2016-12-22
assumptions of behavior. This research proposes an information theoretic methodology to discover such complex network structures and dynamics while overcoming...the difficulties historically associated with their study. Indeed, this was the first application of an information theoretic methodology as a tool...1 Research Objectives and Questions..............................................................................2 Methodology
Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison
NASA Astrophysics Data System (ADS)
De Domenico, Manlio; Biamonte, Jacob
2016-10-01
Any physical system can be viewed from the perspective that information is implicitly represented in its state. However, the quantification of this information when it comes to complex networks has remained largely elusive. In this work, we use techniques inspired by quantum statistical mechanics to define an entropy measure for complex networks and to develop a set of information-theoretic tools, based on network spectral properties, such as Rényi q entropy, generalized Kullback-Leibler and Jensen-Shannon divergences, the latter allowing us to define a natural distance measure between complex networks. First, we show that by minimizing the Kullback-Leibler divergence between an observed network and a parametric network model, inference of model parameter(s) by means of maximum-likelihood estimation can be achieved and model selection can be performed with appropriate information criteria. Second, we show that the information-theoretic metric quantifies the distance between pairs of networks and we can use it, for instance, to cluster the layers of a multilayer system. By applying this framework to networks corresponding to sites of the human microbiome, we perform hierarchical cluster analysis and recover with high accuracy existing community-based associations. Our results imply that spectral-based statistical inference in complex networks results in demonstrably superior performance as well as a conceptual backbone, filling a gap towards a network information theory.
Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan
2013-01-01
Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information.
Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan
2013-01-01
Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information. PMID:23346354
2008-02-01
Information Theoretic Proceedures Frank Mufalli Rakesh Nagi Jim Llinas Sumita Mishra SUNY at Buffalo— CUBRC 4455 Genessee Street Buffalo...5f. WORK UNIT NUMBER NY 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) SUNY at Buffalo— CUBRC * Paine College ** 4455 Genessee
Communication Network Integration and Group Uniformity in a Complex Organization.
ERIC Educational Resources Information Center
Danowski, James A.; Farace, Richard V.
This paper contains a discussion of the limitations of research on group processes in complex organizations and the manner in which a procedure for network analysis in on-going systems can reduce problems. The research literature on group uniformity processes and on theoretical models of these processes from an information processing perspective…
2015-03-01
of 7 information -theoretic criteria plotted against the model order used . The legend is labeled according to the figures in which the power spectra...spectrum (Brovelli et al. 2004). 6 Fig. 2 Values of 7 information -theoretic criteria plotted against the model order used . The legend is labeled...Identification of directed influence: Granger causality, Kullback - Leibler divergence, and complexity. Neural Computation. 2012;24(7):1722–1739. doi:10.1162
Information-theoretic metamodel of organizational evolution
NASA Astrophysics Data System (ADS)
Sepulveda, Alfredo
2011-12-01
Social organizations are abstractly modeled by holarchies---self-similar connected networks---and intelligent complex adaptive multiagent systems---large networks of autonomous reasoning agents interacting via scaled processes. However, little is known of how information shapes evolution in such organizations, a gap that can lead to misleading analytics. The research problem addressed in this study was the ineffective manner in which classical model-predict-control methods used in business analytics attempt to define organization evolution. The purpose of the study was to construct an effective metamodel for organization evolution based on a proposed complex adaptive structure---the info-holarchy. Theoretical foundations of this study were holarchies, complex adaptive systems, evolutionary theory, and quantum mechanics, among other recently developed physical and information theories. Research questions addressed how information evolution patterns gleamed from the study's inductive metamodel more aptly explained volatility in organization. In this study, a hybrid grounded theory based on abstract inductive extensions of information theories was utilized as the research methodology. An overarching heuristic metamodel was framed from the theoretical analysis of the properties of these extension theories and applied to business, neural, and computational entities. This metamodel resulted in the synthesis of a metaphor for, and generalization of organization evolution, serving as the recommended and appropriate analytical tool to view business dynamics for future applications. This study may manifest positive social change through a fundamental understanding of complexity in business from general information theories, resulting in more effective management.
ERIC Educational Resources Information Center
Graves, Eric
2013-01-01
This dissertation introduces the concept of Information Integrity, which is the detection and possible correction of information manipulation by any intermediary node in a communication system. As networks continue to grow in complexity, information theoretic security has failed to keep pace. As a result many parties whom want to communicate,…
Mapping and discrimination of networks in the complexity-entropy plane
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.
2017-10-01
Complex networks are usually characterized in terms of their topological, spatial, or information-theoretic properties and combinations of the associated metrics are used to discriminate networks into different classes or categories. However, even with the present variety of characteristics at hand it still remains a subject of current research to appropriately quantify a network's complexity and correspondingly discriminate between different types of complex networks, like infrastructure or social networks, on such a basis. Here we explore the possibility to classify complex networks by means of a statistical complexity measure that has formerly been successfully applied to distinguish different types of chaotic and stochastic time series. It is composed of a network's averaged per-node entropic measure characterizing the network's information content and the associated Jenson-Shannon divergence as a measure of disequilibrium. We study 29 real-world networks and show that networks of the same category tend to cluster in distinct areas of the resulting complexity-entropy plane. We demonstrate that within our framework, connectome networks exhibit among the highest complexity while, e.g., transportation and infrastructure networks display significantly lower values. Furthermore, we demonstrate the utility of our framework by applying it to families of random scale-free and Watts-Strogatz model networks. We then show in a second application that the proposed framework is useful to objectively construct threshold-based networks, such as functional climate networks or recurrence networks, by choosing the threshold such that the statistical network complexity is maximized.
Plant Phenotyping through the Eyes of Complex Systems: Theoretical Considerations
NASA Astrophysics Data System (ADS)
Kim, J.
2017-12-01
Plant phenotyping is an emerging transdisciplinary research which necessitates not only the communication and collaboration of scientists from different disciplines but also the paradigm shift to a holistic approach. Complex system is defined as a system having a large number of interacting parts (or particles, agents), whose interactions give rise to non-trivial properties like self-organization and emergence. Plant ecosystems are complex systems which are continually morphing dynamical systems, i.e. self-organizing hierarchical open systems. Such systems are composed of many subunits/subsystems with nonlinear interactions and feedback. The throughput such as the flow of energy, matter and information is the key control parameter in complex systems. Information theoretic approaches can be used to understand and identify such interactions, structures and dynamics through reductions in uncertainty (i.e. entropy). The theoretical considerations based on network and thermodynamic thinking and exemplary analyses (e.g. dynamic process network, spectral entropy) of the throughput time series will be presented. These can be used as a framework to develop more discipline-specific fundamental approaches to provide tools for the transferability of traits between measurement scales in plant phenotyping. Acknowledgment: This work was funded by the Weather Information Service Engine Program of the Korea Meteorological Administration under Grant KMIPA-2012-0001.
A study of the Immune Epitope Database for some fungi species using network topological indices.
Vázquez-Prieto, Severo; Paniagua, Esperanza; Solana, Hugo; Ubeira, Florencio M; González-Díaz, Humberto
2017-08-01
In the last years, the encryption of system structure information with different network topological indices has been a very active field of research. In the present study, we assembled for the first time a complex network using data obtained from the Immune Epitope Database for fungi species, and we then considered the general topology, the node degree distribution, and the local structure of this network. We also calculated eight node centrality measures for the observed network and compared it with three theoretical models. In view of the results obtained, we may expect that the present approach can become a valuable tool to explore the complexity of this database, as well as for the storage, manipulation, comparison, and retrieval of information contained therein.
Information Resources Usage in Project Management Digital Learning System
ERIC Educational Resources Information Center
Davidovitch, Nitza; Belichenko, Margarita; Kravchenko, Yurii
2017-01-01
The article combines a theoretical approach to structuring knowledge that is based on the integrated use of fuzzy semantic network theory predicates, Boolean functions, theory of complexity of network structures and some practical aspects to be considered in the distance learning at the university. The paper proposes a methodological approach that…
Pruning artificial neural networks using neural complexity measures.
Jorgensen, Thomas D; Haynes, Barry P; Norlund, Charlotte C F
2008-10-01
This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.
NASA Astrophysics Data System (ADS)
Li, Weihua; Tang, Shaoting; Fang, Wenyi; Guo, Quantong; Zhang, Xiao; Zheng, Zhiming
2015-10-01
The information diffusion process in single complex networks has been extensively studied, especially for modeling the spreading activities in online social networks. However, individuals usually use multiple social networks at the same time, and can share the information they have learned from one social network to another. This phenomenon gives rise to a new diffusion process on multiplex networks with more than one network layer. In this paper we account for this multiplex network spreading by proposing a model of information diffusion in two-layer multiplex networks. We develop a theoretical framework using bond percolation and cascading failure to describe the intralayer and interlayer diffusion. This allows us to obtain analytical solutions for the fraction of informed individuals as a function of transmissibility T and the interlayer transmission rate θ . Simulation results show that interaction between layers can greatly enhance the information diffusion process. And explosive diffusion can occur even if the transmissibility of the focal layer is under the critical threshold, due to interlayer transmission.
Cresswell, Kathrin M; Worth, Allison; Sheikh, Aziz
2010-11-01
Actor-Network Theory (ANT) is an increasingly influential, but still deeply contested, approach to understand humans and their interactions with inanimate objects. We argue that health services research, and in particular evaluations of complex IT systems in health service organisations, may benefit from being informed by Actor-Network Theory perspectives. Despite some limitations, an Actor-Network Theory-based approach is conceptually useful in helping to appreciate the complexity of reality (including the complexity of organisations) and the active role of technology in this context. This can prove helpful in understanding how social effects are generated as a result of associations between different actors in a network. Of central importance in this respect is that Actor-Network Theory provides a lens through which to view the role of technology in shaping social processes. Attention to this shaping role can contribute to a more holistic appreciation of the complexity of technology introduction in healthcare settings. It can also prove practically useful in providing a theoretically informed approach to sampling (by drawing on informants that are related to the technology in question) and analysis (by providing a conceptual tool and vocabulary that can form the basis for interpretations). We draw on existing empirical work in this area and our ongoing work investigating the integration of electronic health record systems introduced as part of England's National Programme for Information Technology to illustrate salient points. Actor-Network Theory needs to be used pragmatically with an appreciation of its shortcomings. Our experiences suggest it can be helpful in investigating technology implementations in healthcare settings.
Abduallah, Yasser; Turki, Turki; Byron, Kevin; Du, Zongxuan; Cervantes-Cervantes, Miguel; Wang, Jason T L
2017-01-01
Gene regulation is a series of processes that control gene expression and its extent. The connections among genes and their regulatory molecules, usually transcription factors, and a descriptive model of such connections are known as gene regulatory networks (GRNs). Elucidating GRNs is crucial to understand the inner workings of the cell and the complexity of gene interactions. To date, numerous algorithms have been developed to infer gene regulatory networks. However, as the number of identified genes increases and the complexity of their interactions is uncovered, networks and their regulatory mechanisms become cumbersome to test. Furthermore, prodding through experimental results requires an enormous amount of computation, resulting in slow data processing. Therefore, new approaches are needed to expeditiously analyze copious amounts of experimental data resulting from cellular GRNs. To meet this need, cloud computing is promising as reported in the literature. Here, we propose new MapReduce algorithms for inferring gene regulatory networks on a Hadoop cluster in a cloud environment. These algorithms employ an information-theoretic approach to infer GRNs using time-series microarray data. Experimental results show that our MapReduce program is much faster than an existing tool while achieving slightly better prediction accuracy than the existing tool.
Complex networks with large numbers of labelable attractors
NASA Astrophysics Data System (ADS)
Mi, Yuanyuan; Zhang, Lisheng; Huang, Xiaodong; Qian, Yu; Hu, Gang; Liao, Xuhong
2011-09-01
Information storage in many functional subsystems of the brain is regarded by theoretical neuroscientists to be related to attractors of neural networks. The number of attractors is large and each attractor can be temporarily represented or suppressed easily by corresponding external stimulus. In this letter, we discover that complex networks consisting of excitable nodes have similar fascinating properties of coexistence of large numbers of oscillatory attractors, most of which can be labeled with a few nodes. According to a simple labeling rule, different attractors can be identified and the number of labelable attractors can be predicted from the analysis of network topology. With the cues of the labeling association, these attractors can be conveniently retrieved or suppressed on purpose.
NASA Astrophysics Data System (ADS)
Sokolovskiy, Vladimir; Grünebohm, Anna; Buchelnikov, Vasiliy; Entel, Peter
2014-09-01
This special issue collects contributions from the participants of the "Information in Dynamical Systems and Complex Systems" workshop, which cover a wide range of important problems and new approaches that lie in the intersection of information theory and dynamical systems. The contributions include theoretical characterization and understanding of the different types of information flow and causality in general stochastic processes, inference and identification of coupling structure and parameters of system dynamics, rigorous coarse-grain modeling of network dynamical systems, and exact statistical testing of fundamental information-theoretic quantities such as the mutual information. The collective efforts reported herein reflect a modern perspective of the intimate connection between dynamical systems and information flow, leading to the promise of better understanding and modeling of natural complex systems and better/optimal design of engineering systems.
Optimal information transfer in enzymatic networks: A field theoretic formulation
NASA Astrophysics Data System (ADS)
Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.
2017-07-01
Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in networks of arbitrary complexity.
The structural, connectomic and network covariance of the human brain.
Irimia, Andrei; Van Horn, John D
2013-02-01
Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Published by Elsevier Inc.
Automating Network Node Behavior Characterization by Mining Communication Patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.
Enterprise networks of scale are complex, dynamic computing environments that respond to evolv- ing business objectives and requirements. Characteriz- ing system behaviors in these environments is essential for network management and cyber security operations. Characterization of system’s communication is typical and is supported using network flow information (NetFlow). Related work has characterized behavior using theoretical graph metrics; results are often difficult to interpret by enterprise staff. We propose a different approach, where flow information is mapped to sets of tags that contextualize the data in terms of network principals and enterprise concepts. Frequent patterns are then extracted and are expressedmore » as behaviors. Behaviors can be com- pared, identifying systems expressing similar behaviors. We evaluate the approach using flow information collected by a third party.« less
Heisz, Jennifer J; Vakorin, Vasily; Ross, Bernhard; Levine, Brian; McIntosh, Anthony R
2014-01-01
Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.
Ripp, Isabelle; Zur Nieden, Anna-Nora; Blankenagel, Sonja; Franzmeier, Nicolai; Lundström, Johan N; Freiherr, Jessica
2018-05-07
In this study, we aimed to understand how whole-brain neural networks compute sensory information integration based on the olfactory and visual system. Task-related functional magnetic resonance imaging (fMRI) data was obtained during unimodal and bimodal sensory stimulation. Based on the identification of multisensory integration processing (MIP) specific hub-like network nodes analyzed with network-based statistics using region-of-interest based connectivity matrices, we conclude the following brain areas to be important for processing the presented bimodal sensory information: right precuneus connected contralaterally to the supramarginal gyrus for memory-related imagery and phonology retrieval, and the left middle occipital gyrus connected ipsilaterally to the inferior frontal gyrus via the inferior fronto-occipital fasciculus including functional aspects of working memory. Applied graph theory for quantification of the resulting complex network topologies indicates a significantly increased global efficiency and clustering coefficient in networks including aspects of MIP reflecting a simultaneous better integration and segregation. Graph theoretical analysis of positive and negative network correlations allowing for inferences about excitatory and inhibitory network architectures revealed-not significant, but very consistent-that MIP-specific neural networks are dominated by inhibitory relationships between brain regions involved in stimulus processing. © 2018 Wiley Periodicals, Inc.
Wang, Danny J J; Jann, Kay; Fan, Chang; Qiao, Yang; Zang, Yu-Feng; Lu, Hanbing; Yang, Yihong
2018-01-01
Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been introduced as indices of the complexity of electrophysiology and fMRI time-series across multiple time scales. In this work, we investigated the neurophysiological underpinnings of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional connectivity (FC). MSE and FC analyses were performed on simulated data using neural mass model based brain network model with the Brain Dynamics Toolbox, on animal models with concurrent recording of fMRI and electrophysiology in conjunction with pharmacological manipulations, and on resting-state fMRI data from the Human Connectome Project. Our results show that the complexity of regional electrophysiology and fMRI signals is positively correlated with network FC. The associations between MSE and FC are dependent on the temporal scales or frequencies, with higher associations between MSE and FC at lower temporal frequencies. Our results from theoretical modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity and network FC may be two related aspects of brain's information processing: the more complex regional neural activity, the higher FC this region has with other brain regions; (2) MSE at high and low frequencies may represent local and distributed information processing across brain regions. Based on literature and our data, we propose that the complexity of regional neural signals may serve as an index of the brain's capacity of information processing-increased complexity may indicate greater transition or exploration between different states of brain networks, thereby a greater propensity for information processing.
Emergence of hysteresis loop in social contagions on complex networks.
Su, Zhen; Wang, Wei; Li, Lixiang; Xiao, Jinghua; Stanley, H Eugene
2017-07-21
Understanding the spreading mechanisms of social contagions in complex network systems has attracted much attention in the physics community. Here we propose a generalized threshold model to describe social contagions. Using extensive numerical simulations and theoretical analyses, we find that a hysteresis loop emerges in the system. Specifically, the steady state of the system is sensitive to the initial conditions of the dynamics of the system. In the steady state, the adoption size increases discontinuously with the transmission probability of information about social contagions, and trial size exhibits a non-monotonic pattern, i.e., it first increases discontinuously then decreases continuously. Finally we study social contagions on heterogeneous networks and find that network topology does not qualitatively affect our results.
An automated method for finding molecular complexes in large protein interaction networks
Bader, Gary D; Hogue, Christopher WV
2003-01-01
Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from . PMID:12525261
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.
Pecevski, Dejan; Maass, Wolfgang
2016-01-01
Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123
Pecevski, Dejan
2016-01-01
Abstract Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p* that generates the examples it receives. This holds even if p* contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference. PMID:27419214
Neural complexity: A graph theoretic interpretation
NASA Astrophysics Data System (ADS)
Barnett, L.; Buckley, C. L.; Bullock, S.
2011-04-01
One of the central challenges facing modern neuroscience is to explain the ability of the nervous system to coherently integrate information across distinct functional modules in the absence of a central executive. To this end, Tononi [Proc. Natl. Acad. Sci. USA.PNASA60027-842410.1073/pnas.91.11.5033 91, 5033 (1994)] proposed a measure of neural complexity that purports to capture this property based on mutual information between complementary subsets of a system. Neural complexity, so defined, is one of a family of information theoretic metrics developed to measure the balance between the segregation and integration of a system’s dynamics. One key question arising for such measures involves understanding how they are influenced by network topology. Sporns [Cereb. Cortex53OPAV1047-321110.1093/cercor/10.2.127 10, 127 (2000)] employed numerical models in order to determine the dependence of neural complexity on the topological features of a network. However, a complete picture has yet to be established. While De Lucia [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.71.016114 71, 016114 (2005)] made the first attempts at an analytical account of this relationship, their work utilized a formulation of neural complexity that, we argue, did not reflect the intuitions of the original work. In this paper we start by describing weighted connection matrices formed by applying a random continuous weight distribution to binary adjacency matrices. This allows us to derive an approximation for neural complexity in terms of the moments of the weight distribution and elementary graph motifs. In particular, we explicitly establish a dependency of neural complexity on cyclic graph motifs.
Self-organized topology of recurrence-based complex networks
NASA Astrophysics Data System (ADS)
Yang, Hui; Liu, Gang
2013-12-01
With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.
Self-organized topology of recurrence-based complex networks.
Yang, Hui; Liu, Gang
2013-12-01
With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.
Self-organized topology of recurrence-based complex networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hui, E-mail: huiyang@usf.edu; Liu, Gang
With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article ismore » to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.« less
A unified data representation theory for network visualization, ordering and coarse-graining
Kovács, István A.; Mizsei, Réka; Csermely, Péter
2015-01-01
Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form. PMID:26348923
Exponential stability of stochastic complex networks with multi-weights based on graph theory
NASA Astrophysics Data System (ADS)
Zhang, Chunmei; Chen, Tianrui
2018-04-01
In this paper, a novel approach to exponential stability of stochastic complex networks with multi-weights is investigated by means of the graph-theoretical method. New sufficient conditions are provided to ascertain the moment exponential stability and almost surely exponential stability of stochastic complex networks with multiple weights. It is noted that our stability results are closely related with multi-weights and the intensity of stochastic disturbance. Numerical simulations are also presented to substantiate the theoretical results.
Statistical similarity measures for link prediction in heterogeneous complex networks
NASA Astrophysics Data System (ADS)
Shakibian, Hadi; Charkari, Nasrollah Moghadam
2018-07-01
The majority of the link prediction measures in heterogeneous complex networks rely on the nodes connectivities while less attention has been paid to the importance of the nodes and paths. In this paper, we propose some new meta-path based statistical similarity measures to properly perform link prediction task. The main idea in the proposed measures is to drive some co-occurrence events in a number of co-occurrence matrices that are occurred between the visited nodes obeying a meta-path. The extracted co-occurrence matrices are analyzed in terms of the energy, inertia, local homogeneity, correlation, and information measure of correlation to determine various information theoretic measures. We evaluate the proposed measures, denoted as link energy, link inertia, link local homogeneity, link correlation, and link information measure of correlation, using a standard DBLP network data set. The results of the AUC score and Precision rate indicate the validity and accuracy of the proposed measures in comparison to the popular meta-path based similarity measures.
NASA Astrophysics Data System (ADS)
Mehta, Pankaj; Lang, Alex H.; Schwab, David J.
2016-03-01
A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.
A study of the spreading scheme for viral marketing based on a complex network model
NASA Astrophysics Data System (ADS)
Yang, Jianmei; Yao, Canzhong; Ma, Weicheng; Chen, Guanrong
2010-02-01
Buzzword-based viral marketing, known also as digital word-of-mouth marketing, is a marketing mode attached to some carriers on the Internet, which can rapidly copy marketing information at a low cost. Viral marketing actually uses a pre-existing social network where, however, the scale of the pre-existing network is believed to be so large and so random, so that its theoretical analysis is intractable and unmanageable. There are very few reports in the literature on how to design a spreading scheme for viral marketing on real social networks according to the traditional marketing theory or the relatively new network marketing theory. Complex network theory provides a new model for the study of large-scale complex systems, using the latest developments of graph theory and computing techniques. From this perspective, the present paper extends the complex network theory and modeling into the research of general viral marketing and develops a specific spreading scheme for viral marking and an approach to design the scheme based on a real complex network on the QQ instant messaging system. This approach is shown to be rather universal and can be further extended to the design of various spreading schemes for viral marketing based on different instant messaging systems.
A multivariate extension of mutual information for growing neural networks.
Ball, Kenneth R; Grant, Christopher; Mundy, William R; Shafer, Timothy J
2017-11-01
Recordings of neural network activity in vitro are increasingly being used to assess the development of neural network activity and the effects of drugs, chemicals and disease states on neural network function. The high-content nature of the data derived from such recordings can be used to infer effects of compounds or disease states on a variety of important neural functions, including network synchrony. Historically, synchrony of networks in vitro has been assessed either by determination of correlation coefficients (e.g. Pearson's correlation), by statistics estimated from cross-correlation histograms between pairs of active electrodes, and/or by pairwise mutual information and related measures. The present study examines the application of Normalized Multiinformation (NMI) as a scalar measure of shared information content in a multivariate network that is robust with respect to changes in network size. Theoretical simulations are designed to investigate NMI as a measure of complexity and synchrony in a developing network relative to several alternative approaches. The NMI approach is applied to these simulations and also to data collected during exposure of in vitro neural networks to neuroactive compounds during the first 12 days in vitro, and compared to other common measures, including correlation coefficients and mean firing rates of neurons. NMI is shown to be more sensitive to developmental effects than first order synchronous and nonsynchronous measures of network complexity. Finally, NMI is a scalar measure of global (rather than pairwise) mutual information in a multivariate network, and hence relies on less assumptions for cross-network comparisons than historical approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Graph theoretical analysis of complex networks in the brain
Stam, Cornelis J; Reijneveld, Jaap C
2007-01-01
Since the discovery of small-world and scale-free networks the study of complex systems from a network perspective has taken an enormous flight. In recent years many important properties of complex networks have been delineated. In particular, significant progress has been made in understanding the relationship between the structural properties of networks and the nature of dynamics taking place on these networks. For instance, the 'synchronizability' of complex networks of coupled oscillators can be determined by graph spectral analysis. These developments in the theory of complex networks have inspired new applications in the field of neuroscience. Graph analysis has been used in the study of models of neural networks, anatomical connectivity, and functional connectivity based upon fMRI, EEG and MEG. These studies suggest that the human brain can be modelled as a complex network, and may have a small-world structure both at the level of anatomical as well as functional connectivity. This small-world structure is hypothesized to reflect an optimal situation associated with rapid synchronization and information transfer, minimal wiring costs, as well as a balance between local processing and global integration. The topological structure of functional networks is probably restrained by genetic and anatomical factors, but can be modified during tasks. There is also increasing evidence that various types of brain disease such as Alzheimer's disease, schizophrenia, brain tumours and epilepsy may be associated with deviations of the functional network topology from the optimal small-world pattern. PMID:17908336
Modeling the propagation of mobile malware on complex networks
NASA Astrophysics Data System (ADS)
Liu, Wanping; Liu, Chao; Yang, Zheng; Liu, Xiaoyang; Zhang, Yihao; Wei, Zuxue
2016-08-01
In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.
NASA Astrophysics Data System (ADS)
Chen, Zigang; Li, Lixiang; Peng, Haipeng; Liu, Yuhong; Yang, Yixian
2018-04-01
Community mining for complex social networks with link and attribute information plays an important role according to different application needs. In this paper, based on our proposed general non-negative matrix factorization (GNMF) algorithm without dimension matching constraints in our previous work, we propose the joint GNMF with graph Laplacian (LJGNMF) to implement community mining of complex social networks with link and attribute information according to different application needs. Theoretical derivation result shows that the proposed LJGNMF is fully compatible with previous methods of integrating traditional NMF and symmetric NMF. In addition, experimental results show that the proposed LJGNMF can meet the needs of different community minings by adjusting its parameters, and the effect is better than traditional NMF in the community vertices attributes entropy.
Knowledge diffusion in complex networks by considering time-varying information channels
NASA Astrophysics Data System (ADS)
Zhu, He; Ma, Jing
2018-03-01
In this article, based on a model of epidemic spreading, we explore the knowledge diffusion process with an innovative mechanism for complex networks by considering time-varying information channels. To cover the knowledge diffusion process in homogeneous and heterogeneous networks, two types of networks (the BA network and the ER network) are investigated. The mean-field theory is used to theoretically draw the knowledge diffusion threshold. Numerical simulation demonstrates that the knowledge diffusion threshold is almost linearly correlated with the mean of the activity rate. In addition, under the influence of the activity rate and distinct from the classic Susceptible-Infected-Susceptible (SIS) model, the density of knowers almost linearly grows with the spreading rate. Finally, in consideration of the ubiquitous mechanism of innovation, we further study the evolution of knowledge in our proposed model. The results suggest that compared with the effect of the spreading rate, the average knowledge version of the population is affected more by the innovation parameter and the mean of the activity rate. Furthermore, in the BA network, the average knowledge version of individuals with higher degree is always newer than those with lower degree.
Theoretical aspects of cellular decision-making and information-processing.
Kobayashi, Tetsuya J; Kamimura, Atsushi
2012-01-01
Microscopic biological processes have extraordinary complexity and variety at the sub-cellular, intra-cellular, and multi-cellular levels. In dealing with such complex phenomena, conceptual and theoretical frameworks are crucial, which enable us to understand seemingly different intra- and inter-cellular phenomena from unified viewpoints. Decision-making is one such concept that has attracted much attention recently. Since a number of cellular behavior can be regarded as processes to make specific actions in response to external stimuli, decision-making can cover and has been used to explain a broad range of different cellular phenomena [Balázsi et al. (Cell 144(6):910, 2011), Zeng et al. (Cell 141(4):682, 2010)]. Decision-making is also closely related to cellular information-processing because appropriate decisions cannot be made without exploiting the information that the external stimuli contain. Efficiency of information transduction and processing by intra-cellular networks determines the amount of information obtained, which in turn limits the efficiency of subsequent decision-making. Furthermore, information-processing itself can serve as another concept that is crucial for understanding of other biological processes than decision-making. In this work, we review recent theoretical developments on cellular decision-making and information-processing by focusing on the relation between these two concepts.
Hybrid function projective synchronization in complex dynamical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng
2014-02-15
This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.
Zhang, Hai-Feng; Xie, Jia-Rong; Tang, Ming; Lai, Ying-Cheng
2014-12-01
The interplay between individual behaviors and epidemic dynamics in complex networks is a topic of recent interest. In particular, individuals can obtain different types of information about the disease and respond by altering their behaviors, and this can affect the spreading dynamics, possibly in a significant way. We propose a model where individuals' behavioral response is based on a generic type of local information, i.e., the number of neighbors that has been infected with the disease. Mathematically, the response can be characterized by a reduction in the transmission rate by a factor that depends on the number of infected neighbors. Utilizing the standard susceptible-infected-susceptible and susceptible-infected-recovery dynamical models for epidemic spreading, we derive a theoretical formula for the epidemic threshold and provide numerical verification. Our analysis lays on a solid quantitative footing the intuition that individual behavioral response can in general suppress epidemic spreading. Furthermore, we find that the hub nodes play the role of "double-edged sword" in that they can either suppress or promote outbreak, depending on their responses to the epidemic, providing additional support for the idea that these nodes are key to controlling epidemic spreading in complex networks.
NASA Astrophysics Data System (ADS)
Zhang, Hai-Feng; Xie, Jia-Rong; Tang, Ming; Lai, Ying-Cheng
2014-12-01
The interplay between individual behaviors and epidemic dynamics in complex networks is a topic of recent interest. In particular, individuals can obtain different types of information about the disease and respond by altering their behaviors, and this can affect the spreading dynamics, possibly in a significant way. We propose a model where individuals' behavioral response is based on a generic type of local information, i.e., the number of neighbors that has been infected with the disease. Mathematically, the response can be characterized by a reduction in the transmission rate by a factor that depends on the number of infected neighbors. Utilizing the standard susceptible-infected-susceptible and susceptible-infected-recovery dynamical models for epidemic spreading, we derive a theoretical formula for the epidemic threshold and provide numerical verification. Our analysis lays on a solid quantitative footing the intuition that individual behavioral response can in general suppress epidemic spreading. Furthermore, we find that the hub nodes play the role of "double-edged sword" in that they can either suppress or promote outbreak, depending on their responses to the epidemic, providing additional support for the idea that these nodes are key to controlling epidemic spreading in complex networks.
NASA Astrophysics Data System (ADS)
Srivastava, D. P.; Sahni, V.; Satsangi, P. S.
2014-08-01
Graph-theoretic quantum system modelling (GTQSM) is facilitated by considering the fundamental unit of quantum computation and information, viz. a quantum bit or qubit as a basic building block. Unit directional vectors "ket 0" and "ket 1" constitute two distinct fundamental quantum across variable orthonormal basis vectors, for the Hilbert space, specifying the direction of propagation of information, or computation data, while complementary fundamental quantum through, or flow rate, variables specify probability parameters, or amplitudes, as surrogates for scalar quantum information measure (von Neumann entropy). This paper applies GTQSM in continuum of protein heterodimer tubulin molecules of self-assembling polymers, viz. microtubules in the brain as a holistic system of interacting components representing hierarchical clustered quantum Hopfield network, hQHN, of networks. The quantum input/output ports of the constituent elemental interaction components, or processes, of tunnelling interactions and Coulombic bidirectional interactions are in cascade and parallel interconnections with each other, while the classical output ports of all elemental components are interconnected in parallel to accumulate micro-energy functions generated in the system as Hamiltonian, or Lyapunov, energy function. The paper presents an insight, otherwise difficult to gain, for the complex system of systems represented by clustered quantum Hopfield network, hQHN, through the application of GTQSM construct.
Fast reversible learning based on neurons functioning as anisotropic multiplex hubs
NASA Astrophysics Data System (ADS)
Vardi, Roni; Goldental, Amir; Sheinin, Anton; Sardi, Shira; Kanter, Ido
2017-05-01
Neural networks are composed of neurons and synapses, which are responsible for learning in a slow adaptive dynamical process. Here we experimentally show that neurons act like independent anisotropic multiplex hubs, which relay and mute incoming signals following their input directions. Theoretically, the observed information routing enriches the computational capabilities of neurons by allowing, for instance, equalization among different information routes in the network, as well as high-frequency transmission of complex time-dependent signals constructed via several parallel routes. In addition, this kind of hubs adaptively eliminate very noisy neurons from the dynamics of the network, preventing masking of information transmission. The timescales for these features are several seconds at most, as opposed to the imprint of information by the synaptic plasticity, a process which exceeds minutes. Results open the horizon to the understanding of fast and adaptive learning realities in higher cognitive brain's functionalities.
Spreading dynamics in complex networks
NASA Astrophysics Data System (ADS)
Pei, Sen; Makse, Hernán A.
2013-12-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
Equilibria, information and frustration in heterogeneous network games with conflicting preferences
NASA Astrophysics Data System (ADS)
Mazzoli, M.; Sánchez, A.
2017-11-01
Interactions between people are the basis on which the structure of our society arises as a complex system and, at the same time, are the starting point of any physical description of it. In the last few years, much theoretical research has addressed this issue by combining the physics of complex networks with a description of interactions in terms of evolutionary game theory. We here take this research a step further by introducing a most salient societal factor such as the individuals’ preferences, a characteristic that is key to understanding much of the social phenomenology these days. We consider a heterogeneous, agent-based model in which agents interact strategically with their neighbors, but their preferences and payoffs for the possible actions differ. We study how such a heterogeneous network behaves under evolutionary dynamics and different strategic interactions, namely coordination games and best shot games. With this model we study the emergence of the equilibria predicted analytically in random graphs under best response dynamics, and we extend this test to unexplored contexts like proportional imitation and scale free networks. We show that some theoretically predicted equilibria do not arise in simulations with incomplete information, and we demonstrate the importance of the graph topology and the payoff function parameters for some games. Finally, we discuss our results with the available experimental evidence on coordination games, showing that our model agrees better with the experiment than standard economic theories, and draw hints as to how to maximize social efficiency in situations of conflicting preferences.
NASA Astrophysics Data System (ADS)
Ausloos, M.; Lambiotte, R.; Scharnhorst, A.; Hellsten, I.
Old and recent theoretical works by Andrzej Pȩkalski (APE) are recalled as possible sources of interest for describing network formation and clustering in complex (scientific) communities, through self-organization and percolation processes. Emphasis is placed on APE self-citation network over four decades. The method is that used for detecting scientists' field mobility by focusing on author's self-citation, co-authorships and article topics networks as in Refs. 1 and 2. It is shown that APE's self-citation patterns reveal important information on APE interest for research topics over time as well as APE engagement on different scientific topics and in different networks of collaboration. Its interesting complexity results from "degrees of freedom" and external fields leading to so called internal shock resistance. It is found that APE network of scientific interests belongs to independent clusters and occurs through rare or drastic events as in irreversible "preferential attachment processes", similar to those found in usual mechanics and thermodynamics phase transitions.
Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation
Kitson, Alison; Brook, Alan; Harvey, Gill; Jordan, Zoe; Marshall, Rhianon; O’Shea, Rebekah; Wilson, David
2018-01-01
Many representations of the movement of healthcare knowledge through society exist, and multiple models for the translation of evidence into policy and practice have been articulated. Most are linear or cyclical and very few come close to reflecting the dense and intricate relationships, systems and politics of organizations and the processes required to enact sustainable improvements. We illustrate how using complexity and network concepts can better inform knowledge translation (KT) and argue that changing the way we think and talk about KT could enhance the creation and movement of knowledge throughout those systems needing to develop and utilise it. From our theoretical refinement, we propose that KT is a complex network composed of five interdependent sub-networks, or clusters, of key processes (problem identification [PI], knowledge creation [KC], knowledge synthesis [KS], implementation [I], and evaluation [E]) that interact dynamically in different ways at different times across one or more sectors (community; health; government; education; research for example). We call this the KT Complexity Network, defined as a network that optimises the effective, appropriate and timely creation and movement of knowledge to those who need it in order to improve what they do. Activation within and throughout any one of these processes and systems depends upon the agents promoting the change, successfully working across and between multiple systems and clusters. The case is presented for moving to a way of thinking about KT using complexity and network concepts. This extends the thinking that is developing around integrated KT approaches. There are a number of policy and practice implications that need to be considered in light of this shift in thinking. PMID:29524952
Advances in the Theory of Complex Networks
NASA Astrophysics Data System (ADS)
Peruani, Fernando
An exhaustive and comprehensive review on the theory of complex networks would imply nowadays a titanic task, and it would result in a lengthy work containing plenty of technical details of arguable relevance. Instead, this chapter addresses very briefly the ABC of complex network theory, visiting only the hallmarks of the theoretical founding, to finally focus on two of the most interesting and promising current research problems: the study of dynamical processes on transportation networks and the identification of communities in complex networks.
NASA Astrophysics Data System (ADS)
Markovic, Rene
This doctor thesis is both theoretical and applicative. In the theoretical part of the thesis, we examine how the interplay of dynamical features of oscillators and structural properties of complex networks affect the collective behavior of the system. We show, that weakly dissipative and flexible oscillators synchronize best in a broad scale network topology, whereas on the other hand strongly dissipative and rigid oscillators exhibit maximal synchronization in a scale-free network topology. We provide an analytical explanation for this phenomenon and validate it by implementing various continuous as well as discrete mathematical models that exhibit different levels of dynamical complexity. In the continuation, we additionally investigate how speed of signal transmission in the network affects the collective dynamic of the system. Our results show that besides an optimal network topology, also an optimal information transmission speed exists, at which the system reaches the highest degree of global synchronization. In the second part we apply the findings and the methodology from our theoretical studies to the examination of the collective pancreatic beta cell activity in the islets of Langerhans, which represents the main mechanism for the regulation of blood glucose homeostasis by the secretion of the hormone insulin. We show that the beta cells dynamics is not synchronized on the global scale of the whole islets. Instead, the cells form local clusters of synchronized activity which tend to get less segregated under higher stimulatory glucose concentrations. Furthermore, higher glucose concentrations also lead to the presence of broad scale small world connectivity patterns in the functional beta cell network. The main findings thereby shed light on the physiology and collective behavior of the islets of Langerhans and point out the possibilities of pathological changes associated with changes in the intercellular communication pathways.
Optimization Techniques for Analysis of Biological and Social Networks
2012-03-28
analyzing a new metaheuristic technique, variable objective search. 3. Experimentation and application: Implement the proposed algorithms , test and fine...alternative mathematical programming formulations, their theoretical analysis, the development of exact algorithms , and heuristics. Originally, clusters...systematic fashion under a unifying theoretical and algorithmic framework. Optimization, Complex Networks, Social Network Analysis, Computational
Li, Yao; Dwivedi, Gaurav; Huang, Wen; Yi, Yingfei
2012-01-01
There is an evolutionary advantage in having multiple components with overlapping functionality (i.e degeneracy) in organisms. While theoretical considerations of degeneracy have been well established in neural networks using information theory, the same concepts have not been developed for differential systems, which form the basis of many biochemical reaction network descriptions in systems biology. Here we establish mathematical definitions of degeneracy, complexity and robustness that allow for the quantification of these properties in a system. By exciting a dynamical system with noise, the mutual information associated with a selected observable output and the interacting subspaces of input components can be used to define both complexity and degeneracy. The calculation of degeneracy in a biological network is a useful metric for evaluating features such as the sensitivity of a biological network to environmental evolutionary pressure. Using a two-receptor signal transduction network, we find that redundant components will not yield high degeneracy whereas compensatory mechanisms established by pathway crosstalk will. This form of analysis permits interrogation of large-scale differential systems for non-identical, functionally equivalent features that have evolved to maintain homeostasis during disruption of individual components. PMID:22619750
Pinning synchronization of delayed complex dynamical networks with nonlinear coupling
NASA Astrophysics Data System (ADS)
Cheng, Ranran; Peng, Mingshu; Yu, Weibin
2014-11-01
In this paper, we find that complex networks with the Watts-Strogatz or scale-free BA random topological architecture can be synchronized more easily by pin-controlling fewer nodes than regular systems. Theoretical analysis is included by means of Lyapunov functions and linear matrix inequalities (LMI) to make all nodes reach complete synchronization. Numerical examples are also provided to illustrate the importance of our theoretical analysis, which implies that there exists a gap between the theoretical prediction and numerical results about the minimum number of pinning controlled nodes.
Bidirectional selection between two classes in complex social networks.
Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong
2014-12-19
The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.
Zhang, Kechen
2016-01-01
The problem of how the hippocampus encodes both spatial and nonspatial information at the cellular network level remains largely unresolved. Spatial memory is widely modeled through the theoretical framework of attractor networks, but standard computational models can only represent spaces that are much smaller than the natural habitat of an animal. We propose that hippocampal networks are built on a basic unit called a “megamap,” or a cognitive attractor map in which place cells are flexibly recombined to represent a large space. Its inherent flexibility gives the megamap a huge representational capacity and enables the hippocampus to simultaneously represent multiple learned memories and naturally carry nonspatial information at no additional cost. On the other hand, the megamap is dynamically stable, because the underlying network of place cells robustly encodes any location in a large environment given a weak or incomplete input signal from the upstream entorhinal cortex. Our results suggest a general computational strategy by which a hippocampal network enjoys the stability of attractor dynamics without sacrificing the flexibility needed to represent a complex, changing world. PMID:27193320
Network Security Validation Using Game Theory
NASA Astrophysics Data System (ADS)
Papadopoulou, Vicky; Gregoriades, Andreas
Non-functional requirements (NFR) such as network security recently gained widespread attention in distributed information systems. Despite their importance however, there is no systematic approach to validate these requirements given the complexity and uncertainty characterizing modern networks. Traditionally, network security requirements specification has been the results of a reactive process. This however, limited the immunity property of the distributed systems that depended on these networks. Security requirements specification need a proactive approach. Networks' infrastructure is constantly under attack by hackers and malicious software that aim to break into computers. To combat these threats, network designers need sophisticated security validation techniques that will guarantee the minimum level of security for their future networks. This paper presents a game-theoretic approach to security requirements validation. An introduction to game theory is presented along with an example that demonstrates the application of the approach.
NASA Astrophysics Data System (ADS)
Daminelli, Simone; Thomas, Josephine Maria; Durán, Claudio; Vittorio Cannistraci, Carlo
2015-11-01
Bipartite networks are powerful descriptions of complex systems characterized by two different classes of nodes and connections allowed only across but not within the two classes. Unveiling physical principles, building theories and suggesting physical models to predict bipartite links such as product-consumer connections in recommendation systems or drug-target interactions in molecular networks can provide priceless information to improve e-commerce or to accelerate pharmaceutical research. The prediction of nonobserved connections starting from those already present in the topology of a network is known as the link-prediction problem. It represents an important subject both in many-body interaction theory in physics and in new algorithms for applied tools in computer science. The rationale is that the existing connectivity structure of a network can suggest where new connections can appear with higher likelihood in an evolving network, or where nonobserved connections are missing in a partially known network. Surprisingly, current complex network theory presents a theoretical bottle-neck: a general framework for local-based link prediction directly in the bipartite domain is missing. Here, we overcome this theoretical obstacle and present a formal definition of common neighbour index and local-community-paradigm (LCP) for bipartite networks. As a consequence, we are able to introduce the first node-neighbourhood-based and LCP-based models for topological link prediction that utilize the bipartite domain. We performed link prediction evaluations in several networks of different size and of disparate origin, including technological, social and biological systems. Our models significantly improve topological prediction in many bipartite networks because they exploit local physical driving-forces that participate in the formation and organization of many real-world bipartite networks. Furthermore, we present a local-based formalism that allows to intuitively implement neighbourhood-based link prediction entirely in the bipartite domain.
Network Analysis: A Novel Approach to Understand Suicidal Behaviour
de Beurs, Derek
2017-01-01
Although suicide is a major public health issue worldwide, we understand little of the onset and development of suicidal behaviour. Suicidal behaviour is argued to be the end result of the complex interaction between psychological, social and biological factors. Epidemiological studies resulted in a range of risk factors for suicidal behaviour, but we do not yet understand how their interaction increases the risk for suicidal behaviour. A new approach called network analysis can help us better understand this process as it allows us to visualize and quantify the complex association between many different symptoms or risk factors. A network analysis of data containing information on suicidal patients can help us understand how risk factors interact and how their interaction is related to suicidal thoughts and behaviour. A network perspective has been successfully applied to the field of depression and psychosis, but not yet to the field of suicidology. In this theoretical article, I will introduce the concept of network analysis to the field of suicide prevention, and offer directions for future applications and studies.
A new way to improve the robustness of complex communication networks by allocating redundancy links
NASA Astrophysics Data System (ADS)
Shi, Chunhui; Peng, Yunfeng; Zhuo, Yue; Tang, Jieying; Long, Keping
2012-03-01
We investigate the robustness of complex communication networks on allocating redundancy links. The protecting key nodes (PKN) strategy is proposed to improve the robustness of complex communication networks against intentional attack. Our numerical simulations show that allocating a few redundant links among key nodes using the PKN strategy will significantly increase the robustness of scale-free complex networks. We have also theoretically proved and demonstrated the effectiveness of the PKN strategy. We expect that our work will help achieve a better understanding of communication networks.
Linking dynamics of the inhibitory network to the input structure
Komarov, Maxim
2017-01-01
Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives. PMID:27650865
Fuzzy-information-based robustness of interconnected networks against attacks and failures
NASA Astrophysics Data System (ADS)
Zhu, Qian; Zhu, Zhiliang; Wang, Yifan; Yu, Hai
2016-09-01
Cascading failure is fatal in applications and its investigation is essential and therefore became a focal topic in the field of complex networks in the last decade. In this paper, a cascading failure model is established for interconnected networks and the associated data-packet transport problem is discussed. A distinguished feature of the new model is its utilization of fuzzy information in resisting uncertain failures and malicious attacks. We numerically find that the giant component of the network after failures increases with tolerance parameter for any coupling preference and attacking ambiguity. Moreover, considering the effect of the coupling probability on the robustness of the networks, we find that the robustness of the assortative coupling and random coupling of the network model increases with the coupling probability. However, for disassortative coupling, there exists a critical phenomenon for coupling probability. In addition, a critical value that attacking information accuracy affects the network robustness is observed. Finally, as a practical example, the interconnected AS-level Internet in South Korea and Japan is analyzed. The actual data validates the theoretical model and analytic results. This paper thus provides some guidelines for preventing cascading failures in the design of architecture and optimization of real-world interconnected networks.
Attacker-defender game from a network science perspective
NASA Astrophysics Data System (ADS)
Li, Ya-Peng; Tan, Suo-Yi; Deng, Ye; Wu, Jun
2018-05-01
Dealing with the protection of critical infrastructures, many game-theoretic methods have been developed to study the strategic interactions between defenders and attackers. However, most game models ignore the interrelationship between different components within a certain system. In this paper, we propose a simultaneous-move attacker-defender game model, which is a two-player zero-sum static game with complete information. The strategies and payoffs of this game are defined on the basis of the topology structure of the infrastructure system, which is represented by a complex network. Due to the complexity of strategies, the attack and defense strategies are confined by two typical strategies, namely, targeted strategy and random strategy. The simulation results indicate that in a scale-free network, the attacker virtually always attacks randomly in the Nash equilibrium. With a small cost-sensitive parameter, representing the degree to which costs increase with the importance of a target, the defender protects the hub targets with large degrees preferentially. When the cost-sensitive parameter exceeds a threshold, the defender switches to protecting nodes randomly. Our work provides a new theoretical framework to analyze the confrontations between the attacker and the defender on critical infrastructures and deserves further study.
