whole system. Experimental results show that our proposed method achieves better classification results compared with the previous recurrence analysis-based approach. We also show that our method is flexible and a strong candidate for a real efficient sleep apnea detection system.

  15. Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav

    2014-03-01

    Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.

  16. Disease named entity recognition from biomedical literature using a novel convolutional neural network.

    PubMed

    Zhao, Zhehuan; Yang, Zhihao; Luo, Ling; Wang, Lei; Zhang, Yin; Lin, Hongfei; Wang, Jian

    2017-12-28

    Automatic disease named entity recognition (DNER) is of utmost importance for development of more sophisticated BioNLP tools. However, most conventional CRF based DNER systems rely on well-designed features whose selection is labor intensive and time-consuming. Though most deep learning methods can solve NER problems with little feature engineering, they employ additional CRF layer to capture the correlation information between labels in neighborhoods which makes them much complicated. In this paper, we propose a novel multiple label convolutional neural network (MCNN) based disease NER approach. In this approach, instead of the CRF layer, a multiple label strategy (MLS) first introduced by us, is employed. First, the character-level embedding, word-level embedding and lexicon feature embedding are concatenated. Then several convolutional layers are stacked over the concatenated embedding. Finally, MLS strategy is applied to the output layer to capture the correlation information between neighboring labels. As shown by the experimental results, MCNN can achieve the state-of-the-art performance on both NCBI and CDR corpora. The proposed MCNN based disease NER method achieves the state-of-the-art performance with little feature engineering. And the experimental results show the MLS strategy's effectiveness of capturing the correlation information between labels in the neighborhood.

  17. A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF

    PubMed Central

    Ali, Nouman; Bajwa, Khalid Bashir; Sablatnig, Robert; Chatzichristofis, Savvas A.; Iqbal, Zeshan; Rashid, Muhammad; Habib, Hafiz Adnan

    2016-01-01

    With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration. PMID:27315101

  18. Skin lesion computational diagnosis of dermoscopic images: Ensemble models based on input feature manipulation.

    PubMed

    Oliveira, Roberta B; Pereira, Aledir S; Tavares, João Manuel R S

    2017-10-01

    The number of deaths worldwide due to melanoma has risen in recent times, in part because melanoma is the most aggressive type of skin cancer. Computational systems have been developed to assist dermatologists in early diagnosis of skin cancer, or even to monitor skin lesions. However, there still remains a challenge to improve classifiers for the diagnosis of such skin lesions. The main objective of this article is to evaluate different ensemble classification models based on input feature manipulation to diagnose skin lesions. Input feature manipulation processes are based on feature subset selections from shape properties, colour variation and texture analysis to generate diversity for the ensemble models. Three subset selection models are presented here: (1) a subset selection model based on specific feature groups, (2) a correlation-based subset selection model, and (3) a subset selection model based on feature selection algorithms. Each ensemble classification model is generated using an optimum-path forest classifier and integrated with a majority voting strategy. The proposed models were applied on a set of 1104 dermoscopic images using a cross-validation procedure. The best results were obtained by the first ensemble classification model that generates a feature subset ensemble based on specific feature groups. The skin lesion diagnosis computational system achieved 94.3% accuracy, 91.8% sensitivity and 96.7% specificity. The input feature manipulation process based on specific feature subsets generated the greatest diversity for the ensemble classification model with very promising results. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2015-07-08

    Experiments that study feature-based attention have often examined situations in which selection is based on a single feature (e.g., the color red). However, in more complex situations relevant stimuli may not be set apart from other stimuli by a single defining property but by a specific combination of features. Here, we examined sustained attentional selection of stimuli defined by conjunctions of color and orientation. Human observers attended to one out of four concurrently presented superimposed fields of randomly moving horizontal or vertical bars of red or blue color to detect brief intervals of coherent motion. Selective stimulus processing in early visual cortex was assessed by recordings of steady-state visual evoked potentials (SSVEPs) elicited by each of the flickering fields of stimuli. We directly contrasted attentional selection of single features and feature conjunctions and found that SSVEP amplitudes on conditions in which selection was based on a single feature only (color or orientation) exactly predicted the magnitude of attentional enhancement of SSVEPs when attending to a conjunction of both features. Furthermore, enhanced SSVEP amplitudes elicited by attended stimuli were accompanied by equivalent reductions of SSVEP amplitudes elicited by unattended stimuli in all cases. We conclude that attentional selection of a feature-conjunction stimulus is accomplished by the parallel and independent facilitation of its constituent feature dimensions in early visual cortex. The ability to perceive the world is limited by the brain's processing capacity. Attention affords adaptive behavior by selectively prioritizing processing of relevant stimuli based on their features (location, color, orientation, etc.). We found that attentional mechanisms for selection of different features belonging to the same object operate independently and in parallel: concurrent attentional selection of two stimulus features is simply the sum of attending to each of those features separately. This result is key to understanding attentional selection in complex (natural) scenes, where relevant stimuli are likely to be defined by a combination of stimulus features. Copyright © 2015 the authors 0270-6474/15/359912-08$15.00/0.

  20. Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.

    PubMed

    Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen

    2015-04-01

    In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.

  1. Finger vein recognition with personalized feature selection.

    PubMed

    Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Meng, Xianjing

    2013-08-22

    Finger veins are a promising biometric pattern for personalized identification in terms of their advantages over existing biometrics. Based on the spatial pyramid representation and the combination of more effective information such as gray, texture and shape, this paper proposes a simple but powerful feature, called Pyramid Histograms of Gray, Texture and Orientation Gradients (PHGTOG). For a finger vein image, PHGTOG can reflect the global spatial layout and local details of gray, texture and shape. To further improve the recognition performance and reduce the computational complexity, we select a personalized subset of features from PHGTOG for each subject by using the sparse weight vector, which is trained by using LASSO and called PFS-PHGTOG. We conduct extensive experiments to demonstrate the promise of the PHGTOG and PFS-PHGTOG, experimental results on our databases show that PHGTOG outperforms the other existing features. Moreover, PFS-PHGTOG can further boost the performance in comparison with PHGTOG.

  2. Finger Vein Recognition with Personalized Feature Selection

    PubMed Central

    Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Meng, Xianjing

    2013-01-01

    Finger veins are a promising biometric pattern for personalized identification in terms of their advantages over existing biometrics. Based on the spatial pyramid representation and the combination of more effective information such as gray, texture and shape, this paper proposes a simple but powerful feature, called Pyramid Histograms of Gray, Texture and Orientation Gradients (PHGTOG). For a finger vein image, PHGTOG can reflect the global spatial layout and local details of gray, texture and shape. To further improve the recognition performance and reduce the computational complexity, we select a personalized subset of features from PHGTOG for each subject by using the sparse weight vector, which is trained by using LASSO and called PFS-PHGTOG. We conduct extensive experiments to demonstrate the promise of the PHGTOG and PFS-PHGTOG, experimental results on our databases show that PHGTOG outperforms the other existing features. Moreover, PFS-PHGTOG can further boost the performance in comparison with PHGTOG. PMID:23974154

  3. Sparse representation of multi parametric DCE-MRI features using K-SVD for classifying gene expression based breast cancer recurrence risk

    NASA Astrophysics Data System (ADS)

    Mahrooghy, Majid; Ashraf, Ahmed B.; Daye, Dania; Mies, Carolyn; Rosen, Mark; Feldman, Michael; Kontos, Despina

    2014-03-01

    We evaluate the prognostic value of sparse representation-based features by applying the K-SVD algorithm on multiparametric kinetic, textural, and morphologic features in breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). K-SVD is an iterative dimensionality reduction method that optimally reduces the initial feature space by updating the dictionary columns jointly with the sparse representation coefficients. Therefore, by using K-SVD, we not only provide sparse representation of the features and condense the information in a few coefficients but also we reduce the dimensionality. The extracted K-SVD features are evaluated by a machine learning algorithm including a logistic regression classifier for the task of classifying high versus low breast cancer recurrence risk as determined by a validated gene expression assay. The features are evaluated using ROC curve analysis and leave one-out cross validation for different sparse representation and dimensionality reduction numbers. Optimal sparse representation is obtained when the number of dictionary elements is 4 (K=4) and maximum non-zero coefficients is 2 (L=2). We compare K-SVD with ANOVA based feature selection for the same prognostic features. The ROC results show that the AUC of the K-SVD based (K=4, L=2), the ANOVA based, and the original features (i.e., no dimensionality reduction) are 0.78, 0.71. and 0.68, respectively. From the results, it can be inferred that by using sparse representation of the originally extracted multi-parametric, high-dimensional data, we can condense the information on a few coefficients with the highest predictive value. In addition, the dimensionality reduction introduced by K-SVD can prevent models from over-fitting.

  4. Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifen; Chen, Huabin; Xu, Yanling; Zhong, Jiyong; Lv, Na; Chen, Shanben

    2015-08-01

    Multisensory data fusion-based online welding quality monitoring has gained increasing attention in intelligent welding process. This paper mainly focuses on the automatic detection of typical welding defect for Al alloy in gas tungsten arc welding (GTAW) by means of analzing arc spectrum, sound and voltage signal. Based on the developed algorithms in time and frequency domain, 41 feature parameters were successively extracted from these signals to characterize the welding process and seam quality. Then, the proposed feature selection approach, i.e., hybrid fisher-based filter and wrapper was successfully utilized to evaluate the sensitivity of each feature and reduce the feature dimensions. Finally, the optimal feature subset with 19 features was selected to obtain the highest accuracy, i.e., 94.72% using established classification model. This study provides a guideline for feature extraction, selection and dynamic modeling based on heterogeneous multisensory data to achieve a reliable online defect detection system in arc welding.

  5. Video PATSEARCH: A Mixed-Media System.

    ERIC Educational Resources Information Center

    Schulman, Jacque-Lynne

    1982-01-01

    Describes a videodisc-based information display system in which a computer terminal is used to search the online PATSEARCH database from a remote host with local microcomputer control to select and display drawings from the retrieved records. System features and system components are discussed and criteria for system evaluation are presented.…

  6. Enhancing the Discrimination Ability of a Gas Sensor Array Based on a Novel Feature Selection and Fusion Framework.

    PubMed

    Deng, Changjian; Lv, Kun; Shi, Debo; Yang, Bo; Yu, Song; He, Zhiyi; Yan, Jia

    2018-06-12

    In this paper, a novel feature selection and fusion framework is proposed to enhance the discrimination ability of gas sensor arrays for odor identification. Firstly, we put forward an efficient feature selection method based on the separability and the dissimilarity to determine the feature selection order for each type of feature when increasing the dimension of selected feature subsets. Secondly, the K-nearest neighbor (KNN) classifier is applied to determine the dimensions of the optimal feature subsets for different types of features. Finally, in the process of establishing features fusion, we come up with a classification dominance feature fusion strategy which conducts an effective basic feature. Experimental results on two datasets show that the recognition rates of Database I and Database II achieve 97.5% and 80.11%, respectively, when k = 1 for KNN classifier and the distance metric is correlation distance (COR), which demonstrates the superiority of the proposed feature selection and fusion framework in representing signal features. The novel feature selection method proposed in this paper can effectively select feature subsets that are conducive to the classification, while the feature fusion framework can fuse various features which describe the different characteristics of sensor signals, for enhancing the discrimination ability of gas sensors and, to a certain extent, suppressing drift effect.

  7. Predictive classification of self-paced upper-limb analytical movements with EEG.

    PubMed

    Ibáñez, Jaime; Serrano, J I; del Castillo, M D; Minguez, J; Pons, J L

    2015-11-01

    The extent to which the electroencephalographic activity allows the characterization of movements with the upper limb is an open question. This paper describes the design and validation of a classifier of upper-limb analytical movements based on electroencephalographic activity extracted from intervals preceding self-initiated movement tasks. Features selected for the classification are subject specific and associated with the movement tasks. Further tests are performed to reject the hypothesis that other information different from the task-related cortical activity is being used by the classifiers. Six healthy subjects were measured performing self-initiated upper-limb analytical movements. A Bayesian classifier was used to classify among seven different kinds of movements. Features considered covered the alpha and beta bands. A genetic algorithm was used to optimally select a subset of features for the classification. An average accuracy of 62.9 ± 7.5% was reached, which was above the baseline level observed with the proposed methodology (30.2 ± 4.3%). The study shows how the electroencephalography carries information about the type of analytical movement performed with the upper limb and how it can be decoded before the movement begins. In neurorehabilitation environments, this information could be used for monitoring and assisting purposes.

  8. Multi-clues image retrieval based on improved color invariants

    NASA Astrophysics Data System (ADS)

    Liu, Liu; Li, Jian-Xun

    2012-05-01

    At present, image retrieval has a great progress in indexing efficiency and memory usage, which mainly benefits from the utilization of the text retrieval technology, such as the bag-of-features (BOF) model and the inverted-file structure. Meanwhile, because the robust local feature invariants are selected to establish BOF, the retrieval precision of BOF is enhanced, especially when it is applied to a large-scale database. However, these local feature invariants mainly consider the geometric variance of the objects in the images, and thus the color information of the objects fails to be made use of. Because of the development of the information technology and Internet, the majority of our retrieval objects is color images. Therefore, retrieval performance can be further improved through proper utilization of the color information. We propose an improved method through analyzing the flaw of shadow-shading quasi-invariant. The response and performance of shadow-shading quasi-invariant for the object edge with the variance of lighting are enhanced. The color descriptors of the invariant regions are extracted and integrated into BOF based on the local feature. The robustness of the algorithm and the improvement of the performance are verified in the final experiments.

  9. Optimized Kernel Entropy Components.

    PubMed

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2017-06-01

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  10. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities.

    PubMed

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  11. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities

    NASA Astrophysics Data System (ADS)

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  12. Foveal analysis and peripheral selection during active visual sampling

    PubMed Central

    Ludwig, Casimir J. H.; Davies, J. Rhys; Eckstein, Miguel P.

    2014-01-01

    Human vision is an active process in which information is sampled during brief periods of stable fixation in between gaze shifts. Foveal analysis serves to identify the currently fixated object and has to be coordinated with a peripheral selection process of the next fixation location. Models of visual search and scene perception typically focus on the latter, without considering foveal processing requirements. We developed a dual-task noise classification technique that enables identification of the information uptake for foveal analysis and peripheral selection within a single fixation. Human observers had to use foveal vision to extract visual feature information (orientation) from different locations for a psychophysical comparison. The selection of to-be-fixated locations was guided by a different feature (luminance contrast). We inserted noise in both visual features and identified the uptake of information by looking at correlations between the noise at different points in time and behavior. Our data show that foveal analysis and peripheral selection proceeded completely in parallel. Peripheral processing stopped some time before the onset of an eye movement, but foveal analysis continued during this period. Variations in the difficulty of foveal processing did not influence the uptake of peripheral information and the efficacy of peripheral selection, suggesting that foveal analysis and peripheral selection operated independently. These results provide important theoretical constraints on how to model target selection in conjunction with foveal object identification: in parallel and independently. PMID:24385588

  13. Combining Feature Extraction Methods to Assist the Diagnosis of Alzheimer's Disease.

    PubMed

    Segovia, F; Górriz, J M; Ramírez, J; Phillips, C

    2016-01-01

    Neuroimaging data as (18)F-FDG PET is widely used to assist the diagnosis of Alzheimer's disease (AD). Looking for regions with hypoperfusion/ hypometabolism, clinicians may predict or corroborate the diagnosis of the patients. Modern computer aided diagnosis (CAD) systems based on the statistical analysis of whole neuroimages are more accurate than classical systems based on quantifying the uptake of some predefined regions of interests (ROIs). In addition, these new systems allow determining new ROIs and take advantage of the huge amount of information comprised in neuroimaging data. A major branch of modern CAD systems for AD is based on multivariate techniques, which analyse a neuroimage as a whole, considering not only the voxel intensities but also the relations among them. In order to deal with the vast dimensionality of the data, a number of feature extraction methods have been successfully applied. In this work, we propose a CAD system based on the combination of several feature extraction techniques. First, some commonly used feature extraction methods based on the analysis of the variance (as principal component analysis), on the factorization of the data (as non-negative matrix factorization) and on classical magnitudes (as Haralick features) were simultaneously applied to the original data. These feature sets were then combined by means of two different combination approaches: i) using a single classifier and a multiple kernel learning approach and ii) using an ensemble of classifier and selecting the final decision by majority voting. The proposed approach was evaluated using a labelled neuroimaging database along with a cross validation scheme. As conclusion, the proposed CAD system performed better than approaches using only one feature extraction technique. We also provide a fair comparison (using the same database) of the selected feature extraction methods.

  14. Web-based newborn screening system for metabolic diseases: machine learning versus clinicians.

    PubMed

    Chen, Wei-Hsin; Hsieh, Sheau-Ling; Hsu, Kai-Ping; Chen, Han-Ping; Su, Xing-Yu; Tseng, Yi-Ju; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Lai, Feipei

    2013-05-23

    A hospital information system (HIS) that integrates screening data and interpretation of the data is routinely requested by hospitals and parents. However, the accuracy of disease classification may be low because of the disease characteristics and the analytes used for classification. The objective of this study is to describe a system that enhanced the neonatal screening system of the Newborn Screening Center at the National Taiwan University Hospital. The system was designed and deployed according to a service-oriented architecture (SOA) framework under the Web services .NET environment. The system consists of sample collection, testing, diagnosis, evaluation, treatment, and follow-up services among collaborating hospitals. To improve the accuracy of newborn screening, machine learning and optimal feature selection mechanisms were investigated for screening newborns for inborn errors of metabolism. The framework of the Newborn Screening Hospital Information System (NSHIS) used the embedded Health Level Seven (HL7) standards for data exchanges among heterogeneous platforms integrated by Web services in the C# language. In this study, machine learning classification was used to predict phenylketonuria (PKU), hypermethioninemia, and 3-methylcrotonyl-CoA-carboxylase (3-MCC) deficiency. The classification methods used 347,312 newborn dried blood samples collected at the Center between 2006 and 2011. Of these, 220 newborns had values over the diagnostic cutoffs (positive cases) and 1557 had values that were over the screening cutoffs but did not meet the diagnostic cutoffs (suspected cases). The original 35 analytes and the manifested features were ranked based on F score, then combinations of the top 20 ranked features were selected as input features to support vector machine (SVM) classifiers to obtain optimal feature sets. These feature sets were tested using 5-fold cross-validation and optimal models were generated. The datasets collected in year 2011 were used as predicting cases. The feature selection strategies were implemented and the optimal markers for PKU, hypermethioninemia, and 3-MCC deficiency were obtained. The results of the machine learning approach were compared with the cutoff scheme. The number of the false positive cases were reduced from 21 to 2 for PKU, from 30 to 10 for hypermethioninemia, and 209 to 46 for 3-MCC deficiency. This SOA Web service-based newborn screening system can accelerate screening procedures effectively and efficiently. An SVM learning methodology for PKU, hypermethioninemia, and 3-MCC deficiency metabolic diseases classification, including optimal feature selection strategies, is presented. By adopting the results of this study, the number of suspected cases could be reduced dramatically.

  15. Web-Based Newborn Screening System for Metabolic Diseases: Machine Learning Versus Clinicians

    PubMed Central

    Chen, Wei-Hsin; Hsu, Kai-Ping; Chen, Han-Ping; Su, Xing-Yu; Tseng, Yi-Ju; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Lai, Feipei

    2013-01-01

    Background A hospital information system (HIS) that integrates screening data and interpretation of the data is routinely requested by hospitals and parents. However, the accuracy of disease classification may be low because of the disease characteristics and the analytes used for classification. Objective The objective of this study is to describe a system that enhanced the neonatal screening system of the Newborn Screening Center at the National Taiwan University Hospital. The system was designed and deployed according to a service-oriented architecture (SOA) framework under the Web services .NET environment. The system consists of sample collection, testing, diagnosis, evaluation, treatment, and follow-up services among collaborating hospitals. To improve the accuracy of newborn screening, machine learning and optimal feature selection mechanisms were investigated for screening newborns for inborn errors of metabolism. Methods The framework of the Newborn Screening Hospital Information System (NSHIS) used the embedded Health Level Seven (HL7) standards for data exchanges among heterogeneous platforms integrated by Web services in the C# language. In this study, machine learning classification was used to predict phenylketonuria (PKU), hypermethioninemia, and 3-methylcrotonyl-CoA-carboxylase (3-MCC) deficiency. The classification methods used 347,312 newborn dried blood samples collected at the Center between 2006 and 2011. Of these, 220 newborns had values over the diagnostic cutoffs (positive cases) and 1557 had values that were over the screening cutoffs but did not meet the diagnostic cutoffs (suspected cases). The original 35 analytes and the manifested features were ranked based on F score, then combinations of the top 20 ranked features were selected as input features to support vector machine (SVM) classifiers to obtain optimal feature sets. These feature sets were tested using 5-fold cross-validation and optimal models were generated. The datasets collected in year 2011 were used as predicting cases. Results The feature selection strategies were implemented and the optimal markers for PKU, hypermethioninemia, and 3-MCC deficiency were obtained. The results of the machine learning approach were compared with the cutoff scheme. The number of the false positive cases were reduced from 21 to 2 for PKU, from 30 to 10 for hypermethioninemia, and 209 to 46 for 3-MCC deficiency. Conclusions This SOA Web service–based newborn screening system can accelerate screening procedures effectively and efficiently. An SVM learning methodology for PKU, hypermethioninemia, and 3-MCC deficiency metabolic diseases classification, including optimal feature selection strategies, is presented. By adopting the results of this study, the number of suspected cases could be reduced dramatically. PMID:23702487

  16. A sampling-based method for ranking protein structural models by integrating multiple scores and features.

    PubMed

    Shi, Xiaohu; Zhang, Jingfen; He, Zhiquan; Shang, Yi; Xu, Dong

    2011-09-01

    One of the major challenges in protein tertiary structure prediction is structure quality assessment. In many cases, protein structure prediction tools generate good structural models, but fail to select the best models from a huge number of candidates as the final output. In this study, we developed a sampling-based machine-learning method to rank protein structural models by integrating multiple scores and features. First, features such as predicted secondary structure, solvent accessibility and residue-residue contact information are integrated by two Radial Basis Function (RBF) models trained from different datasets. Then, the two RBF scores and five selected scoring functions developed by others, i.e., Opus-CA, Opus-PSP, DFIRE, RAPDF, and Cheng Score are synthesized by a sampling method. At last, another integrated RBF model ranks the structural models according to the features of sampling distribution. We tested the proposed method by using two different datasets, including the CASP server prediction models of all CASP8 targets and a set of models generated by our in-house software MUFOLD. The test result shows that our method outperforms any individual scoring function on both best model selection, and overall correlation between the predicted ranking and the actual ranking of structural quality.

  17. Some challenges with statistical inference in adaptive designs.

    PubMed

    Hung, H M James; Wang, Sue-Jane; Yang, Peiling

    2014-01-01

    Adaptive designs have generated a great deal of attention to clinical trial communities. The literature contains many statistical methods to deal with added statistical uncertainties concerning the adaptations. Increasingly encountered in regulatory applications are adaptive statistical information designs that allow modification of sample size or related statistical information and adaptive selection designs that allow selection of doses or patient populations during the course of a clinical trial. For adaptive statistical information designs, a few statistical testing methods are mathematically equivalent, as a number of articles have stipulated, but arguably there are large differences in their practical ramifications. We pinpoint some undesirable features of these methods in this work. For adaptive selection designs, the selection based on biomarker data for testing the correlated clinical endpoints may increase statistical uncertainty in terms of type I error probability, and most importantly the increased statistical uncertainty may be impossible to assess.

  18. Heuristic-based information acquisition and decision making among pilots.

    PubMed

    Wiggins, Mark W; Bollwerk, Sandra

    2006-01-01

    This research was designed to examine the impact of heuristic-based approaches to the acquisition of task-related information on the selection of an optimal alternative during simulated in-flight decision making. The work integrated features of naturalistic and normative decision making and strategies of information acquisition within a computer-based, decision support framework. The study comprised two phases, the first of which involved familiarizing pilots with three different heuristic-based strategies of information acquisition: frequency, elimination by aspects, and majority of confirming decisions. The second stage enabled participants to choose one of the three strategies of information acquisition to resolve a fourth (choice) scenario. The results indicated that task-oriented experience, rather than the information acquisition strategies, predicted the selection of the optimal alternative. It was also evident that of the three strategies available, the elimination by aspects information acquisition strategy was preferred by most participants. It was concluded that task-oriented experience, rather than the process of information acquisition, predicted task accuracy during the decision-making task. It was also concluded that pilots have a preference for one particular approach to information acquisition. Applications of outcomes of this research include the development of decision support systems that adapt to the information-processing capabilities and preferences of users.

  19. Flight State Identification of a Self-Sensing Wing via an Improved Feature Selection Method and Machine Learning Approaches.

    PubMed

    Chen, Xi; Kopsaftopoulos, Fotis; Wu, Qi; Ren, He; Chang, Fu-Kuo

    2018-04-29

    In this work, a data-driven approach for identifying the flight state of a self-sensing wing structure with an embedded multi-functional sensing network is proposed. The flight state is characterized by the structural vibration signals recorded from a series of wind tunnel experiments under varying angles of attack and airspeeds. A large feature pool is created by extracting potential features from the signals covering the time domain, the frequency domain as well as the information domain. Special emphasis is given to feature selection in which a novel filter method is developed based on the combination of a modified distance evaluation algorithm and a variance inflation factor. Machine learning algorithms are then employed to establish the mapping relationship from the feature space to the practical state space. Results from two case studies demonstrate the high identification accuracy and the effectiveness of the model complexity reduction via the proposed method, thus providing new perspectives of self-awareness towards the next generation of intelligent air vehicles.

  20. Best practices for implementing, testing and using a cloud-based communication system in a disaster situation.

    PubMed

    Makowski, Dale

    2016-01-01

    This paper sets out the basics for approaching the selection and implementation of a cloud-based communication system to support a business continuity programme, including: • consideration for how a cloud-based communication system can enhance a business continuity programme; • descriptions of some of the more popular features of a cloud-based communication system; • options to evaluate when selecting a cloud-based communication system; • considerations for how to design a system to be most effective for an organisation; • best practices for how to conduct the initial load of data to a cloud-based communication system; • best practices for how to conduct an initial validation of the data loaded to a cloud-based communication system; • considerations for how to keep contact information in the cloud-based communication system current and accurate; • best practices for conducting ongoing system testing; • considerations for how to conduct user training; • review of other potential uses of a cloud-based communication system; and • review of other tools and features many cloud-based communication systems may offer.

  1. The distance effect in numerical memory-updating tasks.

    PubMed

    Lendínez, Cristina; Pelegrina, Santiago; Lechuga, Teresa

    2011-05-01

    Two experiments examined the role of numerical distance in updating numerical information in working memory. In the first experiment, participants had to memorize a new number only when it was smaller than a previously memorized number. In the second experiment, updating was based on an external signal, which removed the need to perform any numerical comparison. In both experiments, distance between the memorized number and the new one was manipulated. The results showed that smaller distances between the new and the old information led to shorter updating times. This graded facilitation suggests that the process by which information is substituted in the focus of attention involves maintaining the shared features between the new and the old number activated and selecting other new features to be activated. Thus, the updating cost may be related to amount of new features to be activated in the focus of attention.

  2. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona.

  3. Feature Mining and Health Assessment for Gearboxes Using Run-Up/Coast-Down Signals

    PubMed Central

    Zhao, Ming; Lin, Jing; Miao, Yonghao; Xu, Xiaoqiang

    2016-01-01

    Vibration signals measured in the run-up/coast-down (R/C) processes usually carry rich information about the health status of machinery. However, a major challenge in R/C signals analysis lies in how to exploit more diagnostic information, and how this information could be properly integrated to achieve a more reliable maintenance decision. Aiming at this problem, a framework of R/C signals analysis is presented for the health assessment of gearbox. In the proposed methodology, we first investigate the data preprocessing and feature selection issues for R/C signals. Based on that, a sparsity-guided feature enhancement scheme is then proposed to extract the weak phase jitter associated with gear defect. In order for an effective feature mining and integration under R/C, a generalized phase demodulation technique is further established to reveal the evolution of modulation feature with operating speed and rotation angle. The experimental results indicate that the proposed methodology could not only detect the presence of gear damage, but also offer a novel insight into the dynamic behavior of gearbox. PMID:27827831

  4. Feature Mining and Health Assessment for Gearboxes Using Run-Up/Coast-Down Signals.

    PubMed

    Zhao, Ming; Lin, Jing; Miao, Yonghao; Xu, Xiaoqiang

    2016-11-02

    Vibration signals measured in the run-up/coast-down (R/C) processes usually carry rich information about the health status of machinery. However, a major challenge in R/C signals analysis lies in how to exploit more diagnostic information, and how this information could be properly integrated to achieve a more reliable maintenance decision. Aiming at this problem, a framework of R/C signals analysis is presented for the health assessment of gearbox. In the proposed methodology, we first investigate the data preprocessing and feature selection issues for R/C signals. Based on that, a sparsity-guided feature enhancement scheme is then proposed to extract the weak phase jitter associated with gear defect. In order for an effective feature mining and integration under R/C, a generalized phase demodulation technique is further established to reveal the evolution of modulation feature with operating speed and rotation angle. The experimental results indicate that the proposed methodology could not only detect the presence of gear damage, but also offer a novel insight into the dynamic behavior of gearbox.

  5. Model-based analysis of pattern motion processing in mouse primary visual cortex

    PubMed Central

    Muir, Dylan R.; Roth, Morgane M.; Helmchen, Fritjof; Kampa, Björn M.

    2015-01-01

    Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features. PMID:26300738

  6. Toward optimal feature and time segment selection by divergence method for EEG signals classification.

    PubMed

    Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing

    2018-06-01

    Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Classification and Recognition of Tomb Information in Hyperspectral Image

    NASA Astrophysics Data System (ADS)

    Gu, M.; Lyu, S.; Hou, M.; Ma, S.; Gao, Z.; Bai, S.; Zhou, P.

    2018-04-01

    There are a large number of materials with important historical information in ancient tombs. However, in many cases, these substances could become obscure and indistinguishable by human naked eye or true colour camera. In order to classify and identify materials in ancient tomb effectively, this paper applied hyperspectral imaging technology to archaeological research of ancient tomb in Shanxi province. Firstly, the feature bands including the main information at the bottom of the ancient tomb are selected by the Principal Component Analysis (PCA) transformation to realize the data dimension. Then, the image classification was performed using Support Vector Machine (SVM) based on feature bands. Finally, the material at the bottom of ancient tomb is identified by spectral analysis and spectral matching. The results show that SVM based on feature bands can not only ensure the classification accuracy, but also shorten the data processing time and improve the classification efficiency. In the material identification, it is found that the same matter identified in the visible light is actually two different substances. This research result provides a new reference and research idea for archaeological work.

  8. On the use of information theory for the analysis of synchronous nociceptive withdrawal reflexes and somatosensory evoked potentials elicited by graded electrical stimulation.

    PubMed

    Arguissain, Federico G; Biurrun Manresa, José A; Mørch, Carsten D; Andersen, Ole K

    2015-01-30

    To date, few studies have combined the simultaneous acquisition of nociceptive withdrawal reflexes (NWR) and somatosensory evoked potentials (SEPs). In fact, it is unknown whether the combination of these two signals acquired simultaneously could provide additional information on somatosensory processing at spinal and supraspinal level compared to individual NWR and SEP signals. By using the concept of mutual information (MI), it is possible to quantify the relation between electrical stimuli and simultaneous elicited electrophysiological responses in humans based on the estimated stimulus-response signal probability distributions. All selected features from NWR and SEPs were informative in regard to the stimulus when considered individually. Specifically, the information carried by NWR features was significantly higher than the information contained in the SEP features (p<0.05). Moreover, the joint information carried by the combination of features showed an overall redundancy compared to the sum of the individual contributions. Comparison with existing methods MI can be used to quantify the information that single-trial NWR and SEP features convey, as well as the information carried jointly by NWR and SEPs. This is a model-free approach that considers linear and non-linear correlations at any order and is not constrained by parametric assumptions. The current study introduces a novel approach that allows the quantification of the individual and joint information content of single-trial NWR and SEP features. This methodology could be used to decode and interpret spinal and supraspinal interaction in studies modulating the responsiveness of the nociceptive system. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Detection of goal events in soccer videos

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas

    2005-01-01

    In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.

  10. Fizzy: feature subset selection for metagenomics.

    PubMed

    Ditzler, Gregory; Morrison, J Calvin; Lan, Yemin; Rosen, Gail L

    2015-11-04

    Some of the current software tools for comparative metagenomics provide ecologists with the ability to investigate and explore bacterial communities using α- & β-diversity. Feature subset selection--a sub-field of machine learning--can also provide a unique insight into the differences between metagenomic or 16S phenotypes. In particular, feature subset selection methods can obtain the operational taxonomic units (OTUs), or functional features, that have a high-level of influence on the condition being studied. For example, in a previous study we have used information-theoretic feature selection to understand the differences between protein family abundances that best discriminate between age groups in the human gut microbiome. We have developed a new Python command line tool, which is compatible with the widely adopted BIOM format, for microbial ecologists that implements information-theoretic subset selection methods for biological data formats. We demonstrate the software tools capabilities on publicly available datasets. We have made the software implementation of Fizzy available to the public under the GNU GPL license. The standalone implementation can be found at http://github.com/EESI/Fizzy.

  11. Fizzy. Feature subset selection for metagenomics

    DOE PAGES

    Ditzler, Gregory; Morrison, J. Calvin; Lan, Yemin; ...

    2015-11-04

    Background: Some of the current software tools for comparative metagenomics provide ecologists with the ability to investigate and explore bacterial communities using α– & β–diversity. Feature subset selection – a sub-field of machine learning – can also provide a unique insight into the differences between metagenomic or 16S phenotypes. In particular, feature subset selection methods can obtain the operational taxonomic units (OTUs), or functional features, that have a high-level of influence on the condition being studied. For example, in a previous study we have used information-theoretic feature selection to understand the differences between protein family abundances that best discriminate betweenmore » age groups in the human gut microbiome. Results: We have developed a new Python command line tool, which is compatible with the widely adopted BIOM format, for microbial ecologists that implements information-theoretic subset selection methods for biological data formats. We demonstrate the software tools capabilities on publicly available datasets. Conclusions: We have made the software implementation of Fizzy available to the public under the GNU GPL license. The standalone implementation can be found at http://github.com/EESI/Fizzy.« less

  12. Feature-selective attention in healthy old age: a selective decline in selective attention?

    PubMed

    Quigley, Cliodhna; Müller, Matthias M

    2014-02-12

    Deficient selection against irrelevant information has been proposed to underlie age-related cognitive decline. We recently reported evidence for maintained early sensory selection when older and younger adults used spatial selective attention to perform a challenging task. Here we explored age-related differences when spatial selection is not possible and feature-selective attention must be deployed. We additionally compared the integrity of feedforward processing by exploiting the well established phenomenon of suppression of visual cortical responses attributable to interstimulus competition. Electroencephalogram was measured while older and younger human adults responded to brief occurrences of coherent motion in an attended stimulus composed of randomly moving, orientation-defined, flickering bars. Attention was directed to horizontal or vertical bars by a pretrial cue, after which two orthogonally oriented, overlapping stimuli or a single stimulus were presented. Horizontal and vertical bars flickered at different frequencies and thereby elicited separable steady-state visual-evoked potentials, which were used to examine the effect of feature-based selection and the competitive influence of a second stimulus on ongoing visual processing. Age differences were found in feature-selective attentional modulation of visual responses: older adults did not show consistent modulation of magnitude or phase. In contrast, the suppressive effect of a second stimulus was robust and comparable in magnitude across age groups, suggesting that bottom-up processing of the current stimuli is essentially unchanged in healthy old age. Thus, it seems that visual processing per se is unchanged, but top-down attentional control is compromised in older adults when space cannot be used to guide selection.

  13. An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach.

    PubMed

    Nasir, Muhammad; Attique Khan, Muhammad; Sharif, Muhammad; Lali, Ikram Ullah; Saba, Tanzila; Iqbal, Tassawar

    2018-02-21

    Melanoma is the deadliest type of skin cancer with highest mortality rate. However, the annihilation in early stage implies a high survival rate therefore, it demands early diagnosis. The accustomed diagnosis methods are costly and cumbersome due to the involvement of experienced experts as well as the requirements for highly equipped environment. The recent advancements in computerized solutions for these diagnoses are highly promising with improved accuracy and efficiency. In this article, we proposed a method for the classification of melanoma and benign skin lesions. Our approach integrates preprocessing, lesion segmentation, features extraction, features selection, and classification. Preprocessing is executed in the context of hair removal by DullRazor, whereas lesion texture and color information are utilized to enhance the lesion contrast. In lesion segmentation, a hybrid technique has been implemented and results are fused using additive law of probability. Serial based method is applied subsequently that extracts and fuses the traits such as color, texture, and HOG (shape). The fused features are selected afterwards by implementing a novel Boltzman Entropy method. Finally, the selected features are classified by Support Vector Machine. The proposed method is evaluated on publically available data set PH2. Our approach has provided promising results of sensitivity 97.7%, specificity 96.7%, accuracy 97.5%, and F-score 97.5%, which are significantly better than the results of existing methods available on the same data set. The proposed method detects and classifies melanoma significantly good as compared to existing methods. © 2018 Wiley Periodicals, Inc.