The dynamics of socio-connective trust within support networks accessed by informal caregivers.
Ray, Robin A; Street, Annette F
2011-03-01
This article introduces the concept of socio-connective trust, the synapse between the social structures and processes that underpin relationships in supportive care networks. Data from an ethnographic case study of 18 informal caregivers providing in-home care for people with life-limiting illness were analysed drawing on theoretical concepts from the work of Giddens and writings on social capital, as well as the construction of trust in the caregiving literature. While conceptions of trust were found to contribute to understanding supportive care relationships, they did not account for the dynamic nature of the availability and use of support networks. Instead, informal caregivers undertook ongoing reflexive negotiation of relationship boundaries in response to their own conception of the current situation and their perception of trust in their relationships with the various members of the support network. The concept of socio-connective trust describes the movement and flow of the flexible bonds that influence relationships among care networks and determine the type and range of support accessed by informal caregivers. Understanding the complexities of socio-connective trust in caregiving relationships will assist health and social care workers to mobilize relevant resources to support informal caregivers.
Information Diffusion in Facebook-Like Social Networks Under Information Overload
NASA Astrophysics Data System (ADS)
Li, Pei; Xing, Kai; Wang, Dapeng; Zhang, Xin; Wang, Hui
2013-07-01
Research on social networks has received remarkable attention, since many people use social networks to broadcast information and stay connected with their friends. However, due to the information overload in social networks, it becomes increasingly difficult for users to find useful information. This paper takes Facebook-like social networks into account, and models the process of information diffusion under information overload. The term view scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated is proposed to characterize the information diffusion efficiency. Through theoretical analysis, we find that factors such as network structure and view scope number have no impact on the information diffusion efficiency, which is a surprising result. To verify the results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly.
An information dimension of weighted complex networks
NASA Astrophysics Data System (ADS)
Wen, Tao; Jiang, Wen
2018-07-01
The fractal and self-similarity are important properties in complex networks. Information dimension is a useful dimension for complex networks to reveal these properties. In this paper, an information dimension is proposed for weighted complex networks. Based on the box-covering algorithm for weighted complex networks (BCANw), the proposed method can deal with the weighted complex networks which appear frequently in the real-world, and it can get the influence of the number of nodes in each box on the information dimension. To show the wide scope of information dimension, some applications are illustrated, indicating that the proposed method is effective and feasible.
Robustness and percolation of holes in complex networks
NASA Astrophysics Data System (ADS)
Zhou, Andu; Maletić, Slobodan; Zhao, Yi
2018-07-01
Efficient robustness and fault tolerance of complex network is significantly influenced by its connectivity, commonly modeled by the structure of pairwise relations between network elements, i.e., nodes. Nevertheless, aggregations of nodes build higher-order structures embedded in complex network, which may be more vulnerable when the fraction of nodes is removed. The structure of higher-order aggregations of nodes can be naturally modeled by simplicial complexes, whereas the removal of nodes affects the values of topological invariants, like the number of higher-dimensional holes quantified with Betti numbers. Following the methodology of percolation theory, as the fraction of nodes is removed, new holes appear, which have the role of merger between already present holes. In the present article, relationship between the robustness and homological properties of complex network is studied, through relating the graph-theoretical signatures of robustness and the quantities derived from topological invariants. The simulation results of random failures and intentional attacks on networks suggest that the changes of graph-theoretical signatures of robustness are followed by differences in the distribution of number of holes per cluster under different attack strategies. In the broader sense, the results indicate the importance of topological invariants research for obtaining further insights in understanding dynamics taking place over complex networks.
Modeling of information diffusion in Twitter-like social networks under information overload.
Li, Pei; Li, Wei; Wang, Hui; Zhang, Xin
2014-01-01
Due to the existence of information overload in social networks, it becomes increasingly difficult for users to find useful information according to their interests. This paper takes Twitter-like social networks into account and proposes models to characterize the process of information diffusion under information overload. Users are classified into different types according to their in-degrees and out-degrees, and user behaviors are generalized into two categories: generating and forwarding. View scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated by a given type user is adopted to characterize the information diffusion efficiency, which is calculated theoretically. To verify the accuracy of theoretical analysis results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of importance to understand the diffusion dynamics in social networks, and this analysis framework can be extended to consider more realistic situations.
Modeling of Information Diffusion in Twitter-Like Social Networks under Information Overload
Li, Wei
2014-01-01
Due to the existence of information overload in social networks, it becomes increasingly difficult for users to find useful information according to their interests. This paper takes Twitter-like social networks into account and proposes models to characterize the process of information diffusion under information overload. Users are classified into different types according to their in-degrees and out-degrees, and user behaviors are generalized into two categories: generating and forwarding. View scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated by a given type user is adopted to characterize the information diffusion efficiency, which is calculated theoretically. To verify the accuracy of theoretical analysis results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of importance to understand the diffusion dynamics in social networks, and this analysis framework can be extended to consider more realistic situations. PMID:24795541
NASA Astrophysics Data System (ADS)
Gontrani, Lorenzo; Caminiti, Ruggero; Salma, Umme; Campetella, Marco
2017-09-01
We present here a structural and vibrational analysis of melted methylammonium nitrate, the simplest compound of the family of alkylammonium nitrates. The static and dynamical features calculated were endorsed by comparing the experimental X-ray data with the theoretical ones. A reliable description cannot be obtained with classical molecular dynamics owing to polarization effects. Contrariwise, the structure factor and the vibrational frequencies obtained from ab initio molecular dynamics trajectories are in very good agreement with the experiment. A careful analysis has provided additional information on the complex hydrogen bonding network that exists in this liquid.
Effects of individual popularity on information spreading in complex networks
NASA Astrophysics Data System (ADS)
Gao, Lei; Li, Ruiqi; Shu, Panpan; Wang, Wei; Gao, Hui; Cai, Shimin
2018-01-01
In real world, human activities often exhibit preferential selection mechanism based on the popularity of individuals. However, this mechanism is seldom taken into account by previous studies about spreading dynamics on networks. Thus in this work, an information spreading model is proposed by considering the preferential selection based on individuals' current popularity, which is defined as the number of individuals' cumulative contacts with informed neighbors. A mean-field theory is developed to analyze the spreading model. Through systematically studying the information spreading dynamics on uncorrelated configuration networks as well as real-world networks, we find that the popularity preference has great impacts on the information spreading. On the one hand, the information spreading is facilitated, i.e., a larger final prevalence of information and a smaller outbreak threshold, if nodes with low popularity are preferentially selected. In this situation, the effective contacts between informed nodes and susceptible nodes are increased, and nodes almost have uniform probabilities of obtaining the information. On the other hand, if nodes with high popularity are preferentially selected, the final prevalence of information is reduced, the outbreak threshold is increased, and even the information cannot outbreak. In addition, the heterogeneity of the degree distribution and the structure of real-world networks do not qualitatively affect the results. Our research can provide some theoretical supports for the promotion of spreading such as information, health related behaviors, and new products, etc.
Disease Surveillance on Complex Social Networks.
Herrera, Jose L; Srinivasan, Ravi; Brownstein, John S; Galvani, Alison P; Meyers, Lauren Ancel
2016-07-01
As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors-sampling the most connected, random, and friends of random individuals-in three complex social networks-a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals-early and accurate detection of epidemic emergence and peak, and general situational awareness-we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information.
NASA Astrophysics Data System (ADS)
Wu, Qing-Chu; Fu, Xin-Chu; Sun, Wei-Gang
2010-01-01
In this paper a class of networks with multiple connections are discussed. The multiple connections include two different types of links between nodes in complex networks. For this new model, we give a simple generating procedure. Furthermore, we investigate dynamical synchronization behavior in a delayed two-layer network, giving corresponding theoretical analysis and numerical examples.
Ince, Robin A. A.; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J.; Rousselet, Guillaume A.; Schyns, Philippe G.
2016-01-01
A key to understanding visual cognition is to determine “where”, “when”, and “how” brain responses reflect the processing of the specific visual features that modulate categorization behavior—the “what”. The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. PMID:27550865
Disease Surveillance on Complex Social Networks
Herrera, Jose L.; Srinivasan, Ravi; Brownstein, John S.; Galvani, Alison P.; Meyers, Lauren Ancel
2016-01-01
As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors—sampling the most connected, random, and friends of random individuals—in three complex social networks—a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals—early and accurate detection of epidemic emergence and peak, and general situational awareness—we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information. PMID:27415615
eQTL networks unveil enriched mRNA master integrators downstream of complex disease-associated SNPs.
Li, Haiquan; Pouladi, Nima; Achour, Ikbel; Gardeux, Vincent; Li, Jianrong; Li, Qike; Zhang, Hao Helen; Martinez, Fernando D; 'Skip' Garcia, Joe G N; Lussier, Yves A
2015-12-01
The causal and interplay mechanisms of Single Nucleotide Polymorphisms (SNPs) associated with complex diseases (complex disease SNPs) investigated in genome-wide association studies (GWAS) at the transcriptional level (mRNA) are poorly understood despite recent advancements such as discoveries reported in the Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTex). Protein interaction network analyses have successfully improved our understanding of both single gene diseases (Mendelian diseases) and complex diseases. Whether the mRNAs downstream of complex disease genes are central or peripheral in the genetic information flow relating DNA to mRNA remains unclear and may be disease-specific. Using expression Quantitative Trait Loci (eQTL) that provide DNA to mRNA associations and network centrality metrics, we hypothesize that we can unveil the systems properties of information flow between SNPs and the transcriptomes of complex diseases. We compare different conditions such as naïve SNP assignments and stringent linkage disequilibrium (LD) free assignments for transcripts to remove confounders from LD. Additionally, we compare the results from eQTL networks between lymphoblastoid cell lines and liver tissue. Empirical permutation resampling (p<0.001) and theoretic Mann-Whitney U test (p<10(-30)) statistics indicate that mRNAs corresponding to complex disease SNPs via eQTL associations are likely to be regulated by a larger number of SNPs than expected. We name this novel property mRNA hubness in eQTL networks, and further term mRNAs with high hubness as master integrators. mRNA master integrators receive and coordinate the perturbation signals from large numbers of polymorphisms and respond to the personal genetic architecture integratively. This genetic signal integration contrasts with the mechanism underlying some Mendelian diseases, where a genetic polymorphism affecting a single protein hub produces a divergent signal that affects a large number of downstream proteins. Indeed, we verify that this property is independent of the hubness in protein networks for which these mRNAs are transcribed. Our findings provide novel insights into the pleiotropy of mRNAs targeted by complex disease polymorphisms and the architecture of the information flow between the genetic polymorphisms and transcriptomes of complex diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
From trees to forest: relational complexity network and workload of air traffic controllers.
Zhang, Jingyu; Yang, Jiazhong; Wu, Changxu
2015-01-01
In this paper, we propose a relational complexity (RC) network framework based on RC metric and network theory to model controllers' workload in conflict detection and resolution. We suggest that, at the sector level, air traffic showing a centralised network pattern can provide cognitive benefits in visual search and resolution decision which will in turn result in lower workload. We found that the network centralisation index can account for more variance in predicting perceived workload and task completion time in both a static conflict detection task (Study 1) and a dynamic one (Study 2) in addition to other aircraft-level and pair-level factors. This finding suggests that linear combination of aircraft-level or dyad-level information may not be adequate and the global-pattern-based index is necessary. Theoretical and practical implications of using this framework to improve future workload modelling and management are discussed. We propose a RC network framework to model the workload of air traffic controllers. The effect of network centralisation was examined in both a static conflict detection task and a dynamic one. Network centralisation was predictive of perceived workload and task completion time over and above other control variables.
Stochastic cycle selection in active flow networks.
Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn
2016-07-19
Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models.
Stochastic cycle selection in active flow networks
NASA Astrophysics Data System (ADS)
Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn
2016-11-01
Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.
Stochastic cycle selection in active flow networks
Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn
2016-01-01
Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186
Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future.
Bestmann, Sven; Feredoes, Eva
2013-08-01
Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure-function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on distributed networks. For example, more recent work has established the capacity of transcranial magnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neurostimulation with theoretical and biological models of cognition, for example, when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informed computational network analyses for predicting the impact of neurostimulation on brain networks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools with which to investigate structure-function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition. © 2013 New York Academy of Sciences.
Information Flows? A Critique of Transfer Entropies
NASA Astrophysics Data System (ADS)
James, Ryan G.; Barnett, Nix; Crutchfield, James P.
2016-06-01
A central task in analyzing complex dynamics is to determine the loci of information storage and the communication topology of information flows within a system. Over the last decade and a half, diagnostics for the latter have come to be dominated by the transfer entropy. Via straightforward examples, we show that it and a derivative quantity, the causation entropy, do not, in fact, quantify the flow of information. At one and the same time they can overestimate flow or underestimate influence. We isolate why this is the case and propose several avenues to alternate measures for information flow. We also address an auxiliary consequence: The proliferation of networks as a now-common theoretical model for large-scale systems, in concert with the use of transferlike entropies, has shoehorned dyadic relationships into our structural interpretation of the organization and behavior of complex systems. This interpretation thus fails to include the effects of polyadic dependencies. The net result is that much of the sophisticated organization of complex systems may go undetected.
Scaling Laws of Discrete-Fracture-Network Models
NASA Astrophysics Data System (ADS)
Philippe, D.; Olivier, B.; Caroline, D.; Jean-Raynald, D.
2006-12-01
The statistical description of fracture networks through scale still remains a concern for geologists, considering the complexity of fracture networks. A challenging task of the last 20-years studies has been to find a solid and rectifiable rationale to the trivial observation that fractures exist everywhere and at all sizes. The emergence of fractal models and power-law distributions quantifies this fact, and postulates in some ways that small-scale fractures are genetically linked to their larger-scale relatives. But the validation of these scaling concepts still remains an issue considering the unreachable amount of information that would be necessary with regards to the complexity of natural fracture networks. Beyond the theoretical interest, a scaling law is a basic and necessary ingredient of Discrete-Fracture-Network models (DFN) that are used for many environmental and industrial applications (groundwater resources, mining industry, assessment of the safety of deep waste disposal sites, ..). Indeed, such a function is necessary to assemble scattered data, taken at different scales, into a unified scaling model, and to interpolate fracture densities between observations. In this study, we discuss some important issues related to scaling laws of DFN: - We first describe a complete theoretical and mathematical framework that takes account of both the fracture- size distribution and the fracture clustering through scales (fractal dimension). - We review the scaling laws that have been obtained, and we discuss the ability of fracture datasets to really constrain the parameters of the DFN model. - And finally we discuss the limits of scaling models.
Maximizing information exchange between complex networks
NASA Astrophysics Data System (ADS)
West, Bruce J.; Geneston, Elvis L.; Grigolini, Paolo
2008-10-01
Science is not merely the smooth progressive interaction of hypothesis, experiment and theory, although it sometimes has that form. More realistically the scientific study of any given complex phenomenon generates a number of explanations, from a variety of perspectives, that eventually requires synthesis to achieve a deep level of insight and understanding. One such synthesis has created the field of out-of-equilibrium statistical physics as applied to the understanding of complex dynamic networks. Over the past forty years the concept of complexity has undergone a metamorphosis. Complexity was originally seen as a consequence of memory in individual particle trajectories, in full agreement with a Hamiltonian picture of microscopic dynamics and, in principle, macroscopic dynamics could be derived from the microscopic Hamiltonian picture. The main difficulty in deriving macroscopic dynamics from microscopic dynamics is the need to take into account the actions of a very large number of components. The existence of events such as abrupt jumps, considered by the conventional continuous time random walk approach to describing complexity was never perceived as conflicting with the Hamiltonian view. Herein we review many of the reasons why this traditional Hamiltonian view of complexity is unsatisfactory. We show that as a result of technological advances, which make the observation of single elementary events possible, the definition of complexity has shifted from the conventional memory concept towards the action of non-Poisson renewal events. We show that the observation of crucial processes, such as the intermittent fluorescence of blinking quantum dots as well as the brain’s response to music, as monitored by a set of electrodes attached to the scalp, has forced investigators to go beyond the traditional concept of complexity and to establish closer contact with the nascent field of complex networks. Complex networks form one of the most challenging areas of modern research overarching all of the traditional scientific disciplines. The transportation networks of planes, highways and railroads; the economic networks of global finance and stock markets; the social networks of terrorism, governments, businesses and churches; the physical networks of telephones, the Internet, earthquakes and global warming and the biological networks of gene regulation, the human body, clusters of neurons and food webs, share a number of apparently universal properties as the networks become increasingly complex. Ubiquitous aspects of such complex networks are the appearance of non-stationary and non-ergodic statistical processes and inverse power-law statistical distributions. Herein we review the traditional dynamical and phase-space methods for modeling such networks as their complexity increases and focus on the limitations of these procedures in explaining complex networks. Of course we will not be able to review the entire nascent field of network science, so we limit ourselves to a review of how certain complexity barriers have been surmounted using newly applied theoretical concepts such as aging, renewal, non-ergodic statistics and the fractional calculus. One emphasis of this review is information transport between complex networks, which requires a fundamental change in perception that we express as a transition from the familiar stochastic resonance to the new concept of complexity matching.
Supply network science: Emergence of a new perspective on a classical field
NASA Astrophysics Data System (ADS)
Brintrup, Alexandra; Ledwoch, Anna
2018-03-01
Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research.
Supply network science: Emergence of a new perspective on a classical field.
Brintrup, Alexandra; Ledwoch, Anna
2018-03-01
Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research.
Spreading dynamics of an e-commerce preferential information model on scale-free networks
NASA Astrophysics Data System (ADS)
Wan, Chen; Li, Tao; Guan, Zhi-Hong; Wang, Yuanmei; Liu, Xiongding
2017-02-01
In order to study the influence of the preferential degree and the heterogeneity of underlying networks on the spread of preferential e-commerce information, we propose a novel susceptible-infected-beneficial model based on scale-free networks. The spreading dynamics of the preferential information are analyzed in detail using the mean-field theory. We determine the basic reproductive number and equilibria. The theoretical analysis indicates that the basic reproductive number depends mainly on the preferential degree and the topology of the underlying networks. We prove the global stability of the information-elimination equilibrium. The permanence of preferential information and the global attractivity of the information-prevailing equilibrium are also studied in detail. Some numerical simulations are presented to verify the theoretical results.
The diminishing role of hubs in dynamical processes on complex networks.
Quax, Rick; Apolloni, Andrea; Sloot, Peter M A
2013-11-06
It is notoriously difficult to predict the behaviour of a complex self-organizing system, where the interactions among dynamical units form a heterogeneous topology. Even if the dynamics of each microscopic unit is known, a real understanding of their contributions to the macroscopic system behaviour is still lacking. Here, we develop information-theoretical methods to distinguish the contribution of each individual unit to the collective out-of-equilibrium dynamics. We show that for a system of units connected by a network of interaction potentials with an arbitrary degree distribution, highly connected units have less impact on the system dynamics when compared with intermediately connected units. In an equilibrium setting, the hubs are often found to dictate the long-term behaviour. However, we find both analytically and experimentally that the instantaneous states of these units have a short-lasting effect on the state trajectory of the entire system. We present qualitative evidence of this phenomenon from empirical findings about a social network of product recommendations, a protein-protein interaction network and a neural network, suggesting that it might indeed be a widespread property in nature.
Realizing actual feedback control of complex network
NASA Astrophysics Data System (ADS)
Tu, Chengyi; Cheng, Yuhua
2014-06-01
In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.
Capacity Evaluation of a Quantum-Based Channel in a Biological Context.
Loscri, Valeria; Vegni, Anna Maria
2016-12-01
Nanotechnology, as enabler of the miniaturization of devices in a scale ranging from 1 to few hundreds of nm , represents a viable solution for " alternative" communication paradigms that could be effective in complex networked systems, as body area networks. Traditional communication paradigms are not effective in the context of joint body and nano-networked systems, for several reasons, and then novel approaches have been investigated such as nanomechanical, electromagnetic, acoustic, molecular, etc. On the other hand, quantum phenomena represent a natural direction for developing nanotechnology, since it has to be considered as a new scale where new phenomena can occur and can be exploited for information purpose. Specific quantum particles are phonons, the quanta of mechanical vibrations (i.e., acoustic excitations), that can be analyzed as potential information carriers in a body networked context. In this paper we will focus on the generation of phonons from photon-phonon interaction, by irradiating a sample of human tissue with an electro-magnetic field, and then we will theoretically derive the information capacity and the bit rate in the frequency range [10 3 - 10 12 ] Hz.
Role of Network Science in the Study of Anesthetic State Transitions.
Lee, UnCheol; Mashour, George A
2018-04-23
The heterogeneity of molecular mechanisms, target neural circuits, and neurophysiologic effects of general anesthetics makes it difficult to develop a reliable and drug-invariant index of general anesthesia. No single brain region or mechanism has been identified as the neural correlate of consciousness, suggesting that consciousness might emerge through complex interactions of spatially and temporally distributed brain functions. The goal of this review article is to introduce the basic concepts of networks and explain why the application of network science to general anesthesia could be a pathway to discover a fundamental mechanism of anesthetic-induced unconsciousness. This article reviews data suggesting that reduced network efficiency, constrained network repertoires, and changes in cortical dynamics create inhospitable conditions for information processing and transfer, which lead to unconsciousness. This review proposes that network science is not just a useful tool but a necessary theoretical framework and method to uncover common principles of anesthetic-induced unconsciousness.
Robustness and structure of complex networks
NASA Astrophysics Data System (ADS)
Shao, Shuai
This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks are much more vulnerable to localized attack compared with random attack. In the second part, we extend the tree-like generating function method to incorporating clustering structure in complex networks. We study the robustness of a complex network system, especially a network of networks (NON) with clustering structure in each network. We find that the system becomes less robust as we increase the clustering coefficient of each network. For a partially dependent network system, we also find that the influence of the clustering coefficient on network robustness decreases as we decrease the coupling strength, and the critical coupling strength qc, at which the first-order phase transition changes to second-order, increases as we increase the clustering coefficient.
Schmitt, Michael
2004-09-01
We study networks of spiking neurons that use the timing of pulses to encode information. Nonlinear interactions model the spatial groupings of synapses on the neural dendrites and describe the computations performed at local branches. Within a theoretical framework of learning we analyze the question of how many training examples these networks must receive to be able to generalize well. Bounds for this sample complexity of learning can be obtained in terms of a combinatorial parameter known as the pseudodimension. This dimension characterizes the computational richness of a neural network and is given in terms of the number of network parameters. Two types of feedforward architectures are considered: constant-depth networks and networks of unconstrained depth. We derive asymptotically tight bounds for each of these network types. Constant depth networks are shown to have an almost linear pseudodimension, whereas the pseudodimension of general networks is quadratic. Networks of spiking neurons that use temporal coding are becoming increasingly more important in practical tasks such as computer vision, speech recognition, and motor control. The question of how well these networks generalize from a given set of training examples is a central issue for their successful application as adaptive systems. The results show that, although coding and computation in these networks is quite different and in many cases more powerful, their generalization capabilities are at least as good as those of traditional neural network models.
Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control
NASA Astrophysics Data System (ADS)
Ding, Da-Wei; Yan, Jie; Wang, Nian; Liang, Dong
2017-09-01
In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fractional order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more practical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective. Supported by National Natural Science Foundation of China under Grant No. 61201227, National Natural Science Foundation of China Guangdong Joint Fund under Grant No. U1201255, the Natural Science Foundation of Anhui Province under Grant No. 1208085MF93, 211 Innovation Team of Anhui University under Grant Nos. KJTD007A and KJTD001B, and also supported by Chinese Scholarship Council
Network Science for Deterrence: Sheathing the Sword of the Terrorism/Nuclear Horseman
NASA Astrophysics Data System (ADS)
Carley, Kathleen
2010-03-01
After 9/11, network analysis became popular as a way to connect and disconnect the dots. It was heralded as the new science with intrinsic value for understanding and breaking up terrorist groups, insurgencies and hostile foreign governments. The limit of the initially forwarded approach was that it focused on only the social network -- who talked to whom. However ,the networks of war, terror or nuclear or cyber, are complex networks composed of people, organizations, resources, and capabilities connected in a geo-temporal web that constrains and enables activities that are ``hidden'' in the web of everyday life. Identifying these networks requires extraction and fusion of information from cyber-mediated realms resulting in a network map of the hostile groups and their relations to the populations in which they are embedded. These data are at best a sample, albeit a very large sample, replete with missing and incomplete data. Geo-temporal considerations in addition to information loss and error called into question the value of traditional network approaches. In this talk, a new approaches and associated technologies that integrate scientific advances in machine learning, network statistics, and the social and organizational science with traditional graph theoretic approaches to social networks are presented. Then, examples, of how these technologies can be used as part of a deterrence strategy are described. Examples related to terrorism and groups such as al-Qaida and Hamas, cyber and nuclear deterrence are described. By taking this meta-network approach, embracing the complexity and simultaneously examining not just one network, but the connections among networks, it is possible to identify emergent leaders, locate changes in activities, and forecast the potential impact of various interventions. Key challenges, such as data-streaming and deception, that need to be addressed scientifically are referenced.
Faes, Luca; Nollo, Giandomenico; Krohova, Jana; Czippelova, Barbora; Turianikova, Zuzana; Javorka, Michal
2017-07-01
To fully elucidate the complex physiological mechanisms underlying the short-term autonomic regulation of heart period (H), systolic and diastolic arterial pressure (S, D) and respiratory (R) variability, the joint dynamics of these variables need to be explored using multivariate time series analysis. This study proposes the utilization of information-theoretic measures to measure causal interactions between nodes of the cardiovascular/cardiorespiratory network and to assess the nature (synergistic or redundant) of these directed interactions. Indexes of information transfer and information modification are extracted from the H, S, D and R series measured from healthy subjects in a resting state and during postural stress. Computations are performed in the framework of multivariate linear regression, using bootstrap techniques to assess on a single-subject basis the statistical significance of each measure and of its transitions across conditions. We find patterns of information transfer and modification which are related to specific cardiovascular and cardiorespiratory mechanisms in resting conditions and to their modification induced by the orthostatic stress.
NASA Astrophysics Data System (ADS)
Jin, Wei; Zhang, Chongfu; Yuan, Weicheng
2016-02-01
We propose a physically enhanced secure scheme for direct detection-orthogonal frequency division multiplexing-passive optical network (DD-OFDM-PON) and long reach coherent detection-orthogonal frequency division multiplexing-passive optical network (LRCO-OFDM-PON), by employing noise-based encryption and channel/phase estimation. The noise data generated by chaos mapping are used to substitute training sequences in preamble to realize channel estimation and frame synchronization, and also to be embedded on variable number of key-selected randomly spaced pilot subcarriers to implement phase estimation. Consequently, the information used for signal recovery is totally hidden as unpredictable noise information in OFDM frames to mask useful information and to prevent illegal users from correctly realizing OFDM demodulation, and thereby enhancing resistance to attackers. The levels of illegal-decryption complexity and implementation complexity are theoretically discussed. Through extensive simulations, the performances of the proposed channel/phase estimation and the security introduced by encrypted pilot carriers have been investigated in both DD-OFDM and LRCO-OFDM systems. In addition, in the proposed secure DD-OFDM/LRCO-OFDM PON models, both legal and illegal receiving scenarios have been considered. These results show that, by utilizing the proposed scheme, the resistance to attackers can be significantly enhanced in DD-OFDM-PON and LRCO-OFDM-PON systems without performance degradations.
Breakdown of interdependent directed networks.
Liu, Xueming; Stanley, H Eugene; Gao, Jianxi
2016-02-02
Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis.
Hu, Jin; Zeng, Chunna
2017-02-01
The complex-valued Cohen-Grossberg neural network is a special kind of complex-valued neural network. In this paper, the synchronization problem of a class of complex-valued Cohen-Grossberg neural networks with known and unknown parameters is investigated. By using Lyapunov functionals and the adaptive control method based on parameter identification, some adaptive feedback schemes are proposed to achieve synchronization exponentially between the drive and response systems. The results obtained in this paper have extended and improved some previous works on adaptive synchronization of Cohen-Grossberg neural networks. Finally, two numerical examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Epidemic threshold of the susceptible-infected-susceptible model on complex networks
NASA Astrophysics Data System (ADS)
Lee, Hyun Keun; Shim, Pyoung-Seop; Noh, Jae Dong
2013-06-01
We demonstrate that the susceptible-infected-susceptible (SIS) model on complex networks can have an inactive Griffiths phase characterized by a slow relaxation dynamics. It contrasts with the mean-field theoretical prediction that the SIS model on complex networks is active at any nonzero infection rate. The dynamic fluctuation of infected nodes, ignored in the mean field approach, is responsible for the inactive phase. It is proposed that the question whether the epidemic threshold of the SIS model on complex networks is zero or not can be resolved by the percolation threshold in a model where nodes are occupied in degree-descending order. Our arguments are supported by the numerical studies on scale-free network models.
Ince, Robin A A; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J; Rousselet, Guillaume A; Schyns, Philippe G
2016-08-22
A key to understanding visual cognition is to determine "where", "when", and "how" brain responses reflect the processing of the specific visual features that modulate categorization behavior-the "what". The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. © The Author 2016. Published by Oxford University Press.
Sharper Graph-Theoretical Conditions for the Stabilization of Complex Reaction Networks
Knight, Daniel; Shinar, Guy; Feinberg, Martin
2015-01-01
Across the landscape of all possible chemical reaction networks there is a surprising degree of stable behavior, despite what might be substantial complexity and nonlinearity in the governing differential equations. At the same time there are reaction networks, in particular those that arise in biology, for which richer behavior is exhibited. Thus, it is of interest to understand network-structural features whose presence enforces dull, stable behavior and whose absence permits the dynamical richness that might be necessary for life. We present conditions on a network’s Species-Reaction Graph that ensure a high degree of stable behavior, so long as the kinetic rate functions satisfy certain weak and natural constraints. These graph-theoretical conditions are considerably more incisive than those reported earlier. PMID:25600138
Advancing the State of the Art in Applying Network Science to C2
2014-06-01
technological networks to include information , cognitive and social networks, they have yet to apply the full range of theoretical instruments now...robustness, and processes. While NEC researchers extended their coverage from technological networks to include information , cognitive and social networks...can be found in a wide variety of domains. For example, Newman (2003) surveys work on biological, technological , information , and social networks
Complexity Leadership: A Theoretical Perspective
ERIC Educational Resources Information Center
Baltaci, Ali; Balci, Ali
2017-01-01
Complex systems are social networks composed of interactive employees interconnected through collaborative, dynamic ties such as shared goals, perspectives and needs. Complex systems are largely based on "the complex system theory". The complex system theory focuses mainly on finding out and developing strategies and behaviours that…
Sokol, Serguei; Portais, Jean-Charles
2015-01-01
The dynamics of label propagation in a stationary metabolic network during an isotope labeling experiment can provide highly valuable information on the network topology, metabolic fluxes, and on the size of metabolite pools. However, major issues, both in the experimental set-up and in the accompanying numerical methods currently limit the application of this approach. Here, we propose a method to apply novel types of label inputs, sinusoidal or more generally periodic label inputs, to address both the practical and numerical challenges of dynamic labeling experiments. By considering a simple metabolic system, i.e. a linear, non-reversible pathway of arbitrary length, we develop mathematical descriptions of label propagation for both classical and novel label inputs. Theoretical developments and computer simulations show that the application of rectangular periodic pulses has both numerical and practical advantages over other approaches. We applied the strategy to estimate fluxes in a simulated experiment performed on a complex metabolic network (the central carbon metabolism of Escherichia coli), to further demonstrate its value in conditions which are close to those in real experiments. This study provides a theoretical basis for the rational interpretation of label propagation curves in real experiments, and will help identify the strengths, pitfalls and limitations of such experiments. The cases described here can also be used as test cases for more general numerical methods aimed at identifying network topology, analyzing metabolic fluxes or measuring concentrations of metabolites. PMID:26641860
Domestic violence against children and adolescents: social support network perspectives.
Carlos, Diene Monique; Pádua, Elisabete Matallo Marchesini De; Fernandes, Maria Isabel Domingues; Leitão, Maria Neto da Cruz; Ferriani, Maria das Graças Carvalho
2017-07-20
To identify and analyze the social support network of families involved in violence against children and adolescents, from the perspective of health professionals and families in a municipality of the state of São Paulo, Brazil. This was a qualitative strategic social study, anchored in the paradigm of complexity. Data were collected from 41 health professionals and 15 families using institutional or personal network maps, and semi-structured interviews. Analysis was conducted by organizing the data, constructing theoretical frameworks, and categorizing resulting information. The category "weaving the network" was unveiled, with family experiences and professionals focused on a logic of fragmentation of care. The creation and implementation of public policy are urgently needed to address the needs of this population, by empowering families and communities and developing research that respects the multidimensional nature of the phenomenon.
Epidemic processes in complex networks
NASA Astrophysics Data System (ADS)
Pastor-Satorras, Romualdo; Castellano, Claudio; Van Mieghem, Piet; Vespignani, Alessandro
2015-07-01
In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.
Network biology discovers pathogen contact points in host protein-protein interactomes.
Ahmed, Hadia; Howton, T C; Sun, Yali; Weinberger, Natascha; Belkhadir, Youssef; Mukhtar, M Shahid
2018-06-13
In all organisms, major biological processes are controlled by complex protein-protein interactions networks (interactomes), yet their structural complexity presents major analytical challenges. Here, we integrate a compendium of over 4300 phenotypes with Arabidopsis interactome (AI-1 MAIN ). We show that nodes with high connectivity and betweenness are enriched and depleted in conditional and essential phenotypes, respectively. Such nodes are located in the innermost layers of AI-1 MAIN and are preferential targets of pathogen effectors. We extend these network-centric analyses to Cell Surface Interactome (CSI LRR ) and predict its 35 most influential nodes. To determine their biological relevance, we show that these proteins physically interact with pathogen effectors and modulate plant immunity. Overall, our findings contrast with centrality-lethality rule, discover fast information spreading nodes, and highlight the structural properties of pathogen targets in two different interactomes. Finally, this theoretical framework could possibly be applicable to other inter-species interactomes to reveal pathogen contact points.
Sparse dictionary learning for resting-state fMRI analysis
NASA Astrophysics Data System (ADS)
Lee, Kangjoo; Han, Paul Kyu; Ye, Jong Chul
2011-09-01
Recently, there has been increased interest in the usage of neuroimaging techniques to investigate what happens in the brain at rest. Functional imaging studies have revealed that the default-mode network activity is disrupted in Alzheimer's disease (AD). However, there is no consensus, as yet, on the choice of analysis method for the application of resting-state analysis for disease classification. This paper proposes a novel compressed sensing based resting-state fMRI analysis tool called Sparse-SPM. As the brain's functional systems has shown to have features of complex networks according to graph theoretical analysis, we apply a graph model to represent a sparse combination of information flows in complex network perspectives. In particular, a new concept of spatially adaptive design matrix has been proposed by implementing sparse dictionary learning based on sparsity. The proposed approach shows better performance compared to other conventional methods, such as independent component analysis (ICA) and seed-based approach, in classifying the AD patients from normal using resting-state analysis.
Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan
2017-12-20
A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.
Evaluating Action Learning: A Critical Realist Complex Network Theory Approach
ERIC Educational Resources Information Center
Burgoyne, John G.
2010-01-01
This largely theoretical paper will argue the case for the usefulness of applying network and complex adaptive systems theory to an understanding of action learning and the challenge it is evaluating. This approach, it will be argued, is particularly helpful in the context of improving capability in dealing with wicked problems spread around…
Analysis and Design of Complex Network Environments
2012-03-01
and J. Lowe, “The myths and facts behind cyber security risks for industrial control systems ,” in the Proceedings of the VDE Kongress, VDE Congress...questions about 1) how to model them, 2) the design of experiments necessary to discover their structure (and thus adapt system inputs to optimize the...theoretical work that clarifies fundamental limitations of complex networks with network engineering and systems biology to implement specific designs and
Adaptive capacity of geographical clusters: Complexity science and network theory approach
NASA Astrophysics Data System (ADS)
Albino, Vito; Carbonara, Nunzia; Giannoccaro, Ilaria
This paper deals with the adaptive capacity of geographical clusters (GCs), that is a relevant topic in the literature. To address this topic, GC is considered as a complex adaptive system (CAS). Three theoretical propositions concerning the GC adaptive capacity are formulated by using complexity theory. First, we identify three main properties of CAS s that affect the adaptive capacity, namely the interconnectivity, the heterogeneity, and the level of control, and define how the value of these properties influence the adaptive capacity. Then, we associate these properties with specific GC characteristics so obtaining the key conditions of GCs that give them the adaptive capacity so assuring their competitive advantage. To test these theoretical propositions, a case study on two real GCs is carried out. The considered GCs are modeled as networks where firms are nodes and inter-firms relationships are links. Heterogeneity, interconnectivity, and level of control are considered as network properties and thus measured by using the methods of the network theory.
Newton, J Timothy; Bower, Elizabeth J
2005-02-01
Oral epidemiological research into the social determinants of oral health has been limited by the absence of a theoretical framework which reflects the complexity of real life social processes and the network of causal pathways between social structure and oral health and disease. In the absence of such a framework, social determinants are treated as isolated risk factors, attributable to the individual, having a direct impact on oral health. There is little sense of how such factors interrelate over time and place and the pathways between the factors and oral health. Features of social life which impact on individuals' oral health but are not reducible to the individual remain under-researched. A conceptual framework informing mainstream epidemiological research into the social determinants of health is applied to oral epidemiology. The framework suggests complex causal pathways between social structure and health via interlinking material, psychosocial and behavioural pathways. Methodological implications for oral epidemiological research informed by the framework, such as the use of multilevel modelling, path analysis and structural equation modelling, combining qualitative and quantitative research methods, and collaborative research, are discussed. Copyright Blackwell Munksgaard, 2005.
Influence maximization in complex networks through optimal percolation
NASA Astrophysics Data System (ADS)
Morone, Flaviano; Makse, Hernán A.
2015-08-01
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.
Influence maximization in complex networks through optimal percolation.
Morone, Flaviano; Makse, Hernán A
2015-08-06
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.
Turing instability in reaction-diffusion models on complex networks
NASA Astrophysics Data System (ADS)
Ide, Yusuke; Izuhara, Hirofumi; Machida, Takuya
2016-09-01
In this paper, the Turing instability in reaction-diffusion models defined on complex networks is studied. Here, we focus on three types of models which generate complex networks, i.e. the Erdős-Rényi, the Watts-Strogatz, and the threshold network models. From analysis of the Laplacian matrices of graphs generated by these models, we numerically reveal that stable and unstable regions of a homogeneous steady state on the parameter space of two diffusion coefficients completely differ, depending on the network architecture. In addition, we theoretically discuss the stable and unstable regions in the cases of regular enhanced ring lattices which include regular circles, and networks generated by the threshold network model when the number of vertices is large enough.
NASA Astrophysics Data System (ADS)
Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng
2018-03-01
In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.
An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks
Cabessa, Jérémie; Villa, Alessandro E. P.
2014-01-01
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866
Lam, Winnie W M; Chan, Keith C C
2012-04-01
Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation, PCIFI was used to identify protein complexes in real PPI network data and the protein complexes it found were matched against those that were previously known in MIPS. The results show that PCIFI can be an effective technique for the identification of protein complexes. The protein complexes it found can match more known protein complexes with a smaller false-alarm rate and can provide useful insights into the understanding of the functional interdependence relationships between proteins in protein complexes.
Constrained target controllability of complex networks
NASA Astrophysics Data System (ADS)
Guo, Wei-Feng; Zhang, Shao-Wu; Wei, Ze-Gang; Zeng, Tao; Liu, Fei; Zhang, Jingsong; Wu, Fang-Xiang; Chen, Luonan
2017-06-01
It is of great theoretical interest and practical significance to study how to control a system by applying perturbations to only a few driver nodes. Recently, a hot topic of modern network researches is how to determine driver nodes that allow the control of an entire network. However, in practice, to control a complex network, especially a biological network, one may know not only the set of nodes which need to be controlled (i.e. target nodes), but also the set of nodes to which only control signals can be applied (i.e. constrained control nodes). Compared to the general concept of controllability, we introduce the concept of constrained target controllability (CTC) of complex networks, which concerns the ability to drive any state of target nodes to their desirable state by applying control signals to the driver nodes from the set of constrained control nodes. To efficiently investigate the CTC of complex networks, we further design a novel graph-theoretic algorithm called CTCA to estimate the ability of a given network to control targets by choosing driver nodes from the set of constrained control nodes. We extensively evaluate the CTC of numerous real complex networks. The results indicate that biological networks with a higher average degree are easier to control than biological networks with a lower average degree, while electronic networks with a lower average degree are easier to control than web networks with a higher average degree. We also show that our CTCA can more efficiently produce driver nodes for target-controlling the networks than existing state-of-the-art methods. Moreover, we use our CTCA to analyze two expert-curated bio-molecular networks and compare to other state-of-the-art methods. The results illustrate that our CTCA can efficiently identify proven drug targets and new potentials, according to the constrained controllability of those biological networks.
Control of Multilayer Networks
Menichetti, Giulia; Dall’Asta, Luca; Bianconi, Ginestra
2016-01-01
The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable. PMID:26869210
The robustness of multiplex networks under layer node-based attack
Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen
2016-01-01
From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology. PMID:27075870
The robustness of multiplex networks under layer node-based attack.
Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen
2016-04-14
From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology.
de Beurs, Derek P; van Borkulo, Claudia D; O'Connor, Rory C
2017-05-01
Suicidal behaviour is the end result of the complex relation between many factors which are biological, psychological and environmental in nature. Network analysis is a novel method that may help us better understand the complex association between different factors. To examine the relationship between suicidal symptoms as assessed by the Beck Scale for Suicide Ideation and future suicidal behaviour in patients admitted to hospital following a suicide attempt, using network analysis. Secondary analysis was conducted on previously collected data from a sample of 366 patients who were admitted to a Scottish hospital following a suicide attempt. Network models were estimated to visualise and test the association between baseline symptom network structure and suicidal behaviour at 15-month follow-up. Network analysis showed that the desire for an active attempt was found to be the most central, strongly related suicide symptom. Of the 19 suicide symptoms that were assessed at baseline, 10 symptoms were directly related to repeat suicidal behaviour. When comparing baseline network structure of repeaters ( n =94) with the network of non-repeaters ( n =272), no significant differences were found. Network analysis can help us better understand suicidal behaviour by visualising the complex relation between relevant symptoms and by indicating which symptoms are most central within the network. These insights have theoretical implications as well as informing the assessment and treatment of suicidal behaviour. None. © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license.
BrainNet Viewer: a network visualization tool for human brain connectomics.
Xia, Mingrui; Wang, Jinhui; He, Yong
2013-01-01
The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).
Network theory and its applications in economic systems
NASA Astrophysics Data System (ADS)
Huang, Xuqing
This dissertation covers the two major parts of my Ph.D. research: i) developing theoretical framework of complex networks; and ii) applying complex networks models to quantitatively analyze economics systems. In part I, we focus on developing theories of interdependent networks, which includes two chapters: 1) We develop a mathematical framework to study the percolation of interdependent networks under targeted-attack and find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. 2) We analytically demonstrates that clustering, which quantifies the propensity for two neighbors of the same vertex to also be neighbors of each other, significantly increases the vulnerability of the system. In part II, we apply the complex networks models to study economics systems, which also includes two chapters: 1) We study the US corporate governance network, in which nodes representing directors and links between two directors representing their service on common company boards, and propose a quantitative measure of information and influence transformation in the network. Thus we are able to identify the most influential directors in the network. 2) We propose a bipartite networks model to simulate the risk propagation process among commercial banks during financial crisis. With empirical bank's balance sheet data in 2007 as input to the model, we find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation during the financial crisis between 2008 and 2011. The results suggest that complex networks model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the failure of over 350 US commercial banks during 2008 - 2011.
Meyer-Bäse, Anke; Roberts, Rodney G.; Illan, Ignacio A.; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja
2017-01-01
Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts. PMID:29051730
Meyer-Bäse, Anke; Roberts, Rodney G; Illan, Ignacio A; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja
2017-01-01
Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts.
Dynamic properties of epidemic spreading on finite size complex networks
NASA Astrophysics Data System (ADS)
Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben
2005-11-01
The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.
Neural network explanation using inversion.
Saad, Emad W; Wunsch, Donald C
2007-01-01
An important drawback of many artificial neural networks (ANN) is their lack of explanation capability [Andrews, R., Diederich, J., & Tickle, A. B. (1996). A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8, 373-389]. This paper starts with a survey of algorithms which attempt to explain the ANN output. We then present HYPINV, a new explanation algorithm which relies on network inversion; i.e. calculating the ANN input which produces a desired output. HYPINV is a pedagogical algorithm, that extracts rules, in the form of hyperplanes. It is able to generate rules with arbitrarily desired fidelity, maintaining a fidelity-complexity tradeoff. To our knowledge, HYPINV is the only pedagogical rule extraction method, which extracts hyperplane rules from continuous or binary attribute neural networks. Different network inversion techniques, involving gradient descent as well as an evolutionary algorithm, are presented. An information theoretic treatment of rule extraction is presented. HYPINV is applied to example synthetic problems, to a real aerospace problem, and compared with similar algorithms using benchmark problems.
Combinatorial complexity of pathway analysis in metabolic networks.
Klamt, Steffen; Stelling, Jörg
2002-01-01
Elementary flux mode analysis is a promising approach for a pathway-oriented perspective of metabolic networks. However, in larger networks it is hampered by the combinatorial explosion of possible routes. In this work we give some estimations on the combinatorial complexity including theoretical upper bounds for the number of elementary flux modes in a network of a given size. In a case study, we computed the elementary modes in the central metabolism of Escherichia coli while utilizing four different substrates. Interestingly, although the number of modes occurring in this complex network can exceed half a million, it is still far below the upper bound. Hence, to a certain extent, pathway analysis of central catabolism is feasible to assess network properties such as flexibility and functionality.
Detecting causality in policy diffusion processes.
Grabow, Carsten; Macinko, James; Silver, Diana; Porfiri, Maurizio
2016-08-01
A universal question in network science entails learning about the topology of interaction from collective dynamics. Here, we address this question by examining diffusion of laws across US states. We propose two complementary techniques to unravel determinants of this diffusion process: information-theoretic union transfer entropy and event synchronization. In order to systematically investigate their performance on law activity data, we establish a new stochastic model to generate synthetic law activity data based on plausible networks of interactions. Through extensive parametric studies, we demonstrate the ability of these methods to reconstruct networks, varying in size, link density, and degree heterogeneity. Our results suggest that union transfer entropy should be preferred for slowly varying processes, which may be associated with policies attending to specific local problems that occur only rarely or with policies facing high levels of opposition. In contrast, event synchronization is effective for faster enactment rates, which may be related to policies involving Federal mandates or incentives. This study puts forward a data-driven toolbox to explain the determinants of legal activity applicable to political science, across dynamical systems, information theory, and complex networks.
Detecting causality in policy diffusion processes
NASA Astrophysics Data System (ADS)
Grabow, Carsten; Macinko, James; Silver, Diana; Porfiri, Maurizio
2016-08-01
A universal question in network science entails learning about the topology of interaction from collective dynamics. Here, we address this question by examining diffusion of laws across US states. We propose two complementary techniques to unravel determinants of this diffusion process: information-theoretic union transfer entropy and event synchronization. In order to systematically investigate their performance on law activity data, we establish a new stochastic model to generate synthetic law activity data based on plausible networks of interactions. Through extensive parametric studies, we demonstrate the ability of these methods to reconstruct networks, varying in size, link density, and degree heterogeneity. Our results suggest that union transfer entropy should be preferred for slowly varying processes, which may be associated with policies attending to specific local problems that occur only rarely or with policies facing high levels of opposition. In contrast, event synchronization is effective for faster enactment rates, which may be related to policies involving Federal mandates or incentives. This study puts forward a data-driven toolbox to explain the determinants of legal activity applicable to political science, across dynamical systems, information theory, and complex networks.
Visualisation and graph-theoretic analysis of a large-scale protein structural interactome
Bolser, Dan; Dafas, Panos; Harrington, Richard; Park, Jong; Schroeder, Michael
2003-01-01
Background Large-scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in the PDB. PSIMAP incorporates both functional and evolutionary information into a single network. Results We present a global analysis of PSIMAP using several distinct network measures relating to centrality, interactivity, fault-tolerance, and taxonomic diversity. We found the following results: Centrality: we show that the center and barycenter of PSIMAP do not coincide, and that the superfamilies forming the barycenter relate to very general functions, while those constituting the center relate to enzymatic activity. Interactivity: we identify the P-loop and immunoglobulin superfamilies as the most highly interactive. We successfully use connectivity and cluster index, which characterise the connectivity of a superfamily's neighbourhood, to discover superfamilies of complex I and II. This is particularly significant as the structure of complex I is not yet solved. Taxonomic diversity: we found that highly interactive superfamilies are in general taxonomically very diverse and are thus amongst the oldest. Fault-tolerance: we found that the network is very robust as for the majority of superfamilies removal from the network will not break up the network. Conclusions Overall, we can single out the P-loop containing nucleotide triphosphate hydrolases superfamily as it is the most highly connected and has the highest taxonomic diversity. In addition, this superfamily has the highest interaction rank, is the barycenter of the network (it has the shortest average path to every other superfamily in the network), and is an articulation vertex, whose removal will disconnect the network. More generally, we conclude that the graph-theoretic and taxonomic analysis of PSIMAP is an important step towards the understanding of protein function and could be an important tool for tracing the evolution of life at the molecular level. PMID:14531933
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2015-09-01
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces.
Chaotification of complex networks with impulsive control.
Guan, Zhi-Hong; Liu, Feng; Li, Juan; Wang, Yan-Wu
2012-06-01
This paper investigates the chaotification problem of complex dynamical networks (CDN) with impulsive control. Both the discrete and continuous cases are studied. The method is presented to drive all states of every node in CDN to chaos. The proposed impulsive control strategy is effective for both the originally stable and unstable CDN. The upper bound of the impulse intervals for originally stable networks is derived. Finally, the effectiveness of the theoretical results is verified by numerical examples.
NASA Astrophysics Data System (ADS)
Jiang, Shengqin; Lu, Xiaobo; Cai, Guoliang; Cai, Shuiming
2017-12-01
This paper focuses on the cluster synchronisation problem of coupled complex networks with uncertain disturbances under an adaptive fixed-time control strategy. To begin with, complex dynamical networks with community structure which are subject to uncertain disturbances are taken into account. Then, a novel adaptive control strategy combined with fixed-time techniques is proposed to guarantee the nodes in the communities to desired states in a settling time. In addition, the stability of complex error systems is theoretically proved based on Lyapunov stability theorem. At last, two examples are presented to verify the effectiveness of the proposed adaptive fixed-time control.
Perry-Smith, Jill E
2014-09-01
Social network research emphasizes the access to nonredundant knowledge content that network ties provide. I suggest that some content is more beneficial than others and that tie strength may affect creativity for reasons other than the associated structure. That is, tie strength may affect how individuals process nonredundant knowledge. I investigate 2 types of knowledge content--information (i.e., facts or data) and frames (i.e., interpretations or impressions)--and explore whether tie strength influences their effect on creativity. Drawing on creativity theory, I employ an experimental design to provide greater theoretical clarity and to isolate causality. According to the results from 2 studies, distinct frames received from contacts facilitate creativity, but the effect of distinct information is more complex. When individuals receive distinct information from strong ties, it constrains creativity compared to distinct frames. Content from weak ties appears to facilitate creativity across all scenarios. The results of mediated moderation analysis indicate the effect of framing versus information for strong ties is driven by decision-making time, as an indicator of cognitive expansion. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Hui; Zheng, Mingwen; Li, Shudong; Wang, Weiping
2018-03-01
Some existing papers focused on finite-time parameter identification and synchronization, but provided incomplete theoretical analyses. Such works incorporated conflicting constraints for parameter identification, therefore, the practical significance could not be fully demonstrated. To overcome such limitations, the underlying paper presents new results of parameter identification and synchronization for uncertain complex dynamical networks with impulsive effect and stochastic perturbation based on finite-time stability theory. Novel results of parameter identification and synchronization control criteria are obtained in a finite time by utilizing Lyapunov function and linear matrix inequality respectively. Finally, numerical examples are presented to illustrate the effectiveness of our theoretical results.
Computational models of neuromodulation.
Fellous, J M; Linster, C
1998-05-15
Computational modeling of neural substrates provides an excellent theoretical framework for the understanding of the computational roles of neuromodulation. In this review, we illustrate, with a large number of modeling studies, the specific computations performed by neuromodulation in the context of various neural models of invertebrate and vertebrate preparations. We base our characterization of neuromodulations on their computational and functional roles rather than on anatomical or chemical criteria. We review the main framework in which neuromodulation has been studied theoretically (central pattern generation and oscillations, sensory processing, memory and information integration). Finally, we present a detailed mathematical overview of how neuromodulation has been implemented at the single cell and network levels in modeling studies. Overall, neuromodulation is found to increase and control computational complexity.
Summarisation of weighted networks
NASA Astrophysics Data System (ADS)
Zhou, Fang; Qu, Qiang; Toivonen, Hannu
2017-09-01
Networks often contain implicit structure. We introduce novel problems and methods that look for structure in networks, by grouping nodes into supernodes and edges to superedges, and then make this structure visible to the user in a smaller generalised network. This task of finding generalisations of nodes and edges is formulated as 'network Summarisation'. We propose models and algorithms for networks that have weights on edges, on nodes or on both, and study three new variants of the network summarisation problem. In edge-based weighted network summarisation, the summarised network should preserve edge weights as well as possible. A wider class of settings is considered in path-based weighted network summarisation, where the resulting summarised network should preserve longer range connectivities between nodes. Node-based weighted network summarisation in turn allows weights also on nodes and summarisation aims to preserve more information related to high weight nodes. We study theoretical properties of these problems and show them to be NP-hard. We propose a range of heuristic generalisation algorithms with different trade-offs between complexity and quality of the result. Comprehensive experiments on real data show that weighted networks can be summarised efficiently with relatively little error.
Dynamics of information diffusion and its applications on complex networks
NASA Astrophysics Data System (ADS)
Zhang, Zi-Ke; Liu, Chuang; Zhan, Xiu-Xiu; Lu, Xin; Zhang, Chu-Xu; Zhang, Yi-Cheng
2016-09-01
The ongoing rapid expansion of the Word Wide Web (WWW) greatly increases the information of effective transmission from heterogeneous individuals to various systems. Extensive research for information diffusion is introduced by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and empirical studies, unification and comparison of different theories and approaches are lacking, which impedes further advances. In this article, we review recent developments in information diffusion and discuss the major challenges. We compare and evaluate available models and algorithms to respectively investigate their physical roles and optimization designs. Potential impacts and future directions are discussed. We emphasize that information diffusion has great scientific depth and combines diverse research fields which makes it interesting for physicists as well as interdisciplinary researchers.
Avena-Koenigsberger, Andrea; Goñi, Joaquín; Solé, Ricard; Sporns, Olaf
2015-01-01
The structure of complex networks has attracted much attention in recent years. It has been noted that many real-world examples of networked systems share a set of common architectural features. This raises important questions about their origin, for example whether such network attributes reflect common design principles or constraints imposed by selectional forces that have shaped the evolution of network topology. Is it possible to place the many patterns and forms of complex networks into a common space that reveals their relations, and what are the main rules and driving forces that determine which positions in such a space are occupied by systems that have actually evolved? We suggest that these questions can be addressed by combining concepts from two currently relatively unconnected fields. One is theoretical morphology, which has conceptualized the relations between morphological traits defined by mathematical models of biological form. The second is network science, which provides numerous quantitative tools to measure and classify different patterns of local and global network architecture across disparate types of systems. Here, we explore a new theoretical concept that lies at the intersection between both fields, the ‘network morphospace’. Defined by axes that represent specific network traits, each point within such a space represents a location occupied by networks that share a set of common ‘morphological’ characteristics related to aspects of their connectivity. Mapping a network morphospace reveals the extent to which the space is filled by existing networks, thus allowing a distinction between actual and impossible designs and highlighting the generative potential of rules and constraints that pervade the evolution of complex systems. PMID:25540237
NASA Astrophysics Data System (ADS)
Christensen, Claire Petra
Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author's own publications have contributed network inference, simulation, modeling, and analysis methods to the much larger body of work in systems biology, and indeed, in network science. The aim of this thesis is therefore twofold: to present this original work in the historical context of network science, but also to provide sufficient review and reference regarding complex systems (with an emphasis on complex networks in systems biology) and tools and techniques for their inference, simulation, analysis, and modeling, such that the reader will be comfortable in seeking out further information on the subject. The review-like Chapters 1, 2, and 4 are intended to convey the co-evolution of network science and the slow but noticeable breakdown of boundaries between disciplines in academia as research and comparison of diverse systems has brought to light the shared properties of these systems. It is the author's hope that theses chapters impart some sense of the remarkable and rapid progress in complex systems research that has led to this unprecedented academic synergy. Chapters 3 and 5 detail the author's original work in the context of complex systems research. Chapter 3 presents the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks of the bacterium B.subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. These networks are then analyzed from a graph theoretical perspective, and their biological viability is critiqued by comparing the networks' graph theoretical properties to those of other biological systems. The results of topological perturbation analyses revealing commonalities in behavior at multiple levels of complexity are also presented, and are shown to be an invaluable means by which to ascertain the level of complexity to which the network inference process is robust to noise. Chapter 5 outlines a learning algorithm for the development of a realistic, evolving social network (a city) into which a disease is introduced. The results of simulations in populations spanning two orders of magnitude are compared to prevaccine era measles data for England and Wales and demonstrate that the simulations are able to capture the quantitative and qualitative features of epidemics in populations as small as 10,000 people. The work presented in Chapter 5 validates the utility of network simulation in concurrently probing contact network dynamics and disease dynamics.
Johnson, Phil; Brookes, Michael; Wood, Geoffrey; Brewster, Chris
2017-06-01
By using the classic works of Durkheim as a theoretical platform, this research explores the relationship between legal systems and social solidarity. We found that certain types of civil law system, most notably those of Scandinavia, are associated with higher levels of social capital and better welfare state provision. However, we found the relationship between legal system and societal outcomes is considerably more complex than suggested by currently fashionable economistic legal origin approaches, and more in line with the later writings of Durkheim, and, indeed, the literature on comparative capitalisms. Relative communitarianism was strongly affected by relative development, reflecting the complex relationship between institutions, state capabilities and informal social ties and networks.
Identifying influential nodes in complex networks: A node information dimension approach
NASA Astrophysics Data System (ADS)
Bian, Tian; Deng, Yong
2018-04-01
In the field of complex networks, how to identify influential nodes is a significant issue in analyzing the structure of a network. In the existing method proposed to identify influential nodes based on the local dimension, the global structure information in complex networks is not taken into consideration. In this paper, a node information dimension is proposed by synthesizing the local dimensions at different topological distance scales. A case study of the Netscience network is used to illustrate the efficiency and practicability of the proposed method.
Homological scaffolds of brain functional networks
Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.
2014-01-01
Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177
Study on the Reduced Traffic Congestion Method Based on Dynamic Guidance Information
NASA Astrophysics Data System (ADS)
Li, Shu-Bin; Wang, Guang-Min; Wang, Tao; Ren, Hua-Ling; Zhang, Lin
2018-05-01
This paper studies how to generate the reasonable information of travelers’ decision in real network. This problem is very complex because the travelers’ decision is constrained by different human behavior. The network conditions can be predicted by using the advanced dynamic OD (Origin-Destination, OD) estimation techniques. Based on the improved mesoscopic traffic model, the predictable dynamic traffic guidance information can be obtained accurately. A consistency algorithm is designed to investigate the travelers’ decision by simulating the dynamic response to guidance information. The simulation results show that the proposed method can provide the best guidance information. Further, a case study is conducted to verify the theoretical results and to draw managerial insights into the potential of dynamic guidance strategy in improving traffic performance. Supported by National Natural Science Foundation of China under Grant Nos. 71471104, 71771019, 71571109, and 71471167; The University Science and Technology Program Funding Projects of Shandong Province under Grant No. J17KA211; The Project of Public Security Department of Shandong Province under Grant No. GATHT2015-236; The Major Social and Livelihood Special Project of Jinan under Grant No. 20150905
van Borkulo, Claudia D.; O’Connor, Rory C.
2017-01-01
Background Suicidal behaviour is the end result of the complex relation between many factors which are biological, psychological and environmental in nature. Network analysis is a novel method that may help us better understand the complex association between different factors. Aims To examine the relationship between suicidal symptoms as assessed by the Beck Scale for Suicide Ideation and future suicidal behaviour in patients admitted to hospital following a suicide attempt, using network analysis. Method Secondary analysis was conducted on previously collected data from a sample of 366 patients who were admitted to a Scottish hospital following a suicide attempt. Network models were estimated to visualise and test the association between baseline symptom network structure and suicidal behaviour at 15-month follow-up. Results Network analysis showed that the desire for an active attempt was found to be the most central, strongly related suicide symptom. Of the 19 suicide symptoms that were assessed at baseline, 10 symptoms were directly related to repeat suicidal behaviour. When comparing baseline network structure of repeaters (n=94) with the network of non-repeaters (n=272), no significant differences were found. Conclusions Network analysis can help us better understand suicidal behaviour by visualising the complex relation between relevant symptoms and by indicating which symptoms are most central within the network. These insights have theoretical implications as well as informing the assessment and treatment of suicidal behaviour. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:28507771
Theoretical Neuroanatomy:Analyzing the Structure, Dynamics,and Function of Neuronal Networks
NASA Astrophysics Data System (ADS)
Seth, Anil K.; Edelman, Gerald M.
The mammalian brain is an extraordinary object: its networks give rise to our conscious experiences as well as to the generation of adaptive behavior for the organism within its environment. Progress in understanding the structure, dynamics and function of the brain faces many challenges. Biological neural networks change over time, their detailed structure is difficult to elucidate, and they are highly heterogeneous both in their neuronal units and synaptic connections. In facing these challenges, graph-theoretic and information-theoretic approaches have yielded a number of useful insights and promise many more.
Information Retrieval and Graph Analysis Approaches for Book Recommendation.
Benkoussas, Chahinez; Bellot, Patrice
2015-01-01
A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments.
Information Retrieval and Graph Analysis Approaches for Book Recommendation
Benkoussas, Chahinez; Bellot, Patrice
2015-01-01
A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments. PMID:26504899
Opinion diversity and community formation in adaptive networks
NASA Astrophysics Data System (ADS)
Yu, Y.; Xiao, G.; Li, G.; Tay, W. P.; Teoh, H. F.
2017-10-01
It is interesting and of significant importance to investigate how network structures co-evolve with opinions. In this article, we show that, a simple model integrating consensus formation, link rewiring, and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities are connected by a non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at the steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity.
Interactive social contagions and co-infections on complex networks
NASA Astrophysics Data System (ADS)
Liu, Quan-Hui; Zhong, Lin-Feng; Wang, Wei; Zhou, Tao; Eugene Stanley, H.
2018-01-01
What we are learning about the ubiquitous interactions among multiple social contagion processes on complex networks challenges existing theoretical methods. We propose an interactive social behavior spreading model, in which two behaviors sequentially spread on a complex network, one following the other. Adopting the first behavior has either a synergistic or an inhibiting effect on the spread of the second behavior. We find that the inhibiting effect of the first behavior can cause the continuous phase transition of the second behavior spreading to become discontinuous. This discontinuous phase transition of the second behavior can also become a continuous one when the effect of adopting the first behavior becomes synergistic. This synergy allows the second behavior to be more easily adopted and enlarges the co-existence region of both behaviors. We establish an edge-based compartmental method, and our theoretical predictions match well with the simulation results. Our findings provide helpful insights into better understanding the spread of interactive social behavior in human society.
Distributive routing and congestion control in wireless multihop ad hoc communication networks
NASA Astrophysics Data System (ADS)
Glauche, Ingmar; Krause, Wolfram; Sollacher, Rudolf; Greiner, Martin
2004-10-01
Due to their inherent complexity, engineered wireless multihop ad hoc communication networks represent a technological challenge. Having no mastering infrastructure the nodes have to selforganize themselves in such a way that for example network connectivity, good data traffic performance and robustness are guaranteed. In this contribution the focus is on routing and congestion control. First, random data traffic along shortest path routes is studied by simulations as well as theoretical modeling. Measures of congestion like end-to-end time delay and relaxation times are given. A scaling law of the average time delay with respect to network size is revealed and found to depend on the underlying network topology. In the second step, a distributive routing and congestion control is proposed. Each node locally propagates its routing cost estimates and information about its congestion state to its neighbors, which then update their respective cost estimates. This allows for a flexible adaptation of end-to-end routes to the overall congestion state of the network. Compared to shortest-path routing, the critical network load is significantly increased.
An Empirically Calibrated Model of Cell Fate Decision Following Viral Infection
NASA Astrophysics Data System (ADS)
Coleman, Seth; Igoshin, Oleg; Golding, Ido
The life cycle of the virus (phage) lambda is an established paradigm for the way genetic networks drive cell fate decisions. But despite decades of interrogation, we are still unable to theoretically predict whether the infection of a given cell will result in cell death or viral dormancy. The poor predictive power of current models reflects the absence of quantitative experimental data describing the regulatory interactions between different lambda genes. To address this gap, we are constructing a theoretical model that captures the known interactions in the lambda network. Model assumptions and parameters are calibrated using new single-cell data from our lab, describing the activity of lambda genes at single-molecule resolution. We began with a mean-field model, aimed at exploring the population averaged gene-expression trajectories under different initial conditions. Next, we will develop a stochastic formulation, to capture the differences between individual cells within the population. The eventual goal is to identify how the post-infection decision is driven by the interplay between network topology, initial conditions, and stochastic effects. The insights gained here will inform our understanding of cell fate choices in more complex cellular systems.
Protein complex prediction in large ontology attributed protein-protein interaction networks.
Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo
2013-01-01
Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.
Abnormal functional global and local brain connectivity in female patients with anorexia nervosa
Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan
2016-01-01
Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451
Abnormal functional global and local brain connectivity in female patients with anorexia nervosa.
Geisler, Daniel; Borchardt, Viola; Lord, Anton R; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan
2016-01-01
Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. The present results may be limited to the methods applied during preprocessing and network construction. We demonstrated anorexia nervosa-related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger.
McDonough, Ian M.; Nashiro, Kaoru
2014-01-01
An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing). While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less research has focused on the basic understanding of neural complexity in populations with young and healthy brain states. The present study used resting-state fMRI data from the Human Connectome Project (Van Essen et al., 2013) to test the extent that neural complexity in the BOLD signal, as measured by multiscale entropy (1) would differ from random noise, (2) would differ between four major resting-state networks previously associated with higher-order cognition, and (3) would be associated with the strength and extent of functional connectivity—a complementary method of estimating information processing. We found that complexity in the BOLD signal exhibited different patterns of complexity from white, pink, and red noise and that neural complexity was differentially expressed between resting-state networks, including the default mode, cingulo-opercular, left and right frontoparietal networks. Lastly, neural complexity across all networks was negatively associated with functional connectivity at fine scales, but was positively associated with functional connectivity at coarse scales. The present study is the first to characterize neural complexity in BOLD signals at a high temporal resolution and across different networks and might help clarify the inconsistencies between neural complexity and functional connectivity, thus informing the mechanisms underlying neural complexity. PMID:24959130
Hash Functions and Information Theoretic Security
NASA Astrophysics Data System (ADS)
Bagheri, Nasour; Knudsen, Lars R.; Naderi, Majid; Thomsen, Søren S.
Information theoretic security is an important security notion in cryptography as it provides a true lower bound for attack complexities. However, in practice attacks often have a higher cost than the information theoretic bound. In this paper we study the relationship between information theoretic attack costs and real costs. We show that in the information theoretic model, many well-known and commonly used hash functions such as MD5 and SHA-256 fail to be preimage resistant.
Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong
2015-01-01
Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.
Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong
2015-01-01
Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285
Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks.
Yang, Shuai; Yu, Juan; Hu, Cheng; Jiang, Haijun
2018-08-01
In this paper, without separating the complex-valued neural networks into two real-valued systems, the quasi-projective synchronization of fractional-order complex-valued neural networks is investigated. First, two new fractional-order inequalities are established by using the theory of complex functions, Laplace transform and Mittag-Leffler functions, which generalize traditional inequalities with the first-order derivative in the real domain. Additionally, different from hybrid control schemes given in the previous work concerning the projective synchronization, a simple and linear control strategy is designed in this paper and several criteria are derived to ensure quasi-projective synchronization of the complex-valued neural networks with fractional-order based on the established fractional-order inequalities and the theory of complex functions. Moreover, the error bounds of quasi-projective synchronization are estimated. Especially, some conditions are also presented for the Mittag-Leffler synchronization of the addressed neural networks. Finally, some numerical examples with simulations are provided to show the effectiveness of the derived theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Friedman, B A
2001-08-01
Major forces are now reshaping all businesses on a global basis, including the healthcare and clinical laboratory industries. One of the major forces at work is information technology (IT), which now provides the opportunity to create a new economic and business model for the clinical laboratory industry based on the creation of an integrated vertical meta-network, referred to here as the "total laboratory solution" (TLS). Participants at the most basic level of such a network would include a hospital-based laboratory, a reference laboratory, a laboratory information system/application service provider/laboratory portal vendor, an in vitro diagnostic manufacturer, and a pharmaceutical/biotechnology manufacturer. It is suggested that each of these participants would add value to the network primarily in its area of core competency. Subvariants of such a network have evolved over recent years, but a TLS comprising all or most of these participants does not exist at this time. Although the TLS, enabled by IT and closely akin to the various e-businesses that are now taking shape, offers many advantages from a theoretical perspective over the current laboratory business model, its success will depend largely on (a) market forces, (b) how the collaborative networks are organized and managed, and (c) whether the network can offer healthcare organizations higher quality testing services at lower cost. If the concept is successful, new demands will be placed on hospital-based laboratory professionals to shift the range of professional services that they offer toward clinical consulting, integration of laboratory information from multiple sources, and laboratory information management. These information management and integration tasks can only increase in complexity in the future as new genomic and proteomics testing modalities are developed and come on-line in clinical laboratories.
An ensemble framework for clustering protein-protein interaction networks.
Asur, Sitaram; Ucar, Duygu; Parthasarathy, Srinivasan
2007-07-01
Protein-Protein Interaction (PPI) networks are believed to be important sources of information related to biological processes and complex metabolic functions of the cell. The presence of biologically relevant functional modules in these networks has been theorized by many researchers. However, the application of traditional clustering algorithms for extracting these modules has not been successful, largely due to the presence of noisy false positive interactions as well as specific topological challenges in the network. In this article, we propose an ensemble clustering framework to address this problem. For base clustering, we introduce two topology-based distance metrics to counteract the effects of noise. We develop a PCA-based consensus clustering technique, designed to reduce the dimensionality of the consensus problem and yield informative clusters. We also develop a soft consensus clustering variant to assign multifaceted proteins to multiple functional groups. We conduct an empirical evaluation of different consensus techniques using topology-based, information theoretic and domain-specific validation metrics and show that our approaches can provide significant benefits over other state-of-the-art approaches. Our analysis of the consensus clusters obtained demonstrates that ensemble clustering can (a) produce improved biologically significant functional groupings; and (b) facilitate soft clustering by discovering multiple functional associations for proteins. Supplementary data are available at Bioinformatics online.
"Time-dependent flow-networks"
NASA Astrophysics Data System (ADS)
Tupikina, Liubov; Molkentin, Nora; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marwan, Norbert; Kurths, Jürgen
2015-04-01
Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply information or heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e. high computational complexity and fixed variety of the flows in the underlying system, we introduce a new, method of flow-networks for changing in time velocity fields including external forcing in the system, noise and temperature-decay. Method of the flow-network construction can be divided into several steps: first we obtain the linear recursive equation for the temperature time-series. Then we compute the correlation matrix for time-series averaging the tensor product over all realizations of the noise, which we interpret as a weighted adjacency matrix of the flow-network and analyze using network measures. We apply the method to different types of moving flows with geographical relevance such as meandering flow. Analyzing the flow-networks using network measures we find that our approach can highlight zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. Flow-networks can be powerful tool to understand the connection between system's dynamics and network's topology analyzed using network measures in order to shed light on different climatic phenomena.
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free
Bianconi, Ginestra; Rahmede, Christoph
2015-01-01
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces. PMID:26356079
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free.
Bianconi, Ginestra; Rahmede, Christoph
2015-09-10
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension d. We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the δ-faces of the d-dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the δ-faces.
A Method of Signal Scrambling to Secure Data Storage for Healthcare Applications.
Bao, Shu-Di; Chen, Meng; Yang, Guang-Zhong
2017-11-01
A body sensor network that consists of wearable and/or implantable biosensors has been an important front-end for collecting personal health records. It is expected that the full integration of outside-hospital personal health information and hospital electronic health records will further promote preventative health services as well as global health. However, the integration and sharing of health information is bound to bring with it security and privacy issues. With extensive development of healthcare applications, security and privacy issues are becoming increasingly important. This paper addresses the potential security risks of healthcare data in Internet-based applications and proposes a method of signal scrambling as an add-on security mechanism in the application layer for a variety of healthcare information, where a piece of tiny data is used to scramble healthcare records. The former is kept locally and the latter, along with security protection, is sent for cloud storage. The tiny data can be derived from a random number generator or even a piece of healthcare data, which makes the method more flexible. The computational complexity and security performance in terms of theoretical and experimental analysis has been investigated to demonstrate the efficiency and effectiveness of the proposed method. The proposed method is applicable to all kinds of data that require extra security protection within complex networks.
Zhou, Wen; Koptyug, Nikita; Ye, Shutao; Jia, Yifan; Lu, Xiaolong
2016-01-01
As computer science and complex network theory develop, non-cooperative games and their formation and application on complex networks have been important research topics. In the inter-firm innovation network, it is a typical game behavior for firms to invest in their alliance partners. Accounting for the possibility that firms can be resource constrained, this paper analyzes a coordination game using the Nash bargaining solution as allocation rules between firms in an inter-firm innovation network. We build an extended inter-firm n-player game based on nonidealized conditions, describe four investment strategies and simulate the strategies on an inter-firm innovation network in order to compare their performance. By analyzing the results of our experiments, we find that our proposed greedy strategy is the best-performing in most situations. We hope this study provides a theoretical insight into how firms make investment decisions. PMID:26745375
Zhou, Wen; Koptyug, Nikita; Ye, Shutao; Jia, Yifan; Lu, Xiaolong
2016-01-01
As computer science and complex network theory develop, non-cooperative games and their formation and application on complex networks have been important research topics. In the inter-firm innovation network, it is a typical game behavior for firms to invest in their alliance partners. Accounting for the possibility that firms can be resource constrained, this paper analyzes a coordination game using the Nash bargaining solution as allocation rules between firms in an inter-firm innovation network. We build an extended inter-firm n-player game based on nonidealized conditions, describe four investment strategies and simulate the strategies on an inter-firm innovation network in order to compare their performance. By analyzing the results of our experiments, we find that our proposed greedy strategy is the best-performing in most situations. We hope this study provides a theoretical insight into how firms make investment decisions.
Enabling Controlling Complex Networks with Local Topological Information.
Li, Guoqi; Deng, Lei; Xiao, Gaoxi; Tang, Pei; Wen, Changyun; Hu, Wuhua; Pei, Jing; Shi, Luping; Stanley, H Eugene
2018-03-15
Complex networks characterize the nature of internal/external interactions in real-world systems including social, economic, biological, ecological, and technological networks. Two issues keep as obstacles to fulfilling control of large-scale networks: structural controllability which describes the ability to guide a dynamical system from any initial state to any desired final state in finite time, with a suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost for driving the network to a predefined state with a given number of control inputs. For large complex networks without global information of network topology, both problems remain essentially open. Here we combine graph theory and control theory for tackling the two problems in one go, using only local network topology information. For the structural controllability problem, a distributed local-game matching method is proposed, where every node plays a simple Bayesian game with local information and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. Starring from any structural controllability solution, a minimizing longest control path method can efficiently reach a good solution for the optimal control in large networks. Our results provide solutions for distributed complex network control and demonstrate a way to link the structural controllability and optimal control together.
Steady-state distributions of probability fluxes on complex networks
NASA Astrophysics Data System (ADS)
Chełminiak, Przemysław; Kurzyński, Michał
2017-02-01
We consider a simple model of the Markovian stochastic dynamics on complex networks to examine the statistical properties of the probability fluxes. The additional transition, called hereafter a gate, powered by the external constant force breaks a detailed balance in the network. We argue, using a theoretical approach and numerical simulations, that the stationary distributions of the probability fluxes emergent under such conditions converge to the Gaussian distribution. By virtue of the stationary fluctuation theorem, its standard deviation depends directly on the square root of the mean flux. In turn, the nonlinear relation between the mean flux and the external force, which provides the key result of the present study, allows us to calculate the two parameters that entirely characterize the Gaussian distribution of the probability fluxes both close to as well as far from the equilibrium state. Also, the other effects that modify these parameters, such as the addition of shortcuts to the tree-like network, the extension and configuration of the gate and a change in the network size studied by means of computer simulations are widely discussed in terms of the rigorous theoretical predictions.
Hop limited epidemic-like information spreading in mobile social networks with selfish nodes
NASA Astrophysics Data System (ADS)
Wu, Yahui; Deng, Su; Huang, Hongbin
2013-07-01
Similar to epidemics, information can be transmitted directly among users in mobile social networks. Different from epidemics, we can control the spreading process by adjusting the corresponding parameters (e.g., hop count) directly. This paper proposes a theoretical model to evaluate the performance of an epidemic-like spreading algorithm, in which the maximal hop count of the information is limited. In addition, our model can be used to evaluate the impact of users’ selfish behavior. Simulations show the accuracy of our theoretical model. Numerical results show that the information hop count can have an important impact. In addition, the impact of selfish behavior is related to the information hop count.
NASA Astrophysics Data System (ADS)
Havlin, S.; Kenett, D. Y.; Ben-Jacob, E.; Bunde, A.; Cohen, R.; Hermann, H.; Kantelhardt, J. W.; Kertész, J.; Kirkpatrick, S.; Kurths, J.; Portugali, J.; Solomon, S.
2012-11-01
Network theory has become one of the most visible theoretical frameworks that can be applied to the description, analysis, understanding, design and repair of multi-level complex systems. Complex networks occur everywhere, in man-made and human social systems, in organic and inorganic matter, from nano to macro scales, and in natural and anthropogenic structures. New applications are developed at an ever-increasing rate and the promise for future growth is high, since increasingly we interact with one another within these vital and complex environments. Despite all the great successes of this field, crucial aspects of multi-level complex systems have been largely ignored. Important challenges of network science are to take into account many of these missing realistic features such as strong coupling between networks (networks are not isolated), the dynamics of networks (networks are not static), interrelationships between structure, dynamics and function of networks, interdependencies in given networks (and other classes of links, including different signs of interactions), and spatial properties (including geographical aspects) of networks. This aim of this paper is to introduce and discuss the challenges that future network science needs to address, and how different disciplines will be accordingly affected.
MOCASSIN-prot: a multi-objective clustering approach for protein similarity networks.
Keel, Brittney N; Deng, Bo; Moriyama, Etsuko N
2018-04-15
Proteins often include multiple conserved domains. Various evolutionary events including duplication and loss of domains, domain shuffling, as well as sequence divergence contribute to generating complexities in protein structures, and consequently, in their functions. The evolutionary history of proteins is hence best modeled through networks that incorporate information both from the sequence divergence and the domain content. Here, a game-theoretic approach proposed for protein network construction is adapted into the framework of multi-objective optimization, and extended to incorporate clustering refinement procedure. The new method, MOCASSIN-prot, was applied to cluster multi-domain proteins from ten genomes. The performance of MOCASSIN-prot was compared against two protein clustering methods, Markov clustering (TRIBE-MCL) and spectral clustering (SCPS). We showed that compared to these two methods, MOCASSIN-prot, which uses both domain composition and quantitative sequence similarity information, generates fewer false positives. It achieves more functionally coherent protein clusters and better differentiates protein families. MOCASSIN-prot, implemented in Perl and Matlab, is freely available at http://bioinfolab.unl.edu/emlab/MOCASSINprot. emoriyama2@unl.edu. Supplementary data are available at Bioinformatics online.
Reconfigurable optical implementation of quantum complex networks
NASA Astrophysics Data System (ADS)
Nokkala, J.; Arzani, F.; Galve, F.; Zambrini, R.; Maniscalco, S.; Piilo, J.; Treps, N.; Parigi, V.
2018-05-01
Network theory has played a dominant role in understanding the structure of complex systems and their dynamics. Recently, quantum complex networks, i.e. collections of quantum systems arranged in a non-regular topology, have been theoretically explored leading to significant progress in a multitude of diverse contexts including, e.g., quantum transport, open quantum systems, quantum communication, extreme violation of local realism, and quantum gravity theories. Despite important progress in several quantum platforms, the implementation of complex networks with arbitrary topology in quantum experiments is still a demanding task, especially if we require both a significant size of the network and the capability of generating arbitrary topology—from regular to any kind of non-trivial structure—in a single setup. Here we propose an all optical and reconfigurable implementation of quantum complex networks. The experimental proposal is based on optical frequency combs, parametric processes, pulse shaping and multimode measurements allowing the arbitrary control of the number of the nodes (optical modes) and topology of the links (interactions between the modes) within the network. Moreover, we also show how to simulate quantum dynamics within the network combined with the ability to address its individual nodes. To demonstrate the versatility of these features, we discuss the implementation of two recently proposed probing techniques for quantum complex networks and structured environments.
Guo, Wei-Feng; Zhang, Shao-Wu; Shi, Qian-Qian; Zhang, Cheng-Ming; Zeng, Tao; Chen, Luonan
2018-01-19
The advances in target control of complex networks not only can offer new insights into the general control dynamics of complex systems, but also be useful for the practical application in systems biology, such as discovering new therapeutic targets for disease intervention. In many cases, e.g. drug target identification in biological networks, we usually require a target control on a subset of nodes (i.e., disease-associated genes) with minimum cost, and we further expect that more driver nodes consistent with a certain well-selected network nodes (i.e., prior-known drug-target genes). Therefore, motivated by this fact, we pose and address a new and practical problem called as target control problem with objectives-guided optimization (TCO): how could we control the interested variables (or targets) of a system with the optional driver nodes by minimizing the total quantity of drivers and meantime maximizing the quantity of constrained nodes among those drivers. Here, we design an efficient algorithm (TCOA) to find the optional driver nodes for controlling targets in complex networks. We apply our TCOA to several real-world networks, and the results support that our TCOA can identify more precise driver nodes than the existing control-fucus approaches. Furthermore, we have applied TCOA to two bimolecular expert-curate networks. Source code for our TCOA is freely available from http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm or https://github.com/WilfongGuo/guoweifeng . In the previous theoretical research for the full control, there exists an observation and conclusion that the driver nodes tend to be low-degree nodes. However, for target control the biological networks, we find interestingly that the driver nodes tend to be high-degree nodes, which is more consistent with the biological experimental observations. Furthermore, our results supply the novel insights into how we can efficiently target control a complex system, and especially many evidences on the practical strategic utility of TCOA to incorporate prior drug information into potential drug-target forecasts. Thus applicably, our method paves a novel and efficient way to identify the drug targets for leading the phenotype transitions of underlying biological networks.
Individual nodeʼs contribution to the mesoscale of complex networks
NASA Astrophysics Data System (ADS)
Klimm, Florian; Borge-Holthoefer, Javier; Wessel, Niels; Kurths, Jürgen; Zamora-López, Gorka
2014-12-01
The analysis of complex networks is devoted to the statistical characterization of the topology of graphs at different scales of organization in order to understand their functionality. While the modular structure of networks has become an essential element to better apprehend their complexity, the efforts to characterize the mesoscale of networks have focused on the identification of the modules rather than describing the mesoscale in an informative manner. Here we propose a framework to characterize the position every node takes within the modular configuration of complex networks and to evaluate their function accordingly. For illustration, we apply this framework to a set of synthetic networks, empirical neural networks, and to the transcriptional regulatory network of the Mycobacterium tuberculosis. We find that the architecture of both neuronal and transcriptional networks are optimized for the processing of multisensory information with the coexistence of well-defined modules of specialized components and the presence of hubs conveying information from and to the distinct functional domains.
Johnson, Phil; Brookes, Michael; Wood, Geoffrey; Brewster, Chris
2017-01-01
By using the classic works of Durkheim as a theoretical platform, this research explores the relationship between legal systems and social solidarity. We found that certain types of civil law system, most notably those of Scandinavia, are associated with higher levels of social capital and better welfare state provision. However, we found the relationship between legal system and societal outcomes is considerably more complex than suggested by currently fashionable economistic legal origin approaches, and more in line with the later writings of Durkheim, and, indeed, the literature on comparative capitalisms. Relative communitarianism was strongly affected by relative development, reflecting the complex relationship between institutions, state capabilities and informal social ties and networks. PMID:28502999
Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K
2018-06-01
This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.
Hu, Jin; Wang, Jun
2015-06-01
In recent years, complex-valued recurrent neural networks have been developed and analysed in-depth in view of that they have good modelling performance for some applications involving complex-valued elements. In implementing continuous-time dynamical systems for simulation or computational purposes, it is quite necessary to utilize a discrete-time model which is an analogue of the continuous-time system. In this paper, we analyse a discrete-time complex-valued recurrent neural network model and obtain the sufficient conditions on its global exponential periodicity and exponential stability. Simulation results of several numerical examples are delineated to illustrate the theoretical results and an application on associative memory is also given. Copyright © 2015 Elsevier Ltd. All rights reserved.
Novel approaches to pin cluster synchronization on complex dynamical networks in Lur'e forms
NASA Astrophysics Data System (ADS)
Tang, Ze; Park, Ju H.; Feng, Jianwen
2018-04-01
This paper investigates the cluster synchronization of complex dynamical networks consisted of identical or nonidentical Lur'e systems. Due to the special topology structure of the complex networks and the existence of stochastic perturbations, a kind of randomly occurring pinning controller is designed which not only synchronizes all Lur'e systems in the same cluster but also decreases the negative influence among different clusters. Firstly, based on an extended integral inequality, the convex combination theorem and S-procedure, the conditions for cluster synchronization of identical Lur'e networks are derived in a convex domain. Secondly, randomly occurring adaptive pinning controllers with two independent Bernoulli stochastic variables are designed and then sufficient conditions are obtained for the cluster synchronization on complex networks consisted of nonidentical Lur'e systems. In addition, suitable control gains for successful cluster synchronization of nonidentical Lur'e networks are acquired by designing some adaptive updating laws. Finally, we present two numerical examples to demonstrate the validity of the control scheme and the theoretical analysis.
Complex Adaptive Schools: Educational Leadership and School Change
ERIC Educational Resources Information Center
Kershner, Brad; McQuillan, Patrick
2016-01-01
This paper utilizes the theoretical framework of complexity theory to compare and contrast leadership and educational change in two urban schools. Drawing on the notion of a complex adaptive system--an interdependent network of interacting elements that learns and evolves in adapting to an ever-shifting context--our case studies seek to reveal the…
A novel approach to characterize information radiation in complex networks
NASA Astrophysics Data System (ADS)
Wang, Xiaoyang; Wang, Ying; Zhu, Lin; Li, Chao
2016-06-01
The traditional research of information dissemination is mostly based on the virus spreading model that the information is being spread by probability, which does not match very well to the reality, because the information that we receive is always more or less than what was sent. In order to quantitatively describe variations in the amount of information during the spreading process, this article proposes a safety information radiation model on the basis of communication theory, combining with relevant theories of complex networks. This model comprehensively considers the various influence factors when safety information radiates in the network, and introduces some concepts from the communication theory perspective, such as the radiation gain function, receiving gain function, information retaining capacity and information second reception capacity, to describe the safety information radiation process between nodes and dynamically investigate the states of network nodes. On a micro level, this article analyzes the influence of various initial conditions and parameters on safety information radiation through the new model simulation. The simulation reveals that this novel approach can reflect the variation of safety information quantity of each node in the complex network, and the scale-free network has better ;radiation explosive power;, while the small-world network has better ;radiation staying power;. The results also show that it is efficient to improve the overall performance of network security by selecting nodes with high degrees as the information source, refining and simplifying the information, increasing the information second reception capacity and decreasing the noises. In a word, this article lays the foundation for further research on the interactions of information and energy between internal components within complex systems.
Prediction of missing links and reconstruction of complex networks
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Jun; Zeng, An
2016-04-01
Predicting missing links in complex networks is of great significance from both theoretical and practical point of view, which not only helps us understand the evolution of real systems but also relates to many applications in social, biological and online systems. In this paper, we study the features of different simple link prediction methods, revealing that they may lead to the distortion of networks’ structural and dynamical properties. Moreover, we find that high prediction accuracy is not definitely corresponding to a high performance in preserving the network properties when using link prediction methods to reconstruct networks. Our work highlights the importance of considering the feedback effect of the link prediction methods on network properties when designing the algorithms.
Identifying the starting point of a spreading process in complex networks.
Comin, Cesar Henrique; Costa, Luciano da Fontoura
2011-11-01
When dealing with the dissemination of epidemics, one important question that can be asked is the location where the contamination began. In this paper, we analyze three spreading schemes and propose and validate an effective methodology for the identification of the source nodes. The method is based on the calculation of the centrality of the nodes on the sampled network, expressed here by degree, betweenness, closeness, and eigenvector centrality. We show that the source node tends to have the highest measurement values. The potential of the methodology is illustrated with respect to three theoretical complex network models as well as a real-world network, the email network of the University Rovira i Virgili.
Network model of bilateral power markets based on complex networks
NASA Astrophysics Data System (ADS)
Wu, Yang; Liu, Junyong; Li, Furong; Yan, Zhanxin; Zhang, Li
2014-06-01
The bilateral power transaction (BPT) mode becomes a typical market organization with the restructuring of electric power industry, the proper model which could capture its characteristics is in urgent need. However, the model is lacking because of this market organization's complexity. As a promising approach to modeling complex systems, complex networks could provide a sound theoretical framework for developing proper simulation model. In this paper, a complex network model of the BPT market is proposed. In this model, price advantage mechanism is a precondition. Unlike other general commodity transactions, both of the financial layer and the physical layer are considered in the model. Through simulation analysis, the feasibility and validity of the model are verified. At same time, some typical statistical features of BPT network are identified. Namely, the degree distribution follows the power law, the clustering coefficient is low and the average path length is a bit long. Moreover, the topological stability of the BPT network is tested. The results show that the network displays a topological robustness to random market member's failures while it is fragile against deliberate attacks, and the network could resist cascading failure to some extent. These features are helpful for making decisions and risk management in BPT markets.
Human Behavior Modeling in Network Science
2010-03-01
in Network Science bringing three distinct research areas together, communication networks, information networks, and social /cognitive networks. The...researchers. A critical part of the social /cognitive network effort is the modeling of human behavior. The modeling efforts range from organizational...behavior to social cognitive trust to explore and refine the theoretical and applied network relationships between and among the human
Li, Xiaofan; Fang, Jian-An; Li, Huiyuan
2017-09-01
This paper investigates master-slave exponential synchronization for a class of complex-valued memristor-based neural networks with time-varying delays via discontinuous impulsive control. Firstly, the master and slave complex-valued memristor-based neural networks with time-varying delays are translated to two real-valued memristor-based neural networks. Secondly, an impulsive control law is constructed and utilized to guarantee master-slave exponential synchronization of the neural networks. Thirdly, the master-slave synchronization problems are transformed into the stability problems of the master-slave error system. By employing linear matrix inequality (LMI) technique and constructing an appropriate Lyapunov-Krasovskii functional, some sufficient synchronization criteria are derived. Finally, a numerical simulation is provided to illustrate the effectiveness of the obtained theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Game theory and extremal optimization for community detection in complex dynamic networks.
Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca
2014-01-01
The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.
MIDER: network inference with mutual information distance and entropy reduction.
Villaverde, Alejandro F; Ross, John; Morán, Federico; Banga, Julio R
2014-01-01
The prediction of links among variables from a given dataset is a task referred to as network inference or reverse engineering. It is an open problem in bioinformatics and systems biology, as well as in other areas of science. Information theory, which uses concepts such as mutual information, provides a rigorous framework for addressing it. While a number of information-theoretic methods are already available, most of them focus on a particular type of problem, introducing assumptions that limit their generality. Furthermore, many of these methods lack a publicly available implementation. Here we present MIDER, a method for inferring network structures with information theoretic concepts. It consists of two steps: first, it provides a representation of the network in which the distance among nodes indicates their statistical closeness. Second, it refines the prediction of the existing links to distinguish between direct and indirect interactions and to assign directionality. The method accepts as input time-series data related to some quantitative features of the network nodes (such as e.g. concentrations, if the nodes are chemical species). It takes into account time delays between variables, and allows choosing among several definitions and normalizations of mutual information. It is general purpose: it may be applied to any type of network, cellular or otherwise. A Matlab implementation including source code and data is freely available (http://www.iim.csic.es/~gingproc/mider.html). The performance of MIDER has been evaluated on seven different benchmark problems that cover the main types of cellular networks, including metabolic, gene regulatory, and signaling. Comparisons with state of the art information-theoretic methods have demonstrated the competitive performance of MIDER, as well as its versatility. Its use does not demand any a priori knowledge from the user; the default settings and the adaptive nature of the method provide good results for a wide range of problems without requiring tuning.
GENERAL: Epidemic spreading on networks with vaccination
NASA Astrophysics Data System (ADS)
Shi, Hong-Jing; Duan, Zhi-Sheng; Chen, Guan-Rong; Li, Rong
2009-08-01
In this paper, a new susceptible-infected-susceptible (SIS) model on complex networks with imperfect vaccination is proposed. Two types of epidemic spreading patterns (the recovered individuals have or have not immunity) on scale-free networks are discussed. Both theoretical and numerical analyses are presented. The epidemic thresholds related to the vaccination rate, the vaccination-invalid rate and the vaccination success rate on scale-free networks are demonstrated, showing different results from the reported observations. This reveals that whether or not the epidemic can spread over a network under vaccination control is determined not only by the network structure but also by the medicine's effective duration. Moreover, for a given infective rate, the proportion of individuals to vaccinate can be calculated theoretically for the case that the recovered nodes have immunity. Finally, simulated results are presented to show how to control the disease prevalence.
Overview of Aro Program on Network Science for Human Decision Making
NASA Astrophysics Data System (ADS)
West, Bruce J.