  14. The modulation of inhibition of return by object-internal structure: implications for theories of object-based attentional selection.

    PubMed

    Reppa, Irene; Leek, E Charles

    2003-06-01

    Recently, Vecera, Behrmann, and McGoldrick (2000), using a divided-attention task, reported that targets are detected more accurately when they occur on the same structural part of an object, suggesting that attention can be directed toward object-internal features. We present converging evidence using the object-based inhibition of return (IOR) paradigm as an implicit measure of selection. The results show that IOR is attenuated when cues and targets appear on the same part of an object relative to when they are separated by a part boundary. These findings suggest that object-based mechanisms of selection can operate over shape representations that make explicit information about object-internal structure.

  15. Geographically distributed environmental sensor system

    DOEpatents

    French, Patrick; Veatch, Brad; O'Connor, Mike

    2006-10-03

    The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

  16. PDC-SGB: Prediction of effective drug combinations using a stochastic gradient boosting algorithm.

    PubMed

    Xu, Qian; Xiong, Yi; Dai, Hao; Kumari, Kotni Meena; Xu, Qin; Ou, Hong-Yu; Wei, Dong-Qing

    2017-03-21

    Combinatorial therapy is a promising strategy for combating complex diseases by improving the efficacy and reducing the side effects. To facilitate the identification of drug combinations in pharmacology, we proposed a new computational model, termed PDC-SGB, to predict effective drug combinations by integrating biological, chemical and pharmacological information based on a stochastic gradient boosting algorithm. To begin with, a set of 352 golden positive samples were collected from the public drug combination database. Then, a set of 732 dimensional feature vector involving biological, chemical and pharmaceutical information was constructed for each drug combination to describe its properties. To avoid overfitting, the maximum relevance & minimum redundancy (mRMR) method was performed to extract useful ones by removing redundant subsets. Based on the selected features, the three different type of classification algorithms were employed to build the drug combination prediction models. Our results demonstrated that the model based on the stochastic gradient boosting algorithm yield out the best performance. Furthermore, it is indicated that the feature patterns of therapy had powerful ability to discriminate effective drug combinations from non-effective ones. By analyzing various features, it is shown that the enriched features occurred frequently in golden positive samples can help predict novel drug combinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.

    PubMed

    Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki

    2016-07-01

    We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.

  18. Interactive classification and content-based retrieval of tissue images

    NASA Astrophysics Data System (ADS)

    Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof

    2002-11-01

    We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.

  19. Sequence Based Prediction of Antioxidant Proteins Using a Classifier Selection Strategy

    PubMed Central

    Zhang, Lina; Zhang, Chengjin; Gao, Rui; Yang, Runtao; Song, Qing

    2016-01-01

    Antioxidant proteins perform significant functions in maintaining oxidation/antioxidation balance and have potential therapies for some diseases. Accurate identification of antioxidant proteins could contribute to revealing physiological processes of oxidation/antioxidation balance and developing novel antioxidation-based drugs. In this study, an ensemble method is presented to predict antioxidant proteins with hybrid features, incorporating SSI (Secondary Structure Information), PSSM (Position Specific Scoring Matrix), RSA (Relative Solvent Accessibility), and CTD (Composition, Transition, Distribution). The prediction results of the ensemble predictor are determined by an average of prediction results of multiple base classifiers. Based on a classifier selection strategy, we obtain an optimal ensemble classifier composed of RF (Random Forest), SMO (Sequential Minimal Optimization), NNA (Nearest Neighbor Algorithm), and J48 with an accuracy of 0.925. A Relief combined with IFS (Incremental Feature Selection) method is adopted to obtain optimal features from hybrid features. With the optimal features, the ensemble method achieves improved performance with a sensitivity of 0.95, a specificity of 0.93, an accuracy of 0.94, and an MCC (Matthew’s Correlation Coefficient) of 0.880, far better than the existing method. To evaluate the prediction performance objectively, the proposed method is compared with existing methods on the same independent testing dataset. Encouragingly, our method performs better than previous studies. In addition, our method achieves more balanced performance with a sensitivity of 0.878 and a specificity of 0.860. These results suggest that the proposed ensemble method can be a potential candidate for antioxidant protein prediction. For public access, we develop a user-friendly web server for antioxidant protein identification that is freely accessible at http://antioxidant.weka.cc. PMID:27662651

  20. Contrast based band selection for optimized weathered oil detection in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Levaux, Florian; Bostater, Charles R., Jr.; Neyt, Xavier

    2012-09-01

    Hyperspectral imagery offers unique benefits for detection of land and water features due to the information contained in reflectance signatures such as the bi-directional reflectance distribution function or BRDF. The reflectance signature directly shows the relative absorption and backscattering features of targets. These features can be very useful in shoreline monitoring or surveillance applications, for example to detect weathered oil. In real-time detection applications, processing of hyperspectral data can be an important tool and Optimal band selection is thus important in real time applications in order to select the essential bands using the absorption and backscatter information. In the present paper, band selection is based upon the optimization of target detection using contrast algorithms. The common definition of the contrast (using only one band out of all possible combinations available within a hyperspectral image) is generalized in order to consider all the possible combinations of wavelength dependent contrasts using hyperspectral images. The inflection (defined here as an approximation of the second derivative) is also used in order to enhance the variations in the reflectance spectra as well as in the contrast spectrua in order to assist in optimal band selection. The results of the selection in term of target detection (false alarms and missed detection) are also compared with a previous method to perform feature detection, namely the matched filter. In this paper, imagery is acquired using a pushbroom hyperspectral sensor mounted at the bow of a small vessel. The sensor is mechanically rotated using an optical rotation stage. This opto-mechanical scanning system produces hyperspectral images with pixel sizes on the order of mm to cm scales, depending upon the distance between the sensor and the shoreline being monitored. The motion of the platform during the acquisition induces distortions in the collected HSI imagery. It is therefore necessary to apply a motion correction to the imagery. In this paper, imagery is corrected for the pitching motion of a vessel, which causes most of the deformation when the vessel is anchored at 2 points (bow and stern) during the acquisition of the hyperspectral imagry.

  1. Development and evaluation of an ambulatory stress monitor based on wearable sensors.

    PubMed

    Choi, Jongyoon; Ahmed, Beena; Gutierrez-Osuna, Ricardo

    2012-03-01

    Chronic stress is endemic to modern society. However, as it is unfeasible for physicians to continuously monitor stress levels, its diagnosis is nontrivial. Wireless body sensor networks offer opportunities to ubiquitously detect and monitor mental stress levels, enabling improved diagnosis, and early treatment. This article describes the development of a wearable sensor platform to monitor a number of physiological correlates of mental stress. We discuss tradeoffs in both system design and sensor selection to balance information content and wearability. Using experimental signals collected from the wearable sensor, we describe a selected number of physiological features that show good correlation with mental stress. In particular, we propose a new spectral feature that estimates the balance of the autonomic nervous system by combining information from the power spectral density of respiration and heart rate variability. We validate the effectiveness of our approach on a binary discrimination problem when subjects are placed under two psychophysiological conditions: mental stress and relaxation. When used in a logistic regression model, our feature set is able to discriminate between these two mental states with a success rate of 81% across subjects. © 2012 IEEE

  2. Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification.

    PubMed

    Park, Sang-Hoon; Lee, David; Lee, Sang-Goog

    2018-02-01

    For the last few years, many feature extraction methods have been proposed based on biological signals. Among these, the brain signals have the advantage that they can be obtained, even by people with peripheral nervous system damage. Motor imagery electroencephalograms (EEG) are inexpensive to measure, offer a high temporal resolution, and are intuitive. Therefore, these have received a significant amount of attention in various fields, including signal processing, cognitive science, and medicine. The common spatial pattern (CSP) algorithm is a useful method for feature extraction from motor imagery EEG. However, performance degradation occurs in a small-sample setting (SSS), because the CSP depends on sample-based covariance. Since the active frequency range is different for each subject, it is also inconvenient to set the frequency range to be different every time. In this paper, we propose the feature extraction method based on a filter bank to solve these problems. The proposed method consists of five steps. First, motor imagery EEG is divided by a using filter bank. Second, the regularized CSP (R-CSP) is applied to the divided EEG. Third, we select the features according to mutual information based on the individual feature algorithm. Fourth, parameter sets are selected for the ensemble. Finally, we classify using ensemble based on features. The brain-computer interface competition III data set IVa is used to evaluate the performance of the proposed method. The proposed method improves the mean classification accuracy by 12.34%, 11.57%, 9%, 4.95%, and 4.47% compared with CSP, SR-CSP, R-CSP, filter bank CSP (FBCSP), and SR-FBCSP. Compared with the filter bank R-CSP ( , ), which is a parameter selection version of the proposed method, the classification accuracy is improved by 3.49%. In particular, the proposed method shows a large improvement in performance in the SSS.

  3. A Proposal for IoT Dynamic Routes Selection Based on Contextual Information.

    PubMed

    Araújo, Harilton da Silva; Filho, Raimir Holanda; Rodrigues, Joel J P C; Rabelo, Ricardo de A L; Sousa, Natanael de C; Filho, José C C L S; Sobral, José V V

    2018-01-26

    The Internet of Things (IoT) is based on interconnection of intelligent and addressable devices, allowing their autonomy and proactive behavior with Internet connectivity. Data dissemination in IoT usually depends on the application and requires context-aware routing protocols that must include auto-configuration features (which adapt the behavior of the network at runtime, based on context information). This paper proposes an approach for IoT route selection using fuzzy logic in order to attain the requirements of specific applications. In this case, fuzzy logic is used to translate in math terms the imprecise information expressed by a set of linguistic rules. For this purpose, four Objective Functions (OFs) are proposed for the Routing Protocol for Low Power and Loss Networks (RPL); such OFs are dynamically selected based on context information. The aforementioned OFs are generated from the fusion of the following metrics: Expected Transmission Count (ETX), Number of Hops (NH) and Energy Consumed (EC). The experiments performed through simulation, associated with the statistical data analysis, conclude that this proposal provides high reliability by successfully delivering nearly 100% of data packets, low delay for data delivery and increase in QoS. In addition, an 30% improvement is attained in the network life time when using one of proposed objective function, keeping the devices alive for longer duration.

  4. Research on Optimal Observation Scale for Damaged Buildings after Earthquake Based on Optimal Feature Space

    NASA Astrophysics Data System (ADS)

    Chen, J.; Chen, W.; Dou, A.; Li, W.; Sun, Y.

    2018-04-01

    A new information extraction method of damaged buildings rooted in optimal feature space is put forward on the basis of the traditional object-oriented method. In this new method, ESP (estimate of scale parameter) tool is used to optimize the segmentation of image. Then the distance matrix and minimum separation distance of all kinds of surface features are calculated through sample selection to find the optimal feature space, which is finally applied to extract the image of damaged buildings after earthquake. The overall extraction accuracy reaches 83.1 %, the kappa coefficient 0.813. The new information extraction method greatly improves the extraction accuracy and efficiency, compared with the traditional object-oriented method, and owns a good promotional value in the information extraction of damaged buildings. In addition, the new method can be used for the information extraction of different-resolution images of damaged buildings after earthquake, then to seek the optimal observation scale of damaged buildings through accuracy evaluation. It is supposed that the optimal observation scale of damaged buildings is between 1 m and 1.2 m, which provides a reference for future information extraction of damaged buildings.

  5. Visual Homing in the Absence of Feature-Based Landmark Information

    ERIC Educational Resources Information Center

    Gillner, Sabine; Weiss, Anja M.; Mallot, Hanspeter A.

    2008-01-01

    Despite that fact that landmarks play a prominent role in human navigation, experimental evidence on how landmarks are selected and defined by human navigators remains elusive. Indeed, the concept of a "landmark" is itself not entirely clear. In everyday language, the term landmark refers to salient, distinguishable, and usually nameable objects,…

  6. Privacy preserving data publishing of categorical data through k-anonymity and feature selection.

    PubMed

    Aristodimou, Aristos; Antoniades, Athos; Pattichis, Constantinos S

    2016-03-01

    In healthcare, there is a vast amount of patients' data, which can lead to important discoveries if combined. Due to legal and ethical issues, such data cannot be shared and hence such information is underused. A new area of research has emerged, called privacy preserving data publishing (PPDP), which aims in sharing data in a way that privacy is preserved while the information lost is kept at a minimum. In this Letter, a new anonymisation algorithm for PPDP is proposed, which is based on k-anonymity through pattern-based multidimensional suppression (kPB-MS). The algorithm uses feature selection for reducing the data dimensionality and then combines attribute and record suppression for obtaining k-anonymity. Five datasets from different areas of life sciences [RETINOPATHY, Single Proton Emission Computed Tomography imaging, gene sequencing and drug discovery (two datasets)], were anonymised with kPB-MS. The produced anonymised datasets were evaluated using four different classifiers and in 74% of the test cases, they produced similar or better accuracies than using the full datasets.

  7. An efficient ensemble learning method for gene microarray classification.

    PubMed

    Osareh, Alireza; Shadgar, Bita

    2013-01-01

    The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  8. Temporal Correlation Mechanisms and Their Role in Feature Selection: A Single-Unit Study in Primate Somatosensory Cortex

    PubMed Central

    Gomez-Ramirez, Manuel; Trzcinski, Natalie K.; Mihalas, Stefan; Niebur, Ernst

    2014-01-01

    Studies in vision show that attention enhances the firing rates of cells when it is directed towards their preferred stimulus feature. However, it is unknown whether other sensory systems employ this mechanism to mediate feature selection within their modalities. Moreover, whether feature-based attention modulates the correlated activity of a population is unclear. Indeed, temporal correlation codes such as spike-synchrony and spike-count correlations (rsc) are believed to play a role in stimulus selection by increasing the signal and reducing the noise in a population, respectively. Here, we investigate (1) whether feature-based attention biases the correlated activity between neurons when attention is directed towards their common preferred feature, (2) the interplay between spike-synchrony and rsc during feature selection, and (3) whether feature attention effects are common across the visual and tactile systems. Single-unit recordings were made in secondary somatosensory cortex of three non-human primates while animals engaged in tactile feature (orientation and frequency) and visual discrimination tasks. We found that both firing rate and spike-synchrony between neurons with similar feature selectivity were enhanced when attention was directed towards their preferred feature. However, attention effects on spike-synchrony were twice as large as those on firing rate, and had a tighter relationship with behavioral performance. Further, we observed increased rsc when attention was directed towards the visual modality (i.e., away from touch). These data suggest that similar feature selection mechanisms are employed in vision and touch, and that temporal correlation codes such as spike-synchrony play a role in mediating feature selection. We posit that feature-based selection operates by implementing multiple mechanisms that reduce the overall noise levels in the neural population and synchronize activity across subpopulations that encode the relevant features of sensory stimuli. PMID:25423284

  9. A concept-based interactive biomedical image retrieval approach using visualness and spatial information

    NASA Astrophysics Data System (ADS)

    Rahman, Md M.; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.

    2015-03-01

    This paper presents a novel approach to biomedical image retrieval by mapping image regions to local concepts and represent images in a weighted entropy-based concept feature space. The term concept refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist user in interactively select a Region-Of-Interest (ROI) and search for similar image ROIs. Further, a spatial verification step is used as a post-processing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval, is validated through experiments on a data set of 450 lung CT images extracted from journal articles from four different collections.

  10. Comparison of the application of B-mode and strain elastography ultrasound in the estimation of lymph node metastasis of papillary thyroid carcinoma based on a radiomics approach.

    PubMed

    Liu, Tongtong; Ge, Xifeng; Yu, Jinhua; Guo, Yi; Wang, Yuanyuan; Wang, Wenping; Cui, Ligang

    2018-06-21

    B-mode ultrasound (B-US) and strain elastography ultrasound (SE-US) images have a potential to distinguish thyroid tumor with different lymph node (LN) status. The purpose of our study is to investigate whether the application of multi-modality images including B-US and SE-US can improve the discriminability of thyroid tumor with LN metastasis based on a radiomics approach. Ultrasound (US) images including B-US and SE-US images of 75 papillary thyroid carcinoma (PTC) cases were retrospectively collected. A radiomics approach was developed in this study to estimate LNs status of PTC patients. The approach included image segmentation, quantitative feature extraction, feature selection and classification. Three feature sets were extracted from B-US, SE-US, and multi-modality containing B-US and SE-US. They were used to evaluate the contribution of different modalities. A total of 684 radiomics features have been extracted in our study. We used sparse representation coefficient-based feature selection method with 10-bootstrap to reduce the dimension of feature sets. Support vector machine with leave-one-out cross-validation was used to build the model for estimating LN status. Using features extracted from both B-US and SE-US, the radiomics-based model produced an area under the receiver operating characteristic curve (AUC) [Formula: see text] 0.90, accuracy (ACC) [Formula: see text] 0.85, sensitivity (SENS) [Formula: see text] 0.77 and specificity (SPEC) [Formula: see text] 0.88, which was better than using features extracted from B-US or SE-US separately. Multi-modality images provided more information in radiomics study. Combining use of B-US and SE-US could improve the LN metastasis estimation accuracy for PTC patients.

  11. Exploration of complex visual feature spaces for object perception

    PubMed Central

    Leeds, Daniel D.; Pyles, John A.; Tarr, Michael J.

    2014-01-01

    The mid- and high-level visual properties supporting object perception in the ventral visual pathway are poorly understood. In the absence of well-specified theory, many groups have adopted a data-driven approach in which they progressively interrogate neural units to establish each unit's selectivity. Such methods are challenging in that they require search through a wide space of feature models and stimuli using a limited number of samples. To more rapidly identify higher-level features underlying human cortical object perception, we implemented a novel functional magnetic resonance imaging method in which visual stimuli are selected in real-time based on BOLD responses to recently shown stimuli. This work was inspired by earlier primate physiology work, in which neural selectivity for mid-level features in IT was characterized using a simple parametric approach (Hung et al., 2012). To extend such work to human neuroimaging, we used natural and synthetic object stimuli embedded in feature spaces constructed on the basis of the complex visual properties of the objects themselves. During fMRI scanning, we employed a real-time search method to control continuous stimulus selection within each image space. This search was designed to maximize neural responses across a pre-determined 1 cm3 brain region within ventral cortex. To assess the value of this method for understanding object encoding, we examined both the behavior of the method itself and the complex visual properties the method identified as reliably activating selected brain regions. We observed: (1) Regions selective for both holistic and component object features and for a variety of surface properties; (2) Object stimulus pairs near one another in feature space that produce responses at the opposite extremes of the measured activity range. Together, these results suggest that real-time fMRI methods may yield more widely informative measures of selectivity within the broad classes of visual features associated with cortical object representation. PMID:25309408

  12. Feature selection methods for object-based classification of sub-decimeter resolution digital aerial imagery

    USDA-ARS?s Scientific Manuscript database

    Due to the availability of numerous spectral, spatial, and contextual features, the determination of optimal features and class separabilities can be a time consuming process in object-based image analysis (OBIA). While several feature selection methods have been developed to assist OBIA, a robust c...

  13. Content-based audio authentication using a hierarchical patchwork watermark embedding

    NASA Astrophysics Data System (ADS)

    Gulbis, Michael; Müller, Erika

    2010-05-01

    Content-based audio authentication watermarking techniques extract perceptual relevant audio features, which are robustly embedded into the audio file to protect. Manipulations of the audio file are detected on the basis of changes between the original embedded feature information and the anew extracted features during verification. The main challenges of content-based watermarking are on the one hand the identification of a suitable audio feature to distinguish between content preserving and malicious manipulations. On the other hand the development of a watermark, which is robust against content preserving modifications and able to carry the whole authentication information. The payload requirements are significantly higher compared to transaction watermarking or copyright protection. Finally, the watermark embedding should not influence the feature extraction to avoid false alarms. Current systems still lack a sufficient alignment of watermarking algorithm and feature extraction. In previous work we developed a content-based audio authentication watermarking approach. The feature is based on changes in DCT domain over time. A patchwork algorithm based watermark was used to embed multiple one bit watermarks. The embedding process uses the feature domain without inflicting distortions to the feature. The watermark payload is limited by the feature extraction, more precisely the critical bands. The payload is inverse proportional to segment duration of the audio file segmentation. Transparency behavior was analyzed in dependence of segment size and thus the watermark payload. At a segment duration of about 20 ms the transparency shows an optimum (measured in units of Objective Difference Grade). Transparency and/or robustness are fast decreased for working points beyond this area. Therefore, these working points are unsuitable to gain further payload, needed for the embedding of the whole authentication information. In this paper we present a hierarchical extension of the watermark method to overcome the limitations given by the feature extraction. The approach is a recursive application of the patchwork algorithm onto its own patches, with a modified patch selection to ensure a better signal to noise ratio for the watermark embedding. The robustness evaluation was done by compression (mp3, ogg, aac), normalization, and several attacks of the stirmark benchmark for audio suite. Compared on the base of same payload and transparency the hierarchical approach shows improved robustness.

  14. SU-F-R-14: PET Based Radiomics to Predict Outcomes in Patients with Hodgkin Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Aristophanous, M; Akhtari, M

    Purpose: To identify PET-based radiomics features associated with high refractory/relapsed disease risk for Hodgkin lymphoma patients. Methods: A total of 251 Hodgkin lymphoma patients including 19 primary refractory and 9 relapsed patients were investigated. All patients underwent an initial pre-treatment diagnostic FDG PET/CT scan. All cancerous lymph node regions (ROIs) were delineated by an experienced physician based on thresholding each volume of disease in the anatomical regions to SUV>2.5. We extracted 122 image features and evaluated the effect of ROI selection (the largest ROI, the ROI with highest mean SUV, merged ROI, and a single anatomic region [e.g. mediastinum]) onmore » classification accuracy. Random forest was used as a classifier and ROC analysis was used to assess the relationship between selected features and patient’s outcome status. Results: Each patient had between 1 and 9 separate ROIs, with much intra-patient variability in PET features. The best model, which used features from a single anatomic region (the mediastinal ROI, only volumes>5cc: 169 patients with 12 primary refractory) had a classification accuracy of 80.5% for primary refractory disease. The top five features, based on Gini index, consist of shape features (max 3D-diameter and volume) and texture features (correlation and information measure of correlation1&2). In the ROC analysis, sensitivity and specificity of the best model were 0.92 and 0.80, respectively. The area under the ROC (AUC) and the accuracy were 0.86 and 0.86, respectively. The classification accuracy was less than 60% for other ROI models or when ROIs less than 5cc were included. Conclusion: This study showed that PET-based radiomics features from the mediastinal lymph region are associated with primary refractory disease and therefore may play an important role in predicting outcomes in Hodgkin lymphoma patients. These features could be additive beyond baseline tumor and clinical characteristics, and may warrant more aggressive treatment.« less

  15. Constraint programming based biomarker optimization.

    PubMed

    Zhou, Manli; Luo, Youxi; Sun, Guoquan; Mai, Guoqin; Zhou, Fengfeng

    2015-01-01

    Efficient and intuitive characterization of biological big data is becoming a major challenge for modern bio-OMIC based scientists. Interactive visualization and exploration of big data is proven to be one of the successful solutions. Most of the existing feature selection algorithms do not allow the interactive inputs from users in the optimizing process of feature selection. This study investigates this question as fixing a few user-input features in the finally selected feature subset and formulates these user-input features as constraints for a programming model. The proposed algorithm, fsCoP (feature selection based on constrained programming), performs well similar to or much better than the existing feature selection algorithms, even with the constraints from both literature and the existing algorithms. An fsCoP biomarker may be intriguing for further wet lab validation, since it satisfies both the classification optimization function and the biomedical knowledge. fsCoP may also be used for the interactive exploration of bio-OMIC big data by interactively adding user-defined constraints for modeling.

  16. Gene Selection and Cancer Classification: A Rough Sets Based Approach

    NASA Astrophysics Data System (ADS)

    Sun, Lijun; Miao, Duoqian; Zhang, Hongyun

    Indentification of informative gene subsets responsible for discerning between available samples of gene expression data is an important task in bioinformatics. Reducts, from rough sets theory, corresponding to a minimal set of essential genes for discerning samples, is an efficient tool for gene selection. Due to the compuational complexty of the existing reduct algoritms, feature ranking is usually used to narrow down gene space as the first step and top ranked genes are selected . In this paper,we define a novel certierion based on the expression level difference btween classes and contribution to classification of the gene for scoring genes and present a algorithm for generating all possible reduct from informative genes.The algorithm takes the whole attribute sets into account and find short reduct with a significant reduction in computational complexity. An exploration of this approach on benchmark gene expression data sets demonstrates that this approach is successful for selecting high discriminative genes and the classification accuracy is impressive.

  17. Information presentation features and comprehensibility of hospital report cards: design analysis and online survey among users.

    PubMed

    Sander, Uwe; Emmert, Martin; Dickel, Jochen; Meszmer, Nina; Kolb, Benjamin

    2015-03-16

    Improving the transparency of information about the quality of health care providers is one way to improve health care quality. It is assumed that Internet information steers patients toward better-performing health care providers and will motivate providers to improve quality. However, the effect of public reporting on hospital quality is still small. One of the reasons is that users find it difficult to understand the formats in which information is presented. We analyzed the presentation of risk-adjusted mortality rate (RAMR) for coronary angiography in the 10 most commonly used German public report cards to analyze the impact of information presentation features on their comprehensibility. We wanted to determine which information presentation features were utilized, were preferred by users, led to better comprehension, and had similar effects to those reported in evidence-based recommendations described in the literature. The study consisted of 5 steps: (1) identification of best-practice evidence about the presentation of information on hospital report cards; (2) selection of a single risk-adjusted quality indicator; (3) selection of a sample of designs adopted by German public report cards; (4) identification of the information presentation elements used in public reporting initiatives in Germany; and (5) an online panel completed an online questionnaire that was conducted to determine if respondents were able to identify the hospital with the lowest RAMR and if respondents' hospital choices were associated with particular information design elements. Evidence-based recommendations were made relating to the following information presentation features relevant to report cards: evaluative table with symbols, tables without symbols, bar charts, bar charts without symbols, bar charts with symbols, symbols, evaluative word labels, highlighting, order of providers, high values to indicate good performance, explicit statements of whether high or low values indicate good performance, and incomplete data ("N/A" as a value). When investigating the RAMR in a sample of 10 hospitals' report cards, 7 of these information presentation features were identified. Of these, 5 information presentation features improved comprehensibility in a manner reported previously in literature. To our knowledge, this is the first study to systematically analyze the most commonly used public reporting card designs used in Germany. Best-practice evidence identified in international literature was in agreement with 5 findings about German report card designs: (1) avoid tables without symbols, (2) include bar charts with symbols, (3) state explicitly whether high or low values indicate good performance or provide a "good quality" range, (4) avoid incomplete data (N/A given as a value), and (5) rank hospitals by performance. However, these findings are preliminary and should be subject of further evaluation. The implementation of 4 of these recommendations should not present insurmountable obstacles. However, ranking hospitals by performance may present substantial difficulties.

  18. Improving permafrost distribution modelling using feature selection algorithms

    NASA Astrophysics Data System (ADS)

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2016-04-01

    The availability of an increasing number of spatial data on the occurrence of mountain permafrost allows the employment of machine learning (ML) classification algorithms for modelling the distribution of the phenomenon. One of the major problems when dealing with high-dimensional dataset is the number of input features (variables) involved. Application of ML classification algorithms to this large number of variables leads to the risk of overfitting, with the consequence of a poor generalization/prediction. For this reason, applying feature selection (FS) techniques helps simplifying the amount of factors required and improves the knowledge on adopted features and their relation with the studied phenomenon. Moreover, taking away irrelevant or redundant variables from the dataset effectively improves the quality of the ML prediction. This research deals with a comparative analysis of permafrost distribution models supported by FS variable importance assessment. The input dataset (dimension = 20-25, 10 m spatial resolution) was constructed using landcover maps, climate data and DEM derived variables (altitude, aspect, slope, terrain curvature, solar radiation, etc.). It was completed with permafrost evidences (geophysical and thermal data and rock glacier inventories) that serve as training permafrost data. Used FS algorithms informed about variables that appeared less statistically important for permafrost presence/absence. Three different algorithms were compared: Information Gain (IG), Correlation-based Feature Selection (CFS) and Random Forest (RF). IG is a filter technique that evaluates the worth of a predictor by measuring the information gain with respect to the permafrost presence/absence. Conversely, CFS is a wrapper technique that evaluates the worth of a subset of predictors by considering the individual predictive ability of each variable along with the degree of redundancy between them. Finally, RF is a ML algorithm that performs FS as part of its overall operation. It operates by constructing a large collection of decorrelated classification trees, and then predicts the permafrost occurrence through a majority vote. With the so-called out-of-bag (OOB) error estimate, the classification of permafrost data can be validated as well as the contribution of each predictor can be assessed. The performances of compared permafrost distribution models (computed on independent testing sets) increased with the application of FS algorithms on the original dataset and irrelevant or redundant variables were removed. As a consequence, the process provided faster and more cost-effective predictors and a better understanding of the underlying structures residing in permafrost data. Our work demonstrates the usefulness of a feature selection step prior to applying a machine learning algorithm. In fact, permafrost predictors could be ranked not only based on their heuristic and subjective importance (expert knowledge), but also based on their statistical relevance in relation of the permafrost distribution.

  19. Setting and changing feature priorities in visual short-term memory.

    PubMed

    Kalogeropoulou, Zampeta; Jagadeesh, Akshay V; Ohl, Sven; Rolfs, Martin

    2017-04-01

    Many everyday tasks require prioritizing some visual features over competing ones, both during the selection from the rich sensory input and while maintaining information in visual short-term memory (VSTM). Here, we show that observers can change priorities in VSTM when, initially, they attended to a different feature. Observers reported from memory the orientation of one of two spatially interspersed groups of black and white gratings. Using colored pre-cues (presented before stimulus onset) and retro-cues (presented after stimulus offset) predicting the to-be-reported group, we manipulated observers' feature priorities independently during stimulus encoding and maintenance, respectively. Valid pre-cues reliably increased observers' performance (reduced guessing, increased report precision) as compared to neutral ones; invalid pre-cues had the opposite effect. Valid retro-cues also consistently improved performance (by reducing random guesses), even if the unexpected group suddenly became relevant (invalid-valid condition). Thus, feature-based attention can reshape priorities in VSTM protecting information that would otherwise be forgotten.

  20. Computer Presentational Features for Young Children's Preferential Selection and Recall of Information.

    ERIC Educational Resources Information Center

    Calvert, Sandra L.; And Others

    The purpose of this study was to examine the impact of visual and auditory presentational features on young children's selection and memory for verbally presented content. Assessed as a function of action and sound were preschool children's preferential selection and recall of words presented in a computer microworld. A computer microworld…

  1. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.

    PubMed

    Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi

    2015-09-01

    Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Features selection and classification to estimate elbow movements

    NASA Astrophysics Data System (ADS)

    Rubiano, A.; Ramírez, J. L.; El Korso, M. N.; Jouandeau, N.; Gallimard, L.; Polit, O.

    2015-11-01

    In this paper, we propose a novel method to estimate the elbow motion, through the features extracted from electromyography (EMG) signals. The features values are normalized and then compared to identify potential relationships between the EMG signal and the kinematic information as angle and angular velocity. We propose and implement a method to select the best set of features, maximizing the distance between the features that correspond to flexion and extension movements. Finally, we test the selected features as inputs to a non-linear support vector machine in the presence of non-idealistic conditions, obtaining an accuracy of 99.79% in the motion estimation results.

  3. Automatic discrimination between safe and unsafe swallowing using a reputation-based classifier

    PubMed Central

    2011-01-01

    Background Swallowing accelerometry has been suggested as a potential non-invasive tool for bedside dysphagia screening. Various vibratory signal features and complementary measurement modalities have been put forth in the literature for the potential discrimination between safe and unsafe swallowing. To date, automatic classification of swallowing accelerometry has exclusively involved a single-axis of vibration although a second axis is known to contain additional information about the nature of the swallow. Furthermore, the only published attempt at automatic classification in adult patients has been based on a small sample of swallowing vibrations. Methods In this paper, a large corpus of dual-axis accelerometric signals were collected from 30 older adults (aged 65.47 ± 13.4 years, 15 male) referred to videofluoroscopic examination on the suspicion of dysphagia. We invoked a reputation-based classifier combination to automatically categorize the dual-axis accelerometric signals into safe and unsafe swallows, as labeled via videofluoroscopic review. From these participants, a total of 224 swallowing samples were obtained, 164 of which were labeled as unsafe swallows (swallows where the bolus entered the airway) and 60 as safe swallows. Three separate support vector machine (SVM) classifiers and eight different features were selected for classification. Results With selected time, frequency and information theoretic features, the reputation-based algorithm distinguished between safe and unsafe swallowing with promising accuracy (80.48 ± 5.0%), high sensitivity (97.1 ± 2%) and modest specificity (64 ± 8.8%). Interpretation of the most discriminatory features revealed that in general, unsafe swallows had lower mean vibration amplitude and faster autocorrelation decay, suggestive of decreased hyoid excursion and compromised coordination, respectively. Further, owing to its performance-based weighting of component classifiers, the static reputation-based algorithm outperformed the democratic majority voting algorithm on this clinical data set. Conclusion Given its computational efficiency and high sensitivity, reputation-based classification of dual-axis accelerometry ought to be considered in future developments of a point-of-care swallow assessment where clinical informatics are desired. PMID:22085802

  4. A Filter Feature Selection Method Based on MFA Score and Redundancy Excluding and It's Application to Tumor Gene Expression Data Analysis.

    PubMed

    Li, Jiangeng; Su, Lei; Pang, Zenan

    2015-12-01

    Feature selection techniques have been widely applied to tumor gene expression data analysis in recent years. A filter feature selection method named marginal Fisher analysis score (MFA score) which is based on graph embedding has been proposed, and it has been widely used mainly because it is superior to Fisher score. Considering the heavy redundancy in gene expression data, we proposed a new filter feature selection technique in this paper. It is named MFA score+ and is based on MFA score and redundancy excluding. We applied it to an artificial dataset and eight tumor gene expression datasets to select important features and then used support vector machine as the classifier to classify the samples. Compared with MFA score, t test and Fisher score, it achieved higher classification accuracy.

  5. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.

    PubMed

    Zarei, Roozbeh; He, Jing; Siuly, Siuly; Zhang, Yanchun

    2017-07-01

    Feature extraction of EEG signals plays a significant role in Brain-computer interface (BCI) as it can significantly affect the performance and the computational time of the system. The main aim of the current work is to introduce an innovative algorithm for acquiring reliable discriminating features from EEG signals to improve classification performances and to reduce the time complexity. This study develops a robust feature extraction method combining the principal component analysis (PCA) and the cross-covariance technique (CCOV) for the extraction of discriminatory information from the mental states based on EEG signals in BCI applications. We apply the correlation based variable selection method with the best first search on the extracted features to identify the best feature set for characterizing the distribution of mental state signals. To verify the robustness of the proposed feature extraction method, three machine learning techniques: multilayer perceptron neural networks (MLP), least square support vector machine (LS-SVM), and logistic regression (LR) are employed on the obtained features. The proposed methods are evaluated on two publicly available datasets. Furthermore, we evaluate the performance of the proposed methods by comparing it with some recently reported algorithms. The experimental results show that all three classifiers achieve high performance (above 99% overall classification accuracy) for the proposed feature set. Among these classifiers, the MLP and LS-SVM methods yield the best performance for the obtained feature. The average sensitivity, specificity and classification accuracy for these two classifiers are same, which are 99.32%, 100%, and 99.66%, respectively for the BCI competition dataset IVa and 100%, 100%, and 100%, for the BCI competition dataset IVb. The results also indicate the proposed methods outperform the most recently reported methods by at least 0.25% average accuracy improvement in dataset IVa. The execution time results show that the proposed method has less time complexity after feature selection. The proposed feature extraction method is very effective for getting representatives information from mental states EEG signals in BCI applications and reducing the computational complexity of classifiers by reducing the number of extracted features. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A soft computing based approach using modified selection strategy for feature reduction of medical systems.

    PubMed

    Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat

    2013-01-01

    The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data.

  7. A Soft Computing Based Approach Using Modified Selection Strategy for Feature Reduction of Medical Systems

    PubMed Central

    Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat

    2013-01-01

    The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data. PMID:23573172

  8. TH-E-BRF-05: Comparison of Survival-Time Prediction Models After Radiotherapy for High-Grade Glioma Patients Based On Clinical and DVH Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magome, T; Haga, A; Igaki, H

    Purpose: Although many outcome prediction models based on dose-volume information have been proposed, it is well known that the prognosis may be affected also by multiple clinical factors. The purpose of this study is to predict the survival time after radiotherapy for high-grade glioma patients based on features including clinical and dose-volume histogram (DVH) information. Methods: A total of 35 patients with high-grade glioma (oligodendroglioma: 2, anaplastic astrocytoma: 3, glioblastoma: 30) were selected in this study. All patients were treated with prescribed dose of 30–80 Gy after surgical resection or biopsy from 2006 to 2013 at The University of Tokyomore » Hospital. All cases were randomly separated into training dataset (30 cases) and test dataset (5 cases). The survival time after radiotherapy was predicted based on a multiple linear regression analysis and artificial neural network (ANN) by using 204 candidate features. The candidate features included the 12 clinical features (tumor location, extent of surgical resection, treatment duration of radiotherapy, etc.), and the 192 DVH features (maximum dose, minimum dose, D95, V60, etc.). The effective features for the prediction were selected according to a step-wise method by using 30 training cases. The prediction accuracy was evaluated by a coefficient of determination (R{sup 2}) between the predicted and actual survival time for the training and test dataset. Results: In the multiple regression analysis, the value of R{sup 2} between the predicted and actual survival time was 0.460 for the training dataset and 0.375 for the test dataset. On the other hand, in the ANN analysis, the value of R{sup 2} was 0.806 for the training dataset and 0.811 for the test dataset. Conclusion: Although a large number of patients would be needed for more accurate and robust prediction, our preliminary Result showed the potential to predict the outcome in the patients with high-grade glioma. This work was partly supported by the JSPS Core-to-Core Program(No. 23003) and Grant-in-aid from the JSPS Fellows.« less

  9. PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine.

    PubMed

    Hayat, Maqsood; Tahir, Muhammad

    2015-08-01

    Membrane protein is a central component of the cell that manages intra and extracellular processes. Membrane proteins execute a diversity of functions that are vital for the survival of organisms. The topology of transmembrane proteins describes the number of transmembrane (TM) helix segments and its orientation. However, owing to the lack of its recognized structures, the identification of TM helix and its topology through experimental methods is laborious with low throughput. In order to identify TM helix segments reliably, accurately, and effectively from topogenic sequences, we propose the PSOFuzzySVM-TMH model. In this model, evolutionary based information position specific scoring matrix and discrete based information 6-letter exchange group are used to formulate transmembrane protein sequences. The noisy and extraneous attributes are eradicated using an optimization selection technique, particle swarm optimization, from both feature spaces. Finally, the selected feature spaces are combined in order to form ensemble feature space. Fuzzy-support vector Machine is utilized as a classification algorithm. Two benchmark datasets, including low and high resolution datasets, are used. At various levels, the performance of the PSOFuzzySVM-TMH model is assessed through 10-fold cross validation test. The empirical results reveal that the proposed framework PSOFuzzySVM-TMH outperforms in terms of classification performance in the examined datasets. It is ascertained that the proposed model might be a useful and high throughput tool for academia and research community for further structure and functional studies on transmembrane proteins.

  10. Bottom-up influences of voice continuity in focusing selective auditory attention

    PubMed Central

    Bressler, Scott; Masud, Salwa; Bharadwaj, Hari; Shinn-Cunningham, Barbara

    2015-01-01

    Selective auditory attention causes a relative enhancement of the neural representation of important information and suppression of the neural representation of distracting sound, which enables a listener to analyze and interpret information of interest. Some studies suggest that in both vision and in audition, the “unit” on which attention operates is an object: an estimate of the information coming from a particular external source out in the world. In this view, which object ends up in the attentional foreground depends on the interplay of top-down, volitional attention and stimulus-driven, involuntary attention. Here, we test the idea that auditory attention is object based by exploring whether continuity of a non-spatial feature (talker identity, a feature that helps acoustic elements bind into one perceptual object) also influences selective attention performance. In Experiment 1, we show that perceptual continuity of target talker voice helps listeners report a sequence of spoken target digits embedded in competing reversed digits spoken by different talkers. In Experiment 2, we provide evidence that this benefit of voice continuity is obligatory and automatic, as if voice continuity biases listeners by making it easier to focus on a subsequent target digit when it is perceptually linked to what was already in the attentional foreground. Our results support the idea that feature continuity enhances streaming automatically, thereby influencing the dynamic processes that allow listeners to successfully attend to objects through time in the cacophony that assails our ears in many everyday settings. PMID:24633644

  11. Bottom-up influences of voice continuity in focusing selective auditory attention.

    PubMed

    Bressler, Scott; Masud, Salwa; Bharadwaj, Hari; Shinn-Cunningham, Barbara

    2014-01-01

    Selective auditory attention causes a relative enhancement of the neural representation of important information and suppression of the neural representation of distracting sound, which enables a listener to analyze and interpret information of interest. Some studies suggest that in both vision and in audition, the "unit" on which attention operates is an object: an estimate of the information coming from a particular external source out in the world. In this view, which object ends up in the attentional foreground depends on the interplay of top-down, volitional attention and stimulus-driven, involuntary attention. Here, we test the idea that auditory attention is object based by exploring whether continuity of a non-spatial feature (talker identity, a feature that helps acoustic elements bind into one perceptual object) also influences selective attention performance. In Experiment 1, we show that perceptual continuity of target talker voice helps listeners report a sequence of spoken target digits embedded in competing reversed digits spoken by different talkers. In Experiment 2, we provide evidence that this benefit of voice continuity is obligatory and automatic, as if voice continuity biases listeners by making it easier to focus on a subsequent target digit when it is perceptually linked to what was already in the attentional foreground. Our results support the idea that feature continuity enhances streaming automatically, thereby influencing the dynamic processes that allow listeners to successfully attend to objects through time in the cacophony that assails our ears in many everyday settings.

  12. Using listener-based perceptual features as intermediate representations in music information retrieval.

    PubMed

    Friberg, Anders; Schoonderwaldt, Erwin; Hedblad, Anton; Fabiani, Marco; Elowsson, Anders

    2014-10-01

    The notion of perceptual features is introduced for describing general music properties based on human perception. This is an attempt at rethinking the concept of features, aiming to approach the underlying human perception mechanisms. Instead of using concepts from music theory such as tones, pitches, and chords, a set of nine features describing overall properties of the music was selected. They were chosen from qualitative measures used in psychology studies and motivated from an ecological approach. The perceptual features were rated in two listening experiments using two different data sets. They were modeled both from symbolic and audio data using different sets of computational features. Ratings of emotional expression were predicted using the perceptual features. The results indicate that (1) at least some of the perceptual features are reliable estimates; (2) emotion ratings could be predicted by a small combination of perceptual features with an explained variance from 75% to 93% for the emotional dimensions activity and valence; (3) the perceptual features could only to a limited extent be modeled using existing audio features. Results clearly indicated that a small number of dedicated features were superior to a "brute force" model using a large number of general audio features.

  13. A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery

    USDA-ARS?s Scientific Manuscript database

    The availability of numerous spectral, spatial, and contextual features with object-based image analysis (OBIA) renders the selection of optimal features a time consuming and subjective process. While several feature election methods have been used in conjunction with OBIA, a robust comparison of th...

  14. Behavioral model of visual perception and recognition

    NASA Astrophysics Data System (ADS)

    Rybak, Ilya A.; Golovan, Alexander V.; Gusakova, Valentina I.

    1993-09-01

    In the processes of visual perception and recognition human eyes actively select essential information by way of successive fixations at the most informative points of the image. A behavioral program defining a scanpath of the image is formed at the stage of learning (object memorizing) and consists of sequential motor actions, which are shifts of attention from one to another point of fixation, and sensory signals expected to arrive in response to each shift of attention. In the modern view of the problem, invariant object recognition is provided by the following: (1) separated processing of `what' (object features) and `where' (spatial features) information at high levels of the visual system; (2) mechanisms of visual attention using `where' information; (3) representation of `what' information in an object-based frame of reference (OFR). However, most recent models of vision based on OFR have demonstrated the ability of invariant recognition of only simple objects like letters or binary objects without background, i.e. objects to which a frame of reference is easily attached. In contrast, we use not OFR, but a feature-based frame of reference (FFR), connected with the basic feature (edge) at the fixation point. This has provided for our model, the ability for invariant representation of complex objects in gray-level images, but demands realization of behavioral aspects of vision described above. The developed model contains a neural network subsystem of low-level vision which extracts a set of primary features (edges) in each fixation, and high- level subsystem consisting of `what' (Sensory Memory) and `where' (Motor Memory) modules. The resolution of primary features extraction decreases with distances from the point of fixation. FFR provides both the invariant representation of object features in Sensor Memory and shifts of attention in Motor Memory. Object recognition consists in successive recall (from Motor Memory) and execution of shifts of attention and successive verification of the expected sets of features (stored in Sensory Memory). The model shows the ability of recognition of complex objects (such as faces) in gray-level images invariant with respect to shift, rotation, and scale.

  15. Interaction Between Spatial and Feature Attention in Posterior Parietal Cortex

    PubMed Central

    Ibos, Guilhem; Freedman, David J.

    2016-01-01

    Summary Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task which required monkeys to detect specific conjunctions of color, motion-direction, and stimulus position. Here we show that FBA and SBA potentiate each other’s effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features. PMID:27499082

  16. Interaction between Spatial and Feature Attention in Posterior Parietal Cortex.

    PubMed

    Ibos, Guilhem; Freedman, David J

    2016-08-17

    Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task that required monkeys to detect specific conjunctions of color, motion direction, and stimulus position. Here we show that FBA and SBA potentiate each other's effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection.

    PubMed

    Ortega, Julio; Asensio-Cubero, Javier; Gan, John Q; Ortiz, Andrés

    2016-07-15

    Brain-computer interfacing (BCI) applications based on the classification of electroencephalographic (EEG) signals require solving high-dimensional pattern classification problems with such a relatively small number of training patterns that curse of dimensionality problems usually arise. Multiresolution analysis (MRA) has useful properties for signal analysis in both temporal and spectral analysis, and has been broadly used in the BCI field. However, MRA usually increases the dimensionality of the input data. Therefore, some approaches to feature selection or feature dimensionality reduction should be considered for improving the performance of the MRA based BCI. This paper investigates feature selection in the MRA-based frameworks for BCI. Several wrapper approaches to evolutionary multiobjective feature selection are proposed with different structures of classifiers. They are evaluated by comparing with baseline methods using sparse representation of features or without feature selection. The statistical analysis, by applying the Kolmogorov-Smirnoff and Kruskal-Wallis tests to the means of the Kappa values evaluated by using the test patterns in each approach, has demonstrated some advantages of the proposed approaches. In comparison with the baseline MRA approach used in previous studies, the proposed evolutionary multiobjective feature selection approaches provide similar or even better classification performances, with significant reduction in the number of features that need to be computed.

  18. Feature Selection for Speech Emotion Recognition in Spanish and Basque: On the Use of Machine Learning to Improve Human-Computer Interaction

    PubMed Central

    Arruti, Andoni; Cearreta, Idoia; Álvarez, Aitor; Lazkano, Elena; Sierra, Basilio

    2014-01-01

    Study of emotions in human–computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested. PMID:25279686

  19. Adaptive runtime for a multiprocessing API

    DOEpatents

    Antao, Samuel F.; Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.

    2016-11-15

    A computer-implemented method includes selecting a runtime for executing a program. The runtime includes a first combination of feature implementations, where each feature implementation implements a feature of an application programming interface (API). Execution of the program is monitored, and the execution uses the runtime. Monitor data is generated based on the monitoring. A second combination of feature implementations are selected, by a computer processor, where the selection is based at least in part on the monitor data. The runtime is modified by activating the second combination of feature implementations to replace the first combination of feature implementations.

  20. Adaptive runtime for a multiprocessing API

    DOEpatents

    Antao, Samuel F.; Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.

    2016-10-11

    A computer-implemented method includes selecting a runtime for executing a program. The runtime includes a first combination of feature implementations, where each feature implementation implements a feature of an application programming interface (API). Execution of the program is monitored, and the execution uses the runtime. Monitor data is generated based on the monitoring. A second combination of feature implementations are selected, by a computer processor, where the selection is based at least in part on the monitor data. The runtime is modified by activating the second combination of feature implementations to replace the first combination of feature implementations.

  1. A reverberation-time-aware DNN approach leveraging spatial information for microphone array dereverberation

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Yang, Minglei; Li, Kehuang; Huang, Zhen; Siniscalchi, Sabato Marco; Wang, Tong; Lee, Chin-Hui

    2017-12-01

    A reverberation-time-aware deep-neural-network (DNN)-based multi-channel speech dereverberation framework is proposed to handle a wide range of reverberation times (RT60s). There are three key steps in designing a robust system. First, to accomplish simultaneous speech dereverberation and beamforming, we propose a framework, namely DNNSpatial, by selectively concatenating log-power spectral (LPS) input features of reverberant speech from multiple microphones in an array and map them into the expected output LPS features of anechoic reference speech based on a single deep neural network (DNN). Next, the temporal auto-correlation function of received signals at different RT60s is investigated to show that RT60-dependent temporal-spatial contexts in feature selection are needed in the DNNSpatial training stage in order to optimize the system performance in diverse reverberant environments. Finally, the RT60 is estimated to select the proper temporal and spatial contexts before feeding the log-power spectrum features to the trained DNNs for speech dereverberation. The experimental evidence gathered in this study indicates that the proposed framework outperforms the state-of-the-art signal processing dereverberation algorithm weighted prediction error (WPE) and conventional DNNSpatial systems without taking the reverberation time into account, even for extremely weak and severe reverberant conditions. The proposed technique generalizes well to unseen room size, array geometry and loudspeaker position, and is robust to reverberation time estimation error.

  2. Label-aligned Multi-task Feature Learning for Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment

    PubMed Central

    Zu, Chen; Jie, Biao; Liu, Mingxia; Chen, Songcan

    2015-01-01

    Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI. PMID:26572145

  3. DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest.

    PubMed

    Manavalan, Balachandran; Shin, Tae Hwan; Lee, Gwang

    2018-01-05

    DNase I hypersensitive sites (DHSs) are genomic regions that provide important information regarding the presence of transcriptional regulatory elements and the state of chromatin. Therefore, identifying DHSs in uncharacterized DNA sequences is crucial for understanding their biological functions and mechanisms. Although many experimental methods have been proposed to identify DHSs, they have proven to be expensive for genome-wide application. Therefore, it is necessary to develop computational methods for DHS prediction. In this study, we proposed a support vector machine (SVM)-based method for predicting DHSs, called DHSpred (DNase I Hypersensitive Site predictor in human DNA sequences), which was trained with 174 optimal features. The optimal combination of features was identified from a large set that included nucleotide composition and di- and trinucleotide physicochemical properties, using a random forest algorithm. DHSpred achieved a Matthews correlation coefficient and accuracy of 0.660 and 0.871, respectively, which were 3% higher than those of control SVM predictors trained with non-optimized features, indicating the efficiency of the feature selection method. Furthermore, the performance of DHSpred was superior to that of state-of-the-art predictors. An online prediction server has been developed to assist the scientific community, and is freely available at: http://www.thegleelab.org/DHSpred.html.

  4. DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest

    PubMed Central

    Manavalan, Balachandran; Shin, Tae Hwan; Lee, Gwang

    2018-01-01

    DNase I hypersensitive sites (DHSs) are genomic regions that provide important information regarding the presence of transcriptional regulatory elements and the state of chromatin. Therefore, identifying DHSs in uncharacterized DNA sequences is crucial for understanding their biological functions and mechanisms. Although many experimental methods have been proposed to identify DHSs, they have proven to be expensive for genome-wide application. Therefore, it is necessary to develop computational methods for DHS prediction. In this study, we proposed a support vector machine (SVM)-based method for predicting DHSs, called DHSpred (DNase I Hypersensitive Site predictor in human DNA sequences), which was trained with 174 optimal features. The optimal combination of features was identified from a large set that included nucleotide composition and di- and trinucleotide physicochemical properties, using a random forest algorithm. DHSpred achieved a Matthews correlation coefficient and accuracy of 0.660 and 0.871, respectively, which were 3% higher than those of control SVM predictors trained with non-optimized features, indicating the efficiency of the feature selection method. Furthermore, the performance of DHSpred was superior to that of state-of-the-art predictors. An online prediction server has been developed to assist the scientific community, and is freely available at: http://www.thegleelab.org/DHSpred.html PMID:29416743

  5. Vietnamese Document Representation and Classification

    NASA Astrophysics Data System (ADS)

    Nguyen, Giang-Son; Gao, Xiaoying; Andreae, Peter

    Vietnamese is very different from English and little research has been done on Vietnamese document classification, or indeed, on any kind of Vietnamese language processing, and only a few small corpora are available for research. We created a large Vietnamese text corpus with about 18000 documents, and manually classified them based on different criteria such as topics and styles, giving several classification tasks of different difficulty levels. This paper introduces a new syllable-based document representation at the morphological level of the language for efficient classification. We tested the representation on our corpus with different classification tasks using six classification algorithms and two feature selection techniques. Our experiments show that the new representation is effective for Vietnamese categorization, and suggest that best performance can be achieved using syllable-pair document representation, an SVM with a polynomial kernel as the learning algorithm, and using Information gain and an external dictionary for feature selection.

  6. Information Assurance Tasks Supporting the Processing of Electronic Records Archives

    DTIC Science & Technology

    2007-03-01

    3 Table 2. OpenVPN evaluation results...........................................................................................10 iv 1...operation of necessary security features and compare the network performance under OpenVPN (openvpn.net) operation with the network performance under no...VPN operation (non-VPN) in a gigabit network environment. The reason for selecting OpenVPN product was based on the previous findings of Khanvilkar

  7. Prediction of human disease-associated phosphorylation sites with combined feature selection approach and support vector machine.

    PubMed

    Xu, Xiaoyi; Li, Ao; Wang, Minghui

    2015-08-01

    Phosphorylation is a crucial post-translational modification, which regulates almost all cellular processes in life. It has long been recognised that protein phosphorylation has close relationship with diseases, and therefore many researches are undertaken to predict phosphorylation sites for disease treatment and drug design. However, despite the success achieved by these approaches, no method focuses on disease-associated phosphorylation sites prediction. Herein, for the first time the authors propose a novel approach that is specially designed to identify associations between phosphorylation sites and human diseases. To take full advantage of local sequence information, a combined feature selection method-based support vector machine (CFS-SVM) that incorporates minimum-redundancy-maximum-relevance filtering process and forward feature selection process is developed. Performance evaluation shows that CFS-SVM is significantly better than the widely used classifiers including Bayesian decision theory, k nearest neighbour and random forest. With the extremely high specificity of 99%, CFS-SVM can still achieve a high sensitivity. Besides, tests on extra data confirm the effectiveness and general applicability of CFS-SVM approach on a variety of diseases. Finally, the analysis of selected features and corresponding kinases also help the understanding of the potential mechanism of disease-phosphorylation relationships and guide further experimental validations.

  8. The Effects of Selective Attention to Television Forms on Children's Comprehension of Content.

    ERIC Educational Resources Information Center

    Calvert, Sandra L.; And Others

    The purposes of this study were to provide information about how formal features of television are related to children's selective attention and to determine how selective attention is related, in turn, to comprehension of content. Formal features are defined as attributes of television productions that are relatively content-free and that result…

  9. Infrared face recognition based on LBP histogram and KW feature selection

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  10. [Feature extraction for breast cancer data based on geometric algebra theory and feature selection using differential evolution].

    PubMed

    Li, Jing; Hong, Wenxue

    2014-12-01

    The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

  11. AVC: Selecting discriminative features on basis of AUC by maximizing variable complementarity.

    PubMed

    Sun, Lei; Wang, Jun; Wei, Jinmao

    2017-03-14

    The Receiver Operator Characteristic (ROC) curve is well-known in evaluating classification performance in biomedical field. Owing to its superiority in dealing with imbalanced and cost-sensitive data, the ROC curve has been exploited as a popular metric to evaluate and find out disease-related genes (features). The existing ROC-based feature selection approaches are simple and effective in evaluating individual features. However, these approaches may fail to find real target feature subset due to their lack of effective means to reduce the redundancy between features, which is essential in machine learning. In this paper, we propose to assess feature complementarity by a trick of measuring the distances between the misclassified instances and their nearest misses on the dimensions of pairwise features. If a misclassified instance and its nearest miss on one feature dimension are far apart on another feature dimension, the two features are regarded as complementary to each other. Subsequently, we propose a novel filter feature selection approach on the basis of the ROC analysis. The new approach employs an efficient heuristic search strategy to select optimal features with highest complementarities. The experimental results on a broad range of microarray data sets validate that the classifiers built on the feature subset selected by our approach can get the minimal balanced error rate with a small amount of significant features. Compared with other ROC-based feature selection approaches, our new approach can select fewer features and effectively improve the classification performance.

  12. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection

    NASA Astrophysics Data System (ADS)

    Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin

    2017-01-01

    We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.

  13. Enriching 3D optical surface scans with prior knowledge: tissue thickness computation by exploiting local neighborhoods.

    PubMed

    Wissel, Tobias; Stüber, Patrick; Wagner, Benjamin; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2016-04-01

    Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy. We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots. We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary.

  14. Text feature extraction based on deep learning: a review.

    PubMed

    Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan

    2017-01-01

    Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.

  15. Systematic interrogation of diverse Omic data reveals interpretable, robust, and generalizable transcriptomic features of clinically successful therapeutic targets.

    PubMed

    Rouillard, Andrew D; Hurle, Mark R; Agarwal, Pankaj

    2018-05-01

    Target selection is the first and pivotal step in drug discovery. An incorrect choice may not manifest itself for many years after hundreds of millions of research dollars have been spent. We collected a set of 332 targets that succeeded or failed in phase III clinical trials, and explored whether Omic features describing the target genes could predict clinical success. We obtained features from the recently published comprehensive resource: Harmonizome. Nineteen features appeared to be significantly correlated with phase III clinical trial outcomes, but only 4 passed validation schemes that used bootstrapping or modified permutation tests to assess feature robustness and generalizability while accounting for target class selection bias. We also used classifiers to perform multivariate feature selection and found that classifiers with a single feature performed as well in cross-validation as classifiers with more features (AUROC = 0.57 and AUPR = 0.81). The two predominantly selected features were mean mRNA expression across tissues and standard deviation of expression across tissues, where successful targets tended to have lower mean expression and higher expression variance than failed targets. This finding supports the conventional wisdom that it is favorable for a target to be present in the tissue(s) affected by a disease and absent from other tissues. Overall, our results suggest that it is feasible to construct a model integrating interpretable target features to inform target selection. We anticipate deeper insights and better models in the future, as researchers can reuse the data we have provided to improve methods for handling sample biases and learn more informative features. Code, documentation, and data for this study have been deposited on GitHub at https://github.com/arouillard/omic-features-successful-targets.

  16. HIV-1 protease cleavage site prediction based on two-stage feature selection method.

    PubMed

    Niu, Bing; Yuan, Xiao-Cheng; Roeper, Preston; Su, Qiang; Peng, Chun-Rong; Yin, Jing-Yuan; Ding, Juan; Li, HaiPeng; Lu, Wen-Cong

    2013-03-01

    Knowledge of the mechanism of HIV protease cleavage specificity is critical to the design of specific and effective HIV inhibitors. Searching for an accurate, robust, and rapid method to correctly predict the cleavage sites in proteins is crucial when searching for possible HIV inhibitors. In this article, HIV-1 protease specificity was studied using the correlation-based feature subset (CfsSubset) selection method combined with Genetic Algorithms method. Thirty important biochemical features were found based on a jackknife test from the original data set containing 4,248 features. By using the AdaBoost method with the thirty selected features the prediction model yields an accuracy of 96.7% for the jackknife test and 92.1% for an independent set test, with increased accuracy over the original dataset by 6.7% and 77.4%, respectively. Our feature selection scheme could be a useful technique for finding effective competitive inhibitors of HIV protease.

  17. Directional filtering for block recovery using wavelet features

    NASA Astrophysics Data System (ADS)

    Hyun, Seung H.; Eom, Il K.; Kim, Yoo S.

    2005-07-01

    When images compressed with block-based compression techniques are transmitted over a noisy channel, unexpected block losses occur. Conventional methods that do not consider edge directions can cause blocked blurring artifacts. In this paper, we present a post-processing-based block recovery scheme using Haar wavelet features. The adaptive selection of neighboring blocks is performed based on the energy of wavelet subbands (EWS) and difference between DC values (DDC). The lost blocks are recovered by linear interpolation in the spatial domain using selected blocks. The method using only EWS performs well for horizontal and vertical edges, but not as well for diagonal edges. Conversely, only using DDC performs well for diagonal edges with the exception of line- or roof-type edge profiles. Therefore, we combine EWS and DDC for better results. The proposed directional recovery method is effective for the strong edge because exploit the varying neighboring blocks adaptively according to the edges and the directional information in the image. The proposed method outperforms the previous methods that used only fixed blocks.

  18. Flight State Identification of a Self-Sensing Wing via an Improved Feature Selection Method and Machine Learning Approaches

    PubMed Central

    Chen, Xi; Wu, Qi; Ren, He; Chang, Fu-Kuo

    2018-01-01

    In this work, a data-driven approach for identifying the flight state of a self-sensing wing structure with an embedded multi-functional sensing network is proposed. The flight state is characterized by the structural vibration signals recorded from a series of wind tunnel experiments under varying angles of attack and airspeeds. A large feature pool is created by extracting potential features from the signals covering the time domain, the frequency domain as well as the information domain. Special emphasis is given to feature selection in which a novel filter method is developed based on the combination of a modified distance evaluation algorithm and a variance inflation factor. Machine learning algorithms are then employed to establish the mapping relationship from the feature space to the practical state space. Results from two case studies demonstrate the high identification accuracy and the effectiveness of the model complexity reduction via the proposed method, thus providing new perspectives of self-awareness towards the next generation of intelligent air vehicles. PMID:29710832

  19. Target oriented dimensionality reduction of hyperspectral data by Kernel Fukunaga-Koontz Transform

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Ochilov, Shuhrat; Alam, Mohammad S.; Bal, Abdullah

    2017-02-01

    Principal component analysis (PCA) is a popular technique in remote sensing for dimensionality reduction. While PCA is suitable for data compression, it is not necessarily an optimal technique for feature extraction, particularly when the features are exploited in supervised learning applications (Cheriyadat and Bruce, 2003) [1]. Preserving features belonging to the target is very crucial to the performance of target detection/recognition techniques. Fukunaga-Koontz Transform (FKT) based supervised band reduction technique can be used to provide this requirement. FKT achieves feature selection by transforming into a new space in where feature classes have complimentary eigenvectors. Analysis of these eigenvectors under two classes, target and background clutter, can be utilized for target oriented band reduction since each basis functions best represent target class while carrying least information of the background class. By selecting few eigenvectors which are the most relevant to the target class, dimension of hyperspectral data can be reduced and thus, it presents significant advantages for near real time target detection applications. The nonlinear properties of the data can be extracted by kernel approach which provides better target features. Thus, we propose constructing kernel FKT (KFKT) to present target oriented band reduction. The performance of the proposed KFKT based target oriented dimensionality reduction algorithm has been tested employing two real-world hyperspectral data and results have been reported consequently.

  20. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolomic profiles of human urine.

    PubMed

    Edmands, William M B; Ferrari, Pietro; Scalbert, Augustin

    2014-11-04

    Extraction of meaningful biological information from urinary metabolomic profiles obtained by liquid-chromatography coupled to mass spectrometry (MS) necessitates the control of unwanted sources of variability associated with large differences in urine sample concentrations. Different methods of normalization either before analysis (preacquisition normalization) through dilution of urine samples to the lowest specific gravity measured by refractometry, or after analysis (postacquisition normalization) to urine volume, specific gravity and median fold change are compared for their capacity to recover lead metabolites for a potential future use as dietary biomarkers. Twenty-four urine samples of 19 subjects from the European Prospective Investigation into Cancer and nutrition (EPIC) cohort were selected based on their high and low/nonconsumption of six polyphenol-rich foods as assessed with a 24 h dietary recall. MS features selected on the basis of minimum discriminant selection criteria were related to each dietary item by means of orthogonal partial least-squares discriminant analysis models. Normalization methods ranked in the following decreasing order when comparing the number of total discriminant MS features recovered to that obtained in the absence of normalization: preacquisition normalization to specific gravity (4.2-fold), postacquisition normalization to specific gravity (2.3-fold), postacquisition median fold change normalization (1.8-fold increase), postacquisition normalization to urinary volume (0.79-fold). A preventative preacquisition normalization based on urine specific gravity was found to be superior to all curative postacquisition normalization methods tested for discovery of MS features discriminant of dietary intake in these urinary metabolomic datasets.

  1. Integration of Web-based and PC-based clinical research databases.

    PubMed

    Brandt, C A; Sun, K; Charpentier, P; Nadkarni, P M

    2004-01-01

    We have created a Web-based repository or data library of information about measurement instruments used in studies of multi-factorial geriatric health conditions (the Geriatrics Research Instrument Library - GRIL) based upon existing features of two separate clinical study data management systems. GRIL allows browsing, searching, and selecting measurement instruments based upon criteria such as keywords and areas of applicability. Measurement instruments selected can be printed and/or included in an automatically generated standalone microcomputer database application, which can be downloaded by investigators for use in data collection and data management. Integration of database applications requires the creation of a common semantic model, and mapping from each system to this model. Various database schema conflicts at the table and attribute level must be identified and resolved prior to integration. Using a conflict taxonomy and a mapping schema facilitates this process. Critical conflicts at the table level that required resolution included name and relationship differences. A major benefit of integration efforts is the sharing of features and cross-fertilization of applications created for similar purposes in different operating environments. Integration of applications mandates some degree of metadata model unification.

  2. A novel approach for dimension reduction of microarray.

    PubMed

    Aziz, Rabia; Verma, C K; Srivastava, Namita

    2017-12-01

    This paper proposes a new hybrid search technique for feature (gene) selection (FS) using Independent component analysis (ICA) and Artificial Bee Colony (ABC) called ICA+ABC, to select informative genes based on a Naïve Bayes (NB) algorithm. An important trait of this technique is the optimization of ICA feature vector using ABC. ICA+ABC is a hybrid search algorithm that combines the benefits of extraction approach, to reduce the size of data and wrapper approach, to optimize the reduced feature vectors. This hybrid search technique is facilitated by evaluating the performance of ICA+ABC on six standard gene expression datasets of classification. Extensive experiments were conducted to compare the performance of ICA+ABC with the results obtained from recently published Minimum Redundancy Maximum Relevance (mRMR) +ABC algorithm for NB classifier. Also to check the performance that how ICA+ABC works as feature selection with NB classifier, compared the combination of ICA with popular filter techniques and with other similar bio inspired algorithm such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The result shows that ICA+ABC has a significant ability to generate small subsets of genes from the ICA feature vector, that significantly improve the classification accuracy of NB classifier compared to other previously suggested methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Combined data mining/NIR spectroscopy for purity assessment of lime juice

    NASA Astrophysics Data System (ADS)

    Shafiee, Sahameh; Minaei, Saeid

    2018-06-01

    This paper reports the data mining study on the NIR spectrum of lime juice samples to determine their purity (natural or synthetic). NIR spectra for 72 pure and synthetic lime juice samples were recorded in reflectance mode. Sample outliers were removed using PCA analysis. Different data mining techniques for feature selection (Genetic Algorithm (GA)) and classification (including the radial basis function (RBF) network, Support Vector Machine (SVM), and Random Forest (RF) tree) were employed. Based on the results, SVM proved to be the most accurate classifier as it achieved the highest accuracy (97%) using the raw spectrum information. The classifier accuracy dropped to 93% when selected feature vector by GA search method was applied as classifier input. It can be concluded that some relevant features which produce good performance with the SVM classifier are removed by feature selection. Also, reduced spectra using PCA do not show acceptable performance (total accuracy of 66% by RBFNN), which indicates that dimensional reduction methods such as PCA do not always lead to more accurate results. These findings demonstrate the potential of data mining combination with near-infrared spectroscopy for monitoring lime juice quality in terms of natural or synthetic nature.

  4. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.

    PubMed

    Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.

  5. Diagnosing Autism Spectrum Disorder from Brain Resting-State Functional Connectivity Patterns Using a Deep Neural Network with a Novel Feature Selection Method.

    PubMed

    Guo, Xinyu; Dominick, Kelli C; Minai, Ali A; Li, Hailong; Erickson, Craig A; Lu, Long J

    2017-01-01

    The whole-brain functional connectivity (FC) pattern obtained from resting-state functional magnetic resonance imaging data are commonly applied to study neuropsychiatric conditions such as autism spectrum disorder (ASD) by using different machine learning models. Recent studies indicate that both hyper- and hypo- aberrant ASD-associated FCs were widely distributed throughout the entire brain rather than only in some specific brain regions. Deep neural networks (DNN) with multiple hidden layers have shown the ability to systematically extract lower-to-higher level information from high dimensional data across a series of neural hidden layers, significantly improving classification accuracy for such data. In this study, a DNN with a novel feature selection method (DNN-FS) is developed for the high dimensional whole-brain resting-state FC pattern classification of ASD patients vs. typical development (TD) controls. The feature selection method is able to help the DNN generate low dimensional high-quality representations of the whole-brain FC patterns by selecting features with high discriminating power from multiple trained sparse auto-encoders. For the comparison, a DNN without the feature selection method (DNN-woFS) is developed, and both of them are tested with different architectures (i.e., with different numbers of hidden layers/nodes). Results show that the best classification accuracy of 86.36% is generated by the DNN-FS approach with 3 hidden layers and 150 hidden nodes (3/150). Remarkably, DNN-FS outperforms DNN-woFS for all architectures studied. The most significant accuracy improvement was 9.09% with the 3/150 architecture. The method also outperforms other feature selection methods, e.g., two sample t -test and elastic net. In addition to improving the classification accuracy, a Fisher's score-based biomarker identification method based on the DNN is also developed, and used to identify 32 FCs related to ASD. These FCs come from or cross different pre-defined brain networks including the default-mode, cingulo-opercular, frontal-parietal, and cerebellum. Thirteen of them are statically significant between ASD and TD groups (two sample t -test p < 0.05) while 19 of them are not. The relationship between the statically significant FCs and the corresponding ASD behavior symptoms is discussed based on the literature and clinician's expert knowledge. Meanwhile, the potential reason of obtaining 19 FCs which are not statistically significant is also provided.

  6. Sandhill crane roost selection, human disturbance, and forage resources

    USGS Publications Warehouse

    Pearse, Aaron T.; Krapu, Gary; Brandt, David

    2017-01-01

    Sites used for roosting represent a key habitat requirement for many species of birds because availability and quality of roost sites can influence individual fitness. Birds select roost sites based on numerous factors, requirements, and motivations, and selection of roosts can be dynamic in time and space because of various ecological and environmental influences. For sandhill cranes (Antigone canadensis) at their main spring-staging area along the Platte River in south-central Nebraska, USA, past investigations of roosting cranes focused on physical channel characteristics related to perceived security as motivating roost distribution. We used 6,310 roost sites selected by 313 sandhill cranes over 5 spring migration seasons (2003–2007) to quantify resource selection functions of roost sites on the central Platte River using a discrete choice analysis. Sandhill cranes generally showed stronger selection for wider channels with shorter bank vegetation situated farther from potential human disturbance features such as roads, bridges, and dwellings. Furthermore, selection for roost sites with preferable physical characteristics (wide channels with short bank vegetation) was more resilient to nearby disturbance features than more narrow channels with taller bank vegetation. The amount of cornfields surrounding sandhill crane roost sites positively influenced relative probability of use but only for more narrow channels < 100 m and those with shorter bank vegetation. We confirmed key resource features that sandhill cranes selected at river channels along the Platte River, and after incorporating spatial variation due to human disturbance, our understanding of roost site selection was more robust, providing insights on how disturbance may interact with physical habitat features. Managers can use information on roost-site selection when developing plans to increase probability of crane use at existing roost sites and to identify new areas for potential use if existing sites become limited.

  7. Features of effective medical knowledge resources to support point of care learning: a focus group study.

    PubMed

    Cook, David A; Sorensen, Kristi J; Hersh, William; Berger, Richard A; Wilkinson, John M

    2013-01-01

    Health care professionals access various information sources to quickly answer questions that arise in clinical practice. The features that favorably influence the selection and use of knowledge resources remain unclear. We sought to better understand how clinicians select among the various knowledge resources available to them, and from this to derive a model for an effective knowledge resource. We conducted 11 focus groups at an academic medical center and outlying community sites. We included a purposive sample of 50 primary care and subspecialist internal medicine and family medicine physicians. We transcribed focus group discussions and analyzed these using a constant comparative approach to inductively identify features that influence the selection of knowledge resources. We identified nine features that influence users' selection of knowledge resources, namely efficiency (with sub-features of comprehensiveness, searchability, and brevity), integration with clinical workflow, credibility, user familiarity, capacity to identify a human expert, reflection of local care processes, optimization for the clinical question (e.g., diagnosis, treatment options, drug side effect), currency, and ability to support patient education. No single existing resource exemplifies all of these features. The influential features identified in this study will inform the development of knowledge resources, and could serve as a framework for future research in this field.

  8. Features of Effective Medical Knowledge Resources to Support Point of Care Learning: A Focus Group Study

    PubMed Central

    Cook, David A.; Sorensen, Kristi J.; Hersh, William; Berger, Richard A.; Wilkinson, John M.