This program brings together researchers from disparate disciplines to work on a complex research problem that defies confinement within any single discipline. Consequently, not only are new and rewarding solutions sought and obtained for a problem of importance to society and the Army, that is, the human dimension of complex networks, but, in addition, collaborations are established that would not otherwise have formed given the traditional disciplinary compartmentalization of research. This program develops the basic research foundation of a science of networks supporting the linkage between the physical and human (cognitive and social) domains as they relate to human decision making. The strategy is to extend the recent methods of non-equilibrium statistical physics to non-stationary, renewal stochastic processes that appear to be characteristic of the interactions among nodes in complex networks. We also pursue understanding of the phenomenon of synchronization, whose mathematical formulation has recently provided insight into how complex networks reach accommodation and cooperation. The theoretical analyses of complex networks, although mathematically rigorous, often elude analytic solutions and require computer simulation and computation to analyze the underlying dynamic process.
Reverse Engineering Cellular Networks with Information Theoretic Methods
Villaverde, Alejandro F.; Ross, John; Banga, Julio R.
2013-01-01
Building mathematical models of cellular networks lies at the core of systems biology. It involves, among other tasks, the reconstruction of the structure of interactions between molecular components, which is known as network inference or reverse engineering. Information theory can help in the goal of extracting as much information as possible from the available data. A large number of methods founded on these concepts have been proposed in the literature, not only in biology journals, but in a wide range of areas. Their critical comparison is difficult due to the different focuses and the adoption of different terminologies. Here we attempt to review some of the existing information theoretic methodologies for network inference, and clarify their differences. While some of these methods have achieved notable success, many challenges remain, among which we can mention dealing with incomplete measurements, noisy data, counterintuitive behaviour emerging from nonlinear relations or feedback loops, and computational burden of dealing with large data sets. PMID:24709703
Machine learning action parameters in lattice quantum chromodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanahan, Phiala; Trewartha, Daneil; Detmold, William
Numerical lattice quantum chromodynamics studies of the strong interaction underpin theoretical understanding of many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. Finally, the high information contentmore » and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development.« less
Machine learning action parameters in lattice quantum chromodynamics
Shanahan, Phiala; Trewartha, Daneil; Detmold, William
2018-05-16
Numerical lattice quantum chromodynamics studies of the strong interaction underpin theoretical understanding of many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. Finally, the high information contentmore » and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development.« less
Reconstructing networks from dynamics with correlated noise
NASA Astrophysics Data System (ADS)
Tam, H. C.; Ching, Emily S. C.; Lai, Pik-Yin
2018-07-01
Reconstructing the structure of complex networks from measurements of the nodes is a challenge in many branches of science. External influences are always present and act as a noise to the networks of interest. In this paper, we present a method for reconstructing networks from measured dynamics of the nodes subjected to correlated noise that cannot be approximated by a white noise. This method can reconstruct the links of both bidirectional and directed networks, the correlation time and strength of the noise, and also the relative coupling strength of the links when the coupling functions have certain properties. Our method is built upon theoretical relations between network structure and measurable quantities from the dynamics that we have derived for systems that have fixed point dynamics in the noise-free limit. Using these theoretical results, we can further explain the shortcomings of two common practices of inferring links for bidirectional networks using the Pearson correlation coefficient and the partial correlation coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx; Campos-Cantón, I.
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enablemore » future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.« less
NASA Astrophysics Data System (ADS)
Cong, Jin; Liu, Haitao
2014-12-01
Amid the enthusiasm for real-world networks of the new millennium, the enquiry into linguistic networks is flourishing not only as a productive branch of the new networks science but also as a promising approach to linguistic research. Although the complex network approach constitutes a potential opportunity to make linguistics a science, the world of linguistics seems unprepared to embrace it. For one thing, linguistics has been largely unaffected by quantitative methods. Those who are accustomed to qualitative linguistic methods may find it hard to appreciate the application of quantitative properties of language such as frequency and length, not to mention quantitative properties of language modeled as networks. With this in mind, in our review [1] we restrict ourselves to the basics of complex networks and the new insights into human language with the application of complex networks. For another, while breaking new grounds and posing new challenges for linguistics, the complex network approach to human language as a new tradition of linguistic research is faced with challenges and unsolved issues of its own. It is no surprise that the comments on our review, especially their skepticism and suggestions, focus on various different aspects of the complex network approach to human language. We are grateful to all the insightful and penetrating comments, which, together with our review, mark a significant impetus to linguistic research from the complex network approach. In this reply, we would like to address four major issues of the complex network approach to human language, namely, a) its theoretical rationale, b) its application in linguistic research, c) interpretation of the results, and d) directions of future research.
Flow networks for Ocean currents
NASA Astrophysics Data System (ADS)
Tupikina, Liubov; Molkenthin, Nora; Marwan, Norbert; Kurths, Jürgen
2014-05-01
Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e., by its high computational complexity, we here introduce a new, discrete construction of flow-networks, which is then applied to static and dynamic velocity fields. Analyzing the flow-networks of prototypical flows we find that our approach can highlight the zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. We also apply the method to time series data of the Equatorial Pacific Ocean Current and the Gulf Stream ocean current for the changing velocity fields, which could not been done before, and analyse the properties of the dynamical system. Flow-networks can be powerful tools to theoretically understand the step from system's dynamics to network's topology that can be analyzed using network measures and is used for shading light on different climatic phenomena.
Synchronization stability of memristor-based complex-valued neural networks with time delays.
Liu, Dan; Zhu, Song; Ye, Er
2017-12-01
This paper focuses on the dynamical property of a class of memristor-based complex-valued neural networks (MCVNNs) with time delays. By constructing the appropriate Lyapunov functional and utilizing the inequality technique, sufficient conditions are proposed to guarantee exponential synchronization of the coupled systems based on drive-response concept. The proposed results are very easy to verify, and they also extend some previous related works on memristor-based real-valued neural networks. Meanwhile, the obtained sufficient conditions of this paper may be conducive to qualitative analysis of some complex-valued nonlinear delayed systems. A numerical example is given to demonstrate the effectiveness of our theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic information routing in complex networks
Kirst, Christoph; Timme, Marc; Battaglia, Demian
2016-01-01
Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function. PMID:27067257
Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity
Bassett, Danielle S.; Khambhati, Ankit N.; Grafton, Scott T.
2018-01-01
Neuroengineering is faced with unique challenges in repairing or replacing complex neural systems that are composed of many interacting parts. These interactions form intricate patterns over large spatiotemporal scales and produce emergent behaviors that are difficult to predict from individual elements. Network science provides a particularly appropriate framework in which to study and intervene in such systems by treating neural elements (cells, volumes) as nodes in a graph and neural interactions (synapses, white matter tracts) as edges in that graph. Here, we review the emerging discipline of network neuroscience, which uses and develops tools from graph theory to better understand and manipulate neural systems from micro- to macroscales. We present examples of how human brain imaging data are being modeled with network analysis and underscore potential pitfalls. We then highlight current computational and theoretical frontiers and emphasize their utility in informing diagnosis and monitoring, brain–machine interfaces, and brain stimulation. A flexible and rapidly evolving enterprise, network neuroscience provides a set of powerful approaches and fundamental insights that are critical for the neuroengineer’s tool kit. PMID:28375650
Small-world human brain networks: Perspectives and challenges.
Liao, Xuhong; Vasilakos, Athanasios V; He, Yong
2017-06-01
Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.
EDDA: An Efficient Distributed Data Replication Algorithm in VANETs.
Zhu, Junyu; Huang, Chuanhe; Fan, Xiying; Guo, Sipei; Fu, Bin
2018-02-10
Efficient data dissemination in vehicular ad hoc networks (VANETs) is a challenging issue due to the dynamic nature of the network. To improve the performance of data dissemination, we study distributed data replication algorithms in VANETs for exchanging information and computing in an arbitrarily-connected network of vehicle nodes. To achieve low dissemination delay and improve the network performance, we control the number of message copies that can be disseminated in the network and then propose an efficient distributed data replication algorithm (EDDA). The key idea is to let the data carrier distribute the data dissemination tasks to multiple nodes to speed up the dissemination process. We calculate the number of communication stages for the network to enter into a balanced status and show that the proposed distributed algorithm can converge to a consensus in a small number of communication stages. Most of the theoretical results described in this paper are to study the complexity of network convergence. The lower bound and upper bound are also provided in the analysis of the algorithm. Simulation results show that the proposed EDDA can efficiently disseminate messages to vehicles in a specific area with low dissemination delay and system overhead.
EDDA: An Efficient Distributed Data Replication Algorithm in VANETs
Zhu, Junyu; Huang, Chuanhe; Fan, Xiying; Guo, Sipei; Fu, Bin
2018-01-01
Efficient data dissemination in vehicular ad hoc networks (VANETs) is a challenging issue due to the dynamic nature of the network. To improve the performance of data dissemination, we study distributed data replication algorithms in VANETs for exchanging information and computing in an arbitrarily-connected network of vehicle nodes. To achieve low dissemination delay and improve the network performance, we control the number of message copies that can be disseminated in the network and then propose an efficient distributed data replication algorithm (EDDA). The key idea is to let the data carrier distribute the data dissemination tasks to multiple nodes to speed up the dissemination process. We calculate the number of communication stages for the network to enter into a balanced status and show that the proposed distributed algorithm can converge to a consensus in a small number of communication stages. Most of the theoretical results described in this paper are to study the complexity of network convergence. The lower bound and upper bound are also provided in the analysis of the algorithm. Simulation results show that the proposed EDDA can efficiently disseminate messages to vehicles in a specific area with low dissemination delay and system overhead. PMID:29439443
NASA Astrophysics Data System (ADS)
Kim, J.
2016-12-01
Considering high levels of uncertainty, epistemological conflicts over facts and values, and a sense of urgency, normal paradigm-driven science will be insufficient to mobilize people and nation toward sustainability. The conceptual framework to bridge the societal system dynamics with that of natural ecosystems in which humanity operates remains deficient. The key to understanding their coevolution is to understand `self-organization.' Information-theoretic approach may shed a light to provide a potential framework which enables not only to bridge human and nature but also to generate useful knowledge for understanding and sustaining the integrity of ecological-societal systems. How can information theory help understand the interface between ecological systems and social systems? How to delineate self-organizing processes and ensure them to fulfil sustainability? How to evaluate the flow of information from data through models to decision-makers? These are the core questions posed by sustainability science in which visioneering (i.e., the engineering of vision) is an essential framework. Yet, visioneering has neither quantitative measure nor information theoretic framework to work with and teach. This presentation is an attempt to accommodate the framework of self-organizing hierarchical open systems with visioneering into a common information-theoretic framework. A case study is presented with the UN/FAO's communal vision of climate-smart agriculture (CSA) which pursues a trilemma of efficiency, mitigation, and resilience. Challenges of delineating and facilitating self-organizing systems are discussed using transdisciplinary toold such as complex systems thinking, dynamic process network analysis and multi-agent systems modeling. Acknowledgments: This study was supported by the Korea Meteorological Administration Research and Development Program under Grant KMA-2012-0001-A (WISE project).
A key heterogeneous structure of fractal networks based on inverse renormalization scheme
NASA Astrophysics Data System (ADS)
Bai, Yanan; Huang, Ning; Sun, Lina
2018-06-01
Self-similarity property of complex networks was found by the application of renormalization group theory. Based on this theory, network topologies can be classified into universality classes in the space of configurations. In return, through inverse renormalization scheme, a given primitive structure can grow into a pure fractal network, then adding different types of shortcuts, it exhibits different characteristics of complex networks. However, the effect of primitive structure on networks structural property has received less attention. In this paper, we introduce a degree variance index to measure the dispersion of nodes degree in the primitive structure, and investigate the effect of the primitive structure on network structural property quantified by network efficiency. Numerical simulations and theoretical analysis show a primitive structure is a key heterogeneous structure of generated networks based on inverse renormalization scheme, whether or not adding shortcuts, and the network efficiency is positively correlated with degree variance of the primitive structure.
Weak signal transmission in complex networks and its application in detecting connectivity.
Liang, Xiaoming; Liu, Zonghua; Li, Baowen
2009-10-01
We present a network model of coupled oscillators to study how a weak signal is transmitted in complex networks. Through both theoretical analysis and numerical simulations, we find that the response of other nodes to the weak signal decays exponentially with their topological distance to the signal source and the coupling strength between two neighboring nodes can be figured out by the responses. This finding can be conveniently used to detect the topology of unknown network, such as the degree distribution, clustering coefficient and community structure, etc., by repeatedly choosing different nodes as the signal source. Through four typical networks, i.e., the regular one dimensional, small world, random, and scale-free networks, we show that the features of network can be approximately given by investigating many fewer nodes than the network size, thus our approach to detect the topology of unknown network may be efficient in practical situations with large network size.
Disease-aging network reveals significant roles of aging genes in connecting genetic diseases.
Wang, Jiguang; Zhang, Shihua; Wang, Yong; Chen, Luonan; Zhang, Xiang-Sun
2009-09-01
One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.
ERIC Educational Resources Information Center
Forsman, Jonas; Moll, Rachel; Linder, Cedric
2014-01-01
The viability of using complexity science in physics education research (PER) is exemplified by (1) situating central tenets of student persistence research in complexity science and (2) drawing on the methods that become available from this to illustrate analyzing the structural aspects of students' networked interactions as an important dynamic…
Beyond Classical Information Theory: Advancing the Fundamentals for Improved Geophysical Prediction
NASA Astrophysics Data System (ADS)
Perdigão, R. A. P.; Pires, C. L.; Hall, J.; Bloeschl, G.
2016-12-01
Information Theory, in its original and quantum forms, has gradually made its way into various fields of science and engineering. From the very basic concepts of Information Entropy and Mutual Information to Transit Information, Interaction Information and respective partitioning into statistical synergy, redundancy and exclusivity, the overall theoretical foundations have matured as early as the mid XX century. In the Earth Sciences various interesting applications have been devised over the last few decades, such as the design of complex process networks of descriptive and/or inferential nature, wherein earth system processes are "nodes" and statistical relationships between them designed as information-theoretical "interactions". However, most applications still take the very early concepts along with their many caveats, especially in heavily non-Normal, non-linear and structurally changing scenarios. In order to overcome the traditional limitations of information theory and tackle elusive Earth System phenomena, we introduce a new suite of information dynamic methodologies towards a more physically consistent and information comprehensive framework. The methodological developments are then illustrated on a set of practical examples from geophysical fluid dynamics, where high-order nonlinear relationships elusive to the current non-linear information measures are aptly captured. In doing so, these advances increase the predictability of critical events such as the emergence of hyper-chaotic regimes in ocean-atmospheric dynamics and the occurrence of hydro-meteorological extremes.
Large-scale Cortical Network Properties Predict Future Sound-to-Word Learning Success
Sheppard, John Patrick; Wang, Ji-Ping; Wong, Patrick C. M.
2013-01-01
The human brain possesses a remarkable capacity to interpret and recall novel sounds as spoken language. These linguistic abilities arise from complex processing spanning a widely distributed cortical network and are characterized by marked individual variation. Recently, graph theoretical analysis has facilitated the exploration of how such aspects of large-scale brain functional organization may underlie cognitive performance. Brain functional networks are known to possess small-world topologies characterized by efficient global and local information transfer, but whether these properties relate to language learning abilities remains unknown. Here we applied graph theory to construct large-scale cortical functional networks from cerebral hemodynamic (fMRI) responses acquired during an auditory pitch discrimination task and found that such network properties were associated with participants’ future success in learning words of an artificial spoken language. Successful learners possessed networks with reduced local efficiency but increased global efficiency relative to less successful learners and had a more cost-efficient network organization. Regionally, successful and less successful learners exhibited differences in these network properties spanning bilateral prefrontal, parietal, and right temporal cortex, overlapping a core network of auditory language areas. These results suggest that efficient cortical network organization is associated with sound-to-word learning abilities among healthy, younger adults. PMID:22360625
Permitted and forbidden sets in symmetric threshold-linear networks.
Hahnloser, Richard H R; Seung, H Sebastian; Slotine, Jean-Jacques
2003-03-01
The richness and complexity of recurrent cortical circuits is an inexhaustible source of inspiration for thinking about high-level biological computation. In past theoretical studies, constraints on the synaptic connection patterns of threshold-linear networks were found that guaranteed bounded network dynamics, convergence to attractive fixed points, and multistability, all fundamental aspects of cortical information processing. However, these conditions were only sufficient, and it remained unclear which were the minimal (necessary) conditions for convergence and multistability. We show that symmetric threshold-linear networks converge to a set of attractive fixed points if and only if the network matrix is copositive. Furthermore, the set of attractive fixed points is nonconnected (the network is multiattractive) if and only if the network matrix is not positive semidefinite. There are permitted sets of neurons that can be coactive at a stable steady state and forbidden sets that cannot. Permitted sets are clustered in the sense that subsets of permitted sets are permitted and supersets of forbidden sets are forbidden. By viewing permitted sets as memories stored in the synaptic connections, we provide a formulation of long-term memory that is more general than the traditional perspective of fixed-point attractor networks. There is a close correspondence between threshold-linear networks and networks defined by the generalized Lotka-Volterra equations.
Temporal Comparisons of Internet Topology
2014-06-01
Number CAIDA Cooperative Association of Internet Data Analysis CDN Content Delivery Network CI Confidence Interval DoS denial of service GMT Greenwich...the CAIDA data. Our methods include analysis of graph theoretical measures as well as complex network and statistical measures that will quantify the...tool that probes the Internet for topology analysis and performance [26]. Scamper uses network diagnostic tools, such as traceroute and ping, to probe
MIDER: Network Inference with Mutual Information Distance and Entropy Reduction
Villaverde, Alejandro F.; Ross, John; Morán, Federico; Banga, Julio R.
2014-01-01
The prediction of links among variables from a given dataset is a task referred to as network inference or reverse engineering. It is an open problem in bioinformatics and systems biology, as well as in other areas of science. Information theory, which uses concepts such as mutual information, provides a rigorous framework for addressing it. While a number of information-theoretic methods are already available, most of them focus on a particular type of problem, introducing assumptions that limit their generality. Furthermore, many of these methods lack a publicly available implementation. Here we present MIDER, a method for inferring network structures with information theoretic concepts. It consists of two steps: first, it provides a representation of the network in which the distance among nodes indicates their statistical closeness. Second, it refines the prediction of the existing links to distinguish between direct and indirect interactions and to assign directionality. The method accepts as input time-series data related to some quantitative features of the network nodes (such as e.g. concentrations, if the nodes are chemical species). It takes into account time delays between variables, and allows choosing among several definitions and normalizations of mutual information. It is general purpose: it may be applied to any type of network, cellular or otherwise. A Matlab implementation including source code and data is freely available (http://www.iim.csic.es/~gingproc/mider.html). The performance of MIDER has been evaluated on seven different benchmark problems that cover the main types of cellular networks, including metabolic, gene regulatory, and signaling. Comparisons with state of the art information–theoretic methods have demonstrated the competitive performance of MIDER, as well as its versatility. Its use does not demand any a priori knowledge from the user; the default settings and the adaptive nature of the method provide good results for a wide range of problems without requiring tuning. PMID:24806471
NASA Astrophysics Data System (ADS)
Kamaruddin, Saadi Bin Ahmad; Marponga Tolos, Siti; Hee, Pah Chin; Ghani, Nor Azura Md; Ramli, Norazan Mohamed; Nasir, Noorhamizah Binti Mohamed; Ksm Kader, Babul Salam Bin; Saiful Huq, Mohammad
2017-03-01
Neural framework has for quite a while been known for its ability to handle a complex nonlinear system without a logical model and can learn refined nonlinear associations gives. Theoretically, the most surely understood computation to set up the framework is the backpropagation (BP) count which relies on upon the minimization of the mean square error (MSE). However, this algorithm is not totally efficient in the presence of outliers which usually exist in dynamic data. This paper exhibits the modelling of quadriceps muscle model by utilizing counterfeit smart procedures named consolidated backpropagation neural network nonlinear autoregressive (BPNN-NAR) and backpropagation neural network nonlinear autoregressive moving average (BPNN-NARMA) models in view of utilitarian electrical incitement (FES). We adapted particle swarm optimization (PSO) approach to enhance the performance of backpropagation algorithm. In this research, a progression of tests utilizing FES was led. The information that is gotten is utilized to build up the quadriceps muscle model. 934 preparing information, 200 testing and 200 approval information set are utilized as a part of the improvement of muscle model. It was found that both BPNN-NAR and BPNN-NARMA performed well in modelling this type of data. As a conclusion, the neural network time series models performed reasonably efficient for non-linear modelling such as active properties of the quadriceps muscle with one input, namely output namely muscle force.
Influence Function Learning in Information Diffusion Networks.
Du, Nan; Liang, Yingyu; Balcan, Maria-Florina; Song, Le
2014-06-01
Can we learn the influence of a set of people in a social network from cascades of information diffusion? This question is often addressed by a two-stage approach: first learn a diffusion model, and then calculate the influence based on the learned model. Thus, the success of this approach relies heavily on the correctness of the diffusion model which is hard to verify for real world data. In this paper, we exploit the insight that the influence functions in many diffusion models are coverage functions, and propose a novel parameterization of such functions using a convex combination of random basis functions. Moreover, we propose an efficient maximum likelihood based algorithm to learn such functions directly from cascade data, and hence bypass the need to specify a particular diffusion model in advance. We provide both theoretical and empirical analysis for our approach, showing that the proposed approach can provably learn the influence function with low sample complexity, be robust to the unknown diffusion models, and significantly outperform existing approaches in both synthetic and real world data.
Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs
NASA Astrophysics Data System (ADS)
Ying, Li-Min; Zhou, Jie; Tang, Ming; Guan, Shu-Guang; Zou, Yong
2018-02-01
The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.
Bianchini, Monica; Scarselli, Franco
2014-08-01
Recently, researchers in the artificial neural network field have focused their attention on connectionist models composed by several hidden layers. In fact, experimental results and heuristic considerations suggest that deep architectures are more suitable than shallow ones for modern applications, facing very complex problems, e.g., vision and human language understanding. However, the actual theoretical results supporting such a claim are still few and incomplete. In this paper, we propose a new approach to study how the depth of feedforward neural networks impacts on their ability in implementing high complexity functions. First, a new measure based on topological concepts is introduced, aimed at evaluating the complexity of the function implemented by a neural network, used for classification purposes. Then, deep and shallow neural architectures with common sigmoidal activation functions are compared, by deriving upper and lower bounds on their complexity, and studying how the complexity depends on the number of hidden units and the used activation function. The obtained results seem to support the idea that deep networks actually implements functions of higher complexity, so that they are able, with the same number of resources, to address more difficult problems.
Immunization of Epidemics in Multiplex Networks
Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo
2014-01-01
Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks. PMID:25401755
Immunization of epidemics in multiplex networks.
Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo
2014-01-01
Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks.
Epidemic transmission on random mobile network with diverse infection periods
NASA Astrophysics Data System (ADS)
Li, Kezan; Yu, Hong; Zeng, Zhaorong; Ding, Yong; Ma, Zhongjun
2015-05-01
The heterogeneity of individual susceptibility and infectivity and time-varying topological structure are two realistic factors when we study epidemics on complex networks. Current research results have shown that the heterogeneity of individual susceptibility and infectivity can increase the epidemic threshold in a random mobile dynamical network with the same infection period. In this paper, we will focus on random mobile dynamical networks with diverse infection periods due to people's different constitutions and external circumstances. Theoretical results indicate that the epidemic threshold of the random mobile network with diverse infection periods is larger than the counterpart with the same infection period. Moreover, the heterogeneity of individual susceptibility and infectivity can play a significant impact on disease transmission. In particular, the homogeneity of individuals will avail to the spreading of epidemics. Numerical examples verify further our theoretical results very well.
Information-Theoretical Complexity Analysis of Selected Elementary Chemical Reactions
NASA Astrophysics Data System (ADS)
Molina-Espíritu, M.; Esquivel, R. O.; Dehesa, J. S.
We investigate the complexity of selected elementary chemical reactions (namely, the hydrogenic-abstraction reaction and the identity SN2 exchange reaction) by means of the following single and composite information-theoretic measures: disequilibrium (D), exponential entropy(L), Fisher information (I), power entropy (J), I-D, D-L and I-J planes and Fisher-Shannon (FS) and Lopez-Mancini-Calbet (LMC) shape complexities. These quantities, which are functionals of the one-particle density, are computed in both position (r) and momentum (p) spaces. The analysis revealed that the chemically significant regions of these reactions can be identified through most of the single information-theoretic measures and the two-component planes, not only the ones which are commonly revealed by the energy, such as the reactant/product (R/P) and the transition state (TS), but also those that are not present in the energy profile such as the bond cleavage energy region (BCER), the bond breaking/forming regions (B-B/F) and the charge transfer process (CT). The analysis of the complexities shows that the energy profile of the abstraction reaction bears the same information-theoretical features of the LMC and FS measures, however for the identity SN2 exchange reaction does not hold a simple behavior with respect to the LMC and FS measures. Most of the chemical features of interest (BCER, B-B/F and CT) are only revealed when particular information-theoretic aspects of localizability (L or J), uniformity (D) and disorder (I) are considered.
Toppi, Jlenia; Astolfi, Laura; Risetti, Monica; Anzolin, Alessandra; Kober, Silvia E.; Wood, Guilherme; Mattia, Donatella
2018-01-01
Several non-invasive imaging methods have contributed to shed light on the brain mechanisms underlying working memory (WM). The aim of the present study was to depict the topology of the relevant EEG-derived brain networks associated to distinct operations of WM function elicited by the Sternberg Item Recognition Task (SIRT) such as encoding, storage, and retrieval in healthy, middle age (46 ± 5 years) adults. High density EEG recordings were performed in 17 participants whilst attending a visual SIRT. Neural correlates of WM were assessed by means of a combination of EEG signal processing methods (i.e., time-varying connectivity estimation and graph theory), in order to extract synthetic descriptors of the complex networks underlying the encoding, storage, and retrieval phases of WM construct. The group analysis revealed that the encoding phase exhibited a significantly higher small-world topology of EEG networks with respect to storage and retrieval in all EEG frequency oscillations, thus indicating that during the encoding of items the global network organization could “optimally” promote the information flow between WM sub-networks. We also found that the magnitude of such configuration could predict subject behavioral performance when memory load increases as indicated by the negative correlation between Reaction Time and the local efficiency values estimated during the encoding in the alpha band in both 4 and 6 digits conditions. At the local scale, the values of the degree index which measures the degree of in- and out- information flow between scalp areas were found to specifically distinguish the hubs within the relevant sub-networks associated to each of the three different WM phases, according to the different role of the sub-network of regions in the different WM phases. Our findings indicate that the use of EEG-derived connectivity measures and their related topological indices might offer a reliable and yet affordable approach to monitor WM components and thus theoretically support the clinical assessment of cognitive functions in presence of WM decline/impairment, as it occurs after stroke. PMID:29379425
Network complexity and synchronous behavior--an experimental approach.
Neefs, P J; Steur, E; Nijmeijer, H
2010-06-01
We discuss synchronization in networks of Hindmarsh-Rose neurons that are interconnected via gap junctions, also known as electrical synapses. We present theoretical results for interactions without time-delay. These results are supported by experiments with a setup consisting of sixteen electronic equivalents of the Hindmarsh-Rose neuron. We show experimental results of networks where time-delay on the interaction is taken into account. We discuss in particular the influence of the network topology on the synchronization.
Information and material flows in complex networks
NASA Astrophysics Data System (ADS)
Helbing, Dirk; Armbruster, Dieter; Mikhailov, Alexander S.; Lefeber, Erjen
2006-04-01
In this special issue, an overview of the Thematic Institute (TI) on Information and Material Flows in Complex Systems is given. The TI was carried out within EXYSTENCE, the first EU Network of Excellence in the area of complex systems. Its motivation, research approach and subjects are presented here. Among the various methods used are many-particle and statistical physics, nonlinear dynamics, as well as complex systems, network and control theory. The contributions are relevant for complex systems as diverse as vehicle and data traffic in networks, logistics, production, and material flows in biological systems. The key disciplines involved are socio-, econo-, traffic- and bio-physics, and a new research area that could be called “biologistics”.
Limit of a nonpreferential attachment multitype network model
NASA Astrophysics Data System (ADS)
Shang, Yilun
2017-02-01
Here, we deal with a model of multitype network with nonpreferential attachment growth. The connection between two nodes depends asymmetrically on their types, reflecting the implication of time order in temporal networks. Based upon graph limit theory, we analytically determined the limit of the network model characterized by a kernel, in the sense that the number of copies of any fixed subgraph converges when network size tends to infinity. The results are confirmed by extensive simulations. Our work thus provides a theoretical framework for quantitatively understanding grown temporal complex networks as a whole.
Collaborative learning in networks.
Mason, Winter; Watts, Duncan J
2012-01-17
Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions.
Collaborative learning in networks
Mason, Winter; Watts, Duncan J.
2012-01-01
Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions. PMID:22184216
Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong
2010-01-01
In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641
Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong
2010-01-01
In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.
Network Learning for Educational Change. Professional Learning
ERIC Educational Resources Information Center
Veugelers, Wiel, Ed.; O'Hair, Mary John, Ed.
2005-01-01
School-university networks are becoming an important method to enhance educational renewal and student achievement. Networks go beyond tensions of top-down versus bottom-up, school development and professional development of individuals, theory and practice, and formal and informal organizational structures. The theoretical base of networking…
Preferential attachment in multiple trade networks
NASA Astrophysics Data System (ADS)
Foschi, Rachele; Riccaboni, Massimo; Schiavo, Stefano
2014-08-01
In this paper we develop a model for the evolution of multiple networks which is able to replicate the concentrated and sparse nature of world trade data. Our model is an extension of the preferential attachment growth model to the case of multiple networks. Countries trade a variety of goods of different complexity. Every country progressively evolves from trading less sophisticated to high-tech goods. The probabilities of capturing more trade opportunities at a given level of complexity and of starting to trade more complex goods are both proportional to the number of existing trade links. We provide a set of theoretical predictions and simulative results. A calibration exercise shows that our model replicates the same concentration level of world trade as well as the sparsity pattern of the trade matrix. We also discuss a set of numerical solutions to deal with large multiple networks.
PREMER: a Tool to Infer Biological Networks.
Villaverde, Alejandro F; Becker, Kolja; Banga, Julio R
2017-10-04
Inferring the structure of unknown cellular networks is a main challenge in computational biology. Data-driven approaches based on information theory can determine the existence of interactions among network nodes automatically. However, the elucidation of certain features - such as distinguishing between direct and indirect interactions or determining the direction of a causal link - requires estimating information-theoretic quantities in a multidimensional space. This can be a computationally demanding task, which acts as a bottleneck for the application of elaborate algorithms to large-scale network inference problems. The computational cost of such calculations can be alleviated by the use of compiled programs and parallelization. To this end we have developed PREMER (Parallel Reverse Engineering with Mutual information & Entropy Reduction), a software toolbox that can run in parallel and sequential environments. It uses information theoretic criteria to recover network topology and determine the strength and causality of interactions, and allows incorporating prior knowledge, imputing missing data, and correcting outliers. PREMER is a free, open source software tool that does not require any commercial software. Its core algorithms are programmed in FORTRAN 90 and implement OpenMP directives. It has user interfaces in Python and MATLAB/Octave, and runs on Windows, Linux and OSX (https://sites.google.com/site/premertoolbox/).
Dynamic decomposition of spatiotemporal neural signals
2017-01-01
Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals. PMID:28558039
Detecting complexes from edge-weighted PPI networks via genes expression analysis.
Zhang, Zehua; Song, Jian; Tang, Jijun; Xu, Xinying; Guo, Fei
2018-04-24
Identifying complexes from PPI networks has become a key problem to elucidate protein functions and identify signal and biological processes in a cell. Proteins binding as complexes are important roles of life activity. Accurate determination of complexes in PPI networks is crucial for understanding principles of cellular organization. We propose a novel method to identify complexes on PPI networks, based on different co-expression information. First, we use Markov Cluster Algorithm with an edge-weighting scheme to calculate complexes on PPI networks. Then, we propose some significant features, such as graph information and gene expression analysis, to filter and modify complexes predicted by Markov Cluster Algorithm. To evaluate our method, we test on two experimental yeast PPI networks. On DIP network, our method has Precision and F-Measure values of 0.6004 and 0.5528. On MIPS network, our method has F-Measure and S n values of 0.3774 and 0.3453. Comparing to existing methods, our method improves Precision value by at least 0.1752, F-Measure value by at least 0.0448, S n value by at least 0.0771. Experiments show that our method achieves better results than some state-of-the-art methods for identifying complexes on PPI networks, with the prediction quality improved in terms of evaluation criteria.
NASA Astrophysics Data System (ADS)
Ji, Junzhong; Song, Xiangjing; Liu, Chunnian; Zhang, Xiuzhen
2013-08-01
Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.
Huff, Emily Silver; Leahy, Jessica E.; Hiebeler, David; Weiskittel, Aaron R.; Noblet, Caroline L.
2015-01-01
Privately owned woodlands are an important source of timber and ecosystem services in North America and worldwide. Impacts of management on these ecosystems and timber supply from these woodlands are difficult to estimate because complex behavioral theory informs the owner’s management decisions. The decision-making environment consists of exogenous market factors, internal cognitive processes, and social interactions with fellow landowners, foresters, and other rural community members. This study seeks to understand how social interactions, information flow, and peer-to-peer networks influence timber harvesting behavior using an agent-based model. This theoretical model includes forested polygons in various states of ‘harvest readiness’ and three types of agents: forest landowners, foresters, and peer leaders (individuals trained in conservation who use peer-to-peer networking). Agent rules, interactions, and characteristics were parameterized with values from existing literature and an empirical survey of forest landowner attitudes, intentions, and demographics. The model demonstrates that as trust in foresters and peer leaders increases, the percentage of the forest that is harvested sustainably increases. Furthermore, peer leaders can serve to increase landowner trust in foresters. Model output and equations will inform forest policy and extension/outreach efforts. The model also serves as an important testing ground for new theories of landowner decision making and behavior. PMID:26562429
Spatiotemporal coding in the cortex: information flow-based learning in spiking neural networks.
Deco, G; Schürmann, B
1999-05-15
We introduce a learning paradigm for networks of integrate-and-fire spiking neurons that is based on an information-theoretic criterion. This criterion can be viewed as a first principle that demonstrates the experimentally observed fact that cortical neurons display synchronous firing for some stimuli and not for others. The principle can be regarded as the postulation of a nonparametric reconstruction method as optimization criteria for learning the required functional connectivity that justifies and explains synchronous firing for binding of features as a mechanism for spatiotemporal coding. This can be expressed in an information-theoretic way by maximizing the discrimination ability between different sensory inputs in minimal time.
Network representations of angular regions for electromagnetic scattering
2017-01-01
Network modeling in electromagnetics is an effective technique in treating scattering problems by canonical and complex structures. Geometries constituted of angular regions (wedges) together with planar layers can now be approached with the Generalized Wiener-Hopf Technique supported by network representation in spectral domain. Even if the network representations in spectral planes are of great importance by themselves, the aim of this paper is to present a theoretical base and a general procedure for the formulation of complex scattering problems using network representation for the Generalized Wiener Hopf Technique starting basically from the wave equation. In particular while the spectral network representations are relatively well known for planar layers, the network modelling for an angular region requires a new theory that will be developed in this paper. With this theory we complete the formulation of a network methodology whose effectiveness is demonstrated by the application to a complex scattering problem with practical solutions given in terms of GTD/UTD diffraction coefficients and total far fields for engineering applications. The methodology can be applied to other physics fields. PMID:28817573
Brain and Cognitive Reserve: Translation via Network Control Theory
Medaglia, John Dominic; Pasqualetti, Fabio; Hamilton, Roy H.; Thompson-Schill, Sharon L.; Bassett, Danielle S.
2017-01-01
Traditional approaches to understanding the brain’s resilience to neuropathology have identified neurophysiological variables, often described as brain or cognitive “reserve,” associated with better outcomes. However, mechanisms of function and resilience in large-scale brain networks remain poorly understood. Dynamic network theory may provide a basis for substantive advances in understanding functional resilience in the human brain. In this perspective, we describe recent theoretical approaches from network control theory as a framework for investigating network level mechanisms underlying cognitive function and the dynamics of neuroplasticity in the human brain. We describe the theoretical opportunities offered by the application of network control theory at the level of the human connectome to understand cognitive resilience and inform translational intervention. PMID:28104411
Integrated Bio-Entity Network: A System for Biological Knowledge Discovery
Bell, Lindsey; Chowdhary, Rajesh; Liu, Jun S.; Niu, Xufeng; Zhang, Jinfeng
2011-01-01
A significant part of our biological knowledge is centered on relationships between biological entities (bio-entities) such as proteins, genes, small molecules, pathways, gene ontology (GO) terms and diseases. Accumulated at an increasing speed, the information on bio-entity relationships is archived in different forms at scattered places. Most of such information is buried in scientific literature as unstructured text. Organizing heterogeneous information in a structured form not only facilitates study of biological systems using integrative approaches, but also allows discovery of new knowledge in an automatic and systematic way. In this study, we performed a large scale integration of bio-entity relationship information from both databases containing manually annotated, structured information and automatic information extraction of unstructured text in scientific literature. The relationship information we integrated in this study includes protein–protein interactions, protein/gene regulations, protein–small molecule interactions, protein–GO relationships, protein–pathway relationships, and pathway–disease relationships. The relationship information is organized in a graph data structure, named integrated bio-entity network (IBN), where the vertices are the bio-entities and edges represent their relationships. Under this framework, graph theoretic algorithms can be designed to perform various knowledge discovery tasks. We designed breadth-first search with pruning (BFSP) and most probable path (MPP) algorithms to automatically generate hypotheses—the indirect relationships with high probabilities in the network. We show that IBN can be used to generate plausible hypotheses, which not only help to better understand the complex interactions in biological systems, but also provide guidance for experimental designs. PMID:21738677
Modeling a Neural Network as a Teaching Tool for the Learning of the Structure-Function Relationship
ERIC Educational Resources Information Center
Salinas, Dino G.; Acevedo, Cristian; Gomez, Christian R.
2010-01-01
The authors describe an activity they have created in which students can visualize a theoretical neural network whose states evolve according to a well-known simple law. This activity provided an uncomplicated approach to a paradigm commonly represented through complex mathematical formulation. From their observations, students learned many basic…
NASA Astrophysics Data System (ADS)
Ali, M. Syed; Zhu, Quanxin; Pavithra, S.; Gunasekaran, N.
2018-03-01
This study examines the problem of dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays. This paper proposes a complex dynamical network consisting of N linearly and diffusively coupled identical reaction-diffusion neural networks. By constructing a suitable Lyapunov-Krasovskii functional (LKF), utilisation of Jensen's inequality and reciprocally convex combination (RCC) approach, strictly ?-dissipative conditions of the addressed systems are derived. Finally, a numerical example is given to show the effectiveness of the theoretical results.
On the origins of hierarchy in complex networks
Corominas-Murtra, Bernat; Goñi, Joaquín; Solé, Ricard V.; Rodríguez-Caso, Carlos
2013-01-01
Hierarchy seems to pervade complexity in both living and artificial systems. Despite its relevance, no general theory that captures all features of hierarchy and its origins has been proposed yet. Here we present a formal approach resulting from the convergence of theoretical morphology and network theory that allows constructing a 3D morphospace of hierarchies and hence comparing the hierarchical organization of ecological, cellular, technological, and social networks. Embedded within large voids in the morphospace of all possible hierarchies, four major groups are identified. Two of them match the expected from random networks with similar connectivity, thus suggesting that nonadaptive factors are at work. Ecological and gene networks define the other two, indicating that their topological order is the result of functional constraints. These results are consistent with an exploration of the morphospace, using in silico evolved networks. PMID:23898177
Graph Theory-Based Pinning Synchronization of Stochastic Complex Dynamical Networks.
Li, Xiao-Jian; Yang, Guang-Hong
2017-02-01
This paper is concerned with the adaptive pinning synchronization problem of stochastic complex dynamical networks (CDNs). Based on algebraic graph theory and Lyapunov theory, pinning controller design conditions are derived, and the rigorous convergence analysis of synchronization errors in the probability sense is also conducted. Compared with the existing results, the topology structures of stochastic CDN are allowed to be unknown due to the use of graph theory. In particular, it is shown that the selection of nodes for pinning depends on the unknown lower bounds of coupling strengths. Finally, an example on a Chua's circuit network is given to validate the effectiveness of the theoretical results.
Developing Visualization Techniques for Semantics-based Information Networks
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Hall, David R.
2003-01-01
Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.
Kato, Yoshikazu; Kondoh, Michio; Ishikawa, Naoto F; Togashi, Hiroyuki; Kohmatsu, Yukihiro; Yoshimura, Mayumi; Yoshimizu, Chikage; Haraguchi, Takashi F; Osada, Yutaka; Ohte, Nobuhito; Tokuchi, Naoko; Okuda, Noboru; Miki, Takeshi; Tayasu, Ichiro
2018-07-01
Food-web complexity often hinders disentangling functionally relevant aspects of food-web structure and its relationships to biodiversity. Here, we present a theoretical framework to evaluate food-web complexity in terms of biodiversity. Food network unfolding is a theoretical method to transform a complex food web into a linear food chain based on ecosystem processes. Based on this method, we can define three biodiversity indices, horizontal diversity (D H ), vertical diversity (D V ) and range diversity (D R ), which are associated with the species diversity within each trophic level, diversity of trophic levels, and diversity in resource use, respectively. These indices are related to Shannon's diversity index (H'), where H' = D H + D V - D R . Application of the framework to three riverine macroinvertebrate communities revealed that D indices, calculated from biomass and stable isotope features, captured well the anthropogenic, seasonal, or other within-site changes in food-web structures that could not be captured with H' alone. © 2018 John Wiley & Sons Ltd/CNRS.
Integration science and distributed networks
NASA Astrophysics Data System (ADS)
Landauer, Christopher; Bellman, Kirstie L.
2002-07-01
Our work on integration of data and knowledge sources is based in a common theoretical treatment of 'Integration Science', which leads to systematic processes for combining formal logical and mathematical systems, computational and physical systems, and human systems and organizations. The theory is based on the processing of explicit meta-knowledge about the roles played by the different knowledge sources and the methods of analysis and semantic implications of the different data values, together with information about the context in which and the purpose for which they are being combined. The research treatment is primarily mathematical, and though this kind of integration mathematics is still under development, there are some applicable common threads that have emerged already. Instead of describing the current state of the mathematical investigations, since they are not yet crystallized enough for formalisms, we describe our applications of the approach in several different areas, including our focus area of 'Constructed Complex Systems', which are complex heterogeneous systems managed or mediated by computing systems. In this context, it is important to remember that all systems are embedded, all systems are autonomous, and that all systems are distributed networks.
Some characteristics of supernetworks based on unified hybrid network theory framework
NASA Astrophysics Data System (ADS)
Liu, Qiang; Fang, Jin-Qing; Li, Yong
Comparing with single complex networks, supernetworks are more close to the real world in some ways, and have become the newest research hot spot in the network science recently. Some progresses have been made in the research of supernetworks, but the theoretical research method and complex network characteristics of supernetwork models are still needed to further explore. In this paper, we propose three kinds of supernetwork models with three layers based on the unified hybrid network theory framework (UHNTF), and introduce preferential and random linking, respectively, between the upper and lower layers. Then we compared the topological characteristics of the single networks with the supernetwork models. In order to analyze the influence of the interlayer edges on network characteristics, the cross-degree is defined as a new important parameter. Then some interesting new phenomena are found, the results imply this supernetwork model has reference value and application potential.
NASA Astrophysics Data System (ADS)
Clawson, Wesley Patrick
Previous studies, both theoretical and experimental, of network level dynamics in the cerebral cortex show evidence for a statistical phenomenon called criticality; a phenomenon originally studied in the context of phase transitions in physical systems and that is associated with favorable information processing in the context of the brain. The focus of this thesis is to expand upon past results with new experimentation and modeling to show a relationship between criticality and the ability to detect and discriminate sensory input. A line of theoretical work predicts maximal sensory discrimination as a functional benefit of criticality, which can then be characterized using mutual information between sensory input, visual stimulus, and neural response,. The primary finding of our experiments in the visual cortex in turtles and neuronal network modeling confirms this theoretical prediction. We show that sensory discrimination is maximized when visual cortex operates near criticality. In addition to presenting this primary finding in detail, this thesis will also address our preliminary results on change-point-detection in experimentally measured cortical dynamics.
Networked Learning for Agricultural Extension: A Framework for Analysis and Two Cases
ERIC Educational Resources Information Center
Kelly, Nick; Bennett, John McLean; Starasts, Ann
2017-01-01
Purpose: This paper presents economic and pedagogical motivations for adopting information and communications technology (ICT)- mediated learning networks in agricultural education and extension. It proposes a framework for networked learning in agricultural extension and contributes a theoretical and case-based rationale for adopting the…
Multi-scale modelling of rubber-like materials and soft tissues: an appraisal
Puglisi, G.
2016-01-01
We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreover, such models are fundamental in the perspective of the design, through manipulation at the micro- and nano-scales, of new polymeric and bioinspired materials with exceptional macroscopic properties. PMID:27118927
Sun, Yu; Li, Junhua; Suckling, John; Feng, Lei
2017-01-01
Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging. PMID:29209197
Inference of directed climate networks: role of instability of causality estimation methods
NASA Astrophysics Data System (ADS)
Hlinka, Jaroslav; Hartman, David; Vejmelka, Martin; Paluš, Milan
2013-04-01
Climate data are increasingly analyzed by complex network analysis methods, including graph-theoretical approaches [1]. For such analysis, links between localized nodes of climate network are typically quantified by some statistical measures of dependence (connectivity) between measured variables of interest. To obtain information on the directionality of the interactions in the networks, a wide range of methods exists. These can be broadly divided into linear and nonlinear methods, with some of the latter having the theoretical advantage of being model-free, and principally a generalization of the former [2]. However, as a trade-off, this generality comes together with lower accuracy - in particular if the system was close to linear. In an overall stationary system, this may potentially lead to higher variability in the nonlinear network estimates. Therefore, with the same control of false alarms, this may lead to lower sensitivity for detection of real changes in the network structure. These problems are discussed on the example of daily SAT and SLP data from the NCEP/NCAR reanalysis dataset. We first reduce the dimensionality of data using PCA with VARIMAX rotation to detect several dozens of components that together explain most of the data variability. We further construct directed climate networks applying a selection of most widely used methods - variants of linear Granger causality and conditional mutual information. Finally, we assess the stability of the detected directed climate networks by computing them in sliding time windows. To understand the origin of the observed instabilities and their range, we also apply the same procedure to two types of surrogate data: either with non-stationarity in network structure removed, or imposed in a controlled way. In general, the linear methods show stable results in terms of overall similarity of directed climate networks inferred. For instance, for different decades of SAT data, the Spearman correlation of edge weights in the networks is ~ 0.6. The networks constructed using nonlinear measures were in general less stable both in real data and stationarized surrogates. Interestingly, when the nonlinear method parameters are optimized with respect to temporal stability of the networks, the networks seem to converge close to those detected by linear Granger causality. This provides further evidence for the hypothesis of overall sparsity and weakness of nonlinear coupling in climate networks on this spatial and temporal scale [3] and sufficient support for the use of linear methods in this context, unless specific clearly detectable nonlinear phenomena are targeted. Acknowledgement: This study is supported by the Czech Science Foundation, Project No. P103/11/J068. [1] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M. & Hwang, D. U.: Complex networks: Structure and dynamics, Physics Reports, 2006, 424, 175-308 [2] Barnett, L.; Barrett, A. B. & Seth, A. K.: Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables, Physical Review Letters, 2009, 103, 238701 [3] Hlinka, J.; Hartman, D.; Vejmelka, M.; Novotná, D.; Paluš, M.: Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity, submitted preprint (http://arxiv.org/abs/1211.6688)
NASA Astrophysics Data System (ADS)
Alarcon-Ramos, L. A.; Schaum, A.; Rodríguez Lucatero, C.; Bernal Jaquez, R.