    2013-01-01

    Objective Health care professionals access various information sources to quickly answer questions that arise in clinical practice. The features that favorably influence the selection and use of knowledge resources remain unclear. We sought to better understand how clinicians select among the various knowledge resources available to them, and from this to derive a model for an effective knowledge resource. Methods We conducted 11 focus groups at an academic medical center and outlying community sites. We included a purposive sample of 50 primary care and subspecialist internal medicine and family medicine physicians. We transcribed focus group discussions and analyzed these using a constant comparative approach to inductively identify features that influence the selection of knowledge resources. Results We identified nine features that influence users' selection of knowledge resources, namely efficiency (with sub-features of comprehensiveness, searchability, and brevity), integration with clinical workflow, credibility, user familiarity, capacity to identify a human expert, reflection of local care processes, optimization for the clinical question (e.g., diagnosis, treatment options, drug side effect), currency, and ability to support patient education. No single existing resource exemplifies all of these features. Conclusion The influential features identified in this study will inform the development of knowledge resources, and could serve as a framework for future research in this field. PMID:24282535

  9. Case-based fracture image retrieval.

    PubMed

    Zhou, Xin; Stern, Richard; Müller, Henning

    2012-05-01

    Case-based fracture image retrieval can assist surgeons in decisions regarding new cases by supplying visually similar past cases. This tool may guide fracture fixation and management through comparison of long-term outcomes in similar cases. A fracture image database collected over 10 years at the orthopedic service of the University Hospitals of Geneva was used. This database contains 2,690 fracture cases associated with 43 classes (based on the AO/OTA classification). A case-based retrieval engine was developed and evaluated using retrieval precision as a performance metric. Only cases in the same class as the query case are considered as relevant. The scale-invariant feature transform (SIFT) is used for image analysis. Performance evaluation was computed in terms of mean average precision (MAP) and early precision (P10, P30). Retrieval results produced with the GNU image finding tool (GIFT) were used as a baseline. Two sampling strategies were evaluated. One used a dense 40 × 40 pixel grid sampling, and the second one used the standard SIFT features. Based on dense pixel grid sampling, three unsupervised feature selection strategies were introduced to further improve retrieval performance. With dense pixel grid sampling, the image is divided into 1,600 (40 × 40) square blocks. The goal is to emphasize the salient regions (blocks) and ignore irrelevant regions. Regions are considered as important when a high variance of the visual features is found. The first strategy is to calculate the variance of all descriptors on the global database. The second strategy is to calculate the variance of all descriptors for each case. A third strategy is to perform a thumbnail image clustering in a first step and then to calculate the variance for each cluster. Finally, a fusion between a SIFT-based system and GIFT is performed. A first comparison on the selection of sampling strategies using SIFT features shows that dense sampling using a pixel grid (MAP = 0.18) outperformed the SIFT detector-based sampling approach (MAP = 0.10). In a second step, three unsupervised feature selection strategies were evaluated. A grid parameter search is applied to optimize parameters for feature selection and clustering. Results show that using half of the regions (700 or 800) obtains the best performance for all three strategies. Increasing the number of clusters in clustering can also improve the retrieval performance. The SIFT descriptor variance in each case gave the best indication of saliency for the regions (MAP = 0.23), better than the other two strategies (MAP = 0.20 and 0.21). Combining GIFT (MAP = 0.23) and the best SIFT strategy (MAP = 0.23) produced significantly better results (MAP = 0.27) than each system alone. A case-based fracture retrieval engine was developed and is available for online demonstration. SIFT is used to extract local features, and three feature selection strategies were introduced and evaluated. A baseline using the GIFT system was used to evaluate the salient point-based approaches. Without supervised learning, SIFT-based systems with optimized parameters slightly outperformed the GIFT system. A fusion of the two approaches shows that the information contained in the two approaches is complementary. Supervised learning on the feature space is foreseen as the next step of this study.

  10. The Theory-based Influence of Map Features on Risk Beliefs: Self-reports of What is Seen and Understood for Maps Depicting an Environmental Health Hazard

    PubMed Central

    Vatovec, Christine

    2013-01-01

    Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. We report results from thirteen cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed three formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (pre-attentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared to abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: pre-attentive “incremental risk” meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals. PMID:22715919

  11. The theory-based influence of map features on risk beliefs: self-reports of what is seen and understood for maps depicting an environmental health hazard.

    PubMed

    Severtson, Dolores J; Vatovec, Christine

    2012-08-01

    Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. The authors report results from 13 cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed 3 formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (preattentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared with abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: preattentive "incremental risk" meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals.

  12. Intelligent feature selection techniques for pattern classification of Lamb wave signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinders, Mark K.; Miller, Corey A.

    2014-02-18

    Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crossholemore » tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it’s never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes “line up” in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.« less

  13. Question analysis for Indonesian comparative question

    NASA Astrophysics Data System (ADS)

    Saelan, A.; Purwarianti, A.; Widyantoro, D. H.

    2017-01-01

    Information seeking is one of human needs today. Comparing things using search engine surely take more times than search only one thing. In this paper, we analyzed comparative questions for comparative question answering system. Comparative question is a question that comparing two or more entities. We grouped comparative questions into 5 types: selection between mentioned entities, selection between unmentioned entities, selection between any entity, comparison, and yes or no question. Then we extracted 4 types of information from comparative questions: entity, aspect, comparison, and constraint. We built classifiers for classification task and information extraction task. Features used for classification task are bag of words, whether for information extraction, we used lexical, 2 previous and following words lexical, and previous label as features. We tried 2 scenarios: classification first and extraction first. For classification first, we used classification result as a feature for extraction. Otherwise, for extraction first, we used extraction result as features for classification. We found that the result would be better if we do extraction first before classification. For the extraction task, classification using SMO gave the best result (88.78%), while for classification, it is better to use naïve bayes (82.35%).

  14. Quantitative forecasting of PTSD from early trauma responses: a Machine Learning application.

    PubMed

    Galatzer-Levy, Isaac R; Karstoft, Karen-Inge; Statnikov, Alexander; Shalev, Arieh Y

    2014-12-01

    There is broad interest in predicting the clinical course of mental disorders from early, multimodal clinical and biological information. Current computational models, however, constitute a significant barrier to realizing this goal. The early identification of trauma survivors at risk of post-traumatic stress disorder (PTSD) is plausible given the disorder's salient onset and the abundance of putative biological and clinical risk indicators. This work evaluates the ability of Machine Learning (ML) forecasting approaches to identify and integrate a panel of unique predictive characteristics and determine their accuracy in forecasting non-remitting PTSD from information collected within 10 days of a traumatic event. Data on event characteristics, emergency department observations, and early symptoms were collected in 957 trauma survivors, followed for fifteen months. An ML feature selection algorithm identified a set of predictors that rendered all others redundant. Support Vector Machines (SVMs) as well as other ML classification algorithms were used to evaluate the forecasting accuracy of i) ML selected features, ii) all available features without selection, and iii) Acute Stress Disorder (ASD) symptoms alone. SVM also compared the prediction of a) PTSD diagnostic status at 15 months to b) posterior probability of membership in an empirically derived non-remitting PTSD symptom trajectory. Results are expressed as mean Area Under Receiver Operating Characteristics Curve (AUC). The feature selection algorithm identified 16 predictors, present in ≥ 95% cross-validation trials. The accuracy of predicting non-remitting PTSD from that set (AUC = .77) did not differ from predicting from all available information (AUC = .78). Predicting from ASD symptoms was not better then chance (AUC = .60). The prediction of PTSD status was less accurate than that of membership in a non-remitting trajectory (AUC = .71). ML methods may fill a critical gap in forecasting PTSD. The ability to identify and integrate unique risk indicators makes this a promising approach for developing algorithms that infer probabilistic risk of chronic posttraumatic stress psychopathology based on complex sources of biological, psychological, and social information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Sensor feature fusion for detecting buried objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.

    1993-04-01

    Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in amore » two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.« less

  16. A Proposal for IoT Dynamic Routes Selection Based on Contextual Information

    PubMed Central

    Filho, Raimir Holanda; Rabelo, Ricardo de A. L.; Sousa, Natanael de C.; Filho, José C. C. L. S.

    2018-01-01

    The Internet of Things (IoT) is based on interconnection of intelligent and addressable devices, allowing their autonomy and proactive behavior with Internet connectivity. Data dissemination in IoT usually depends on the application and requires context-aware routing protocols that must include auto-configuration features (which adapt the behavior of the network at runtime, based on context information). This paper proposes an approach for IoT route selection using fuzzy logic in order to attain the requirements of specific applications. In this case, fuzzy logic is used to translate in math terms the imprecise information expressed by a set of linguistic rules. For this purpose, four Objective Functions (OFs) are proposed for the Routing Protocol for Low Power and Loss Networks (RPL); such OFs are dynamically selected based on context information. The aforementioned OFs are generated from the fusion of the following metrics: Expected Transmission Count (ETX), Number of Hops (NH) and Energy Consumed (EC). The experiments performed through simulation, associated with the statistical data analysis, conclude that this proposal provides high reliability by successfully delivering nearly 100% of data packets, low delay for data delivery and increase in QoS. In addition, an 30% improvement is attained in the network life time when using one of proposed objective function, keeping the devices alive for longer duration. PMID:29373499

  17. A novel feature extraction approach for microarray data based on multi-algorithm fusion

    PubMed Central

    Jiang, Zhu; Xu, Rong

    2015-01-01

    Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions. PMID:25780277

  18. A novel feature extraction approach for microarray data based on multi-algorithm fusion.

    PubMed

    Jiang, Zhu; Xu, Rong

    2015-01-01

    Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.

  19. An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data.

    PubMed

    Wang, Kung-Jeng; Makond, Bunjira; Wang, Kung-Min

    2013-11-09

    Breast cancer is one of the most critical cancers and is a major cause of cancer death among women. It is essential to know the survivability of the patients in order to ease the decision making process regarding medical treatment and financial preparation. Recently, the breast cancer data sets have been imbalanced (i.e., the number of survival patients outnumbers the number of non-survival patients) whereas the standard classifiers are not applicable for the imbalanced data sets. The methods to improve survivability prognosis of breast cancer need for study. Two well-known five-year prognosis models/classifiers [i.e., logistic regression (LR) and decision tree (DT)] are constructed by combining synthetic minority over-sampling technique (SMOTE), cost-sensitive classifier technique (CSC), under-sampling, bagging, and boosting. The feature selection method is used to select relevant variables, while the pruning technique is applied to obtain low information-burden models. These methods are applied on data obtained from the Surveillance, Epidemiology, and End Results database. The improvements of survivability prognosis of breast cancer are investigated based on the experimental results. Experimental results confirm that the DT and LR models combined with SMOTE, CSC, and under-sampling generate higher predictive performance consecutively than the original ones. Most of the time, DT and LR models combined with SMOTE and CSC use less informative burden/features when a feature selection method and a pruning technique are applied. LR is found to have better statistical power than DT in predicting five-year survivability. CSC is superior to SMOTE, under-sampling, bagging, and boosting to improve the prognostic performance of DT and LR.

  20. An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data

    PubMed Central

    2013-01-01

    Background Breast cancer is one of the most critical cancers and is a major cause of cancer death among women. It is essential to know the survivability of the patients in order to ease the decision making process regarding medical treatment and financial preparation. Recently, the breast cancer data sets have been imbalanced (i.e., the number of survival patients outnumbers the number of non-survival patients) whereas the standard classifiers are not applicable for the imbalanced data sets. The methods to improve survivability prognosis of breast cancer need for study. Methods Two well-known five-year prognosis models/classifiers [i.e., logistic regression (LR) and decision tree (DT)] are constructed by combining synthetic minority over-sampling technique (SMOTE) ,cost-sensitive classifier technique (CSC), under-sampling, bagging, and boosting. The feature selection method is used to select relevant variables, while the pruning technique is applied to obtain low information-burden models. These methods are applied on data obtained from the Surveillance, Epidemiology, and End Results database. The improvements of survivability prognosis of breast cancer are investigated based on the experimental results. Results Experimental results confirm that the DT and LR models combined with SMOTE, CSC, and under-sampling generate higher predictive performance consecutively than the original ones. Most of the time, DT and LR models combined with SMOTE and CSC use less informative burden/features when a feature selection method and a pruning technique are applied. Conclusions LR is found to have better statistical power than DT in predicting five-year survivability. CSC is superior to SMOTE, under-sampling, bagging, and boosting to improve the prognostic performance of DT and LR. PMID:24207108

  1. Efficacy of texture, shape, and intensity features for robust posterior-fossa tumor segmentation in MRI

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Iftekharuddin, K. M.; Ogg, R. J.; Laningham, F. H.

    2009-02-01

    Our previous works suggest that fractal-based texture features are very useful for detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. In this work, we investigate and compare efficacy of our texture features such as fractal and multifractional Brownian motion (mBm), and intensity along with another useful level-set based shape feature in PF tumor segmentation. We study feature selection and ranking using Kullback -Leibler Divergence (KLD) and subsequent tumor segmentation; all in an integrated Expectation Maximization (EM) framework. We study the efficacy of all four features in both multimodality as well as disparate MRI modalities such as T1, T2 and FLAIR. Both KLD feature plots and information theoretic entropy measure suggest that mBm feature offers the maximum separation between tumor and non-tumor tissues in T1 and FLAIR MRI modalities. The same metrics show that intensity feature offers the maximum separation between tumor and non-tumor tissue in T2 MRI modality. The efficacies of these features are further validated in segmenting PF tumor using both single modality and multimodality MRI for six pediatric patients with over 520 real MR images.

  2. Vision-guided gripping of a cylinder

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1991-01-01

    The motivation for vision-guided servoing is taken from tasks in automated or telerobotic space assembly and construction. Vision-guided servoing requires the ability to perform rapid pose estimates and provide predictive feature tracking. Monocular information from a gripper-mounted camera is used to servo the gripper to grasp a cylinder. The procedure is divided into recognition and servo phases. The recognition stage verifies the presence of a cylinder in the camera field of view. Then an initial pose estimate is computed and uncluttered scan regions are selected. The servo phase processes only the selected scan regions of the image. Given the knowledge, from the recognition phase, that there is a cylinder in the image and knowing the radius of the cylinder, 4 of the 6 pose parameters can be estimated with minimal computation. The relative motion of the cylinder is obtained by using the current pose and prior pose estimates. The motion information is then used to generate a predictive feature-based trajectory for the path of the gripper.

  3. Predominant information quality scheme for the essential amino acids: an information-theoretical analysis.

    PubMed

    Esquivel, Rodolfo O; Molina-Espíritu, Moyocoyani; López-Rosa, Sheila; Soriano-Correa, Catalina; Barrientos-Salcedo, Carolina; Kohout, Miroslav; Dehesa, Jesús S

    2015-08-24

    In this work we undertake a pioneer information-theoretical analysis of 18 selected amino acids extracted from a natural protein, bacteriorhodopsin (1C3W). The conformational structures of each amino acid are analyzed by use of various quantum chemistry methodologies at high levels of theory: HF, M062X and CISD(Full). The Shannon entropy, Fisher information and disequilibrium are determined to grasp the spatial spreading features of delocalizability, order and uniformity of the optimized structures. These three entropic measures uniquely characterize all amino acids through a predominant information-theoretic quality scheme (PIQS), which gathers all chemical families by means of three major spreading features: delocalization, narrowness and uniformity. This scheme recognizes four major chemical families: aliphatic (delocalized), aromatic (delocalized), electro-attractive (narrowed) and tiny (uniform). All chemical families recognized by the existing energy-based classifications are embraced by this entropic scheme. Finally, novel chemical patterns are shown in the information planes associated with the PIQS entropic measures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. System Complexity Reduction via Feature Selection

    ERIC Educational Resources Information Center

    Deng, Houtao

    2011-01-01

    This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree…

  5. Feature selection for elderly faller classification based on wearable sensors.

    PubMed

    Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D

    2017-05-30

    Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data. A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified holdout and repeated random sampling. The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95% specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum, mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration; mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier. Feature selection provided models with smaller feature sets and improved faller classification compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head accelerometer features. Feature selection should be considered as an important step in faller classification using wearable sensors.

  6. Automated Depression Analysis Using Convolutional Neural Networks from Speech.

    PubMed

    He, Lang; Cao, Cui

    2018-05-28

    To help clinicians to efficiently diagnose the severity of a person's depression, the affective computing community and the artificial intelligence field have shown a growing interest in designing automated systems. The speech features have useful information for the diagnosis of depression. However, manually designing and domain knowledge are still important for the selection of the feature, which makes the process labor consuming and subjective. In recent years, deep-learned features based on neural networks have shown superior performance to hand-crafted features in various areas. In this paper, to overcome the difficulties mentioned above, we propose a combination of hand-crafted and deep-learned features which can effectively measure the severity of depression from speech. In the proposed method, Deep Convolutional Neural Networks (DCNN) are firstly built to learn deep-learned features from spectrograms and raw speech waveforms. Then we manually extract the state-of-the-art texture descriptors named median robust extended local binary patterns (MRELBP) from spectrograms. To capture the complementary information within the hand-crafted features and deep-learned features, we propose joint fine-tuning layers to combine the raw and spectrogram DCNN to boost the depression recognition performance. Moreover, to address the problems with small samples, a data augmentation method was proposed. Experiments conducted on AVEC2013 and AVEC2014 depression databases show that our approach is robust and effective for the diagnosis of depression when compared to state-of-the-art audio-based methods. Copyright © 2018. Published by Elsevier Inc.

  7. An unsupervised technique for optimal feature selection in attribute profiles for spectral-spatial classification of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Kaushal; Patra, Swarnajyoti

    2018-04-01

    Inclusion of spatial information along with spectral features play a significant role in classification of remote sensing images. Attribute profiles have already proved their ability to represent spatial information. In order to incorporate proper spatial information, multiple attributes are required and for each attribute large profiles need to be constructed by varying the filter parameter values within a wide range. Thus, the constructed profiles that represent spectral-spatial information of an hyperspectral image have huge dimension which leads to Hughes phenomenon and increases computational burden. To mitigate these problems, this work presents an unsupervised feature selection technique that selects a subset of filtered image from the constructed high dimensional multi-attribute profile which are sufficiently informative to discriminate well among classes. In this regard the proposed technique exploits genetic algorithms (GAs). The fitness function of GAs are defined in an unsupervised way with the help of mutual information. The effectiveness of the proposed technique is assessed using one-against-all support vector machine classifier. The experiments conducted on three hyperspectral data sets show the robustness of the proposed method in terms of computation time and classification accuracy.

  8. Ants learn to rely on more informative attributes during decision-making.

    PubMed

    Sasaki, Takao; Pratt, Stephen C

    2013-01-01

    Evolutionary theory predicts that animals act to maximize their fitness when choosing among a set of options, such as what to eat or where to live. Making the best choice is challenging when options vary in multiple attributes, and animals have evolved a variety of heuristics to simplify the task. Many of these involve ranking or weighting attributes according to their importance. Because the importance of attributes can vary across time and place, animals might benefit by adjusting weights accordingly. Here, we show that colonies of the ant Temnothorax rugatulus use their experience during nest site selection to increase weights on more informative nest attributes. These ants choose their rock crevice nests on the basis of multiple features. After exposure to an environment where only one attribute differentiated options, colonies increased their reliance on this attribute relative to a second attribute. Although many species show experience-based changes in selectivity based on a single feature, this is the first evidence in animals for adaptive changes in the weighting of multiple attributes. These results show that animal collectives, like individuals, change decision-making strategies according to experience. We discuss how these colony-level changes might emerge from individual behaviour.

  9. Hyperspectral image visualization based on a human visual model

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqin; Peng, Honghong; Fairchild, Mark D.; Montag, Ethan D.

    2008-02-01

    Hyperspectral image data can provide very fine spectral resolution with more than 200 bands, yet presents challenges for visualization techniques for displaying such rich information on a tristimulus monitor. This study developed a visualization technique by taking advantage of both the consistent natural appearance of a true color image and the feature separation of a PCA image based on a biologically inspired visual attention model. The key part is to extract the informative regions in the scene. The model takes into account human contrast sensitivity functions and generates a topographic saliency map for both images. This is accomplished using a set of linear "center-surround" operations simulating visual receptive fields as the difference between fine and coarse scales. A difference map between the saliency map of the true color image and that of the PCA image is derived and used as a mask on the true color image to select a small number of interesting locations where the PCA image has more salient features than available in the visible bands. The resulting representations preserve hue for vegetation, water, road etc., while the selected attentional locations may be analyzed by more advanced algorithms.

  10. A hybrid feature selection method using multiclass SVM for diagnosis of erythemato-squamous disease

    NASA Astrophysics Data System (ADS)

    Maryam, Setiawan, Noor Akhmad; Wahyunggoro, Oyas

    2017-08-01

    The diagnosis of erythemato-squamous disease is a complex problem and difficult to detect in dermatology. Besides that, it is a major cause of skin cancer. Data mining implementation in the medical field helps expert to diagnose precisely, accurately, and inexpensively. In this research, we use data mining technique to developed a diagnosis model based on multiclass SVM with a novel hybrid feature selection method to diagnose erythemato-squamous disease. Our hybrid feature selection method, named ChiGA (Chi Square and Genetic Algorithm), uses the advantages from filter and wrapper methods to select the optimal feature subset from original feature. Chi square used as filter method to remove redundant features and GA as wrapper method to select the ideal feature subset with SVM used as classifier. Experiment performed with 10 fold cross validation on erythemato-squamous diseases dataset taken from University of California Irvine (UCI) machine learning database. The experimental result shows that the proposed model based multiclass SVM with Chi Square and GA can give an optimum feature subset. There are 18 optimum features with 99.18% accuracy.

  11. Feature-based memory-driven attentional capture: visual working memory content affects visual attention.

    PubMed

    Olivers, Christian N L; Meijer, Frank; Theeuwes, Jan

    2006-10-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by an additional memory task. Singleton distractors interfered even more when they were identical or related to the object held in memory, but only when it was difficult to verbalize the memory content. Furthermore, this content-specific interaction occurred for features that were relevant to the memory task but not for irrelevant features of the same object or for once-remembered objects that could be forgotten. Finally, memory-related distractors attracted more eye movements but did not result in longer fixations. The results demonstrate memory-driven attentional capture on the basis of content-specific representations. Copyright 2006 APA.

  12. Feature Grouping and Selection Over an Undirected Graph.

    PubMed

    Yang, Sen; Yuan, Lei; Lai, Ying-Cheng; Shen, Xiaotong; Wonka, Peter; Ye, Jieping

    2012-01-01

    High-dimensional regression/classification continues to be an important and challenging problem, especially when features are highly correlated. Feature selection, combined with additional structure information on the features has been considered to be promising in promoting regression/classification performance. Graph-guided fused lasso (GFlasso) has recently been proposed to facilitate feature selection and graph structure exploitation, when features exhibit certain graph structures. However, the formulation in GFlasso relies on pairwise sample correlations to perform feature grouping, which could introduce additional estimation bias. In this paper, we propose three new feature grouping and selection methods to resolve this issue. The first method employs a convex function to penalize the pairwise l ∞ norm of connected regression/classification coefficients, achieving simultaneous feature grouping and selection. The second method improves the first one by utilizing a non-convex function to reduce the estimation bias. The third one is the extension of the second method using a truncated l 1 regularization to further reduce the estimation bias. The proposed methods combine feature grouping and feature selection to enhance estimation accuracy. We employ the alternating direction method of multipliers (ADMM) and difference of convex functions (DC) programming to solve the proposed formulations. Our experimental results on synthetic data and two real datasets demonstrate the effectiveness of the proposed methods.

  13. Feature Selection Method Based on Neighborhood Relationships: Applications in EEG Signal Identification and Chinese Character Recognition

    PubMed Central

    Zhao, Yu-Xiang; Chou, Chien-Hsing

    2016-01-01

    In this study, a new feature selection algorithm, the neighborhood-relationship feature selection (NRFS) algorithm, is proposed for identifying rat electroencephalogram signals and recognizing Chinese characters. In these two applications, dependent relationships exist among the feature vectors and their neighboring feature vectors. Therefore, the proposed NRFS algorithm was designed for solving this problem. By applying the NRFS algorithm, unselected feature vectors have a high priority of being added into the feature subset if the neighboring feature vectors have been selected. In addition, selected feature vectors have a high priority of being eliminated if the neighboring feature vectors are not selected. In the experiments conducted in this study, the NRFS algorithm was compared with two feature algorithms. The experimental results indicated that the NRFS algorithm can extract the crucial frequency bands for identifying rat vigilance states and identifying crucial character regions for recognizing Chinese characters. PMID:27314346

  14. The Interaction of Spatial and Object Pathways: Evidence from Balint's Syndrome.

    PubMed

    Robertson, L; Treisman, A; Friedman-Hill, S; Grabowecky, M

    1997-05-01

    An earlier report described a patient (RM) with bilateral parietal damage who showed severe binding problems between shape and color and shape and size (Friedman-Hill, Robertson, & Treisman, 1995). When shown two different-colored letters, RM reported a large number of illusory conjunctions (ICs) combining the shape of one letter with the color of the other, even when he was looking directly at one of them and had as long as 10 sec to respond. The lesions also produced severe deficits in locating and reaching for objects, and difficulty in seeing more than one object at a time, resulting in a neuropsychological diagnosis of Balint's syndrome or dorsal simultanagnosia. The pattern of deficits supported predictions of Treisman's Feature Integration Theory (FIT) that the loss of spatial information would lead to binding errors. They further suggested that the spatial information used in binding depends on intact parietal function. In the present paper we extend these findings and examine other deficits in RM that would be predicted by FIT. We show that: (1) Object individuation is impaired, making it impossible for him correctly to count more than one or two objects, even when he is aware that more are present. (2) Visual search for a target defined by a conjunction of features (requiring binding) is impaired, while the detection of a target defined by a unique feature is not. Search for the absence of a feature (0 among Qs) is also severely impaired, while search for the presence (Q among 0s) is not. Feature absence can only be detected when all the present features are bound to the nontarget items. (3) RM's deficits cannot be attributed to a general binding problem: binding errors were far more likely with simultaneous presentation where spatial information was required than with sequential presentation where time could be used as the medium for binding. (4) Selection for attention was severely impaired, whether it was based on the position of a marker or on some other feature (color). (5) Spatial information seems to exist that RM cannot access, suggesting that feature binding relies on a relatively late stage where implicit spatial information is made explicitly accessible. The data converge to support our conclusions that explicit spatial knowledge is necessary for the perception of accurately bound features, for accurate attentional selection, and for accurate and rapid search for a conjunction of features in a multiitem display. It is obviously necessary for directing attention to spatial locations, but the consequences of impairments in this ability seem also to affect object selection, object individuation, and feature integration. Thus, the functional effects of parietal damage are not limited to the spatial and attentional problems that have long been described in patients with Balint's syndrome. Damage to parietal areas also affects object perception through damage to spatial representations that are fundamental for spatial awareness.

  15. Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm.

    PubMed

    Martinez, Emmanuel; Alvarez, Mario Moises; Trevino, Victor

    2010-08-01

    Biomarker discovery is a typical application from functional genomics. Due to the large number of genes studied simultaneously in microarray data, feature selection is a key step. Swarm intelligence has emerged as a solution for the feature selection problem. However, swarm intelligence settings for feature selection fail to select small features subsets. We have proposed a swarm intelligence feature selection algorithm based on the initialization and update of only a subset of particles in the swarm. In this study, we tested our algorithm in 11 microarray datasets for brain, leukemia, lung, prostate, and others. We show that the proposed swarm intelligence algorithm successfully increase the classification accuracy and decrease the number of selected features compared to other swarm intelligence methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. A mixture model with a reference-based automatic selection of components for disease classification from protein and/or gene expression levels

    PubMed Central

    2011-01-01

    Background Bioinformatics data analysis is often using linear mixture model representing samples as additive mixture of components. Properly constrained blind matrix factorization methods extract those components using mixture samples only. However, automatic selection of extracted components to be retained for classification analysis remains an open issue. Results The method proposed here is applied to well-studied protein and genomic datasets of ovarian, prostate and colon cancers to extract components for disease prediction. It achieves average sensitivities of: 96.2 (sd = 2.7%), 97.6% (sd = 2.8%) and 90.8% (sd = 5.5%) and average specificities of: 93.6% (sd = 4.1%), 99% (sd = 2.2%) and 79.4% (sd = 9.8%) in 100 independent two-fold cross-validations. Conclusions We propose an additive mixture model of a sample for feature extraction using, in principle, sparseness constrained factorization on a sample-by-sample basis. As opposed to that, existing methods factorize complete dataset simultaneously. The sample model is composed of a reference sample representing control and/or case (disease) groups and a test sample. Each sample is decomposed into two or more components that are selected automatically (without using label information) as control specific, case specific and not differentially expressed (neutral). The number of components is determined by cross-validation. Automatic assignment of features (m/z ratios or genes) to particular component is based on thresholds estimated from each sample directly. Due to the locality of decomposition, the strength of the expression of each feature across the samples can vary. Yet, they will still be allocated to the related disease and/or control specific component. Since label information is not used in the selection process, case and control specific components can be used for classification. That is not the case with standard factorization methods. Moreover, the component selected by proposed method as disease specific can be interpreted as a sub-mode and retained for further analysis to identify potential biomarkers. As opposed to standard matrix factorization methods this can be achieved on a sample (experiment)-by-sample basis. Postulating one or more components with indifferent features enables their removal from disease and control specific components on a sample-by-sample basis. This yields selected components with reduced complexity and generally, it increases prediction accuracy. PMID:22208882

  17. Integrating Genetic, Neuropsychological and Neuroimaging Data to Model Early-Onset Obsessive Compulsive Disorder Severity

    PubMed Central

    Mas, Sergi; Gassó, Patricia; Morer, Astrid; Calvo, Anna; Bargalló, Nuria; Lafuente, Amalia; Lázaro, Luisa

    2016-01-01

    We propose an integrative approach that combines structural magnetic resonance imaging data (MRI), diffusion tensor imaging data (DTI), neuropsychological data, and genetic data to predict early-onset obsessive compulsive disorder (OCD) severity. From a cohort of 87 patients, 56 with complete information were used in the present analysis. First, we performed a multivariate genetic association analysis of OCD severity with 266 genetic polymorphisms. This association analysis was used to select and prioritize the SNPs that would be included in the model. Second, we split the sample into a training set (N = 38) and a validation set (N = 18). Third, entropy-based measures of information gain were used for feature selection with the training subset. Fourth, the selected features were fed into two supervised methods of class prediction based on machine learning, using the leave-one-out procedure with the training set. Finally, the resulting model was validated with the validation set. Nine variables were used for the creation of the OCD severity predictor, including six genetic polymorphisms and three variables from the neuropsychological data. The developed model classified child and adolescent patients with OCD by disease severity with an accuracy of 0.90 in the testing set and 0.70 in the validation sample. Above its clinical applicability, the combination of particular neuropsychological, neuroimaging, and genetic characteristics could enhance our understanding of the neurobiological basis of the disorder. PMID:27093171

  18. Computational Prediction of Protein Epsilon Lysine Acetylation Sites Based on a Feature Selection Method.

    PubMed

    Gao, JianZhao; Tao, Xue-Wen; Zhao, Jia; Feng, Yuan-Ming; Cai, Yu-Dong; Zhang, Ning

    2017-01-01

    Lysine acetylation, as one type of post-translational modifications (PTM), plays key roles in cellular regulations and can be involved in a variety of human diseases. However, it is often high-cost and time-consuming to use traditional experimental approaches to identify the lysine acetylation sites. Therefore, effective computational methods should be developed to predict the acetylation sites. In this study, we developed a position-specific method for epsilon lysine acetylation site prediction. Sequences of acetylated proteins were retrieved from the UniProt database. Various kinds of features such as position specific scoring matrix (PSSM), amino acid factors (AAF), and disorders were incorporated. A feature selection method based on mRMR (Maximum Relevance Minimum Redundancy) and IFS (Incremental Feature Selection) was employed. Finally, 319 optimal features were selected from total 541 features. Using the 319 optimal features to encode peptides, a predictor was constructed based on dagging. As a result, an accuracy of 69.56% with MCC of 0.2792 was achieved. We analyzed the optimal features, which suggested some important factors determining the lysine acetylation sites. We developed a position-specific method for epsilon lysine acetylation site prediction. A set of optimal features was selected. Analysis of the optimal features provided insights into the mechanism of lysine acetylation sites, providing guidance of experimental validation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Informative Top-k Retrieval for Advanced Skill Management

    NASA Astrophysics Data System (ADS)

    Colucci, Simona; di Noia, Tommaso; Ragone, Azzurra; Ruta, Michele; Straccia, Umberto; Tinelli, Eufemia

    The paper presents a knowledge-based framework for skills and talent management based on an advanced matchmaking between profiles of candidates and available job positions. Interestingly, informative content of top-k retrieval is enriched through semantic capabilities. The proposed approach allows to: (1) express a requested profile in terms of both hard constraints and soft ones; (2) provide a ranking function based also on qualitative attributes of a profile; (3) explain the resulting outcomes (given a job request, a motivation for the obtained score of each selected profile is provided). Top-k retrieval allows to select most promising candidates according to an ontology formalizing the domain knowledge. Such a knowledge is further exploited to provide a semantic-based explanation of missing or conflicting features in retrieved profiles. They also indicate additional profile characteristics emerging by the retrieval procedure for a further request refinement. A concrete case study followed by an exhaustive experimental campaign is reported to prove the approach effectiveness.

  20. A robust indicator based on singular value decomposition for flaw feature detection from noisy ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Cui, Ximing; Wang, Zhe; Kang, Yihua; Pu, Haiming; Deng, Zhiyang

    2018-05-01

    Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.

  1. Feature-selective Attention in Frontoparietal Cortex: Multivoxel Codes Adjust to Prioritize Task-relevant Information.

    PubMed

    Jackson, Jade; Rich, Anina N; Williams, Mark A; Woolgar, Alexandra

    2017-02-01

    Human cognition is characterized by astounding flexibility, enabling us to select appropriate information according to the objectives of our current task. A circuit of frontal and parietal brain regions, often referred to as the frontoparietal attention network or multiple-demand (MD) regions, are believed to play a fundamental role in this flexibility. There is evidence that these regions dynamically adjust their responses to selectively process information that is currently relevant for behavior, as proposed by the "adaptive coding hypothesis" [Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820-829, 2001]. Could this provide a neural mechanism for feature-selective attention, the process by which we preferentially process one feature of a stimulus over another? We used multivariate pattern analysis of fMRI data during a perceptually challenging categorization task to investigate whether the representation of visual object features in the MD regions flexibly adjusts according to task relevance. Participants were trained to categorize visually similar novel objects along two orthogonal stimulus dimensions (length/orientation) and performed short alternating blocks in which only one of these dimensions was relevant. We found that multivoxel patterns of activation in the MD regions encoded the task-relevant distinctions more strongly than the task-irrelevant distinctions: The MD regions discriminated between stimuli of different lengths when length was relevant and between the same objects according to orientation when orientation was relevant. The data suggest a flexible neural system that adjusts its representation of visual objects to preferentially encode stimulus features that are currently relevant for behavior, providing a neural mechanism for feature-selective attention.

  2. Forced to remember: when memory is biased by salient information.

    PubMed

    Santangelo, Valerio

    2015-04-15

    The last decades have seen a rapid growing in the attempt to understand the key factors involved in the internal memory representation of the external world. Visual salience have been found to provide a major contribution in predicting the probability for an item/object embedded in a complex setting (i.e., a natural scene) to be encoded and then remembered later on. Here I review the existing literature highlighting the impact of perceptual- (based on low-level sensory features) and semantics-related salience (based on high-level knowledge) on short-term memory representation, along with the neural mechanisms underpinning the interplay between these factors. The available evidence reveal that both perceptual- and semantics-related factors affect attention selection mechanisms during the encoding of natural scenes. Biasing internal memory representation, both perceptual and semantics factors increase the probability to remember high- to the detriment of low-saliency items. The available evidence also highlight an interplay between these factors, with a reduced impact of perceptual-related salience in biasing memory representation as a function of the increasing availability of semantics-related salient information. The neural mechanisms underpinning this interplay involve the activation of different portions of the frontoparietal attention control network. Ventral regions support the assignment of selection/encoding priorities based on high-level semantics, while the involvement of dorsal regions reflects priorities assignment based on low-level sensory features. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Regression-Based Approach For Feature Selection In Classification Issues. Application To Breast Cancer Detection And Recurrence

    NASA Astrophysics Data System (ADS)

    Belciug, Smaranda; Serbanescu, Mircea-Sebastian

    2015-09-01

    Feature selection is considered a key factor in classifications/decision problems. It is currently used in designing intelligent decision systems to choose the best features which allow the best performance. This paper proposes a regression-based approach to select the most important predictors to significantly increase the classification performance. Application to breast cancer detection and recurrence using publically available datasets proved the efficiency of this technique.

  4. Minimizing the semantic gap in biomedical content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Guan, Haiying; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2010-03-01

    A major challenge in biomedical Content-Based Image Retrieval (CBIR) is to achieve meaningful mappings that minimize the semantic gap between the high-level biomedical semantic concepts and the low-level visual features in images. This paper presents a comprehensive learning-based scheme toward meeting this challenge and improving retrieval quality. The article presents two algorithms: a learning-based feature selection and fusion algorithm and the Ranking Support Vector Machine (Ranking SVM) algorithm. The feature selection algorithm aims to select 'good' features and fuse them using different similarity measurements to provide a better representation of the high-level concepts with the low-level image features. Ranking SVM is applied to learn the retrieval rank function and associate the selected low-level features with query concepts, given the ground-truth ranking of the training samples. The proposed scheme addresses four major issues in CBIR to improve the retrieval accuracy: image feature extraction, selection and fusion, similarity measurements, the association of the low-level features with high-level concepts, and the generation of the rank function to support high-level semantic image retrieval. It models the relationship between semantic concepts and image features, and enables retrieval at the semantic level. We apply it to the problem of vertebra shape retrieval from a digitized spine x-ray image set collected by the second National Health and Nutrition Examination Survey (NHANES II). The experimental results show an improvement of up to 41.92% in the mean average precision (MAP) over conventional image similarity computation methods.