2014-03-01
Virus propagations in complex networks have been studied in the framework of discrete time Markov process dynamical systems. These studies have been carried out under the assumption of homogeneous transition rates, yielding conditions for virus extinction in terms of the transition probabilities and the largest eigenvalue of the connectivity matrix. Nevertheless the assumption of homogeneous rates is rather restrictive. In the present study we consider non-homogeneous transition rates, assigned according to a uniform distribution, with susceptible, infected and quarantine states, thus generalizing the previous studies. A remarkable result of this analysis is that the extinction depends on the weakest element in the network. Simulation results are presented for large free-scale networks, that corroborate our theoretical findings.
Hydrodynamically induced oscillations and traffic dynamics in 1D microfludic networks
NASA Astrophysics Data System (ADS)
Bartolo, Denis; Jeanneret, Raphael
2011-03-01
We report on the traffic dynamics of particles driven through a minimal microfluidic network. Even in the minimal network consisting in a single loop, the traffic dynamics has proven to yield complex temporal patterns, including periodic, multi-periodic or chaotic sequences. This complex dynamics arises from the strongly nonlinear hydrodynamic interactions between the particles, that takes place at a junction. To better understand the consequences of this nontrivial coupling, we combined theoretical, numerical and experimental efforts and solved the 3-body problem in a 1D loop network. This apparently simple dynamical system revealed a rich and unexpected dynamics, including coherent spontaneous oscillations along closed orbits. Striking similarities between Hamiltonian systems and this driven dissipative system will be explained.
Compressed sensing based missing nodes prediction in temporal communication network
NASA Astrophysics Data System (ADS)
Cheng, Guangquan; Ma, Yang; Liu, Zhong; Xie, Fuli
2018-02-01
The reconstruction of complex network topology is of great theoretical and practical significance. Most research so far focuses on the prediction of missing links. There are many mature algorithms for link prediction which have achieved good results, but research on the prediction of missing nodes has just begun. In this paper, we propose an algorithm for missing node prediction in complex networks. We detect the position of missing nodes based on their neighbor nodes under the theory of compressed sensing, and extend the algorithm to the case of multiple missing nodes using spectral clustering. Experiments on real public network datasets and simulated datasets show that our algorithm can detect the locations of hidden nodes effectively with high precision.
Wijayaratna, Kasun P; Dixit, Vinayak V; Denant-Boemont, Laurent; Waller, S Travis
2017-01-01
This study investigates the empirical presence of a theoretical transportation paradox, defined as the "Online Information Paradox" (OIP). The paradox suggests that, for certain road networks, the provision of online information deteriorate travel conditions for all users of that network relative to the situation where no online information is provided to users. The analytical presence of the paradox was derived for a specific network structure by using two equilibrium models, the first being the Expected User Equilibrium (EUE) solution (no information scenario) and the other being the User Equilibrium with Recourse (UER) solution (with information scenario). An incentivised computerised route choice game was designed using the concepts of experimental economics and administered in a controlled laboratory environment to investigate the physical presence of the paradox. Aggregate statistics of path flows and Total System Travel Costs (TSTC) were used to compare the experimental results with the theoretical findings. A total of 12 groups of 12 participants completed the experiment and the OIP and the occurrence of the OIP being significant was observed in 11 of the 12 cases. Though information increased travel costs for users on average, it reduced the volatility of travel costs experienced in the no information scenario indicating that information can achieve a more reliable system. Further replications of similar experiments and more importantly field based identification of the phenomena will force transport professionals to be aware of the emergence of the paradox. In addition, studies such as this emphasise the need for the adoption of adaptive traffic assignment techniques to appropriately model the acquisition of information on a road network.
Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks
NASA Astrophysics Data System (ADS)
Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.
2017-12-01
We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.
Network structure of production
Atalay, Enghin; Hortaçsu, Ali; Roberts, James; Syverson, Chad
2011-01-01
Complex social networks have received increasing attention from researchers. Recent work has focused on mechanisms that produce scale-free networks. We theoretically and empirically characterize the buyer–supplier network of the US economy and find that purely scale-free models have trouble matching key attributes of the network. We construct an alternative model that incorporates realistic features of firms’ buyer–supplier relationships and estimate the model’s parameters using microdata on firms’ self-reported customers. This alternative framework is better able to match the attributes of the actual economic network and aids in further understanding several important economic phenomena. PMID:21402924
Complex network construction based on user group attention sequence
NASA Astrophysics Data System (ADS)
Zhang, Gaowei; Xu, Lingyu; Wang, Lei
2018-04-01
In the traditional complex network construction, it is often to use the similarity between nodes, build the weight of the network, and finally build the network. However, this approach tends to focus only on the coupling between nodes, while ignoring the information transfer between nodes and the transfer of directionality. In the network public opinion space, based on the set of stock series that the network groups pay attention to within a certain period of time, we vectorize the different stocks and build a complex network.
Optimal Information Processing in Biochemical Networks
NASA Astrophysics Data System (ADS)
Wiggins, Chris
2012-02-01
A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.
Analyzing the causation of a railway accident based on a complex network
NASA Astrophysics Data System (ADS)
Ma, Xin; Li, Ke-Ping; Luo, Zi-Yan; Zhou, Jin
2014-02-01
In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the “7.23” China—Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents.
Inferring topologies via driving-based generalized synchronization of two-layer networks
NASA Astrophysics Data System (ADS)
Wang, Yingfei; Wu, Xiaoqun; Feng, Hui; Lu, Jun-an; Xu, Yuhua
2016-05-01
The interaction topology among the constituents of a complex network plays a crucial role in the network’s evolutionary mechanisms and functional behaviors. However, some network topologies are usually unknown or uncertain. Meanwhile, coupling delays are ubiquitous in various man-made and natural networks. Hence, it is necessary to gain knowledge of the whole or partial topology of a complex dynamical network by taking into consideration communication delay. In this paper, topology identification of complex dynamical networks is investigated via generalized synchronization of a two-layer network. Particularly, based on the LaSalle-type invariance principle of stochastic differential delay equations, an adaptive control technique is proposed by constructing an auxiliary layer and designing proper control input and updating laws so that the unknown topology can be recovered upon successful generalized synchronization. Numerical simulations are provided to illustrate the effectiveness of the proposed method. The technique provides a certain theoretical basis for topology inference of complex networks. In particular, when the considered network is composed of systems with high-dimension or complicated dynamics, a simpler response layer can be constructed, which is conducive to circuit design. Moreover, it is practical to take into consideration perturbations caused by control input. Finally, the method is applicable to infer topology of a subnetwork embedded within a complex system and locate hidden sources. We hope the results can provide basic insight into further research endeavors on understanding practical and economical topology inference of networks.
Joly, Elizabeth
2016-06-01
To present a discussion of a theoretical perspective developed through integrating Meleis' Transition Theory and Bronfenbrenner's Bioecological Theory of Human Development to inform nursing and advanced nursing practice supporting the transition to adulthood for young people with medical complexity. Theoretical perspectives to inform nursing practice in supporting successful transition are limited, yet nurses frequently encounter young people with medical complexity during the transition to adulthood. Discussion paper. A literature search of CINAHL and Medline was conducted in 2014 and included articles from 2003-2014; informal discussions with families; the author's experiences in a transition program. The integrated theoretical perspective described in this paper can inform nurses and advanced practice nurses on contextual influences, program and intervention development across spheres of influence and outcomes for the transition to adulthood for young people with medical complexity. Young people and their families require effective reciprocal interactions with individuals and services across sectors to successfully transition to adulthood and become situated in the adult world. Intervention must also extend beyond the young person to include providers, services and health and social policy. Nurses can take a leadership role in supporting the transition to adulthood for young people with medical complexity through direct care, case management, education and research. It is integral that nurses holistically consider developmental processes, complexity and contextual conditions that promote positive outcomes during and beyond the transition to adulthood. © 2016 John Wiley & Sons Ltd.
Measuring Information-Transfer Delays
Wibral, Michael; Pampu, Nicolae; Priesemann, Viola; Siebenhühner, Felix; Seiwert, Hannes; Lindner, Michael; Lizier, Joseph T.; Vicente, Raul
2013-01-01
In complex networks such as gene networks, traffic systems or brain circuits it is important to understand how long it takes for the different parts of the network to effectively influence one another. In the brain, for example, axonal delays between brain areas can amount to several tens of milliseconds, adding an intrinsic component to any timing-based processing of information. Inferring neural interaction delays is thus needed to interpret the information transfer revealed by any analysis of directed interactions across brain structures. However, a robust estimation of interaction delays from neural activity faces several challenges if modeling assumptions on interaction mechanisms are wrong or cannot be made. Here, we propose a robust estimator for neuronal interaction delays rooted in an information-theoretic framework, which allows a model-free exploration of interactions. In particular, we extend transfer entropy to account for delayed source-target interactions, while crucially retaining the conditioning on the embedded target state at the immediately previous time step. We prove that this particular extension is indeed guaranteed to identify interaction delays between two coupled systems and is the only relevant option in keeping with Wiener’s principle of causality. We demonstrate the performance of our approach in detecting interaction delays on finite data by numerical simulations of stochastic and deterministic processes, as well as on local field potential recordings. We also show the ability of the extended transfer entropy to detect the presence of multiple delays, as well as feedback loops. While evaluated on neuroscience data, we expect the estimator to be useful in other fields dealing with network dynamics. PMID:23468850
NASA Astrophysics Data System (ADS)
Wang, Guanghui; Wang, Yufei; Liu, Yijun; Chi, Yuxue
2018-05-01
As the transmission of public opinion on the Internet in the “We the Media” era tends to be supraterritorial, concealed and complex, the traditional “point-to-surface” transmission of information has been transformed into “point-to-point” reciprocal transmission. A foundation for studies of the evolution of public opinion and its transmission on the Internet in the “We the Media” era can be laid by converting the massive amounts of fragmented information on public opinion that exists on “We the Media” platforms into structurally complex networks of information. This paper describes studies of structurally complex network-based modeling of public opinion on the Internet in the “We the Media” era from the perspective of the development and evolution of complex networks. The progress that has been made in research projects relevant to the structural modeling of public opinion on the Internet is comprehensively summarized. The review considers aspects such as regular grid-based modeling of the rules that describe the propagation of public opinion on the Internet in the “We the Media” era, social network modeling, dynamic network modeling, and supernetwork modeling. Moreover, an outlook for future studies that address complex network-based modeling of public opinion on the Internet is put forward as a summary from the perspective of modeling conducted using the techniques mentioned above.
The new challenges of multiplex networks: Measures and models
NASA Astrophysics Data System (ADS)
Battiston, Federico; Nicosia, Vincenzo; Latora, Vito
2017-02-01
What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.
Analyzing complex networks evolution through Information Theory quantifiers
NASA Astrophysics Data System (ADS)
Carpi, Laura C.; Rosso, Osvaldo A.; Saco, Patricia M.; Ravetti, Martín Gómez
2011-01-01
A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Niño/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.
NASA Astrophysics Data System (ADS)
He, Hao; Wang, Jun; Zhu, Jiang; Li, Shaoqian
2010-12-01
In this paper, we investigate the cross-layer design of joint channel access and transmission rate adaptation in CR networks with multiple channels for both centralized and decentralized cases. Our target is to maximize the throughput of CR network under transmission power constraint by taking spectrum sensing errors into account. In centralized case, this problem is formulated as a special constrained Markov decision process (CMDP), which can be solved by standard linear programming (LP) method. As the complexity of finding the optimal policy by LP increases exponentially with the size of action space and state space, we further apply action set reduction and state aggregation to reduce the complexity without loss of optimality. Meanwhile, for the convenience of implementation, we also consider the pure policy design and analyze the corresponding characteristics. In decentralized case, where only local information is available and there is no coordination among the CR users, we prove the existence of the constrained Nash equilibrium and obtain the optimal decentralized policy. Finally, in the case that the traffic load parameters of the licensed users are unknown for the CR users, we propose two methods to estimate the parameters for two different cases. Numerical results validate the theoretic analysis.
The brainstem reticular formation is a small-world, not scale-free, network
Humphries, M.D; Gurney, K; Prescott, T.J
2005-01-01
Recently, it has been demonstrated that several complex systems may have simple graph-theoretic characterizations as so-called ‘small-world’ and ‘scale-free’ networks. These networks have also been applied to the gross neural connectivity between primate cortical areas and the nervous system of Caenorhabditis elegans. Here, we extend this work to a specific neural circuit of the vertebrate brain—the medial reticular formation (RF) of the brainstem—and, in doing so, we have made three key contributions. First, this work constitutes the first model (and quantitative review) of this important brain structure for over three decades. Second, we have developed the first graph-theoretic analysis of vertebrate brain connectivity at the neural network level. Third, we propose simple metrics to quantitatively assess the extent to which the networks studied are small-world or scale-free. We conclude that the medial RF is configured to create small-world (implying coherent rapid-processing capabilities), but not scale-free, type networks under assumptions which are amenable to quantitative measurement. PMID:16615219
NASA Astrophysics Data System (ADS)
Chen, Xinying
2014-12-01
Researchers have been talking about the language system theoretically for many years [1]. A well accepted assumption is that language is a complex adaptive system [2] which is hierarchical [3] and contains multiple levels along the meaning-form dimension [4]. Over the last decade or so, driven by the availability of digital language data and the popularity of statistical approach, many researchers interested in theoretical questions have started to try to quantitatively describe microscopic linguistic features in a certain level of a language system by using authentic language data. Despite the fruitful findings, one question remains unclear. That is, how does a whole language system look like? For answering this question, network approach, an analysis method emphasizes the macro features of structures, has been introduced into linguistic studies [5]. By analyzing the static and dynamic linguistics networks constructed from authentic language data, many macro and micro linguistic features, such as lexical, syntactic or semantic features have been discovered and successfully applied in linguistic typographical studies so that the huge potential of linguistic networks research has revealed [6].
Scaling Laws for Heterogeneous Wireless Networks
2009-09-01
planned and the size of communication networks that are fundamentally understood. On the one hand, wireline networks (like the Internet) have grown from...Franceschetti, Marco D. Migliore, and Paolo Minero . The capacity of wireless networks: Information-theoretic and physical limits. In Proceedings of the...Allerton Conference on Communication, Control, and Computing, September 2007. [12] Massimo Franceschetti, Marco D. Migliore, and Paolo Minero . The
Jones, Andrew S; Taktak, Azzam G F; Helliwell, Timothy R; Fenton, John E; Birchall, Martin A; Husband, David J; Fisher, Anthony C
2006-06-01
The accepted method of modelling and predicting failure/survival, Cox's proportional hazards model, is theoretically inferior to neural network derived models for analysing highly complex systems with large datasets. A blinded comparison of the neural network versus the Cox's model in predicting survival utilising data from 873 treated patients with laryngeal cancer. These were divided randomly and equally into a training set and a study set and Cox's and neural network models applied in turn. Data were then divided into seven sets of binary covariates and the analysis repeated. Overall survival was not significantly different on Kaplan-Meier plot, or with either test model. Although the network produced qualitatively similar results to Cox's model it was significantly more sensitive to differences in survival curves for age and N stage. We propose that neural networks are capable of prediction in systems involving complex interactions between variables and non-linearity.
Robot, computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.; Merriam, E. W.
1973-01-01
The TENEX computer system, the ARPA network, and computer language design technology was applied to support the complex system programs. By combining the pragmatic and theoretical aspects of robot development, an approach is created which is grounded in realism, but which also has at its disposal the power that comes from looking at complex problems from an abstract analytical point of view.
Categorical Structure among Shared Features in Networks of Early-Learned Nouns
ERIC Educational Resources Information Center
Hills, Thomas T.; Maouene, Mounir; Maouene, Josita; Sheya, Adam; Smith, Linda
2009-01-01
The shared features that characterize the noun categories that young children learn first are a formative basis of the human category system. To investigate the potential categorical information contained in the features of early-learned nouns, we examine the graph-theoretic properties of noun-feature networks. The networks are built from the…
Alignment and integration of complex networks by hypergraph-based spectral clustering
NASA Astrophysics Data System (ADS)
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Alignment and integration of complex networks by hypergraph-based spectral clustering.
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Experimental plug and play quantum coin flipping.
Pappa, Anna; Jouguet, Paul; Lawson, Thomas; Chailloux, André; Legré, Matthieu; Trinkler, Patrick; Kerenidis, Iordanis; Diamanti, Eleni
2014-04-24
Performing complex cryptographic tasks will be an essential element in future quantum communication networks. These tasks are based on a handful of fundamental primitives, such as coin flipping, where two distrustful parties wish to agree on a randomly generated bit. Although it is known that quantum versions of these primitives can offer information-theoretic security advantages with respect to classical protocols, a demonstration of such an advantage in a practical communication scenario has remained elusive. Here we experimentally implement a quantum coin flipping protocol that performs strictly better than classically possible over a distance suitable for communication over metropolitan area optical networks. The implementation is based on a practical plug and play system, developed by significantly enhancing a commercial quantum key distribution device. Moreover, we provide combined quantum coin flipping protocols that are almost perfectly secure against bounded adversaries. Our results offer a useful toolbox for future secure quantum communications.
NASA Astrophysics Data System (ADS)
Agha Mohammad Ali Kermani, Mehrdad; Fatemi Ardestani, Seyed Farshad; Aliahmadi, Alireza; Barzinpour, Farnaz
2017-01-01
Influence maximization deals with identification of the most influential nodes in a social network given an influence model. In this paper, a game theoretic framework is developed that models a competitive influence maximization problem. A novel competitive influence model is additionally proposed that incorporates user heterogeneity, message content, and network structure. The proposed game-theoretic model is solved using Nash Equilibrium in a real-world dataset. It is shown that none of the well-known strategies are stable and at least one player has the incentive to deviate from the proposed strategy. Moreover, violation of Nash equilibrium strategy by each player leads to their reduced payoff. Contrary to previous works, our results demonstrate that graph topology, as well as the nodes' sociability and initial tendency measures have an effect on the determination of the influential node in the network.
Global stability of an SIR model with differential infectivity on complex networks
NASA Astrophysics Data System (ADS)
Yuan, Xinpeng; Wang, Fang; Xue, Yakui; Liu, Maoxing
2018-06-01
In this paper, an SIR model with birth and death on complex networks is analyzed, where infected individuals are divided into m groups according to their infection and contact between human is treated as a scale-free social network. We obtain the basic reproduction number R0 as well as the effects of various immunization schemes. The results indicate that the disease-free equilibrium is locally and globally asymptotically stable in some conditions, otherwise disease-free equilibrium is unstable and exists an unique endemic equilibrium that is globally asymptotically stable. Our theoretical results are confirmed by numerical simulations and a promising way for infectious diseases control is suggested.
Nestedness across biological scales
Marquitti, Flavia M. D.; Raimundo, Rafael L. G.; Sebastián-González, Esther; Coltri, Patricia P.; Perez, S. Ivan; Brandt, Débora Y. C.; Nunes, Kelly; Daura-Jorge, Fábio G.; Floeter, Sergio R.; Guimarães, Paulo R.
2017-01-01
Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general compromise between two features: specificity (the number of interactions the elements of the system can have) and affinity (how these elements can be connected to each other). Our findings suggesting occurrence of nestedness throughout biological scales can stimulate the debate on how pervasive nestedness may be in nature, while the theoretical emergent principles can aid further research on commonalities of biological networks. PMID:28166284
Reactive immunization on complex networks
NASA Astrophysics Data System (ADS)
Alfinito, Eleonora; Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido
2017-01-01
Epidemic spreading on complex networks depends on the topological structure as well as on the dynamical properties of the infection itself. Generally speaking, highly connected individuals play the role of hubs and are crucial to channel information across the network. On the other hand, static topological quantities measuring the connectivity structure are independent of the dynamical mechanisms of the infection. A natural question is therefore how to improve the topological analysis by some kind of dynamical information that may be extracted from the ongoing infection itself. In this spirit, we propose a novel vaccination scheme that exploits information from the details of the infection pattern at the moment when the vaccination strategy is applied. Numerical simulations of the infection process show that the proposed immunization strategy is effective and robust on a wide class of complex networks.
Modular analysis of biological networks.
Kaltenbach, Hans-Michael; Stelling, Jörg
2012-01-01
The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.
Rumor spreading model with noise interference in complex social networks
NASA Astrophysics Data System (ADS)
Zhu, Liang; Wang, Youguo
2017-03-01
In this paper, a modified susceptible-infected-removed (SIR) model has been proposed to explore rumor diffusion on complex social networks. We take variation of connectivity into consideration and assume the variation as noise. On the basis of related literature on virus networks, the noise is described as standard Brownian motion while stochastic differential equations (SDE) have been derived to characterize dynamics of rumor diffusion both on homogeneous networks and heterogeneous networks. Then, theoretical analysis on homogeneous networks has been demonstrated to investigate the solution of SDE model and the steady state of rumor diffusion. Simulations both on Barabási-Albert (BA) network and Watts-Strogatz (WS) network display that the addition of noise accelerates rumor diffusion and expands diffusion size, meanwhile, the spreading speed on BA network is much faster than on WS network under the same noise intensity. In addition, there exists a rumor diffusion threshold in statistical average meaning on homogeneous network which is absent on heterogeneous network. Finally, we find a positive correlation between peak value of infected individuals and noise intensity while a negative correlation between rumor lifecycle and noise intensity overall.
Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks
Piraveenan, Mahendra; Prokopenko, Mikhail; Hossain, Liaquat
2013-01-01
A number of centrality measures are available to determine the relative importance of a node in a complex network, and betweenness is prominent among them. However, the existing centrality measures are not adequate in network percolation scenarios (such as during infection transmission in a social network of individuals, spreading of computer viruses on computer networks, or transmission of disease over a network of towns) because they do not account for the changing percolation states of individual nodes. We propose a new measure, percolation centrality, that quantifies relative impact of nodes based on their topological connectivity, as well as their percolation states. The measure can be extended to include random walk based definitions, and its computational complexity is shown to be of the same order as that of betweenness centrality. We demonstrate the usage of percolation centrality by applying it to a canonical network as well as simulated and real world scale-free and random networks. PMID:23349699
Rapid identifying high-influence nodes in complex networks
NASA Astrophysics Data System (ADS)
Song, Bo; Jiang, Guo-Ping; Song, Yu-Rong; Xia, Ling-Ling
2015-10-01
A tiny fraction of influential individuals play a critical role in the dynamics on complex systems. Identifying the influential nodes in complex networks has theoretical and practical significance. Considering the uncertainties of network scale and topology, and the timeliness of dynamic behaviors in real networks, we propose a rapid identifying method (RIM) to find the fraction of high-influential nodes. Instead of ranking all nodes, our method only aims at ranking a small number of nodes in network. We set the high-influential nodes as initial spreaders, and evaluate the performance of RIM by the susceptible-infected-recovered (SIR) model. The simulations show that in different networks, RIM performs well on rapid identifying high-influential nodes, which is verified by typical ranking methods, such as degree, closeness, betweenness, and eigenvector centrality methods. Project supported by the National Natural Science Foundation of China (Grant Nos. 61374180 and 61373136), the Ministry of Education Research in the Humanities and Social Sciences Planning Fund Project, China (Grant No. 12YJAZH120), and the Six Projects Sponsoring Talent Summits of Jiangsu Province, China (Grant No. RLD201212).
Complex Networks - A Key to Understanding Brain Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sporns, Olaf
2008-01-23
The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life. How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood. In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.
Enhancing to method for extracting Social network by the relation existence
NASA Astrophysics Data System (ADS)
Elfida, Maria; Matyuso Nasution, M. K.; Sitompul, O. S.
2018-01-01
To get the trusty information about the social network extracted from the Web requires a reliable method, but for optimal resultant required the method that can overcome the complexity of information resources. This paper intends to reveal ways to overcome the constraints of social network extraction leading to high complexity by identifying relationships among social actors. By changing the treatment of the procedure used, we obtain the complexity is smaller than the previous procedure. This has also been demonstrated in an experiment by using the denial sample.
Complex Networks - A Key to Understanding Brain Function
Sporns, Olaf
2017-12-22
The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life. How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood. In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.
Environmental Uncertainty and Communication Network Complexity: A Cross-System, Cross-Cultural Test.
ERIC Educational Resources Information Center
Danowski, James
An infographic model is proposed to account for the operation of systems within their information environments. Infographics is a communication paradigm used to indicate the clustering of information processing variables in communication systems. Four propositions concerning environmental uncertainty and internal communication network complexity,…
Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.
Li, Shuai; Li, Yangming
2013-10-28
The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.
Influence Function Learning in Information Diffusion Networks
Du, Nan; Liang, Yingyu; Balcan, Maria-Florina; Song, Le
2015-01-01
Can we learn the influence of a set of people in a social network from cascades of information diffusion? This question is often addressed by a two-stage approach: first learn a diffusion model, and then calculate the influence based on the learned model. Thus, the success of this approach relies heavily on the correctness of the diffusion model which is hard to verify for real world data. In this paper, we exploit the insight that the influence functions in many diffusion models are coverage functions, and propose a novel parameterization of such functions using a convex combination of random basis functions. Moreover, we propose an efficient maximum likelihood based algorithm to learn such functions directly from cascade data, and hence bypass the need to specify a particular diffusion model in advance. We provide both theoretical and empirical analysis for our approach, showing that the proposed approach can provably learn the influence function with low sample complexity, be robust to the unknown diffusion models, and significantly outperform existing approaches in both synthetic and real world data. PMID:25973445
NASA Astrophysics Data System (ADS)
Syed Ali, M.; Yogambigai, J.; Kwon, O. M.
2018-03-01
Finite-time boundedness and finite-time passivity for a class of switched stochastic complex dynamical networks (CDNs) with coupling delays, parameter uncertainties, reaction-diffusion term and impulsive control are studied. Novel finite-time synchronisation criteria are derived based on passivity theory. This paper proposes a CDN consisting of N linearly and diffusively coupled identical reaction- diffusion neural networks. By constructing of a suitable Lyapunov-Krasovskii's functional and utilisation of Jensen's inequality and Wirtinger's inequality, new finite-time passivity criteria for the networks are established in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, two interesting numerical examples are given to show the effectiveness of the theoretical results.
Grossi, Enzo
2006-05-03
In recent years a number of algorithms for cardiovascular risk assessment has been proposed to the medical community. These algorithms consider a number of variables and express their results as the percentage risk of developing a major fatal or non-fatal cardiovascular event in the following 10 to 20 years The author has identified three major pitfalls of these algorithms, linked to the limitation of the classical statistical approach in dealing with this kind of non linear and complex information. The pitfalls are the inability to capture the disease complexity, the inability to capture process dynamics, and the wide confidence interval of individual risk assessment. Artificial Intelligence tools can provide potential advantage in trying to overcome these limitations. The theoretical background and some application examples related to artificial neural networks and fuzzy logic have been reviewed and discussed. The use of predictive algorithms to assess individual absolute risk of cardiovascular future events is currently hampered by methodological and mathematical flaws. The use of newer approaches, such as fuzzy logic and artificial neural networks, linked to artificial intelligence, seems to better address both the challenge of increasing complexity resulting from a correlation between predisposing factors, data on the occurrence of cardiovascular events, and the prediction of future events on an individual level.
Investigations of photosynthetic light harvesting by two-dimensional electronic spectroscopy
NASA Astrophysics Data System (ADS)
Read, Elizabeth Louise
Photosynthesis begins with the harvesting of sunlight by antenna pigments, organized in a network of pigment-protein complexes that rapidly funnel energy to photochemical reaction centers. The intricate design of these systems---the widely varying structural motifs of pigment organization within proteins and protein organization within a larger, cooperative network---underlies the remarkable speed and efficiency of light harvesting. Advances in femtosecond laser spectroscopy have enabled researchers to follow light energy on its course through the energetic levels of photosynthetic systems. Now, newly-developed femtosecond two-dimensional electronic spectroscopy reveals deeper insight into the fundamental molecular interactions and dynamics that emerge in these structures. The following chapters present investigations of a number of natural light-harvesting complexes using two-dimensional electronic spectroscopy. These studies demonstrate the various types of information contained in experimental two-dimensional spectra, and they show that the technique makes it possible to probe pigment-protein complexes on the length- and time-scales relevant to their functioning. New methods are described that further extend the capabilities of two-dimensional electronic spectroscopy, for example, by independently controlling the excitation laser pulse polarizations. The experiments, coupled with theoretical simulation, elucidate spatial pathways of energy flow, unravel molecular and electronic structures, and point to potential new quantum mechanical mechanisms of light harvesting.
2017-01-01
This study investigates the empirical presence of a theoretical transportation paradox, defined as the “Online Information Paradox” (OIP). The paradox suggests that, for certain road networks, the provision of online information deteriorate travel conditions for all users of that network relative to the situation where no online information is provided to users. The analytical presence of the paradox was derived for a specific network structure by using two equilibrium models, the first being the Expected User Equilibrium (EUE) solution (no information scenario) and the other being the User Equilibrium with Recourse (UER) solution (with information scenario). An incentivised computerised route choice game was designed using the concepts of experimental economics and administered in a controlled laboratory environment to investigate the physical presence of the paradox. Aggregate statistics of path flows and Total System Travel Costs (TSTC) were used to compare the experimental results with the theoretical findings. A total of 12 groups of 12 participants completed the experiment and the OIP and the occurrence of the OIP being significant was observed in 11 of the 12 cases. Though information increased travel costs for users on average, it reduced the volatility of travel costs experienced in the no information scenario indicating that information can achieve a more reliable system. Further replications of similar experiments and more importantly field based identification of the phenomena will force transport professionals to be aware of the emergence of the paradox. In addition, studies such as this emphasise the need for the adoption of adaptive traffic assignment techniques to appropriately model the acquisition of information on a road network. PMID:28902854
Effects of the distance among multiple spreaders on the spreading
NASA Astrophysics Data System (ADS)
Hu, Z.-L.; Liu, J.-G.; Yang, G.-Y.; Ren, Z.-M.
2014-04-01
It is very important to investigate the multiple spreaders' effects since the spreading phenomenon is ubiquitous in many complex systems. In this letter, we investigate the effects of the distance among the initial multiple spreaders for regular networks and WS (Watts-Strogatz) small-world networks based on the SIR (Susceptible-Infected-Recovered) model. Assuming the epidemics can spread over the network, the theoretical and experimental results show that for regular networks the larger the distance between spreaders is, the more effective the spreading is. For WS networks, the spreading efficiency will decrease when the distance exceeds a certain value, and a larger connection probability and average degree will result in a smaller distance of the most effective spreading. A better spreading strategy using n spreaders is to choose either the highest k or ks nodes with the condition that there are not any pairs of the n spreaders linked directly (Kitsak M. et al., Nat. Phys., 6 (2010) 888). However, we find that the spreading will be more effective when the distances among the largest-degree spreaders increase. All these results are independent of the network size for the two initial spreaders case. This work may give new insights to explore more effective methods to inhibit the epidemic spreading or increase the information diffusion.
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher
2005-01-01
This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.
Statistical mechanics of complex neural systems and high dimensional data
NASA Astrophysics Data System (ADS)
Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya
2013-03-01
Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks.
NASA Astrophysics Data System (ADS)
Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae
2014-03-01
The semi-flexible biopolymer actin is a ubiquitous component of nearly all biological organisms, playing an important role in many biological processes such as cell structure and motility, cancer invasion and metastasis, muscle contraction, and cell signaling. Concentrated actin networks possess unique viscoelastic properties that have been the subject of much theoretical and experimental work. However, much is still unknown regarding the correlation of the applied stress on the network to the induced filament strain at the molecular level. Here, we use dual optical traps alongside fluorescence microscopy to carry out active microrheology measurements that link mechanical stress to structural response at the micron scale. Specifically, we actively drive microspheres through entangled actin networks while simultaneously measuring the force the surrounding filaments exert on the sphere and visualizing the deformation and subsequent relaxation of fluorescent labeled filaments within the network. These measurements, which provide much needed insight into the link between stress and strain in actin networks, are critical for clarifying our theoretical understanding of the complex viscoelastic behavior exhibited in actin networks.
Locating the source of diffusion in complex networks by time-reversal backward spreading.
Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H Eugene
2016-03-01
Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.
Locating the source of diffusion in complex networks by time-reversal backward spreading
NASA Astrophysics Data System (ADS)
Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H. Eugene
2016-03-01
Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.
An Evolutionary Game Theory Model of Spontaneous Brain Functioning.
Madeo, Dario; Talarico, Agostino; Pascual-Leone, Alvaro; Mocenni, Chiara; Santarnecchi, Emiliano
2017-11-22
Our brain is a complex system of interconnected regions spontaneously organized into distinct networks. The integration of information between and within these networks is a continuous process that can be observed even when the brain is at rest, i.e. not engaged in any particular task. Moreover, such spontaneous dynamics show predictive value over individual cognitive profile and constitute a potential marker in neurological and psychiatric conditions, making its understanding of fundamental importance in modern neuroscience. Here we present a theoretical and mathematical model based on an extension of evolutionary game theory on networks (EGN), able to capture brain's interregional dynamics by balancing emulative and non-emulative attitudes among brain regions. This results in the net behavior of nodes composing resting-state networks identified using functional magnetic resonance imaging (fMRI), determining their moment-to-moment level of activation and inhibition as expressed by positive and negative shifts in BOLD fMRI signal. By spontaneously generating low-frequency oscillatory behaviors, the EGN model is able to mimic functional connectivity dynamics, approximate fMRI time series on the basis of initial subset of available data, as well as simulate the impact of network lesions and provide evidence of compensation mechanisms across networks. Results suggest evolutionary game theory on networks as a new potential framework for the understanding of human brain network dynamics.
Sampling from complex networks using distributed learning automata
NASA Astrophysics Data System (ADS)
Rezvanian, Alireza; Rahmati, Mohammad; Meybodi, Mohammad Reza
2014-02-01
A complex network provides a framework for modeling many real-world phenomena in the form of a network. In general, a complex network is considered as a graph of real world phenomena such as biological networks, ecological networks, technological networks, information networks and particularly social networks. Recently, major studies are reported for the characterization of social networks due to a growing trend in analysis of online social networks as dynamic complex large-scale graphs. Due to the large scale and limited access of real networks, the network model is characterized using an appropriate part of a network by sampling approaches. In this paper, a new sampling algorithm based on distributed learning automata has been proposed for sampling from complex networks. In the proposed algorithm, a set of distributed learning automata cooperate with each other in order to take appropriate samples from the given network. To investigate the performance of the proposed algorithm, several simulation experiments are conducted on well-known complex networks. Experimental results are compared with several sampling methods in terms of different measures. The experimental results demonstrate the superiority of the proposed algorithm over the others.
Information theory in systems biology. Part II: protein-protein interaction and signaling networks.
Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali
2016-03-01
By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Demange, Gabrielle; Wooders, Myrna
2005-01-01
Broad and diverse ranges of activities are conducted within and by organized groups of individuals, including political, economic and social activities. These activities have recently become a subject of intense interest in economics and game theory. Some of the topics investigated in this collection are models of networks of power and privilege, trade networks, co-authorship networks, buyer-seller networks with differentiated products, and networks of medical innovation and the adaptation of new information. Other topics are social norms on punctuality, clubs and the provision of club goods and public goods, research and development and collusive alliances among corporations, and international alliances and trading agreements. While relatively recent, the literature on game theoretic studies of group formation in economics is already vast. This volume provides an introduction to this important literature on game-theoretic treatments of situations with networks, clubs, and coalitions, including some applications.
Inference of gene regulatory networks from time series by Tsallis entropy
2011-01-01
Background The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 ≤ q ≤ 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/. PMID:21545720
A Cross Cultural Validation of Perceptions and Use of Social Network Service: An Exploratory Study
ERIC Educational Resources Information Center
Guo, Chengqi
2009-01-01
The rapid developments Social Network Service (SNS) have offered opportunities to re-visit many seminal theoretical assumptions of technology usage within socio-technical environment. Online social network is a rapidly growing field that imposes new questions to the existing IS research paradigm. It is argued that information systems research must…
Who "owns" the network: a case study of new media artists' use of high-bandwidth networks
NASA Astrophysics Data System (ADS)
Lesage, F.
The objective of this paper is to briefly give an overview of a research project dealing with the social construction of use of information communication technologies among new media artists interested in online collaboration. It will outline the theoretical and methodological tools applied to the case study of the MARCEL Network.
Jang, Kyungeun; Baek, Young Min
2018-03-20
Public health officials (PHOs) are responsible for providing trustworthy information during a public health crisis; however, there is little research on how the public behaves when their expectations for such information are violated. Drawing on media dependency theory and source credibility research as our primary theoretical framework, we tested how credibility of information from PHOs is associated with people's reliance on a particular communication channel in the context of the 2015 Middle East Respiratory Syndrome (MERS) outbreak in South Korea. Using nationally representative data (N = 1036) collected during the MERS outbreak, we found that less credible information from PHOs led to more frequent use of online news, interpersonal networks, and social media for acquiring MERS-related information. However, credibility of information from PHOs was not associated with the use of television news or print newspapers. The theoretical and practical implications of our results on communication channels usage are discussed.
A quantum theoretical approach to information processing in neural networks
NASA Astrophysics Data System (ADS)
Barahona da Fonseca, José; Barahona da Fonseca, Isabel; Suarez Araujo, Carmen Paz; Simões da Fonseca, José
2000-05-01
A reinterpretation of experimental data on learning was used to formulate a law on data acquisition similar to the Hamiltonian of a mechanical system. A matrix of costs in decision making specifies values attributable to a barrier that opposed to hypothesis formation about decision making. The interpretation of the encoding costs as frequencies of oscillatory phenomena leads to a quantum paradigm based in the models of photoelectric effect as well as of a particle against a potential barrier. Cognitive processes are envisaged as complex phenomena represented by structures linked by valence bounds. This metaphor is used to find some prerequisites to certain types of conscious experience as well as to find an explanation for some pathological distortions of cognitive operations as they are represented in the context of the isolobal model. Those quantum phenomena are understood as representing an analogue programming for specific special purpose computations. The formation of complex chemical structures within the context of isolobal theory is understood as an analog quantum paradigm for complex cognitive computations.
ERIC Educational Resources Information Center
Kåhre, Peter
2013-01-01
Introduction: This paper concerns the ontological position of library and informations science in the networked society. The aim of the study is to understand library use and library functions in the age of Internet and artificial intelligent programmed search engines. Theoretical approach: The approach discusses so called sociocognitive tools in…
ERIC Educational Resources Information Center
Darr, Dietrich; Pretzsch, Jurgen
2008-01-01
Purpose: The objective of this paper is to assess the effectiveness of innovation diffusion under group-oriented and individual-oriented extension. Current theoretical notions of innovation diffusion in social networks shall be briefly reviewed, and the concepts of "search" and "innovation" vis-a-vis "transfer" and…
Comparative analysis of two discretizations of Ricci curvature for complex networks.
Samal, Areejit; Sreejith, R P; Gu, Jiao; Liu, Shiping; Saucan, Emil; Jost, Jürgen
2018-06-05
We have performed an empirical comparison of two distinct notions of discrete Ricci curvature for graphs or networks, namely, the Forman-Ricci curvature and Ollivier-Ricci curvature. Importantly, these two discretizations of the Ricci curvature were developed based on different properties of the classical smooth notion, and thus, the two notions shed light on different aspects of network structure and behavior. Nevertheless, our extensive computational analysis in a wide range of both model and real-world networks shows that the two discretizations of Ricci curvature are highly correlated in many networks. Moreover, we show that if one considers the augmented Forman-Ricci curvature which also accounts for the two-dimensional simplicial complexes arising in graphs, the observed correlation between the two discretizations is even higher, especially, in real networks. Besides the potential theoretical implications of these observations, the close relationship between the two discretizations has practical implications whereby Forman-Ricci curvature can be employed in place of Ollivier-Ricci curvature for faster computation in larger real-world networks whenever coarse analysis suffices.
A simplified computational memory model from information processing.
Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang
2016-11-23
This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view.
The system of technical diagnostics of the industrial safety information network
NASA Astrophysics Data System (ADS)
Repp, P. V.
2017-01-01
This research is devoted to problems of safety of the industrial information network. Basic sub-networks, ensuring reliable operation of the elements of the industrial Automatic Process Control System, were identified. The core tasks of technical diagnostics of industrial information safety were presented. The structure of the technical diagnostics system of the information safety was proposed. It includes two parts: a generator of cyber-attacks and the virtual model of the enterprise information network. The virtual model was obtained by scanning a real enterprise network. A new classification of cyber-attacks was proposed. This classification enables one to design an efficient generator of cyber-attacks sets for testing the virtual modes of the industrial information network. The numerical method of the Monte Carlo (with LPτ - sequences of Sobol), and Markov chain was considered as the design method for the cyber-attacks generation algorithm. The proposed system also includes a diagnostic analyzer, performing expert functions. As an integrative quantitative indicator of the network reliability the stability factor (Kstab) was selected. This factor is determined by the weight of sets of cyber-attacks, identifying the vulnerability of the network. The weight depends on the frequency and complexity of cyber-attacks, the degree of damage, complexity of remediation. The proposed Kstab is an effective integral quantitative measure of the information network reliability.
Dynamics analysis of epidemic and information spreading in overlay networks.
Liu, Guirong; Liu, Zhimei; Jin, Zhen
2018-05-07
We establish an SIS-UAU model to present the dynamics of epidemic and information spreading in overlay networks. The overlay network is represented by two layers: one where the dynamics of the epidemic evolves and another where the information spreads. We theoretically derive the explicit formulas for the basic reproduction number of awareness R 0 a by analyzing the self-consistent equation and the basic reproduction number of disease R 0 d by using the next generation matrix. The formula of R 0 d shows that the effect of awareness can reduce the basic reproduction number of disease. In particular, when awareness does not affect epidemic spreading, R 0 d is shown to match the existing theoretical results. Furthermore, we demonstrate that the disease-free equilibrium is globally asymptotically stable if R 0 d <1; and the endemic equilibrium is globally asymptotically stable if R 0 d >1. Finally, numerical simulations show that information plays a vital role in preventing and controlling disease and effectively reduces the final disease scale. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae
2015-03-01
The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.
Finite-time synchronization of complex networks with non-identical nodes and impulsive disturbances
NASA Astrophysics Data System (ADS)
Zhang, Wanli; Li, Chuandong; He, Xing; Li, Hongfei
2018-01-01
This paper investigates the finite-time synchronization of complex networks (CNs) with non-identical nodes and impulsive disturbances. By utilizing stability theories, new 1-norm-based analytical techniques and suitable comparison, systems, several sufficient conditions are obtained to realize the synchronization goal in finite time. State feedback controllers with and without the sign function are designed. Results show that the controllers with sign function can reduce the conservativeness of control gains and the controllers without sign function can overcome the chattering phenomenon. Numerical simulations are offered to verify the effectiveness of the theoretical analysis.
Some comparisons of complexity in dictionary-based and linear computational models.
Gnecco, Giorgio; Kůrková, Věra; Sanguineti, Marcello
2011-03-01
Neural networks provide a more flexible approximation of functions than traditional linear regression. In the latter, one can only adjust the coefficients in linear combinations of fixed sets of functions, such as orthogonal polynomials or Hermite functions, while for neural networks, one may also adjust the parameters of the functions which are being combined. However, some useful properties of linear approximators (such as uniqueness, homogeneity, and continuity of best approximation operators) are not satisfied by neural networks. Moreover, optimization of parameters in neural networks becomes more difficult than in linear regression. Experimental results suggest that these drawbacks of neural networks are offset by substantially lower model complexity, allowing accuracy of approximation even in high-dimensional cases. We give some theoretical results comparing requirements on model complexity for two types of approximators, the traditional linear ones and so called variable-basis types, which include neural networks, radial, and kernel models. We compare upper bounds on worst-case errors in variable-basis approximation with lower bounds on such errors for any linear approximator. Using methods from nonlinear approximation and integral representations tailored to computational units, we describe some cases where neural networks outperform any linear approximator. Copyright © 2010 Elsevier Ltd. All rights reserved.
Efficient embedding of complex networks to hyperbolic space via their Laplacian
Alanis-Lobato, Gregorio; Mier, Pablo; Andrade-Navarro, Miguel A.
2016-01-01
The different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction. PMID:27445157
Efficient embedding of complex networks to hyperbolic space via their Laplacian
NASA Astrophysics Data System (ADS)
Alanis-Lobato, Gregorio; Mier, Pablo; Andrade-Navarro, Miguel A.
2016-07-01
The different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction.
Automated Induction Of Rule-Based Neural Networks
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J.; Goodman, Rodney M.
1994-01-01
Prototype expert systems implemented in software and are functionally equivalent to neural networks set up automatically and placed into operation within minutes following information-theoretic approach to automated acquisition of knowledge from large example data bases. Approach based largely on use of ITRULE computer program.
Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics
Pandini, Alessandro; Fornili, Arianna; Fraternali, Franca; Kleinjung, Jens
2012-01-01
Allostery offers a highly specific way to modulate protein function. Therefore, understanding this mechanism is of increasing interest for protein science and drug discovery. However, allosteric signal transmission is difficult to detect experimentally and to model because it is often mediated by local structural changes propagating along multiple pathways. To address this, we developed a method to identify communication pathways by an information-theoretical analysis of molecular dynamics simulations. Signal propagation was described as information exchange through a network of correlated local motions, modeled as transitions between canonical states of protein fragments. The method was used to describe allostery in two-component regulatory systems. In particular, the transmission from the allosteric site to the signaling surface of the receiver domain NtrC was shown to be mediated by a layer of hub residues. The location of hubs preferentially connected to the allosteric site was found in close agreement with key residues experimentally identified as involved in the signal transmission. The comparison with the networks of the homologues CheY and FixJ highlighted similarities in their dynamics. In particular, we showed that a preorganized network of fragment connections between the allosteric and functional sites exists already in the inactive state of all three proteins.—Pandini, A., Fornili, A., Fraternali, F., Kleinjung, J. Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics. PMID:22071506
Memory Transmission in Small Groups and Large Networks: An Agent-Based Model.
Luhmann, Christian C; Rajaram, Suparna
2015-12-01
The spread of social influence in large social networks has long been an interest of social scientists. In the domain of memory, collaborative memory experiments have illuminated cognitive mechanisms that allow information to be transmitted between interacting individuals, but these experiments have focused on small-scale social contexts. In the current study, we took a computational approach, circumventing the practical constraints of laboratory paradigms and providing novel results at scales unreachable by laboratory methodologies. Our model embodied theoretical knowledge derived from small-group experiments and replicated foundational results regarding collaborative inhibition and memory convergence in small groups. Ultimately, we investigated large-scale, realistic social networks and found that agents are influenced by the agents with which they interact, but we also found that agents are influenced by nonneighbors (i.e., the neighbors of their neighbors). The similarity between these results and the reports of behavioral transmission in large networks offers a major theoretical insight by linking behavioral transmission to the spread of information. © The Author(s) 2015.