  5. In Support of a Distinction between Voluntary and Stimulus-Driven Control: A Review of the Literature on Proportion Congruent Effects.

    PubMed

    Bugg, Julie M; Crump, Matthew J C

    2012-01-01

    Cognitive control is by now a large umbrella term referring collectively to multiple processes that plan and coordinate actions to meet task goals. A common feature of paradigms that engage cognitive control is the task requirement to select relevant information despite a habitual tendency (or bias) to select goal-irrelevant information. At least since the 1970s, researchers have employed proportion congruent (PC) manipulations to experimentally establish selection biases and evaluate the mechanisms used to control attention. PC manipulations vary the frequency with which irrelevant information conflicts (i.e., is incongruent) with relevant information. The purpose of this review is to summarize the growing body of literature on PC effects across selective attention paradigms, beginning first with Stroop, and then describing parallel effects in flanker and task-switching paradigms. The review chronologically tracks the expansion of the PC manipulation from its initial implementation at the list-wide level, to more recent implementations at the item-specific and context-specific levels. An important theoretical aim is demonstrating that PC effects at different levels (e.g., list-wide vs. item or context-specific) support a distinction between voluntary forms of cognitive control, which operate based on anticipatory information, and relatively automatic or reflexive forms of cognitive control, which are rapidly triggered by the processing of particular stimuli or stimulus features. A further aim is to highlight those PC manipulations that allow researchers to dissociate stimulus-driven control from other stimulus-driven processes (e.g., S-R responding; episodic retrieval). We conclude by discussing the utility of PC manipulations for exploring the distinction between voluntary control and stimulus-driven control in other relevant paradigms.

  6. In Support of a Distinction between Voluntary and Stimulus-Driven Control: A Review of the Literature on Proportion Congruent Effects

    PubMed Central

    Bugg, Julie M.; Crump, Matthew J. C.

    2012-01-01

    Cognitive control is by now a large umbrella term referring collectively to multiple processes that plan and coordinate actions to meet task goals. A common feature of paradigms that engage cognitive control is the task requirement to select relevant information despite a habitual tendency (or bias) to select goal-irrelevant information. At least since the 1970s, researchers have employed proportion congruent (PC) manipulations to experimentally establish selection biases and evaluate the mechanisms used to control attention. PC manipulations vary the frequency with which irrelevant information conflicts (i.e., is incongruent) with relevant information. The purpose of this review is to summarize the growing body of literature on PC effects across selective attention paradigms, beginning first with Stroop, and then describing parallel effects in flanker and task-switching paradigms. The review chronologically tracks the expansion of the PC manipulation from its initial implementation at the list-wide level, to more recent implementations at the item-specific and context-specific levels. An important theoretical aim is demonstrating that PC effects at different levels (e.g., list-wide vs. item or context-specific) support a distinction between voluntary forms of cognitive control, which operate based on anticipatory information, and relatively automatic or reflexive forms of cognitive control, which are rapidly triggered by the processing of particular stimuli or stimulus features. A further aim is to highlight those PC manipulations that allow researchers to dissociate stimulus-driven control from other stimulus-driven processes (e.g., S-R responding; episodic retrieval). We conclude by discussing the utility of PC manipulations for exploring the distinction between voluntary control and stimulus-driven control in other relevant paradigms. PMID:23060836

  7. Peer-Based Social Media Features in Behavior Change Interventions: Systematic Review

    PubMed Central

    Weal, Mark; Morrison, Leanne; Yardley, Lucy

    2018-01-01

    Background Incorporating social media features into digital behavior change interventions (DBCIs) has the potential to contribute positively to their success. However, the lack of clear design principles to describe and guide the use of these features in behavioral interventions limits cross-study comparisons of their uses and effects. Objective The aim of this study was to provide a systematic review of DBCIs targeting modifiable behavioral risk factors that have included social media features as part of their intervention infrastructure. A taxonomy of social media features is presented to inform the development, description, and evaluation of behavioral interventions. Methods Search terms were used in 8 databases to identify DBCIs that incorporated social media features and targeted tobacco smoking, diet and nutrition, physical activities, or alcohol consumption. The screening and review process was performed by 2 independent researchers. Results A total of 5264 articles were screened, and 143 articles describing a total of 134 studies were retained for full review. The majority of studies (70%) reported positive outcomes, followed by 28% finding no effects with regard to their respective objectives and hypothesis, and 2% of the studies found that their interventions had negative outcomes. Few studies reported on the association between the inclusion of social media features and intervention effect. A taxonomy of social media features used in behavioral interventions has been presented with 36 social media features organized under 7 high-level categories. The taxonomy has been used to guide the analysis of this review. Conclusions Although social media features are commonly included in DBCIs, there is an acute lack of information with respect to their effect on outcomes and a lack of clear guidance to inform the selection process based on the features’ suitability for the different behaviors. The proposed taxonomy along with the set of recommendations included in this review will support future research aimed at isolating and reporting the effects of social media features on DBCIs, cross-study comparisons, and evaluations. PMID:29472174

  8. Classification of Medical Datasets Using SVMs with Hybrid Evolutionary Algorithms Based on Endocrine-Based Particle Swarm Optimization and Artificial Bee Colony Algorithms.

    PubMed

    Lin, Kuan-Cheng; Hsieh, Yi-Hsiu

    2015-10-01

    The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.

  9. Automatic classification of protein structures using physicochemical parameters.

    PubMed

    Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam

    2014-09-01

    Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.

  10. Feature selection for neural network based defect classification of ceramic components using high frequency ultrasound.

    PubMed

    Kesharaju, Manasa; Nagarajah, Romesh

    2015-09-01

    The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Structural MRI-based detection of Alzheimer's disease using feature ranking and classification error.

    PubMed

    Beheshti, Iman; Demirel, Hasan; Farokhian, Farnaz; Yang, Chunlan; Matsuda, Hiroshi

    2016-12-01

    This paper presents an automatic computer-aided diagnosis (CAD) system based on feature ranking for detection of Alzheimer's disease (AD) using structural magnetic resonance imaging (sMRI) data. The proposed CAD system is composed of four systematic stages. First, global and local differences in the gray matter (GM) of AD patients compared to the GM of healthy controls (HCs) are analyzed using a voxel-based morphometry technique. The aim is to identify significant local differences in the volume of GM as volumes of interests (VOIs). Second, the voxel intensity values of the VOIs are extracted as raw features. Third, the raw features are ranked using a seven-feature ranking method, namely, statistical dependency (SD), mutual information (MI), information gain (IG), Pearson's correlation coefficient (PCC), t-test score (TS), Fisher's criterion (FC), and the Gini index (GI). The features with higher scores are more discriminative. To determine the number of top features, the estimated classification error based on training set made up of the AD and HC groups is calculated, with the vector size that minimized this error selected as the top discriminative feature. Fourth, the classification is performed using a support vector machine (SVM). In addition, a data fusion approach among feature ranking methods is introduced to improve the classification performance. The proposed method is evaluated using a data-set from ADNI (130 AD and 130 HC) with 10-fold cross-validation. The classification accuracy of the proposed automatic system for the diagnosis of AD is up to 92.48% using the sMRI data. An automatic CAD system for the classification of AD based on feature-ranking method and classification errors is proposed. In this regard, seven-feature ranking methods (i.e., SD, MI, IG, PCC, TS, FC, and GI) are evaluated. The optimal size of top discriminative features is determined by the classification error estimation in the training phase. The experimental results indicate that the performance of the proposed system is comparative to that of state-of-the-art classification models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan

    2010-12-01

    This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.

  13. Analysis of underlying causes of inter-expert disagreement in retinopathy of prematurity diagnosis. Application of machine learning principles.

    PubMed

    Ataer-Cansizoglu, E; Kalpathy-Cramer, J; You, S; Keck, K; Erdogmus, D; Chiang, M F

    2015-01-01

    Inter-expert variability in image-based clinical diagnosis has been demonstrated in many diseases including retinopathy of prematurity (ROP), which is a disease affecting low birth weight infants and is a major cause of childhood blindness. In order to better understand the underlying causes of variability among experts, we propose a method to quantify the variability of expert decisions and analyze the relationship between expert diagnoses and features computed from the images. Identification of these features is relevant for development of computer-based decision support systems and educational systems in ROP, and these methods may be applicable to other diseases where inter-expert variability is observed. The experiments were carried out on a dataset of 34 retinal images, each with diagnoses provided independently by 22 experts. Analysis was performed using concepts of Mutual Information (MI) and Kernel Density Estimation. A large set of structural features (a total of 66) were extracted from retinal images. Feature selection was utilized to identify the most important features that correlated to actual clinical decisions by the 22 study experts. The best three features for each observer were selected by an exhaustive search on all possible feature subsets and considering joint MI as a relevance criterion. We also compared our results with the results of Cohen's Kappa [36] as an inter-rater reliability measure. The results demonstrate that a group of observers (17 among 22) decide consistently with each other. Mean and second central moment of arteriolar tortuosity is among the reasons of disagreement between this group and the rest of the observers, meaning that the group of experts consider amount of tortuosity as well as the variation of tortuosity in the image. Given a set of image-based features, the proposed analysis method can identify critical image-based features that lead to expert agreement and disagreement in diagnosis of ROP. Although tree-based features and various statistics such as central moment are not popular in the literature, our results suggest that they are important for diagnosis.

  14. Automatic migraine classification via feature selection committee and machine learning techniques over imaging and questionnaire data.

    PubMed

    Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya; Gomez-Beldarrain, Marian; Fernandez-Ruanova, Begonya; Garcia-Monco, Juan Carlos

    2017-04-13

    Feature selection methods are commonly used to identify subsets of relevant features to facilitate the construction of models for classification, yet little is known about how feature selection methods perform in diffusion tensor images (DTIs). In this study, feature selection and machine learning classification methods were tested for the purpose of automating diagnosis of migraines using both DTIs and questionnaire answers related to emotion and cognition - factors that influence of pain perceptions. We select 52 adult subjects for the study divided into three groups: control group (15), subjects with sporadic migraine (19) and subjects with chronic migraine and medication overuse (18). These subjects underwent magnetic resonance with diffusion tensor to see white matter pathway integrity of the regions of interest involved in pain and emotion. The tests also gather data about pathology. The DTI images and test results were then introduced into feature selection algorithms (Gradient Tree Boosting, L1-based, Random Forest and Univariate) to reduce features of the first dataset and classification algorithms (SVM (Support Vector Machine), Boosting (Adaboost) and Naive Bayes) to perform a classification of migraine group. Moreover we implement a committee method to improve the classification accuracy based on feature selection algorithms. When classifying the migraine group, the greatest improvements in accuracy were made using the proposed committee-based feature selection method. Using this approach, the accuracy of classification into three types improved from 67 to 93% when using the Naive Bayes classifier, from 90 to 95% with the support vector machine classifier, 93 to 94% in boosting. The features that were determined to be most useful for classification included are related with the pain, analgesics and left uncinate brain (connected with the pain and emotions). The proposed feature selection committee method improved the performance of migraine diagnosis classifiers compared to individual feature selection methods, producing a robust system that achieved over 90% accuracy in all classifiers. The results suggest that the proposed methods can be used to support specialists in the classification of migraines in patients undergoing magnetic resonance imaging.

  15. Pseudo CT estimation from MRI using patch-based random forest

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Lei, Yang; Shu, Hui-Kuo; Rossi, Peter; Mao, Hui; Shim, Hyunsuk; Curran, Walter J.; Liu, Tian

    2017-02-01

    Recently, MR simulators gain popularity because of unnecessary radiation exposure of CT simulators being used in radiation therapy planning. We propose a method for pseudo CT estimation from MR images based on a patch-based random forest. Patient-specific anatomical features are extracted from the aligned training images and adopted as signatures for each voxel. The most robust and informative features are identified using feature selection to train the random forest. The well-trained random forest is used to predict the pseudo CT of a new patient. This prediction technique was tested with human brain images and the prediction accuracy was assessed using the original CT images. Peak signal-to-noise ratio (PSNR) and feature similarity (FSIM) indexes were used to quantify the differences between the pseudo and original CT images. The experimental results showed the proposed method could accurately generate pseudo CT images from MR images. In summary, we have developed a new pseudo CT prediction method based on patch-based random forest, demonstrated its clinical feasibility, and validated its prediction accuracy. This pseudo CT prediction technique could be a useful tool for MRI-based radiation treatment planning and attenuation correction in a PET/MRI scanner.

  16. Effect of feature-selective attention on neuronal responses in macaque area MT

    PubMed Central

    Chen, X.; Hoffmann, K.-P.; Albright, T. D.

    2012-01-01

    Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color). PMID:22170961

  17. Effect of feature-selective attention on neuronal responses in macaque area MT.

    PubMed

    Chen, X; Hoffmann, K-P; Albright, T D; Thiele, A

    2012-03-01

    Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color).

  18. Built-up Areas Extraction in High Resolution SAR Imagery based on the method of Multiple Feature Weighted Fusion

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.

    2015-06-01

    Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.

  19. Text Classification for Assisting Moderators in Online Health Communities

    PubMed Central

    Huh, Jina; Yetisgen-Yildiz, Meliha; Pratt, Wanda

    2013-01-01

    Objectives Patients increasingly visit online health communities to get help on managing health. The large scale of these online communities makes it impossible for the moderators to engage in all conversations; yet, some conversations need their expertise. Our work explores low-cost text classification methods to this new domain of determining whether a thread in an online health forum needs moderators’ help. Methods We employed a binary classifier on WebMD’s online diabetes community data. To train the classifier, we considered three feature types: (1) word unigram, (2) sentiment analysis features, and (3) thread length. We applied feature selection methods based on χ2 statistics and under sampling to account for unbalanced data. We then performed a qualitative error analysis to investigate the appropriateness of the gold standard. Results Using sentiment analysis features, feature selection methods, and balanced training data increased the AUC value up to 0.75 and the F1-score up to 0.54 compared to the baseline of using word unigrams with no feature selection methods on unbalanced data (0.65 AUC and 0.40 F1-score). The error analysis uncovered additional reasons for why moderators respond to patients’ posts. Discussion We showed how feature selection methods and balanced training data can improve the overall classification performance. We present implications of weighing precision versus recall for assisting moderators of online health communities. Our error analysis uncovered social, legal, and ethical issues around addressing community members’ needs. We also note challenges in producing a gold standard, and discuss potential solutions for addressing these challenges. Conclusion Social media environments provide popular venues in which patients gain health-related information. Our work contributes to understanding scalable solutions for providing moderators’ expertise in these large-scale, social media environments. PMID:24025513

  20. An improved wrapper-based feature selection method for machinery fault diagnosis

    PubMed Central

    2017-01-01

    A major issue of machinery fault diagnosis using vibration signals is that it is over-reliant on personnel knowledge and experience in interpreting the signal. Thus, machine learning has been adapted for machinery fault diagnosis. The quantity and quality of the input features, however, influence the fault classification performance. Feature selection plays a vital role in selecting the most representative feature subset for the machine learning algorithm. In contrast, the trade-off relationship between capability when selecting the best feature subset and computational effort is inevitable in the wrapper-based feature selection (WFS) method. This paper proposes an improved WFS technique before integration with a support vector machine (SVM) model classifier as a complete fault diagnosis system for a rolling element bearing case study. The bearing vibration dataset made available by the Case Western Reserve University Bearing Data Centre was executed using the proposed WFS and its performance has been analysed and discussed. The results reveal that the proposed WFS secures the best feature subset with a lower computational effort by eliminating the redundancy of re-evaluation. The proposed WFS has therefore been found to be capable and efficient to carry out feature selection tasks. PMID:29261689

  1. A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets.

    PubMed

    Li, Der-Chiang; Liu, Chiao-Wen; Hu, Susan C

    2011-05-01

    Medical data sets are usually small and have very high dimensionality. Too many attributes will make the analysis less efficient and will not necessarily increase accuracy, while too few data will decrease the modeling stability. Consequently, the main objective of this study is to extract the optimal subset of features to increase analytical performance when the data set is small. This paper proposes a fuzzy-based non-linear transformation method to extend classification related information from the original data attribute values for a small data set. Based on the new transformed data set, this study applies principal component analysis (PCA) to extract the optimal subset of features. Finally, we use the transformed data with these optimal features as the input data for a learning tool, a support vector machine (SVM). Six medical data sets: Pima Indians' diabetes, Wisconsin diagnostic breast cancer, Parkinson disease, echocardiogram, BUPA liver disorders dataset, and bladder cancer cases in Taiwan, are employed to illustrate the approach presented in this paper. This research uses the t-test to evaluate the classification accuracy for a single data set; and uses the Friedman test to show the proposed method is better than other methods over the multiple data sets. The experiment results indicate that the proposed method has better classification performance than either PCA or kernel principal component analysis (KPCA) when the data set is small, and suggest creating new purpose-related information to improve the analysis performance. This paper has shown that feature extraction is important as a function of feature selection for efficient data analysis. When the data set is small, using the fuzzy-based transformation method presented in this work to increase the information available produces better results than the PCA and KPCA approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Guide for the Establishment and Evaluation of Services for Selective Dissemination of Information.

    ERIC Educational Resources Information Center

    Poncelet, J.

    This guide describes the components of a selective dissemination of information (SDI) service which is designed to give developing countries access to international sources of bibliographic information and provides guidelines for the establishment and evaluation of this type of service. It defines the main features of a computerized documentation…

  3. Metabolomic biosignature differentiates melancholic depressive patients from healthy controls.

    PubMed

    Liu, Yashu; Yieh, Lynn; Yang, Tao; Drinkenburg, Wilhelmus; Peeters, Pieter; Steckler, Thomas; Narayan, Vaibhav A; Wittenberg, Gayle; Ye, Jieping

    2016-08-23

    Major depressive disorder (MDD) is a heterogeneous disease at the level of clinical symptoms, and this heterogeneity is likely reflected at the level of biology. Two clinical subtypes within MDD that have garnered interest are "melancholic depression" and "anxious depression". Metabolomics enables us to characterize hundreds of small molecules that comprise the metabolome, and recent work suggests the blood metabolome may be able to inform treatment decisions for MDD, however work is at an early stage. Here we examine a metabolomics data set to (1) test whether clinically homogenous MDD subtypes are also more biologically homogeneous, and hence more predictiable, (2) devise a robust machine learning framework that preserves biological meaning, and (3) describe the metabolomic biosignature for melancholic depression. With the proposed computational system we achieves around 80 % classification accuracy, sensitivity and specificity for melancholic depression, but only ~72 % for anxious depression or MDD, suggesting the blood metabolome contains more information about melancholic depression.. We develop an ensemble feature selection framework (EFSF) in which features are first clustered, and learning then takes place on the cluster centroids, retaining information about correlated features during the feature selection process rather than discarding them as most machine learning methods will do. Analysis of the most discriminative feature clusters revealed differences in metabolic classes such as amino acids and lipids as well as pathways studied extensively in MDD such as the activation of cortisol in chronic stress. We find the greater clinical homogeneity does indeed lead to better prediction based on biological measurements in the case of melancholic depression. Melancholic depression is shown to be associated with changes in amino acids, catecholamines, lipids, stress hormones, and immune-related metabolites. The proposed computational framework can be adapted to analyze data from many other biomedical applications where the data has similar characteristics.

  4. Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data.

    PubMed

    Zhang, Chuncheng; Song, Sutao; Wen, Xiaotong; Yao, Li; Long, Zhiying

    2015-04-30

    Feature selection plays an important role in improving the classification accuracy of multivariate classification techniques in the context of fMRI-based decoding due to the "few samples and large features" nature of functional magnetic resonance imaging (fMRI) data. Recently, several sparse representation methods have been applied to the voxel selection of fMRI data. Despite the low computational efficiency of the sparse representation methods, they still displayed promise for applications that select features from fMRI data. In this study, we proposed the Laplacian smoothed L0 norm (LSL0) approach for feature selection of fMRI data. Based on the fast sparse decomposition using smoothed L0 norm (SL0) (Mohimani, 2007), the LSL0 method used the Laplacian function to approximate the L0 norm of sources. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of LSL0 for the sparse source estimation and feature selection. Simulated results indicated that LSL0 produced more accurate source estimation than SL0 at high noise levels. The classification accuracy using voxels that were selected by LSL0 was higher than that by SL0 in both simulated and real fMRI experiment. Moreover, both LSL0 and SL0 showed higher classification accuracy and required less time than ICA and t-test for the fMRI decoding. LSL0 outperformed SL0 in sparse source estimation at high noise level and in feature selection. Moreover, LSL0 and SL0 showed better performance than ICA and t-test for feature selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Using deep learning for detecting gender in adult chest radiographs

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2018-03-01

    In this paper, we present a method for automatically identifying the gender of an imaged person using their frontal chest x-ray images. Our work is motivated by the need to determine missing gender information in some datasets. The proposed method employs the technique of convolutional neural network (CNN) based deep learning and transfer learning to overcome the challenge of developing handcrafted features in limited data. Specifically, the method consists of four main steps: pre-processing, CNN feature extractor, feature selection, and classifier. The method is tested on a combined dataset obtained from several sources with varying acquisition quality resulting in different pre-processing steps that are applied for each. For feature extraction, we tested and compared four CNN architectures, viz., AlexNet, VggNet, GoogLeNet, and ResNet. We applied a feature selection technique, since the feature length is larger than the number of images. Two popular classifiers: SVM and Random Forest, are used and compared. We evaluated the classification performance by cross-validation and used seven performance measures. The best performer is the VggNet-16 feature extractor with the SVM classifier, with accuracy of 86.6% and ROC Area being 0.932 for 5-fold cross validation. We also discuss several misclassified cases and describe future work for performance improvement.

  6. GENIE: a hybrid genetic algorithm for feature classification in multispectral images

    NASA Astrophysics Data System (ADS)

    Perkins, Simon J.; Theiler, James P.; Brumby, Steven P.; Harvey, Neal R.; Porter, Reid B.; Szymanski, John J.; Bloch, Jeffrey J.

    2000-10-01

    We consider the problem of pixel-by-pixel classification of a multi- spectral image using supervised learning. Conventional spuervised classification techniques such as maximum likelihood classification and less conventional ones s uch as neural networks, typically base such classifications solely on the spectral components of each pixel. It is easy to see why: the color of a pixel provides a nice, bounded, fixed dimensional space in which these classifiers work well. It is often the case however, that spectral information alone is not sufficient to correctly classify a pixel. Maybe spatial neighborhood information is required as well. Or maybe the raw spectral components do not themselves make for easy classification, but some arithmetic combination of them would. In either of these cases we have the problem of selecting suitable spatial, spectral or spatio-spectral features that allow the classifier to do its job well. The number of all possible such features is extremely large. How can we select a suitable subset? We have developed GENIE, a hybrid learning system that combines a genetic algorithm that searches a space of image processing operations for a set that can produce suitable feature planes, and a more conventional classifier which uses those feature planes to output a final classification. In this paper we show that the use of a hybrid GA provides significant advantages over using either a GA alone or more conventional classification methods alone. We present results using high-resolution IKONOS data, looking for regions of burned forest and for roads.

  7. Mobile cosmetics advisor: an imaging based mobile service

    NASA Astrophysics Data System (ADS)

    Bhatti, Nina; Baker, Harlyn; Chao, Hui; Clearwater, Scott; Harville, Mike; Jain, Jhilmil; Lyons, Nic; Marguier, Joanna; Schettino, John; Süsstrunk, Sabine

    2010-01-01

    Selecting cosmetics requires visual information and often benefits from the assessments of a cosmetics expert. In this paper we present a unique mobile imaging application that enables women to use their cell phones to get immediate expert advice when selecting personal cosmetic products. We derive the visual information from analysis of camera phone images, and provide the judgment of the cosmetics specialist through use of an expert system. The result is a new paradigm for mobile interactions-image-based information services exploiting the ubiquity of camera phones. The application is designed to work with any handset over any cellular carrier using commonly available MMS and SMS features. Targeted at the unsophisticated consumer, it must be quick and easy to use, not requiring download capabilities or preplanning. Thus, all application processing occurs in the back-end system and not on the handset itself. We present the imaging pipeline technology and a comparison of the services' accuracy with respect to human experts.

  8. Effects of band selection on endmember extraction for forestry applications

    NASA Astrophysics Data System (ADS)

    Karathanassi, Vassilia; Andreou, Charoula; Andronis, Vassilis; Kolokoussis, Polychronis

    2014-10-01

    In spectral unmixing theory, data reduction techniques play an important role as hyperspectral imagery contains an immense amount of data, posing many challenging problems such as data storage, computational efficiency, and the so called "curse of dimensionality". Feature extraction and feature selection are the two main approaches for dimensionality reduction. Feature extraction techniques are used for reducing the dimensionality of the hyperspectral data by applying transforms on hyperspectral data. Feature selection techniques retain the physical meaning of the data by selecting a set of bands from the input hyperspectral dataset, which mainly contain the information needed for spectral unmixing. Although feature selection techniques are well-known for their dimensionality reduction potentials they are rarely used in the unmixing process. The majority of the existing state-of-the-art dimensionality reduction methods set criteria to the spectral information, which is derived by the whole wavelength, in order to define the optimum spectral subspace. These criteria are not associated with any particular application but with the data statistics, such as correlation and entropy values. However, each application is associated with specific land c over materials, whose spectral characteristics present variations in specific wavelengths. In forestry for example, many applications focus on tree leaves, in which specific pigments such as chlorophyll, xanthophyll, etc. determine the wavelengths where tree species, diseases, etc., can be detected. For such applications, when the unmixing process is applied, the tree species, diseases, etc., are considered as the endmembers of interest. This paper focuses on investigating the effects of band selection on the endmember extraction by exploiting the information of the vegetation absorbance spectral zones. More precisely, it is explored whether endmember extraction can be optimized when specific sets of initial bands related to leaf spectral characteristics are selected. Experiments comprise application of well-known signal subspace estimation and endmember extraction methods on a hyperspectral imagery that presents a forest area. Evaluation of the extracted endmembers showed that more forest species can be extracted as endmembers using selected bands.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditzler, Gregory; Morrison, J. Calvin; Lan, Yemin

    Background: Some of the current software tools for comparative metagenomics provide ecologists with the ability to investigate and explore bacterial communities using α– & β–diversity. Feature subset selection – a sub-field of machine learning – can also provide a unique insight into the differences between metagenomic or 16S phenotypes. In particular, feature subset selection methods can obtain the operational taxonomic units (OTUs), or functional features, that have a high-level of influence on the condition being studied. For example, in a previous study we have used information-theoretic feature selection to understand the differences between protein family abundances that best discriminate betweenmore » age groups in the human gut microbiome. Results: We have developed a new Python command line tool, which is compatible with the widely adopted BIOM format, for microbial ecologists that implements information-theoretic subset selection methods for biological data formats. We demonstrate the software tools capabilities on publicly available datasets. Conclusions: We have made the software implementation of Fizzy available to the public under the GNU GPL license. The standalone implementation can be found at http://github.com/EESI/Fizzy.« less

  10. Weighted score-level feature fusion based on Dempster-Shafer evidence theory for action recognition

    NASA Astrophysics Data System (ADS)

    Zhang, Guoliang; Jia, Songmin; Li, Xiuzhi; Zhang, Xiangyin

    2018-01-01

    The majority of human action recognition methods use multifeature fusion strategy to improve the classification performance, where the contribution of different features for specific action has not been paid enough attention. We present an extendible and universal weighted score-level feature fusion method using the Dempster-Shafer (DS) evidence theory based on the pipeline of bag-of-visual-words. First, the partially distinctive samples in the training set are selected to construct the validation set. Then, local spatiotemporal features and pose features are extracted from these samples to obtain evidence information. The DS evidence theory and the proposed rule of survival of the fittest are employed to achieve evidence combination and calculate optimal weight vectors of every feature type belonging to each action class. Finally, the recognition results are deduced via the weighted summation strategy. The performance of the established recognition framework is evaluated on Penn Action dataset and a subset of the joint-annotated human metabolome database (sub-JHMDB). The experiment results demonstrate that the proposed feature fusion method can adequately exploit the complementarity among multiple features and improve upon most of the state-of-the-art algorithms on Penn Action and sub-JHMDB datasets.

  11. Toward literature-based feature selection for diagnostic classification: a meta-analysis of resting-state fMRI in depression.

    PubMed

    Sundermann, Benedikt; Olde Lütke Beverborg, Mona; Pfleiderer, Bettina

    2014-01-01

    Information derived from functional magnetic resonance imaging (fMRI) during wakeful rest has been introduced as a candidate diagnostic biomarker in unipolar major depressive disorder (MDD). Multiple reports of resting state fMRI in MDD describe group effects. Such prior knowledge can be adopted to pre-select potentially discriminating features for diagnostic classification models with the aim to improve diagnostic accuracy. Purpose of this analysis was to consolidate spatial information about alterations of spontaneous brain activity in MDD, primarily to serve as feature selection for multivariate pattern analysis techniques (MVPA). Thirty two studies were included in final analyses. Coordinates extracted from the original reports were assigned to two categories based on directionality of findings. Meta-analyses were calculated using the non-additive activation likelihood estimation approach with coordinates organized by subject group to account for non-independent samples. Converging evidence revealed a distributed pattern of brain regions with increased or decreased spontaneous activity in MDD. The most distinct finding was hyperactivity/hyperconnectivity presumably reflecting the interaction of cortical midline structures (posterior default mode network components including the precuneus and neighboring posterior cingulate cortices associated with self-referential processing and the subgenual anterior cingulate and neighboring medial frontal cortices) with lateral prefrontal areas related to externally-directed cognition. Other areas of hyperactivity/hyperconnectivity include the left lateral parietal cortex, right hippocampus and right cerebellum whereas hypoactivity/hypoconnectivity was observed mainly in the left temporal cortex, the insula, precuneus, superior frontal gyrus, lentiform nucleus and thalamus. Results are made available in two different data formats to be used as spatial hypotheses in future studies, particularly for diagnostic classification by MVPA.

  12. Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy.

    PubMed

    Memarian, Negar; Kim, Sally; Dewar, Sandra; Engel, Jerome; Staba, Richard J

    2015-09-01

    This study sought to predict postsurgical seizure freedom from pre-operative diagnostic test results and clinical information using a rapid automated approach, based on supervised learning methods in patients with drug-resistant focal seizures suspected to begin in temporal lobe. We applied machine learning, specifically a combination of mutual information-based feature selection and supervised learning classifiers on multimodal data, to predict surgery outcome retrospectively in 20 presurgical patients (13 female; mean age±SD, in years 33±9.7 for females, and 35.3±9.4 for males) who were diagnosed with mesial temporal lobe epilepsy (MTLE) and subsequently underwent standard anteromesial temporal lobectomy. The main advantage of the present work over previous studies is the inclusion of the extent of ipsilateral neocortical gray matter atrophy and spatiotemporal properties of depth electrode-recorded seizures as training features for individual patient surgery planning. A maximum relevance minimum redundancy (mRMR) feature selector identified the following features as the most informative predictors of postsurgical seizure freedom in this study's sample of patients: family history of epilepsy, ictal EEG onset pattern (positive correlation with seizure freedom), MRI-based gray matter thickness reduction in the hemisphere ipsilateral to seizure onset, proportion of seizures that first appeared in ipsilateral amygdala to total seizures, age, epilepsy duration, delay in the spread of ipsilateral ictal discharges from site of onset, gender, and number of electrode contacts at seizure onset (negative correlation with seizure freedom). Using these features in combination with a least square support vector machine (LS-SVM) classifier compared to other commonly used classifiers resulted in very high surgical outcome prediction accuracy (95%). Supervised machine learning using multimodal compared to unimodal data accurately predicted postsurgical outcome in patients with atypical MTLE. Published by Elsevier Ltd.

  13. URS DataBase: universe of RNA structures and their motifs.

    PubMed

    Baulin, Eugene; Yacovlev, Victor; Khachko, Denis; Spirin, Sergei; Roytberg, Mikhail

    2016-01-01

    The Universe of RNA Structures DataBase (URSDB) stores information obtained from all RNA-containing PDB entries (2935 entries in October 2015). The content of the database is updated regularly. The database consists of 51 tables containing indexed data on various elements of the RNA structures. The database provides a web interface allowing user to select a subset of structures with desired features and to obtain various statistical data for a selected subset of structures or for all structures. In particular, one can easily obtain statistics on geometric parameters of base pairs, on structural motifs (stems, loops, etc.) or on different types of pseudoknots. The user can also view and get information on an individual structure or its selected parts, e.g. RNA-protein hydrogen bonds. URSDB employs a new original definition of loops in RNA structures. That definition fits both pseudoknot-free and pseudoknotted secondary structures and coincides with the classical definition in case of pseudoknot-free structures. To our knowledge, URSDB is the first database supporting searches based on topological classification of pseudoknots and on extended loop classification.Database URL: http://server3.lpm.org.ru/urs/. © The Author(s) 2016. Published by Oxford University Press.

  14. URS DataBase: universe of RNA structures and their motifs

    PubMed Central

    Baulin, Eugene; Yacovlev, Victor; Khachko, Denis; Spirin, Sergei; Roytberg, Mikhail

    2016-01-01

    The Universe of RNA Structures DataBase (URSDB) stores information obtained from all RNA-containing PDB entries (2935 entries in October 2015). The content of the database is updated regularly. The database consists of 51 tables containing indexed data on various elements of the RNA structures. The database provides a web interface allowing user to select a subset of structures with desired features and to obtain various statistical data for a selected subset of structures or for all structures. In particular, one can easily obtain statistics on geometric parameters of base pairs, on structural motifs (stems, loops, etc.) or on different types of pseudoknots. The user can also view and get information on an individual structure or its selected parts, e.g. RNA–protein hydrogen bonds. URSDB employs a new original definition of loops in RNA structures. That definition fits both pseudoknot-free and pseudoknotted secondary structures and coincides with the classical definition in case of pseudoknot-free structures. To our knowledge, URSDB is the first database supporting searches based on topological classification of pseudoknots and on extended loop classification. Database URL: http://server3.lpm.org.ru/urs/ PMID:27242032

  15. What are the essential features of resilience for informal caregivers of people living with dementia? A Delphi consensus examination.

    PubMed

    Joling, Karlijn J; Windle, Gill; Dröes, Rose-Marie; Huisman, Martijn; Hertogh, Cees M P M; Woods, Robert T

    2017-05-01

    Few studies have examined what might enable or prevent resilience in carers of people with dementia. Consequently, there are limited insights as to how it should be understood, defined and measured. This creates challenges for research, and also practice in terms of how it might best be promoted. This study aimed to address these limitations and add new insights, identifying the essential features of resilience in dementia caregiving. A Delphi consensus study was conducted, consulting a multi-disciplinary panel of informal caregivers and experts with relevant professional expertise. Panellists rated the relevance of various statements addressing essential components of resilience; 'adversity' and 'successful caregiving' on a 5-point Likert scale. Based on the median and Inter Quartile Range, the most relevant statements with moderate consensus were proposed in Round 2 in which panellists selected up to five statements in order of importance. Moderate consensus was reached for all statements after two rounds. Patients' behavioural problems and feeling competent as a caregiver were selected by both caregivers and professionals as essential resilience features. Caregivers also emphasized the importance of social support, the quality of the relationship with their relative and enjoying spending time together. Professionals considered coping skills, experiencing positive aspects of caregiving, and a good quality of life of caregivers most relevant. The essential elements of resilience selected from multiple stakeholder perspectives can be used to select appropriate outcomes for intervention studies and give guidance to policy to support caregivers more effectively and better tailored to their needs.

  16. Per-field crop classification in irrigated agricultural regions in middle Asia using random forest and support vector machine ensemble

    NASA Astrophysics Data System (ADS)

    Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher

    2012-10-01

    Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.

  17. Diagnostic analysis of liver B ultrasonic texture features based on LM neural network

    NASA Astrophysics Data System (ADS)

    Chi, Qingyun; Hua, Hu; Liu, Menglin; Jiang, Xiuying

    2017-03-01

    In this study, B ultrasound images of 124 benign and malignant patients were randomly selected as the study objects. The B ultrasound images of the liver were treated by enhanced de-noising. By constructing the gray level co-occurrence matrix which reflects the information of each angle, Principal Component Analysis of 22 texture features were extracted and combined with LM neural network for diagnosis and classification. Experimental results show that this method is a rapid and effective diagnostic method for liver imaging, which provides a quantitative basis for clinical diagnosis of liver diseases.

  18. Measuring Black Hole Spin

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    1999-09-01

    WE PROPOSE TO CARRY OUT A SYSTEMATIC STUDY OF EMISSION AND ABSORPTION SPECTRAL FEATURES THAT ARE OFTEN SEEN IN X-RAY SPECTRA OF BLACK HOLE BINARIES. THE EXCELLENT SENSITIVITY AND ENERGY RESOLUTION OF THE ACIS/HETG COMBINATION WILL NOT ONLY HELP RESOLVE AMBIGUITIES IN INTERPRETING THESE FEATURES, BUT MAY ALLOW MODELLING OF THE EMISSION LINE PROFILES IN DETAIL. THE PROFILES MAY CONTAIN INFORMATION ON SUCH FUNDAMENTAL PROPERTIES AS THE SPIN OF BLACK HOLES. THEREFORE, THIS STUDY COULD LEAD TO A MEASUREMENT OF BLACK HOLE SPIN FOR SELECTED SOURCES. THE RESULT CAN THEN BE DIRECTLY COMPARED WITH THOSE FROM PREVIOUS STUDIES BASED ON INDEPENDENT METHODS.