Metabolic Compartmentation – A System Level Property of Muscle Cells
Saks, Valdur; Beraud, Nathalie; Wallimann, Theo
2008-01-01
Problems of quantitative investigation of intracellular diffusion and compartmentation of metabolites are analyzed. Principal controversies in recently published analyses of these problems for the living cells are discussed. It is shown that the formal theoretical analysis of diffusion of metabolites based on Fick's equation and using fixed diffusion coefficients for diluted homogenous aqueous solutions, but applied for biological systems in vivo without any comparison with experimental results, may lead to misleading conclusions, which are contradictory to most biological observations. However, if the same theoretical methods are used for analysis of actual experimental data, the apparent diffusion constants obtained are orders of magnitude lower than those in diluted aqueous solutions. Thus, it can be concluded that local restrictions of diffusion of metabolites in a cell are a system-level properties caused by complex structural organization of the cells, macromolecular crowding, cytoskeletal networks and organization of metabolic pathways into multienzyme complexes and metabolons. This results in microcompartmentation of metabolites, their channeling between enzymes and in modular organization of cellular metabolic networks. The perspectives of further studies of these complex intracellular interactions in the framework of Systems Biology are discussed. PMID:19325782
Brain Modularity Mediates the Relation between Task Complexity and Performance
NASA Astrophysics Data System (ADS)
Ye, Fengdan; Yue, Qiuhai; Martin, Randi; Fischer-Baum, Simon; Ramos-Nuã+/-Ez, Aurora; Deem, Michael
Recent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases, and other tasks showing worse performance. A recent theoretical model suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of behavioral tasks. Complex and simple tasks were defined on the basis of whether they drew on executive attention. Consistent with predictions, we found a negative correlation between individuals' modularity and their performance on the complex tasks but a positive correlation with performance on the simple tasks. The results presented here provide a framework for linking measures of whole brain organization to cognitive processing.
FUSE: a profit maximization approach for functional summarization of biological networks.
Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes; Yu, Hanry
2012-03-21
The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI) using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator) that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL) principle to maximize information gain of the summary graph while satisfying the level of detail constraint. We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.
Statistical Physics of Cascading Failures in Complex Networks
NASA Astrophysics Data System (ADS)
Panduranga, Nagendra Kumar
Systems such as the power grid, world wide web (WWW), and internet are categorized as complex systems because of the presence of a large number of interacting elements. For example, the WWW is estimated to have a billion webpages and understanding the dynamics of such a large number of individual agents (whose individual interactions might not be fully known) is a challenging task. Complex network representations of these systems have proved to be of great utility. Statistical physics is the study of emergence of macroscopic properties of systems from the characteristics of the interactions between individual molecules. Hence, statistical physics of complex networks has been an effective approach to study these systems. In this dissertation, I have used statistical physics to study two distinct phenomena in complex systems: i) Cascading failures and ii) Shortest paths in complex networks. Understanding cascading failures is considered to be one of the "holy grails" in the study of complex systems such as the power grid, transportation networks, and economic systems. Studying failures of these systems as percolation on complex networks has proved to be insightful. Previously, cascading failures have been studied extensively using two different models: k-core percolation and interdependent networks. The first part of this work combines the two models into a general model, solves it analytically, and validates the theoretical predictions through extensive computer simulations. The phase diagram of the percolation transition has been systematically studied as one varies the average local k-core threshold and the coupling between networks. The phase diagram of the combined processes is very rich and includes novel features that do not appear in the models which study each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge together and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a smaller occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition cycles from first-order to second-order to two-stage to first-order as the k-core threshold is increased. We setup the analytical equations describing the phase boundaries of the two-stage transition region and we derive the critical exponents for each type of transition. Understanding the shortest paths between individual elements in systems like communication networks and social media networks is important in the study of information cascades in these systems. Often, large heterogeneity can be present in the connections between nodes in these networks. Certain sets of nodes can be more highly connected among themselves than with the nodes from other sets. These sets of nodes are often referred to as 'communities'. The second part of this work studies the effect of the presence of communities on the distribution of shortest paths in a network using a modular Erdős-Renyi network model. In this model, the number of communities and the degree of modularity of the network can be tuned using the parameters of the model. We find that the model reaches a percolation threshold while tuning the degree of modularity of the network and the distribution of the shortest paths in the network can be used as an indicator of how the communities are connected.
Towards the understanding of network information processing in biology
NASA Astrophysics Data System (ADS)
Singh, Vijay
Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.
Ab initio genotype–phenotype association reveals intrinsic modularity in genetic networks
Slonim, Noam; Elemento, Olivier; Tavazoie, Saeed
2006-01-01
Microbial species express an astonishing diversity of phenotypic traits, behaviors, and metabolic capacities. However, our molecular understanding of these phenotypes is based almost entirely on studies in a handful of model organisms that together represent only a small fraction of this phenotypic diversity. Furthermore, many microbial species are not amenable to traditional laboratory analysis because of their exotic lifestyles and/or lack of suitable molecular genetic techniques. As an adjunct to experimental analysis, we have developed a computational information-theoretic framework that produces high-confidence gene–phenotype predictions using cross-species distributions of genes and phenotypes across 202 fully sequenced archaea and eubacteria. In addition to identifying the genetic basis of complex traits, our approach reveals the organization of these genes into generic preferentially co-inherited modules, many of which correspond directly to known enzymatic pathways, molecular complexes, signaling pathways, and molecular machines. PMID:16732191
Percolation and Reinforcement on Complex Networks
NASA Astrophysics Data System (ADS)
Yuan, Xin
Complex networks appear in almost every aspect of our daily life and are widely studied in the fields of physics, mathematics, finance, biology and computer science. This work utilizes percolation theory in statistical physics to explore the percolation properties of complex networks and develops a reinforcement scheme on improving network resilience. This dissertation covers two major parts of my Ph.D. research on complex networks: i) probe--in the context of both traditional percolation and k-core percolation--the resilience of complex networks with tunable degree distributions or directed dependency links under random, localized or targeted attacks; ii) develop and propose a reinforcement scheme to eradicate catastrophic collapses that occur very often in interdependent networks. We first use generating function and probabilistic methods to obtain analytical solutions to percolation properties of interest, such as the giant component size and the critical occupation probability. We study uncorrelated random networks with Poisson, bi-Poisson, power-law, and Kronecker-delta degree distributions and construct those networks which are based on the configuration model. The computer simulation results show remarkable agreement with theoretical predictions. We discover an increase of network robustness as the degree distribution broadens and a decrease of network robustness as directed dependency links come into play under random attacks. We also find that targeted attacks exert the biggest damage to the structure of both single and interdependent networks in k-core percolation. To strengthen the resilience of interdependent networks, we develop and propose a reinforcement strategy and obtain the critical amount of reinforced nodes analytically for interdependent Erdḧs-Renyi networks and numerically for scale-free and for random regular networks. Our mechanism leads to improvement of network stability of the West U.S. power grid. This dissertation provides us with a deeper understanding of the effects of structural features on network stability and fresher insights into designing resilient interdependent infrastructure networks.
What Motivates Young Adults to Talk About Physical Activity on Social Network Sites?
Campo, Shelly; Yang, Jingzhen; Eckler, Petya; Snetselaar, Linda; Janz, Kathleen; Leary, Emily
2017-01-01
Background Electronic word-of-mouth on social network sites has been used successfully in marketing. In social marketing, electronic word-of-mouth about products as health behaviors has the potential to be more effective and reach more young adults than health education through traditional mass media. However, little is known about what motivates people to actively initiate electronic word-of-mouth about health behaviors on their personal pages or profiles on social network sites, thus potentially reaching all their contacts on those sites. Objective This study filled the gap by applying a marketing theoretical model to explore the factors associated with electronic word-of-mouth on social network sites about leisure-time physical activity. Methods A Web survey link was sent to undergraduate students at one of the Midwestern universities and 439 of them completed the survey. Results The average age of the 439 participants was 19 years (SD=1 year, range: 18-24). Results suggested that emotional engagement with leisure-time physical activity (ie, affective involvement in leisure-time physical activity) predicted providing relevant opinions or information on social network sites. Social network site users who perceived stronger ties with all their contacts were more likely to provide and seek leisure-time physical activity opinions and information. People who provided leisure-time physical activity opinions and information were more likely to seek opinions and information, and people who forwarded information about leisure-time physical activity were more likely to chat about it. Conclusions This study shed light on the application of the electronic word-of-mouth theoretical framework in promoting health behaviors. The findings can also guide the development of future social marketing interventions using social network sites to promote leisure-time physical activity. PMID:28642215
The Research on Informal Learning Model of College Students Based on SNS and Case Study
NASA Astrophysics Data System (ADS)
Lu, Peng; Cong, Xiao; Bi, Fangyan; Zhou, Dongdai
2017-03-01
With the rapid development of network technology, informal learning based on online become the main way for college students to learn a variety of subject knowledge. The favor to the SNS community of students and the characteristics of SNS itself provide a good opportunity for the informal learning of college students. This research first analyzes the related research of the informal learning and SNS, next, discusses the characteristics of informal learning and theoretical basis. Then, it proposed an informal learning model of college students based on SNS according to the support role of SNS to the informal learning of students. Finally, according to the theoretical model and the principles proposed in this study, using the Elgg and related tools which is the open source SNS program to achieve the informal learning community. This research is trying to overcome issues such as the lack of social realism, interactivity, resource transfer mode in the current network informal learning communities, so as to provide a new way of informal learning for college students.
The mixed reality of things: emerging challenges for human-information interaction
NASA Astrophysics Data System (ADS)
Spicer, Ryan P.; Russell, Stephen M.; Rosenberg, Evan Suma
2017-05-01
Virtual and mixed reality technology has advanced tremendously over the past several years. This nascent medium has the potential to transform how people communicate over distance, train for unfamiliar tasks, operate in challenging environments, and how they visualize, interact, and make decisions based on complex data. At the same time, the marketplace has experienced a proliferation of network-connected devices and generalized sensors that are becoming increasingly accessible and ubiquitous. As the "Internet of Things" expands to encompass a predicted 50 billion connected devices by 2020, the volume and complexity of information generated in pervasive and virtualized environments will continue to grow exponentially. The convergence of these trends demands a theoretically grounded research agenda that can address emerging challenges for human-information interaction (HII). Virtual and mixed reality environments can provide controlled settings where HII phenomena can be observed and measured, new theories developed, and novel algorithms and interaction techniques evaluated. In this paper, we describe the intersection of pervasive computing with virtual and mixed reality, identify current research gaps and opportunities to advance the fundamental understanding of HII, and discuss implications for the design and development of cyber-human systems for both military and civilian use.
Evolution of Controllability in Interbank Networks
NASA Astrophysics Data System (ADS)
Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido
2013-04-01
The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected ``hub'' institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies.
Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster
NASA Astrophysics Data System (ADS)
Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.
2015-03-01
During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.
NASA Astrophysics Data System (ADS)
Fang, Jin-Qing; Li, Yong
2010-02-01
A large unified hybrid network model with a variable speed growth (LUHNM-VSG) is proposed as third model of the unified hybrid network theoretical framework (UHNTF). A hybrid growth ratio vg of deterministic linking number to random linking number and variable speed growth index α are introduced in it. The main effects of vg and α on topological transition features of the LUHNM-VSG are revealed. For comparison with the other models, we construct a type of the network complexity pyramid with seven levels, in which from the bottom level-1 to the top level-7 of the pyramid simplicity-universality is increasing but complexity-diversity is decreasing. The transition relations between them depend on matching of four hybrid ratios (dr, fd, gr, vg). Thus the most of network models can be investigated in the unification way via four hybrid ratios (dr, fd, gr, vg). The LUHNM-VSG as the level-1 of the pyramid is much better and closer to description of real-world networks as well as has potential application.
Adaptive selection and validation of models of complex systems in the presence of uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell-Maupin, Kathryn; Oden, J. T.
This study describes versions of OPAL, the Occam-Plausibility Algorithm in which the use of Bayesian model plausibilities is replaced with information theoretic methods, such as the Akaike Information Criterion and the Bayes Information Criterion. Applications to complex systems of coarse-grained molecular models approximating atomistic models of polyethylene materials are described. All of these model selection methods take into account uncertainties in the model, the observational data, the model parameters, and the predicted quantities of interest. A comparison of the models chosen by Bayesian model selection criteria and those chosen by the information-theoretic criteria is given.
Adaptive selection and validation of models of complex systems in the presence of uncertainty
Farrell-Maupin, Kathryn; Oden, J. T.
2017-08-01
This study describes versions of OPAL, the Occam-Plausibility Algorithm in which the use of Bayesian model plausibilities is replaced with information theoretic methods, such as the Akaike Information Criterion and the Bayes Information Criterion. Applications to complex systems of coarse-grained molecular models approximating atomistic models of polyethylene materials are described. All of these model selection methods take into account uncertainties in the model, the observational data, the model parameters, and the predicted quantities of interest. A comparison of the models chosen by Bayesian model selection criteria and those chosen by the information-theoretic criteria is given.
Competition between Homophily and Information Entropy Maximization in Social Networks
Zhao, Jichang; Liang, Xiao; Xu, Ke
2015-01-01
In social networks, it is conventionally thought that two individuals with more overlapped friends tend to establish a new friendship, which could be stated as homophily breeding new connections. While the recent hypothesis of maximum information entropy is presented as the possible origin of effective navigation in small-world networks. We find there exists a competition between information entropy maximization and homophily in local structure through both theoretical and experimental analysis. This competition suggests that a newly built relationship between two individuals with more common friends would lead to less information entropy gain for them. We demonstrate that in the evolution of the social network, both of the two assumptions coexist. The rule of maximum information entropy produces weak ties in the network, while the law of homophily makes the network highly clustered locally and the individuals would obtain strong and trust ties. A toy model is also presented to demonstrate the competition and evaluate the roles of different rules in the evolution of real networks. Our findings could shed light on the social network modeling from a new perspective. PMID:26334994
From pull-down data to protein interaction networks and complexes with biological relevance.
Zhang, Bing; Park, Byung-Hoon; Karpinets, Tatiana; Samatova, Nagiza F
2008-04-01
Recent improvements in high-throughput Mass Spectrometry (MS) technology have expedited genome-wide discovery of protein-protein interactions by providing a capability of detecting protein complexes in a physiological setting. Computational inference of protein interaction networks and protein complexes from MS data are challenging. Advances are required in developing robust and seamlessly integrated procedures for assessment of protein-protein interaction affinities, mathematical representation of protein interaction networks, discovery of protein complexes and evaluation of their biological relevance. A multi-step but easy-to-follow framework for identifying protein complexes from MS pull-down data is introduced. It assesses interaction affinity between two proteins based on similarity of their co-purification patterns derived from MS data. It constructs a protein interaction network by adopting a knowledge-guided threshold selection method. Based on the network, it identifies protein complexes and infers their core components using a graph-theoretical approach. It deploys a statistical evaluation procedure to assess biological relevance of each found complex. On Saccharomyces cerevisiae pull-down data, the framework outperformed other more complicated schemes by at least 10% in F(1)-measure and identified 610 protein complexes with high-functional homogeneity based on the enrichment in Gene Ontology (GO) annotation. Manual examination of the complexes brought forward the hypotheses on cause of false identifications. Namely, co-purification of different protein complexes as mediated by a common non-protein molecule, such as DNA, might be a source of false positives. Protein identification bias in pull-down technology, such as the hydrophilic bias could result in false negatives.
Multi-scale integration and predictability in resting state brain activity
Kolchinsky, Artemy; van den Heuvel, Martijn P.; Griffa, Alessandra; Hagmann, Patric; Rocha, Luis M.; Sporns, Olaf; Goñi, Joaquín
2014-01-01
The human brain displays heterogeneous organization in both structure and function. Here we develop a method to characterize brain regions and networks in terms of information-theoretic measures. We look at how these measures scale when larger spatial regions as well as larger connectome sub-networks are considered. This framework is applied to human brain fMRI recordings of resting-state activity and DSI-inferred structural connectivity. We find that strong functional coupling across large spatial distances distinguishes functional hubs from unimodal low-level areas, and that this long-range functional coupling correlates with structural long-range efficiency on the connectome. We also find a set of connectome regions that are both internally integrated and coupled to the rest of the brain, and which resemble previously reported resting-state networks. Finally, we argue that information-theoretic measures are useful for characterizing the functional organization of the brain at multiple scales. PMID:25104933
Measuring, Understanding, and Responding to Covert Social Networks: Passive and Active Tomography
2017-11-29
Methods for generating a random sample of networks with desired properties are important tools for the analysis of social , biological, and information...on Theoretical Foundations for Statistical Network Analysis at the Isaac Newton Institute for Mathematical Sciences at Cambridge U. (organized by...Approach SOCIAL SCIENCES STATISTICS EECS Problems span three disciplines Scientific focus is needed at the interfaces
ERIC Educational Resources Information Center
Doskey, Steven Craig
2014-01-01
This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…
Graph Theory at the Service of Electroencephalograms.
Iakovidou, Nantia D
2017-04-01
The brain is one of the largest and most complex organs in the human body and EEG is a noninvasive electrophysiological monitoring method that is used to record the electrical activity of the brain. Lately, the functional connectivity in human brain has been regarded and studied as a complex network using EEG signals. This means that the brain is studied as a connected system where nodes, or units, represent different specialized brain regions and links, or connections, represent communication pathways between the nodes. Graph theory and theory of complex networks provide a variety of measures, methods, and tools that can be useful to efficiently model, analyze, and study EEG networks. This article is addressed to computer scientists who wish to be acquainted and deal with the study of EEG data and also to neuroscientists who would like to become familiar with graph theoretic approaches and tools to analyze EEG data.
Observability of Boolean multiplex control networks
NASA Astrophysics Data System (ADS)
Wu, Yuhu; Xu, Jingxue; Sun, Xi-Ming; Wang, Wei
2017-04-01
Boolean multiplex (multilevel) networks (BMNs) are currently receiving considerable attention as theoretical arguments for modeling of biological systems and system level analysis. Studying control-related problems in BMNs may not only provide new views into the intrinsic control in complex biological systems, but also enable us to develop a method for manipulating biological systems using exogenous inputs. In this article, the observability of the Boolean multiplex control networks (BMCNs) are studied. First, the dynamical model and structure of BMCNs with control inputs and outputs are constructed. By using of Semi-Tensor Product (STP) approach, the logical dynamics of BMCNs is converted into an equivalent algebraic representation. Then, the observability of the BMCNs with two different kinds of control inputs is investigated by giving necessary and sufficient conditions. Finally, examples are given to illustrate the efficiency of the obtained theoretical results.
NASA Astrophysics Data System (ADS)
Ma, Jing; Zhu, He
2018-06-01
In this study, we propose a novel rumor spreading model in consideration of the individuals' subjective judgment and diverse characteristics. To reflect the diversity of the individuals' characteristics, we introduce two probability distribution functions, which could be chosen arbitrarily or given by empirical data, to characterize individuals' mastering degree of knowledge with respect to the domain of a specific rumor and individuals' rationality degree. Different from existing models, no two persons in our model are identical, and each individual can judge the authenticity of the information, e.g., rumors, with his distinctive characteristics. In addition, by means of the mean-field method, we establish the expression of the dynamics of the rumor propagation in the complex heterogeneous networks and derive the rumor spreading threshold. Through the theoretical analysis, we find that the threshold is independent of the forms of the two introduced functions. Furthermore, we prove the stability of the rumor-free equilibrium set E0. That is if and only if R0 < 1, the rumor-free equilibrium set E0 is globally asymptotically stable. Finally, we conduct a series of numerical simulations to verify the theoretical results and comprehensively illustrate the evolution of the model. The simulation results show that because of the diversity of individuals' characteristics, it becomes more difficult for the rumor to disseminate in the networks and the higher the mean of knowledge and the mean of rationality are, the more time it will take for the model to evolve to the steady state.
Oeldorf-Hirsch, Anne; High, Andrew C; Christensen, John L
2018-04-23
This study investigates the relationship between sharing tracked mobile health (mHealth) information online, supportive communication, feedback, and health behavior. Based on the Integrated Theory of mHealth, our model asserts that sharing tracked health information on social networking sites benefits users' perceptions of their health because of the supportive communication they gain from members of their online social networks and that the amount of feedback people receive moderates these associations. Users of mHealth apps (N = 511) completed an online survey, and results revealed that both sharing tracked health information and receiving feedback from an online social network were positively associated with supportive communication. Network support both corresponded with improved health behavior and mediated the association between sharing health information and users' health behavior. As users received greater amounts of feedback from their online social networks, however, the association between sharing tracked health information and health behavior decreased. Theoretical implications for sharing tracked health information and practical implications for using mHealth apps are discussed.
Mathematical modelling of clostridial acetone-butanol-ethanol fermentation.
Millat, Thomas; Winzer, Klaus
2017-03-01
Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the 'evolution' of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists.
Diederich, Nick; Bartsch, Thorsten; Kohlstedt, Hermann; Ziegler, Martin
2018-06-19
Memristive systems have gained considerable attention in the field of neuromorphic engineering, because they allow the emulation of synaptic functionality in solid state nano-physical systems. In this study, we show that memristive behavior provides a broad working framework for the phenomenological modelling of cellular synaptic mechanisms. In particular, we seek to understand how close a memristive system can account for the biological realism. The basic characteristics of memristive systems, i.e. voltage and memory behavior, are used to derive a voltage-based plasticity rule. We show that this model is suitable to account for a variety of electrophysiology plasticity data. Furthermore, we incorporate the plasticity model into an all-to-all connecting network scheme. Motivated by the auto-associative CA3 network of the hippocampus, we show that the implemented network allows the discrimination and processing of mnemonic pattern information, i.e. the formation of functional bidirectional connections resulting in the formation of local receptive fields. Since the presented plasticity model can be applied to real memristive devices as well, the presented theoretical framework can support both, the design of appropriate memristive devices for neuromorphic computing and the development of complex neuromorphic networks, which account for the specific advantage of memristive devices.
Currency co-movement and network correlation structure of foreign exchange market
NASA Astrophysics Data System (ADS)
Mai, Yong; Chen, Huan; Zou, Jun-Zhong; Li, Sai-Ping
2018-02-01
We study the correlations of exchange rate volatility in the global foreign exchange(FX) market based on complex network graphs. Correlation matrices (CM) and the theoretical information flow method (Infomap) are employed to analyze the modular structure of the global foreign exchange network. The analysis demonstrates that there exist currency modules in the network, which is consistent with the geographical nature of currencies. The European and the East Asian currency modules in the FX network are most significant. We introduce a measure of the impact of individual currency based on its partial correlations with other currencies. We further incorporate an impact elimination method to filter out the impact of core nodes and construct subnetworks after the removal of these core nodes. The result reveals that (i) the US Dollar has prominent global influence on the FX market while the Euro has great impact on European currencies; (ii) the East Asian currency module is more strongly correlated than the European currency module. The strong correlation is a result of the strong co-movement of currencies in the region. The co-movement of currencies is further used to study the formation of international monetary bloc and the result is in good agreement with the consideration based on international trade.
Analyzing the Effects of Network Centric Warfare on Warfighter Empowerment
2002-06-01
5 D ORGANIZATION OF THE STUDY...16 D . THEORETICAL MODEL OF EMPOWERMENT...Technology Defined ............................................................................33 D . IMPLEMENTING IT THROUGH INTEGRATED INFORMATION
Guo, Zhenyuan; Yang, Shaofu; Wang, Jun
2016-12-01
This paper presents theoretical results on global exponential synchronization of multiple memristive neural networks in the presence of external noise by means of two types of distributed pinning control. The multiple memristive neural networks are coupled in a general structure via a nonlinear function, which consists of a linear diffusive term and a discontinuous sign term. A pinning impulsive control law is introduced in the coupled system to synchronize all neural networks. Sufficient conditions are derived for ascertaining global exponential synchronization in mean square. In addition, a pinning adaptive control law is developed to achieve global exponential synchronization in mean square. Both pinning control laws utilize only partial state information received from the neighborhood of the controlled neural network. Simulation results are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Dias, Martin A.
2012-01-01
The purpose of this dissertation is to examine information systems-enabled interorganizational collaborations called public safety networks--their proliferation, information systems architecture, and technology evolution. These networks face immense pressures from member organizations, external stakeholders, and environmental contingencies. This…
A simplified computational memory model from information processing
Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang
2016-01-01
This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view. PMID:27876847
Predicting protein complex geometries with a neural network.
Chae, Myong-Ho; Krull, Florian; Lorenzen, Stephan; Knapp, Ernst-Walter
2010-03-01
A major challenge of the protein docking problem is to define scoring functions that can distinguish near-native protein complex geometries from a large number of non-native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom-pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near-native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge-based energy functions for scoring. We show that a distance-dependent atom pair potential performs much better than a simple atom-pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge-based scoring functions such as ZDOCK 3.0, ZRANK, ITScore-PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network-based scoring function achieves a reasonable performance in rigid-body unbound docking of proteins. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Limited-path-length entanglement percolation in quantum complex networks
NASA Astrophysics Data System (ADS)
Cuquet, Martí; Calsamiglia, John
2011-03-01
We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.
Online Community Detection for Large Complex Networks
Pan, Gang; Zhang, Wangsheng; Wu, Zhaohui; Li, Shijian
2014-01-01
Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The results show that our algorithm's running time is less than the commonly used Louvain algorithm while it gives competitive performance. PMID:25061683
Incoherence-Mediated Remote Synchronization
NASA Astrophysics Data System (ADS)
Zhang, Liyue; Motter, Adilson E.; Nishikawa, Takashi
2017-04-01
In previously identified forms of remote synchronization between two nodes, the intermediate portion of the network connecting the two nodes is not synchronized with them but generally exhibits some coherent dynamics. Here we report on a network phenomenon we call incoherence-mediated remote synchronization (IMRS), in which two noncontiguous parts of the network are identically synchronized while the dynamics of the intermediate part is statistically and information-theoretically incoherent. We identify mirror symmetry in the network structure as a mechanism allowing for such behavior, and show that IMRS is robust against dynamical noise as well as against parameter changes. IMRS may underlie neuronal information processing and potentially lead to network solutions for encryption key distribution and secure communication.
Implementation of quantum key distribution network simulation module in the network simulator NS-3
NASA Astrophysics Data System (ADS)
Mehic, Miralem; Maurhart, Oliver; Rass, Stefan; Voznak, Miroslav
2017-10-01
As the research in quantum key distribution (QKD) technology grows larger and becomes more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. Due to the specificity of the QKD link which requires optical and Internet connection between the network nodes, to deploy a complete testbed containing multiple network hosts and links to validate and verify a certain network algorithm or protocol would be very costly. Network simulators in these circumstances save vast amounts of money and time in accomplishing such a task. The simulation environment offers the creation of complex network topologies, a high degree of control and repeatable experiments, which in turn allows researchers to conduct experiments and confirm their results. In this paper, we described the design of the QKD network simulation module which was developed in the network simulator of version 3 (NS-3). The module supports simulation of the QKD network in an overlay mode or in a single TCP/IP mode. Therefore, it can be used to simulate other network technologies regardless of QKD.
Sturmberg, Joachim P.; Bennett, Jeanette M.; Picard, Martin; Seely, Andrew J. E.
2015-01-01
In this position paper, we submit a synthesis of theoretical models based on physiology, non-equilibrium thermodynamics, and non-linear time-series analysis. Based on an understanding of the human organism as a system of interconnected complex adaptive systems, we seek to examine the relationship between health, complexity, variability, and entropy production, as it might be useful to help understand aging, and improve care for patients. We observe the trajectory of life is characterized by the growth, plateauing and subsequent loss of adaptive function of organ systems, associated with loss of functioning and coordination of systems. Understanding development and aging requires the examination of interdependence among these organ systems. Increasing evidence suggests network interconnectedness and complexity can be captured/measured/associated with the degree and complexity of healthy biologic rhythm variability (e.g., heart and respiratory rate variability). We review physiological mechanisms linking the omics, arousal/stress systems, immune function, and mitochondrial bioenergetics; highlighting their interdependence in normal physiological function and aging. We argue that aging, known to be characterized by a loss of variability, is manifested at multiple scales, within functional units at the small scale, and reflected by diagnostic features at the larger scale. While still controversial and under investigation, it appears conceivable that the integrity of whole body complexity may be, at least partially, reflected in the degree and variability of intrinsic biologic rhythms, which we believe are related to overall system complexity that may be a defining feature of health and it's loss through aging. Harnessing this information for the development of therapeutic and preventative strategies may hold an opportunity to significantly improve the health of our patients across the trajectory of life. PMID:26082722
Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
Li, Xiumin; Small, Michael
2012-06-01
Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.
Theoretical Foundations of Wireless Networks
2015-07-22
Optimal transmission over a fading channel with imperfect channel state information,” in Global Telecommun. Conf., pp. 1–5, Houston TX , December 5-9...SECURITY CLASSIFICATION OF: The goal of this project is to develop a formal theory of wireless networks providing a scientific basis to understand...randomness and optimality. Randomness, in the form of fading, is a defining characteristic of wireless networks. Optimality is a suitable design
NASA Astrophysics Data System (ADS)
Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen
2015-03-01
The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.
Functional Module Analysis for Gene Coexpression Networks with Network Integration.
Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K
2015-01-01
Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.
Recent progress of quantum communication in China (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhang, Qiang
2016-04-01
Quantum communication, based on the quantum physics, can provide information theoretical security. Building a global quantum network is one ultimate goal for the research of quantum information. Here, this talk will review the progress for quantum communication in China, including quantum key distribution over metropolitan area with untrustful relay, field test of quantum entanglement swapping over metropolitan network, the 2000 km quantum key distribution main trunk line, and satellite based quantum communication.
Vakorin, Vasily A.; Mišić, Bratislav; Krakovska, Olga; McIntosh, Anthony Randal
2011-01-01
Variability in source dynamics across the sources in an activated network may be indicative of how the information is processed within a network. Information-theoretic tools allow one not only to characterize local brain dynamics but also to describe interactions between distributed brain activity. This study follows such a framework and explores the relations between signal variability and asymmetry in mutual interdependencies in a data-driven pipeline of non-linear analysis of neuromagnetic sources reconstructed from human magnetoencephalographic (MEG) data collected as a reaction to a face recognition task. Asymmetry in non-linear interdependencies in the network was analyzed using transfer entropy, which quantifies predictive information transfer between the sources. Variability of the source activity was estimated using multi-scale entropy, quantifying the rate of which information is generated. The empirical results are supported by an analysis of synthetic data based on the dynamics of coupled systems with time delay in coupling. We found that the amount of information transferred from one source to another was correlated with the difference in variability between the dynamics of these two sources, with the directionality of net information transfer depending on the time scale at which the sample entropy was computed. The results based on synthetic data suggest that both time delay and strength of coupling can contribute to the relations between variability of brain signals and information transfer between them. Our findings support the previous attempts to characterize functional organization of the activated brain, based on a combination of non-linear dynamics and temporal features of brain connectivity, such as time delay. PMID:22131968
A general framework for a collaborative water quality knowledge and information network.
Dalcanale, Fernanda; Fontane, Darrell; Csapo, Jorge
2011-03-01
Increasing knowledge about the environment has brought about a better understanding of the complexity of the issues, and more information publicly available has resulted into a steady shift from centralized decision making to increasing levels of participatory processes. The management of that information, in turn, is becoming more complex. One of the ways to deal with the complexity is the development of tools that would allow all players, including managers, researchers, educators, stakeholders and the civil society, to be able to contribute to the information system, in any level they are inclined to do so. In this project, a search for the available technology for collaboration, methods of community filtering, and community-based review was performed and the possible implementation of these tools to create a general framework for a collaborative "Water Quality Knowledge and Information Network" was evaluated. The main goals of the network are to advance water quality education and knowledge; encourage distribution and access to data; provide networking opportunities; allow public perceptions and concerns to be collected; promote exchange of ideas; and, give general, open, and free access to information. A reference implementation was made available online and received positive feedback from the community, which also suggested some possible improvements.
A General Framework for a Collaborative Water Quality Knowledge and Information Network
NASA Astrophysics Data System (ADS)
Dalcanale, Fernanda; Fontane, Darrell; Csapo, Jorge
2011-03-01
Increasing knowledge about the environment has brought about a better understanding of the complexity of the issues, and more information publicly available has resulted into a steady shift from centralized decision making to increasing levels of participatory processes. The management of that information, in turn, is becoming more complex. One of the ways to deal with the complexity is the development of tools that would allow all players, including managers, researchers, educators, stakeholders and the civil society, to be able to contribute to the information system, in any level they are inclined to do so. In this project, a search for the available technology for collaboration, methods of community filtering, and community-based review was performed and the possible implementation of these tools to create a general framework for a collaborative "Water Quality Knowledge and Information Network" was evaluated. The main goals of the network are to advance water quality education and knowledge; encourage distribution and access to data; provide networking opportunities; allow public perceptions and concerns to be collected; promote exchange of ideas; and, give general, open, and free access to information. A reference implementation was made available online and received positive feedback from the community, which also suggested some possible improvements.
Gimenez-Pinto, Vianney; Ye, Fangfu; Mbanga, Badel; Selinger, Jonathan V.; Selinger, Robin L. B.
2017-01-01
Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions as orientational order changes. Device fabrication is applicable via current experimental techniques. These results are in qualitative agreement with theoretical predictions, provide insight into experimental observations, and demonstrate the value of finite element methods at the continuum level for designing and engineering liquid crystal polymeric devices. PMID:28349949
Complex Networks in Different Languages: A Study of an Emergent Multilingual Encyclopedia
NASA Astrophysics Data System (ADS)
Pembe, F. Canan; Bingol, Haluk
There is an increasing interest to the study of complex networks in an interdisciplinary way. Language, as a complex network, has been a part of this study due to its importance in human life. Moreover, the Internet has also been at the center of this study by making access to large amounts of information possible. With these ideas in mind, this work aims to evaluate conceptual networks in different languages with the data from a large and open source of information in the Internet, namely Wikipedia. As an evolving multilingual encyclopedia that can be edited by any Internet user, Wikipedia is a good example of an emergent complex system. In this paper, different from previous work on conceptual networks which usually concentrated on single languages, we concentrate on possible ways to compare the usages of different languages and possibly the underlying cultures. This also involves the analysis of local network properties around certain coneepts in different languages. For an initial evaluation, the concept "family" is used to compare the English and German Wikipedias. Although, the work is currently at the beginning, the results are promising.
Chen, Pei; Li, Yongjun; Liu, Xiaoping; Liu, Rui; Chen, Luonan
2017-10-26
The progression of complex diseases, such as diabetes and cancer, is generally a nonlinear process with three stages, i.e., normal state, pre-disease state, and disease state, where the pre-disease state is a critical state or tipping point immediately preceding the disease state. Traditional biomarkers aim to identify a disease state by exploiting the information of differential expressions for the observed molecules, but may fail to detect a pre-disease state because there are generally little significant differences between the normal and pre-disease states. Thus, it is challenging to signal the pre-disease state, which actually implies the disease prediction. In this work, by exploiting the information of differential associations among the observed molecules between the normal and pre-disease states, we propose a temporal differential network based computational method to accurately signal the pre-disease state or predict the occurrence of severe disease. The theoretical foundation of this work is the quantification of the critical state using dynamical network biomarkers. Considering that there is one stationary Markov process before reaching the tipping point, a novel index, inconsistency score (I-score), is proposed to quantitatively measure the change of the stationary processes from the normal state so as to detect the onset of pre-disease state. In other words, a drastic increase of I-score implies the high inconsistency with the preceding stable state and thus signals the upcoming critical transition. This approach is applied to the simulated and real datasets of three diseases, which demonstrates the effectiveness of our method for predicting the deterioration into disease states. Both functional analysis and pathway enrichment also validate the computational results from the perspectives of both molecules and networks. At the molecular network level, this method provides a computational way of unravelling the underlying mechanism of the dynamical progression when a biological system is near the tipping point, and thus detecting the early-warning signal of the imminent critical transition, which may help to achieve timely intervention. Moreover, the rewiring of differential networks effectively extracts discriminatively interpretable features, and systematically demonstrates the dynamical change of a biological system.
Small-World Brain Networks Revisited
Bassett, Danielle S.; Bullmore, Edward T.
2016-01-01
It is nearly 20 years since the concept of a small-world network was first quantitatively defined, by a combination of high clustering and short path length; and about 10 years since this metric of complex network topology began to be widely applied to analysis of neuroimaging and other neuroscience data as part of the rapid growth of the new field of connectomics. Here, we review briefly the foundational concepts of graph theoretical estimation and generation of small-world networks. We take stock of some of the key developments in the field in the past decade and we consider in some detail the implications of recent studies using high-resolution tract-tracing methods to map the anatomical networks of the macaque and the mouse. In doing so, we draw attention to the important methodological distinction between topological analysis of binary or unweighted graphs, which have provided a popular but simple approach to brain network analysis in the past, and the topology of weighted graphs, which retain more biologically relevant information and are more appropriate to the increasingly sophisticated data on brain connectivity emerging from contemporary tract-tracing and other imaging studies. We conclude by highlighting some possible future trends in the further development of weighted small-worldness as part of a deeper and broader understanding of the topology and the functional value of the strong and weak links between areas of mammalian cortex. PMID:27655008
Grossi, Enzo
2006-01-01
Background In recent years a number of algorithms for cardiovascular risk assessment has been proposed to the medical community. These algorithms consider a number of variables and express their results as the percentage risk of developing a major fatal or non-fatal cardiovascular event in the following 10 to 20 years Discussion The author has identified three major pitfalls of these algorithms, linked to the limitation of the classical statistical approach in dealing with this kind of non linear and complex information. The pitfalls are the inability to capture the disease complexity, the inability to capture process dynamics, and the wide confidence interval of individual risk assessment. Artificial Intelligence tools can provide potential advantage in trying to overcome these limitations. The theoretical background and some application examples related to artificial neural networks and fuzzy logic have been reviewed and discussed. Summary The use of predictive algorithms to assess individual absolute risk of cardiovascular future events is currently hampered by methodological and mathematical flaws. The use of newer approaches, such as fuzzy logic and artificial neural networks, linked to artificial intelligence, seems to better address both the challenge of increasing complexity resulting from a correlation between predisposing factors, data on the occurrence of cardiovascular events, and the prediction of future events on an individual level. PMID:16672045
Evolution of Controllability in Interbank Networks
Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido
2013-01-01
The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected “hub” institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies. PMID:23568033
Mutualism supports biodiversity when the direct competition is weak
Pascual-García, Alberto; Bastolla, Ugo
2017-01-01
A key question of theoretical ecology is which properties of ecosystems favour their stability and help maintaining biodiversity. This question recently reconsidered mutualistic systems, generating intense controversy about the role of mutualistic interactions and their network architecture. Here we show analytically and verify with simulations that reducing the effective interspecific competition and the propagation of perturbations positively influences structural stability against environmental perturbations, enhancing persistence. Noteworthy, mutualism reduces the effective interspecific competition only when the direct interspecific competition is weaker than a critical value. This critical competition is in almost all cases larger in pollinator networks than in random networks with the same connectance. Highly connected mutualistic networks reduce the propagation of environmental perturbations, a mechanism reminiscent of MacArthur’s proposal that ecosystem complexity enhances stability. Our analytic framework rationalizes previous contradictory results, and it gives valuable insight on the complex relationship between mutualism and biodiversity. PMID:28232740
Keywords and Co-Occurrence Patterns in the Voynich Manuscript: An Information-Theoretic Analysis
Montemurro, Marcelo A.; Zanette, Damián H.
2013-01-01
The Voynich manuscript has remained so far as a mystery for linguists and cryptologists. While the text written on medieval parchment -using an unknown script system- shows basic statistical patterns that bear resemblance to those from real languages, there are features that suggested to some researches that the manuscript was a forgery intended as a hoax. Here we analyse the long-range structure of the manuscript using methods from information theory. We show that the Voynich manuscript presents a complex organization in the distribution of words that is compatible with those found in real language sequences. We are also able to extract some of the most significant semantic word-networks in the text. These results together with some previously known statistical features of the Voynich manuscript, give support to the presence of a genuine message inside the book. PMID:23805215
Promoting evaluation capacity building in a complex adaptive system.
Lawrenz, Frances; Kollmann, Elizabeth Kunz; King, Jean A; Bequette, Marjorie; Pattison, Scott; Nelson, Amy Grack; Cohn, Sarah; Cardiel, Christopher L B; Iacovelli, Stephanie; Eliou, Gayra Ostgaard; Goss, Juli; Causey, Lauren; Sinkey, Anne; Beyer, Marta; Francisco, Melanie
2018-04-10
This study provides results from an NSF funded, four year, case study about evaluation capacity building in a complex adaptive system, the Nanoscale Informal Science Education Network (NISE Net). The results of the Complex Adaptive Systems as a Model for Network Evaluations (CASNET) project indicate that complex adaptive system concepts help to explain evaluation capacity building in a network. The NISE Network was found to be a complex learning system that was supportive of evaluation capacity building through feedback loops that provided for information sharing and interaction. Participants in the system had different levels of and sources of evaluation knowledge. To be successful at building capacity, the system needed to have a balance between both centralized and decentralized control, coherence, redundancy, and diversity. Embeddedness of individuals within the system also provided support and moved the capacity of the system forward. Finally, success depended on attention being paid to the control of resources. Implications of these findings are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Framework based on communicability and flow to analyze complex network dynamics
NASA Astrophysics Data System (ADS)
Gilson, M.; Kouvaris, N. E.; Deco, G.; Zamora-López, G.
2018-05-01
Graph theory constitutes a widely used and established field providing powerful tools for the characterization of complex networks. The intricate topology of networks can also be investigated by means of the collective dynamics observed in the interactions of self-sustained oscillations (synchronization patterns) or propagationlike processes such as random walks. However, networks are often inferred from real-data-forming dynamic systems, which are different from those employed to reveal their topological characteristics. This stresses the necessity for a theoretical framework dedicated to the mutual relationship between the structure and dynamics in complex networks, as the two sides of the same coin. Here we propose a rigorous framework based on the network response over time (i.e., Green function) to study interactions between nodes across time. For this purpose we define the flow that describes the interplay between the network connectivity and external inputs. This multivariate measure relates to the concepts of graph communicability and the map equation. We illustrate our theory using the multivariate Ornstein-Uhlenbeck process, which describes stable and non-conservative dynamics, but the formalism can be adapted to other local dynamics for which the Green function is known. We provide applications to classical network examples, such as small-world ring and hierarchical networks. Our theory defines a comprehensive framework that is canonically related to directed and weighted networks, thus paving a way to revise the standards for network analysis, from the pairwise interactions between nodes to the global properties of networks including community detection.
Suppressing disease spreading by using information diffusion on multiplex networks.
Wang, Wei; Liu, Quan-Hui; Cai, Shi-Min; Tang, Ming; Braunstein, Lidia A; Stanley, H Eugene
2016-07-06
Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.
Bribery games on interdependent complex networks.
Verma, Prateek; Nandi, Anjan K; Sengupta, Supratim
2018-08-07
Bribe demands present a social conflict scenario where decisions have wide-ranging economic and ethical consequences. Nevertheless, such incidents occur daily in many countries across the globe. Harassment bribery constitute a significant sub-set of such bribery incidents where a government official demands a bribe for providing a service to a citizen legally entitled to it. We employ an evolutionary game-theoretic framework to analyse the evolution of corrupt and honest strategies in structured populations characterized by an interdependent complex network. The effects of changing network topology, average number of links and asymmetry in size of the citizen and officer population on the proliferation of incidents of bribery are explored. A complex network topology is found to be beneficial for the dominance of corrupt strategies over a larger region of phase space when compared with the outcome for a regular network, for equal citizen and officer population sizes. However, the extent of the advantage depends critically on the network degree and topology. A different trend is observed when there is a difference between the citizen and officer population sizes. Under those circumstances, increasing randomness of the underlying citizen network can be beneficial to the fixation of honest officers up to a certain value of the network degree. Our analysis reveals how the interplay between network topology, connectivity and strategy update rules can affect population level outcomes in such asymmetric games. Copyright © 2018 Elsevier Ltd. All rights reserved.
Riera-Fernández, Pablo; Munteanu, Cristian R; Escobar, Manuel; Prado-Prado, Francisco; Martín-Romalde, Raquel; Pereira, David; Villalba, Karen; Duardo-Sánchez, Aliuska; González-Díaz, Humberto
2012-01-21
Graph and Complex Network theory is expanding its application to different levels of matter organization such as molecular, biological, technological, and social networks. A network is a set of items, usually called nodes, with connections between them, which are called links or edges. There are many different experimental and/or theoretical methods to assign node-node links depending on the type of network we want to construct. Unfortunately, the use of a method for experimental reevaluation of the entire network is very expensive in terms of time and resources; thus the development of cheaper theoretical methods is of major importance. In addition, different methods to link nodes in the same type of network are not totally accurate in such a way that they do not always coincide. In this sense, the development of computational methods useful to evaluate connectivity quality in complex networks (a posteriori of network assemble) is a goal of major interest. In this work, we report for the first time a new method to calculate numerical quality scores S(L(ij)) for network links L(ij) (connectivity) based on the Markov-Shannon Entropy indices of order k-th (θ(k)) for network nodes. The algorithm may be summarized as follows: (i) first, the θ(k)(j) values are calculated for all j-th nodes in a complex network already constructed; (ii) A Linear Discriminant Analysis (LDA) is used to seek a linear equation that discriminates connected or linked (L(ij)=1) pairs of nodes experimentally confirmed from non-linked ones (L(ij)=0); (iii) the new model is validated with external series of pairs of nodes; (iv) the equation obtained is used to re-evaluate the connectivity quality of the network, connecting/disconnecting nodes based on the quality scores calculated with the new connectivity function. This method was used to study different types of large networks. The linear models obtained produced the following results in terms of overall accuracy for network reconstruction: Metabolic networks (72.3%), Parasite-Host networks (93.3%), CoCoMac brain cortex co-activation network (89.6%), NW Spain fasciolosis spreading network (97.2%), Spanish financial law network (89.9%) and World trade network for Intelligent & Active Food Packaging (92.8%). In order to seek these models, we studied an average of 55,388 pairs of nodes in each model and a total of 332,326 pairs of nodes in all models. Finally, this method was used to solve a more complicated problem. A model was developed to score the connectivity quality in the Drug-Target network of US FDA approved drugs. In this last model the θ(k) values were calculated for three types of molecular networks representing different levels of organization: drug molecular graphs (atom-atom bonds), protein residue networks (amino acid interactions), and drug-target network (compound-protein binding). The overall accuracy of this model was 76.3%. This work opens a new door to the computational reevaluation of network connectivity quality (collation) for complex systems in molecular, biomedical, technological, and legal-social sciences as well as in world trade and industry. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sabbar, Shaho; Hyun, Daiwon
2016-01-01
After a piece of information is put into a network, its fate depends on the behaviors of the nodes of the network; nodes that are equipped with the hardware and software of the age of information and are more powerful than any time in the past. This study suggests that a useful research for communication, marketing and advertising would be one that looks for patterns in the reactions of the nodes toward different pieces of information. This study has used Facebook to see how people have reacted to different types of messages in terms of liking, sharing and commenting. Rather than looking for universal, generalizable patterns we have tried to examine the practicality of the proposed method. The practical aspect of the study comes after a short theoretical discussion on the issue of flow of information in a digital world. The results revealed dozens of significant relations between the examined variables. This study, its theoretical discussion and results suggest that it would be practical to study the relations between the characteristics of Facebook messages and the type of reactions (liking, sharing and commenting) that they attract.