  19. Tile-Based Fisher-Ratio Software for Improved Feature Selection Analysis of Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marney, Luke C.; Siegler, William C.; Parsons, Brendon A.

    Two-dimensional (2D) gas chromatography coupled with time-of-flight mass spectrometry (GC × GC – TOFMS) is a highly capable instrumental platform that produces complex and information-rich multi-dimensional chemical data. The complex data can be overwhelming, especially when many samples (of various sample classes) are analyzed with multiple injections for each sample. Thus, the data must be analyzed in such a way to extract the most meaningful information. The pixel-based and peak table-based algorithmic use of Fisher ratios has been used successfully in the past to reduce the multi-dimensional data down to those chemical compounds that are changing between classes relative tomore » those that are not (i.e., chemical feature selection). We report on the initial development of a computationally fast novel tile-based Fisher-ratio software that addresses challenges due to 2D retention time misalignment without explicitly aligning the data, which is a problem for both pixel-based and peak table- based methods. Concurrently, the tile-based Fisher-ratio software maximizes the sensitivity contrast of true positives against a background of potential false positives and noise. To study this software, eight compounds, plus one internal standard, were spiked into diesel at various concentrations. The tile-based F-ratio software was able to discover all spiked analytes, within the complex diesel sample matrix with thousands of potential false positives, in each possible concentration comparison, even at the lowest absolute spiked analyte concentration ratio of 1.06.« less

  20. rpiCOOL: A tool for In Silico RNA-protein interaction detection using random forest.

    PubMed

    Akbaripour-Elahabad, Mohammad; Zahiri, Javad; Rafeh, Reza; Eslami, Morteza; Azari, Mahboobeh

    2016-08-07

    Understanding the principle of RNA-protein interactions (RPIs) is of critical importance to provide insights into post-transcriptional gene regulation and is useful to guide studies about many complex diseases. The limitations and difficulties associated with experimental determination of RPIs, call an urgent need to computational methods for RPI prediction. In this paper, we proposed a machine learning method to detect RNA-protein interactions based on sequence information. We used motif information and repetitive patterns, which have been extracted from experimentally validated RNA-protein interactions, in combination with sequence composition as descriptors to build a model to RPI prediction via a random forest classifier. About 20% of the "sequence motifs" and "nucleotide composition" features have been selected as the informative features with the feature selection methods. These results suggest that these two feature types contribute effectively in RPI detection. Results of 10-fold cross-validation experiments on three non-redundant benchmark datasets show a better performance of the proposed method in comparison with the current state-of-the-art methods in terms of various performance measures. In addition, the results revealed that the accuracy of the RPI prediction methods could vary considerably across different organisms. We have implemented the proposed method, namely rpiCOOL, as a stand-alone tool with a user friendly graphical user interface (GUI) that enables the researchers to predict RNA-protein interaction. The rpiCOOL is freely available at http://biocool.ir/rpicool.html for non-commercial uses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. GIS based application tool -- history of East India Company

    NASA Astrophysics Data System (ADS)

    Phophaliya, Sudhir

    The emphasis of the thesis is to build an intuitive and robust GIS (Geographic Information systems) Tool which gives an in depth information on history of East India Company. The GIS tool also incorporates various achievements of East India Company which helped to establish their business all over world especially India. The user has the option to select these movements and acts by clicking on any of the marked states on the World map. The World Map also incorporates key features for East India Company like landing of East India Company in India, Darjeeling Tea Establishment, East India Company Stock Redemption Act etc. The user can know more about these features simply by clicking on each of them. The primary focus of the tool is to give the user a unique insight about East India Company; for this the tool has several HTML (Hypertext markup language) pages which the user can select. These HTML pages give information on various topics like the first Voyage, Trade with China, 1857 Revolt etc. The tool has been developed in JAVA. For the Indian map MOJO (Map Objects Java Objects) is used. MOJO is developed by ESRI. The major features shown on the World map was designed using MOJO. MOJO made it easy to incorporate the statistical data with these features. The user interface was intentionally kept simple and easy to use. To keep the user engaged, key aspects are explained using HTML pages. The idea is that pictures will help the user garner interest in the history of East India Company.

  2. Traffic sign recognition based on a context-aware scale-invariant feature transform approach

    NASA Astrophysics Data System (ADS)

    Yuan, Xue; Hao, Xiaoli; Chen, Houjin; Wei, Xueye

    2013-10-01

    A new context-aware scale-invariant feature transform (CASIFT) approach is proposed, which is designed for the use in traffic sign recognition (TSR) systems. The following issues remain in previous works in which SIFT is used for matching or recognition: (1) SIFT is unable to provide color information; (2) SIFT only focuses on local features while ignoring the distribution of global shapes; (3) the template with the maximum number of matching points selected as the final result is instable, especially for images with simple patterns; and (4) SIFT is liable to result in errors when different images share the same local features. In order to resolve these problems, a new CASIFT approach is proposed. The contributions of the work are as follows: (1) color angular patterns are used to provide the color distinguishing information; (2) a CASIFT which effectively combines local and global information is proposed; and (3) a method for computing the similarity between two images is proposed, which focuses on the distribution of the matching points, rather than using the traditional SIFT approach of selecting the template with maximum number of matching points as the final result. The proposed approach is particularly effective in dealing with traffic signs which have rich colors and varied global shape distribution. Experiments are performed to validate the effectiveness of the proposed approach in TSR systems, and the experimental results are satisfying even for images containing traffic signs that have been rotated, damaged, altered in color, have undergone affine transformations, or images which were photographed under different weather or illumination conditions.

  3. iFER: facial expression recognition using automatically selected geometric eye and eyebrow features

    NASA Astrophysics Data System (ADS)

    Oztel, Ismail; Yolcu, Gozde; Oz, Cemil; Kazan, Serap; Bunyak, Filiz

    2018-03-01

    Facial expressions have an important role in interpersonal communications and estimation of emotional states or intentions. Automatic recognition of facial expressions has led to many practical applications and became one of the important topics in computer vision. We present a facial expression recognition system that relies on geometry-based features extracted from eye and eyebrow regions of the face. The proposed system detects keypoints on frontal face images and forms a feature set using geometric relationships among groups of detected keypoints. Obtained feature set is refined and reduced using the sequential forward selection (SFS) algorithm and fed to a support vector machine classifier to recognize five facial expression classes. The proposed system, iFER (eye-eyebrow only facial expression recognition), is robust to lower face occlusions that may be caused by beards, mustaches, scarves, etc. and lower face motion during speech production. Preliminary experiments on benchmark datasets produced promising results outperforming previous facial expression recognition studies using partial face features, and comparable results to studies using whole face information, only slightly lower by ˜ 2.5 % compared to the best whole face facial recognition system while using only ˜ 1 / 3 of the facial region.

  4. [Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

    PubMed

    Zhou, Jinzhi; Tang, Xiaofang

    2015-08-01

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

  5. Selective Exposure to Health Information: The Role of Headline Features in the Choice of Health Newsletter Articles.

    PubMed

    Kim, Hyun Suk; Forquer, Heather; Rusko, Joseph; Hornik, Robert C; Cappella, Joseph N

    2016-01-01

    This study investigated how content and context features of headlines drive selective exposure when choosing between headlines of a monthly e-mail health newsletter in a naturalistic setting over a period of nine months. Study participants received a monthly e-mail newsletter and could freely open it and click any headline to read the accompanying article. In each e-mail newsletter, nine headlines competed with each other for selection. Textual and visual information of the headlines was content-analyzed, and clickstream data on the headlines were collected automatically. The results showed that headlines invited more frequent audience selections when they provided efficacy-signaling information in an imperative voice, when they used a moderate number of negative emotion words, when they presented negative thumbnail images while mentioning cancer or other diseases, and when they were placed higher in position.

  6. Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing

    NASA Astrophysics Data System (ADS)

    Fan, Lei

    Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems.

  7. Population Response Profiles in Early Visual Cortex Are Biased in Favor of More Valuable Stimuli

    PubMed Central

    Saproo, Sameer

    2010-01-01

    Voluntary and stimulus-driven shifts of attention can modulate the representation of behaviorally relevant stimuli in early areas of visual cortex. In turn, attended items are processed faster and more accurately, facilitating the selection of appropriate behavioral responses. Information processing is also strongly influenced by past experience and recent studies indicate that the learned value of a stimulus can influence relatively late stages of decision making such as the process of selecting a motor response. However, the learned value of a stimulus can also influence the magnitude of cortical responses in early sensory areas such as V1 and S1. These early effects of stimulus value are presumed to improve the quality of sensory representations; however, the nature of these modulations is not clear. They could reflect nonspecific changes in response amplitude associated with changes in general arousal or they could reflect a bias in population responses so that high-value features are represented more robustly. To examine this issue, subjects performed a two-alternative forced choice paradigm with a variable-interval payoff schedule to dynamically manipulate the relative value of two stimuli defined by their orientation (one was rotated clockwise from vertical, the other counterclockwise). Activation levels in visual cortex were monitored using functional MRI and feature-selective voxel tuning functions while subjects performed the behavioral task. The results suggest that value not only modulates the relative amplitude of responses in early areas of human visual cortex, but also sharpens the response profile across the populations of feature-selective neurons that encode the critical stimulus feature (orientation). Moreover, changes in space- or feature-based attention cannot easily explain the results because representations of both the selected and the unselected stimuli underwent a similar feature-selective modulation. This sharpening in the population response profile could theoretically improve the probability of correctly discriminating high-value stimuli from low-value alternatives. PMID:20410360

  8. A hybrid feature selection and health indicator construction scheme for delay-time-based degradation modelling of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Deng, Congying; Zhang, Yi

    2018-03-01

    Rolling element bearings are mechanical components used frequently in most rotating machinery and they are also vulnerable links representing the main source of failures in such systems. Thus, health condition monitoring and fault diagnosis of rolling element bearings have long been studied to improve operational reliability and maintenance efficiency of rotatory machines. Over the past decade, prognosis that enables forewarning of failure and estimation of residual life attracted increasing attention. To accurately and efficiently predict failure of the rolling element bearing, the degradation requires to be well represented and modelled. For this purpose, degradation of the rolling element bearing is analysed with the delay-time-based model in this paper. Also, a hybrid feature selection and health indicator construction scheme is proposed for extraction of the bearing health relevant information from condition monitoring sensor data. Effectiveness of the presented approach is validated through case studies on rolling element bearing run-to-failure experiments.

  9. Human attention filters for single colors.

    PubMed

    Sun, Peng; Chubb, Charles; Wright, Charles E; Sperling, George

    2016-10-25

    The visual images in the eyes contain much more information than the brain can process. An important selection mechanism is feature-based attention (FBA). FBA is best described by attention filters that specify precisely the extent to which items containing attended features are selectively processed and the extent to which items that do not contain the attended features are attenuated. The centroid-judgment paradigm enables quick, precise measurements of such human perceptual attention filters, analogous to transmission measurements of photographic color filters. Subjects use a mouse to locate the centroid-the center of gravity-of a briefly displayed cloud of dots and receive precise feedback. A subset of dots is distinguished by some characteristic, such as a different color, and subjects judge the centroid of only the distinguished subset (e.g., dots of a particular color). The analysis efficiently determines the precise weight in the judged centroid of dots of every color in the display (i.e., the attention filter for the particular attended color in that context). We report 32 attention filters for single colors. Attention filters that discriminate one saturated hue from among seven other equiluminant distractor hues are extraordinarily selective, achieving attended/unattended weight ratios >20:1. Attention filters for selecting a color that differs in saturation or lightness from distractors are much less selective than attention filters for hue (given equal discriminability of the colors), and their filter selectivities are proportional to the discriminability distance of neighboring colors, whereas in the same range hue attention-filter selectivity is virtually independent of discriminabilty.

  10. Sparse Zero-Sum Games as Stable Functional Feature Selection

    PubMed Central

    Sokolovska, Nataliya; Teytaud, Olivier; Rizkalla, Salwa; Clément, Karine; Zucker, Jean-Daniel

    2015-01-01

    In large-scale systems biology applications, features are structured in hidden functional categories whose predictive power is identical. Feature selection, therefore, can lead not only to a problem with a reduced dimensionality, but also reveal some knowledge on functional classes of variables. In this contribution, we propose a framework based on a sparse zero-sum game which performs a stable functional feature selection. In particular, the approach is based on feature subsets ranking by a thresholding stochastic bandit. We provide a theoretical analysis of the introduced algorithm. We illustrate by experiments on both synthetic and real complex data that the proposed method is competitive from the predictive and stability viewpoints. PMID:26325268

  11. A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG).

    PubMed

    Amezquita-Sanchez, Juan P; Adeli, Anahita; Adeli, Hojjat

    2016-05-15

    Mild cognitive impairment (MCI) is a cognitive disorder characterized by memory impairment, greater than expected by age. A new methodology is presented to identify MCI patients during a working memory task using MEG signals. The methodology consists of four steps: In step 1, the complete ensemble empirical mode decomposition (CEEMD) is used to decompose the MEG signal into a set of adaptive sub-bands according to its contained frequency information. In step 2, a nonlinear dynamics measure based on permutation entropy (PE) analysis is employed to analyze the sub-bands and detect features to be used for MCI detection. In step 3, an analysis of variation (ANOVA) is used for feature selection. In step 4, the enhanced probabilistic neural network (EPNN) classifier is applied to the selected features to distinguish between MCI and healthy patients. The usefulness and effectiveness of the proposed methodology are validated using the sensed MEG data obtained experimentally from 18 MCI and 19 control patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Automatic staging of bladder cancer on CT urography

    NASA Astrophysics Data System (ADS)

    Garapati, Sankeerth S.; Hadjiiski, Lubomir M.; Cha, Kenny H.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon; Alva, Ajjai; Paramagul, Chintana; Wei, Jun; Zhou, Chuan

    2016-03-01

    Correct staging of bladder cancer is crucial for the decision of neoadjuvant chemotherapy treatment and minimizing the risk of under- or over-treatment. Subjectivity and variability of clinicians in utilizing available diagnostic information may lead to inaccuracy in staging bladder cancer. An objective decision support system that merges the information in a predictive model based on statistical outcomes of previous cases and machine learning may assist clinicians in making more accurate and consistent staging assessments. In this study, we developed a preliminary method to stage bladder cancer. With IRB approval, 42 bladder cancer cases with CTU scans were collected from patient files. The cases were classified into two classes based on pathological stage T2, which is the decision threshold for neoadjuvant chemotherapy treatment (i.e. for stage >=T2) clinically. There were 21 cancers below stage T2 and 21 cancers at stage T2 or above. All 42 lesions were automatically segmented using our auto-initialized cascaded level sets (AI-CALS) method. Morphological features were extracted, which were selected and merged by linear discriminant analysis (LDA) classifier. A leave-one-case-out resampling scheme was used to train and test the classifier using the 42 lesions. The classification accuracy was quantified using the area under the ROC curve (Az). The average training Az was 0.97 and the test Az was 0.85. The classifier consistently selected the lesion volume, a gray level feature and a contrast feature. This predictive model shows promise for assisting in assessing the bladder cancer stage.

  13. Representation of memories in the cortical-hippocampal system: Results from the application of population similarity analyses

    PubMed Central

    McKenzie, Sam; Keene, Chris; Farovik, Anja; Blandon, John; Place, Ryan; Komorowski, Robert; Eichenbaum, Howard

    2016-01-01

    Here we consider the value of neural population analysis as an approach to understanding how information is represented in the hippocampus and cortical areas and how these areas might interact as a brain system to support memory. We argue that models based on sparse coding of different individual features by single neurons in these areas (e.g., place cells, grid cells) are inadequate to capture the complexity of experience represented within this system. By contrast, population analyses of neurons with denser coding and mixed selectivity reveal new and important insights into the organization of memories. Furthermore, comparisons of the organization of information in interconnected areas suggest a model of hippocampal-cortical interactions that mediates the fundamental features of memory. PMID:26748022

  14. Diagnosing and ranking retinopathy disease level using diabetic fundus image recuperation approach.

    PubMed

    Somasundaram, K; Rajendran, P Alli

    2015-01-01

    Retinal fundus images are widely used in diagnosing different types of eye diseases. The existing methods such as Feature Based Macular Edema Detection (FMED) and Optimally Adjusted Morphological Operator (OAMO) effectively detected the presence of exudation in fundus images and identified the true positive ratio of exudates detection, respectively. These mechanically detected exudates did not include more detailed feature selection technique to the system for detection of diabetic retinopathy. To categorize the exudates, Diabetic Fundus Image Recuperation (DFIR) method based on sliding window approach is developed in this work to select the features of optic cup in digital retinal fundus images. The DFIR feature selection uses collection of sliding windows with varying range to obtain the features based on the histogram value using Group Sparsity Nonoverlapping Function. Using support vector model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy disease level. The ranking of disease level on each candidate set provides a much promising result for developing practically automated and assisted diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, ranking efficiency, and feature selection time.

  15. Diagnosing and Ranking Retinopathy Disease Level Using Diabetic Fundus Image Recuperation Approach

    PubMed Central

    Somasundaram, K.; Alli Rajendran, P.

    2015-01-01

    Retinal fundus images are widely used in diagnosing different types of eye diseases. The existing methods such as Feature Based Macular Edema Detection (FMED) and Optimally Adjusted Morphological Operator (OAMO) effectively detected the presence of exudation in fundus images and identified the true positive ratio of exudates detection, respectively. These mechanically detected exudates did not include more detailed feature selection technique to the system for detection of diabetic retinopathy. To categorize the exudates, Diabetic Fundus Image Recuperation (DFIR) method based on sliding window approach is developed in this work to select the features of optic cup in digital retinal fundus images. The DFIR feature selection uses collection of sliding windows with varying range to obtain the features based on the histogram value using Group Sparsity Nonoverlapping Function. Using support vector model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy disease level. The ranking of disease level on each candidate set provides a much promising result for developing practically automated and assisted diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, ranking efficiency, and feature selection time. PMID:25945362

  16. Selective heart rate variability analysis to account for uterine activity during labor and improve classification of fetal distress.

    PubMed

    Warmerdam, G J J; Vullings, R; Van Laar, J O E H; Van der Hout-Van der Jagt, M B; Bergmans, J W M; Schmitt, L; Oei, S G

    2016-08-01

    Cardiotocography (CTG) is currently the most often used technique for detection of fetal distress. Unfortunately, CTG has a poor specificity. Recent studies suggest that, in addition to CTG, information on fetal distress can be obtained from analysis of fetal heart rate variability (HRV). However, uterine contractions can strongly influence fetal HRV. The aim of this study is therefore to investigate whether HRV analysis for detection of fetal distress can be improved by distinguishing contractions from rest periods. Our results from feature selection indicate that HRV features calculated separately during contractions or during rest periods are more informative on fetal distress than HRV features that are calculated over the entire fetal heart rate. Furthermore, classification performance improved from a geometric mean of 69.0% to 79.6% when including the contraction-dependent HRV features, in addition to HRV features calculated over the entire fetal heart rate.

  17. A novel channel selection method for optimal classification in different motor imagery BCI paradigms.

    PubMed

    Shan, Haijun; Xu, Haojie; Zhu, Shanan; He, Bin

    2015-10-21

    For sensorimotor rhythms based brain-computer interface (BCI) systems, classification of different motor imageries (MIs) remains a crucial problem. An important aspect is how many scalp electrodes (channels) should be used in order to reach optimal performance classifying motor imaginations. While the previous researches on channel selection mainly focus on MI tasks paradigms without feedback, the present work aims to investigate the optimal channel selection in MI tasks paradigms with real-time feedback (two-class control and four-class control paradigms). In the present study, three datasets respectively recorded from MI tasks experiment, two-class control and four-class control experiments were analyzed offline. Multiple frequency-spatial synthesized features were comprehensively extracted from every channel, and a new enhanced method IterRelCen was proposed to perform channel selection. IterRelCen was constructed based on Relief algorithm, but was enhanced from two aspects: change of target sample selection strategy and adoption of the idea of iterative computation, and thus performed more robust in feature selection. Finally, a multiclass support vector machine was applied as the classifier. The least number of channels that yield the best classification accuracy were considered as the optimal channels. One-way ANOVA was employed to test the significance of performance improvement among using optimal channels, all the channels and three typical MI channels (C3, C4, Cz). The results show that the proposed method outperformed other channel selection methods by achieving average classification accuracies of 85.2, 94.1, and 83.2 % for the three datasets, respectively. Moreover, the channel selection results reveal that the average numbers of optimal channels were significantly different among the three MI paradigms. It is demonstrated that IterRelCen has a strong ability for feature selection. In addition, the results have shown that the numbers of optimal channels in the three different motor imagery BCI paradigms are distinct. From a MI task paradigm, to a two-class control paradigm, and to a four-class control paradigm, the number of required channels for optimizing the classification accuracy increased. These findings may provide useful information to optimize EEG based BCI systems, and further improve the performance of noninvasive BCI.

  18. Diagnosing Autism Spectrum Disorder from Brain Resting-State Functional Connectivity Patterns Using a Deep Neural Network with a Novel Feature Selection Method

    PubMed Central

    Guo, Xinyu; Dominick, Kelli C.; Minai, Ali A.; Li, Hailong; Erickson, Craig A.; Lu, Long J.

    2017-01-01

    The whole-brain functional connectivity (FC) pattern obtained from resting-state functional magnetic resonance imaging data are commonly applied to study neuropsychiatric conditions such as autism spectrum disorder (ASD) by using different machine learning models. Recent studies indicate that both hyper- and hypo- aberrant ASD-associated FCs were widely distributed throughout the entire brain rather than only in some specific brain regions. Deep neural networks (DNN) with multiple hidden layers have shown the ability to systematically extract lower-to-higher level information from high dimensional data across a series of neural hidden layers, significantly improving classification accuracy for such data. In this study, a DNN with a novel feature selection method (DNN-FS) is developed for the high dimensional whole-brain resting-state FC pattern classification of ASD patients vs. typical development (TD) controls. The feature selection method is able to help the DNN generate low dimensional high-quality representations of the whole-brain FC patterns by selecting features with high discriminating power from multiple trained sparse auto-encoders. For the comparison, a DNN without the feature selection method (DNN-woFS) is developed, and both of them are tested with different architectures (i.e., with different numbers of hidden layers/nodes). Results show that the best classification accuracy of 86.36% is generated by the DNN-FS approach with 3 hidden layers and 150 hidden nodes (3/150). Remarkably, DNN-FS outperforms DNN-woFS for all architectures studied. The most significant accuracy improvement was 9.09% with the 3/150 architecture. The method also outperforms other feature selection methods, e.g., two sample t-test and elastic net. In addition to improving the classification accuracy, a Fisher's score-based biomarker identification method based on the DNN is also developed, and used to identify 32 FCs related to ASD. These FCs come from or cross different pre-defined brain networks including the default-mode, cingulo-opercular, frontal-parietal, and cerebellum. Thirteen of them are statically significant between ASD and TD groups (two sample t-test p < 0.05) while 19 of them are not. The relationship between the statically significant FCs and the corresponding ASD behavior symptoms is discussed based on the literature and clinician's expert knowledge. Meanwhile, the potential reason of obtaining 19 FCs which are not statistically significant is also provided. PMID:28871217

  19. Extremely Selective Attention: Eye-Tracking Studies of the Dynamic Allocation of Attention to Stimulus Features in Categorization

    ERIC Educational Resources Information Center

    Blair, Mark R.; Watson, Marcus R.; Walshe, R. Calen; Maj, Fillip

    2009-01-01

    Humans have an extremely flexible ability to categorize regularities in their environment, in part because of attentional systems that allow them to focus on important perceptual information. In formal theories of categorization, attention is typically modeled with weights that selectively bias the processing of stimulus features. These theories…

  20. Local curvature analysis for classifying breast tumors: Preliminary analysis in dedicated breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Juhun, E-mail: leej15@upmc.edu; Nishikawa, Robert M.; Reiser, Ingrid

    2015-09-15

    Purpose: The purpose of this study is to measure the effectiveness of local curvature measures as novel image features for classifying breast tumors. Methods: A total of 119 breast lesions from 104 noncontrast dedicated breast computed tomography images of women were used in this study. Volumetric segmentation was done using a seed-based segmentation algorithm and then a triangulated surface was extracted from the resulting segmentation. Total, mean, and Gaussian curvatures were then computed. Normalized curvatures were used as classification features. In addition, traditional image features were also extracted and a forward feature selection scheme was used to select the optimalmore » feature set. Logistic regression was used as a classifier and leave-one-out cross-validation was utilized to evaluate the classification performances of the features. The area under the receiver operating characteristic curve (AUC, area under curve) was used as a figure of merit. Results: Among curvature measures, the normalized total curvature (C{sub T}) showed the best classification performance (AUC of 0.74), while the others showed no classification power individually. Five traditional image features (two shape, two margin, and one texture descriptors) were selected via the feature selection scheme and its resulting classifier achieved an AUC of 0.83. Among those five features, the radial gradient index (RGI), which is a margin descriptor, showed the best classification performance (AUC of 0.73). A classifier combining RGI and C{sub T} yielded an AUC of 0.81, which showed similar performance (i.e., no statistically significant difference) to the classifier with the above five traditional image features. Additional comparisons in AUC values between classifiers using different combinations of traditional image features and C{sub T} were conducted. The results showed that C{sub T} was able to replace the other four image features for the classification task. Conclusions: The normalized curvature measure contains useful information in classifying breast tumors. Using this, one can reduce the number of features in a classifier, which may result in more robust classifiers for different datasets.« less

  1. Robust Indoor Human Activity Recognition Using Wireless Signals.

    PubMed

    Wang, Yi; Jiang, Xinli; Cao, Rongyu; Wang, Xiyang

    2015-07-15

    Wireless signals-based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI) of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP) and access points (AP). First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions' CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO) signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM) based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.

  2. Profiling plasma extracellular vesicle by pluronic block-copolymer based enrichment method unveils features associated with breast cancer aggression, metastasis and invasion

    PubMed Central

    Rosenow, Matthew; Xiao, Nick; Spetzler, David

    2018-01-01

    ABSTRACT Extracellular vesicle (EV)-based liquid biopsies have been proposed to be a readily obtainable biological substrate recently for both profiling and diagnostics purposes. Development of a fast and reliable preparation protocol to enrich such small particles could accelerate the discovery of informative, disease-related biomarkers. Though multiple EV enrichment protocols are available, in terms of efficiency, reproducibility and simplicity, precipitation-based methods are most amenable to studies with large numbers of subjects. However, the selectivity of the precipitation becomes critical. Here, we present a simple plasma EV enrichment protocol based on pluronic block copolymer. The enriched plasma EV was able to be verified by multiple platforms. Our results showed that the particles enriched from plasma by the copolymer were EV size vesicles with membrane structure; proteomic profiling showed that EV-related proteins were significantly enriched, while high-abundant plasma proteins were significantly reduced in comparison to other precipitation-based enrichment methods. Next-generation sequencing confirmed the existence of various RNA species that have been observed in EVs from previous studies. Small RNA sequencing showed enriched species compared to the corresponding plasma. Moreover, plasma EVs enriched from 20 advanced breast cancer patients and 20 age-matched non-cancer controls were profiled by semi-quantitative mass spectrometry. Protein features were further screened by EV proteomic profiles generated from four breast cancer cell lines, and then selected in cross-validation models. A total of 60 protein features that highly contributed in model prediction were identified. Interestingly, a large portion of these features were associated with breast cancer aggression, metastasis as well as invasion, consistent with the advanced clinical stage of the patients. In summary, we have developed a plasma EV enrichment method with improved precipitation selectivity and it might be suitable for larger-scale discovery studies. PMID:29696079

  3. Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey Matter Morphology Signatures.

    PubMed

    Wang, Gang; Wang, Yalin

    2017-02-15

    In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Inferring Broad Regulatory Biology from Time Course Data: Have We Reached an Upper Bound under Constraints Typical of In Vivo Studies?

    PubMed Central

    Craddock, Travis J. A.; Fletcher, Mary Ann; Klimas, Nancy G.

    2015-01-01

    There is a growing appreciation for the network biology that regulates the coordinated expression of molecular and cellular markers however questions persist regarding the identifiability of these networks. Here we explore some of the issues relevant to recovering directed regulatory networks from time course data collected under experimental constraints typical of in vivo studies. NetSim simulations of sparsely connected biological networks were used to evaluate two simple feature selection techniques used in the construction of linear Ordinary Differential Equation (ODE) models, namely truncation of terms versus latent vector projection. Performance was compared with ODE-based Time Series Network Identification (TSNI) integral, and the information-theoretic Time-Delay ARACNE (TD-ARACNE). Projection-based techniques and TSNI integral outperformed truncation-based selection and TD-ARACNE on aggregate networks with edge densities of 10-30%, i.e. transcription factor, protein-protein cliques and immune signaling networks. All were more robust to noise than truncation-based feature selection. Performance was comparable on the in silico 10-node DREAM 3 network, a 5-node Yeast synthetic network designed for In vivo Reverse-engineering and Modeling Assessment (IRMA) and a 9-node human HeLa cell cycle network of similar size and edge density. Performance was more sensitive to the number of time courses than to sample frequency and extrapolated better to larger networks by grouping experiments. In all cases performance declined rapidly in larger networks with lower edge density. Limited recovery and high false positive rates obtained overall bring into question our ability to generate informative time course data rather than the design of any particular reverse engineering algorithm. PMID:25984725

  5. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection.

    PubMed

    Li, Baopu; Meng, Max Q-H

    2012-05-01

    Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.

  6. Prediction of near-term breast cancer risk using local region-based bilateral asymmetry features in mammography

    NASA Astrophysics Data System (ADS)

    Li, Yane; Fan, Ming; Li, Lihua; Zheng, Bin

    2017-03-01

    This study proposed a near-term breast cancer risk assessment model based on local region bilateral asymmetry features in Mammography. The database includes 566 cases who underwent at least two sequential FFDM examinations. The `prior' examination in the two series all interpreted as negative (not recalled). In the "current" examination, 283 women were diagnosed cancers and 283 remained negative. Age of cancers and negative cases completely matched. These cases were divided into three subgroups according to age: 152 cases among the 37-49 age-bracket, 220 cases in the age-bracket 50- 60, and 194 cases with the 61-86 age-bracket. For each image, two local regions including strip-based regions and difference-of-Gaussian basic element regions were segmented. After that, structural variation features among pixel values and structural similarity features were computed for strip regions. Meanwhile, positional features were extracted for basic element regions. The absolute subtraction value was computed between each feature of the left and right local-regions. Next, a multi-layer perception classifier was implemented to assess performance of features for prediction. Features were then selected according stepwise regression analysis. The AUC achieved 0.72, 0.75 and 0.71 for these 3 age-based subgroups, respectively. The maximum adjustable odds ratios were 12.4, 20.56 and 4.91 for these three groups, respectively. This study demonstrate that the local region-based bilateral asymmetry features extracted from CC-view mammography could provide useful information to predict near-term breast cancer risk.

  7. Enhancement of morphological and vascular features in OCT images using a modified Bayesian residual transform

    PubMed Central

    Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka

    2018-01-01

    A novel image processing algorithm based on a modified Bayesian residual transform (MBRT) was developed for the enhancement of morphological and vascular features in optical coherence tomography (OCT) and OCT angiography (OCTA) images. The MBRT algorithm decomposes the original OCT image into multiple residual images, where each image presents information at a unique scale. Scale selective residual adaptation is used subsequently to enhance morphological features of interest, such as blood vessels and tissue layers, and to suppress irrelevant image features such as noise and motion artefacts. The performance of the proposed MBRT algorithm was tested on a series of cross-sectional and enface OCT and OCTA images of retina and brain tissue that were acquired in-vivo. Results show that the MBRT reduces speckle noise and motion-related imaging artefacts locally, thus improving significantly the contrast and visibility of morphological features in the OCT and OCTA images. PMID:29760996

  8. Motion-based prediction is sufficient to solve the aperture problem

    PubMed Central

    Perrinet, Laurent U; Masson, Guillaume S

    2012-01-01

    In low-level sensory systems, it is still unclear how the noisy information collected locally by neurons may give rise to a coherent global percept. This is well demonstrated for the detection of motion in the aperture problem: as luminance of an elongated line is symmetrical along its axis, tangential velocity is ambiguous when measured locally. Here, we develop the hypothesis that motion-based predictive coding is sufficient to infer global motion. Our implementation is based on a context-dependent diffusion of a probabilistic representation of motion. We observe in simulations a progressive solution to the aperture problem similar to physiology and behavior. We demonstrate that this solution is the result of two underlying mechanisms. First, we demonstrate the formation of a tracking behavior favoring temporally coherent features independently of their texture. Second, we observe that incoherent features are explained away while coherent information diffuses progressively to the global scale. Most previous models included ad-hoc mechanisms such as end-stopped cells or a selection layer to track specific luminance-based features as necessary conditions to solve the aperture problem. Here, we have proved that motion-based predictive coding, as it is implemented in this functional model, is sufficient to solve the aperture problem. This solution may give insights in the role of prediction underlying a large class of sensory computations. PMID:22734489

  9. Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery

    NASA Astrophysics Data System (ADS)

    Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine

    2014-10-01

    The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.

  10. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization.

    PubMed

    Wen, Ping-Ping; Shi, Shao-Ping; Xu, Hao-Dong; Wang, Li-Na; Qiu, Jian-Ding

    2016-10-15

    As one of the most important reversible types of post-translational modification, protein methylation catalyzed by methyltransferases carries many pivotal biological functions as well as many essential biological processes. Identification of methylation sites is prerequisite for decoding methylation regulatory networks in living cells and understanding their physiological roles. Experimental methods are limitations of labor-intensive and time-consuming. While in silicon approaches are cost-effective and high-throughput manner to predict potential methylation sites, but those previous predictors only have a mixed model and their prediction performances are not fully satisfactory now. Recently, with increasing availability of quantitative methylation datasets in diverse species (especially in eukaryotes), there is a growing need to develop a species-specific predictor. Here, we designed a tool named PSSMe based on information gain (IG) feature optimization method for species-specific methylation site prediction. The IG method was adopted to analyze the importance and contribution of each feature, then select the valuable dimension feature vectors to reconstitute a new orderly feature, which was applied to build the finally prediction model. Finally, our method improves prediction performance of accuracy about 15% comparing with single features. Furthermore, our species-specific model significantly improves the predictive performance compare with other general methylation prediction tools. Hence, our prediction results serve as useful resources to elucidate the mechanism of arginine or lysine methylation and facilitate hypothesis-driven experimental design and validation. The tool online service is implemented by C# language and freely available at http://bioinfo.ncu.edu.cn/PSSMe.aspx CONTACT: jdqiu@ncu.edu.cnSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. The optional selection of micro-motion feature based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ren, Hongmei; Xiao, Zhi-he; Sheng, Jing

    2017-11-01

    Micro-motion form of target is multiple, different micro-motion forms are apt to be modulated, which makes it difficult for feature extraction and recognition. Aiming at feature extraction of cone-shaped objects with different micro-motion forms, this paper proposes the best selection method of micro-motion feature based on support vector machine. After the time-frequency distribution of radar echoes, comparing the time-frequency spectrum of objects with different micro-motion forms, features are extracted based on the differences between the instantaneous frequency variations of different micro-motions. According to the methods based on SVM (Support Vector Machine) features are extracted, then the best features are acquired. Finally, the result shows the method proposed in this paper is feasible under the test condition of certain signal-to-noise ratio(SNR).

  12. Feature-based fusion of medical imaging data.

    PubMed

    Calhoun, Vince D; Adali, Tülay

    2009-09-01

    The acquisition of multiple brain imaging types for a given study is a very common practice. There have been a number of approaches proposed for combining or fusing multitask or multimodal information. These can be roughly divided into those that attempt to study convergence of multimodal imaging, for example, how function and structure are related in the same region of the brain, and those that attempt to study the complementary nature of modalities, for example, utilizing temporal EEG information and spatial functional magnetic resonance imaging information. Within each of these categories, one can attempt data integration (the use of one imaging modality to improve the results of another) or true data fusion (in which multiple modalities are utilized to inform one another). We review both approaches and present a recent computational approach that first preprocesses the data to compute features of interest. The features are then analyzed in a multivariate manner using independent component analysis. We describe the approach in detail and provide examples of how it has been used for different fusion tasks. We also propose a method for selecting which combination of modalities provides the greatest value in discriminating groups. Finally, we summarize and describe future research topics.

  13. A ROC-based feature selection method for computer-aided detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Songyuan; Zhang, Guopeng; Liao, Qimei; Zhang, Junying; Jiao, Chun; Lu, Hongbing

    2014-03-01

    Image-based computer-aided detection and diagnosis (CAD) has been a very active research topic aiming to assist physicians to detect lesions and distinguish them from benign to malignant. However, the datasets fed into a classifier usually suffer from small number of samples, as well as significantly less samples available in one class (have a disease) than the other, resulting in the classifier's suboptimal performance. How to identifying the most characterizing features of the observed data for lesion detection is critical to improve the sensitivity and minimize false positives of a CAD system. In this study, we propose a novel feature selection method mR-FAST that combines the minimal-redundancymaximal relevance (mRMR) framework with a selection metric FAST (feature assessment by sliding thresholds) based on the area under a ROC curve (AUC) generated on optimal simple linear discriminants. With three feature datasets extracted from CAD systems for colon polyps and bladder cancer, we show that the space of candidate features selected by mR-FAST is more characterizing for lesion detection with higher AUC, enabling to find a compact subset of superior features at low cost.

  14. Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea.

    PubMed

    Woo, Hyekyung; Cho, Youngtae; Shim, Eunyoung; Lee, Jong-Koo; Lee, Chang-Gun; Kim, Seong Hwan

    2016-07-04

    As suggested as early as in 2006, logs of queries submitted to search engines seeking information could be a source for detection of emerging influenza epidemics if changes in the volume of search queries are monitored (infodemiology). However, selecting queries that are most likely to be associated with influenza epidemics is a particular challenge when it comes to generating better predictions. In this study, we describe a methodological extension for detecting influenza outbreaks using search query data; we provide a new approach for query selection through the exploration of contextual information gleaned from social media data. Additionally, we evaluate whether it is possible to use these queries for monitoring and predicting influenza epidemics in South Korea. Our study was based on freely available weekly influenza incidence data and query data originating from the search engine on the Korean website Daum between April 3, 2011 and April 5, 2014. To select queries related to influenza epidemics, several approaches were applied: (1) exploring influenza-related words in social media data, (2) identifying the chief concerns related to influenza, and (3) using Web query recommendations. Optimal feature selection by least absolute shrinkage and selection operator (Lasso) and support vector machine for regression (SVR) were used to construct a model predicting influenza epidemics. In total, 146 queries related to influenza were generated through our initial query selection approach. A considerable proportion of optimal features for final models were derived from queries with reference to the social media data. The SVR model performed well: the prediction values were highly correlated with the recent observed influenza-like illness (r=.956; P<.001) and virological incidence rate (r=.963; P<.001). These results demonstrate the feasibility of using search queries to enhance influenza surveillance in South Korea. In addition, an approach for query selection using social media data seems ideal for supporting influenza surveillance based on search query data.

  15. Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea

    PubMed Central

    Woo, Hyekyung; Shim, Eunyoung; Lee, Jong-Koo; Lee, Chang-Gun; Kim, Seong Hwan

    2016-01-01

    Background As suggested as early as in 2006, logs of queries submitted to search engines seeking information could be a source for detection of emerging influenza epidemics if changes in the volume of search queries are monitored (infodemiology). However, selecting queries that are most likely to be associated with influenza epidemics is a particular challenge when it comes to generating better predictions. Objective In this study, we describe a methodological extension for detecting influenza outbreaks using search query data; we provide a new approach for query selection through the exploration of contextual information gleaned from social media data. Additionally, we evaluate whether it is possible to use these queries for monitoring and predicting influenza epidemics in South Korea. Methods Our study was based on freely available weekly influenza incidence data and query data originating from the search engine on the Korean website Daum between April 3, 2011 and April 5, 2014. To select queries related to influenza epidemics, several approaches were applied: (1) exploring influenza-related words in social media data, (2) identifying the chief concerns related to influenza, and (3) using Web query recommendations. Optimal feature selection by least absolute shrinkage and selection operator (Lasso) and support vector machine for regression (SVR) were used to construct a model predicting influenza epidemics. Results In total, 146 queries related to influenza were generated through our initial query selection approach. A considerable proportion of optimal features for final models were derived from queries with reference to the social media data. The SVR model performed well: the prediction values were highly correlated with the recent observed influenza-like illness (r=.956; P<.001) and virological incidence rate (r=.963; P<.001). Conclusions These results demonstrate the feasibility of using search queries to enhance influenza surveillance in South Korea. In addition, an approach for query selection using social media data seems ideal for supporting influenza surveillance based on search query data. PMID:27377323

  16. Mapping the timecourse of goal-directed attention to location and colour in human vision.

    PubMed

    Adams, Rachel C; Chambers, Christopher D

    2012-03-01

    Goal-directed attention prioritises perception of task-relevant stimuli according to location, features, or onset time. In this study we compared the behavioural timecourse of goal-directed selection to locations and colours by varying the stimulus-onset asynchrony (SOA) between cue and target in a strategic cueing paradigm. Participants reported the presence or absence of a target following prior information regarding its location or colour. Results revealed that preparatory selection by colour is more effective at enhancing perceptual sensitivity than selection by location, even though both types of cue provided equivalent overall information. More detailed analysis revealed that this advantage arose due a limitation of spatial attention in maintaining a sufficiently broad focus (>2°) for target detection across multiple stimuli. In contrast, when target stimuli fell within 2° of the spatial attention spotlight, the strategic advantages and speed of spatial and colour attention were equated. Our findings are consistent with the conclusion that, under spatially optimal conditions, prior spatial and colour information are equally proficient at guiding top-down selection. When spatial locations are ambiguous, however, colour-based selection is the more efficient mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Memory Meets Control in Hippocampal and Striatal Binding of Stimuli, Responses, and Attentional Control States

    PubMed Central

    Brashier, Nadia M.

    2015-01-01

    The human brain encodes experience in an integrative fashion by binding together the various features of an event (i.e., stimuli and responses) into memory “event files.” A subsequent reoccurrence of an event feature can then cue the retrieval of the memory file to “prime” cognition and action. Intriguingly, recent behavioral studies indicate that, in addition to linking concrete stimulus and response features, event coding may also incorporate more abstract, “internal” event features such as attentional control states. In the present study, we used fMRI in healthy human volunteers to determine the neural mechanisms supporting this type of holistic event binding. Specifically, we combined fMRI with a task protocol that dissociated the expression of event feature-binding effects pertaining to concrete stimulus and response features, stimulus categories, and attentional control demands. Using multivariate neural pattern classification, we show that the hippocampus and putamen integrate event attributes across all of these levels in conjunction with other regions representing concrete-feature-selective (primarily visual cortex), category-selective (posterior frontal cortex), and control demand-selective (insula, caudate, anterior cingulate, and parietal cortex) event information. Together, these results suggest that the hippocampus and putamen are involved in binding together holistic event memories that link physical stimulus and response characteristics with internal representations of stimulus categories and attentional control states. These bindings then presumably afford shortcuts to adaptive information processing and response selection in the face of recurring events. SIGNIFICANCE STATEMENT Memory binds together the different features of our experience, such as an observed stimulus and concurrent motor responses, into so-called event files. Recent behavioral studies suggest that the observer's internal attentional state might also become integrated into the event memory. Here, we used fMRI to determine the brain areas responsible for binding together event information pertaining to concrete stimulus and response features, stimulus categories, and internal attentional control states. We found that neural signals in the hippocampus and putamen contained information about all of these event attributes and could predict behavioral priming effects stemming from these features. Therefore, medial temporal lobe and dorsal striatum structures appear to be involved in binding internal control states to event memories. PMID:26538657

  18. Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE.

    PubMed

    Chen, Qi; Meng, Zhaopeng; Liu, Xinyi; Jin, Qianguo; Su, Ran

    2018-06-15

    Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE.

  19. Pharmacokinetic Tumor Heterogeneity as a Prognostic Biomarker for Classifying Breast Cancer Recurrence Risk.

    PubMed

    Mahrooghy, Majid; Ashraf, Ahmed B; Daye, Dania; McDonald, Elizabeth S; Rosen, Mark; Mies, Carolyn; Feldman, Michael; Kontos, Despina

    2015-06-01

    Heterogeneity in cancer can affect response to therapy and patient prognosis. Histologic measures have classically been used to measure heterogeneity, although a reliable noninvasive measurement is needed both to establish baseline risk of recurrence and monitor response to treatment. Here, we propose using spatiotemporal wavelet kinetic features from dynamic contrast-enhanced magnetic resonance imaging to quantify intratumor heterogeneity in breast cancer. Tumor pixels are first partitioned into homogeneous subregions using pharmacokinetic measures. Heterogeneity wavelet kinetic (HetWave) features are then extracted from these partitions to obtain spatiotemporal patterns of the wavelet coefficients and the contrast agent uptake. The HetWave features are evaluated in terms of their prognostic value using a logistic regression classifier with genetic algorithm wrapper-based feature selection to classify breast cancer recurrence risk as determined by a validated gene expression assay. Receiver operating characteristic analysis and area under the curve (AUC) are computed to assess classifier performance using leave-one-out cross validation. The HetWave features outperform other commonly used features (AUC = 0.88 HetWave versus 0.70 standard features). The combination of HetWave and standard features further increases classifier performance (AUCs 0.94). The rate of the spatial frequency pattern over the pharmacokinetic partitions can provide valuable prognostic information. HetWave could be a powerful feature extraction approach for characterizing tumor heterogeneity, providing valuable prognostic information.

  20. PredPPCrys: accurate prediction of sequence cloning, protein production, purification and crystallization propensity from protein sequences using multi-step heterogeneous feature fusion and selection.

    PubMed

    Wang, Huilin; Wang, Mingjun; Tan, Hao; Li, Yuan; Zhang, Ziding; Song, Jiangning

    2014-01-01

    X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed 'PredPPCrys' using the support vector machine (SVM). Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I). Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II), which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization targets of currently non-crystallizable proteins were provided as compendium data, which are anticipated to facilitate target selection and design for the worldwide structural genomics consortium. PredPPCrys is freely available at http://www.structbioinfor.org/PredPPCrys.

  1. Mojo Hand, a TALEN design tool for genome editing applications.

    PubMed

    Neff, Kevin L; Argue, David P; Ma, Alvin C; Lee, Han B; Clark, Karl J; Ekker, Stephen C

    2013-01-16

    Recent studies of transcription activator-like (TAL) effector domains fused to nucleases (TALENs) demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org). We describe the algorithm and its implementation. The features of Mojo Hand include (1) automatic download of genomic data from the National Center for Biotechnology Information, (2) analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3) selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4) output files designed for subsequent TALEN construction using the Golden Gate assembly method. Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.

  2. Anticipatory Attentional Suppression of Visual Features Indexed by Oscillatory Alpha-Band Power Increases: A High-Density Electrical Mapping Study

    PubMed Central

    Snyder, Adam C.; Foxe, John J.

    2010-01-01

    Retinotopically specific increases in alpha-band (~10 Hz) oscillatory power have been strongly implicated in the suppression of processing for irrelevant parts of the visual field during the deployment of visuospatial attention. Here, we asked whether this alpha suppression mechanism also plays a role in the nonspatial anticipatory biasing of feature-based attention. Visual word cues informed subjects what the task-relevant feature of an upcoming visual stimulus (S2) was, while high-density electroencephalographic recordings were acquired. We examined anticipatory oscillatory activity in the Cue-to-S2 interval (~2 s). Subjects were cued on a trial-by-trial basis to attend to either the color or direction of motion of an upcoming dot field array, and to respond when they detected that a subset of the dots differed from the majority along the target feature dimension. We used the features of color and motion, expressly because they have well known, spatially separated cortical processing areas, to distinguish shifts in alpha power over areas processing each feature. Alpha power from dorsal regions increased when motion was the irrelevant feature (i.e., color was cued), and alpha power from ventral regions increased when color was irrelevant. Thus, alpha-suppression mechanisms appear to operate during feature-based selection in much the same manner as has been shown for space-based attention. PMID:20237273

  3. Item Selection in Multidimensional Computerized Adaptive Testing--Gaining Information from Different Angles

    ERIC Educational Resources Information Center

    Wang, Chun; Chang, Hua-Hua

    2011-01-01

    Over the past thirty years, obtaining diagnostic information from examinees' item responses has become an increasingly important feature of educational and psychological testing. The objective can be achieved by sequentially selecting multidimensional items to fit the class of latent traits being assessed, and therefore Multidimensional…

  4. Classification of optical coherence tomography images for diagnosing different ocular diseases

    NASA Astrophysics Data System (ADS)

    Gholami, Peyman; Sheikh Hassani, Mohsen; Kuppuswamy Parthasarathy, Mohana; Zelek, John S.; Lakshminarayanan, Vasudevan

    2018-03-01

    Optical Coherence tomography (OCT) images provide several indicators, e.g., the shape and the thickness of different retinal layers, which can be used for various clinical and non-clinical purposes. We propose an automated classification method to identify different ocular diseases, based on the local binary pattern features. The database consists of normal and diseased human eye SD-OCT images. We use a multiphase approach for building our classifier, including preprocessing, Meta learning, and active learning. Pre-processing is applied to the data to handle missing features from images and replace them with the mean or median of the corresponding feature. All the features are run through a Correlation-based Feature Subset Selection algorithm to detect the most informative features and omit the less informative ones. A Meta learning approach is applied to the data, in which a SVM and random forest are combined to obtain a more robust classifier. Active learning is also applied to strengthen our classifier around the decision boundary. The primary experimental results indicate that our method is able to differentiate between the normal and non-normal retina with an area under the ROC curve (AUC) of 98.6% and also to diagnose the three common retina-related diseases, i.e., Age-related Macular Degeneration, Diabetic Retinopathy, and Macular Hole, with an AUC of 100%, 95% and 83.8% respectively. These results indicate a better performance of the proposed method compared to most of the previous works in the literature.

  5. A novel algorithm for reducing false arrhythmia alarms in intensive care units.

    PubMed

    Srivastava, Chandan; Sharma, Sonal; Jalali, Ali

    2016-08-01

    Alarm fatigue in intensive care units (ICU) is one of the top healthcare issues in the US. False alarms in ICU will decrease the quality of care and staff response time over the alarms. Normally, false alarm will cause desensitization of the clinical staff which leads to warnings and misleading, if the triggered alarm is true. In this study, we have proposed a multi-model ensemble approach to reduce the false alarm rate in monitoring systems. We have used 750 patient records from PhysioNet database. At First arrhythmia based features from electrocardiogram (ECG), arterial blood pressure (ABP) and photoplethysmogram (PPG) features were extracted from the records. Next, the dataset has been separated into two subsets on the basis of available features information. The first dataset (DS1) is the combination of ECG physiological, ABP and PPG features. Their correlation coefficient and p-values criteria have been applied for relevant alarm-wise feature-set selection, and random forest classifier was used for model development and validation. The threshold based approach was used on second dataset (DS2) which is the combination of arrhythmia, ABP and PPG features. The developed ensemble model is able to achieve sensitivity 83.33-100 % (average 95.56 %) being true alarms and suppress false alarms rate 66.67-89% (average 77.25%). The predictability of classifier shows the advantage to deal with unbalanced set of information, therefore overall model performance has reached to 83.96% accuracy.

  6. Prediction of protein-protein interactions based on PseAA composition and hybrid feature selection.

    PubMed

    Liu, Liang; Cai, Yudong; Lu, Wencong; Feng, Kaiyan; Peng, Chunrong; Niu, Bing

    2009-03-06

    Based on pseudo amino acid (PseAA) composition and a novel hybrid feature selection frame, this paper presents a computational system to predict the PPIs (protein-protein interactions) using 8796 protein pairs. These pairs are coded by PseAA composition, resulting in 114 features. A hybrid feature selection system, mRMR-KNNs-wrapper, is applied to obtain an optimized feature set by excluding poor-performed and/or redundant features, resulting in 103 remaining features. Using the optimized 103-feature subset, a prediction model is trained and tested in the k-nearest neighbors (KNNs) learning system. This prediction model achieves an overall accurate prediction rate of 76.18%, evaluated by 10-fold cross-validation test, which is 1.46% higher than using the initial 114 features and is 6.51% higher than the 20 features, coded by amino acid compositions. The PPIs predictor, developed for this research, is available for public use at http://chemdata.shu.edu.cn/ppi.

  7. Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer's Disease.

    PubMed

    Cheng, Bo; Liu, Mingxia; Shen, Dinggang; Li, Zuoyong; Zhang, Daoqiang

    2017-04-01

    Recently, transfer learning has been successfully applied in early diagnosis of Alzheimer's Disease (AD) based on multi-domain data. However, most of existing methods only use data from a single auxiliary domain, and thus cannot utilize the intrinsic useful correlation information from multiple domains. Accordingly, in this paper, we consider the joint learning of tasks in multi-auxiliary domains and the target domain, and propose a novel Multi-Domain Transfer Learning (MDTL) framework for early diagnosis of AD. Specifically, the proposed MDTL framework consists of two key components: 1) a multi-domain transfer feature selection (MDTFS) model that selects the most informative feature subset from multi-domain data, and 2) a multi-domain transfer classification (MDTC) model that can identify disease status for early AD detection. We evaluate our method on 807 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database using baseline magnetic resonance imaging (MRI) data. The experimental results show that the proposed MDTL method can effectively utilize multi-auxiliary domain data for improving the learning performance in the target domain, compared with several state-of-the-art methods.

  8. Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer’s Disease

    PubMed Central

    Cheng, Bo; Liu, Mingxia; Li, Zuoyong

    2017-01-01

    Recently, transfer learning has been successfully applied in early diagnosis of Alzheimer’s Disease (AD) based on multi-domain data. However, most of existing methods only use data from a single auxiliary domain, and thus cannot utilize the intrinsic useful correlation information from multiple domains. Accordingly, in this paper, we consider the joint learning of tasks in multi-auxiliary domains and the target domain, and propose a novel Multi-Domain Transfer Learning (MDTL) framework for early diagnosis of AD. Specifically, the proposed MDTL framework consists of two key components: 1) a multi-domain transfer feature selection (MDTFS) model that selects the most informative feature subset from multi-domain data, and 2) a multidomain transfer classification (MDTC) model that can identify disease status for early AD detection. We evaluate our method on 807 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline magnetic resonance imaging (MRI) data. The experimental results show that the proposed MDTL method can effectively utilize multi-auxiliary domain data for improving the learning performance in the target domain, compared with several state-of-the-art methods. PMID:27928657

  9. Automatic parameter selection for feature-based multi-sensor image registration

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Tom, Victor; Webb, Helen; Chao, Alan

    2006-05-01

    Accurate image registration is critical for applications such as precision targeting, geo-location, change-detection, surveillance, and remote sensing. However, the increasing volume of image data is exceeding the current capacity of human analysts to perform manual registration. This image data glut necessitates the development of automated approaches to image registration, including algorithm parameter value selection. Proper parameter value selection is crucial to the success of registration techniques. The appropriate algorithm parameters can be highly scene and sensor dependent. Therefore, robust algorithm parameter value selection approaches are a critical component of an end-to-end image registration algorithm. In previous work, we developed a general framework for multisensor image registration which includes feature-based registration approaches. In this work we examine the problem of automated parameter selection. We apply the automated parameter selection approach of Yitzhaky and Peli to select parameters for feature-based registration of multisensor image data. The approach consists of generating multiple feature-detected images by sweeping over parameter combinations and using these images to generate estimated ground truth. The feature-detected images are compared to the estimated ground truth images to generate ROC points associated with each parameter combination. We develop a strategy for selecting the optimal parameter set by choosing the parameter combination corresponding to the optimal ROC point. We present numerical results showing the effectiveness of the approach using registration of collected SAR data to reference EO data.

  10. Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait.

    PubMed

    Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina

    2014-03-01

    Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Intrapartum fetal heart rate classification from trajectory in Sparse SVM feature space.

    PubMed

    Spilka, J; Frecon, J; Leonarduzzi, R; Pustelnik, N; Abry, P; Doret, M

    2015-01-01

    Intrapartum fetal heart rate (FHR) constitutes a prominent source of information for the assessment of fetal reactions to stress events during delivery. Yet, early detection of fetal acidosis remains a challenging signal processing task. The originality of the present contribution are three-fold: multiscale representations and wavelet leader based multifractal analysis are used to quantify FHR variability ; Supervised classification is achieved by means of Sparse-SVM that aim jointly to achieve optimal detection performance and to select relevant features in a multivariate setting ; Trajectories in the feature space accounting for the evolution along time of features while labor progresses are involved in the construction of indices quantifying fetal health. The classification performance permitted by this combination of tools are quantified on a intrapartum FHR large database (≃ 1250 subjects) collected at a French academic public hospital.

  12. Conjunction of wavelet transform and SOM-mutual information data pre-processing approach for AI-based Multi-Station nitrate modeling of watersheds

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Andalib, Gholamreza; Dąbrowska, Dominika

    2017-05-01

    Accurate nitrate load predictions can elevate decision management of water quality of watersheds which affects to environment and drinking water. In this paper, two scenarios were considered for Multi-Station (MS) nitrate load modeling of the Little River watershed. In the first scenario, Markovian characteristics of streamflow-nitrate time series were proposed for the MS modeling. For this purpose, feature extraction criterion of Mutual Information (MI) was employed for input selection of artificial intelligence models (Feed Forward Neural Network, FFNN and least square support vector machine). In the second scenario for considering seasonality-based characteristics of the time series, wavelet transform was used to extract multi-scale features of streamflow-nitrate time series of the watershed's sub-basins to model MS nitrate loads. Self-Organizing Map (SOM) clustering technique which finds homogeneous sub-series clusters was also linked to MI for proper cluster agent choice to be imposed into the models for predicting the nitrate loads of the watershed's sub-basins. The proposed MS method not only considers the prediction of the outlet nitrate but also covers predictions of interior sub-basins nitrate load values. The results indicated that the proposed FFNN model coupled with the SOM-MI improved the performance of MS nitrate predictions compared to the Markovian-based models up to 39%. Overall, accurate selection of dominant inputs which consider seasonality-based characteristics of streamflow-nitrate process could enhance the efficiency of nitrate load predictions.

  13. Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces.

    PubMed

    Yang, Banghua; Li, Huarong; Wang, Qian; Zhang, Yunyuan

    2016-06-01

    Feature extraction of electroencephalogram (EEG) plays a vital role in brain-computer interfaces (BCIs). In recent years, common spatial pattern (CSP) has been proven to be an effective feature extraction method. However, the traditional CSP has disadvantages of requiring a lot of input channels and the lack of frequency information. In order to remedy the defects of CSP, wavelet packet decomposition (WPD) and CSP are combined to extract effective features. But WPD-CSP method considers less about extracting specific features that are fitted for the specific subject. So a subject-based feature extraction method using fisher WPD-CSP is proposed in this paper. The idea of proposed method is to adapt fisher WPD-CSP to each subject separately. It mainly includes the following six steps: (1) original EEG signals from all channels are decomposed into a series of sub-bands using WPD; (2) average power values of obtained sub-bands are computed; (3) the specified sub-bands with larger values of fisher distance according to average power are selected for that particular subject; (4) each selected sub-band is reconstructed to be regarded as a new EEG channel; (5) all new EEG channels are used as input of the CSP and a six-dimensional feature vector is obtained by the CSP. The subject-based feature extraction model is so formed; (6) the probabilistic neural network (PNN) is used as the classifier and the classification accuracy is obtained. Data from six subjects are processed by the subject-based fisher WPD-CSP, the non-subject-based fisher WPD-CSP and WPD-CSP, respectively. Compared with non-subject-based fisher WPD-CSP and WPD-CSP, the results show that the proposed method yields better performance (sensitivity: 88.7±0.9%, and specificity: 91±1%) and the classification accuracy from subject-based fisher WPD-CSP is increased by 6-12% and 14%, respectively. The proposed subject-based fisher WPD-CSP method can not only remedy disadvantages of CSP by WPD but also discriminate helpless sub-bands for each subject and make remaining fewer sub-bands keep better separability by fisher distance, which leads to a higher classification accuracy than WPD-CSP method. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Computational prediction of human salivary proteins from blood circulation and application to diagnostic biomarker identification.

    PubMed

    Wang, Jiaxin; Liang, Yanchun; Wang, Yan; Cui, Juan; Liu, Ming; Du, Wei; Xu, Ying

    2013-01-01

    Proteins can move from blood circulation into salivary glands through active transportation, passive diffusion or ultrafiltration, some of which are then released into saliva and hence can potentially serve as biomarkers for diseases if accurately identified. We present a novel computational method for predicting salivary proteins that come from circulation. The basis for the prediction is a set of physiochemical and sequence features we found to be discerning between human proteins known to be movable from circulation to saliva and proteins deemed to be not in saliva. A classifier was trained based on these features using a support-vector machine to predict protein secretion into saliva. The classifier achieved 88.56% average recall and 90.76% average precision in 10-fold cross-validation on the training data, indicating that the selected features are informative. Considering the possibility that our negative training data may not be highly reliable (i.e., proteins predicted to be not in saliva), we have also trained a ranking method, aiming to rank the known salivary proteins from circulation as the highest among the proteins in the general background, based on the same features. This prediction capability can be used to predict potential biomarker proteins for specific human diseases when coupled with the information of differentially expressed proteins in diseased versus healthy control tissues and a prediction capability for blood-secretory proteins. Using such integrated information, we predicted 31 candidate biomarker proteins in saliva for breast cancer.

  15. Computational Prediction of Human Salivary Proteins from Blood Circulation and Application to Diagnostic Biomarker Identification

    PubMed Central

    Wang, Jiaxin; Liang, Yanchun; Wang, Yan; Cui, Juan; Liu, Ming; Du, Wei; Xu, Ying

    2013-01-01

    Proteins can move from blood circulation into salivary glands through active transportation, passive diffusion or ultrafiltration, some of which are then released into saliva and hence can potentially serve as biomarkers for diseases if accurately identified. We present a novel computational method for predicting salivary proteins that come from circulation. The basis for the prediction is a set of physiochemical and sequence features we found to be discerning between human proteins known to be movable from circulation to saliva and proteins deemed to be not in saliva. A classifier was trained based on these features using a support-vector machine to predict protein secretion into saliva. The classifier achieved 88.56% average recall and 90.76% average precision in 10-fold cross-validation on the training data, indicating that the selected features are informative. Considering the possibility that our negative training data may not be highly reliable (i.e., proteins predicted to be not in saliva), we have also trained a ranking method, aiming to rank the known salivary proteins from circulation as the highest among the proteins in the general background, based on the same features. This prediction capability can be used to predict potential biomarker proteins for specific human diseases when coupled with the information of differentially expressed proteins in diseased versus healthy control tissues and a prediction capability for blood-secretory proteins. Using such integrated information, we predicted 31 candidate biomarker proteins in saliva for breast cancer. PMID:24324552

  16. Peer-Based Social Media Features in Behavior Change Interventions: Systematic Review.

    PubMed

    Elaheebocus, Sheik Mohammad Roushdat Ally; Weal, Mark; Morrison, Leanne; Yardley, Lucy

    2018-02-22

    Incorporating social media features into digital behavior change interventions (DBCIs) has the potential to contribute positively to their success. However, the lack of clear design principles to describe and guide the use of these features in behavioral interventions limits cross-study comparisons of their uses and effects. The aim of this study was to provide a systematic review of DBCIs targeting modifiable behavioral risk factors that have included social media features as part of their intervention infrastructure. A taxonomy of social media features is presented to inform the development, description, and evaluation of behavioral interventions. Search terms were used in 8 databases to identify DBCIs that incorporated social media features and targeted tobacco smoking, diet and nutrition, physical activities, or alcohol consumption. The screening and review process was performed by 2 independent researchers. A total of 5264 articles were screened, and 143 articles describing a total of 134 studies were retained for full review. The majority of studies (70%) reported positive outcomes, followed by 28% finding no effects with regard to their respective objectives and hypothesis, and 2% of the studies found that their interventions had negative outcomes. Few studies reported on the association between the inclusion of social media features and intervention effect. A taxonomy of social media features used in behavioral interventions has been presented with 36 social media features organized under 7 high-level categories. The taxonomy has been used to guide the analysis of this review. Although social media features are commonly included in DBCIs, there is an acute lack of information with respect to their effect on outcomes and a lack of clear guidance to inform the selection process based on the features' suitability for the different behaviors. The proposed taxonomy along with the set of recommendations included in this review will support future research aimed at isolating and reporting the effects of social media features on DBCIs, cross-study comparisons, and evaluations. ©Sheik Mohammad Roushdat Ally Elaheebocus, Mark Weal, Leanne Morrison, Lucy Yardley. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.02.2018.

  17. Intelligent system for topic survey in MEDLINE by keyword recommendation and learning text characteristics.

    PubMed

    Tanaka, M; Nakazono, S; Matsuno, H; Tsujimoto, H; Kitamura, Y; Miyano, S

    2000-01-01

    We have implemented a system for assisting experts in selecting MEDLINE records for database construction purposes. This system has two specific features: The first is a learning mechanism which extracts characteristics in the abstracts of MEDLINE records of interest as patterns. These patterns reflect selection decisions by experts and are used for screening the records. The second is a keyword recommendation system which assists and supplements experts' knowledge in unexpected cases. Combined with a conventional keyword-based information retrieval system, this system may provide an efficient and comfortable environment for MEDLINE record selection by experts. Some computational experiments are provided to prove that this idea is useful.

  18. Comparison of scientific and administrative database management systems

    NASA Technical Reports Server (NTRS)

    Stoltzfus, J. C.

    1983-01-01

    Some characteristics found to be different for scientific and administrative data bases are identified and some of the corresponding generic requirements for data base management systems (DBMS) are discussed. The requirements discussed are especially stringent for either the scientific or administrative data bases. For some, no commercial DBMS is fully satisfactory, and the data base designer must invent a suitable approach. For others, commercial systems are available with elegant solutions, and a wrong choice would mean an expensive work-around to provide the missing features. It is concluded that selection of a DBMS must be based on the requirements for the information system. There is no unique distinction between scientific and administrative data bases or DBMS. The distinction comes from the logical structure of the data, and understanding the data and their relationships is the key to defining the requirements and selecting an appropriate DBMS for a given set of applications.

  19. NetProt: Complex-based Feature Selection.

    PubMed

    Goh, Wilson Wen Bin; Wong, Limsoon

    2017-08-04

    Protein complex-based feature selection (PCBFS) provides unparalleled reproducibility with high phenotypic relevance on proteomics data. Currently, there are five PCBFS paradigms, but not all representative methods have been implemented or made readily available. To allow general users to take advantage of these methods, we developed the R-package NetProt, which provides implementations of representative feature-selection methods. NetProt also provides methods for generating simulated differential data and generating pseudocomplexes for complex-based performance benchmarking. The NetProt open source R package is available for download from https://github.com/gohwils/NetProt/releases/ , and online documentation is available at http://rpubs.com/gohwils/204259 .

  20. Earthquake Damage Assessment over Port-au-Prince (Haiti) by Fusing Optical and SAR Data

    NASA Astrophysics Data System (ADS)

    Romaniello, V.; Piscini, A.; Bignami, C.; Anniballe, R.; Pierdicca, N.; Stramondo, S.

    2016-08-01

    This work proposes methodologies aiming at evaluating the sensitivity of optical and SAR change features obtained from satellite images with respect to the damage grade. The proposed methods are derived from the literature ([1], [2], [3], [4]) and the main novelty concerns the estimation of these change features at object scale.The test case is the Mw 7.0 earthquake that hit Haiti on January 12, 2010.The analysis of change detection indicators is based on ground truth information collected during a post- earthquake survey. We have generated the damage map of Port-au-Prince by considering a set of polygons extracted from the open source Open Street Map geo- database. The resulting damage map was calculated in terms of collapse ratio [5].We selected some features having a good sensitivity with damage at object scale [6]: the Normalised Difference Index, the Kullback-Libler Divergence, the Mutual Information and the Intensity Correlation Difference.The Naive Bayes and the Support Vector Machine classifiers were used to evaluate the goodness of these features. The classification results demonstrate that the simultaneous use of several change features from EO observations can improve the damage estimation at object scale.

  1. Feature-based attentional modulations in the absence of direct visual stimulation.

    PubMed

    Serences, John T; Boynton, Geoffrey M

    2007-07-19

    When faced with a crowded visual scene, observers must selectively attend to behaviorally relevant objects to avoid sensory overload. Often this selection process is guided by prior knowledge of a target-defining feature (e.g., the color red when looking for an apple), which enhances the firing rate of visual neurons that are selective for the attended feature. Here, we used functional magnetic resonance imaging and a pattern classification algorithm to predict the attentional state of human observers as they monitored a visual feature (one of two directions of motion). We find that feature-specific attention effects spread across the visual field-even to regions of the scene that do not contain a stimulus. This spread of feature-based attention to empty regions of space may facilitate the perception of behaviorally relevant stimuli by increasing sensitivity to attended features at all locations in the visual field.

  2. A humming retrieval system based on music fingerprint

    NASA Astrophysics Data System (ADS)

    Han, Xingkai; Cao, Baiyu

    2011-10-01

    In this paper, we proposed an improved music information retrieval method utilizing the music fingerprint. The goal of this method is to represent the music with compressed musical information. Based on the selected MIDI files, which are generated automatically as our music target database, we evaluate the accuracy, effectiveness, and efficiency of this method. In this research we not only extract the feature sequence, which can represent the file effectively, from the query and melody database, but also make it possible for retrieving the results in an innovative way. We investigate on the influence of noise to the performance of our system. As experimental result shows, the retrieval accuracy arriving at up to91% without noise is pretty well

  3. Production of a national 1:1,000,000-scale hydrography dataset for the United States: feature selection, simplification, and refinement

    USGS Publications Warehouse

    Gary, Robin H.; Wilson, Zachary D.; Archuleta, Christy-Ann M.; Thompson, Florence E.; Vrabel, Joseph

    2009-01-01

    During 2006-09, the U.S. Geological Survey, in cooperation with the National Atlas of the United States, produced a 1:1,000,000-scale (1:1M) hydrography dataset comprising streams and waterbodies for the entire United States, including Puerto Rico and the U.S. Virgin Islands, for inclusion in the recompiled National Atlas. This report documents the methods used to select, simplify, and refine features in the 1:100,000-scale (1:100K) (1:63,360-scale in Alaska) National Hydrography Dataset to create the national 1:1M hydrography dataset. Custom tools and semi-automated processes were created to facilitate generalization of the 1:100K National Hydrography Dataset (1:63,360-scale in Alaska) to 1:1M on the basis of existing small-scale hydrography datasets. The first step in creating the new 1:1M dataset was to address feature selection and optimal data density in the streams network. Several existing methods were evaluated. The production method that was established for selecting features for inclusion in the 1:1M dataset uses a combination of the existing attributes and network in the National Hydrography Dataset and several of the concepts from the methods evaluated. The process for creating the 1:1M waterbodies dataset required a similar approach to that used for the streams dataset. Geometric simplification of features was the next step. Stream reaches and waterbodies indicated in the feature selection process were exported as new feature classes and then simplified using a geographic information system tool. The final step was refinement of the 1:1M streams and waterbodies. Refinement was done through the use of additional geographic information system tools.

  4. Optimum location of external markers using feature selection algorithms for real‐time tumor tracking in external‐beam radiotherapy: a virtual phantom study

    PubMed Central

    Nankali, Saber; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-01

    In external‐beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation‐based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two “Genetic” and “Ranker” searching procedures. The performance of these algorithms has been evaluated using four‐dimensional extended cardiac‐torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro‐fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F‐test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation‐based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers. PACS numbers: 87.55.km, 87.56.Fc PMID:26894358

  5. Optimum location of external markers using feature selection algorithms for real-time tumor tracking in external-beam radiotherapy: a virtual phantom study.

    PubMed

    Nankali, Saber; Torshabi, Ahmad Esmaili; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-08

    In external-beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation-based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two "Genetic" and "Ranker" searching procedures. The performance of these algorithms has been evaluated using four-dimensional extended cardiac-torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro-fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F-test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation-based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers.

  6. Assessing Volunteered Geographic Information (vgi) Quality Based on CONTRIBUTORS' Mapping Behaviours

    NASA Astrophysics Data System (ADS)

    Bégin, D.; Devillers, R.; Roche, S.

    2013-05-01

    VGI changed the mapping landscape by allowing people that are not professional cartographers to contribute to large mapping projects, resulting at the same time in concerns about the quality of the data produced. While a number of early VGI studies used conventional methods to assess data quality, such approaches are not always well adapted to VGI. Since VGI is a user-generated content, we posit that features and places mapped by contributors largely reflect contributors' personal interests. This paper proposes studying contributors' mapping processes to understand the characteristics and quality of the data produced. We argue that contributors' behaviour when mapping reflects contributors' motivation and individual preferences in selecting mapped features and delineating mapped areas. Such knowledge of contributors' behaviour could allow for the derivation of information about the quality of VGI datasets. This approach was tested using a sample area from OpenStreetMap, leading to a better understanding of data completeness for contributor's preferred features.