Patterns of precipitation and soil moisture extremes in Texas, US: A complex network analysis
NASA Astrophysics Data System (ADS)
Sun, Alexander Y.; Xia, Youlong; Caldwell, Todd G.; Hao, Zengchao
2018-02-01
Understanding of the spatial and temporal dynamics of extreme precipitation not only improves prediction skills, but also helps to prioritize hazard mitigation efforts. This study seeks to enhance the understanding of spatiotemporal covariation patterns embedded in precipitation (P) and soil moisture (SM) by using an event-based, complex-network-theoretic approach. Events concurrences are quantified using a nonparametric event synchronization measure, and spatial patterns of hydroclimate variables are analyzed by using several network measures and a community detection algorithm. SM-P coupling is examined using a directional event coincidence analysis measure that takes the order of event occurrences into account. The complex network approach is demonstrated for Texas, US, a region possessing a rich set of hydroclimate features and is frequented by catastrophic flooding. Gridded daily observed P data and simulated SM data are used to create complex networks of P and SM extremes. The uncovered high degree centrality regions and community structures are qualitatively in agreement with the overall existing knowledge of hydroclimate extremes in the study region. Our analyses provide new visual insights on the propagation, connectivity, and synchronicity of P extremes, as well as the SM-P coupling, in this flood-prone region, and can be readily used as a basis for event-driven predictive analytics for other regions.
NASA Astrophysics Data System (ADS)
Erkol, Şirag; Yücel, Gönenç
In this study, the problem of seed selection is investigated. This problem is mainly treated as an optimization problem, which is proved to be NP-hard. There are several heuristic approaches in the literature which mostly use algorithmic heuristics. These approaches mainly focus on the trade-off between computational complexity and accuracy. Although the accuracy of algorithmic heuristics are high, they also have high computational complexity. Furthermore, in the literature, it is generally assumed that complete information on the structure and features of a network is available, which is not the case in most of the times. For the study, a simulation model is constructed, which is capable of creating networks, performing seed selection heuristics, and simulating diffusion models. Novel metric-based seed selection heuristics that rely only on partial information are proposed and tested using the simulation model. These heuristics use local information available from nodes in the synthetically created networks. The performances of heuristics are comparatively analyzed on three different network types. The results clearly show that the performance of a heuristic depends on the structure of a network. A heuristic to be used should be selected after investigating the properties of the network at hand. More importantly, the approach of partial information provided promising results. In certain cases, selection heuristics that rely only on partial network information perform very close to similar heuristics that require complete network data.
Structural controllability of unidirectional bipartite networks
NASA Astrophysics Data System (ADS)
Nacher, Jose C.; Akutsu, Tatsuya
2013-04-01
The interactions between fundamental life molecules, people and social organisations build complex architectures that often result in undesired behaviours. Despite all of the advances made in our understanding of network structures over the past decade, similar progress has not been achieved in the controllability of real-world networks. In particular, an analytical framework to address the controllability of bipartite networks is still absent. Here, we present a dominating set (DS)-based approach to bipartite network controllability that identifies the topologies that are relatively easy to control with the minimum number of driver nodes. Our theoretical calculations, assisted by computer simulations and an evaluation of real-world networks offer a promising framework to control unidirectional bipartite networks. Our analysis should open a new approach to reverting the undesired behaviours in unidirectional bipartite networks at will.
Karbasi, Amin; Salavati, Amir Hesam; Vetterli, Martin
2018-04-01
The connectivity of a neuronal network has a major effect on its functionality and role. It is generally believed that the complex network structure of the brain provides a physiological basis for information processing. Therefore, identifying the network's topology has received a lot of attentions in neuroscience and has been the center of many research initiatives such as Human Connectome Project. Nevertheless, direct and invasive approaches that slice and observe the neural tissue have proven to be time consuming, complex and costly. As a result, the inverse methods that utilize firing activity of neurons in order to identify the (functional) connections have gained momentum recently, especially in light of rapid advances in recording technologies; It will soon be possible to simultaneously monitor the activities of tens of thousands of neurons in real time. While there are a number of excellent approaches that aim to identify the functional connections from firing activities, the scalability of the proposed techniques plays a major challenge in applying them on large-scale datasets of recorded firing activities. In exceptional cases where scalability has not been an issue, the theoretical performance guarantees are usually limited to a specific family of neurons or the type of firing activities. In this paper, we formulate the neural network reconstruction as an instance of a graph learning problem, where we observe the behavior of nodes/neurons (i.e., firing activities) and aim to find the links/connections. We develop a scalable learning mechanism and derive the conditions under which the estimated graph for a network of Leaky Integrate and Fire (LIf) neurons matches the true underlying synaptic connections. We then validate the performance of the algorithm using artificially generated data (for benchmarking) and real data recorded from multiple hippocampal areas in rats.
Blessed Oblivion? Knowledge and Metacognitive Accuracy in Online Social Networks
ERIC Educational Resources Information Center
Moll, Ricarda; Pieschl, Stephanie; Bromme, Rainer
2015-01-01
In order to reap the social gratifications of Online Social Networks (OSNs), users often disclose self-related information, making them potentially vulnerable to their online audiences. We give a brief overview of our theoretical ideas and empirical research about additional cognitive and metacognitive factors relevant for the perception of risk…
Yang, Shiju; Li, Chuandong; Huang, Tingwen
2016-03-01
The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Smart Collaborative Caching for Information-Centric IoT in Fog Computing.
Song, Fei; Ai, Zheng-Yang; Li, Jun-Jie; Pau, Giovanni; Collotta, Mario; You, Ilsun; Zhang, Hong-Ke
2017-11-01
The significant changes enabled by the fog computing had demonstrated that Internet of Things (IoT) urgently needs more evolutional reforms. Limited by the inflexible design philosophy; the traditional structure of a network is hard to meet the latest demands. However, Information-Centric Networking (ICN) is a promising option to bridge and cover these enormous gaps. In this paper, a Smart Collaborative Caching (SCC) scheme is established by leveraging high-level ICN principles for IoT within fog computing paradigm. The proposed solution is supposed to be utilized in resource pooling, content storing, node locating and other related situations. By investigating the available characteristics of ICN, some challenges of such combination are reviewed in depth. The details of building SCC, including basic model and advanced algorithms, are presented based on theoretical analysis and simplified examples. The validation focuses on two typical scenarios: simple status inquiry and complex content sharing. The number of clusters, packet loss probability and other parameters are also considered. The analytical results demonstrate that the performance of our scheme, regarding total packet number and average transmission latency, can outperform that of the original ones. We expect that the SCC will contribute an efficient solution to the related studies.
Smart Collaborative Caching for Information-Centric IoT in Fog Computing
Song, Fei; Ai, Zheng-Yang; Li, Jun-Jie; Zhang, Hong-Ke
2017-01-01
The significant changes enabled by the fog computing had demonstrated that Internet of Things (IoT) urgently needs more evolutional reforms. Limited by the inflexible design philosophy; the traditional structure of a network is hard to meet the latest demands. However, Information-Centric Networking (ICN) is a promising option to bridge and cover these enormous gaps. In this paper, a Smart Collaborative Caching (SCC) scheme is established by leveraging high-level ICN principles for IoT within fog computing paradigm. The proposed solution is supposed to be utilized in resource pooling, content storing, node locating and other related situations. By investigating the available characteristics of ICN, some challenges of such combination are reviewed in depth. The details of building SCC, including basic model and advanced algorithms, are presented based on theoretical analysis and simplified examples. The validation focuses on two typical scenarios: simple status inquiry and complex content sharing. The number of clusters, packet loss probability and other parameters are also considered. The analytical results demonstrate that the performance of our scheme, regarding total packet number and average transmission latency, can outperform that of the original ones. We expect that the SCC will contribute an efficient solution to the related studies. PMID:29104219
Siyah Mansoory, Meysam; Oghabian, Mohammad Ali; Jafari, Amir Homayoun; Shahbabaie, Alireza
2017-01-01
Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obligatory for graph construction and analysis is consistently underestimated by LC, because not all the bivariate distributions, but only the marginals are Gaussian. In a number of studies, Mutual Information (MI) has been employed, as a similarity measure between each two time series of the brain regions, a pure nonlinear measure. Owing to the complex fractal organization of the brain indicating self-similarity, more information on the brain can be revealed by fMRI Fractal Dimension (FD) analysis. In the present paper, Box-Counting Fractal Dimension (BCFD) is introduced for graph theoretical analysis of fMRI data in 17 methamphetamine drug users and 18 normal controls. Then, BCFD performance was evaluated compared to those of LC and MI methods. Moreover, the global topological graph properties of the brain networks inclusive of global efficiency, clustering coefficient and characteristic path length in addict subjects were investigated too. Compared to normal subjects by using statistical tests (P<0.05), topological graph properties were postulated to be disrupted significantly during the resting-state fMRI. Based on the results, analyzing the graph topological properties (representing the brain networks) based on BCFD is a more reliable method than LC and MI.
Approaches for scalable modeling and emulation of cyber systems : LDRD final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Jackson R.; Minnich, Ronald G.; Armstrong, Robert C.
2009-09-01
The goal of this research was to combine theoretical and computational approaches to better understand the potential emergent behaviors of large-scale cyber systems, such as networks of {approx} 10{sup 6} computers. The scale and sophistication of modern computer software, hardware, and deployed networked systems have significantly exceeded the computational research community's ability to understand, model, and predict current and future behaviors. This predictive understanding, however, is critical to the development of new approaches for proactively designing new systems or enhancing existing systems with robustness to current and future cyber threats, including distributed malware such as botnets. We have developed preliminarymore » theoretical and modeling capabilities that can ultimately answer questions such as: How would we reboot the Internet if it were taken down? Can we change network protocols to make them more secure without disrupting existing Internet connectivity and traffic flow? We have begun to address these issues by developing new capabilities for understanding and modeling Internet systems at scale. Specifically, we have addressed the need for scalable network simulation by carrying out emulations of a network with {approx} 10{sup 6} virtualized operating system instances on a high-performance computing cluster - a 'virtual Internet'. We have also explored mappings between previously studied emergent behaviors of complex systems and their potential cyber counterparts. Our results provide foundational capabilities for further research toward understanding the effects of complexity in cyber systems, to allow anticipating and thwarting hackers.« less
Fisher information at the edge of chaos in random Boolean networks.
Wang, X Rosalind; Lizier, Joseph T; Prokopenko, Mikhail
2011-01-01
We study the order-chaos phase transition in random Boolean networks (RBNs), which have been used as models of gene regulatory networks. In particular we seek to characterize the phase diagram in information-theoretic terms, focusing on the effect of the control parameters (activity level and connectivity). Fisher information, which measures how much system dynamics can reveal about the control parameters, offers a natural interpretation of the phase diagram in RBNs. We report that this measure is maximized near the order-chaos phase transitions in RBNs, since this is the region where the system is most sensitive to its parameters. Furthermore, we use this study of RBNs to clarify the relationship between Shannon and Fisher information measures.
Impact of self-healing capability on network robustness
NASA Astrophysics Data System (ADS)
Shang, Yilun
2015-04-01
A wide spectrum of real-life systems ranging from neurons to botnets display spontaneous recovery ability. Using the generating function formalism applied to static uncorrelated random networks with arbitrary degree distributions, the microscopic mechanism underlying the depreciation-recovery process is characterized and the effect of varying self-healing capability on network robustness is revealed. It is found that the self-healing capability of nodes has a profound impact on the phase transition in the emergence of percolating clusters, and that salient difference exists in upholding network integrity under random failures and intentional attacks. The results provide a theoretical framework for quantitatively understanding the self-healing phenomenon in varied complex systems.
Impact of self-healing capability on network robustness.
Shang, Yilun
2015-04-01
A wide spectrum of real-life systems ranging from neurons to botnets display spontaneous recovery ability. Using the generating function formalism applied to static uncorrelated random networks with arbitrary degree distributions, the microscopic mechanism underlying the depreciation-recovery process is characterized and the effect of varying self-healing capability on network robustness is revealed. It is found that the self-healing capability of nodes has a profound impact on the phase transition in the emergence of percolating clusters, and that salient difference exists in upholding network integrity under random failures and intentional attacks. The results provide a theoretical framework for quantitatively understanding the self-healing phenomenon in varied complex systems.
Improving management decision processes through centralized communication linkages
NASA Technical Reports Server (NTRS)
Simanton, D. F.; Garman, J. R.
1985-01-01
Information flow is a critical element to intelligent and timely decision-making. At NASA's Johnson Space Center the flow of information is being automated through the use of a centralized backbone network. The theoretical basis of this network, its implications to the horizontal and vertical flow of information, and the technical challenges involved in its implementation are the focus of this paper. The importance of the use of common tools among programs and some future concerns related to file transfer, graphics transfer, and merging of voice and data are also discussed.
A Theoretical Sketch of Medical Professionalism as a Normative Complex
ERIC Educational Resources Information Center
Holtman, Matthew C.
2008-01-01
Validity arguments for assessment tools intended to measure medical professionalism suffer for lack of a clear theoretical statement of what professionalism is and how it should behave. Drawing on several decades of field research addressing deviance and informal social control among physicians, a theoretical sketch of professionalism is presented…
... National Institute of Neurological Disorders and Stroke Complex Regional Pain Syndrome Complex Regional Pain Syndrome Information Page ... ACTTION Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks. Date last modified: Contact Us ...
Gene expression complex networks: synthesis, identification, and analysis.
Lopes, Fabrício M; Cesar, Roberto M; Costa, Luciano Da F
2011-10-01
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdös-Rényi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabási-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree
Inter-firm Networks, Organizational Learning and Knowledge Updating: An Empirical Study
NASA Astrophysics Data System (ADS)
Zhang, Su-rong; Wang, Wen-ping
In the era of knowledge-based economy which information technology develops rapidly, the rate of knowledge updating has become a critical factor for enterprises to gaining competitive advantage .We build an interactional theoretical model among inter-firm networks, organizational learning and knowledge updating thereby and demonstrate it with empirical study at last. The result shows that inter-firm networks and organizational learning is the source of knowledge updating.
Information spreading in Delay Tolerant Networks based on nodes' behaviors
NASA Astrophysics Data System (ADS)
Wu, Yahui; Deng, Su; Huang, Hongbin
2014-07-01
Information spreading in DTNs (Delay Tolerant Networks) adopts a store-carry-forward method, and nodes receive the message from others directly. However, it is hard to judge whether the information is safe in this communication mode. In this case, a node may observe other nodes' behaviors. At present, there is no theoretical model to describe the varying rule of the nodes' trusting level. In addition, due to the uncertainty of the connectivity in DTN, a node is hard to get the global state of the network. Therefore, a rational model about the node's trusting level should be a function of the node's own observing result. For example, if a node finds k nodes carrying a message, it may trust the information with probability p(k). This paper does not explore the real distribution of p(k), but instead presents a unifying theoretical framework to evaluate the performance of the information spreading in above case. This framework is an extension of the traditional SI (susceptible-infected) model, and is useful when p(k) conforms to any distribution. Simulations based on both synthetic and real motion traces show the accuracy of the framework. Finally, we explore the impact of the nodes' behaviors based on certain special distributions through numerical results.
Ma, Athen; Mondragón, Raúl J.
2015-01-01
A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively. PMID:25799585
Ma, Athen; Mondragón, Raúl J
2015-01-01
A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively.
ERIC Educational Resources Information Center
Harris, Susan C.
1985-01-01
Discusses the theoretical basis for integration of information functions and communication functions, the relevance of this integration in the scientific information cycle, and its positive effect on commodity research networks. The application of this theory is described using three commodity programs of the Centro Internacional de Agricultura…
Estimating User Influence in Online Social Networks Subject to Information Overload
NASA Astrophysics Data System (ADS)
Li, Pei; Sun, Yunchuan; Chen, Yingwen; Tian, Zhi
2014-11-01
Online social networks have attracted remarkable attention since they provide various approaches for hundreds of millions of people to stay connected with their friends. Due to the existence of information overload, the research on diffusion dynamics in epidemiology cannot be adopted directly to that in online social networks. In this paper, we consider diffusion dynamics in online social networks subject to information overload, and model the information-processing process of a user by a queue with a batch arrival and a finite buffer. We use the average number of times a message is processed after it is generated by a given user to characterize the user influence, which is then estimated through theoretical analysis for a given network. We validate the accuracy of our estimation by simulations, and apply the results to study the impacts of different factors on the user influence. Among the observations, we find that the impact of network size on the user influence is marginal while the user influence decreases with assortativity due to information overload, which is particularly interesting.
Using complex networks to characterize international business cycles.
Caraiani, Petre
2013-01-01
There is a rapidly expanding literature on the application of complex networks in economics that focused mostly on stock markets. In this paper, we discuss an application of complex networks to study international business cycles. We construct complex networks based on GDP data from two data sets on G7 and OECD economies. Besides the well-known correlation-based networks, we also use a specific tool for presenting causality in economics, the Granger causality. We consider different filtering methods to derive the stationary component of the GDP series for each of the countries in the samples. The networks were found to be sensitive to the detrending method. While the correlation networks provide information on comovement between the national economies, the Granger causality networks can better predict fluctuations in countries' GDP. By using them, we can obtain directed networks allows us to determine the relative influence of different countries on the global economy network. The US appears as the key player for both the G7 and OECD samples. The use of complex networks is valuable for understanding the business cycle comovements at an international level.
Some Approaches to Modeling Complex Information Systems.
ERIC Educational Resources Information Center
Rao, V. Venkata; Zunde, Pranas
1982-01-01
Brief discussion of state-of-the-art of modeling complex information systems distinguishes between macrolevel and microlevel modeling of such systems. Network layout and hierarchical system models, simulation, information acquisition and dissemination, databases and information storage, and operating systems are described and assessed. Thirty-four…
Combining complex networks and data mining: Why and how
NASA Astrophysics Data System (ADS)
Zanin, M.; Papo, D.; Sousa, P. A.; Menasalvas, E.; Nicchi, A.; Kubik, E.; Boccaletti, S.
2016-05-01
The increasing power of computer technology does not dispense with the need to extract meaningful information out of data sets of ever growing size, and indeed typically exacerbates the complexity of this task. To tackle this general problem, two methods have emerged, at chronologically different times, that are now commonly used in the scientific community: data mining and complex network theory. Not only do complex network analysis and data mining share the same general goal, that of extracting information from complex systems to ultimately create a new compact quantifiable representation, but they also often address similar problems too. In the face of that, a surprisingly low number of researchers turn out to resort to both methodologies. One may then be tempted to conclude that these two fields are either largely redundant or totally antithetic. The starting point of this review is that this state of affairs should be put down to contingent rather than conceptual differences, and that these two fields can in fact advantageously be used in a synergistic manner. An overview of both fields is first provided, some fundamental concepts of which are illustrated. A variety of contexts in which complex network theory and data mining have been used in a synergistic manner are then presented. Contexts in which the appropriate integration of complex network metrics can lead to improved classification rates with respect to classical data mining algorithms and, conversely, contexts in which data mining can be used to tackle important issues in complex network theory applications are illustrated. Finally, ways to achieve a tighter integration between complex networks and data mining, and open lines of research are discussed.
Adhikari, Mohit H; Hacker, Carl D; Siegel, Josh S; Griffa, Alessandra; Hagmann, Patric; Deco, Gustavo; Corbetta, Maurizio
2017-04-01
While several studies have shown that focal lesions affect the communication between structurally normal regions of the brain, and that these changes may correlate with behavioural deficits, their impact on brain's information processing capacity is currently unknown. Here we test the hypothesis that focal lesions decrease the brain's information processing capacity, of which changes in functional connectivity may be a measurable correlate. To measure processing capacity, we turned to whole brain computational modelling to estimate the integration and segregation of information in brain networks. First, we measured functional connectivity between different brain areas with resting state functional magnetic resonance imaging in healthy subjects (n = 26), and subjects who had suffered a cortical stroke (n = 36). We then used a whole-brain network model that coupled average excitatory activities of local regions via anatomical connectivity. Model parameters were optimized in each healthy or stroke participant to maximize correlation between model and empirical functional connectivity, so that the model's effective connectivity was a veridical representation of healthy or lesioned brain networks. Subsequently, we calculated two model-based measures: 'integration', a graph theoretical measure obtained from functional connectivity, which measures the connectedness of brain networks, and 'information capacity', an information theoretical measure that cannot be obtained empirically, representative of the segregative ability of brain networks to encode distinct stimuli. We found that both measures were decreased in stroke patients, as compared to healthy controls, particularly at the level of resting-state networks. Furthermore, we found that these measures, especially information capacity, correlate with measures of behavioural impairment and the segregation of resting-state networks empirically measured. This study shows that focal lesions affect the brain's ability to represent stimuli and task states, and that information capacity measured through whole brain models is a theory-driven measure of processing capacity that could be used as a biomarker of injury for outcome prediction or target for rehabilitation intervention. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Adult IT Programs: Discourse on Pedagogy, Strategy and the Internet.
ERIC Educational Resources Information Center
Maule, R. William
1997-01-01
Degree programs and continuing education for information professionals concern most organizations as they reorganize to capitalize on innovations in networking, online services, and electronic commerce. This article examines theoretical and conceptual foundations for adult information technology (IT) programs and strategies for implementing…
Application of network methods for understanding evolutionary dynamics in discrete habitats.
Greenbaum, Gili; Fefferman, Nina H
2017-06-01
In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.
Research on centrality of urban transport network nodes
NASA Astrophysics Data System (ADS)
Wang, Kui; Fu, Xiufen
2017-05-01
Based on the actual data of urban transport in Guangzhou, 19,150 bus stations in Guangzhou (as of 2014) are selected as nodes. Based on the theory of complex network, the network model of Guangzhou urban transport is constructed. By analyzing the degree centrality index, betweenness centrality index and closeness centrality index of nodes in the network, the level of centrality of each node in the network is studied. From a different point of view to determine the hub node of Guangzhou urban transport network, corresponding to the city's key sites and major transfer sites. The reliability of the network is determined by the stability of some key nodes (transport hub station). The research of network node centralization can provide a theoretical basis for the rational allocation of urban transport network sites and public transport system planning.
Computational Study of the Genomic and Epigenomic Phenomena
NASA Astrophysics Data System (ADS)
Yang, Wenjing
Biological systems are perhaps the ultimate complex systems, uniquely capable of processing and communicating information, reproducing in their lifetimes, and adapting in evolutionary time scales. My dissertation research focuses on using computational approaches to understand the biocomplexity manifested in the multitude of length scales and time scales. At the molecular and cellular level, central to the complex behavior of a biological system is the regulatory network. My research study focused on epigenetics, which is essential for multicellular organisms to establish cellular identity during development or in response to intracellular and environmental stimuli. My computational study of epigenomics is greatly facilitated by recent advances in high-throughput sequencing technology, which enables high-resolution snapshots of epigenomes and transcriptomes. Using human CD4+ T cell as a model system, the dynamical changes in epigenome and transcriptome pertinent to T cell activation were investigated at the genome scale. Going beyond traditional focus on transcriptional regulation, I provided evidences that post-transcriptional regulation may serve as a major component of the regulatory network. In addition, I explored alternative polyadenylation, another novel aspect of gene regulation, and how it cross-talks with the local chromatin structure. As the renowned theoretical biologist Theodosius Dobzhansky said eloquently, "Nothing in biology makes sense except in the light of evolution''. To better understand this ubiquitous driving force in the biological world, I went beyond molecular events in a single organism, and investigated the dynamical changes of population structure along the evolutionary time scale. To this end, we used HIV virus population dynamics in the host immune system as a model system. The evolution of HIV viral population plays a key role in AIDS immunopathogenesis with its exceptionally high mutation rate. However, the theoretical studies of the effect of recombination have been rather limited. Given the phylogenetic and experimental evidences for the high recombination rate and its important role in HIV evolution and epidemics, I established a mathematical model to study the effect of recombination, and explored the complex behavior of this dynamics system.
Community detection in complex networks by using membrane algorithm
NASA Astrophysics Data System (ADS)
Liu, Chuang; Fan, Linan; Liu, Zhou; Dai, Xiang; Xu, Jiamei; Chang, Baoren
Community detection in complex networks is a key problem of network analysis. In this paper, a new membrane algorithm is proposed to solve the community detection in complex networks. The proposed algorithm is based on membrane systems, which consists of objects, reaction rules, and a membrane structure. Each object represents a candidate partition of a complex network, and the quality of objects is evaluated according to network modularity. The reaction rules include evolutionary rules and communication rules. Evolutionary rules are responsible for improving the quality of objects, which employ the differential evolutionary algorithm to evolve objects. Communication rules implement the information exchanged among membranes. Finally, the proposed algorithm is evaluated on synthetic, real-world networks with real partitions known and the large-scaled networks with real partitions unknown. The experimental results indicate the superior performance of the proposed algorithm in comparison with other experimental algorithms.
Information content of contact-pattern representations and predictability of epidemic outbreaks
Holme, Petter
2015-01-01
To understand the contact patterns of a population—who is in contact with whom, and when the contacts happen—is crucial for modeling outbreaks of infectious disease. Traditional theoretical epidemiology assumes that any individual can meet any with equal probability. A more modern approach, network epidemiology, assumes people are connected into a static network over which the disease spreads. Newer yet, temporal network epidemiology, includes the time in the contact representations. In this paper, we investigate the effect of these successive inclusions of more information. Using empirical proximity data, we study both outbreak sizes from unknown sources, and from known states of ongoing outbreaks. In the first case, there are large differences going from a fully mixed simulation to a network, and from a network to a temporal network. In the second case, differences are smaller. We interpret these observations in terms of the temporal network structure of the data sets. For example, a fast overturn of nodes and links seem to make the temporal information more important. PMID:26403504
2003-04-01
gener- ally considered to be passive data . Instead the genetic material should be capable of being algorith - mic information, that is, program code or...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other
A Design Principle for an Autonomous Post-translational Pattern Formation.
Sugai, Shuhei S; Ode, Koji L; Ueda, Hiroki R
2017-04-25
Previous autonomous pattern-formation models often assumed complex molecular and cellular networks. This theoretical study, however, shows that a system composed of one substrate with multisite phosphorylation and a pair of kinase and phosphatase can generate autonomous spatial information, including complex stripe patterns. All (de-)phosphorylation reactions are described with a generic Michaelis-Menten scheme, and all species freely diffuse without pre-existing gradients. Computational simulation upon >23,000,000 randomly generated parameter sets revealed the design motifs of cyclic reaction and enzyme sequestration by slow-diffusing substrates. These motifs constitute short-range positive and long-range negative feedback loops to induce Turing instability. The width and height of spatial patterns can be controlled independently by distinct reaction-diffusion processes. Therefore, multisite reversible post-translational modification can be a ubiquitous source for various patterns without requiring other complex regulations such as autocatalytic regulation of enzymes and is applicable to molecular mechanisms for inducing subcellular localization of proteins driven by post-translational modifications. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Perotti, Juan Ignacio; Tessone, Claudio Juan; Caldarelli, Guido
2015-12-01
The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust, and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the hierarchical mutual information, which is a generalization of the traditional mutual information and makes it possible to compare hierarchical partitions and hierarchical community structures. The normalized version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies and on the hierarchical community structure of artificial and empirical networks. Furthermore, the experiments illustrate some of the practical applications of the hierarchical mutual information, namely the comparison of different community detection methods and the study of the consistency, robustness, and temporal evolution of the hierarchical modular structure of networks.
On the relation between the small world structure and scientific activities.
Ebadi, Ashkan; Schiffauerova, Andrea
2015-01-01
The modern science has become more complex and interdisciplinary in its nature which might encourage researchers to be more collaborative and get engaged in larger collaboration networks. Various aspects of collaboration networks have been examined so far to detect the most determinant factors in knowledge creation and scientific production. One of the network structures that recently attracted much theoretical attention is called small world. It has been suggested that small world can improve the information transmission among the network actors. In this paper, using the data on 12 periods of journal publications of Canadian researchers in natural sciences and engineering, the co-authorship networks of the researchers are created. Through measuring small world indicators, the small worldiness of the mentioned network and its relation with researchers' productivity, quality of their publications, and scientific team size are assessed. Our results show that the examined co-authorship network strictly exhibits the small world properties. In addition, it is suggested that in a small world network researchers expand their team size through getting connected to other experts of the field. This team size expansion may result in higher productivity of the whole team as a result of getting access to new resources, benefitting from the internal referring, and exchanging ideas among the team members. Moreover, although small world network is positively correlated with the quality of the articles in terms of both citation count and journal impact factor, it is negatively related with the average productivity of researchers in terms of the number of their publications.
On the Relation between the Small World Structure and Scientific Activities
Ebadi, Ashkan; Schiffauerova, Andrea
2015-01-01
The modern science has become more complex and interdisciplinary in its nature which might encourage researchers to be more collaborative and get engaged in larger collaboration networks. Various aspects of collaboration networks have been examined so far to detect the most determinant factors in knowledge creation and scientific production. One of the network structures that recently attracted much theoretical attention is called small world. It has been suggested that small world can improve the information transmission among the network actors. In this paper, using the data on 12 periods of journal publications of Canadian researchers in natural sciences and engineering, the co-authorship networks of the researchers are created. Through measuring small world indicators, the small worldiness of the mentioned network and its relation with researchers’ productivity, quality of their publications, and scientific team size are assessed. Our results show that the examined co-authorship network strictly exhibits the small world properties. In addition, it is suggested that in a small world network researchers expand their team size through getting connected to other experts of the field. This team size expansion may result in higher productivity of the whole team as a result of getting access to new resources, benefitting from the internal referring, and exchanging ideas among the team members. Moreover, although small world network is positively correlated with the quality of the articles in terms of both citation count and journal impact factor, it is negatively related with the average productivity of researchers in terms of the number of their publications. PMID:25780922
Topological relationships between brain and social networks.
Sakata, Shuzo; Yamamori, Tetsuo
2007-01-01
Brains are complex networks. Previously, we revealed that specific connected structures are either significantly abundant or rare in cortical networks. However, it remains unknown whether systems from other disciplines have similar architectures to brains. By applying network-theoretical methods, here we show topological similarities between brain and social networks. We found that the statistical relevance of specific tied structures differs between social "friendship" and "disliking" networks, suggesting relation-type-specific topology of social networks. Surprisingly, overrepresented connected structures in brain networks are more similar to those in the friendship networks than to those in other networks. We found that balanced and imbalanced reciprocal connections between nodes are significantly abundant and rare, respectively, whereas these results are unpredictable by simply counting mutual connections. We interpret these results as evidence of positive selection of balanced mutuality between nodes. These results also imply the existence of underlying common principles behind the organization of brain and social networks.
Securing Information with Complex Optical Encryption Networks
2015-08-11
Network Security, Network Vulnerability , Multi-dimentional Processing, optoelectronic devices 16. SECURITY CLASSIFICATION OF: 17. LIMITATION... optoelectronic devices and systems should be analyzed before the retrieval, any hostile hacker will need to possess multi-disciplinary scientific...sophisticated optoelectronic principles and systems where he/she needs to process the information. However, in the military applications, most military
NASA Technical Reports Server (NTRS)
Chow, Edward T.; Woo, Simon S.; James, Mark; Paloulian, George K.
2012-01-01
As communication and networking technologies advance, networks will become highly complex and heterogeneous, interconnecting different network domains. There is a need to provide user authentication and data protection in order to further facilitate critical mission operations, especially in the tactical and mission-critical net-centric networking environment. The Autonomous Information Unit (AIU) technology was designed to provide the fine-grain data access and user control in a net-centric system-testing environment to meet these objectives. The AIU is a fundamental capability designed to enable fine-grain data access and user control in the cross-domain networking environments, where an AIU is composed of the mission data, metadata, and policy. An AIU provides a mechanism to establish trust among deployed AIUs based on recombining shared secrets, authentication and verify users with a username, X.509 certificate, enclave information, and classification level. AIU achieves data protection through (1) splitting data into multiple information pieces using the Shamir's secret sharing algorithm, (2) encrypting each individual information piece using military-grade AES-256 encryption, and (3) randomizing the position of the encrypted data based on the unbiased and memory efficient in-place Fisher-Yates shuffle method. Therefore, it becomes virtually impossible for attackers to compromise data since attackers need to obtain all distributed information as well as the encryption key and the random seeds to properly arrange the data. In addition, since policy can be associated with data in the AIU, different user access and data control strategies can be included. The AIU technology can greatly enhance information assurance and security management in the bandwidth-limited and ad hoc net-centric environments. In addition, AIU technology can be applicable to general complex network domains and applications where distributed user authentication and data protection are necessary. AIU achieves fine-grain data access and user control, reducing the security risk significantly, simplifying the complexity of various security operations, and providing the high information assurance across different network domains.
Kaufman, Scott Barry; Benedek, Mathias; Jung, Rex E.; Kenett, Yoed N.; Jauk, Emanuel; Neubauer, Aljoscha C.; Silvia, Paul J.
2015-01-01
Abstract The brain's default network (DN) has been a topic of considerable empirical interest. In fMRI research, DN activity is associated with spontaneous and self‐generated cognition, such as mind‐wandering, episodic memory retrieval, future thinking, mental simulation, theory of mind reasoning, and creative cognition. Despite large literatures on developmental and disease‐related influences on the DN, surprisingly little is known about the factors that impact normal variation in DN functioning. Using structural equation modeling and graph theoretical analysis of resting‐state fMRI data, we provide evidence that Openness to Experience—a normally distributed personality trait reflecting a tendency to engage in imaginative, creative, and abstract cognitive processes—underlies efficiency of information processing within the DN. Across two studies, Openness predicted the global efficiency of a functional network comprised of DN nodes and corresponding edges. In Study 2, Openness remained a robust predictor—even after controlling for intelligence, age, gender, and other personality variables—explaining 18% of the variance in DN functioning. These findings point to a biological basis of Openness to Experience, and suggest that normally distributed personality traits affect the intrinsic architecture of large‐scale brain systems. Hum Brain Mapp 37:773–779, 2016. © 2015 Wiley Periodicals, Inc. PMID:26610181
Community structure from spectral properties in complex networks
NASA Astrophysics Data System (ADS)
Servedio, V. D. P.; Colaiori, F.; Capocci, A.; Caldarelli, G.
2005-06-01
We analyze the spectral properties of complex networks focusing on their relation to the community structure, and develop an algorithm based on correlations among components of different eigenvectors. The algorithm applies to general weighted networks, and, in a suitably modified version, to the case of directed networks. Our method allows to correctly detect communities in sharply partitioned graphs, however it is useful to the analysis of more complex networks, without a well defined cluster structure, as social and information networks. As an example, we test the algorithm on a large scale data-set from a psychological experiment of free word association, where it proves to be successful both in clustering words, and in uncovering mental association patterns.
Visibility Graph Based Time Series Analysis.
Stephen, Mutua; Gu, Changgui; Yang, Huijie
2015-01-01
Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.
The algorithm study for using the back propagation neural network in CT image segmentation
NASA Astrophysics Data System (ADS)
Zhang, Peng; Liu, Jie; Chen, Chen; Li, Ying Qi
2017-01-01
Back propagation neural network(BP neural network) is a type of multi-layer feed forward network which spread positively, while the error spread backwardly. Since BP network has advantages in learning and storing the mapping between a large number of input and output layers without complex mathematical equations to describe the mapping relationship, it is most widely used. BP can iteratively compute the weight coefficients and thresholds of the network based on the training and back propagation of samples, which can minimize the error sum of squares of the network. Since the boundary of the computed tomography (CT) heart images is usually discontinuous, and it exist large changes in the volume and boundary of heart images, The conventional segmentation such as region growing and watershed algorithm can't achieve satisfactory results. Meanwhile, there are large differences between the diastolic and systolic images. The conventional methods can't accurately classify the two cases. In this paper, we introduced BP to handle the segmentation of heart images. We segmented a large amount of CT images artificially to obtain the samples, and the BP network was trained based on these samples. To acquire the appropriate BP network for the segmentation of heart images, we normalized the heart images, and extract the gray-level information of the heart. Then the boundary of the images was input into the network to compare the differences between the theoretical output and the actual output, and we reinput the errors into the BP network to modify the weight coefficients of layers. Through a large amount of training, the BP network tend to be stable, and the weight coefficients of layers can be determined, which means the relationship between the CT images and the boundary of heart.
What Motivates Young Adults to Talk About Physical Activity on Social Network Sites?
Zhang, Ni; Campo, Shelly; Yang, Jingzhen; Eckler, Petya; Snetselaar, Linda; Janz, Kathleen; Leary, Emily
2017-06-22
Electronic word-of-mouth on social network sites has been used successfully in marketing. In social marketing, electronic word-of-mouth about products as health behaviors has the potential to be more effective and reach more young adults than health education through traditional mass media. However, little is known about what motivates people to actively initiate electronic word-of-mouth about health behaviors on their personal pages or profiles on social network sites, thus potentially reaching all their contacts on those sites. This study filled the gap by applying a marketing theoretical model to explore the factors associated with electronic word-of-mouth on social network sites about leisure-time physical activity. A Web survey link was sent to undergraduate students at one of the Midwestern universities and 439 of them completed the survey. The average age of the 439 participants was 19 years (SD=1 year, range: 18-24). Results suggested that emotional engagement with leisure-time physical activity (ie, affective involvement in leisure-time physical activity) predicted providing relevant opinions or information on social network sites. Social network site users who perceived stronger ties with all their contacts were more likely to provide and seek leisure-time physical activity opinions and information. People who provided leisure-time physical activity opinions and information were more likely to seek opinions and information, and people who forwarded information about leisure-time physical activity were more likely to chat about it. This study shed light on the application of the electronic word-of-mouth theoretical framework in promoting health behaviors. The findings can also guide the development of future social marketing interventions using social network sites to promote leisure-time physical activity. ©Ni Zhang, Shelly Campo, Jingzhen Yang, Petya Eckler, Linda Snetselaar, Kathleen Janz, Emily Leary. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.06.2017.
Brain Network Analysis from High-Resolution EEG Signals
NASA Astrophysics Data System (ADS)
de Vico Fallani, Fabrizio; Babiloni, Fabio
Over the last decade, there has been a growing interest in the detection of the functional connectivity in the brain from different neuroelectromagnetic and hemodynamic signals recorded by several neuro-imaging devices such as the functional Magnetic Resonance Imaging (fMRI) scanner, electroencephalography (EEG) and magnetoencephalography (MEG) apparatus. Many methods have been proposed and discussed in the literature with the aim of estimating the functional relationships among different cerebral structures. However, the necessity of an objective comprehension of the network composed by the functional links of different brain regions is assuming an essential role in the Neuroscience. Consequently, there is a wide interest in the development and validation of mathematical tools that are appropriate to spot significant features that could describe concisely the structure of the estimated cerebral networks. The extraction of salient characteristics from brain connectivity patterns is an open challenging topic, since often the estimated cerebral networks have a relative large size and complex structure. Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory. Since a graph is a mathematical representation of a network, which is essentially reduced to nodes and connections between them, the use of a theoretical graph approach seems relevant and useful as firstly demonstrated on a set of anatomical brain networks. In those studies, the authors have employed two characteristic measures, the average shortest path L and the clustering index C, to extract respectively the global and local properties of the network structure. They have found that anatomical brain networks exhibit many local connections (i.e. a high C) and few random long distance connections (i.e. a low L). These values identify a particular model that interpolate between a regular lattice and a random structure. Such a model has been designated as "small-world" network in analogy with the concept of the small-world phenomenon observed more than 30 years ago in social systems. In a similar way, many types of functional brain networks have been analyzed according to this mathematical approach. In particular, several studies based on different imaging techniques (fMRI, MEG and EEG) have found that the estimated functional networks showed small-world characteristics. In the functional brain connectivity context, these properties have been demonstrated to reflect an optimal architecture for the information processing and propagation among the involved cerebral structures. However, the performance of cognitive and motor tasks as well as the presence of neural diseases has been demonstrated to affect such a small-world topology, as revealed by the significant changes of L and C. Moreover, some functional brain networks have been mostly found to be very unlike the random graphs in their degree-distribution, which gives information about the allocation of the functional links within the connectivity pattern. It was demonstrated that the degree distributions of these networks follow a power-law trend. For this reason those networks are called "scale-free". They still exhibit the small-world phenomenon but tend to contain few nodes that act as highly connected "hubs". Scale-free networks are known to show resistance to failure, facility of synchronization and fast signal processing. Hence, it would be important to see whether the scaling properties of the functional brain networks are altered under various pathologies or experimental tasks. The present Chapter proposes a theoretical graph approach in order to evaluate the functional connectivity patterns obtained from high-resolution EEG signals. In this way, the "Brain Network Analysis" (in analogy with the Social Network Analysis that has emerged as a key technique in modern sociology) represents an effective methodology improving the comprehension of the complex interactions in the brain.
NASA Astrophysics Data System (ADS)
De Domenico, Manlio
2018-03-01
Biological systems, from a cell to the human brain, are inherently complex. A powerful representation of such systems, described by an intricate web of relationships across multiple scales, is provided by complex networks. Recently, several studies are highlighting how simple networks - obtained by aggregating or neglecting temporal or categorical description of biological data - are not able to account for the richness of information characterizing biological systems. More complex models, namely multilayer networks, are needed to account for interdependencies, often varying across time, of biological interacting units within a cell, a tissue or parts of an organism.
Lan, Ganhui; Tu, Yuhai
2016-05-01
Living systems have to constantly sense their external environment and adjust their internal state in order to survive and reproduce. Biological systems, from as complex as the brain to a single E. coli cell, have to process these data in order to make appropriate decisions. How do biological systems sense external signals? How do they process the information? How do they respond to signals? Through years of intense study by biologists, many key molecular players and their interactions have been identified in different biological machineries that carry out these signaling functions. However, an integrated, quantitative understanding of the whole system is still lacking for most cellular signaling pathways, not to say the more complicated neural circuits. To study signaling processes in biology, the key thing to measure is the input-output relationship. The input is the signal itself, such as chemical concentration, external temperature, light (intensity and frequency), and more complex signals such as the face of a cat. The output can be protein conformational changes and covalent modifications (phosphorylation, methylation, etc), gene expression, cell growth and motility, as well as more complex output such as neuron firing patterns and behaviors of higher animals. Due to the inherent noise in biological systems, the measured input-output dependence is often noisy. These noisy data can be analysed by using powerful tools and concepts from information theory such as mutual information, channel capacity, and the maximum entropy hypothesis. This information theory approach has been successfully used to reveal the underlying correlations between key components of biological networks, to set bounds for network performance, and to understand possible network architecture in generating observed correlations. Although the information theory approach provides a general tool in analysing noisy biological data and may be used to suggest possible network architectures in preserving information, it does not reveal the underlying mechanism that leads to the observed input-output relationship, nor does it tell us much about which information is important for the organism and how biological systems use information to carry out specific functions. To do that, we need to develop models of the biological machineries, e.g. biochemical networks and neural networks, to understand the dynamics of biological information processes. This is a much more difficult task. It requires deep knowledge of the underlying biological network-the main players (nodes) and their interactions (links)-in sufficient detail to build a model with predictive power, as well as quantitative input-output measurements of the system under different perturbations (both genetic variations and different external conditions) to test the model predictions to guide further development of the model. Due to the recent growth of biological knowledge thanks in part to high throughput methods (sequencing, gene expression microarray, etc) and development of quantitative in vivo techniques such as various florescence technology, these requirements are starting to be realized in different biological systems. The possible close interaction between quantitative experimentation and theoretical modeling has made systems biology an attractive field for physicists interested in quantitative biology. In this review, we describe some of the recent work in developing a quantitative predictive model of bacterial chemotaxis, which can be considered as the hydrogen atom of systems biology. Using statistical physics approaches, such as the Ising model and Langevin equation, we study how bacteria, such as E. coli, sense and amplify external signals, how they keep a working memory of the stimuli, and how they use these data to compute the chemical gradient. In particular, we will describe how E. coli cells avoid cross-talk in a heterogeneous receptor cluster to keep a ligand-specific memory. We will also study the thermodynamic costs of adaptation for cells to maintain an accurate memory. The statistical physics based approach described here should be useful in understanding design principles for cellular biochemical circuits in general.
2015-07-31
and make the expected decision outcomes. The scenario is based around a scripted storyboard where an organized crime network is operating in a city to...interdicted by law enforcement to disrupt the network. The scenario storyboard was used to develop a probabilistic vehicle traffic model in order to
Computer models of complex multiloop branched pipeline systems
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kolesnikov, S. V.; Eremin, A. V.; Branfileva, A. N.
2013-11-01
This paper describes the principal theoretical concepts of the method used for constructing computer models of complex multiloop branched pipeline networks, and this method is based on the theory of graphs and two Kirchhoff's laws applied to electrical circuits. The models make it possible to calculate velocities, flow rates, and pressures of a fluid medium in any section of pipeline networks, when the latter are considered as single hydraulic systems. On the basis of multivariant calculations the reasons for existing problems can be identified, the least costly methods of their elimination can be proposed, and recommendations for planning the modernization of pipeline systems and construction of their new sections can be made. The results obtained can be applied to complex pipeline systems intended for various purposes (water pipelines, petroleum pipelines, etc.). The operability of the model has been verified on an example of designing a unified computer model of the heat network for centralized heat supply of the city of Samara.
Predicting and Controlling Complex Networks
2015-06-22
vulnerability and to generate a global view of network security against attacks. By deploying network sensors at particular points in the Internet ...48006, 1-6 (2011). 2 13. L. Huang and Y.-C. Lai, “Cascading dynamics in complex quantum networks,” Chaos 21, 025107, 1-6 (2011). This work was selected...by July 2011 issue of Virtual Journal of Quantum Information (http://www.vjquantuminfo.org). 14. W.-X. Wang, Y.-C. Lai, and D. Armbruster, “Cascading
Congestion control strategy on complex network with privilege traffic
NASA Astrophysics Data System (ADS)
Li, Shi-Bao; He, Ya; Liu, Jian-Hang; Zhang, Zhi-Gang; Huang, Jun-Wei
The congestion control of traffic is one of the most important studies in complex networks. In the previous congestion algorithms, all the network traffic is assumed to have the same priority, and the privilege of traffic is ignored. In this paper, a privilege and common traffic congestion control routing strategy (PCR) based on the different priority of traffic is proposed, which can be devised to cope with the different traffic congestion situations. We introduce the concept of privilege traffic in traffic dynamics for the first time and construct a new traffic model which taking into account requirements with different priorities. Besides, a new factor Ui is introduced by the theoretical derivation to characterize the interaction between different traffic routing selection, furthermore, Ui is related to the network throughput. Since the joint optimization among different kinds of traffic is accomplished by PCR, the maximum value of Ui can be significantly reduced and the network performance can be improved observably. The simulation results indicate that the network throughput with PCR has a better performance than the other strategies. Moreover, the network capacity is improved by 25% at least. Additionally, the network throughput is also influenced by privilege traffic number and traffic priority.
S-curve networks and an approximate method for estimating degree distributions of complex networks
NASA Astrophysics Data System (ADS)
Guo, Jin-Li
2010-12-01
In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference values for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, it proposes a finite network model with a bulk growth. The model is said to be an S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barabási-Albert method) is not suitable for the network. It develops an approximate method to predict the growth dynamics of the individual nodes, and uses this to calculate analytically the degree distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-law form. This method can overcome a shortcoming of Barabási-Albert method commonly used in current network research.
Karemere, Hermès; Ribesse, Nathalie; Kahindo, Jean-Bosco; Macq, Jean
2015-01-01
In many African countries, first referral hospitals received little attention from development agencies until recently. We report the evolution of two of them in an unstable region like Eastern Democratic Republic of Congo when receiving the support from development aid program. Specifically, we aimed at studying how actors' network and institutional framework evolved over time and what could matter the most when looking at their performance in such an environment. We performed two cases studies between 2006 and 2010. We used multiple sources of data: reports to document events; health information system for hospital services production, and "key-informants" interviews to interpret the relation between interventions and services production. Our analysis was inspired from complex adaptive system theory. It started from the analysis of events implementation, to explore interaction process between the main agents in each hospital, and the consequence it could have on hospital health services production. This led to the development of new theoretical propositions. Two events implemented in the frame of the development aid program were identified by most of the key-informants interviewed as having the greatest impact on hospital performance: the development of a hospital plan and the performance based financing. They resulted in contrasting interaction process between the main agents between the two hospitals. Two groups of services production were reviewed: consultation at outpatient department and admissions, and surgery. The evolution of both groups of services production were different between both hospitals. By studying two first referral hospitals through the lens of a Complex Adaptive System, their performance in a context of development aid takes a different meaning. Success is not only measured through increased hospital production but through meaningful process of hospital agents'" network adaptation. Expected process is not necessarily a change; strengthened equilibrium and existing institutional arrangement may be a preferable result. Much more attention should be given in future international aid to the proper understanding of the hospital adaptation capacities.