  7. Machine Learning Classification Combining Multiple Features of A Hyper-Network of fMRI Data in Alzheimer's Disease

    PubMed Central

    Guo, Hao; Zhang, Fan; Chen, Junjie; Xu, Yong; Xiang, Jie

    2017-01-01

    Exploring functional interactions among various brain regions is helpful for understanding the pathological underpinnings of neurological disorders. Brain networks provide an important representation of those functional interactions, and thus are widely applied in the diagnosis and classification of neurodegenerative diseases. Many mental disorders involve a sharp decline in cognitive ability as a major symptom, which can be caused by abnormal connectivity patterns among several brain regions. However, conventional functional connectivity networks are usually constructed based on pairwise correlations among different brain regions. This approach ignores higher-order relationships, and cannot effectively characterize the high-order interactions of many brain regions working together. Recent neuroscience research suggests that higher-order relationships between brain regions are important for brain network analysis. Hyper-networks have been proposed that can effectively represent the interactions among brain regions. However, this method extracts the local properties of brain regions as features, but ignores the global topology information, which affects the evaluation of network topology and reduces the performance of the classifier. This problem can be compensated by a subgraph feature-based method, but it is not sensitive to change in a single brain region. Considering that both of these feature extraction methods result in the loss of information, we propose a novel machine learning classification method that combines multiple features of a hyper-network based on functional magnetic resonance imaging in Alzheimer's disease. The method combines the brain region features and subgraph features, and then uses a multi-kernel SVM for classification. This retains not only the global topological information, but also the sensitivity to change in a single brain region. To certify the proposed method, 28 normal control subjects and 38 Alzheimer's disease patients were selected to participate in an experiment. The proposed method achieved satisfactory classification accuracy, with an average of 91.60%. The abnormal brain regions included the bilateral precuneus, right parahippocampal gyrus\\hippocampus, right posterior cingulate gyrus, and other regions that are known to be important in Alzheimer's disease. Machine learning classification combining multiple features of a hyper-network of functional magnetic resonance imaging data in Alzheimer's disease obtains better classification performance. PMID:29209156

  8. Land mine detection using multispectral image fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.

    1995-03-29

    Our system fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a varietymore » of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts. We use a supervised learning pattern recognition approach to detecting the metal and plastic land mines. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the spectral bands add value to the detection system. The most important features from the various sensors are fused using a supervised learning pattern classifier (the probabilistic neural network). We present results of experiments to detect land mines from real data collected from an airborne platform, and evaluate the usefulness of fusing feature information from multiple spectral bands.« less

  9. EEG-based mild depressive detection using feature selection methods and classifiers.

    PubMed

    Li, Xiaowei; Hu, Bin; Sun, Shuting; Cai, Hanshu

    2016-11-01

    Depression has become a major health burden worldwide, and effectively detection of such disorder is a great challenge which requires latest technological tool, such as Electroencephalography (EEG). This EEG-based research seeks to find prominent frequency band and brain regions that are most related to mild depression, as well as an optimal combination of classification algorithms and feature selection methods which can be used in future mild depression detection. An experiment based on facial expression viewing task (Emo_block and Neu_block) was conducted, and EEG data of 37 university students were collected using a 128 channel HydroCel Geodesic Sensor Net (HCGSN). For discriminating mild depressive patients and normal controls, BayesNet (BN), Support Vector Machine (SVM), Logistic Regression (LR), k-nearest neighbor (KNN) and RandomForest (RF) classifiers were used. And BestFirst (BF), GreedyStepwise (GSW), GeneticSearch (GS), LinearForwordSelection (LFS) and RankSearch (RS) based on Correlation Features Selection (CFS) were applied for linear and non-linear EEG features selection. Independent Samples T-test with Bonferroni correction was used to find the significantly discriminant electrodes and features. Data mining results indicate that optimal performance is achieved using a combination of feature selection method GSW based on CFS and classifier KNN for beta frequency band. Accuracies achieved 92.00% and 98.00%, and AUC achieved 0.957 and 0.997, for Emo_block and Neu_block beta band data respectively. T-test results validate the effectiveness of selected features by search method GSW. Simplified EEG system with only FP1, FP2, F3, O2, T3 electrodes was also explored with linear features, which yielded accuracies of 91.70% and 96.00%, AUC of 0.952 and 0.972, for Emo_block and Neu_block respectively. Classification results obtained by GSW + KNN are encouraging and better than previously published results. In the spatial distribution of features, we find that left parietotemporal lobe in beta EEG frequency band has greater effect on mild depression detection. And fewer EEG channels (FP1, FP2, F3, O2 and T3) combined with linear features may be good candidates for usage in portable systems for mild depression detection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. [Combining speech sample and feature bilateral selection algorithm for classification of Parkinson's disease].

    PubMed

    Zhang, Xiaoheng; Wang, Lirui; Cao, Yao; Wang, Pin; Zhang, Cheng; Yang, Liuyang; Li, Yongming; Zhang, Yanling; Cheng, Oumei

    2018-02-01

    Diagnosis of Parkinson's disease (PD) based on speech data has been proved to be an effective way in recent years. However, current researches just care about the feature extraction and classifier design, and do not consider the instance selection. Former research by authors showed that the instance selection can lead to improvement on classification accuracy. However, no attention is paid on the relationship between speech sample and feature until now. Therefore, a new diagnosis algorithm of PD is proposed in this paper by simultaneously selecting speech sample and feature based on relevant feature weighting algorithm and multiple kernel method, so as to find their synergy effects, thereby improving classification accuracy. Experimental results showed that this proposed algorithm obtained apparent improvement on classification accuracy. It can obtain mean classification accuracy of 82.5%, which was 30.5% higher than the relevant algorithm. Besides, the proposed algorithm detected the synergy effects of speech sample and feature, which is valuable for speech marker extraction.

  11. [Identification of green tea brand based on hyperspectra imaging technology].

    PubMed

    Zhang, Hai-Liang; Liu, Xiao-Li; Zhu, Feng-Le; He, Yong

    2014-05-01

    Hyperspectral imaging technology was developed to identify different brand famous green tea based on PCA information and image information fusion. First 512 spectral images of six brands of famous green tea in the 380 approximately 1 023 nm wavelength range were collected and principal component analysis (PCA) was performed with the goal of selecting two characteristic bands (545 and 611 nm) that could potentially be used for classification system. Then, 12 gray level co-occurrence matrix (GLCM) features (i. e., mean, covariance, homogeneity, energy, contrast, correlation, entropy, inverse gap, contrast, difference from the second-order and autocorrelation) based on the statistical moment were extracted from each characteristic band image. Finally, integration of the 12 texture features and three PCA spectral characteristics for each green tea sample were extracted as the input of LS-SVM. Experimental results showed that discriminating rate was 100% in the prediction set. The receiver operating characteristic curve (ROC) assessment methods were used to evaluate the LS-SVM classification algorithm. Overall results sufficiently demonstrate that hyperspectral imaging technology can be used to perform classification of green tea.

  12. Identification of pests and diseases of Dalbergia hainanensis based on EVI time series and classification of decision tree

    NASA Astrophysics Data System (ADS)

    Luo, Qiu; Xin, Wu; Qiming, Xiong

    2017-06-01

    In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.

  13. JPEG 2000 in advanced ground station architectures

    NASA Astrophysics Data System (ADS)

    Chien, Alan T.; Brower, Bernard V.; Rajan, Sreekanth D.

    2000-11-01

    The integration and management of information from distributed and heterogeneous information producers and providers must be a key foundation of any developing imagery intelligence system. Historically, imagery providers acted as production agencies for imagery, imagery intelligence, and geospatial information. In the future, these imagery producers will be evolving to act more like e-business information brokers. The management of imagery and geospatial information-visible, spectral, infrared (IR), radar, elevation, or other feature and foundation data-is crucial from a quality and content perspective. By 2005, there will be significantly advanced collection systems and a myriad of storage devices. There will also be a number of automated and man-in-the-loop correlation, fusion, and exploitation capabilities. All of these new imagery collection and storage systems will result in a higher volume and greater variety of imagery being disseminated and archived in the future. This paper illustrates the importance-from a collection, storage, exploitation, and dissemination perspective-of the proper selection and implementation of standards-based compression technology for ground station and dissemination/archive networks. It specifically discusses the new compression capabilities featured in JPEG 2000 and how that commercially based technology can provide significant improvements to the overall imagery and geospatial enterprise both from an architectural perspective as well as from a user's prospective.

  14. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    PubMed

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  15. CD-ROM Hardware Configurations: Selection and Design.

    ERIC Educational Resources Information Center

    Jaffe, Lee David; Watkins, Steven G.

    1992-01-01

    Presents selection and design considerations to help libraries make informed decisions about hardware configurations of CD-ROM systems. Highlights include CD-ROM configurations, including single drive workstations, daisychains, and jukeboxes; network configurations, including remote access; microcomputer features; CD-ROM drive selection; and…

  16. Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.

    PubMed

    Ester, Edward F; Sutterer, David W; Serences, John T; Awh, Edward

    2016-08-03

    Control over visual selection has long been framed in terms of a dichotomy between "source" and "site," where top-down feedback signals originating in frontoparietal cortical areas modulate or bias sensory processing in posterior visual areas. This distinction is motivated in part by observations that frontoparietal cortical areas encode task-level variables (e.g., what stimulus is currently relevant or what motor outputs are appropriate), while posterior sensory areas encode continuous or analog feature representations. Here, we present evidence that challenges this distinction. We used fMRI, a roving searchlight analysis, and an inverted encoding model to examine representations of an elementary feature property (orientation) across the entire human cortical sheet while participants attended either the orientation or luminance of a peripheral grating. Orientation-selective representations were present in a multitude of visual, parietal, and prefrontal cortical areas, including portions of the medial occipital cortex, the lateral parietal cortex, and the superior precentral sulcus (thought to contain the human homolog of the macaque frontal eye fields). Additionally, representations in many-but not all-of these regions were stronger when participants were instructed to attend orientation relative to luminance. Collectively, these findings challenge models that posit a strict segregation between sources and sites of attentional control on the basis of representational properties by demonstrating that simple feature values are encoded by cortical regions throughout the visual processing hierarchy, and that representations in many of these areas are modulated by attention. Influential models of visual attention posit a distinction between top-down control and bottom-up sensory processing networks. These models are motivated in part by demonstrations showing that frontoparietal cortical areas associated with top-down control represent abstract or categorical stimulus information, while visual areas encode parametric feature information. Here, we show that multivariate activity in human visual, parietal, and frontal cortical areas encode representations of a simple feature property (orientation). Moreover, representations in several (though not all) of these areas were modulated by feature-based attention in a similar fashion. These results provide an important challenge to models that posit dissociable top-down control and sensory processing networks on the basis of representational properties. Copyright © 2016 the authors 0270-6474/16/368188-12$15.00/0.

  17. Unconscious semantic activation depends on feature-specific attention allocation.

    PubMed

    Spruyt, Adriaan; De Houwer, Jan; Everaert, Tom; Hermans, Dirk

    2012-01-01

    We examined whether semantic activation by subliminally presented stimuli is dependent upon the extent to which participants assign attention to specific semantic stimulus features and stimulus dimensions. Participants pronounced visible target words that were preceded by briefly presented, masked prime words. Both affective and non-affective semantic congruence of the prime-target pairs were manipulated under conditions that either promoted selective attention for affective stimulus information or selective attention for non-affective semantic stimulus information. In line with our predictions, results showed that affective congruence had a clear impact on word pronunciation latencies only if participants were encouraged to assign attention to the affective stimulus dimension. In contrast, non-affective semantic relatedness of the prime-target pairs produced no priming at all. Our findings are consistent with the hypothesis that unconscious activation of (affective) semantic information is modulated by feature-specific attention allocation. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Influence of time and length size feature selections for human activity sequences recognition.

    PubMed

    Fang, Hongqing; Chen, Long; Srinivasan, Raghavendiran

    2014-01-01

    In this paper, Viterbi algorithm based on a hidden Markov model is applied to recognize activity sequences from observed sensors events. Alternative features selections of time feature values of sensors events and activity length size feature values are tested, respectively, and then the results of activity sequences recognition performances of Viterbi algorithm are evaluated. The results show that the selection of larger time feature values of sensor events and/or smaller activity length size feature values will generate relatively better results on the activity sequences recognition performances. © 2013 ISA Published by ISA All rights reserved.

  19. Information measures for terrain visualization

    NASA Astrophysics Data System (ADS)

    Bonaventura, Xavier; Sima, Aleksandra A.; Feixas, Miquel; Buckley, Simon J.; Sbert, Mateu; Howell, John A.

    2017-02-01

    Many quantitative and qualitative studies in geoscience research are based on digital elevation models (DEMs) and 3D surfaces to aid understanding of natural and anthropogenically-influenced topography. As well as their quantitative uses, the visual representation of DEMs can add valuable information for identifying and interpreting topographic features. However, choice of viewpoints and rendering styles may not always be intuitive, especially when terrain data are augmented with digital image texture. In this paper, an information-theoretic framework for object understanding is applied to terrain visualization and terrain view selection. From a visibility channel between a set of viewpoints and the component polygons of a 3D terrain model, we obtain three polygonal information measures. These measures are used to visualize the information associated with each polygon of the terrain model. In order to enhance the perception of the terrain's shape, we explore the effect of combining the calculated information measures with the supplementary digital image texture. From polygonal information, we also introduce a method to select a set of representative views of the terrain model. Finally, we evaluate the behaviour of the proposed techniques using example datasets. A publicly available framework for both the visualization and the view selection of a terrain has been created in order to provide the possibility to analyse any terrain model.

  20. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.

    PubMed

    Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo

    2017-01-01

    Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples, perhaps due to colonized berries or sparse mycelia hidden within the bunch or airborne conidia on the berries that were detected by qPCR. An advanced approach to hyperspectral image classification based on combined spatial and spectral image features, potentially applicable to many available hyperspectral sensor technologies, has been developed and validated to improve the detection of powdery mildew infection levels of Chardonnay grape bunches. The spatial-spectral approach improved especially the detection of light infection levels compared with pixel-wise spectral data analysis. This approach is expected to improve the speed and accuracy of disease detection once the thresholds for fungal biomass detected by hyperspectral imaging are established; it can also facilitate monitoring in plant phenotyping of grapevine and additional crops.

  1. Predication of different stages of Alzheimer's disease using neighborhood component analysis and ensemble decision tree.

    PubMed

    Jin, Mingwu; Deng, Weishu

    2018-05-15

    There is a spectrum of the progression from healthy control (HC) to mild cognitive impairment (MCI) without conversion to Alzheimer's disease (AD), to MCI with conversion to AD (cMCI), and to AD. This study aims to predict the different disease stages using brain structural information provided by magnetic resonance imaging (MRI) data. The neighborhood component analysis (NCA) is applied to select most powerful features for prediction. The ensemble decision tree classifier is built to predict which group the subject belongs to. The best features and model parameters are determined by cross validation of the training data. Our results show that 16 out of a total of 429 features were selected by NCA using 240 training subjects, including MMSE score and structural measures in memory-related regions. The boosting tree model with NCA features can achieve prediction accuracy of 56.25% on 160 test subjects. Principal component analysis (PCA) and sequential feature selection (SFS) are used for feature selection, while support vector machine (SVM) is used for classification. The boosting tree model with NCA features outperforms all other combinations of feature selection and classification methods. The results suggest that NCA be a better feature selection strategy than PCA and SFS for the data used in this study. Ensemble tree classifier with boosting is more powerful than SVM to predict the subject group. However, more advanced feature selection and classification methods or additional measures besides structural MRI may be needed to improve the prediction performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Photoanthropometric face iridial proportions for age estimation: An investigation using features selected via a joint mutual information criterion.

    PubMed

    Borges, Díbio L; Vidal, Flávio B; Flores, Marta R P; Melani, Rodolfo F H; Guimarães, Marco A; Machado, Carlos E P

    2018-03-01

    Age assessment from images is of high interest in the forensic community because of the necessity to establish formal protocols to identify child pornography, child missing and abuses where visual evidences are the mostly admissible. Recently, photoanthropometric methods have been found useful for age estimation correlating facial proportions in image databases with samples of some age groups. Notwithstanding the advances, newer facial features and further analysis are needed to improve accuracy and establish larger applicability. In this investigation, frontal images of 1000 individuals (500 females, 500 males), equally distributed in five age groups (6, 10, 14, 18, 22 years old) were used in a 10 fold cross-validated experiment for three age thresholds classifications (<10, <14, <18 years old). A set of novel 40 features, based on a relation between landmark distances and the iris diameter, is proposed and joint mutual information is used to select the most relevant and complementary features for the classification task. In a civil image identification database with diverse ancestry, receiver operating characteristic (ROC) curves were plotted to verify accuracy, and the resultant AUCs achieved 0.971, 0.969, and 0.903 for the age classifications (<10, <14, <18 years old), respectively. These results add support to continuing research in age assessment from images using the metric approach. Still, larger samples are necessary to evaluate reliability in extensive conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Attentive Motion Discrimination Recruits an Area in Inferotemporal Cortex

    PubMed Central

    Stemmann, Heiko

    2016-01-01

    Attentional selection requires the interplay of multiple brain areas. Theoretical accounts of selective attention predict different areas with different functional properties to support endogenous covert attention. To test these predictions, we devised a demanding attention task requiring motion discrimination and spatial selection and performed whole-brain imaging in macaque monkeys. Attention modulated the early visual cortex, motion-selective dorsal stream areas, the lateral intraparietal area, and the frontal eye fields. This pattern of activation supports early selection, feature-based, and biased-competition attention accounts, as well as the frontoparietal theory of attentional control. While high-level motion-selective dorsal stream areas did not exhibit strong attentional modulation, ventral stream areas V4d and the dorsal posterior inferotemporal cortex (PITd) did. The PITd in fact was, consistently across task variations, the most significantly and most strongly attention-modulated area, even though it did not exhibit signs of motion selectivity. Thus the recruitment of the PITd in attention tasks involving different kinds of motion analysis is not predicted by any theoretical account of attention. These functional data, together with known anatomical connections, suggest a general and possibly critical role of the PITd in attentional selection. SIGNIFICANCE STATEMENT Attention is the key cognitive function that selects sensory information relevant to the current goals, relegating other information to the shadows of consciousness. To better understand the neural mechanisms of this interplay between sensory processing and internal cognitive state, we must learn more about the brain areas supporting attentional selection. Here, to test theoretical accounts of attentional selection, we used a novel task requiring sustained attention to motion. We found that, surprisingly, among the most strongly attention-modulated areas is one that is neither selective for the sensory feature relevant for current goals nor one hitherto thought to be involved in attentional control. This discovery suggests a need for an extension of current theoretical accounts of the brain circuits for attentional selection. PMID:27881778

  4. Ensemble methods with simple features for document zone classification

    NASA Astrophysics Data System (ADS)

    Obafemi-Ajayi, Tayo; Agam, Gady; Xie, Bingqing

    2012-01-01

    Document layout analysis is of fundamental importance for document image understanding and information retrieval. It requires the identification of blocks extracted from a document image via features extraction and block classification. In this paper, we focus on the classification of the extracted blocks into five classes: text (machine printed), handwriting, graphics, images, and noise. We propose a new set of features for efficient classifications of these blocks. We present a comparative evaluation of three ensemble based classification algorithms (boosting, bagging, and combined model trees) in addition to other known learning algorithms. Experimental results are demonstrated for a set of 36503 zones extracted from 416 document images which were randomly selected from the tobacco legacy document collection. The results obtained verify the robustness and effectiveness of the proposed set of features in comparison to the commonly used Ocropus recognition features. When used in conjunction with the Ocropus feature set, we further improve the performance of the block classification system to obtain a classification accuracy of 99.21%.

  5. Mortality Prediction Model of Septic Shock Patients Based on Routinely Recorded Data

    PubMed Central

    Carrara, Marta; Baselli, Giuseppe; Ferrario, Manuela

    2015-01-01

    We studied the problem of mortality prediction in two datasets, the first composed of 23 septic shock patients and the second composed of 73 septic subjects selected from the public database MIMIC-II. For each patient we derived hemodynamic variables, laboratory results, and clinical information of the first 48 hours after shock onset and we performed univariate and multivariate analyses to predict mortality in the following 7 days. The results show interesting features that individually identify significant differences between survivors and nonsurvivors and features which gain importance only when considered together with the others in a multivariate regression model. This preliminary study on two small septic shock populations represents a novel contribution towards new personalized models for an integration of multiparameter patient information to improve critical care management of shock patients. PMID:26557154

  6. Causal Inference for Cross-Modal Action Selection: A Computational Study in a Decision Making Framework.

    PubMed

    Daemi, Mehdi; Harris, Laurence R; Crawford, J Douglas

    2016-01-01

    Animals try to make sense of sensory information from multiple modalities by categorizing them into perceptions of individual or multiple external objects or internal concepts. For example, the brain constructs sensory, spatial representations of the locations of visual and auditory stimuli in the visual and auditory cortices based on retinal and cochlear stimulations. Currently, it is not known how the brain compares the temporal and spatial features of these sensory representations to decide whether they originate from the same or separate sources in space. Here, we propose a computational model of how the brain might solve such a task. We reduce the visual and auditory information to time-varying, finite-dimensional signals. We introduce controlled, leaky integrators as working memory that retains the sensory information for the limited time-course of task implementation. We propose our model within an evidence-based, decision-making framework, where the alternative plan units are saliency maps of space. A spatiotemporal similarity measure, computed directly from the unimodal signals, is suggested as the criterion to infer common or separate causes. We provide simulations that (1) validate our model against behavioral, experimental results in tasks where the participants were asked to report common or separate causes for cross-modal stimuli presented with arbitrary spatial and temporal disparities. (2) Predict the behavior in novel experiments where stimuli have different combinations of spatial, temporal, and reliability features. (3) Illustrate the dynamics of the proposed internal system. These results confirm our spatiotemporal similarity measure as a viable criterion for causal inference, and our decision-making framework as a viable mechanism for target selection, which may be used by the brain in cross-modal situations. Further, we suggest that a similar approach can be extended to other cognitive problems where working memory is a limiting factor, such as target selection among higher numbers of stimuli and selections among other modality combinations.

  7. Integrating dimension reduction and out-of-sample extension in automated classification of ex vivo human patellar cartilage on phase contrast X-ray computed tomography.

    PubMed

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Wismüller, Axel

    2015-01-01

    Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel imaging technique that can visualize human cartilage with high spatial resolution and soft tissue contrast. Different textural approaches have been previously investigated for characterizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoarthritic cartilage. However, the large size of feature sets extracted in such studies motivates an investigation into algorithmic feature reduction for computing efficient feature representations without compromising their discriminatory power. For this purpose, geometrical feature sets derived from the scaling index method (SIM) were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. The extracted feature sets were subject to linear and non-linear dimension reduction techniques as well as feature selection based on evaluation of mutual information criteria. The reduced feature set was subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic (ROC) curve (AUC). Our results show that the classification performance achieved by 9-D SIM-derived geometric feature sets (AUC: 0.96 ± 0.02) can be maintained with 2-D representations computed from both dimension reduction and feature selection (AUC values as high as 0.97 ± 0.02). Thus, such feature reduction techniques can offer a high degree of compaction to large feature sets extracted from PCI-CT images while maintaining their ability to characterize the underlying chondrocyte patterns.

  8. The Speed of Feature-Based Attention: Attentional Advantage Is Slow, but Selection Is Fast

    ERIC Educational Resources Information Center

    Huang, Liqiang

    2010-01-01

    When paying attention to a feature (e.g., red), no attentional advantage is gained in perceiving items with this feature in very brief displays. Therefore, feature-based attention seems to be slow. In previous feature-based attention studies, attention has often been measured as the difference in performance in a secondary task. In our recent work…

  9. Influences of Social and Style Variables on Adult Usage of African American English Features

    PubMed Central

    Craig, Holly K.; Grogger, Jeffrey T.

    2013-01-01

    Purpose In this study, the authors examined the influences of selected social (gender, employment status, educational achievement level) and style variables (race of examiner, interview topic) on the production of African American English (AAE) by adults. Method Participants were 50 African American men and women, ages 20–30 years. The authors used Rapid and Anonymous Survey (RAS) methods to collect responses to questions on informal situational and formal message-oriented topics in a short interview with an unacquainted interlocutor. Results Results revealed strong systematic effects for academic achievement, but not gender or employment status. Most features were used less frequently by participants with higher educational levels, but sharp declines in the usage of 5 specific features distinguished the participants differing in educational achievement. Strong systematic style effects were found for the 2 types of questions, but not race of addressee. The features that were most commonly used across participants—copula absence, variable subject–verb agreement, and appositive pronouns—were also the features that showed the greatest style shifting. Conclusions The findings lay a foundation with mature speakers for rate-based and feature inventory methods recently shown to be informative for the study of child AAE and demonstrate the benefits of the RAS. PMID:22361105

  10. An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Hu, Youmin; Wang, Yan; Wu, Bo; Fan, Jikai; Hu, Zhongxu

    2018-05-01

    The diagnosis of complicated fault severity problems in rotating machinery systems is an important issue that affects the productivity and quality of manufacturing processes and industrial applications. However, it usually suffers from several deficiencies. (1) A considerable degree of prior knowledge and expertise is required to not only extract and select specific features from raw sensor signals, and but also choose a suitable fusion for sensor information. (2) Traditional artificial neural networks with shallow architectures are usually adopted and they have a limited ability to learn the complex and variable operating conditions. In multi-sensor-based diagnosis applications in particular, massive high-dimensional and high-volume raw sensor signals need to be processed. In this paper, an integrated multi-sensor fusion-based deep feature learning (IMSFDFL) approach is developed to identify the fault severity in rotating machinery processes. First, traditional statistics and energy spectrum features are extracted from multiple sensors with multiple channels and combined. Then, a fused feature vector is constructed from all of the acquisition channels. Further, deep feature learning with stacked auto-encoders is used to obtain the deep features. Finally, the traditional softmax model is applied to identify the fault severity. The effectiveness of the proposed IMSFDFL approach is primarily verified by a one-stage gearbox experimental platform that uses several accelerometers under different operating conditions. This approach can identify fault severity more effectively than the traditional approaches.

  11. Application-Dedicated Selection of Filters (ADSF) using covariance maximization and orthogonal projection.

    PubMed

    Hadoux, Xavier; Kumar, Dinesh Kant; Sarossy, Marc G; Roger, Jean-Michel; Gorretta, Nathalie

    2016-05-19

    Visible and near-infrared (Vis-NIR) spectra are generated by the combination of numerous low resolution features. Spectral variables are thus highly correlated, which can cause problems for selecting the most appropriate ones for a given application. Some decomposition bases such as Fourier or wavelet generally help highlighting spectral features that are important, but are by nature constraint to have both positive and negative components. Thus, in addition to complicating the selected features interpretability, it impedes their use for application-dedicated sensors. In this paper we have proposed a new method for feature selection: Application-Dedicated Selection of Filters (ADSF). This method relaxes the shape constraint by enabling the selection of any type of user defined custom features. By considering only relevant features, based on the underlying nature of the data, high regularization of the final model can be obtained, even in the small sample size context often encountered in spectroscopic applications. For larger scale deployment of application-dedicated sensors, these predefined feature constraints can lead to application specific optical filters, e.g., lowpass, highpass, bandpass or bandstop filters with positive only coefficients. In a similar fashion to Partial Least Squares, ADSF successively selects features using covariance maximization and deflates their influences using orthogonal projection in order to optimally tune the selection to the data with limited redundancy. ADSF is well suited for spectroscopic data as it can deal with large numbers of highly correlated variables in supervised learning, even with many correlated responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Multiple-output support vector machine regression with feature selection for arousal/valence space emotion assessment.

    PubMed

    Torres-Valencia, Cristian A; Álvarez, Mauricio A; Orozco-Gutiérrez, Alvaro A

    2014-01-01

    Human emotion recognition (HER) allows the assessment of an affective state of a subject. Until recently, such emotional states were described in terms of discrete emotions, like happiness or contempt. In order to cover a high range of emotions, researchers in the field have introduced different dimensional spaces for emotion description that allow the characterization of affective states in terms of several variables or dimensions that measure distinct aspects of the emotion. One of the most common of such dimensional spaces is the bidimensional Arousal/Valence space. To the best of our knowledge, all HER systems so far have modelled independently, the dimensions in these dimensional spaces. In this paper, we study the effect of modelling the output dimensions simultaneously and show experimentally the advantages in modeling them in this way. We consider a multimodal approach by including features from the Electroencephalogram and a few physiological signals. For modelling the multiple outputs, we employ a multiple output regressor based on support vector machines. We also include an stage of feature selection that is developed within an embedded approach known as Recursive Feature Elimination (RFE), proposed initially for SVM. The results show that several features can be eliminated using the multiple output support vector regressor with RFE without affecting the performance of the regressor. From the analysis of the features selected in smaller subsets via RFE, it can be observed that the signals that are more informative into the arousal and valence space discrimination are the EEG, Electrooculogram/Electromiogram (EOG/EMG) and the Galvanic Skin Response (GSR).

  13. Characterization of coronary plaque regions in intravascular ultrasound images using a hybrid ensemble classifier.

    PubMed

    Hwang, Yoo Na; Lee, Ju Hwan; Kim, Ga Young; Shin, Eun Seok; Kim, Sung Min

    2018-01-01

    The purpose of this study was to propose a hybrid ensemble classifier to characterize coronary plaque regions in intravascular ultrasound (IVUS) images. Pixels were allocated to one of four tissues (fibrous tissue (FT), fibro-fatty tissue (FFT), necrotic core (NC), and dense calcium (DC)) through processes of border segmentation, feature extraction, feature selection, and classification. Grayscale IVUS images and their corresponding virtual histology images were acquired from 11 patients with known or suspected coronary artery disease using 20 MHz catheter. A total of 102 hybrid textural features including first order statistics (FOS), gray level co-occurrence matrix (GLCM), extended gray level run-length matrix (GLRLM), Laws, local binary pattern (LBP), intensity, and discrete wavelet features (DWF) were extracted from IVUS images. To select optimal feature sets, genetic algorithm was implemented. A hybrid ensemble classifier based on histogram and texture information was then used for plaque characterization in this study. The optimal feature set was used as input of this ensemble classifier. After tissue characterization, parameters including sensitivity, specificity, and accuracy were calculated to validate the proposed approach. A ten-fold cross validation approach was used to determine the statistical significance of the proposed method. Our experimental results showed that the proposed method had reliable performance for tissue characterization in IVUS images. The hybrid ensemble classification method outperformed other existing methods by achieving characterization accuracy of 81% for FFT and 75% for NC. In addition, this study showed that Laws features (SSV and SAV) were key indicators for coronary tissue characterization. The proposed method had high clinical applicability for image-based tissue characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Efficient Iris Recognition Based on Optimal Subfeature Selection and Weighted Subregion Fusion

    PubMed Central

    Deng, Ning

    2014-01-01

    In this paper, we propose three discriminative feature selection strategies and weighted subregion matching method to improve the performance of iris recognition system. Firstly, we introduce the process of feature extraction and representation based on scale invariant feature transformation (SIFT) in detail. Secondly, three strategies are described, which are orientation probability distribution function (OPDF) based strategy to delete some redundant feature keypoints, magnitude probability distribution function (MPDF) based strategy to reduce dimensionality of feature element, and compounded strategy combined OPDF and MPDF to further select optimal subfeature. Thirdly, to make matching more effective, this paper proposes a novel matching method based on weighted sub-region matching fusion. Particle swarm optimization is utilized to accelerate achieve different sub-region's weights and then weighted different subregions' matching scores to generate the final decision. The experimental results, on three public and renowned iris databases (CASIA-V3 Interval, Lamp, andMMU-V1), demonstrate that our proposed methods outperform some of the existing methods in terms of correct recognition rate, equal error rate, and computation complexity. PMID:24683317

  15. Efficient iris recognition based on optimal subfeature selection and weighted subregion fusion.

    PubMed

    Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; He, Fei; Wang, Hongye; Deng, Ning

    2014-01-01

    In this paper, we propose three discriminative feature selection strategies and weighted subregion matching method to improve the performance of iris recognition system. Firstly, we introduce the process of feature extraction and representation based on scale invariant feature transformation (SIFT) in detail. Secondly, three strategies are described, which are orientation probability distribution function (OPDF) based strategy to delete some redundant feature keypoints, magnitude probability distribution function (MPDF) based strategy to reduce dimensionality of feature element, and compounded strategy combined OPDF and MPDF to further select optimal subfeature. Thirdly, to make matching more effective, this paper proposes a novel matching method based on weighted sub-region matching fusion. Particle swarm optimization is utilized to accelerate achieve different sub-region's weights and then weighted different subregions' matching scores to generate the final decision. The experimental results, on three public and renowned iris databases (CASIA-V3 Interval, Lamp, and MMU-V1), demonstrate that our proposed methods outperform some of the existing methods in terms of correct recognition rate, equal error rate, and computation complexity.

  16. Globes: A Librarian's Guide to Selection and Purchase.

    ERIC Educational Resources Information Center

    Coombs, James

    1981-01-01

    Provides a guide for librarians to use in selecting globes by discussing how globes are made, types of globes, special and extraterrestrial globes, selecting criteria, and comparing such features as aesthetic appeal, readability, and currency of political information. A list of globe manufacturers and a selected bibliography are provided. (CHC)

  17. Human attention filters for single colors

    PubMed Central

    Sun, Peng; Chubb, Charles; Wright, Charles E.; Sperling, George

    2016-01-01

    The visual images in the eyes contain much more information than the brain can process. An important selection mechanism is feature-based attention (FBA). FBA is best described by attention filters that specify precisely the extent to which items containing attended features are selectively processed and the extent to which items that do not contain the attended features are attenuated. The centroid-judgment paradigm enables quick, precise measurements of such human perceptual attention filters, analogous to transmission measurements of photographic color filters. Subjects use a mouse to locate the centroid—the center of gravity—of a briefly displayed cloud of dots and receive precise feedback. A subset of dots is distinguished by some characteristic, such as a different color, and subjects judge the centroid of only the distinguished subset (e.g., dots of a particular color). The analysis efficiently determines the precise weight in the judged centroid of dots of every color in the display (i.e., the attention filter for the particular attended color in that context). We report 32 attention filters for single colors. Attention filters that discriminate one saturated hue from among seven other equiluminant distractor hues are extraordinarily selective, achieving attended/unattended weight ratios >20:1. Attention filters for selecting a color that differs in saturation or lightness from distractors are much less selective than attention filters for hue (given equal discriminability of the colors), and their filter selectivities are proportional to the discriminability distance of neighboring colors, whereas in the same range hue attention-filter selectivity is virtually independent of discriminabilty. PMID:27791040

  18. A dimension reduction strategy for improving the efficiency of computer-aided detection for CT colonography

    NASA Astrophysics Data System (ADS)

    Song, Bowen; Zhang, Guopeng; Wang, Huafeng; Zhu, Wei; Liang, Zhengrong

    2013-02-01

    Various types of features, e.g., geometric features, texture features, projection features etc., have been introduced for polyp detection and differentiation tasks via computer aided detection and diagnosis (CAD) for computed tomography colonography (CTC). Although these features together cover more information of the data, some of them are statistically highly-related to others, which made the feature set redundant and burdened the computation task of CAD. In this paper, we proposed a new dimension reduction method which combines hierarchical clustering and principal component analysis (PCA) for false positives (FPs) reduction task. First, we group all the features based on their similarity using hierarchical clustering, and then PCA is employed within each group. Different numbers of principal components are selected from each group to form the final feature set. Support vector machine is used to perform the classification. The results show that when three principal components were chosen from each group we can achieve an area under the curve of receiver operating characteristics of 0.905, which is as high as the original dataset. Meanwhile, the computation time is reduced by 70% and the feature set size is reduce by 77%. It can be concluded that the proposed method captures the most important information of the feature set and the classification accuracy is not affected after the dimension reduction. The result is promising and further investigation, such as automatically threshold setting, are worthwhile and are under progress.

  19. A practical salient region feature based 3D multi-modality registration method for medical images

    NASA Astrophysics Data System (ADS)

    Hahn, Dieter A.; Wolz, Gabriele; Sun, Yiyong; Hornegger, Joachim; Sauer, Frank; Kuwert, Torsten; Xu, Chenyang

    2006-03-01

    We present a novel representation of 3D salient region features and its integration into a hybrid rigid-body registration framework. We adopt scale, translation and rotation invariance properties of those intrinsic 3D features to estimate a transform between underlying mono- or multi-modal 3D medical images. Our method combines advantageous aspects of both feature- and intensity-based approaches and consists of three steps: an automatic extraction of a set of 3D salient region features on each image, a robust estimation of correspondences and their sub-pixel accurate refinement with outliers elimination. We propose a region-growing based approach for the extraction of 3D salient region features, a solution to the problem of feature clustering and a reduction of the correspondence search space complexity. Results of the developed algorithm are presented for both mono- and multi-modal intra-patient 3D image pairs (CT, PET and SPECT) that have been acquired for change detection, tumor localization, and time based intra-person studies. The accuracy of the method is clinically evaluated by a medical expert with an approach that measures the distance between a set of selected corresponding points consisting of both anatomical and functional structures or lesion sites. This demonstrates the robustness of the proposed method to image overlap, missing information and artefacts. We conclude by discussing potential medical applications and possibilities for integration into a non-rigid registration framework.

  20. Unbiased feature selection in learning random forests for high-dimensional data.

    PubMed

    Nguyen, Thanh-Tung; Huang, Joshua Zhexue; Nguyen, Thuy Thi

    2015-01-01

    Random forests (RFs) have been widely used as a powerful classification method. However, with the randomization in both bagging samples and feature selection, the trees in the forest tend to select uninformative features for node splitting. This makes RFs have poor accuracy when working with high-dimensional data. Besides that, RFs have bias in the feature selection process where multivalued features are favored. Aiming at debiasing feature selection in RFs, we propose a new RF algorithm, called xRF, to select good features in learning RFs for high-dimensional data. We first remove the uninformative features using p-value assessment, and the subset of unbiased features is then selected based on some statistical measures. This feature subset is then partitioned into two subsets. A feature weighting sampling technique is used to sample features from these two subsets for building trees. This approach enables one to generate more accurate trees, while allowing one to reduce dimensionality and the amount of data needed for learning RFs. An extensive set of experiments has been conducted on 47 high-dimensional real-world datasets including image datasets. The experimental results have shown that RFs with the proposed approach outperformed the existing random forests in increasing the accuracy and the AUC measures.

Top