Inferring Boolean network states from partial information
2013-01-01
Networks of molecular interactions regulate key processes in living cells. Therefore, understanding their functionality is a high priority in advancing biological knowledge. Boolean networks are often used to describe cellular networks mathematically and are fitted to experimental datasets. The fitting often results in ambiguities since the interpretation of the measurements is not straightforward and since the data contain noise. In order to facilitate a more reliable mapping between datasets and Boolean networks, we develop an algorithm that infers network trajectories from a dataset distorted by noise. We analyze our algorithm theoretically and demonstrate its accuracy using simulation and microarray expression data. PMID:24006954
Mishori, Ranit; Singh, Lisa Oberoi; Levy, Brendan; Newport, Calvin
2014-04-14
Twitter is becoming an important tool in medicine, but there is little information on Twitter metrics. In order to recommend best practices for information dissemination and diffusion, it is important to first study and analyze the networks. This study describes the characteristics of four medical networks, analyzes their theoretical dissemination potential, their actual dissemination, and the propagation and distribution of tweets. Open Twitter data was used to characterize four networks: the American Medical Association (AMA), the American Academy of Family Physicians (AAFP), the American Academy of Pediatrics (AAP), and the American College of Physicians (ACP). Data were collected between July 2012 and September 2012. Visualization was used to understand the follower overlap between the groups. Actual flow of the tweets for each group was assessed. Tweets were examined using Topsy, a Twitter data aggregator. The theoretical information dissemination potential for the groups is large. A collective community is emerging, where large percentages of individuals are following more than one of the groups. The overlap across groups is small, indicating a limited amount of community cohesion and cross-fertilization. The AMA followers' network is not as active as the other networks. The AMA posted the largest number of tweets while the AAP posted the fewest. The number of retweets for each organization was low indicating dissemination that is far below its potential. To increase the dissemination potential, medical groups should develop a more cohesive community of shared followers. Tweet content must be engaging to provide a hook for retweeting and reaching potential audience. Next steps call for content analysis, assessment of the behavior and actions of the messengers and the recipients, and a larger-scale study that considers other medical groups using Twitter.
Robustness of Oscillatory Behavior in Correlated Networks
Sasai, Takeyuki; Morino, Kai; Tanaka, Gouhei; Almendral, Juan A.; Aihara, Kazuyuki
2015-01-01
Understanding network robustness against failures of network units is useful for preventing large-scale breakdowns and damages in real-world networked systems. The tolerance of networked systems whose functions are maintained by collective dynamical behavior of the network units has recently been analyzed in the framework called dynamical robustness of complex networks. The effect of network structure on the dynamical robustness has been examined with various types of network topology, but the role of network assortativity, or degree–degree correlations, is still unclear. Here we study the dynamical robustness of correlated (assortative and disassortative) networks consisting of diffusively coupled oscillators. Numerical analyses for the correlated networks with Poisson and power-law degree distributions show that network assortativity enhances the dynamical robustness of the oscillator networks but the impact of network disassortativity depends on the detailed network connectivity. Furthermore, we theoretically analyze the dynamical robustness of correlated bimodal networks with two-peak degree distributions and show the positive impact of the network assortativity. PMID:25894574
Bor, Daniel; Seth, Anil K.
2012-01-01
Consciousness has of late become a “hot topic” in neuroscience. Empirical work has centered on identifying potential neural correlates of consciousness (NCCs), with a converging view that the prefrontal parietal network (PPN) is closely associated with this process. Theoretical work has primarily sought to explain how informational properties of this cortical network could account for phenomenal properties of consciousness. However, both empirical and theoretical research has given less focus to the psychological features that may account for the NCCs. The PPN has also been heavily linked with cognitive processes, such as attention. We describe how this literature is under-appreciated in consciousness science, in part due to the increasingly entrenched assumption of a strong dissociation between attention and consciousness. We argue instead that there is more common ground between attention and consciousness than is usually emphasized: although objects can under certain circumstances be attended to in the absence of conscious access, attention as a content selection and boosting mechanism is an important and necessary aspect of consciousness. Like attention, working memory and executive control involve the interlinking of multiple mental objects and have also been closely associated with the PPN. We propose that this set of cognitive functions, in concert with attention, make up the core psychological components of consciousness. One related process, chunking, exploits logical or mnemonic redundancies in a dataset so that it can be recoded and a given task optimized. Chunking has been shown to activate PPN particularly robustly, even compared with other cognitively demanding tasks, such as working memory or mental arithmetic. It is therefore possible that chunking, as a tool to detect useful patterns within an integrated set of intensely processed (attended) information, has a central role to play in consciousness. Following on from this, we suggest that a key evolutionary purpose of consciousness may be to provide innovative solutions to complex or novel problems. PMID:22416238
Information Network Model Query Processing
NASA Astrophysics Data System (ADS)
Song, Xiaopu
Information Networking Model (INM) [31] is a novel database model for real world objects and relationships management. It naturally and directly supports various kinds of static and dynamic relationships between objects. In INM, objects are networked through various natural and complex relationships. INM Query Language (INM-QL) [30] is designed to explore such information network, retrieve information about schema, instance, their attributes, relationships, and context-dependent information, and process query results in the user specified form. INM database management system has been implemented using Berkeley DB, and it supports INM-QL. This thesis is mainly focused on the implementation of the subsystem that is able to effectively and efficiently process INM-QL. The subsystem provides a lexical and syntactical analyzer of INM-QL, and it is able to choose appropriate evaluation strategies and index mechanism to process queries in INM-QL without the user's intervention. It also uses intermediate result structure to hold intermediate query result and other helping structures to reduce complexity of query processing.
Wang, Degeng
2008-01-01
Discrepancy between the abundance of cognate protein and RNA molecules is frequently observed. A theoretical understanding of this discrepancy remains elusive, and it is frequently described as surprises and/or technical difficulties in the literature. Protein and RNA represent different steps of the multi-stepped cellular genetic information flow process, in which they are dynamically produced and degraded. This paper explores a comparison with a similar process in computers - multi-step information flow from storage level to the execution level. Functional similarities can be found in almost every facet of the retrieval process. Firstly, common architecture is shared, as the ribonome (RNA space) and the proteome (protein space) are functionally similar to the computer primary memory and the computer cache memory respectively. Secondly, the retrieval process functions, in both systems, to support the operation of dynamic networks – biochemical regulatory networks in cells and, in computers, the virtual networks (of CPU instructions) that the CPU travels through while executing computer programs. Moreover, many regulatory techniques are implemented in computers at each step of the information retrieval process, with a goal of optimizing system performance. Cellular counterparts can be easily identified for these regulatory techniques. In other words, this comparative study attempted to utilize theoretical insight from computer system design principles as catalysis to sketch an integrative view of the gene expression process, that is, how it functions to ensure efficient operation of the overall cellular regulatory network. In context of this bird’s-eye view, discrepancy between protein and RNA abundance became a logical observation one would expect. It was suggested that this discrepancy, when interpreted in the context of system operation, serves as a potential source of information to decipher regulatory logics underneath biochemical network operation. PMID:18757239
Wang, Degeng
2008-12-01
Discrepancy between the abundance of cognate protein and RNA molecules is frequently observed. A theoretical understanding of this discrepancy remains elusive, and it is frequently described as surprises and/or technical difficulties in the literature. Protein and RNA represent different steps of the multi-stepped cellular genetic information flow process, in which they are dynamically produced and degraded. This paper explores a comparison with a similar process in computers-multi-step information flow from storage level to the execution level. Functional similarities can be found in almost every facet of the retrieval process. Firstly, common architecture is shared, as the ribonome (RNA space) and the proteome (protein space) are functionally similar to the computer primary memory and the computer cache memory, respectively. Secondly, the retrieval process functions, in both systems, to support the operation of dynamic networks-biochemical regulatory networks in cells and, in computers, the virtual networks (of CPU instructions) that the CPU travels through while executing computer programs. Moreover, many regulatory techniques are implemented in computers at each step of the information retrieval process, with a goal of optimizing system performance. Cellular counterparts can be easily identified for these regulatory techniques. In other words, this comparative study attempted to utilize theoretical insight from computer system design principles as catalysis to sketch an integrative view of the gene expression process, that is, how it functions to ensure efficient operation of the overall cellular regulatory network. In context of this bird's-eye view, discrepancy between protein and RNA abundance became a logical observation one would expect. It was suggested that this discrepancy, when interpreted in the context of system operation, serves as a potential source of information to decipher regulatory logics underneath biochemical network operation.
Crosstalk cancellation on linearly and circularly polarized communications satellite links
NASA Technical Reports Server (NTRS)
Overstreet, W. P.; Bostian, C. W.
1979-01-01
The paper discusses the cancellation network approach for reducing crosstalk caused by depolarization on a dual-polarized communications satellite link. If the characteristics of rain depolarization are sufficiently well known, the cancellation network can be designed in a way that reduces system complexity, the most important parameter being the phase of the cross-polarized signal. Relevant theoretical calculations and experimental data are presented. The simplicity of the cancellation system proposed makes it ideal for use with small domestic or private earth terminals.
Toward the establishment of design guidelines for effective 3D perspective interfaces
NASA Astrophysics Data System (ADS)
Fitzhugh, Elisabeth; Dixon, Sharon; Aleva, Denise; Smith, Eric; Ghrayeb, Joseph; Douglas, Lisa
2009-05-01
The propagation of information operation technologies, with correspondingly vast amounts of complex network information to be conveyed, significantly impacts operator workload. Information management research is rife with efforts to develop schemes to aid operators to identify, review, organize, and retrieve the wealth of available data. Data may take on such distinct forms as intelligence libraries, logistics databases, operational environment models, or network topologies. Increased use of taxonomies and semantic technologies opens opportunities to employ network visualization as a display mechanism for diverse information aggregations. The broad applicability of network visualizations is still being tested, but in current usage, the complexity of densely populated abstract networks suggests the potential utility of 3D. Employment of 2.5D in network visualization, using classic perceptual cues, creates a 3D experience within a 2D medium. It is anticipated that use of 3D perspective (2.5D) will enhance user ability to visually inspect large, complex, multidimensional networks. Current research for 2.5D visualizations demonstrates that display attributes, including color, shape, size, lighting, atmospheric effects, and shadows, significantly impact operator experience. However, guidelines for utilization of attributes in display design are limited. This paper discusses pilot experimentation intended to identify potential problem areas arising from these cues and determine how best to optimize perceptual cue settings. Development of optimized design guidelines will ensure that future experiments, comparing network displays with other visualizations, are not confounded or impeded by suboptimal attribute characterization. Current experimentation is anticipated to support development of cost-effective, visually effective methods to implement 3D in military applications.
Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mengjie; Xiao, Feng; Johnson-Paben, Rebecca
2012-01-01
The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by amore » highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.« less
Towards understanding the behavior of physical systems using information theory
NASA Astrophysics Data System (ADS)
Quax, Rick; Apolloni, Andrea; Sloot, Peter M. A.
2013-09-01
One of the goals of complex network analysis is to identify the most influential nodes, i.e., the nodes that dictate the dynamics of other nodes. In the case of autonomous systems or transportation networks, highly connected hubs play a preeminent role in diffusing the flow of information and viruses; in contrast, in language evolution most linguistic norms come from the peripheral nodes who have only few contacts. Clearly a topological analysis of the interactions alone is not sufficient to identify the nodes that drive the state of the network. Here we show how information theory can be used to quantify how the dynamics of individual nodes propagate through a system. We interpret the state of a node as a storage of information about the state of other nodes, which is quantified in terms of Shannon information. This information is transferred through interactions and lost due to noise, and we calculate how far it can travel through a network. We apply this concept to a model of opinion formation in a complex social network to calculate the impact of each node by measuring how long its opinion is remembered by the network. Counter-intuitively we find that the dynamics of opinions are not determined by the hubs or peripheral nodes, but rather by nodes with an intermediate connectivity.
Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao
2018-06-01
Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.
Connectionist Interaction Information Retrieval.
ERIC Educational Resources Information Center
Dominich, Sandor
2003-01-01
Discussion of connectionist views for adaptive clustering in information retrieval focuses on a connectionist clustering technique and activation spreading-based information retrieval model using the interaction information retrieval method. Presents theoretical as well as simulation results as regards computational complexity and includes…
Cascade defense via routing in complex networks
NASA Astrophysics Data System (ADS)
Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen
2015-05-01
As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.
Evolution of biological complexity
Adami, Christoph; Ofria, Charles; Collier, Travis C.
2000-01-01
To make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexity. We show that, because natural selection forces genomes to behave as a natural “Maxwell Demon,” within a fixed environment, genomic complexity is forced to increase. PMID:10781045
Epidemic outbreaks in complex heterogeneous networks
NASA Astrophysics Data System (ADS)
Moreno, Y.; Pastor-Satorras, R.; Vespignani, A.
2002-04-01
We present a detailed analytical and numerical study for the spreading of infections with acquired immunity in complex population networks. We show that the large connectivity fluctuations usually found in these networks strengthen considerably the incidence of epidemic outbreaks. Scale-free networks, which are characterized by diverging connectivity fluctuations in the limit of a very large number of nodes, exhibit the lack of an epidemic threshold and always show a finite fraction of infected individuals. This particular weakness, observed also in models without immunity, defines a new epidemiological framework characterized by a highly heterogeneous response of the system to the introduction of infected individuals with different connectivity. The understanding of epidemics in complex networks might deliver new insights in the spread of information and diseases in biological and technological networks that often appear to be characterized by complex heterogeneous architectures.
Coding and Quantization in Communications and Microeconomics
ERIC Educational Resources Information Center
Xu, Yun
2013-01-01
Since information theory was developed by Claude E. Shannon, in addition to its primary role in communications and networking, it has broadened to find applications in many other areas of science and technology, such as microeconomics, statistics, and neuroscience. This thesis investigates the application of information theoretic viewpoints to two…
Dynamic protoneural networks in plants
Debono, Marc-Williams
2013-01-01
Taking as a basis of discussion Kalanchoe’s spontaneous and evoked extracellular activities recorded at the whole plant level, we put the challenging questions: do these low-voltage variations, together with endocellular events, reflect integrative properties and complex behavior in plants? Does it reflect common perceptive systems in animal and plant species? Is the ability of plants to treat short-term variations and information transfer without nervous system relevant? Is a protoneural construction of the world by lower organisms possible? More generally, the aim of this paper is to reevaluate the probably underestimated role of plant surface potentials in the plant relation life, carefully comparing the biogenesis of both animal and plant organisms in the era of plant neurobiology. Knowing that surface potentials participate at least to morphogenesis, cell to cell coupling, long distance transmission and transduction of stimuli, some hypothesis are given indicating that plants have to be studied as environmental biosensors and non linear dynamic systems able to detect transitional states between perception and response to stimuli. This study is conducted in the frame of the “plasticity paradigm,” which gives a theoretical model of evolutionary processes and suggests some hypothesis about the nature of complexity, information and behavior. PMID:23603975
Cross-frequency coupling in real and virtual brain networks
Jirsa, Viktor; Müller, Viktor
2013-01-01
Information processing in the brain is thought to rely on the convergence and divergence of oscillatory behaviors of widely distributed brain areas. This information flow is captured in its simplest form via the concepts of synchronization and desynchronization and related metrics. More complex forms of information flow are transient synchronizations and multi-frequency behaviors with metrics related to cross-frequency coupling (CFC). It is supposed that CFC plays a crucial role in the organization of large-scale networks and functional integration across large distances. In this study, we describe different CFC measures and test their applicability in simulated and real electroencephalographic (EEG) data obtained during resting state. For these purposes, we derive generic oscillator equations from full brain network models. We systematically model and simulate the various scenarios of CFC under the influence of noise to obtain biologically realistic oscillator dynamics. We find that (i) specific CFC-measures detect correctly in most cases the nature of CFC under noise conditions, (ii) bispectrum (BIS) and bicoherence (BIC) correctly detect the CFCs in simulated data, (iii) empirical resting state EEG show a prominent delta-alpha CFC as identified by specific CFC measures and the more classic BIS and BIC. This coupling was mostly asymmetric (directed) and generally higher in the eyes closed (EC) than in the eyes open (EO) condition. In conjunction, these two sets of measures provide a powerful toolbox to reveal the nature of couplings from experimental data and as such allow inference on the brain state dependent information processing. Methodological advantages of using CFC measures and theoretical significance of delta and alpha interactions during resting and other brain states are discussed. PMID:23840188
Drastic disorder-induced reduction of signal amplification in scale-free networks.
Chacón, Ricardo; Martínez, Pedro J
2015-07-01
Understanding information transmission across a network is a fundamental task for controlling and manipulating both biological and manmade information-processing systems. Here we show how topological resonant-like amplification effects in scale-free networks of signaling devices are drastically reduced when phase disorder in the external signals is considered. This is demonstrated theoretically by means of a starlike network of overdamped bistable systems, and confirmed numerically by simulations of scale-free networks of such systems. The taming effect of the phase disorder is found to be sensitive to the amplification's strength, while the topology-induced amplification mechanism is robust against this kind of quenched disorder in the sense that it does not significantly change the values of the coupling strength where amplification is maximum in its absence.
Impulse-induced optimum signal amplification in scale-free networks.
Martínez, Pedro J; Chacón, Ricardo
2016-04-01
Optimizing information transmission across a network is an essential task for controlling and manipulating generic information-processing systems. Here, we show how topological amplification effects in scale-free networks of signaling devices are optimally enhanced when the impulse transmitted by periodic external signals (time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems subjected to generic zero-mean periodic signals and confirmed numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of increasing values of the signal's impulse is due to a correlative increase of the energy transmitted by the periodic signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism.
Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach
NASA Astrophysics Data System (ADS)
Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin
2017-08-01
Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.
Social networks help to infer causality in the tumor microenvironment.
Crespo, Isaac; Doucey, Marie-Agnès; Xenarios, Ioannis
2016-03-15
Networks have become a popular way to conceptualize a system of interacting elements, such as electronic circuits, social communication, metabolism or gene regulation. Network inference, analysis, and modeling techniques have been developed in different areas of science and technology, such as computer science, mathematics, physics, and biology, with an active interdisciplinary exchange of concepts and approaches. However, some concepts seem to belong to a specific field without a clear transferability to other domains. At the same time, it is increasingly recognized that within some biological systems--such as the tumor microenvironment--where different types of resident and infiltrating cells interact to carry out their functions, the complexity of the system demands a theoretical framework, such as statistical inference, graph analysis and dynamical models, in order to asses and study the information derived from high-throughput experimental technologies. In this article we propose to adopt and adapt the concepts of influence and investment from the world of social network analysis to biological problems, and in particular to apply this approach to infer causality in the tumor microenvironment. We showed that constructing a bidirectional network of influence between cell and cell communication molecules allowed us to determine the direction of inferred regulations at the expression level and correctly recapitulate cause-effect relationships described in literature. This work constitutes an example of a transfer of knowledge and concepts from the world of social network analysis to biomedical research, in particular to infer network causality in biological networks. This causality elucidation is essential to model the homeostatic response of biological systems to internal and external factors, such as environmental conditions, pathogens or treatments.
Epidemic spreading in time-varying community networks.
Ren, Guangming; Wang, Xingyuan
2014-06-01
The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold qc. The epidemic will survive when q > qc and die when q < qc. These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure.
Using Complex Networks to Characterize International Business Cycles
Caraiani, Petre
2013-01-01
Background There is a rapidly expanding literature on the application of complex networks in economics that focused mostly on stock markets. In this paper, we discuss an application of complex networks to study international business cycles. Methodology/Principal Findings We construct complex networks based on GDP data from two data sets on G7 and OECD economies. Besides the well-known correlation-based networks, we also use a specific tool for presenting causality in economics, the Granger causality. We consider different filtering methods to derive the stationary component of the GDP series for each of the countries in the samples. The networks were found to be sensitive to the detrending method. While the correlation networks provide information on comovement between the national economies, the Granger causality networks can better predict fluctuations in countries’ GDP. By using them, we can obtain directed networks allows us to determine the relative influence of different countries on the global economy network. The US appears as the key player for both the G7 and OECD samples. Conclusion The use of complex networks is valuable for understanding the business cycle comovements at an international level. PMID:23483979
NASA Astrophysics Data System (ADS)
Xu, Mingfeng; Pan, Wei; Zhang, Liyue
2018-07-01
Despite the intuition that synchronization of different nodes in coupled oscillator networks results from information exchange between them, it has recently been shown that remote nodes could be partially synchronous even when they are separated by intermediately unsynchronized nodes. Here based on electro-optic system, we report on a more stronger form of such synchronization pattern that is termed as secure remote synchronization, in which two remotely separated nodes could have identically synchronized dynamical behaviors while the rest of the network are both statistically and information-theoretically incoherent relative to the two synchronized nodes. The generalized form of mirror symmetry in the network structure is identified to be a key mechanism allowing for secure remote synchronization. Moreover, this synchronization mode is robust against a wild range of system parameters and noise perturbing the intermediary dynamics. The lack of information about the synchronized dynamics in the rest of the network suggests that our results could potentially lead to network-based solutions for secure key distribution and secure communication.
2007-06-01
information flow involved in network attacks. This kind of information can be invaluable in learning how to best setup and defend computer networks...administrators, and those interested in learning about securing networks a way to conceptualize this complex system of computing. NTAV3D will provide a three...teaching with visual and other components can make learning more effective” (Baxley et al, 2006). A hyperbox (Alpern and Carter, 1991) is
Bassett, Danielle S; Sporns, Olaf
2017-01-01
Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system. PMID:28230844
Power-rate-distortion analysis for wireless video communication under energy constraint
NASA Astrophysics Data System (ADS)
He, Zhihai; Liang, Yongfang; Ahmad, Ishfaq
2004-01-01
In video coding and streaming over wireless communication network, the power-demanding video encoding operates on the mobile devices with limited energy supply. To analyze, control, and optimize the rate-distortion (R-D) behavior of the wireless video communication system under the energy constraint, we need to develop a power-rate-distortion (P-R-D) analysis framework, which extends the traditional R-D analysis by including another dimension, the power consumption. Specifically, in this paper, we analyze the encoding mechanism of typical video encoding systems and develop a parametric video encoding architecture which is fully scalable in computational complexity. Using dynamic voltage scaling (DVS), a hardware technology recently developed in CMOS circuits design, the complexity scalability can be translated into the power consumption scalability of the video encoder. We investigate the rate-distortion behaviors of the complexity control parameters and establish an analytic framework to explore the P-R-D behavior of the video encoding system. Both theoretically and experimentally, we show that, using this P-R-D model, the encoding system is able to automatically adjust its complexity control parameters to match the available energy supply of the mobile device while maximizing the picture quality. The P-R-D model provides a theoretical guideline for system design and performance optimization in wireless video communication under energy constraint, especially over the wireless video sensor network.
The physics of complex systems in information and biology
NASA Astrophysics Data System (ADS)
Walker, Dylan
Citation networks have re-emerged as a topic intense interest in the complex networks community with the recent availability of large-scale data sets. The ranking of citation networks is a necessary practice as a means to improve information navigability and search. Unlike many information networks, the aging characteristics of citation networks require the development of new ranking methods. To account for strong aging characteristics of citation networks, we modify the PageRank algorithm by initially distributing random surfers exponentially with age, in favor of more recent publications. The output of this algorithm, which we call CiteRank, is interpreted as approximate traffic to individual publications in a simple model of how researchers find new information. We optimize parameters of our algorithm to achieve the best performance. The results are compared for two rather different citation networks: all American Physical Society publications between 1893-2003 and the set of high-energy physics theory (hep-th) preprints. Despite major differences between these two networks, we find that their optimal parameters for the CiteRank algorithm are remarkably similar. The advantages and performance of CiteRank over more conventional methods of ranking publications are discussed. Collaborative voting systems have emerged as an abundant form of real-world, complex information systems that exist in a variety of online applications. These systems are comprised of large populations of users that collectively submit and vote on objects. While the specific properties of these systems vary widely, many of them share a core set of features and dynamical behaviors that govern their evolution. We study a subset of these systems that involve material of a time-critical nature as in the popular example of news items. We consider a general model system in which articles are introduced, voted on by a population of users, and subsequently expire after a proscribed period of time. To study the interaction between popularity and quality, we introduce simple stochastic models of user behavior that approximate differing user quality and susceptibility to the common notion of popularity. We define a metric to quantify user reputation in a manner that is self-consistent, adaptable and content-blind and shows good correlation with the probability that a user behaves in an optimal fashion. We further construct a mechanism for ranking documents that take into account user reputation and provides substantial improvement in the time-critical performance of the system. The structure of complex systems have been well studied in the context of both information and biological systems. More recently, dynamics in complex systems that occur over the background of the underlying network has received a great deal of attention. In particular, the study of fluctuations in complex systems has emerged as an issue central to understanding dynamical behavior. We approach the problem of collective effects of the underlying network on dynamical fluctuations by considering the protein-protein interaction networks for the system of the living cell. We consider two types of fluctuations in the mass-action equilibrium in protein binding networks. The first type is driven by relatively slow changes in total concentrations (copy numbers) of interacting proteins. The second type, to which we refer to as spontaneous, is caused by quickly decaying thermodynamic deviations away from the mass-action equilibrium of the system. As such they are amenable to methods of equilibrium statistical mechanics used in our study. We investigate the effects of network connectivity on these fluctuations by comparing them to different scenarios in which the interacting pair is isolated form the rest of the network. Such comparison allows us to analytically derive upper and lower bounds on network fluctuations. The collective effects are shown to sometimes lead to relatively large amplification of spontaneous fluctuations as compared to the expectation for isolated dimers. As a consequence of this, the strength of both types of fluctuations is positively correlated with the overall network connectivity of proteins forming the complex. On the other hand, the relative amplitude of fluctuations is negatively correlated with the equilibrium concentration of the complex. Our general findings are illustrated using a curated network of protein-protein interactions and multi-protein complexes in bakers yeast with experimentally determined protein concentrations.
NASA Astrophysics Data System (ADS)
Liu, Chuang; Zhan, Xiu-Xiu; Zhang, Zi-Ke; Sun, Gui-Quan; Hui, Pak Ming
2015-11-01
Recently, information transmission models motivated by the classical epidemic propagation, have been applied to a wide-range of social systems, generally assume that information mainly transmits among individuals via peer-to-peer interactions on social networks. In this paper, we consider one more approach for users to get information: the out-of-social-network influence. Empirical analyzes of eight typical events’ diffusion on a very large micro-blogging system, Sina Weibo, show that the external influence has significant impact on information spreading along with social activities. In addition, we propose a theoretical model to interpret the spreading process via both internal and external channels, considering three essential properties: (i) memory effect; (ii) role of spreaders; and (iii) non-redundancy of contacts. Experimental and mathematical results indicate that the information indeed spreads much quicker and broader with mutual effects of the internal and external influences. More importantly, the present model reveals that the event characteristic would highly determine the essential spreading patterns once the network structure is established. The results may shed some light on the in-depth understanding of the underlying dynamics of information transmission on real social networks.
Braithwaite, Jeffrey; Churruca, Kate; Long, Janet C; Ellis, Louise A; Herkes, Jessica
2018-04-30
Implementation science has a core aim - to get evidence into practice. Early in the evidence-based medicine movement, this task was construed in linear terms, wherein the knowledge pipeline moved from evidence created in the laboratory through to clinical trials and, finally, via new tests, drugs, equipment, or procedures, into clinical practice. We now know that this straight-line thinking was naïve at best, and little more than an idealization, with multiple fractures appearing in the pipeline. The knowledge pipeline derives from a mechanistic and linear approach to science, which, while delivering huge advances in medicine over the last two centuries, is limited in its application to complex social systems such as healthcare. Instead, complexity science, a theoretical approach to understanding interconnections among agents and how they give rise to emergent, dynamic, systems-level behaviors, represents an increasingly useful conceptual framework for change. Herein, we discuss what implementation science can learn from complexity science, and tease out some of the properties of healthcare systems that enable or constrain the goals we have for better, more effective, more evidence-based care. Two Australian examples, one largely top-down, predicated on applying new standards across the country, and the other largely bottom-up, adopting medical emergency teams in over 200 hospitals, provide empirical support for a complexity-informed approach to implementation. The key lessons are that change can be stimulated in many ways, but a triggering mechanism is needed, such as legislation or widespread stakeholder agreement; that feedback loops are crucial to continue change momentum; that extended sweeps of time are involved, typically much longer than believed at the outset; and that taking a systems-informed, complexity approach, having regard for existing networks and socio-technical characteristics, is beneficial. Construing healthcare as a complex adaptive system implies that getting evidence into routine practice through a step-by-step model is not feasible. Complexity science forces us to consider the dynamic properties of systems and the varying characteristics that are deeply enmeshed in social practices, whilst indicating that multiple forces, variables, and influences must be factored into any change process, and that unpredictability and uncertainty are normal properties of multi-part, intricate systems.
A mathematical model for generating bipartite graphs and its application to protein networks
NASA Astrophysics Data System (ADS)
Nacher, J. C.; Ochiai, T.; Hayashida, M.; Akutsu, T.
2009-12-01
Complex systems arise in many different contexts from large communication systems and transportation infrastructures to molecular biology. Most of these systems can be organized into networks composed of nodes and interacting edges. Here, we present a theoretical model that constructs bipartite networks with the particular feature that the degree distribution can be tuned depending on the probability rate of fundamental processes. We then use this model to investigate protein-domain networks. A protein can be composed of up to hundreds of domains. Each domain represents a conserved sequence segment with specific functional tasks. We analyze the distribution of domains in Homo sapiens and Arabidopsis thaliana organisms and the statistical analysis shows that while (a) the number of domain types shared by k proteins exhibits a power-law distribution, (b) the number of proteins composed of k types of domains decays as an exponential distribution. The proposed mathematical model generates bipartite graphs and predicts the emergence of this mixing of (a) power-law and (b) exponential distributions. Our theoretical and computational results show that this model requires (1) growth process and (2) copy mechanism.
NASA Astrophysics Data System (ADS)
Eom, Young-Ho; Jo, Hang-Hyun
2015-05-01
Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.
An efficient link prediction index for complex military organization
NASA Astrophysics Data System (ADS)
Fan, Changjun; Liu, Zhong; Lu, Xin; Xiu, Baoxin; Chen, Qing
2017-03-01
Quality of information is crucial for decision-makers to judge the battlefield situations and design the best operation plans, however, real intelligence data are often incomplete and noisy, where missing links prediction methods and spurious links identification algorithms can be applied, if modeling the complex military organization as the complex network where nodes represent functional units and edges denote communication links. Traditional link prediction methods usually work well on homogeneous networks, but few for the heterogeneous ones. And the military network is a typical heterogeneous network, where there are different types of nodes and edges. In this paper, we proposed a combined link prediction index considering both the nodes' types effects and nodes' structural similarities, and demonstrated that it is remarkably superior to all the 25 existing similarity-based methods both in predicting missing links and identifying spurious links in a real military network data; we also investigated the algorithms' robustness under noisy environment, and found the mistaken information is more misleading than incomplete information in military areas, which is different from that in recommendation systems, and our method maintained the best performance under the condition of small noise. Since the real military network intelligence must be carefully checked at first due to its significance, and link prediction methods are just adopted to purify the network with the left latent noise, the method proposed here is applicable in real situations. In the end, as the FINC-E model, here used to describe the complex military organizations, is also suitable to many other social organizations, such as criminal networks, business organizations, etc., thus our method has its prospects in these areas for many tasks, like detecting the underground relationships between terrorists, predicting the potential business markets for decision-makers, and so on.
Game-Theoretical Design of an Adaptive Distributed Dissemination Protocol for VANETs.
Iza-Paredes, Cristhian; Mezher, Ahmad Mohamad; Aguilar Igartua, Mónica; Forné, Jordi
2018-01-19
Road safety applications envisaged for Vehicular Ad Hoc Networks (VANETs) depend largely on the dissemination of warning messages to deliver information to concerned vehicles. The intended applications, as well as some inherent VANET characteristics, make data dissemination an essential service and a challenging task in this kind of networks. This work lays out a decentralized stochastic solution for the data dissemination problem through two game-theoretical mechanisms. Given the non-stationarity induced by a highly dynamic topology, diverse network densities, and intermittent connectivity, a solution for the formulated game requires an adaptive procedure able to exploit the environment changes. Extensive simulations reveal that our proposal excels in terms of number of transmissions, lower end-to-end delay and reduced overhead while maintaining high delivery ratio, compared to other proposals.
Game-Theoretical Design of an Adaptive Distributed Dissemination Protocol for VANETs
Mezher, Ahmad Mohamad; Aguilar Igartua, Mónica
2018-01-01
Road safety applications envisaged for Vehicular Ad Hoc Networks (VANETs) depend largely on the dissemination of warning messages to deliver information to concerned vehicles. The intended applications, as well as some inherent VANET characteristics, make data dissemination an essential service and a challenging task in this kind of networks. This work lays out a decentralized stochastic solution for the data dissemination problem through two game-theoretical mechanisms. Given the non-stationarity induced by a highly dynamic topology, diverse network densities, and intermittent connectivity, a solution for the formulated game requires an adaptive procedure able to exploit the environment changes. Extensive simulations reveal that our proposal excels in terms of number of transmissions, lower end-to-end delay and reduced overhead while maintaining high delivery ratio, compared to other proposals. PMID:29351255
Chen, Liang; Xue, Wei; Tokuda, Naoyuki
2010-08-01
In many pattern classification/recognition applications of artificial neural networks, an object to be classified is represented by a fixed sized 2-dimensional array of uniform type, which corresponds to the cells of a 2-dimensional grid of the same size. A general neural network structure, called an undistricted neural network, which takes all the elements in the array as inputs could be used for problems such as these. However, a districted neural network can be used to reduce the training complexity. A districted neural network usually consists of two levels of sub-neural networks. Each of the lower level neural networks, called a regional sub-neural network, takes the elements in a region of the array as its inputs and is expected to output a temporary class label, called an individual opinion, based on the partial information of the entire array. The higher level neural network, called an assembling sub-neural network, uses the outputs (opinions) of regional sub-neural networks as inputs, and by consensus derives the label decision for the object. Each of the sub-neural networks can be trained separately and thus the training is less expensive. The regional sub-neural networks can be trained and performed in parallel and independently, therefore a high speed can be achieved. We prove theoretically in this paper, using a simple model, that a districted neural network is actually more stable than an undistricted neural network in noisy environments. We conjecture that the result is valid for all neural networks. This theory is verified by experiments involving gender classification and human face recognition. We conclude that a districted neural network is highly recommended for neural network applications in recognition or classification of 2-dimensional array patterns in highly noisy environments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.
Gao, Zhongke; Jin, Ningde
2009-06-01
The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.
Quantifying networks complexity from information geometry viewpoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felice, Domenico, E-mail: domenico.felice@unicam.it; Mancini, Stefano; INFN-Sezione di Perugia, Via A. Pascoli, I-06123 Perugia
We consider a Gaussian statistical model whose parameter space is given by the variances of random variables. Underlying this model we identify networks by interpreting random variables as sitting on vertices and their correlations as weighted edges among vertices. We then associate to the parameter space a statistical manifold endowed with a Riemannian metric structure (that of Fisher-Rao). Going on, in analogy with the microcanonical definition of entropy in Statistical Mechanics, we introduce an entropic measure of networks complexity. We prove that it is invariant under networks isomorphism. Above all, considering networks as simplicial complexes, we evaluate this entropy onmore » simplexes and find that it monotonically increases with their dimension.« less
Psychology and social networks: a dynamic network theory perspective.
Westaby, James D; Pfaff, Danielle L; Redding, Nicholas
2014-04-01
Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Amancio, Diego Raphael
2014-12-01
Concepts and methods of complex networks have been applied to probe the properties of a myriad of real systems [1]. The finding that written texts modeled as graphs share several properties of other completely different real systems has inspired the study of language as a complex system [2]. Actually, language can be represented as a complex network in its several levels of complexity. As a consequence, morphological, syntactical and semantical properties have been employed in the construction of linguistic networks [3]. Even the character level has been useful to unfold particular patterns [4,5]. In the review by Cong and Liu [6], the authors emphasize the need to use the topological information of complex networks modeling the various spheres of the language to better understand its origins, evolution and organization. In addition, the authors cite the use of networks in applications aiming at holistic typology and stylistic variations. In this context, I will discuss some possible directions that could be followed in future research directed towards the understanding of language via topological characterization of complex linguistic networks. In addition, I will comment the use of network models for language processing applications. Additional prospects for future practical research lines will also be discussed in this comment.
The Human Thalamus Is an Integrative Hub for Functional Brain Networks
Bertolero, Maxwell A.
2017-01-01
The thalamus is globally connected with distributed cortical regions, yet the functional significance of this extensive thalamocortical connectivity remains largely unknown. By performing graph-theoretic analyses on thalamocortical functional connectivity data collected from human participants, we found that most thalamic subdivisions display network properties that are capable of integrating multimodal information across diverse cortical functional networks. From a meta-analysis of a large dataset of functional brain-imaging experiments, we further found that the thalamus is involved in multiple cognitive functions. Finally, we found that focal thalamic lesions in humans have widespread distal effects, disrupting the modular organization of cortical functional networks. This converging evidence suggests that the human thalamus is a critical hub region that could integrate diverse information being processed throughout the cerebral cortex as well as maintain the modular structure of cortical functional networks. SIGNIFICANCE STATEMENT The thalamus is traditionally viewed as a passive relay station of information from sensory organs or subcortical structures to the cortex. However, the thalamus has extensive connections with the entire cerebral cortex, which can also serve to integrate information processing between cortical regions. In this study, we demonstrate that multiple thalamic subdivisions display network properties that are capable of integrating information across multiple functional brain networks. Moreover, the thalamus is engaged by tasks requiring multiple cognitive functions. These findings support the idea that the thalamus is involved in integrating information across cortical networks. PMID:28450543
Vehicle dynamic analysis using neuronal network algorithms
NASA Astrophysics Data System (ADS)
Oloeriu, Florin; Mocian, Oana
2014-06-01
Theoretical developments of certain engineering areas, the emergence of new investigation tools, which are better and more precise and their implementation on-board the everyday vehicles, all these represent main influence factors that impact the theoretical and experimental study of vehicle's dynamic behavior. Once the implementation of these new technologies onto the vehicle's construction had been achieved, it had led to more and more complex systems. Some of the most important, such as the electronic control of engine, transmission, suspension, steering, braking and traction had a positive impact onto the vehicle's dynamic behavior. The existence of CPU on-board vehicles allows data acquisition and storage and it leads to a more accurate and better experimental and theoretical study of vehicle dynamics. It uses the information offered directly by the already on-board built-in elements of electronic control systems. The technical literature that studies vehicle dynamics is entirely focused onto parametric analysis. This kind of approach adopts two simplifying assumptions. Functional parameters obey certain distribution laws, which are known in classical statistics theory. The second assumption states that the mathematical models are previously known and have coefficients that are not time-dependent. Both the mentioned assumptions are not confirmed in real situations: the functional parameters do not follow any known statistical repartition laws and the mathematical laws aren't previously known and contain families of parameters and are mostly time-dependent. The purpose of the paper is to present a more accurate analysis methodology that can be applied when studying vehicle's dynamic behavior. A method that provides the setting of non-parametrical mathematical models for vehicle's dynamic behavior is relying on neuronal networks. This method contains coefficients that are time-dependent. Neuronal networks are mostly used in various types' system controls, thus being a non-linear process identification algorithm. The common use of neuronal networks for non-linear processes is justified by the fact that both have the ability to organize by themselves. That is why the neuronal networks best define intelligent systems, thus the word `neuronal' is sending one's mind to the biological neuron cell. The paper presents how to better interpret data fed from the on-board computer and a new way of processing that data to better model the real life dynamic behavior of the vehicle.
Unlocking Proteomic Heterogeneity in Complex Diseases through Visual Analytics
Bhavnani, Suresh K.; Dang, Bryant; Bellala, Gowtham; Divekar, Rohit; Visweswaran, Shyam; Brasier, Allan; Kurosky, Alex
2015-01-01
Despite years of preclinical development, biological interventions designed to treat complex diseases like asthma often fail in phase III clinical trials. These failures suggest that current methods to analyze biomedical data might be missing critical aspects of biological complexity such as the assumption that cases and controls come from homogeneous distributions. Here we discuss why and how methods from the rapidly evolving field of visual analytics can help translational teams (consisting of biologists, clinicians, and bioinformaticians) to address the challenge of modeling and inferring heterogeneity in the proteomic and phenotypic profiles of patients with complex diseases. Because a primary goal of visual analytics is to amplify the cognitive capacities of humans for detecting patterns in complex data, we begin with an overview of the cognitive foundations for the field of visual analytics. Next, we organize the primary ways in which a specific form of visual analytics called networks have been used to model and infer biological mechanisms, which help to identify the properties of networks that are particularly useful for the discovery and analysis of proteomic heterogeneity in complex diseases. We describe one such approach called subject-protein networks, and demonstrate its application on two proteomic datasets. This demonstration provides insights to help translational teams overcome theoretical, practical, and pedagogical hurdles for the widespread use of subject-protein networks for analyzing molecular heterogeneities, with the translational goal of designing biomarker-based clinical trials, and accelerating the development of personalized approaches to medicine. PMID:25684269
Computational analysis of complex systems: Applications to population dynamics and networks
NASA Astrophysics Data System (ADS)
Molnar, Ferenc
In most complex evolving systems, we can often find a critical subset of the constituents that can initiate a global change in the entire system. For example, in complex networks, a critical subset of nodes can efficiently spread information, influence, or control dynamical processes over the entire network. Similarly, in nonlinear dynamics, we can locate key variables, or find the necessary parameters, to reach the attraction basin of a desired global state. In both cases, a fundamental goal is finding the ability to efficiently control these systems. We study two distinct complex systems in this dissertation, exploring these topics. First, we analyze a population dynamics model describing interactions of sex-structured population groups. Specifically, we analyze how a sex-linked genetic trait's ecological consequence (population survival or extinction) can be influenced by the presence of sex-specific cultural mortality traits, motivated by the desire to expand the theoretical understanding of the role of biased sex ratios in organisms. We analyze dynamics within a single population group, as well as between competing groups. We find that there is a finite range of sex ratio bias that can be maintained in stable equilibrium by sex-specific mortalities. We also find that the outcome of an invasion and the ensuing between-group competition depends not on larger equilibrium group densities, but on the higher allocation of sex-ratio genes. When we extend the model with diffusive dispersal, we find that a critical patch size for achieving positive growth only exists if the population expands into an empty environment. If a resident population is already present that can be exploited by the invading group, then any small seed of invader can advance from rarity, in the mean-field approximation, as long as the local competition dynamics favors the invader's survival. Most spatial models assume initial populations with a uniform distribution inside a finite patch; a simple, but not a cost-efficient approach. We show, using a novel application of simulated annealing, that a specific, non-trivial shape of spatial distribution can minimize the total cost of successful invasion, i.e., the cost of ecological restoration. Further, our approach can be generalized to essentially any reaction-diffusion model with diffusive spreading. In the second part of the dissertation we conduct an extensive study of minimum dominating sets (MDS) in complex networks; particularly, in scale-free networks. MDS is the smallest subset of nodes in a network that can reach every other node as nearest neighbors, thus it provides a key subset of nodes that play critical role in controllability and observability of social, biological, and technological networks. Continued interest in network control, monitoring and influencing of complex networks motivates our research of understanding the properties and practical application-related issues of the MDS. Our study of the scaling behavior reveals that the size of MDS always scales linearly with network size, as long as the power-law degree exponent gamma of the degree distribution is larger than 2. However, when gamma<2, a domination transition occurs, allowing the MDS size to become O(1), leading to easily dominated networks, under certain structural conditions. Motivated by practical applicability in large networks, we develop a new dominating set selection method, derived from probabilistic node selection techniques, which can select small dominating sets without complete network topology information. We also show that the effectiveness of our method, as well as the effectiveness of other heuristics of dominating set selection, strongly depends on the assortativity of networks. Finally, we conduct a numerical study to analyze the fraction of nodes that remain dominated, after the network is damaged, and some nodes are removed. We find that dominating sets optimized for small size are particularly vulnerable to damage; a significant amount of "domination coverage" may be lost if key dominator nodes are deleted. However, we also find that increasing the redundancy of dominating sets by adding a few well-picked nodes can successfully increase the post-damage dominated fraction of the network. Based on this idea, we develop two algorithms to build dominating sets with flexible balance between size and damage resilience.
Project : semi-autonomous parking for enhanced safety and efficiency.
DOT National Transportation Integrated Search
2016-04-01
Index coding, a coding formulation traditionally analyzed in the theoretical computer science and : information theory communities, has received considerable attention in recent years due to its value in : wireless communications and networking probl...
Learning Analytics for Networked Learning Models
ERIC Educational Resources Information Center
Joksimovic, Srecko; Hatala, Marek; Gaševic, Dragan
2014-01-01
Teaching and learning in networked settings has attracted significant attention recently. The central topic of networked learning research is human-human and human-information interactions occurring within a networked learning environment. The nature of these interactions is highly complex and usually requires a multi-dimensional approach to…
Voltage collapse in complex power grids
Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco
2016-01-01
A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284
Complexity of the international agro-food trade network and its impact on food safety.
Ercsey-Ravasz, Mária; Toroczkai, Zoltán; Lakner, Zoltán; Baranyi, József
2012-01-01
With the world's population now in excess of 7 billion, it is vital to ensure the chemical and microbiological safety of our food, while maintaining the sustainability of its production, distribution and trade. Using UN databases, here we show that the international agro-food trade network (IFTN), with nodes and edges representing countries and import-export fluxes, respectively, has evolved into a highly heterogeneous, complex supply-chain network. Seven countries form the core of the IFTN, with high values of betweenness centrality and each trading with over 77% of all the countries in the world. Graph theoretical analysis and a dynamic food flux model show that the IFTN provides a vehicle suitable for the fast distribution of potential contaminants but unsuitable for tracing their origin. In particular, we show that high values of node betweenness and vulnerability correlate well with recorded large food poisoning outbreaks.
Biological network extraction from scientific literature: state of the art and challenges.
Li, Chen; Liakata, Maria; Rebholz-Schuhmann, Dietrich
2014-09-01
Networks of molecular interactions explain complex biological processes, and all known information on molecular events is contained in a number of public repositories including the scientific literature. Metabolic and signalling pathways are often viewed separately, even though both types are composed of interactions involving proteins and other chemical entities. It is necessary to be able to combine data from all available resources to judge the functionality, complexity and completeness of any given network overall, but especially the full integration of relevant information from the scientific literature is still an ongoing and complex task. Currently, the text-mining research community is steadily moving towards processing the full body of the scientific literature by making use of rich linguistic features such as full text parsing, to extract biological interactions. The next step will be to combine these with information from scientific databases to support hypothesis generation for the discovery of new knowledge and the extension of biological networks. The generation of comprehensive networks requires technologies such as entity grounding, coordination resolution and co-reference resolution, which are not fully solved and are required to further improve the quality of results. Here, we analyse the state of the art for the extraction of network information from the scientific literature and the evaluation of extraction methods against reference corpora, discuss challenges involved and identify directions for future research. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.